diff --git a/master/.buildinfo b/master/.buildinfo index 3f03c2749..ae5f365c3 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 53bf9165ae252f06cf47c722384f3dda +config: 23915d37363845cce4345d7e29f06c92 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 842e305f5..4ac27a103 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 81a6e8e4f..a3b2bd3c0 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 0d41e6437..bf68bee1f 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index da8448728..b937b9418 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 6eb1edb95..573c68517 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index c62cc5d97..91dbe8a64 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index bd426c815..b9e44b7ee 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index f5d31c602..1947e685a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index ec618a9d8..47f1b719d 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index e5d0d2609..8e658b5d2 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index a98ad050d..05cc61e4b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index cbcb50464..a9b8edb99 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index d86bbe2a7..839182624 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 2d38aea2b..63f62e107 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 8d694f3f5..ab82a0f2a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 20b9f5bda..ddd89d809 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 0fc745aa0..9b234f981 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b403d052d..c1f930b9c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 66ef97a6b..df64b4b6c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 892a5f3bc..03997fec7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 77c45722f..87f6baedc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 3f7b9c2e8..3fa0ba44d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 43f6c6e95..8ca57ad9e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 92369e932..99b228c07 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 5595d86ce..3b6f85484 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index eee681541..de8e053e5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 10f7e9c9c..a64cda317 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 48f17328a..807edc014 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 120bed9ab..0899ed792 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index df23db062..f3a30b7d9 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 058cfa969..119f99602 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 8027c5feb..4d530b256 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 4fb3b402d..73e22caa4 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 812e7bded..347ff2390 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index a367cf1e7..69338bd4b 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 291bccdc9..a38fec140 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index cfaa37983..bb4064624 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 95867a017..fb6f1d086 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 2472738ca..c4f8258e5 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index dfd8fadfc..fd8d526c9 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 10465de98..2cc487bbe 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index f12e93998..fbb0eee19 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 9834e7141..c28cc7038 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index e2eb0b85d..5d430d44f 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 2daf25c67..0aa3d114a 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index ef3c2b4b7..01daf7e90 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index aeb81b784..0e3c3cad8 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index b1ed4926a..d6321780a 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 9e8680663..5c20b3097 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 9cb327290..3db4f94bc 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c2296ec38..f4f532164 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 66ca00d3e..719aef364 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index e86e2eea1..3757a3f8a 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index e48e87411..1ec628098 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index f012eca0f..de4e4e799 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index b3f43adc0..e23f35c2b 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index d0fc5c588..2e66cee38 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 5aae68045..9fc450d44 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 7a9bf53f6..9ac83eef3 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 80d7735f4..3ddd8bb09 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index b75034aa0..1a5c2acf5 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 307b7f933..a84742399 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index d6be5cb7e..c27da26e4 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 621e507e8..ff37a1a5b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index b0db7d617..d0d1c9f8f 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 32d21e5d4..7eaab7b0b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index da8b42b0f..dd9824f02 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index da9e25fe4..299c52754 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index b97b1b255..1fe975d4a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 5dec5ca93..eb56c2237 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index a947d707f..73c852f1b 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 2a90bca8d..bf6a1dfcc 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index eaea76f47..b901d136d 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 138f34d81..4b53d8816 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index deb33cd1f..df15b5d56 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:20.915176Z", - "iopub.status.busy": "2024-01-16T18:14:20.914635Z", - "iopub.status.idle": "2024-01-16T18:14:24.352375Z", - "shell.execute_reply": "2024-01-16T18:14:24.351733Z" + "iopub.execute_input": "2024-01-17T17:45:48.281803Z", + "iopub.status.busy": "2024-01-17T17:45:48.281265Z", + "iopub.status.idle": "2024-01-17T17:45:51.532977Z", + "shell.execute_reply": "2024-01-17T17:45:51.532344Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.355565Z", - "iopub.status.busy": "2024-01-16T18:14:24.355063Z", - "iopub.status.idle": "2024-01-16T18:14:24.358719Z", - "shell.execute_reply": "2024-01-16T18:14:24.358098Z" + "iopub.execute_input": "2024-01-17T17:45:51.536196Z", + "iopub.status.busy": "2024-01-17T17:45:51.535669Z", + "iopub.status.idle": "2024-01-17T17:45:51.539177Z", + "shell.execute_reply": "2024-01-17T17:45:51.538560Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.361182Z", - "iopub.status.busy": "2024-01-16T18:14:24.360808Z", - "iopub.status.idle": "2024-01-16T18:14:24.366113Z", - "shell.execute_reply": "2024-01-16T18:14:24.365612Z" + "iopub.execute_input": "2024-01-17T17:45:51.541699Z", + "iopub.status.busy": "2024-01-17T17:45:51.541317Z", + "iopub.status.idle": "2024-01-17T17:45:51.546258Z", + "shell.execute_reply": "2024-01-17T17:45:51.545660Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.368536Z", - "iopub.status.busy": "2024-01-16T18:14:24.368241Z", - "iopub.status.idle": "2024-01-16T18:14:25.927558Z", - "shell.execute_reply": "2024-01-16T18:14:25.926708Z" + "iopub.execute_input": "2024-01-17T17:45:51.548974Z", + "iopub.status.busy": "2024-01-17T17:45:51.548436Z", + "iopub.status.idle": "2024-01-17T17:45:53.511722Z", + "shell.execute_reply": "2024-01-17T17:45:53.511012Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.931098Z", - "iopub.status.busy": "2024-01-16T18:14:25.930650Z", - "iopub.status.idle": "2024-01-16T18:14:25.943296Z", - "shell.execute_reply": "2024-01-16T18:14:25.942596Z" + "iopub.execute_input": "2024-01-17T17:45:53.515083Z", + "iopub.status.busy": "2024-01-17T17:45:53.514556Z", + "iopub.status.idle": "2024-01-17T17:45:53.526750Z", + "shell.execute_reply": "2024-01-17T17:45:53.526120Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.979754Z", - "iopub.status.busy": "2024-01-16T18:14:25.979232Z", - "iopub.status.idle": "2024-01-16T18:14:25.985428Z", - "shell.execute_reply": "2024-01-16T18:14:25.984757Z" + "iopub.execute_input": "2024-01-17T17:45:53.559421Z", + "iopub.status.busy": "2024-01-17T17:45:53.558892Z", + "iopub.status.idle": "2024-01-17T17:45:53.565993Z", + "shell.execute_reply": "2024-01-17T17:45:53.565333Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.987972Z", - "iopub.status.busy": "2024-01-16T18:14:25.987598Z", - "iopub.status.idle": "2024-01-16T18:14:26.769043Z", - "shell.execute_reply": "2024-01-16T18:14:26.768365Z" + "iopub.execute_input": "2024-01-17T17:45:53.568501Z", + "iopub.status.busy": "2024-01-17T17:45:53.568032Z", + "iopub.status.idle": "2024-01-17T17:45:54.251679Z", + "shell.execute_reply": "2024-01-17T17:45:54.251003Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:26.771757Z", - "iopub.status.busy": "2024-01-16T18:14:26.771377Z", - "iopub.status.idle": "2024-01-16T18:14:27.516544Z", - "shell.execute_reply": "2024-01-16T18:14:27.515950Z" + "iopub.execute_input": "2024-01-17T17:45:54.254434Z", + "iopub.status.busy": "2024-01-17T17:45:54.254191Z", + "iopub.status.idle": "2024-01-17T17:45:56.394373Z", + "shell.execute_reply": "2024-01-17T17:45:56.393785Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.519604Z", - "iopub.status.busy": "2024-01-16T18:14:27.519261Z", - "iopub.status.idle": "2024-01-16T18:14:27.543790Z", - "shell.execute_reply": "2024-01-16T18:14:27.543172Z" + "iopub.execute_input": "2024-01-17T17:45:56.397301Z", + "iopub.status.busy": "2024-01-17T17:45:56.397065Z", + "iopub.status.idle": "2024-01-17T17:45:56.421258Z", + "shell.execute_reply": "2024-01-17T17:45:56.420692Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.546452Z", - "iopub.status.busy": "2024-01-16T18:14:27.546073Z", - "iopub.status.idle": "2024-01-16T18:14:27.549426Z", - "shell.execute_reply": "2024-01-16T18:14:27.548863Z" + "iopub.execute_input": "2024-01-17T17:45:56.423783Z", + "iopub.status.busy": "2024-01-17T17:45:56.423475Z", + "iopub.status.idle": "2024-01-17T17:45:56.426947Z", + "shell.execute_reply": "2024-01-17T17:45:56.426388Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.551820Z", - "iopub.status.busy": "2024-01-16T18:14:27.551439Z", - "iopub.status.idle": "2024-01-16T18:14:47.423185Z", - "shell.execute_reply": "2024-01-16T18:14:47.422549Z" + "iopub.execute_input": "2024-01-17T17:45:56.429235Z", + "iopub.status.busy": "2024-01-17T17:45:56.429021Z", + "iopub.status.idle": "2024-01-17T17:46:15.035396Z", + "shell.execute_reply": "2024-01-17T17:46:15.034680Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.426361Z", - "iopub.status.busy": "2024-01-16T18:14:47.425953Z", - "iopub.status.idle": "2024-01-16T18:14:47.430484Z", - "shell.execute_reply": "2024-01-16T18:14:47.429961Z" + "iopub.execute_input": "2024-01-17T17:46:15.039000Z", + "iopub.status.busy": "2024-01-17T17:46:15.038397Z", + "iopub.status.idle": "2024-01-17T17:46:15.043348Z", + "shell.execute_reply": "2024-01-17T17:46:15.042799Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.432783Z", - "iopub.status.busy": "2024-01-16T18:14:47.432571Z", - "iopub.status.idle": "2024-01-16T18:14:52.936048Z", - "shell.execute_reply": "2024-01-16T18:14:52.935345Z" + "iopub.execute_input": "2024-01-17T17:46:15.045907Z", + "iopub.status.busy": "2024-01-17T17:46:15.045507Z", + "iopub.status.idle": "2024-01-17T17:46:20.498119Z", + "shell.execute_reply": "2024-01-17T17:46:20.497438Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.939625Z", - "iopub.status.busy": "2024-01-16T18:14:52.939206Z", - "iopub.status.idle": "2024-01-16T18:14:52.944490Z", - "shell.execute_reply": "2024-01-16T18:14:52.943903Z" + "iopub.execute_input": "2024-01-17T17:46:20.501565Z", + "iopub.status.busy": "2024-01-17T17:46:20.501133Z", + "iopub.status.idle": "2024-01-17T17:46:20.506455Z", + "shell.execute_reply": "2024-01-17T17:46:20.505871Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.947481Z", - "iopub.status.busy": "2024-01-16T18:14:52.947081Z", - "iopub.status.idle": "2024-01-16T18:14:53.052663Z", - "shell.execute_reply": "2024-01-16T18:14:53.051903Z" + "iopub.execute_input": "2024-01-17T17:46:20.509424Z", + "iopub.status.busy": "2024-01-17T17:46:20.509004Z", + "iopub.status.idle": "2024-01-17T17:46:20.620924Z", + "shell.execute_reply": "2024-01-17T17:46:20.620197Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.055771Z", - "iopub.status.busy": "2024-01-16T18:14:53.055272Z", - "iopub.status.idle": "2024-01-16T18:14:53.064890Z", - "shell.execute_reply": "2024-01-16T18:14:53.064330Z" + "iopub.execute_input": "2024-01-17T17:46:20.623691Z", + "iopub.status.busy": "2024-01-17T17:46:20.623431Z", + "iopub.status.idle": "2024-01-17T17:46:20.633797Z", + "shell.execute_reply": "2024-01-17T17:46:20.633256Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.067387Z", - "iopub.status.busy": "2024-01-16T18:14:53.066935Z", - "iopub.status.idle": "2024-01-16T18:14:53.075177Z", - "shell.execute_reply": "2024-01-16T18:14:53.074580Z" + "iopub.execute_input": "2024-01-17T17:46:20.636241Z", + "iopub.status.busy": "2024-01-17T17:46:20.635862Z", + "iopub.status.idle": "2024-01-17T17:46:20.643973Z", + "shell.execute_reply": "2024-01-17T17:46:20.643340Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.077704Z", - "iopub.status.busy": "2024-01-16T18:14:53.077211Z", - "iopub.status.idle": "2024-01-16T18:14:53.081922Z", - "shell.execute_reply": "2024-01-16T18:14:53.081326Z" + "iopub.execute_input": "2024-01-17T17:46:20.646449Z", + "iopub.status.busy": "2024-01-17T17:46:20.646021Z", + "iopub.status.idle": "2024-01-17T17:46:20.650715Z", + "shell.execute_reply": "2024-01-17T17:46:20.650105Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.084209Z", - "iopub.status.busy": "2024-01-16T18:14:53.083853Z", - "iopub.status.idle": "2024-01-16T18:14:53.090102Z", - "shell.execute_reply": "2024-01-16T18:14:53.089456Z" + "iopub.execute_input": "2024-01-17T17:46:20.653034Z", + "iopub.status.busy": "2024-01-17T17:46:20.652730Z", + "iopub.status.idle": "2024-01-17T17:46:20.659144Z", + "shell.execute_reply": "2024-01-17T17:46:20.658590Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.092579Z", - "iopub.status.busy": "2024-01-16T18:14:53.092207Z", - "iopub.status.idle": "2024-01-16T18:14:53.205798Z", - "shell.execute_reply": "2024-01-16T18:14:53.205139Z" + "iopub.execute_input": "2024-01-17T17:46:20.661540Z", + "iopub.status.busy": "2024-01-17T17:46:20.661169Z", + "iopub.status.idle": "2024-01-17T17:46:20.774456Z", + "shell.execute_reply": "2024-01-17T17:46:20.773805Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.208272Z", - "iopub.status.busy": "2024-01-16T18:14:53.208068Z", - "iopub.status.idle": "2024-01-16T18:14:53.317424Z", - "shell.execute_reply": "2024-01-16T18:14:53.316763Z" + "iopub.execute_input": "2024-01-17T17:46:20.777081Z", + "iopub.status.busy": "2024-01-17T17:46:20.776686Z", + "iopub.status.idle": "2024-01-17T17:46:20.883619Z", + "shell.execute_reply": "2024-01-17T17:46:20.883017Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.319798Z", - "iopub.status.busy": "2024-01-16T18:14:53.319580Z", - "iopub.status.idle": "2024-01-16T18:14:53.430801Z", - "shell.execute_reply": "2024-01-16T18:14:53.430125Z" + "iopub.execute_input": "2024-01-17T17:46:20.886375Z", + "iopub.status.busy": "2024-01-17T17:46:20.885897Z", + "iopub.status.idle": "2024-01-17T17:46:20.992300Z", + "shell.execute_reply": "2024-01-17T17:46:20.991606Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.433289Z", - "iopub.status.busy": "2024-01-16T18:14:53.433043Z", - "iopub.status.idle": "2024-01-16T18:14:53.542938Z", - "shell.execute_reply": "2024-01-16T18:14:53.542233Z" + "iopub.execute_input": "2024-01-17T17:46:20.994767Z", + "iopub.status.busy": "2024-01-17T17:46:20.994535Z", + "iopub.status.idle": "2024-01-17T17:46:21.104534Z", + "shell.execute_reply": "2024-01-17T17:46:21.103866Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.545707Z", - "iopub.status.busy": "2024-01-16T18:14:53.545287Z", - "iopub.status.idle": "2024-01-16T18:14:53.548752Z", - "shell.execute_reply": "2024-01-16T18:14:53.548195Z" + "iopub.execute_input": "2024-01-17T17:46:21.106933Z", + "iopub.status.busy": "2024-01-17T17:46:21.106710Z", + "iopub.status.idle": "2024-01-17T17:46:21.110311Z", + "shell.execute_reply": "2024-01-17T17:46:21.109761Z" }, "nbsphinx": "hidden" }, @@ -1377,28 +1377,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a2ba5f5018944be8ed66d1b5c89af1f": { + "033e01a89ac943ceab57fa1a4f52efcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb75104ef4734fac8938c1cb88c8c4d1", - "placeholder": "", - "style": "IPY_MODEL_f0c363be2cbb4cca8bafc15e33588fdb", - "value": "hyperparams.yaml: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "043a7d1958904863b243b004e8a70c95": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0da3d4dc1dd649639ab6d431992c8699": { + "11dd8f7214c1495f8942d7606f19e55f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1414,15 +1461,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2771b9bc9a14ee3aa56157b0502327a", - "max": 2041.0, + "layout": "IPY_MODEL_42c2b63db215400f9509bd6009308cf0", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ca661ab1b9cc4a8db6fdb49de9d2f0c9", - "value": 2041.0 + "style": "IPY_MODEL_732c20c4646c4cd59b45fdbb3e8759e3", + "value": 3201.0 } }, - "163a2cb346774198bc099216c4e65b17": { + "135a53de75034cf3a988d961a93a764c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1437,29 +1484,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e12ba550026940d29711487f772c6c67", - "IPY_MODEL_c977f9ffb7814ff39c752ed264ea6ce0", - "IPY_MODEL_57e717f107df4db2a84f2b734de5c2a9" + "IPY_MODEL_d8f0ee2d62d24af3ae6398d396346369", + "IPY_MODEL_5c0fb3f05454429e9df1ac90056fbcf6", + "IPY_MODEL_7dd68e4d78284f769acb5eebb84a0d11" ], - "layout": "IPY_MODEL_ad84d2897f0147aca8181eff243a5288" + "layout": "IPY_MODEL_d1d5d1e6560446a9b5567eceb2e4f236" } }, - "377d0e114663431a88b321ccf5671118": { + "1885bdd348aa473fa45d0f7040aff37e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "3b1c4b52ad9f42a8bd31850343c868ca": { + "19c6fa508c724059bd1a9a55fc1cccca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1511,7 +1559,46 @@ "width": null } }, - "3db09cbbf6c241a6a00d6438d3b146be": { + "2148259a1f30469d94ad6e790e5b93fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23364e8eaa2c43ef8904b7bf3a94adc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a687ff927d5468d9b01aedcade78b01", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1885bdd348aa473fa45d0f7040aff37e", + "value": 15856877.0 + } + }, + "24195dc95d4145d79d3b11c2411a1607": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1563,7 +1650,7 @@ "width": null } }, - "3ef5ca1cce374925a0b399b2514eb5c2": { + "26d1aab6d79c42fb99c1264a3cd973ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1615,7 +1702,43 @@ "width": null } }, - "42bdae19bfbd46f5906edd9af2a8ca32": { + "3e0b5cde430c4f61813e5553d2fc36f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "41605a719db444b9a7b57ffa9d3d03f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e89d06ba50d846a487da348c700a0a7f", + "placeholder": "", + "style": "IPY_MODEL_2148259a1f30469d94ad6e790e5b93fd", + "value": " 2.04k/2.04k [00:00<00:00, 325kB/s]" + } + }, + "42c2b63db215400f9509bd6009308cf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,7 +1790,7 @@ "width": null } }, - "43834e35ff2f465b9386c606893763df": { + "4a2fdbcd033b4a93ba2d5252dc7f5fae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1683,7 +1806,7 @@ "description_width": "" } }, - "43feddf15ba2438eb51c014be162befb": { + "52b4dbafc58b4e8c9ec8a8c66e413a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1735,7 +1858,7 @@ "width": null } }, - "46f6785b3d2c48b98f54410575394ffa": { + "556fb5f813714c41b05adaabbe3a96ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1751,103 +1874,55 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b5ba087d11514272a9e9faeb1ff627a9", - "max": 3201.0, + "layout": "IPY_MODEL_26d1aab6d79c42fb99c1264a3cd973ab", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ebc1cd16d38b4793bf1112d0927953b7", - "value": 3201.0 + "style": "IPY_MODEL_4a2fdbcd033b4a93ba2d5252dc7f5fae", + "value": 16887676.0 } }, - "4a2768a8302843e29697b819b2e21c83": { + "5c0fb3f05454429e9df1ac90056fbcf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd5bfe756d9c4ac2bb7970db7efd158f", - "placeholder": "", - "style": "IPY_MODEL_377d0e114663431a88b321ccf5671118", - "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]" - } - }, - "4a9672c6f7774b5291013e7b10fe0ec1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_52b4dbafc58b4e8c9ec8a8c66e413a7b", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5da4ee7e5a74424781dc4b5700bef698", + "value": 128619.0 } }, - "543d0e73290749499fa54afede2bd07f": { + "5da4ee7e5a74424781dc4b5700bef698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "57e717f107df4db2a84f2b734de5c2a9": { + "6e39de55bafc418eb42a575b35063e0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1862,49 +1937,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a9672c6f7774b5291013e7b10fe0ec1", + "layout": "IPY_MODEL_b07280c8ecc6456cad587a3752cb2d16", "placeholder": "", - "style": "IPY_MODEL_c4ba9128671b432b820ac648a68895c3", - "value": " 129k/129k [00:00<00:00, 7.55MB/s]" + "style": "IPY_MODEL_3e0b5cde430c4f61813e5553d2fc36f1", + "value": "classifier.ckpt: 100%" } }, - "5e4afca7fbd94824a33aac1479f05792": { + "732c20c4646c4cd59b45fdbb3e8759e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5f6b1e0a3c8741dba0d9eb4b7f6e7db9": { + "7c0ac0cdd53242a6a002865e387bd8c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3db09cbbf6c241a6a00d6438d3b146be", - "placeholder": "", - "style": "IPY_MODEL_fe1ddb8e1c9f4597a20eaae2164d6f14", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6bc17f07c1674ca9b444cdcf99e8c308": { + "7cee4d0269ef47308b8319e509277ceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1956,7 +2026,7 @@ "width": null } }, - "6ccc26a8049e42108a1980a281c22a4d": { + "7dafc44b77354f96b68181fc2f694955": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2008,59 +2078,71 @@ "width": null } }, - "72156103dd1640869663d6b7f50d0f03": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "7dd68e4d78284f769acb5eebb84a0d11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88c63d79c4f44cb9bcfd62c1dd5ecbea", + "placeholder": "", + "style": "IPY_MODEL_b8e3054079974d77b073afa288255be1", + "value": " 129k/129k [00:00<00:00, 7.14MB/s]" + } + }, + "7edcc39451c1450fad3fd357b026d543": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a05f4bffcdb840009c9bd506092c82a7", + "placeholder": "", + "style": "IPY_MODEL_f01752874a4843f0a24d63f445cc198f", + "value": " 3.20k/3.20k [00:00<00:00, 568kB/s]" } }, - "76daed84b81e433c905e360952995f85": { + "84e7a3c113c44726929580012c3b7a19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a62e150c641f4a7ca85a7b3592d00cca", + "IPY_MODEL_556fb5f813714c41b05adaabbe3a96ff", + "IPY_MODEL_b944b32f46ff40d58646cfbb4ed25597" + ], + "layout": "IPY_MODEL_8deee4161483420fa90522b81b099f27" + } + }, + "88c63d79c4f44cb9bcfd62c1dd5ecbea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2112,7 +2194,7 @@ "width": null } }, - "82d96704716d454793313b040ef1f84e": { + "8deee4161483420fa90522b81b099f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2164,59 +2246,28 @@ "width": null } }, - "85ef3c651b874a608bb9ca2cf868035b": { + "91ce7bb076c545c093b975ef94c07985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "86798b98961f4f3bb40902f9a4b53b80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8bdbe1b999184bb2846ce3cbdd16c6b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de75cd8f0c224d62b9fdf323a5417c96", - "IPY_MODEL_a4d9e3c2c1204a92982d6de58fe386c7", - "IPY_MODEL_cc3d1b8c3f05463e8e6ca0ed6e0b6b87" - ], - "layout": "IPY_MODEL_3b1c4b52ad9f42a8bd31850343c868ca" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7dafc44b77354f96b68181fc2f694955", + "placeholder": "", + "style": "IPY_MODEL_aaf9a4ac25ab432aa31f866253ae9e2d", + "value": " 15.9M/15.9M [00:00<00:00, 62.4MB/s]" } }, - "909c8ea39710440a9375312bc771a258": { + "928d89df3103412f870ee8942af69ce5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2231,14 +2282,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a2ba5f5018944be8ed66d1b5c89af1f", - "IPY_MODEL_0da3d4dc1dd649639ab6d431992c8699", - "IPY_MODEL_4a2768a8302843e29697b819b2e21c83" + "IPY_MODEL_6e39de55bafc418eb42a575b35063e0f", + "IPY_MODEL_23364e8eaa2c43ef8904b7bf3a94adc8", + "IPY_MODEL_91ce7bb076c545c093b975ef94c07985" ], - "layout": "IPY_MODEL_e40bbd2e388548f3babf5b73b54786ba" + "layout": "IPY_MODEL_7cee4d0269ef47308b8319e509277ceb" } }, - "947b044fce4d46cd94d78fac9e154a87": { + "9a687ff927d5468d9b01aedcade78b01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2290,7 +2341,7 @@ "width": null } }, - "a07d0d565d3a472a8e079a1ecf913022": { + "9df8b7d57ffc4b10a35332e34db31c0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2342,62 +2393,7 @@ "width": null } }, - "a481a55ede054d3aa8522ed074eb12cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a4d9e3c2c1204a92982d6de58fe386c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_42bdae19bfbd46f5906edd9af2a8ca32", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e01a67977a604991b8b00fcf581ad547", - "value": 16887676.0 - } - }, - "a6c29c1a8d9d46cfb56507d2d4955bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad84d2897f0147aca8181eff243a5288": { + "9e2b6e27deb4444397d5196935e4bd62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2449,7 +2445,7 @@ "width": null } }, - "b5ba087d11514272a9e9faeb1ff627a9": { + "a05f4bffcdb840009c9bd506092c82a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2501,7 +2497,7 @@ "width": null } }, - "b5f5706e3e7a42a381d9516fce9757ab": { + "a62e150c641f4a7ca85a7b3592d00cca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2516,87 +2512,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ccc26a8049e42108a1980a281c22a4d", + "layout": "IPY_MODEL_24195dc95d4145d79d3b11c2411a1607", "placeholder": "", - "style": "IPY_MODEL_5e4afca7fbd94824a33aac1479f05792", - "value": "classifier.ckpt: 100%" + "style": "IPY_MODEL_f0be994ae5a44b0fa8736dca37ac2d35", + "value": "embedding_model.ckpt: 100%" } }, - "bd5bfe756d9c4ac2bb7970db7efd158f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a9fa5db29ed9455c894ff00cd62f8eec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "bdacc2cd81a3435f83ae3314ecb44041": { + "aaf9a4ac25ab432aa31f866253ae9e2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5f6b1e0a3c8741dba0d9eb4b7f6e7db9", - "IPY_MODEL_46f6785b3d2c48b98f54410575394ffa", - "IPY_MODEL_ce9615a248654a39a822ea42c7a8bb45" - ], - "layout": "IPY_MODEL_3ef5ca1cce374925a0b399b2514eb5c2" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bffa004404b4462296f6f8103e02601e": { + "b07280c8ecc6456cad587a3752cb2d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2648,62 +2600,43 @@ "width": null } }, - "c4ba9128671b432b820ac648a68895c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c977f9ffb7814ff39c752ed264ea6ce0": { + "b4938061210f431d98a5bf349df11369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_43feddf15ba2438eb51c014be162befb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6c29c1a8d9d46cfb56507d2d4955bda", - "value": 128619.0 + "layout": "IPY_MODEL_ff6c319c736649f9b5fd91bf069cbc86", + "placeholder": "", + "style": "IPY_MODEL_a9fa5db29ed9455c894ff00cd62f8eec", + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ca661ab1b9cc4a8db6fdb49de9d2f0c9": { + "b8e3054079974d77b073afa288255be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "cb75104ef4734fac8938c1cb88c8c4d1": { + "b8f94f5f6d9d48e985836cd4e05de68b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2755,7 +2688,7 @@ "width": null } }, - "cc3d1b8c3f05463e8e6ca0ed6e0b6b87": { + "b944b32f46ff40d58646cfbb4ed25597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2770,13 +2703,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_76daed84b81e433c905e360952995f85", + "layout": "IPY_MODEL_9e2b6e27deb4444397d5196935e4bd62", "placeholder": "", - "style": "IPY_MODEL_543d0e73290749499fa54afede2bd07f", - "value": " 16.9M/16.9M [00:00<00:00, 187MB/s]" + "style": "IPY_MODEL_c7a92eba64484655ac97269ff6abbbdd", + "value": " 16.9M/16.9M [00:00<00:00, 39.8MB/s]" } }, - "ce9615a248654a39a822ea42c7a8bb45": { + "bed75d44ae61481e82459a68035af3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2791,34 +2724,57 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_82d96704716d454793313b040ef1f84e", + "layout": "IPY_MODEL_9df8b7d57ffc4b10a35332e34db31c0b", "placeholder": "", - "style": "IPY_MODEL_a481a55ede054d3aa8522ed074eb12cb", - "value": " 3.20k/3.20k [00:00<00:00, 526kB/s]" + "style": "IPY_MODEL_ec6bf18d0b6f4b889b872c2367fbf92a", + "value": "hyperparams.yaml: 100%" } }, - "d9f2f07b06fe4caba0db1beb29d785dd": { + "c0dbde17600f49929743b2d570ae951f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a07d0d565d3a472a8e079a1ecf913022", - "placeholder": "", - "style": "IPY_MODEL_85ef3c651b874a608bb9ca2cf868035b", - "value": " 15.9M/15.9M [00:00<00:00, 135MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bed75d44ae61481e82459a68035af3c2", + "IPY_MODEL_df99da8f96ff423ea4024cf79c5c6c0c", + "IPY_MODEL_41605a719db444b9a7b57ffa9d3d03f5" + ], + "layout": "IPY_MODEL_ddfc7066dc7046e2a7b358ccbe375515" + } + }, + "c716483215634ba4867d20fda8db3aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4938061210f431d98a5bf349df11369", + "IPY_MODEL_11dd8f7214c1495f8942d7606f19e55f", + "IPY_MODEL_7edcc39451c1450fad3fd357b026d543" + ], + "layout": "IPY_MODEL_19c6fa508c724059bd1a9a55fc1cccca" } }, - "db4da918ead840ebacc04ce7461a4988": { + "c7a92eba64484655ac97269ff6abbbdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2833,7 +2789,59 @@ "description_width": "" } }, - "de75cd8f0c224d62b9fdf323a5417c96": { + "d1d5d1e6560446a9b5567eceb2e4f236": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8f0ee2d62d24af3ae6398d396346369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2848,29 +2856,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_947b044fce4d46cd94d78fac9e154a87", + "layout": "IPY_MODEL_043a7d1958904863b243b004e8a70c95", "placeholder": "", - "style": "IPY_MODEL_db4da918ead840ebacc04ce7461a4988", - "value": "embedding_model.ckpt: 100%" + "style": "IPY_MODEL_7c0ac0cdd53242a6a002865e387bd8c4", + "value": "label_encoder.txt: 100%" } }, - "e01a67977a604991b8b00fcf581ad547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "ddfc7066dc7046e2a7b358ccbe375515": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e06edccc93074bdebf00e63fba330bd6": { + "df99da8f96ff423ea4024cf79c5c6c0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2886,36 +2930,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_72156103dd1640869663d6b7f50d0f03", - "max": 15856877.0, + "layout": "IPY_MODEL_b8f94f5f6d9d48e985836cd4e05de68b", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_43834e35ff2f465b9386c606893763df", - "value": 15856877.0 - } - }, - "e12ba550026940d29711487f772c6c67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bffa004404b4462296f6f8103e02601e", - "placeholder": "", - "style": "IPY_MODEL_86798b98961f4f3bb40902f9a4b53b80", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_033e01a89ac943ceab57fa1a4f52efcb", + "value": 2041.0 } }, - "e40bbd2e388548f3babf5b73b54786ba": { + "e89d06ba50d846a487da348c700a0a7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2967,23 +2990,37 @@ "width": null } }, - "ebc1cd16d38b4793bf1112d0927953b7": { + "ec6bf18d0b6f4b889b872c2367fbf92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f01752874a4843f0a24d63f445cc198f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f0c363be2cbb4cca8bafc15e33588fdb": { + "f0be994ae5a44b0fa8736dca37ac2d35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2998,7 +3035,7 @@ "description_width": "" } }, - "f2771b9bc9a14ee3aa56157b0502327a": { + "ff6c319c736649f9b5fd91bf069cbc86": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3049,43 +3086,6 @@ "visibility": null, "width": null } - }, - "f33fb49d865d44168fb5d6baa65c54d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5f5706e3e7a42a381d9516fce9757ab", - "IPY_MODEL_e06edccc93074bdebf00e63fba330bd6", - "IPY_MODEL_d9f2f07b06fe4caba0db1beb29d785dd" - ], - "layout": "IPY_MODEL_6bc17f07c1674ca9b444cdcf99e8c308" - } - }, - "fe1ddb8e1c9f4597a20eaae2164d6f14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 695d18089..5376434e7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:59.190807Z", - "iopub.status.busy": "2024-01-16T18:14:59.190598Z", - "iopub.status.idle": "2024-01-16T18:15:00.334362Z", - "shell.execute_reply": "2024-01-16T18:15:00.333678Z" + "iopub.execute_input": "2024-01-17T17:46:26.531087Z", + "iopub.status.busy": "2024-01-17T17:46:26.530895Z", + "iopub.status.idle": "2024-01-17T17:46:27.626130Z", + "shell.execute_reply": "2024-01-17T17:46:27.625413Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.337479Z", - "iopub.status.busy": "2024-01-16T18:15:00.336938Z", - "iopub.status.idle": "2024-01-16T18:15:00.340299Z", - "shell.execute_reply": "2024-01-16T18:15:00.339696Z" + "iopub.execute_input": "2024-01-17T17:46:27.629155Z", + "iopub.status.busy": "2024-01-17T17:46:27.628840Z", + "iopub.status.idle": "2024-01-17T17:46:27.632053Z", + "shell.execute_reply": "2024-01-17T17:46:27.631492Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.342974Z", - "iopub.status.busy": "2024-01-16T18:15:00.342580Z", - "iopub.status.idle": "2024-01-16T18:15:00.352513Z", - "shell.execute_reply": "2024-01-16T18:15:00.351788Z" + "iopub.execute_input": "2024-01-17T17:46:27.634434Z", + "iopub.status.busy": "2024-01-17T17:46:27.634232Z", + "iopub.status.idle": "2024-01-17T17:46:27.643719Z", + "shell.execute_reply": "2024-01-17T17:46:27.643067Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.355239Z", - "iopub.status.busy": "2024-01-16T18:15:00.354828Z", - "iopub.status.idle": "2024-01-16T18:15:00.360093Z", - "shell.execute_reply": "2024-01-16T18:15:00.359544Z" + "iopub.execute_input": "2024-01-17T17:46:27.646002Z", + "iopub.status.busy": "2024-01-17T17:46:27.645648Z", + "iopub.status.idle": "2024-01-17T17:46:27.650899Z", + "shell.execute_reply": "2024-01-17T17:46:27.650373Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.362926Z", - "iopub.status.busy": "2024-01-16T18:15:00.362525Z", - "iopub.status.idle": "2024-01-16T18:15:00.669314Z", - "shell.execute_reply": "2024-01-16T18:15:00.668558Z" + "iopub.execute_input": "2024-01-17T17:46:27.653554Z", + "iopub.status.busy": "2024-01-17T17:46:27.653032Z", + "iopub.status.idle": "2024-01-17T17:46:27.924861Z", + "shell.execute_reply": "2024-01-17T17:46:27.924234Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.672435Z", - "iopub.status.busy": "2024-01-16T18:15:00.672157Z", - "iopub.status.idle": "2024-01-16T18:15:01.063788Z", - "shell.execute_reply": "2024-01-16T18:15:01.063086Z" + "iopub.execute_input": "2024-01-17T17:46:27.927989Z", + "iopub.status.busy": "2024-01-17T17:46:27.927358Z", + "iopub.status.idle": "2024-01-17T17:46:28.302276Z", + "shell.execute_reply": "2024-01-17T17:46:28.301600Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.066563Z", - "iopub.status.busy": "2024-01-16T18:15:01.066212Z", - "iopub.status.idle": "2024-01-16T18:15:01.091850Z", - "shell.execute_reply": "2024-01-16T18:15:01.091241Z" + "iopub.execute_input": "2024-01-17T17:46:28.305482Z", + "iopub.status.busy": "2024-01-17T17:46:28.304916Z", + "iopub.status.idle": "2024-01-17T17:46:28.330184Z", + "shell.execute_reply": "2024-01-17T17:46:28.329666Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.095118Z", - "iopub.status.busy": "2024-01-16T18:15:01.094621Z", - "iopub.status.idle": "2024-01-16T18:15:01.107088Z", - "shell.execute_reply": "2024-01-16T18:15:01.106526Z" + "iopub.execute_input": "2024-01-17T17:46:28.332877Z", + "iopub.status.busy": "2024-01-17T17:46:28.332372Z", + "iopub.status.idle": "2024-01-17T17:46:28.344293Z", + "shell.execute_reply": "2024-01-17T17:46:28.343665Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.110020Z", - "iopub.status.busy": "2024-01-16T18:15:01.109614Z", - "iopub.status.idle": "2024-01-16T18:15:02.507580Z", - "shell.execute_reply": "2024-01-16T18:15:02.506721Z" + "iopub.execute_input": "2024-01-17T17:46:28.346997Z", + "iopub.status.busy": "2024-01-17T17:46:28.346641Z", + "iopub.status.idle": "2024-01-17T17:46:29.636585Z", + "shell.execute_reply": "2024-01-17T17:46:29.635810Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.510601Z", - "iopub.status.busy": "2024-01-16T18:15:02.510056Z", - "iopub.status.idle": "2024-01-16T18:15:02.534510Z", - "shell.execute_reply": "2024-01-16T18:15:02.533834Z" + "iopub.execute_input": "2024-01-17T17:46:29.639229Z", + "iopub.status.busy": "2024-01-17T17:46:29.638907Z", + "iopub.status.idle": "2024-01-17T17:46:29.661603Z", + "shell.execute_reply": "2024-01-17T17:46:29.660982Z" } }, "outputs": [ @@ -761,15 +761,15 @@ " \n", "\n", "Number of examples with this issue: 6\n", - "Overall dataset quality in terms of this issue: 0.5221\n", + "Overall dataset quality in terms of this issue: 0.3558\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.046465\n", - "130 True 0.068695\n", - "129 True 0.068695\n", - "127 True 0.076251\n", - "128 True 0.083941\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.537296Z", - "iopub.status.busy": "2024-01-16T18:15:02.536906Z", - "iopub.status.idle": "2024-01-16T18:15:02.559431Z", - "shell.execute_reply": "2024-01-16T18:15:02.558731Z" + "iopub.execute_input": "2024-01-17T17:46:29.663889Z", + "iopub.status.busy": "2024-01-17T17:46:29.663690Z", + "iopub.status.idle": "2024-01-17T17:46:29.683442Z", + "shell.execute_reply": "2024-01-17T17:46:29.682806Z" } }, "outputs": [ @@ -872,15 +872,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.562402Z", - "iopub.status.busy": "2024-01-16T18:15:02.561995Z", - "iopub.status.idle": "2024-01-16T18:15:02.577600Z", - "shell.execute_reply": "2024-01-16T18:15:02.576984Z" + "iopub.execute_input": "2024-01-17T17:46:29.685995Z", + "iopub.status.busy": "2024-01-17T17:46:29.685689Z", + "iopub.status.idle": "2024-01-17T17:46:29.700170Z", + "shell.execute_reply": "2024-01-17T17:46:29.699633Z" } }, "outputs": [ @@ -988,23 +988,23 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", - "125 True 0.090878\n", - "37 True 0.169462\n", - "109 False 0.194566\n", - "35 False 0.196302\n", - "5 False 0.206314\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "125 True 0.101107\n", + "37 True 0.183382\n", + "109 False 0.209259\n", + "35 False 0.211042\n", + "5 False 0.221316\n", "\n", "Additional Information: \n", - "average_ood_score: 0.32933380816554325\n", + "average_ood_score: 0.34530442089193386\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.580154Z", - "iopub.status.busy": "2024-01-16T18:15:02.579938Z", - "iopub.status.idle": "2024-01-16T18:15:02.604035Z", - "shell.execute_reply": "2024-01-16T18:15:02.603347Z" + "iopub.execute_input": "2024-01-17T17:46:29.702709Z", + "iopub.status.busy": "2024-01-17T17:46:29.702323Z", + "iopub.status.idle": "2024-01-17T17:46:29.725561Z", + "shell.execute_reply": "2024-01-17T17:46:29.724870Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb5604d45e6a43028f6b1ff13d871a34", + "model_id": "5c0c4ef1e9db4712a8f263817cf218c9", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.607374Z", - "iopub.status.busy": "2024-01-16T18:15:02.607045Z", - "iopub.status.idle": "2024-01-16T18:15:02.623883Z", - "shell.execute_reply": "2024-01-16T18:15:02.623173Z" + "iopub.execute_input": "2024-01-17T17:46:29.727960Z", + "iopub.status.busy": "2024-01-17T17:46:29.727582Z", + "iopub.status.idle": "2024-01-17T17:46:29.743329Z", + "shell.execute_reply": "2024-01-17T17:46:29.742799Z" } }, "outputs": [ @@ -1163,15 +1163,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.626805Z", - "iopub.status.busy": "2024-01-16T18:15:02.626365Z", - "iopub.status.idle": "2024-01-16T18:15:02.633286Z", - "shell.execute_reply": "2024-01-16T18:15:02.632658Z" + "iopub.execute_input": "2024-01-17T17:46:29.745890Z", + "iopub.status.busy": "2024-01-17T17:46:29.745520Z", + "iopub.status.idle": "2024-01-17T17:46:29.751885Z", + "shell.execute_reply": "2024-01-17T17:46:29.751225Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.635969Z", - "iopub.status.busy": "2024-01-16T18:15:02.635563Z", - "iopub.status.idle": "2024-01-16T18:15:02.655436Z", - "shell.execute_reply": "2024-01-16T18:15:02.654832Z" + "iopub.execute_input": "2024-01-17T17:46:29.754322Z", + "iopub.status.busy": "2024-01-17T17:46:29.753962Z", + "iopub.status.idle": "2024-01-17T17:46:29.773941Z", + "shell.execute_reply": "2024-01-17T17:46:29.773394Z" } }, "outputs": [ @@ -1364,15 +1364,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1430,22 +1430,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "341f9927e2414cbabcc91e79e1daf284": { + "10382a80e39e4fc699a36f0e573519cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37648a1d3ed64712bad1dc62d91bcc20", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcd37a9ca1084ab7abb9402dc6f3d464", + "value": 132.0 } }, - "3b03c17da7b24f6c965e487602b7a7b3": { + "1da516bda2144843b9fdbd221bba7fbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1497,7 +1506,22 @@ "width": null } }, - "3b52babb106e458eafe99147a0ccbae6": { + "2c6feedc04694baeba539aea8d458dab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37648a1d3ed64712bad1dc62d91bcc20": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1549,52 +1573,29 @@ "width": null } }, - "7dd7442d04fd48188ad012ca7a6d254f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec240dd3f24540b6be00a9f55d52713b", - "placeholder": "", - "style": "IPY_MODEL_e7b2f3b79b094685bf14c3cf8e38b861", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "95b4ac771b364b53832e72f148c7ebbf": { + "5c0c4ef1e9db4712a8f263817cf218c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6a02b7eb5194f79aa13c36ca6be9adb", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0612c3cfd464ff0b5e0d8c32aec21a2", - "value": 132.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71a70bdb1c384d38aaaaebe31d994340", + "IPY_MODEL_10382a80e39e4fc699a36f0e573519cb", + "IPY_MODEL_b8557e0bb3eb40dab898bc081f85d009" + ], + "layout": "IPY_MODEL_8bd8889a13f547acb9ed70e8759024b9" } }, - "a08a482690c74605b8f939333c210bfd": { + "71a70bdb1c384d38aaaaebe31d994340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1609,13 +1610,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3b52babb106e458eafe99147a0ccbae6", + "layout": "IPY_MODEL_1da516bda2144843b9fdbd221bba7fbf", "placeholder": "", - "style": "IPY_MODEL_341f9927e2414cbabcc91e79e1daf284", - "value": " 132/132 [00:00<00:00, 10134.69 examples/s]" + "style": "IPY_MODEL_2c6feedc04694baeba539aea8d458dab", + "value": "Saving the dataset (1/1 shards): 100%" } }, - "a6a02b7eb5194f79aa13c36ca6be9adb": { + "8bd8889a13f547acb9ed70e8759024b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,60 +1668,7 @@ "width": null } }, - "bb5604d45e6a43028f6b1ff13d871a34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dd7442d04fd48188ad012ca7a6d254f", - "IPY_MODEL_95b4ac771b364b53832e72f148c7ebbf", - "IPY_MODEL_a08a482690c74605b8f939333c210bfd" - ], - "layout": "IPY_MODEL_3b03c17da7b24f6c965e487602b7a7b3" - } - }, - "c0612c3cfd464ff0b5e0d8c32aec21a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7b2f3b79b094685bf14c3cf8e38b861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec240dd3f24540b6be00a9f55d52713b": { + "a2de29b3d3c74030a4badec62f04530e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,6 +1719,58 @@ "visibility": null, "width": null } + }, + "b8557e0bb3eb40dab898bc081f85d009": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2de29b3d3c74030a4badec62f04530e", + "placeholder": "", + "style": "IPY_MODEL_e486cfe0d5ab48229b33556ab089c589", + "value": " 132/132 [00:00<00:00, 11199.74 examples/s]" + } + }, + "bcd37a9ca1084ab7abb9402dc6f3d464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e486cfe0d5ab48229b33556ab089c589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 3545be137..d5a598e31 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:07.194941Z", - "iopub.status.busy": "2024-01-16T18:15:07.194765Z", - "iopub.status.idle": "2024-01-16T18:15:08.312657Z", - "shell.execute_reply": "2024-01-16T18:15:08.311928Z" + "iopub.execute_input": "2024-01-17T17:46:34.525855Z", + "iopub.status.busy": "2024-01-17T17:46:34.525336Z", + "iopub.status.idle": "2024-01-17T17:46:35.617356Z", + "shell.execute_reply": "2024-01-17T17:46:35.616742Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.315847Z", - "iopub.status.busy": "2024-01-16T18:15:08.315495Z", - "iopub.status.idle": "2024-01-16T18:15:08.318960Z", - "shell.execute_reply": "2024-01-16T18:15:08.318462Z" + "iopub.execute_input": "2024-01-17T17:46:35.620353Z", + "iopub.status.busy": "2024-01-17T17:46:35.619825Z", + "iopub.status.idle": "2024-01-17T17:46:35.623151Z", + "shell.execute_reply": "2024-01-17T17:46:35.622546Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.321605Z", - "iopub.status.busy": "2024-01-16T18:15:08.321119Z", - "iopub.status.idle": "2024-01-16T18:15:08.331196Z", - "shell.execute_reply": "2024-01-16T18:15:08.330560Z" + "iopub.execute_input": "2024-01-17T17:46:35.625802Z", + "iopub.status.busy": "2024-01-17T17:46:35.625434Z", + "iopub.status.idle": "2024-01-17T17:46:35.635399Z", + "shell.execute_reply": "2024-01-17T17:46:35.634762Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.333762Z", - "iopub.status.busy": "2024-01-16T18:15:08.333317Z", - "iopub.status.idle": "2024-01-16T18:15:08.338624Z", - "shell.execute_reply": "2024-01-16T18:15:08.337963Z" + "iopub.execute_input": "2024-01-17T17:46:35.637968Z", + "iopub.status.busy": "2024-01-17T17:46:35.637596Z", + "iopub.status.idle": "2024-01-17T17:46:35.642465Z", + "shell.execute_reply": "2024-01-17T17:46:35.641950Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.341624Z", - "iopub.status.busy": "2024-01-16T18:15:08.341208Z", - "iopub.status.idle": "2024-01-16T18:15:08.639093Z", - "shell.execute_reply": "2024-01-16T18:15:08.638383Z" + "iopub.execute_input": "2024-01-17T17:46:35.645130Z", + "iopub.status.busy": "2024-01-17T17:46:35.644729Z", + "iopub.status.idle": "2024-01-17T17:46:35.924836Z", + "shell.execute_reply": "2024-01-17T17:46:35.924191Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.642044Z", - "iopub.status.busy": "2024-01-16T18:15:08.641758Z", - "iopub.status.idle": "2024-01-16T18:15:09.023593Z", - "shell.execute_reply": "2024-01-16T18:15:09.022895Z" + "iopub.execute_input": "2024-01-17T17:46:35.927831Z", + "iopub.status.busy": "2024-01-17T17:46:35.927397Z", + "iopub.status.idle": "2024-01-17T17:46:36.244227Z", + "shell.execute_reply": "2024-01-17T17:46:36.243561Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.026598Z", - "iopub.status.busy": "2024-01-16T18:15:09.026161Z", - "iopub.status.idle": "2024-01-16T18:15:09.029337Z", - "shell.execute_reply": "2024-01-16T18:15:09.028707Z" + "iopub.execute_input": "2024-01-17T17:46:36.246804Z", + "iopub.status.busy": "2024-01-17T17:46:36.246417Z", + "iopub.status.idle": "2024-01-17T17:46:36.249331Z", + "shell.execute_reply": "2024-01-17T17:46:36.248750Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.032072Z", - "iopub.status.busy": "2024-01-16T18:15:09.031662Z", - "iopub.status.idle": "2024-01-16T18:15:09.072300Z", - "shell.execute_reply": "2024-01-16T18:15:09.071614Z" + "iopub.execute_input": "2024-01-17T17:46:36.251689Z", + "iopub.status.busy": "2024-01-17T17:46:36.251324Z", + "iopub.status.idle": "2024-01-17T17:46:36.289123Z", + "shell.execute_reply": "2024-01-17T17:46:36.288433Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.075422Z", - "iopub.status.busy": "2024-01-16T18:15:09.074821Z", - "iopub.status.idle": "2024-01-16T18:15:10.501305Z", - "shell.execute_reply": "2024-01-16T18:15:10.500596Z" + "iopub.execute_input": "2024-01-17T17:46:36.291653Z", + "iopub.status.busy": "2024-01-17T17:46:36.291300Z", + "iopub.status.idle": "2024-01-17T17:46:37.573984Z", + "shell.execute_reply": "2024-01-17T17:46:37.573345Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.504212Z", - "iopub.status.busy": "2024-01-16T18:15:10.503754Z", - "iopub.status.idle": "2024-01-16T18:15:10.530872Z", - "shell.execute_reply": "2024-01-16T18:15:10.530203Z" + "iopub.execute_input": "2024-01-17T17:46:37.576872Z", + "iopub.status.busy": "2024-01-17T17:46:37.576317Z", + "iopub.status.idle": "2024-01-17T17:46:37.600908Z", + "shell.execute_reply": "2024-01-17T17:46:37.600367Z" } }, "outputs": [ @@ -752,15 +752,15 @@ " \n", "\n", "Number of examples with this issue: 6\n", - "Overall dataset quality in terms of this issue: 0.5221\n", + "Overall dataset quality in terms of this issue: 0.3558\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.046465\n", - "130 True 0.068695\n", - "129 True 0.068695\n", - "127 True 0.076251\n", - "128 True 0.083941\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.533720Z", - "iopub.status.busy": "2024-01-16T18:15:10.533266Z", - "iopub.status.idle": "2024-01-16T18:15:10.540884Z", - "shell.execute_reply": "2024-01-16T18:15:10.540304Z" + "iopub.execute_input": "2024-01-17T17:46:37.603377Z", + "iopub.status.busy": "2024-01-17T17:46:37.602935Z", + "iopub.status.idle": "2024-01-17T17:46:37.609874Z", + "shell.execute_reply": "2024-01-17T17:46:37.609246Z" } }, "outputs": [ @@ -927,7 +927,7 @@ "
import numpy as np
-[docs]def transform_distances_to_scores(distances: np.ndarray, k: int, t: int) -> np.ndarray:
+[docs]def transform_distances_to_scores(
+ avg_distances: np.ndarray, t: int, scaling_factor: float
+) -> np.ndarray:
"""Returns an outlier score for each example based on its average distance to its k nearest neighbors.
The transformation of a distance, :math:`d` , to a score, :math:`o` , is based on the following formula:
@@ -561,18 +563,21 @@ Source code for cleanlab.internal.outlier
Parameters
----------
- distances : np.ndarray
- An array of distances of shape ``(N, num_neighbors)``, where N is the number of examples.
- Each row contains the distances to each example's `num_neighbors` nearest neighbors.
- It is assumed that each row is sorted in ascending order.
-
- k : int
- Number of neighbors used to compute the average distance to each example.
- This assumes that the second dimension of distances is k or greater, but it
- uses slicing to avoid indexing errors.
+ avg_distances : np.ndarray
+ An array of distances of shape ``(N)``, where N is the number of examples.
+ Each entry represents an example's average distance to its k nearest neighbors.
t : int
- Controls transformation of distances between examples into similarity scores that lie in [0,1].
+ A sensitivity parameter that modulates the strength of the transformation from distances to scores.
+ Higher values of `t` result in more pronounced differentiation between the scores of examples
+ lying in the range [0,1].
+
+ scaling_factor : float
+ A scaling factor used to normalize the distances before they are converted into scores. A valid
+ scaling factor is any positive number. The choice of scaling factor should be based on the
+ distribution of distances between neighboring examples. A good rule of thumb is to set the
+ scaling factor to the median distance between neighboring examples. A lower scaling factor
+ results in more pronounced differentiation between the scores of examples lying in the range [0,1].
Returns
-------
@@ -585,14 +590,12 @@ Source code for cleanlab.internal.outlier
>>> from cleanlab.outlier import transform_distances_to_scores
>>> distances = np.array([[0.0, 0.1, 0.25],
... [0.15, 0.2, 0.3]])
- >>> transform_distances_to_scores(distances, k=2, t=1)
- array([0.95122942, 0.83945702])
+ >>> avg_distances = np.mean(distances, axis=1)
+ >>> transform_distances_to_scores(avg_distances, t=1, scaling_factor=1)
+ array([0.88988177, 0.80519832])
"""
- # Calculate average distance to k-nearest neighbors
- avg_knn_distances = distances[:, :k].mean(axis=1)
-
# Map ood_features_scores to range 0-1 with 0 = most concerning
- ood_features_scores: np.ndarray = np.exp(-1 * avg_knn_distances * t)
+ ood_features_scores: np.ndarray = np.exp(-1 * avg_distances / scaling_factor * t)
return ood_features_scores
diff --git a/master/_modules/cleanlab/outlier.html b/master/_modules/cleanlab/outlier.html
index 87f2ab850..f7b9c173b 100644
--- a/master/_modules/cleanlab/outlier.html
+++ b/master/_modules/cleanlab/outlier.html
@@ -553,7 +553,7 @@ Source code for cleanlab.outlier
from cleanlab.count import get_confident_thresholds
from sklearn.neighbors import NearestNeighbors
from sklearn.exceptions import NotFittedError
-from typing import Optional, Union, Tuple, Dict, cast
+from typing import Optional, Union, Tuple, Dict
from cleanlab.internal.label_quality_utils import (
_subtract_confident_thresholds,
get_normalized_entropy,
@@ -647,6 +647,9 @@ Source code for cleanlab.outlier
"To use GEN, we recommend setting: params['adjust_pred_probs'] = False"
)
+ # scaling_factor internally used to rescale distances based on mean distances to k nearest neighbors
+ self.params["scaling_factor"] = None
+
[docs] def fit_score(
self,
*,
@@ -794,7 +797,9 @@ Source code for cleanlab.outlier
raise ValueError(
"OOD estimator needs to be fit on features first. Call `fit()` or `fit_scores()` before this function."
)
- scores, _ = _get_ood_features_scores(features, **self._get_params(self.OUTLIER_PARAMS))
+ scores, _ = self._get_ood_features_scores(
+ features, **self._get_params(self.OUTLIER_PARAMS)
+ )
if pred_probs is not None:
if self.params["confident_thresholds"] is None and self.params["adjust_pred_probs"]:
@@ -866,7 +871,7 @@ Source code for cleanlab.outlier
# Get ood features scores
if verbose:
print("Fitting OOD estimator based on provided features ...")
- scores, knn = _get_ood_features_scores(
+ scores, knn = self._get_ood_features_scores(
features, **self._get_params(self.OUTLIER_PARAMS)
)
self.params["knn"] = knn
@@ -895,91 +900,105 @@ Source code for cleanlab.outlier
)
else:
self.params["confident_thresholds"] = confident_thresholds
- return scores
+ return scores
+ def _get_ood_features_scores(
+ self,
+ features: Optional[np.ndarray] = None,
+ knn: Optional[NearestNeighbors] = None,
+ k: Optional[int] = None,
+ t: int = 1,
+ ) -> Tuple[np.ndarray, Optional[NearestNeighbors]]:
+ """
+ Return outlier score based on feature values using `k` nearest neighbors.
-def _get_ood_features_scores(
- features: Optional[np.ndarray] = None,
- knn: Optional[NearestNeighbors] = None,
- k: Optional[int] = None,
- t: int = 1,
-) -> Tuple[np.ndarray, Optional[NearestNeighbors]]:
- """
- Return outlier score based on feature values using `k` nearest neighbors.
+ The outlier score for each example is computed inversely proportional to
+ the average distance between this example and its K nearest neighbors (in feature space).
+
+ Parameters
+ ----------
+ features : np.ndarray
+ Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example.
+ For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function.
- The outlier score for each example is computed inversely proportional to
- the average distance between this example and its K nearest neighbors (in feature space).
+ knn : sklearn.neighbors.NearestNeighbors, default = None
+ For details, see key `knn` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
- Parameters
- ----------
- features : np.ndarray
- Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example.
- For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function.
+ k : int, default=None
+ Optional number of neighbors to use when calculating outlier score (average distance to neighbors).
+ For details, see key `k` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
+
+ t : int, default=1
+ Controls transformation of distances between examples into similarity scores that lie in [0,1].
+ For details, see key `t` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
+
+ Returns
+ -------
+ ood_features_scores : Tuple[np.ndarray, Optional[NearestNeighbors]]
+ Return a tuple whose first element is array of `ood_features_scores` and second is a `knn` Estimator object.
+ """
+ DEFAULT_K = 10
+ # fit skip over (if knn is not None) then skipping fit and suggest score else fit.
+ if knn is None: # setup default KNN estimator
+ # Make sure both knn and features are not None
+ if features is None:
+ raise ValueError(
+ "Both knn and features arguments cannot be None at the same time. Not enough information to compute outlier scores."
+ )
+ if k is None:
+ k = DEFAULT_K # use default when knn and k are both None
+ if k > len(features): # Ensure number of neighbors less than number of examples
+ raise ValueError(
+ f"Number of nearest neighbors k={k} cannot exceed the number of examples N={len(features)} passed into the estimator (knn)."
+ )
- knn : sklearn.neighbors.NearestNeighbors, default = None
- For details, see key `knn` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
+ if features.shape[1] > 3: # use euclidean distance for lower dimensional spaces
+ metric = "cosine"
+ else:
+ metric = "euclidean"
- k : int, default=None
- Optional number of neighbors to use when calculating outlier score (average distance to neighbors).
- For details, see key `k` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
+ knn = NearestNeighbors(n_neighbors=k, metric=metric).fit(features)
+ features = None # features should be None in knn.kneighbors(features) to avoid counting duplicate data points
- t : int, default=1
- Controls transformation of distances between examples into similarity scores that lie in [0,1].
- For details, see key `t` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`.
+ elif k is None:
+ k = knn.n_neighbors
- Returns
- -------
- ood_features_scores : Tuple[np.ndarray, Optional[NearestNeighbors]]
- Return a tuple whose first element is array of `ood_features_scores` and second is a `knn` Estimator object.
- """
- DEFAULT_K = 10
- # fit skip over (if knn is not None) then skipping fit and suggest score else fit.
- if knn is None: # setup default KNN estimator
- # Make sure both knn and features are not None
- if features is None:
- raise ValueError(
- "Both knn and features arguments cannot be None at the same time. Not enough information to compute outlier scores."
- )
- if k is None:
- k = DEFAULT_K # use default when knn and k are both None
- if k > len(features): # Ensure number of neighbors less than number of examples
- raise ValueError(
- f"Number of nearest neighbors k={k} cannot exceed the number of examples N={len(features)} passed into the estimator (knn)."
+ max_k = knn.n_neighbors # number of neighbors previously used in NearestNeighbors object
+ if k > max_k: # if k provided is too high, use max possible number of nearest neighbors
+ warnings.warn(
+ f"Chosen k={k} cannot be greater than n_neighbors={max_k} which was used when fitting "
+ f"NearestNeighbors object! Value of k changed to k={max_k}.",
+ UserWarning,
)
+ k = max_k
- if features.shape[1] > 3: # use euclidean distance for lower dimensional spaces
- metric = "cosine"
- else:
- metric = "euclidean"
+ # Fit knn estimator on the features if a non-fitted estimator is passed in
+ try:
+ knn.kneighbors(features)
+ except NotFittedError:
+ knn.fit(features)
- knn = NearestNeighbors(n_neighbors=k, metric=metric).fit(features)
- features = None # features should be None in knn.kneighbors(features) to avoid counting duplicate data points
+ # Get distances to k-nearest neighbors Note that the knn object contains the specification of distance metric
+ # and n_neighbors (k value) If our query set of features matches the training set used to fit knn, the nearest
+ # neighbor of each point is the point itself, at a distance of zero.
+ distances, _ = knn.kneighbors(features)
- elif k is None:
- k = knn.n_neighbors
+ # Calculate average distance to k-nearest neighbors
+ avg_knn_distances = distances[:, :k].mean(axis=1)
- max_k = knn.n_neighbors # number of neighbors previously used in NearestNeighbors object
- if k > max_k: # if k provided is too high, use max possible number of nearest neighbors
- warnings.warn(
- f"Chosen k={k} cannot be greater than n_neighbors={max_k} which was used when fitting "
- f"NearestNeighbors object! Value of k changed to k={max_k}.",
- UserWarning,
- )
- k = max_k
-
- # Fit knn estimator on the features if a non-fitted estimator is passed in
- try:
- knn.kneighbors(features)
- except NotFittedError:
- knn.fit(features)
+ if self.params["scaling_factor"] is None:
+ self.params["scaling_factor"] = float(
+ max(np.median(avg_knn_distances), np.finfo(np.float_).eps)
+ )
+ scaling_factor = self.params["scaling_factor"]
- # Get distances to k-nearest neighbors Note that the knn object contains the specification of distance metric
- # and n_neighbors (k value) If our query set of features matches the training set used to fit knn, the nearest
- # neighbor of each point is the point itself, at a distance of zero.
- distances, _ = knn.kneighbors(features)
+ if not isinstance(scaling_factor, float):
+ raise ValueError(f"Scaling factor must be a float. Got {type(scaling_factor)} instead.")
- ood_features_scores = transform_distances_to_scores(distances, cast(int, k), t)
- return (ood_features_scores, knn)
+ ood_features_scores = transform_distances_to_scores(
+ avg_knn_distances, t, scaling_factor=scaling_factor
+ )
+ return (ood_features_scores, knn)
def _get_ood_predictions_scores(
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index da4542e3a..2eb342976 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index bb260a1e0..bd3697463 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 7fbdb32c2..0c3232f18 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index dbc38e061..989cec61c 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index d762ff0da..ce28950a0 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index b2513a371..bafc9e946 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index b81792575..eee237852 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index b7aca282e..1b283de34 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index 242a117c9..6bdea6099 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -72,7 +72,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 83fdf58e6..ef555678c 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 3c063110d..c96e28c2d 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 541d150ac..b3ce7ebb7 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -103,7 +103,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 7efa15b5d..a311334a3 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index f1f1bde5d..43c76fc4f 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index d1a4e7132..6990c53c6 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 6227bed63..5d6122eee 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/cleanlab/datalab/internal/issue_manager/regression/label.html
index d4f3a761d..83e97bddf 100644
--- a/master/cleanlab/datalab/internal/issue_manager/regression/label.html
+++ b/master/cleanlab/datalab/internal/issue_manager/regression/label.html
@@ -561,7 +561,7 @@
-
-class cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager(datalab, clean_learning_kwargs=None, threshold=0.1, health_summary_parameters=None, **_)[source]#
+class cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager(datalab, clean_learning_kwargs=None, threshold=0.05, health_summary_parameters=None, **_)[source]#
Bases: IssueManager
Manages label issues in a Datalab for regression tasks.
@@ -572,7 +572,7 @@
threshold (float
) – The threshold to use to determine if an example has a label issue. It is a multiplier
of the median label quality score that sets the absolute threshold. Only used if
predictions are provided to find_issues
, not if
-features are provided. Default is 0.1.
+features are provided. Default is 0.05.
diff --git a/master/cleanlab/internal/outlier.html b/master/cleanlab/internal/outlier.html
index 587501cff..d1caf8416 100644
--- a/master/cleanlab/internal/outlier.html
+++ b/master/cleanlab/internal/outlier.html
@@ -541,7 +541,7 @@
How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1452,7 +1452,7 @@ Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.
Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai
diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb
index 75e655dca..197f0cc47 100644
--- a/master/tutorials/faq.ipynb
+++ b/master/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:15:57.418817Z",
- "iopub.status.busy": "2024-01-16T18:15:57.418221Z",
- "iopub.status.idle": "2024-01-16T18:15:58.476986Z",
- "shell.execute_reply": "2024-01-16T18:15:58.476369Z"
+ "iopub.execute_input": "2024-01-17T17:47:27.636950Z",
+ "iopub.status.busy": "2024-01-17T17:47:27.636331Z",
+ "iopub.status.idle": "2024-01-17T17:47:28.673494Z",
+ "shell.execute_reply": "2024-01-17T17:47:28.672886Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:15:58.480056Z",
- "iopub.status.busy": "2024-01-16T18:15:58.479609Z",
- "iopub.status.idle": "2024-01-16T18:15:58.483407Z",
- "shell.execute_reply": "2024-01-16T18:15:58.482875Z"
+ "iopub.execute_input": "2024-01-17T17:47:28.676967Z",
+ "iopub.status.busy": "2024-01-17T17:47:28.676319Z",
+ "iopub.status.idle": "2024-01-17T17:47:28.680081Z",
+ "shell.execute_reply": "2024-01-17T17:47:28.679568Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:15:58.485825Z",
- "iopub.status.busy": "2024-01-16T18:15:58.485453Z",
- "iopub.status.idle": "2024-01-16T18:16:00.548527Z",
- "shell.execute_reply": "2024-01-16T18:16:00.547841Z"
+ "iopub.execute_input": "2024-01-17T17:47:28.682651Z",
+ "iopub.status.busy": "2024-01-17T17:47:28.682199Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.662113Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.661305Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.551920Z",
- "iopub.status.busy": "2024-01-16T18:16:00.551273Z",
- "iopub.status.idle": "2024-01-16T18:16:00.586863Z",
- "shell.execute_reply": "2024-01-16T18:16:00.586069Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.665838Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.664985Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.702802Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.702035Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.590183Z",
- "iopub.status.busy": "2024-01-16T18:16:00.589693Z",
- "iopub.status.idle": "2024-01-16T18:16:00.628675Z",
- "shell.execute_reply": "2024-01-16T18:16:00.627875Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.705974Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.705483Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.740910Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.740189Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.632522Z",
- "iopub.status.busy": "2024-01-16T18:16:00.632252Z",
- "iopub.status.idle": "2024-01-16T18:16:00.635413Z",
- "shell.execute_reply": "2024-01-16T18:16:00.634891Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.743971Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.743470Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.746772Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.746178Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.638191Z",
- "iopub.status.busy": "2024-01-16T18:16:00.637827Z",
- "iopub.status.idle": "2024-01-16T18:16:00.640620Z",
- "shell.execute_reply": "2024-01-16T18:16:00.640097Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.749236Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.748768Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.751621Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.751123Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.643155Z",
- "iopub.status.busy": "2024-01-16T18:16:00.642713Z",
- "iopub.status.idle": "2024-01-16T18:16:00.670851Z",
- "shell.execute_reply": "2024-01-16T18:16:00.670234Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.754142Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.753710Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.781205Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.780598Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "be6b89c05bf54e629d5214f135ecc2d9",
+ "model_id": "6118415ae7394ffd96f150429a30c90e",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "55e901a991824e3fbda53e2d393455d9",
+ "model_id": "74b94b74c8204c518111c5334e52842b",
"version_major": 2,
"version_minor": 0
},
@@ -387,10 +387,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.678225Z",
- "iopub.status.busy": "2024-01-16T18:16:00.677825Z",
- "iopub.status.idle": "2024-01-16T18:16:00.684491Z",
- "shell.execute_reply": "2024-01-16T18:16:00.683970Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.788205Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.787789Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.794524Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.794019Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.686812Z",
- "iopub.status.busy": "2024-01-16T18:16:00.686368Z",
- "iopub.status.idle": "2024-01-16T18:16:00.690083Z",
- "shell.execute_reply": "2024-01-16T18:16:00.689559Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.796854Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.796459Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.800312Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.799775Z"
},
"nbsphinx": "hidden"
},
@@ -447,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.692161Z",
- "iopub.status.busy": "2024-01-16T18:16:00.691959Z",
- "iopub.status.idle": "2024-01-16T18:16:00.699054Z",
- "shell.execute_reply": "2024-01-16T18:16:00.698536Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.802703Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.802357Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.809258Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.808727Z"
}
},
"outputs": [],
@@ -500,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.701373Z",
- "iopub.status.busy": "2024-01-16T18:16:00.700937Z",
- "iopub.status.idle": "2024-01-16T18:16:00.739221Z",
- "shell.execute_reply": "2024-01-16T18:16:00.738543Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.811612Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.811247Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.848892Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.848075Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.742109Z",
- "iopub.status.busy": "2024-01-16T18:16:00.741846Z",
- "iopub.status.idle": "2024-01-16T18:16:00.780149Z",
- "shell.execute_reply": "2024-01-16T18:16:00.779344Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.852080Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.851683Z",
+ "iopub.status.idle": "2024-01-17T17:47:30.890113Z",
+ "shell.execute_reply": "2024-01-17T17:47:30.889434Z"
},
"nbsphinx": "hidden"
},
@@ -602,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.783325Z",
- "iopub.status.busy": "2024-01-16T18:16:00.783062Z",
- "iopub.status.idle": "2024-01-16T18:16:00.902882Z",
- "shell.execute_reply": "2024-01-16T18:16:00.902217Z"
+ "iopub.execute_input": "2024-01-17T17:47:30.893308Z",
+ "iopub.status.busy": "2024-01-17T17:47:30.892889Z",
+ "iopub.status.idle": "2024-01-17T17:47:31.012408Z",
+ "shell.execute_reply": "2024-01-17T17:47:31.011727Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:00.905753Z",
- "iopub.status.busy": "2024-01-16T18:16:00.905355Z",
- "iopub.status.idle": "2024-01-16T18:16:03.441187Z",
- "shell.execute_reply": "2024-01-16T18:16:03.440427Z"
+ "iopub.execute_input": "2024-01-17T17:47:31.015249Z",
+ "iopub.status.busy": "2024-01-17T17:47:31.014843Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.505335Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.504572Z"
}
},
"outputs": [
@@ -761,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.444116Z",
- "iopub.status.busy": "2024-01-16T18:16:03.443692Z",
- "iopub.status.idle": "2024-01-16T18:16:03.502832Z",
- "shell.execute_reply": "2024-01-16T18:16:03.502159Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.508187Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.507786Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.565362Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.564757Z"
}
},
"outputs": [
@@ -802,7 +802,7 @@
},
{
"cell_type": "markdown",
- "id": "a63586b5",
+ "id": "2e2ede4c",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -810,7 +810,7 @@
},
{
"cell_type": "markdown",
- "id": "2b31716f",
+ "id": "b85b170d",
"metadata": {},
"source": [
"When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n",
@@ -823,13 +823,13 @@
{
"cell_type": "code",
"execution_count": 17,
- "id": "4887263e",
+ "id": "f888ecd3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.505582Z",
- "iopub.status.busy": "2024-01-16T18:16:03.505191Z",
- "iopub.status.idle": "2024-01-16T18:16:03.613248Z",
- "shell.execute_reply": "2024-01-16T18:16:03.612541Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.567937Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.567572Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.681531Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.680872Z"
}
},
"outputs": [
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "699098e7",
+ "id": "035f5521",
"metadata": {},
"source": [
"For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:"
@@ -879,13 +879,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "f8a445ea",
+ "id": "4eca8e3f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.616923Z",
- "iopub.status.busy": "2024-01-16T18:16:03.616277Z",
- "iopub.status.idle": "2024-01-16T18:16:03.693439Z",
- "shell.execute_reply": "2024-01-16T18:16:03.692848Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.684745Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.684425Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.755644Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.754828Z"
}
},
"outputs": [
@@ -921,7 +921,7 @@
},
{
"cell_type": "markdown",
- "id": "6af9e5a8",
+ "id": "02bcd7ad",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by cleanlab?\n",
@@ -932,13 +932,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "326f5f2c",
+ "id": "8d96a258",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.696323Z",
- "iopub.status.busy": "2024-01-16T18:16:03.695897Z",
- "iopub.status.idle": "2024-01-16T18:16:03.704431Z",
- "shell.execute_reply": "2024-01-16T18:16:03.703903Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.758921Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.758478Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.766911Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.766290Z"
}
},
"outputs": [],
@@ -1040,7 +1040,7 @@
},
{
"cell_type": "markdown",
- "id": "ac16d60c",
+ "id": "226cb25c",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1055,13 +1055,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "38316429",
+ "id": "7d3ac0da",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.706739Z",
- "iopub.status.busy": "2024-01-16T18:16:03.706553Z",
- "iopub.status.idle": "2024-01-16T18:16:03.725715Z",
- "shell.execute_reply": "2024-01-16T18:16:03.725160Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.769300Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.768858Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.788533Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.787972Z"
}
},
"outputs": [
@@ -1104,13 +1104,13 @@
{
"cell_type": "code",
"execution_count": 21,
- "id": "4475f99d",
+ "id": "5f110e92",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-16T18:16:03.727911Z",
- "iopub.status.busy": "2024-01-16T18:16:03.727702Z",
- "iopub.status.idle": "2024-01-16T18:16:03.731529Z",
- "shell.execute_reply": "2024-01-16T18:16:03.730928Z"
+ "iopub.execute_input": "2024-01-17T17:47:33.791079Z",
+ "iopub.status.busy": "2024-01-17T17:47:33.790637Z",
+ "iopub.status.idle": "2024-01-17T17:47:33.794932Z",
+ "shell.execute_reply": "2024-01-17T17:47:33.794293Z"
}
},
"outputs": [
@@ -1205,23 +1205,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "1c5ddfa9e5af4c71a2d795d08917ce30": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "30c07688294b4590a6c7af60e7ff150e": {
+ "0680087d65da4687af801f9791a73ee3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1273,49 +1257,46 @@
"width": null
}
},
- "3bbb2ac2044944728ad50b54dcae679f": {
+ "273eb8d115c6410abc0262fbfa22e139": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_30c07688294b4590a6c7af60e7ff150e",
- "placeholder": "",
- "style": "IPY_MODEL_bbe01bd7cc39481792b9eeaf75e59865",
- "value": "number of examples processed for checking labels: "
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "3d1ea18088b44578a82494404b4b6526": {
+ "37cd3deaba0843e58ae650a5f2b9eba2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f73e12450e9b44ffbfa3ae849f007f15",
- "placeholder": "",
- "style": "IPY_MODEL_ad9470941b23485fa612c05bb92d68db",
- "value": "number of examples processed for estimating thresholds: "
+ "layout": "IPY_MODEL_b336bc30a3f1468fb0ac077e66155b8f",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cb4c9a997a9144b0bca590e9c5a87fcf",
+ "value": 50.0
}
},
- "3dda280f8336451eb0557e975ff2d908": {
+ "4bb19eea1d494d8eb5233dc1bd64954e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1367,31 +1348,7 @@
"width": null
}
},
- "46495bfb8ba446f182bc0b5984620664": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3dda280f8336451eb0557e975ff2d908",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_1c5ddfa9e5af4c71a2d795d08917ce30",
- "value": 50.0
- }
- },
- "4aa8b4daf9104ecdad120225e68f5540": {
+ "55ddbe71f01946b59b3b52ff188200fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1406,13 +1363,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_843c6dffeed048149fd41953b533bc03",
+ "layout": "IPY_MODEL_7555045e76474233b6507a2227ce4f0a",
"placeholder": "",
- "style": "IPY_MODEL_ab88fab8f4b94597aaf043f3a536c65d",
- "value": " 10000/? [00:00<00:00, 1147458.21it/s]"
+ "style": "IPY_MODEL_83622b18675745048d9ab04083fdc590",
+ "value": "number of examples processed for checking labels: "
}
},
- "55e901a991824e3fbda53e2d393455d9": {
+ "6118415ae7394ffd96f150429a30c90e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -1427,14 +1384,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_3bbb2ac2044944728ad50b54dcae679f",
- "IPY_MODEL_adaf23d194974baeafd98c18646daaa2",
- "IPY_MODEL_4aa8b4daf9104ecdad120225e68f5540"
+ "IPY_MODEL_86a78a185e1b4ae2b0c6a4639821badf",
+ "IPY_MODEL_b2c68c2109c44faf921e9a02ec6da38d",
+ "IPY_MODEL_edb94b7bb6da4cd1b553c2a09d077afa"
],
- "layout": "IPY_MODEL_cb711b84f8214d82b8fb35645767879f"
+ "layout": "IPY_MODEL_4bb19eea1d494d8eb5233dc1bd64954e"
}
},
- "5659f0502a6a46cf960fcebc58d41908": {
+ "6a88e2b5655941a7acb9e31b017db356": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1486,59 +1443,44 @@
"width": null
}
},
- "6cd09bf4c6054f069102d38e86fbf3a5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "706fe2da65784a29b025e5c5a8b19f2e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "74b94b74c8204c518111c5334e52842b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_55ddbe71f01946b59b3b52ff188200fe",
+ "IPY_MODEL_37cd3deaba0843e58ae650a5f2b9eba2",
+ "IPY_MODEL_bddc566f81704fa6ae3a1a5f075e30e6"
+ ],
+ "layout": "IPY_MODEL_0680087d65da4687af801f9791a73ee3"
}
},
- "843c6dffeed048149fd41953b533bc03": {
+ "7555045e76474233b6507a2227ce4f0a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1590,7 +1532,7 @@
"width": null
}
},
- "8d80ffdedeb54d11a72f70399337228a": {
+ "83622b18675745048d9ab04083fdc590": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1605,7 +1547,7 @@
"description_width": ""
}
},
- "9e1c0c8f682f4016b92735695db0fb3e": {
+ "86a78a185e1b4ae2b0c6a4639821badf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1620,43 +1562,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ec10984034094ee694d8330b9a1dbeb4",
+ "layout": "IPY_MODEL_b936e9c3b0db4d879a8fe2972783d51b",
"placeholder": "",
- "style": "IPY_MODEL_8d80ffdedeb54d11a72f70399337228a",
- "value": " 10000/? [00:00<00:00, 931467.28it/s]"
- }
- },
- "ab88fab8f4b94597aaf043f3a536c65d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ad9470941b23485fa612c05bb92d68db": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_706fe2da65784a29b025e5c5a8b19f2e",
+ "value": "number of examples processed for estimating thresholds: "
}
},
- "adaf23d194974baeafd98c18646daaa2": {
+ "b2c68c2109c44faf921e9a02ec6da38d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -1672,68 +1584,67 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6cd09bf4c6054f069102d38e86fbf3a5",
+ "layout": "IPY_MODEL_f58ef3392b4f4c98b9bd4e3ef1be0755",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_b6792e9f834946c19abe2c49ce1d8f8f",
+ "style": "IPY_MODEL_e31e202e50d7490f927466e3e3160fdf",
"value": 50.0
}
},
- "b6792e9f834946c19abe2c49ce1d8f8f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "bbe01bd7cc39481792b9eeaf75e59865": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "b336bc30a3f1468fb0ac077e66155b8f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "be6b89c05bf54e629d5214f135ecc2d9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_3d1ea18088b44578a82494404b4b6526",
- "IPY_MODEL_46495bfb8ba446f182bc0b5984620664",
- "IPY_MODEL_9e1c0c8f682f4016b92735695db0fb3e"
- ],
- "layout": "IPY_MODEL_5659f0502a6a46cf960fcebc58d41908"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "cb711b84f8214d82b8fb35645767879f": {
+ "b936e9c3b0db4d879a8fe2972783d51b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1785,7 +1696,28 @@
"width": null
}
},
- "ec10984034094ee694d8330b9a1dbeb4": {
+ "bddc566f81704fa6ae3a1a5f075e30e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c7a5cae349064d418fda512643b08663",
+ "placeholder": "",
+ "style": "IPY_MODEL_273eb8d115c6410abc0262fbfa22e139",
+ "value": " 10000/? [00:00<00:00, 1185903.64it/s]"
+ }
+ },
+ "c7a5cae349064d418fda512643b08663": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1837,7 +1769,75 @@
"width": null
}
},
- "f73e12450e9b44ffbfa3ae849f007f15": {
+ "cb4c9a997a9144b0bca590e9c5a87fcf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e162ce4d2c78466287cde1b641c033ca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e31e202e50d7490f927466e3e3160fdf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "edb94b7bb6da4cd1b553c2a09d077afa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6a88e2b5655941a7acb9e31b017db356",
+ "placeholder": "",
+ "style": "IPY_MODEL_e162ce4d2c78466287cde1b641c033ca",
+ "value": " 10000/? [00:00<00:00, 964429.52it/s]"
+ }
+ },
+ "f58ef3392b4f4c98b9bd4e3ef1be0755": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
diff --git a/master/tutorials/image.html b/master/tutorials/image.html
index 39733fb1f..6e01469cf 100644
--- a/master/tutorials/image.html
+++ b/master/tutorials/image.html
@@ -887,25 +887,25 @@ 2. Fetch and normalize the Fashion-MNIST dataset
-
+
-
+
-
+
Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.
-epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.688
+epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530
-epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.468
+epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.364
Computing feature embeddings ...
+- 8%|▊ | 3/40 [00:00<00:01, 26.45it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 9.74it/s]
+- 8%|▊ | 3/40 [00:00<00:01, 26.45it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 9.74it/s]
+8%|▊ | 3/40 [00:00<00:01, 26.45it/s]
+- 28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]
- -
</pre>
- 20%|██ | 8/40 [00:00<00:00, 42.17it/s]
+- 28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]
end{sphinxVerbatim}
20%|██ | 8/40 [00:00<00:00, 42.17it/s]
+28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]
- -
</pre>
- 40%|████ | 16/40 [00:00<00:00, 55.88it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]
end{sphinxVerbatim}
40%|████ | 16/40 [00:00<00:00, 55.88it/s]
+45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]
- -
</pre>
- 57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]
end{sphinxVerbatim}
57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]
+65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]
- -
</pre>
- 75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]
end{sphinxVerbatim}
75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]
- - ----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
98%|█████████▊| 39/40 [00:00<00:00, 68.27it/s]
+85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.11it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 59.25it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.11it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 59.25it/s]
+100%|██████████| 40/40 [00:00<00:00, 64.11it/s]
+- 2%|▎ | 1/40 [00:00<00:03, 9.86it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:03, 9.91it/s]
+- 2%|▎ | 1/40 [00:00<00:03, 9.86it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:03, 9.91it/s]
+2%|▎ | 1/40 [00:00<00:03, 9.86it/s]
+- 20%|██ | 8/40 [00:00<00:00, 42.86it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]
+- 20%|██ | 8/40 [00:00<00:00, 42.86it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]
+20%|██ | 8/40 [00:00<00:00, 42.86it/s]
+- 40%|████ | 16/40 [00:00<00:00, 58.37it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]
+- 40%|████ | 16/40 [00:00<00:00, 58.37it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]
+40%|████ | 16/40 [00:00<00:00, 58.37it/s]
+- 60%|██████ | 24/40 [00:00<00:00, 63.77it/s]
- -
</pre>
- 60%|██████ | 24/40 [00:00<00:00, 64.10it/s]
+- 60%|██████ | 24/40 [00:00<00:00, 63.77it/s]
end{sphinxVerbatim}
60%|██████ | 24/40 [00:00<00:00, 64.10it/s]
+60%|██████ | 24/40 [00:00<00:00, 63.77it/s]
+- 80%|████████ | 32/40 [00:00<00:00, 68.50it/s]
- -
</pre>
- 80%|████████ | 32/40 [00:00<00:00, 68.59it/s]
+- 80%|████████ | 32/40 [00:00<00:00, 68.50it/s]
end{sphinxVerbatim}
80%|████████ | 32/40 [00:00<00:00, 68.59it/s]
+80%|████████ | 32/40 [00:00<00:00, 68.50it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 63.87it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 64.03it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 63.87it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 64.03it/s]
+100%|██████████| 40/40 [00:00<00:00, 63.87it/s]
-epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.639
+epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.502
-epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.725
+epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331
Computing feature embeddings ...
+- 5%|▌ | 2/40 [00:00<00:01, 19.21it/s]
- -
</pre>
- 5%|▌ | 2/40 [00:00<00:01, 19.09it/s]
+- 5%|▌ | 2/40 [00:00<00:01, 19.21it/s]
end{sphinxVerbatim}
5%|▌ | 2/40 [00:00<00:01, 19.09it/s]
+5%|▌ | 2/40 [00:00<00:01, 19.21it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]
+25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]
+45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]
+65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]
+- 88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]
+- 88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]
+88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 67.06it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 64.52it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 67.06it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 64.52it/s]
+100%|██████████| 40/40 [00:00<00:00, 67.06it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 18.24it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 18.24it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 9.11it/s]
+5%|▌ | 2/40 [00:00<00:02, 18.24it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]
+25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]
+45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]
+65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]
+85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.75it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 63.77it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.75it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 63.77it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.75it/s]
-epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.694
+epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.840
-epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.370
+epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.363
Computing feature embeddings ...
+- 8%|▊ | 3/40 [00:00<00:01, 27.33it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 9.57it/s]
+- 8%|▊ | 3/40 [00:00<00:01, 27.33it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 9.57it/s]
+8%|▊ | 3/40 [00:00<00:01, 27.33it/s]
+- 28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]
+- 28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]
+28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]
+- 48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]
+- 48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]
+48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]
+- 68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]
+- 68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]
+68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]
+- 90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]
+- 90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]
+90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 66.39it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 61.57it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 66.39it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 61.57it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.39it/s]
+- 2%|▎ | 1/40 [00:00<00:04, 8.47it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]
+- 2%|▎ | 1/40 [00:00<00:04, 8.47it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 8.85it/s]
+2%|▎ | 1/40 [00:00<00:04, 8.47it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]
+22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]
+42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]
+62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]
+85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.51it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 62.73it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.51it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 62.73it/s]
+100%|██████████| 40/40 [00:00<00:00, 64.51it/s]
-
+Finished Training
-Finished Training
+
Reorder rows of the dataset based on row order in features
and pred_probs
. Carefully ensure your ordering of the dataset matches these objects!
As before, these label quality scores are continuous values in the range [0,1] where 1 represents a clean label (given label appears correct) and 0 a represents dirty label (given label appears corrupted). You can sort examples by their label quality scores to inspect the most-likely corrupted datapoints.
diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 6625c8123..29c95d1fd 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:38.116838Z", - "iopub.status.busy": "2024-01-16T18:22:38.116637Z", - "iopub.status.idle": "2024-01-16T18:22:39.187452Z", - "shell.execute_reply": "2024-01-16T18:22:39.186824Z" + "iopub.execute_input": "2024-01-17T17:54:15.007278Z", + "iopub.status.busy": "2024-01-17T17:54:15.007085Z", + "iopub.status.idle": "2024-01-17T17:54:16.086532Z", + "shell.execute_reply": "2024-01-17T17:54:16.085857Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.190525Z", - "iopub.status.busy": "2024-01-16T18:22:39.190058Z", - "iopub.status.idle": "2024-01-16T18:22:39.205860Z", - "shell.execute_reply": "2024-01-16T18:22:39.205379Z" + "iopub.execute_input": "2024-01-17T17:54:16.089484Z", + "iopub.status.busy": "2024-01-17T17:54:16.089186Z", + "iopub.status.idle": "2024-01-17T17:54:16.105268Z", + "shell.execute_reply": "2024-01-17T17:54:16.104669Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.208336Z", - "iopub.status.busy": "2024-01-16T18:22:39.207956Z", - "iopub.status.idle": "2024-01-16T18:22:39.211011Z", - "shell.execute_reply": "2024-01-16T18:22:39.210464Z" + "iopub.execute_input": "2024-01-17T17:54:16.107803Z", + "iopub.status.busy": "2024-01-17T17:54:16.107440Z", + "iopub.status.idle": "2024-01-17T17:54:16.110701Z", + "shell.execute_reply": "2024-01-17T17:54:16.110172Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.213387Z", - "iopub.status.busy": "2024-01-16T18:22:39.213031Z", - "iopub.status.idle": "2024-01-16T18:22:39.320048Z", - "shell.execute_reply": "2024-01-16T18:22:39.319407Z" + "iopub.execute_input": "2024-01-17T17:54:16.112895Z", + "iopub.status.busy": "2024-01-17T17:54:16.112701Z", + "iopub.status.idle": "2024-01-17T17:54:16.421711Z", + "shell.execute_reply": "2024-01-17T17:54:16.421116Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.322833Z", - "iopub.status.busy": "2024-01-16T18:22:39.322456Z", - "iopub.status.idle": "2024-01-16T18:22:39.591964Z", - "shell.execute_reply": "2024-01-16T18:22:39.591358Z" + "iopub.execute_input": "2024-01-17T17:54:16.424402Z", + "iopub.status.busy": "2024-01-17T17:54:16.423998Z", + "iopub.status.idle": "2024-01-17T17:54:16.692752Z", + "shell.execute_reply": "2024-01-17T17:54:16.692024Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.594806Z", - "iopub.status.busy": "2024-01-16T18:22:39.594399Z", - "iopub.status.idle": "2024-01-16T18:22:39.848239Z", - "shell.execute_reply": "2024-01-16T18:22:39.847546Z" + "iopub.execute_input": "2024-01-17T17:54:16.695418Z", + "iopub.status.busy": "2024-01-17T17:54:16.695200Z", + "iopub.status.idle": "2024-01-17T17:54:16.949304Z", + "shell.execute_reply": "2024-01-17T17:54:16.948645Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.851127Z", - "iopub.status.busy": "2024-01-16T18:22:39.850474Z", - "iopub.status.idle": "2024-01-16T18:22:39.855174Z", - "shell.execute_reply": "2024-01-16T18:22:39.854672Z" + "iopub.execute_input": "2024-01-17T17:54:16.951844Z", + "iopub.status.busy": "2024-01-17T17:54:16.951634Z", + "iopub.status.idle": "2024-01-17T17:54:16.956470Z", + "shell.execute_reply": "2024-01-17T17:54:16.955953Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.857546Z", - "iopub.status.busy": "2024-01-16T18:22:39.857120Z", - "iopub.status.idle": "2024-01-16T18:22:39.863760Z", - "shell.execute_reply": "2024-01-16T18:22:39.863275Z" + "iopub.execute_input": "2024-01-17T17:54:16.958787Z", + "iopub.status.busy": "2024-01-17T17:54:16.958432Z", + "iopub.status.idle": "2024-01-17T17:54:16.964248Z", + "shell.execute_reply": "2024-01-17T17:54:16.963768Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.866099Z", - "iopub.status.busy": "2024-01-16T18:22:39.865901Z", - "iopub.status.idle": "2024-01-16T18:22:39.868607Z", - "shell.execute_reply": "2024-01-16T18:22:39.868059Z" + "iopub.execute_input": "2024-01-17T17:54:16.966530Z", + "iopub.status.busy": "2024-01-17T17:54:16.966188Z", + "iopub.status.idle": "2024-01-17T17:54:16.969045Z", + "shell.execute_reply": "2024-01-17T17:54:16.968434Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.870939Z", - "iopub.status.busy": "2024-01-16T18:22:39.870573Z", - "iopub.status.idle": "2024-01-16T18:22:50.023137Z", - "shell.execute_reply": "2024-01-16T18:22:50.022407Z" + "iopub.execute_input": "2024-01-17T17:54:16.971259Z", + "iopub.status.busy": "2024-01-17T17:54:16.970905Z", + "iopub.status.idle": "2024-01-17T17:54:27.352992Z", + "shell.execute_reply": "2024-01-17T17:54:27.352338Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.026675Z", - "iopub.status.busy": "2024-01-16T18:22:50.026017Z", - "iopub.status.idle": "2024-01-16T18:22:50.033605Z", - "shell.execute_reply": "2024-01-16T18:22:50.032991Z" + "iopub.execute_input": "2024-01-17T17:54:27.356637Z", + "iopub.status.busy": "2024-01-17T17:54:27.355930Z", + "iopub.status.idle": "2024-01-17T17:54:27.363535Z", + "shell.execute_reply": "2024-01-17T17:54:27.362912Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.036105Z", - "iopub.status.busy": "2024-01-16T18:22:50.035725Z", - "iopub.status.idle": "2024-01-16T18:22:50.039438Z", - "shell.execute_reply": "2024-01-16T18:22:50.038945Z" + "iopub.execute_input": "2024-01-17T17:54:27.366166Z", + "iopub.status.busy": "2024-01-17T17:54:27.365789Z", + "iopub.status.idle": "2024-01-17T17:54:27.369511Z", + "shell.execute_reply": "2024-01-17T17:54:27.369017Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.041787Z", - "iopub.status.busy": "2024-01-16T18:22:50.041427Z", - "iopub.status.idle": "2024-01-16T18:22:50.044834Z", - "shell.execute_reply": "2024-01-16T18:22:50.044228Z" + "iopub.execute_input": "2024-01-17T17:54:27.371734Z", + "iopub.status.busy": "2024-01-17T17:54:27.371389Z", + "iopub.status.idle": "2024-01-17T17:54:27.375010Z", + "shell.execute_reply": "2024-01-17T17:54:27.374392Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.047247Z", - "iopub.status.busy": "2024-01-16T18:22:50.046886Z", - "iopub.status.idle": "2024-01-16T18:22:50.050075Z", - "shell.execute_reply": "2024-01-16T18:22:50.049525Z" + "iopub.execute_input": "2024-01-17T17:54:27.377324Z", + "iopub.status.busy": "2024-01-17T17:54:27.376975Z", + "iopub.status.idle": "2024-01-17T17:54:27.380277Z", + "shell.execute_reply": "2024-01-17T17:54:27.379739Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.052062Z", - "iopub.status.busy": "2024-01-16T18:22:50.051866Z", - "iopub.status.idle": "2024-01-16T18:22:50.060351Z", - "shell.execute_reply": "2024-01-16T18:22:50.059773Z" + "iopub.execute_input": "2024-01-17T17:54:27.382482Z", + "iopub.status.busy": "2024-01-17T17:54:27.382140Z", + "iopub.status.idle": "2024-01-17T17:54:27.390755Z", + "shell.execute_reply": "2024-01-17T17:54:27.390135Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.062749Z", - "iopub.status.busy": "2024-01-16T18:22:50.062398Z", - "iopub.status.idle": "2024-01-16T18:22:50.212912Z", - "shell.execute_reply": "2024-01-16T18:22:50.212206Z" + "iopub.execute_input": "2024-01-17T17:54:27.393335Z", + "iopub.status.busy": "2024-01-17T17:54:27.392969Z", + "iopub.status.idle": "2024-01-17T17:54:27.544941Z", + "shell.execute_reply": "2024-01-17T17:54:27.544218Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.215869Z", - "iopub.status.busy": "2024-01-16T18:22:50.215393Z", - "iopub.status.idle": "2024-01-16T18:22:50.346105Z", - "shell.execute_reply": "2024-01-16T18:22:50.345444Z" + "iopub.execute_input": "2024-01-17T17:54:27.547742Z", + "iopub.status.busy": "2024-01-17T17:54:27.547287Z", + "iopub.status.idle": "2024-01-17T17:54:27.685665Z", + "shell.execute_reply": "2024-01-17T17:54:27.684978Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.349000Z", - "iopub.status.busy": "2024-01-16T18:22:50.348453Z", - "iopub.status.idle": "2024-01-16T18:22:50.940108Z", - "shell.execute_reply": "2024-01-16T18:22:50.939407Z" + "iopub.execute_input": "2024-01-17T17:54:27.688405Z", + "iopub.status.busy": "2024-01-17T17:54:27.688185Z", + "iopub.status.idle": "2024-01-17T17:54:28.292871Z", + "shell.execute_reply": "2024-01-17T17:54:28.292194Z" } }, "outputs": [], @@ -1014,18 +1014,17 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.943064Z", - "iopub.status.busy": "2024-01-16T18:22:50.942855Z", - "iopub.status.idle": "2024-01-16T18:22:51.025749Z", - "shell.execute_reply": "2024-01-16T18:22:51.025173Z" + "iopub.execute_input": "2024-01-17T17:54:28.295755Z", + "iopub.status.busy": "2024-01-17T17:54:28.295369Z", + "iopub.status.idle": "2024-01-17T17:54:28.378022Z", + "shell.execute_reply": "2024-01-17T17:54:28.377409Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([3.64404888e-02, 3.06755306e-01, 3.05302732e-04, 2.66635743e-01,\n", - " 2.53166364e-01])" + "array([0.13091885, 0.48412548, 0.00695165, 0.44421119, 0.43029854])" ] }, "execution_count": 19, @@ -1056,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:51.028522Z", - "iopub.status.busy": "2024-01-16T18:22:51.028130Z", - "iopub.status.idle": "2024-01-16T18:22:51.037939Z", - "shell.execute_reply": "2024-01-16T18:22:51.037446Z" + "iopub.execute_input": "2024-01-17T17:54:28.380846Z", + "iopub.status.busy": "2024-01-17T17:54:28.380394Z", + "iopub.status.idle": "2024-01-17T17:54:28.390383Z", + "shell.execute_reply": "2024-01-17T17:54:28.389874Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5ce1d67f9..91b124a0a 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -968,13 +968,13 @@+- 0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]
- -
</pre>
- 0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]
+- 0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]
end{sphinxVerbatim}
0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]
+0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]
+- 1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]
- -
</pre>
- 1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]
+- 1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]
end{sphinxVerbatim}
1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]
+1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]
+- 1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]
- -
</pre>
- 1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]
+- 1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]
end{sphinxVerbatim}
1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]
+1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]
+- 1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]
- -
</pre>
- 1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]
+- 1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]
end{sphinxVerbatim}
1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]
+1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]
+- 2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]
- -
</pre>
- 2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]
+- 2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]
end{sphinxVerbatim}
2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]
+2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]
+- 2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]
- -
</pre>
- 2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]
+- 2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]
end{sphinxVerbatim}
2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]
+2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]
+- 2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]
- -
</pre>
- 2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]
+- 2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]
end{sphinxVerbatim}
2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]
+2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]
+- 3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]
- -
</pre>
- 3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]
+- 3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]
end{sphinxVerbatim}
3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]
+3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]
+- 3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]
- -
</pre>
- 3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]
+- 3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]
end{sphinxVerbatim}
3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]
+3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]
+- 3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]
- -
</pre>
- 4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]
+- 3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]
end{sphinxVerbatim}
4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]
+3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]
+- 4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]
- -
</pre>
- 4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]
+- 4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]
end{sphinxVerbatim}
4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]
+4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]
+- 4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]
- -
</pre>
- 4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]
+- 4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]
end{sphinxVerbatim}
4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]
+4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]
+- 4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]
- -
</pre>
- 5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]
+- 4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]
end{sphinxVerbatim}
5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]
+4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]
+- 5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]
- -
</pre>
- 5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]
+- 5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]
end{sphinxVerbatim}
5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]
+5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]
+- 5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]
- -
</pre>
- 5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]
+- 5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]
end{sphinxVerbatim}
5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]
+5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]
+- 6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]
- -
</pre>
- 6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]
+- 6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]
end{sphinxVerbatim}
6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]
+6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]
+- 6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]
- -
</pre>
- 6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]
+- 6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]
end{sphinxVerbatim}
6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]
+6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]
+- 6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]
- -
</pre>
- 6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]
+- 6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]
end{sphinxVerbatim}
6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]
+6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]
+- 7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]
- -
</pre>
- 7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]
+- 7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]
end{sphinxVerbatim}
7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]
+7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]
+- 7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]
- -
</pre>
- 7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]
+- 7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]
end{sphinxVerbatim}
7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]
+7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]
+- 7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]
- -
</pre>
- 7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]
+- 7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]
end{sphinxVerbatim}
7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]
+7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]
+- 8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]
- -
</pre>
- 8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]
+- 8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]
end{sphinxVerbatim}
8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]
+8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]
+- 8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]
- -
</pre>
- 8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]
+- 8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]
end{sphinxVerbatim}
8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]
+8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]
+- 8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]
- -
</pre>
- 8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]
+- 8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]
end{sphinxVerbatim}
8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]
+8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]
+- 9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]
- -
</pre>
- 9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]
+- 9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]
end{sphinxVerbatim}
9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]
+9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]
+- 9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]
- -
</pre>
- 9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]
+- 9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]
end{sphinxVerbatim}
9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]
+9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]
+- 9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]
- -
</pre>
- 10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]
+- 9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]
end{sphinxVerbatim}
10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]
+9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]
+- 10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]
- -
</pre>
- 10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]
+- 10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]
end{sphinxVerbatim}
10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]
+10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]
+- 10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]
- -
</pre>
- 10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]
+- 10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]
end{sphinxVerbatim}
10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]
+10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]
+- 10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]
- -
</pre>
- 11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]
+- 10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]
end{sphinxVerbatim}
11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]
+10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]
+- 11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]
- -
</pre>
- 11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]
+- 11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]
end{sphinxVerbatim}
11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]
+11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]
+- 11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]
- -
</pre>
- 11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]
+- 11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]
end{sphinxVerbatim}
11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]
+11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]
+- 11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]
- -
</pre>
- 12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]
+- 11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]
end{sphinxVerbatim}
12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]
+11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]
+- 12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]
- -
</pre>
- 12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]
+- 12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]
end{sphinxVerbatim}
12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]
+12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]
+- 12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]
- -
</pre>
- 12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]
+- 12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]
end{sphinxVerbatim}
12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]
+12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]
+- 13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]
- -
</pre>
- 13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]
+- 13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]
end{sphinxVerbatim}
13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]
+13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]
+- 13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]
- -
</pre>
- 13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]
+- 13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]
end{sphinxVerbatim}
13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]
+13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]
+- 13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]
- -
</pre>
- 13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]
+- 13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]
end{sphinxVerbatim}
13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]
+13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]
+- 14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]
- -
</pre>
- 14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]
+- 14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]
end{sphinxVerbatim}
14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]
+14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]
+- 14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]
- -
</pre>
- 14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]
+- 14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]
end{sphinxVerbatim}
14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]
+14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]
+- 14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]
- -
</pre>
- 14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]
+- 14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]
end{sphinxVerbatim}
14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]
+14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]
+- 15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]
- -
</pre>
- 15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]
+- 15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]
end{sphinxVerbatim}
15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]
+15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]
+- 15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]
- -
</pre>
- 15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]
+- 15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]
end{sphinxVerbatim}
15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]
+15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]
+- 15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]
- -
</pre>
- 16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]
+- 15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]
end{sphinxVerbatim}
16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]
+15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]
+- 16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]
- -
</pre>
- 16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]
+- 16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]
end{sphinxVerbatim}
16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]
+16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]
+- 16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]
- -
</pre>
- 16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]
+- 16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]
end{sphinxVerbatim}
16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]
+16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]
+- 16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]
- -
</pre>
- 17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]
+- 16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]
end{sphinxVerbatim}
17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]
+16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]
+- 17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]
- -
</pre>
- 17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]
+- 17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]
end{sphinxVerbatim}
17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]
+17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]
+- 17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]
- -
</pre>
- 17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]
+- 17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]
end{sphinxVerbatim}
17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]
+17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]
+- 17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]
- -
</pre>
- 18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]
+- 17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]
end{sphinxVerbatim}
18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]
+17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]
+- 18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]
- -
</pre>
- 18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]
+- 18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]
end{sphinxVerbatim}
18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]
+18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]
+- 18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]
- -
</pre>
- 18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]
+- 18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]
end{sphinxVerbatim}
18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]
+18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]
+- 18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]
- -
</pre>
- 19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]
+- 18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]
end{sphinxVerbatim}
19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]
+18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]
+- 19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]
- -
</pre>
- 19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]
+- 19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]
end{sphinxVerbatim}
19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]
+19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]
+- 19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]
- -
</pre>
- 19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]
+- 19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]
end{sphinxVerbatim}
19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]
+19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]
+- 20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]
- -
</pre>
- 20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]
+- 20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]
end{sphinxVerbatim}
20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]
+20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]
+- 20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]
- -
</pre>
- 20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]
+- 20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]
end{sphinxVerbatim}
20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]
+20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]
+- 20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]
- -
</pre>
- 20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]
+- 20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]
end{sphinxVerbatim}
20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]
+20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]
+- 21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]
- -
</pre>
- 21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]
+- 21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]
end{sphinxVerbatim}
21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]
+21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]
+- 21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]
- -
</pre>
- 21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]
+- 21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]
end{sphinxVerbatim}
21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]
+21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]
+- 21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]
- -
</pre>
- 21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]
+- 21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]
end{sphinxVerbatim}
21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]
+21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]
+- 22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]
- -
</pre>
- 22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]
+- 22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]
end{sphinxVerbatim}
22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]
+22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]
+- 22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]
- -
</pre>
- 22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]
+- 22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]
end{sphinxVerbatim}
22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]
+22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]
+- 22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]
- -
</pre>
- 22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]
+- 22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]
end{sphinxVerbatim}
22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]
+22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]
+- 23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]
- -
</pre>
- 23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]
+- 23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]
end{sphinxVerbatim}
23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]
+23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]
+- 23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]
- -
</pre>
- 23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]
+- 23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]
end{sphinxVerbatim}
23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]
+23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]
+- 23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]
- -
</pre>
- 24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]
+- 23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]
end{sphinxVerbatim}
24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]
+23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]
+- 24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]
- -
</pre>
- 24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]
+- 24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]
end{sphinxVerbatim}
24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]
+24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]
+- 24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]
- -
</pre>
- 24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]
+- 24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]
end{sphinxVerbatim}
24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]
+24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]
+- 24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]
- -
</pre>
- 25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]
+- 24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]
end{sphinxVerbatim}
25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]
+24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]
+- 25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]
- -
</pre>
- 25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]
+- 25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]
end{sphinxVerbatim}
25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]
+25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]
+- 25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]
- -
</pre>
- 25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]
+- 25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]
end{sphinxVerbatim}
25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]
+25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]
+- 26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]
- -
</pre>
- 26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]
+- 26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]
end{sphinxVerbatim}
26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]
+26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]
+- 26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]
- -
</pre>
- 26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]
+- 26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]
end{sphinxVerbatim}
26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]
+26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]
+- 26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]
- -
</pre>
- 26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]
+- 26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]
end{sphinxVerbatim}
26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]
+26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]
+- 27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]
- -
</pre>
- 27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]
+- 27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]
end{sphinxVerbatim}
27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]
+27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]
+- 27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]
- -
</pre>
- 27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]
+- 27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]
end{sphinxVerbatim}
27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]
+27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]
+- 27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]
- -
</pre>
- 27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]
+- 27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]
end{sphinxVerbatim}
27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]
+27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]
+- 28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]
- -
</pre>
- 28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]
+- 28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]
end{sphinxVerbatim}
28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]
+28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]
+- 28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]
- -
</pre>
- 28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]
+- 28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]
end{sphinxVerbatim}
28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]
+28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]
+- 28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]
- -
</pre>
- 28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]
+- 28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]
end{sphinxVerbatim}
28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]
+28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]
+- 29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]
- -
</pre>
- 29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]
+- 29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]
end{sphinxVerbatim}
29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]
+29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]
+- 29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]
- -
</pre>
- 29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]
+- 29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]
end{sphinxVerbatim}
29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]
+29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]
+- 29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]
- -
</pre>
- 29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]
+- 29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]
end{sphinxVerbatim}
29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]
+29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]
+- 30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]
- -
</pre>
- 30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]
+- 30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]
end{sphinxVerbatim}
30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]
+30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]
+- 30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]
- -
</pre>
- 30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]
+- 30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]
end{sphinxVerbatim}
30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]
+30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]
+- 30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]
- -
</pre>
- 30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]
+- 30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]
end{sphinxVerbatim}
30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]
+30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]
+- 31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]
- -
</pre>
- 31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]
+- 31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]
end{sphinxVerbatim}
31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]
+31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]
+- 31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]
- -
</pre>
- 31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]
+- 31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]
end{sphinxVerbatim}
31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]
+31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]
+- 32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]
- -
</pre>
- 31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]
+- 32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]
end{sphinxVerbatim}
31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]
+32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]
+- 32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]
- -
</pre>
- 32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]
+- 32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]
end{sphinxVerbatim}
32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]
+32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]
+- 32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]
- -
</pre>
- 32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]
+- 32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]
end{sphinxVerbatim}
32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]
+32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]
+- 33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]
- -
</pre>
- 32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]
+- 33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]
end{sphinxVerbatim}
32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]
+33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]
+- 33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]
- -
</pre>
- 33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]
+- 33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]
end{sphinxVerbatim}
33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]
+33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]
+- 33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]
- -
</pre>
- 33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]
+- 33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]
end{sphinxVerbatim}
33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]
+33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]
+- 34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]
- -
</pre>
- 33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]
+- 34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]
end{sphinxVerbatim}
33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]
+34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]
+- 34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]
- -
</pre>
- 34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]
+- 34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]
end{sphinxVerbatim}
34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]
+34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]
+- 34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]
- -
</pre>
- 34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]
+- 34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]
end{sphinxVerbatim}
34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]
+34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]
+- 35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]
- -
</pre>
- 35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]
+- 35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]
end{sphinxVerbatim}
35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]
+35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]
+- 35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]
- -
</pre>
- 35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]
+- 35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]
end{sphinxVerbatim}
35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]
+35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]
+- 35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]
- -
</pre>
- 35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]
+- 35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]
end{sphinxVerbatim}
35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]
+35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]
+- 36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]
- -
</pre>
- 36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]
+- 36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]
end{sphinxVerbatim}
36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]
+36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]
+- 36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]
- -
</pre>
- 36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]
+- 36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]
end{sphinxVerbatim}
36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]
+36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]
+- 36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]
- -
</pre>
- 36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]
+- 36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]
end{sphinxVerbatim}
36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]
+36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]
+- 37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]
- -
</pre>
- 37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]
+- 37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]
end{sphinxVerbatim}
37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]
+37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]
+- 37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]
- -
</pre>
- 37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]
+- 37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]
end{sphinxVerbatim}
37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]
+37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]
+- 37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]
- -
</pre>
- 37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]
+- 37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]
end{sphinxVerbatim}
37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]
+37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]
+- 38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]
- -
</pre>
- 38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]
+- 38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]
end{sphinxVerbatim}
38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]
+38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]
+- 38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]
- -
</pre>
- 38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]
+- 38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]
end{sphinxVerbatim}
38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]
+38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]
+- 39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]
- -
</pre>
- 38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]
+- 39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]
end{sphinxVerbatim}
38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]
+39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]
+- 39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]
- -
</pre>
- 39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]
+- 39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]
end{sphinxVerbatim}
39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]
+39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]
+- 39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]
- -
</pre>
- 39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]
+- 39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]
end{sphinxVerbatim}
39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]
+39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]
+- 40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]
- -
</pre>
- 39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]
+- 40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]
end{sphinxVerbatim}
39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]
+40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]
+- 40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]
- -
</pre>
- 40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]
+- 40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]
end{sphinxVerbatim}
40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]
+40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]
+- 40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]
- -
</pre>
- 40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]
+- 40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]
end{sphinxVerbatim}
40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]
+40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]
+- 41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]
- -
</pre>
- 40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]
+- 41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]
end{sphinxVerbatim}
40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]
+41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]
+- 41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]
- -
</pre>
- 41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]
+- 41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]
end{sphinxVerbatim}
41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]
+41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]
+- 41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]
- -
</pre>
- 41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]
+- 41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]
end{sphinxVerbatim}
41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]
+41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]
+- 42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]
- -
</pre>
- 41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]
+- 42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]
end{sphinxVerbatim}
41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]
+42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]
+- 42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]
- -
</pre>
- 42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]
+- 42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]
end{sphinxVerbatim}
42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]
+42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]
+- 42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]
- -
</pre>
- 42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]
+- 42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]
end{sphinxVerbatim}
42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]
+42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]
+- 43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]
- -
</pre>
- 42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]
+- 43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]
end{sphinxVerbatim}
42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]
+43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]
+- 43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]
- -
</pre>
- 43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]
+- 43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]
end{sphinxVerbatim}
43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]
+43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]
+- 43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]
- -
</pre>
- 43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]
+- 43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]
end{sphinxVerbatim}
43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]
+43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]
+- 44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]
- -
</pre>
- 43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]
+- 44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]
end{sphinxVerbatim}
43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]
+44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]
+- 44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]
- -
</pre>
- 44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]
+- 44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]
end{sphinxVerbatim}
44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]
+44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]
+- 45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]
- -
</pre>
- 44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]
+- 45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]
end{sphinxVerbatim}
44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]
+45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]
+- 45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]
- -
</pre>
- 44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]
+- 45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]
end{sphinxVerbatim}
44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]
+45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]
+- 45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]
- -
</pre>
- 45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]
+- 45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]
end{sphinxVerbatim}
45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]
+45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]
+- 46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]
- -
</pre>
- 45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]
+- 46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]
end{sphinxVerbatim}
45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]
+46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]
+- 46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]
- -
</pre>
- 45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]
+- 46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]
end{sphinxVerbatim}
45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]
+46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]
+- 46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]
- -
</pre>
- 46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]
+- 46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]
end{sphinxVerbatim}
46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]
+46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]
+- 47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]
- -
</pre>
- 46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]
+- 47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]
end{sphinxVerbatim}
46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]
+47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]
+- 47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]
- -
</pre>
- 46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]
+- 47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]
end{sphinxVerbatim}
46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]
+47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]
+- 47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]
- -
</pre>
- 47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]
+- 47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]
end{sphinxVerbatim}
47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]
+47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]
+- 48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]
- -
</pre>
- 47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]
+- 48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]
end{sphinxVerbatim}
47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]
+48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]
+- 48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]
- -
</pre>
- 48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]
+- 48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]
end{sphinxVerbatim}
48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]
+48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]
+- 48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]
- -
</pre>
- 48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]
+- 48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]
end{sphinxVerbatim}
48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]
+48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]
+- 49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]
- -
</pre>
- 48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]
+- 49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]
end{sphinxVerbatim}
48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]
+49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]
+- 49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]
- -
</pre>
- 49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]
+- 49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]
end{sphinxVerbatim}
49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]
+49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]
+- 49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]
- -
</pre>
- 49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]
+- 49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]
end{sphinxVerbatim}
49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]
+49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]
+- 50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]
- -
</pre>
- 49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]
+- 50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]
end{sphinxVerbatim}
49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]
+50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]
+- 50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]
- -
</pre>
- 50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]
+- 50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]
end{sphinxVerbatim}
50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]
+50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]
+- 51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]
- -
</pre>
- 50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]
+- 51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]
end{sphinxVerbatim}
50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]
+51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]
+- 51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]
- -
</pre>
- 50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]
+- 51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]
end{sphinxVerbatim}
50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]
+51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]
+- 51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]
- -
</pre>
- 51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]
+- 51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]
end{sphinxVerbatim}
51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]
+51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]
+- 52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]
- -
</pre>
- 51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]
+- 52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]
end{sphinxVerbatim}
51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]
+52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]
+- 52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]
- -
</pre>
- 51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]
+- 52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]
end{sphinxVerbatim}
51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]
+52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]
+- 52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]
- -
</pre>
- 52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]
+- 52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]
end{sphinxVerbatim}
52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]
+52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]
+- 53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]
- -
</pre>
- 52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]
+- 53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]
end{sphinxVerbatim}
52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]
+53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]
+- 53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]
- -
</pre>
- 52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]
+- 53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]
end{sphinxVerbatim}
52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]
+53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]
+- 53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]
- -
</pre>
- 53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]
+- 53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]
end{sphinxVerbatim}
53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]
+53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]
+- 54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]
- -
</pre>
- 53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]
+- 54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]
end{sphinxVerbatim}
53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]
+54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]
+- 54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]
- -
</pre>
- 53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]
+- 54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]
end{sphinxVerbatim}
53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]
+54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]
+- 54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]
- -
</pre>
- 54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]
+- 54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]
end{sphinxVerbatim}
54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]
+54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]
+- 55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]
- -
</pre>
- 54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]
+- 55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]
end{sphinxVerbatim}
54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]
+55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]
+- 55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]
- -
</pre>
- 54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]
+- 55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]
end{sphinxVerbatim}
54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]
+55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]
+- 55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]
- -
</pre>
- 55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]
+- 55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]
end{sphinxVerbatim}
55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]
+55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]
+- 56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]
- -
</pre>
- 55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]
+- 56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]
end{sphinxVerbatim}
55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]
+56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]
+- 56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]
- -
</pre>
- 55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]
+- 56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]
end{sphinxVerbatim}
55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]
+56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]
+- 56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]
- -
</pre>
- 56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]
+- 56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]
end{sphinxVerbatim}
56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]
+56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]
+- 57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]
- -
</pre>
- 56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]
+- 57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]
end{sphinxVerbatim}
56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]
+57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]
+- 57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]
- -
</pre>
- 56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]
+- 57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]
end{sphinxVerbatim}
56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]
+57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]
+- 58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]
- -
</pre>
- 57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]
+- 58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]
end{sphinxVerbatim}
57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]
+58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]
+- 58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]
- -
</pre>
- 57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]
+- 58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]
end{sphinxVerbatim}
57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]
+58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]
+- 58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]
- -
</pre>
- 57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]
+- 58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]
end{sphinxVerbatim}
57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]
+58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]
+- 59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]
- -
</pre>
- 58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]
+- 59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]
end{sphinxVerbatim}
58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]
+59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]
+- 59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]
- -
</pre>
- 58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]
+- 59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]
end{sphinxVerbatim}
58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]
+59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]
+- 59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]
- -
</pre>
- 58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]
+- 59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]
end{sphinxVerbatim}
58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]
+59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]
+- 60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]
- -
</pre>
- 59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]
+- 60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]
end{sphinxVerbatim}
59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]
+60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]
+- 60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]
- -
</pre>
- 59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]
+- 60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]
end{sphinxVerbatim}
59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]
+60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]
+- 60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]
- -
</pre>
- 60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]
+- 60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]
end{sphinxVerbatim}
60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]
+60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]
+- 61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]
- -
</pre>
- 60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]
+- 61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]
end{sphinxVerbatim}
60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]
+61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]
+- 61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]
- -
</pre>
- 60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]
+- 61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]
end{sphinxVerbatim}
60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]
+61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]
+- 61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]
- -
</pre>
- 61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]
+- 61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]
end{sphinxVerbatim}
61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]
+61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]
+- 62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]
- -
</pre>
- 61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]
+- 62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]
end{sphinxVerbatim}
61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]
+62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]
+- 62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]
- -
</pre>
- 61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]
+- 62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]
end{sphinxVerbatim}
61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]
+62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]
+- 62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]
- -
</pre>
- 62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]
+- 62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]
end{sphinxVerbatim}
62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]
+62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]
+- 63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]
- -
</pre>
- 62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]
+- 63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]
end{sphinxVerbatim}
62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]
+63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]
+- 63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]
- -
</pre>
- 62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]
+- 63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]
end{sphinxVerbatim}
62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]
+63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]
+- 64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]
- -
</pre>
- 63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]
+- 64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]
end{sphinxVerbatim}
63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]
+64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]
+- 64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]
- -
</pre>
- 63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]
+- 64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]
end{sphinxVerbatim}
63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]
+64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]
+- 64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]
- -
</pre>
- 63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]
+- 64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]
end{sphinxVerbatim}
63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]
+64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]
+- 65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]
- -
</pre>
- 64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]
+- 65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]
end{sphinxVerbatim}
64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]
+65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]
+- 65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]
- -
</pre>
- 64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]
+- 65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]
end{sphinxVerbatim}
64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]
+65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]
+- 65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]
- -
</pre>
- 64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]
+- 65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]
end{sphinxVerbatim}
64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]
+65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]
+- 66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]
- -
</pre>
- 65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]
+- 66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]
end{sphinxVerbatim}
65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]
+66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]
+- 66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]
- -
</pre>
- 65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]
+- 66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]
end{sphinxVerbatim}
65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]
+66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]
+- 66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]
- -
</pre>
- 65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]
+- 66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]
end{sphinxVerbatim}
65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]
+66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]
+- 67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]
- -
</pre>
- 66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]
+- 67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]
end{sphinxVerbatim}
66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]
+67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]
+- 67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]
- -
</pre>
- 66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]
+- 67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]
end{sphinxVerbatim}
66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]
+67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]
+- 67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]
- -
</pre>
- 66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]
+- 67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]
end{sphinxVerbatim}
66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]
+67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]
+- 68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]
- -
</pre>
- 67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]
+- 68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]
end{sphinxVerbatim}
67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]
+68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]
+- 68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]
- -
</pre>
- 67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]
+- 68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]
end{sphinxVerbatim}
67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]
+68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]
+- 68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]
- -
</pre>
- 68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]
+- 68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]
end{sphinxVerbatim}
68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]
+68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]
+- 69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]
- -
</pre>
- 68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]
+- 69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]
end{sphinxVerbatim}
68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]
+69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]
+- 69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]
- -
</pre>
- 68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]
+- 69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]
end{sphinxVerbatim}
68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]
+69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]
+- 69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]
- -
</pre>
- 69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]
+- 69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]
end{sphinxVerbatim}
69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]
+69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]
+- 70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]
- -
</pre>
- 69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]
+- 70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]
end{sphinxVerbatim}
69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]
+70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]
+- 70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]
- -
</pre>
- 69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]
+- 70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]
end{sphinxVerbatim}
69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]
+70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]
+- 71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]
- -
</pre>
- 70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]
+- 71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]
end{sphinxVerbatim}
70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]
+71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]
+- 71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]
- -
</pre>
- 70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]
+- 71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]
end{sphinxVerbatim}
70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]
+71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]
+- 71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]
- -
</pre>
- 70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]
+- 71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]
end{sphinxVerbatim}
70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]
+71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]
+- 72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]
- -
</pre>
- 71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]
+- 72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]
end{sphinxVerbatim}
71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]
+72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]
+- 72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]
- -
</pre>
- 71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]
+- 72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]
end{sphinxVerbatim}
71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]
+72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]
+- 72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]
- -
</pre>
- 71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]
+- 72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]
end{sphinxVerbatim}
71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]
+72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]
+- 73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]
- -
</pre>
- 72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]
+- 73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]
end{sphinxVerbatim}
72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]
+73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]
+- 73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]
- -
</pre>
- 72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]
+- 73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]
end{sphinxVerbatim}
72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]
+73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]
+- 73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]
- -
</pre>
- 72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]
+- 73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]
end{sphinxVerbatim}
72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]
+73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]
+- 74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]
- -
</pre>
- 73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]
+- 74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]
end{sphinxVerbatim}
73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]
+74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]
+- 74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]
- -
</pre>
- 73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]
+- 74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]
end{sphinxVerbatim}
73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]
+74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]
+- 74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]
- -
</pre>
- 74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]
+- 74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]
end{sphinxVerbatim}
74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]
+74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]
+- 75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]
- -
</pre>
- 74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]
+- 75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]
end{sphinxVerbatim}
74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]
+75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]
+- 75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]
- -
</pre>
- 74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]
+- 75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]
end{sphinxVerbatim}
74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]
+75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]
+- 75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]
- -
</pre>
- 75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]
+- 75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]
end{sphinxVerbatim}
75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]
+75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]
+- 76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]
- -
</pre>
- 75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]
+- 76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]
end{sphinxVerbatim}
75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]
+76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]
+- 76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]
- -
</pre>
- 75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]
+- 76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]
end{sphinxVerbatim}
75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]
+76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]
+- 77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]
- -
</pre>
- 76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]
+- 77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]
end{sphinxVerbatim}
76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]
+77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]
+- 77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]
- -
</pre>
- 76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]
+- 77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]
end{sphinxVerbatim}
76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]
+77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]
+- 77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]
- -
</pre>
- 76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]
+- 77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]
end{sphinxVerbatim}
76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]
+77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]
+- 78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]
- -
</pre>
- 77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]
+- 78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]
end{sphinxVerbatim}
77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]
+78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]
+- 78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]
- -
</pre>
- 77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]
+- 78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]
end{sphinxVerbatim}
77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]
+78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]
+- 78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]
- -
</pre>
- 77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]
+- 78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]
end{sphinxVerbatim}
77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]
+78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]
+- 79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]
- -
</pre>
- 78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]
+- 79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]
end{sphinxVerbatim}
78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]
+79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]
+- 79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]
- -
</pre>
- 78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]
+- 79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]
end{sphinxVerbatim}
78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]
+79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]
+- 79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]
- -
</pre>
- 78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]
+- 79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]
end{sphinxVerbatim}
78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]
+79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]
+- 80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]
- -
</pre>
- 79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]
+- 80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]
end{sphinxVerbatim}
79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]
+80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]
+- 80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]
- -
</pre>
- 79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]
+- 80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]
end{sphinxVerbatim}
79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]
+80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]
+- 80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]
- -
</pre>
- 80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]
+- 80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]
end{sphinxVerbatim}
80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]
+80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]
+- 81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]
- -
</pre>
- 80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]
+- 81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]
end{sphinxVerbatim}
80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]
+81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]
+- 81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]
- -
</pre>
- 80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]
+- 81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]
end{sphinxVerbatim}
80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]
+81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]
+- 81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]
- -
</pre>
- 81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]
+- 81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]
end{sphinxVerbatim}
81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]
+81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]
+- 82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]
- -
</pre>
- 81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]
+- 82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]
end{sphinxVerbatim}
81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]
+82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]
+- 82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]
- -
</pre>
- 81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]
+- 82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]
end{sphinxVerbatim}
81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]
+82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]
+- 82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]
- -
</pre>
- 82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]
+- 82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]
end{sphinxVerbatim}
82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]
+82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]
+- 83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]
- -
</pre>
- 82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]
+- 83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]
end{sphinxVerbatim}
82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]
+83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]
+- 83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]
- -
</pre>
- 82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]
+- 83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]
end{sphinxVerbatim}
82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]
+83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]
+- 84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]
- -
</pre>
- 83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]
+- 84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]
end{sphinxVerbatim}
83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]
+84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]
+- 84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]
- -
</pre>
- 83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]
+- 84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]
end{sphinxVerbatim}
83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]
+84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]
+- 84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]
- -
</pre>
- 83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]
+- 84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]
end{sphinxVerbatim}
83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]
+84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]
+- 85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]
- -
</pre>
- 84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]
+- 85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]
end{sphinxVerbatim}
84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]
+85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]
+- 85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]
- -
</pre>
- 84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]
+- 85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]
end{sphinxVerbatim}
84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]
+85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]
+- 85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]
- -
</pre>
- 84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]
+- 85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]
end{sphinxVerbatim}
84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]
+85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]
+- 86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]
- -
</pre>
- 85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]
+- 86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]
end{sphinxVerbatim}
85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]
+86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]
+- 86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]
- -
</pre>
- 85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]
+- 86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]
end{sphinxVerbatim}
85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]
+86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]
+- 86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]
- -
</pre>
- 85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]
+- 86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]
end{sphinxVerbatim}
85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]
+86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]
+- 87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]
- -
</pre>
- 86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]
+- 87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]
end{sphinxVerbatim}
86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]
+87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]
+- 87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]
- -
</pre>
- 86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]
+- 87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]
end{sphinxVerbatim}
86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]
+87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]
+- 87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]
- -
</pre>
- 87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]
+- 87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]
end{sphinxVerbatim}
87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]
+87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]
+- 88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]
- -
</pre>
- 87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]
+- 88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]
end{sphinxVerbatim}
87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]
+88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]
+- 88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]
- -
</pre>
- 87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]
+- 88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]
end{sphinxVerbatim}
87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]
+88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]
+- 88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]
- -
</pre>
- 88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]
+- 88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]
end{sphinxVerbatim}
88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]
+88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]
+- 89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]
- -
</pre>
- 88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]
+- 89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]
end{sphinxVerbatim}
88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]
+89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]
+- 89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]
- -
</pre>
- 88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]
+- 89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]
end{sphinxVerbatim}
88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]
+89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]
+- 89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]
- -
</pre>
- 89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]
+- 89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]
end{sphinxVerbatim}
89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]
+89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]
+- 90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]
- -
</pre>
- 89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]
+- 90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]
end{sphinxVerbatim}
89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]
+90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]
+- 90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]
- -
</pre>
- 89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]
+- 90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]
end{sphinxVerbatim}
89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]
+90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]
+- 90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]
- -
</pre>
- 90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]
+- 90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]
end{sphinxVerbatim}
90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]
+90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]
+- 91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]
- -
</pre>
- 90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]
+- 91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]
end{sphinxVerbatim}
90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]
+91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]
+- 91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]
- -
</pre>
- 90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]
+- 91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]
end{sphinxVerbatim}
90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]
+91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]
+- 92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]
- -
</pre>
- 91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]
+- 92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]
end{sphinxVerbatim}
91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]
+92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]
+- 92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]
- -
</pre>
- 91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]
+- 92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]
end{sphinxVerbatim}
91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]
+92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]
+- 92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]
- -
</pre>
- 91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]
+- 92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]
end{sphinxVerbatim}
91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]
+92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]
+- 93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]
- -
</pre>
- 92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]
+- 93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]
end{sphinxVerbatim}
92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]
+93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]
+- 93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]
- -
</pre>
- 92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]
+- 93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]
end{sphinxVerbatim}
92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]
+93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]
+- 93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]
- -
</pre>
- 92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]
+- 93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]
end{sphinxVerbatim}
92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]
+93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]
+- 94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]
- -
</pre>
- 93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]
+- 94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]
end{sphinxVerbatim}
93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]
+94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]
+- 94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]
- -
</pre>
- 93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]
+- 94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]
end{sphinxVerbatim}
93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]
+94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]
+- 94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]
- -
</pre>
- 93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]
+- 94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]
end{sphinxVerbatim}
93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]
+94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]
+- 95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]
- -
</pre>
- 94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]
+- 95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]
end{sphinxVerbatim}
94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]
+95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]
+- 95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]
- -
</pre>
- 94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]
+- 95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]
end{sphinxVerbatim}
94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]
+95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]
+- 95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]
- -
</pre>
- 94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]
+- 95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]
end{sphinxVerbatim}
94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]
+95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]
+- 96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]
- -
</pre>
- 95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]
+- 96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]
end{sphinxVerbatim}
95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]
+96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]
+- 96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]
- -
</pre>
- 95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]
+- 96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]
end{sphinxVerbatim}
95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]
+96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]
+- 96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]
- -
</pre>
- 96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]
+- 96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]
end{sphinxVerbatim}
96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]
+96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]
+- 97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]
- -
</pre>
- 96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]
+- 97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]
end{sphinxVerbatim}
96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]
+97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]
+- 97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]
- -
</pre>
- 96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]
+- 97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]
end{sphinxVerbatim}
96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]
+97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]
+- 97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]
- -
</pre>
- 97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]
+- 97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]
end{sphinxVerbatim}
97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]
+97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]
+- 98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]
- -
</pre>
- 97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]
+- 98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]
end{sphinxVerbatim}
97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]
+98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]
+- 98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]
- -
</pre>
- 97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]
+- 98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]
end{sphinxVerbatim}
97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]
+98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]
+- 99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]
- -
</pre>
- 98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]
+- 99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]
end{sphinxVerbatim}
98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]
+99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]
+- 99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]
- -
</pre>
- 98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]
+- 99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]
end{sphinxVerbatim}
98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]
+99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]
+- 99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]
- -
</pre>
- 98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]
+- 99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]
end{sphinxVerbatim}
98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]
+99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]
----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
99%|█████████▊| 4928558/4997817 [00:28<00:00, 171916.69it/s]
----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
99%|█████████▉| 4945889/4997817 [00:28<00:00, 172332.10it/s]
---
-- more-to-come:
-- -
- class:
-- -
stderr
-
+- 100%|█████████▉| 4977398/4997817 [00:28<00:00, 173769.32it/s]
- -
</pre>
- 99%|█████████▉| 4963255/4997817 [00:28<00:00, 172726.41it/s]
+- 100%|█████████▉| 4977398/4997817 [00:28<00:00, 173769.32it/s]
end{sphinxVerbatim}
99%|█████████▉| 4963255/4997817 [00:28<00:00, 172726.41it/s]
-100%|█████████▉| 4977398/4997817 [00:28<00:00, 173769.32it/s]
+- 100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]
- -
</pre>
- 100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]
+- 100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]
end{sphinxVerbatim}
100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]
+100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]
+- 100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]
- -
</pre>
- 100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]
+- 100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]
end{sphinxVerbatim}
100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]
+100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]
Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True
or False
mask as find_label_issues()
.
This dataset has 10 classes.
-Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}
+Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}
Let’s print the first example in the train set.
diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index f324d2241..30e708f03 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:26.445820Z", - "iopub.status.busy": "2024-01-16T18:26:26.445377Z", - "iopub.status.idle": "2024-01-16T18:26:28.495593Z", - "shell.execute_reply": "2024-01-16T18:26:28.494982Z" + "iopub.execute_input": "2024-01-17T17:58:04.452112Z", + "iopub.status.busy": "2024-01-17T17:58:04.451920Z", + "iopub.status.idle": "2024-01-17T17:58:06.513490Z", + "shell.execute_reply": "2024-01-17T17:58:06.512794Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.498491Z", - "iopub.status.busy": "2024-01-16T18:26:28.498003Z", - "iopub.status.idle": "2024-01-16T18:26:28.501599Z", - "shell.execute_reply": "2024-01-16T18:26:28.501090Z" + "iopub.execute_input": "2024-01-17T17:58:06.516595Z", + "iopub.status.busy": "2024-01-17T17:58:06.516197Z", + "iopub.status.idle": "2024-01-17T17:58:06.519890Z", + "shell.execute_reply": "2024-01-17T17:58:06.519295Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.503791Z", - "iopub.status.busy": "2024-01-16T18:26:28.503503Z", - "iopub.status.idle": "2024-01-16T18:26:28.506652Z", - "shell.execute_reply": "2024-01-16T18:26:28.506135Z" + "iopub.execute_input": "2024-01-17T17:58:06.522149Z", + "iopub.status.busy": "2024-01-17T17:58:06.521812Z", + "iopub.status.idle": "2024-01-17T17:58:06.525082Z", + "shell.execute_reply": "2024-01-17T17:58:06.524478Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.508928Z", - "iopub.status.busy": "2024-01-16T18:26:28.508626Z", - "iopub.status.idle": "2024-01-16T18:26:28.557457Z", - "shell.execute_reply": "2024-01-16T18:26:28.556849Z" + "iopub.execute_input": "2024-01-17T17:58:06.527397Z", + "iopub.status.busy": "2024-01-17T17:58:06.527051Z", + "iopub.status.idle": "2024-01-17T17:58:06.696915Z", + "shell.execute_reply": "2024-01-17T17:58:06.696267Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.559740Z", - "iopub.status.busy": "2024-01-16T18:26:28.559386Z", - "iopub.status.idle": "2024-01-16T18:26:28.563106Z", - "shell.execute_reply": "2024-01-16T18:26:28.562607Z" + "iopub.execute_input": "2024-01-17T17:58:06.699410Z", + "iopub.status.busy": "2024-01-17T17:58:06.698895Z", + "iopub.status.idle": "2024-01-17T17:58:06.702802Z", + "shell.execute_reply": "2024-01-17T17:58:06.702205Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.565464Z", - "iopub.status.busy": "2024-01-16T18:26:28.565115Z", - "iopub.status.idle": "2024-01-16T18:26:28.568664Z", - "shell.execute_reply": "2024-01-16T18:26:28.568087Z" + "iopub.execute_input": "2024-01-17T17:58:06.705199Z", + "iopub.status.busy": "2024-01-17T17:58:06.704700Z", + "iopub.status.idle": "2024-01-17T17:58:06.708685Z", + "shell.execute_reply": "2024-01-17T17:58:06.708051Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.571005Z", - "iopub.status.busy": "2024-01-16T18:26:28.570638Z", - "iopub.status.idle": "2024-01-16T18:26:28.574416Z", - "shell.execute_reply": "2024-01-16T18:26:28.573895Z" + "iopub.execute_input": "2024-01-17T17:58:06.711074Z", + "iopub.status.busy": "2024-01-17T17:58:06.710625Z", + "iopub.status.idle": "2024-01-17T17:58:06.714277Z", + "shell.execute_reply": "2024-01-17T17:58:06.713674Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.576801Z", - "iopub.status.busy": "2024-01-16T18:26:28.576438Z", - "iopub.status.idle": "2024-01-16T18:26:28.580004Z", - "shell.execute_reply": "2024-01-16T18:26:28.579461Z" + "iopub.execute_input": "2024-01-17T17:58:06.716551Z", + "iopub.status.busy": "2024-01-17T17:58:06.716194Z", + "iopub.status.idle": "2024-01-17T17:58:06.719743Z", + "shell.execute_reply": "2024-01-17T17:58:06.719140Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.582254Z", - "iopub.status.busy": "2024-01-16T18:26:28.581918Z", - "iopub.status.idle": "2024-01-16T18:26:37.142048Z", - "shell.execute_reply": "2024-01-16T18:26:37.141403Z" + "iopub.execute_input": "2024-01-17T17:58:06.722197Z", + "iopub.status.busy": "2024-01-17T17:58:06.721848Z", + "iopub.status.idle": "2024-01-17T17:58:15.903407Z", + "shell.execute_reply": "2024-01-17T17:58:15.902766Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.145360Z", - "iopub.status.busy": "2024-01-16T18:26:37.144923Z", - "iopub.status.idle": "2024-01-16T18:26:37.148171Z", - "shell.execute_reply": "2024-01-16T18:26:37.147656Z" + "iopub.execute_input": "2024-01-17T17:58:15.906850Z", + "iopub.status.busy": "2024-01-17T17:58:15.906363Z", + "iopub.status.idle": "2024-01-17T17:58:15.909663Z", + "shell.execute_reply": "2024-01-17T17:58:15.909117Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.150527Z", - "iopub.status.busy": "2024-01-16T18:26:37.150155Z", - "iopub.status.idle": "2024-01-16T18:26:37.153089Z", - "shell.execute_reply": "2024-01-16T18:26:37.152539Z" + "iopub.execute_input": "2024-01-17T17:58:15.911984Z", + "iopub.status.busy": "2024-01-17T17:58:15.911780Z", + "iopub.status.idle": "2024-01-17T17:58:15.914788Z", + "shell.execute_reply": "2024-01-17T17:58:15.914152Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.155247Z", - "iopub.status.busy": "2024-01-16T18:26:37.154870Z", - "iopub.status.idle": "2024-01-16T18:26:39.352948Z", - "shell.execute_reply": "2024-01-16T18:26:39.352038Z" + "iopub.execute_input": "2024-01-17T17:58:15.917364Z", + "iopub.status.busy": "2024-01-17T17:58:15.916868Z", + "iopub.status.idle": "2024-01-17T17:58:18.153348Z", + "shell.execute_reply": "2024-01-17T17:58:18.152612Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.356461Z", - "iopub.status.busy": "2024-01-16T18:26:39.355758Z", - "iopub.status.idle": "2024-01-16T18:26:39.363742Z", - "shell.execute_reply": "2024-01-16T18:26:39.363219Z" + "iopub.execute_input": "2024-01-17T17:58:18.157203Z", + "iopub.status.busy": "2024-01-17T17:58:18.156132Z", + "iopub.status.idle": "2024-01-17T17:58:18.164623Z", + "shell.execute_reply": "2024-01-17T17:58:18.164085Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.366319Z", - "iopub.status.busy": "2024-01-16T18:26:39.365936Z", - "iopub.status.idle": "2024-01-16T18:26:39.370077Z", - "shell.execute_reply": "2024-01-16T18:26:39.369561Z" + "iopub.execute_input": "2024-01-17T17:58:18.167048Z", + "iopub.status.busy": "2024-01-17T17:58:18.166666Z", + "iopub.status.idle": "2024-01-17T17:58:18.171012Z", + "shell.execute_reply": "2024-01-17T17:58:18.170356Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.372290Z", - "iopub.status.busy": "2024-01-16T18:26:39.371921Z", - "iopub.status.idle": "2024-01-16T18:26:39.375337Z", - "shell.execute_reply": "2024-01-16T18:26:39.374711Z" + "iopub.execute_input": "2024-01-17T17:58:18.173331Z", + "iopub.status.busy": "2024-01-17T17:58:18.172904Z", + "iopub.status.idle": "2024-01-17T17:58:18.176499Z", + "shell.execute_reply": "2024-01-17T17:58:18.175881Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.377705Z", - "iopub.status.busy": "2024-01-16T18:26:39.377329Z", - "iopub.status.idle": "2024-01-16T18:26:39.380543Z", - "shell.execute_reply": "2024-01-16T18:26:39.380000Z" + "iopub.execute_input": "2024-01-17T17:58:18.178843Z", + "iopub.status.busy": "2024-01-17T17:58:18.178637Z", + "iopub.status.idle": "2024-01-17T17:58:18.181882Z", + "shell.execute_reply": "2024-01-17T17:58:18.181359Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.382924Z", - "iopub.status.busy": "2024-01-16T18:26:39.382422Z", - "iopub.status.idle": "2024-01-16T18:26:39.390013Z", - "shell.execute_reply": "2024-01-16T18:26:39.389515Z" + "iopub.execute_input": "2024-01-17T17:58:18.184292Z", + "iopub.status.busy": "2024-01-17T17:58:18.183941Z", + "iopub.status.idle": "2024-01-17T17:58:18.191627Z", + "shell.execute_reply": "2024-01-17T17:58:18.191112Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.392353Z", - "iopub.status.busy": "2024-01-16T18:26:39.392147Z", - "iopub.status.idle": "2024-01-16T18:26:39.634627Z", - "shell.execute_reply": "2024-01-16T18:26:39.633997Z" + "iopub.execute_input": "2024-01-17T17:58:18.194271Z", + "iopub.status.busy": "2024-01-17T17:58:18.193907Z", + "iopub.status.idle": "2024-01-17T17:58:18.459352Z", + "shell.execute_reply": "2024-01-17T17:58:18.458616Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.637681Z", - "iopub.status.busy": "2024-01-16T18:26:39.637242Z", - "iopub.status.idle": "2024-01-16T18:26:39.914774Z", - "shell.execute_reply": "2024-01-16T18:26:39.914171Z" + "iopub.execute_input": "2024-01-17T17:58:18.463589Z", + "iopub.status.busy": "2024-01-17T17:58:18.462420Z", + "iopub.status.idle": "2024-01-17T17:58:18.740920Z", + "shell.execute_reply": "2024-01-17T17:58:18.740191Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.917765Z", - "iopub.status.busy": "2024-01-16T18:26:39.917338Z", - "iopub.status.idle": "2024-01-16T18:26:39.921453Z", - "shell.execute_reply": "2024-01-16T18:26:39.920861Z" + "iopub.execute_input": "2024-01-17T17:58:18.745764Z", + "iopub.status.busy": "2024-01-17T17:58:18.744581Z", + "iopub.status.idle": "2024-01-17T17:58:18.750295Z", + "shell.execute_reply": "2024-01-17T17:58:18.749695Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 52e392f6a..871ae8560 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -870,7 +870,7 @@
---2024-01-16 18:26:44-- https://data.deepai.org/conll2003.zip
+--2024-01-17 17:58:23-- https://data.deepai.org/conll2003.zip
Resolving data.deepai.org (data.deepai.org)...
-185.93.1.247, 2400:52e0:1a00::941:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.
-
-HTTP request sent, awaiting response...
-
-200 OK
+143.244.50.91, 2400:52e0:1a01::899:1
+Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.
+HTTP request sent, awaiting response... 200 OK
Length: 982975 (960K) [application/zip]
Saving to: ‘conll2003.zip’
conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s
+conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
--2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists </pre>
conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s
+conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
--2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}
conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s
+conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
-@@ -954,8 +940,17 @@+1. Install required dependencies and download data
+- - inflating: data/valid.txt +--2024-01-17 17:58:24-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz +Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.40.201, 52.217.104.68, 52.217.165.25, ... +Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.40.201|:443... ++++++connected.@@ -963,9 +958,6 @@@@ -996,39 +988,59 @@1. Install required dependencies and download data
---2024-01-16 18:26:45-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz -Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.171.89, 52.216.37.153, 54.231.192.249, ... -Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.171.89|:443... connected. HTTP request sent, awaiting response...1. Install required dependencies and download data
-
+- pred_probs.npz 67%[============> ] 10.93M 54.7MB/s
+- pred_probs.npz 1%[ ] 262.53K 1.15MB/s
- +
++</pre>
+- pred_probs.npz 1%[ ] 262.53K 1.15MB/s
- +
++end{sphinxVerbatim}
+pred_probs.npz 1%[ ] 262.53K 1.15MB/s
++++++++
-- pred_probs.npz 27%[====> ] 4.51M 10.1MB/s
- -
</pre>
- pred_probs.npz 67%[============> ] 10.93M 54.7MB/s
+- pred_probs.npz 27%[====> ] 4.51M 10.1MB/s
end{sphinxVerbatim}
pred_probs.npz 67%[============> ] 10.93M 54.7MB/s
+pred_probs.npz 27%[====> ] 4.51M 10.1MB/s
-pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s
+pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s
--2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
</pre>
pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s
+pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s
--2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
end{sphinxVerbatim}
pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s
+pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s
-2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
[3]: diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index d03f7c050..9243d7ad9 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:44.432822Z", - "iopub.status.busy": "2024-01-16T18:26:44.432609Z", - "iopub.status.idle": "2024-01-16T18:26:46.060279Z", - "shell.execute_reply": "2024-01-16T18:26:46.059587Z" + "iopub.execute_input": "2024-01-17T17:58:23.424165Z", + "iopub.status.busy": "2024-01-17T17:58:23.423975Z", + "iopub.status.idle": "2024-01-17T17:58:25.202201Z", + "shell.execute_reply": "2024-01-17T17:58:25.201433Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-16 18:26:44-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-17 17:58:23-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "143.244.50.91, 2400:52e0:1a01::899:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -122,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", "\r\n", - "2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +123,30 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-01-17 17:58:24-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.40.201, 52.217.104.68, 52.217.165.25, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.40.201|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-16 18:26:45-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.171.89, 52.216.37.153, 54.231.192.249, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.171.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,7 +167,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 67%[============> ] 10.93M 54.7MB/s " + "pred_probs.npz 1%[ ] 262.53K 1.15MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 27%[====> ] 4.51M 10.1MB/s " ] }, { @@ -182,9 +183,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s \r\n", + "pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s \r\n", "\r\n", - "2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -201,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:46.062757Z", - "iopub.status.busy": "2024-01-16T18:26:46.062552Z", - "iopub.status.idle": "2024-01-16T18:26:47.073438Z", - "shell.execute_reply": "2024-01-16T18:26:47.072752Z" + "iopub.execute_input": "2024-01-17T17:58:25.205535Z", + "iopub.status.busy": "2024-01-17T17:58:25.205105Z", + "iopub.status.idle": "2024-01-17T17:58:26.262369Z", + "shell.execute_reply": "2024-01-17T17:58:26.261719Z" }, "nbsphinx": "hidden" }, @@ -215,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -241,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.076275Z", - "iopub.status.busy": "2024-01-16T18:26:47.075796Z", - "iopub.status.idle": "2024-01-16T18:26:47.079464Z", - "shell.execute_reply": "2024-01-16T18:26:47.078949Z" + "iopub.execute_input": "2024-01-17T17:58:26.265615Z", + "iopub.status.busy": "2024-01-17T17:58:26.265000Z", + "iopub.status.idle": "2024-01-17T17:58:26.268761Z", + "shell.execute_reply": "2024-01-17T17:58:26.268164Z" } }, "outputs": [], @@ -294,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.081729Z", - "iopub.status.busy": "2024-01-16T18:26:47.081527Z", - "iopub.status.idle": "2024-01-16T18:26:47.084579Z", - "shell.execute_reply": "2024-01-16T18:26:47.084042Z" + "iopub.execute_input": "2024-01-17T17:58:26.271286Z", + "iopub.status.busy": "2024-01-17T17:58:26.270877Z", + "iopub.status.idle": "2024-01-17T17:58:26.274169Z", + "shell.execute_reply": "2024-01-17T17:58:26.273608Z" }, "nbsphinx": "hidden" }, @@ -315,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.086724Z", - "iopub.status.busy": "2024-01-16T18:26:47.086524Z", - "iopub.status.idle": "2024-01-16T18:26:54.928199Z", - "shell.execute_reply": "2024-01-16T18:26:54.927577Z" + "iopub.execute_input": "2024-01-17T17:58:26.276506Z", + "iopub.status.busy": "2024-01-17T17:58:26.276193Z", + "iopub.status.idle": "2024-01-17T17:58:34.303876Z", + "shell.execute_reply": "2024-01-17T17:58:34.303255Z" } }, "outputs": [], @@ -392,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:54.931044Z", - "iopub.status.busy": "2024-01-16T18:26:54.930670Z", - "iopub.status.idle": "2024-01-16T18:26:54.936757Z", - "shell.execute_reply": "2024-01-16T18:26:54.936221Z" + "iopub.execute_input": "2024-01-17T17:58:34.306724Z", + "iopub.status.busy": "2024-01-17T17:58:34.306333Z", + "iopub.status.idle": "2024-01-17T17:58:34.312260Z", + "shell.execute_reply": "2024-01-17T17:58:34.311721Z" }, "nbsphinx": "hidden" }, @@ -435,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:54.938947Z", - "iopub.status.busy": "2024-01-16T18:26:54.938584Z", - "iopub.status.idle": "2024-01-16T18:26:55.375633Z", - "shell.execute_reply": "2024-01-16T18:26:55.374948Z" + "iopub.execute_input": "2024-01-17T17:58:34.314518Z", + "iopub.status.busy": "2024-01-17T17:58:34.314319Z", + "iopub.status.idle": "2024-01-17T17:58:34.744940Z", + "shell.execute_reply": "2024-01-17T17:58:34.744292Z" } }, "outputs": [], @@ -475,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:55.378776Z", - "iopub.status.busy": "2024-01-16T18:26:55.378226Z", - "iopub.status.idle": "2024-01-16T18:26:55.384946Z", - "shell.execute_reply": "2024-01-16T18:26:55.384227Z" + "iopub.execute_input": "2024-01-17T17:58:34.747755Z", + "iopub.status.busy": "2024-01-17T17:58:34.747534Z", + "iopub.status.idle": "2024-01-17T17:58:34.753183Z", + "shell.execute_reply": "2024-01-17T17:58:34.752676Z" } }, "outputs": [ @@ -550,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:55.387617Z", - "iopub.status.busy": "2024-01-16T18:26:55.387265Z", - "iopub.status.idle": "2024-01-16T18:26:57.330447Z", - "shell.execute_reply": "2024-01-16T18:26:57.329532Z" + "iopub.execute_input": "2024-01-17T17:58:34.755736Z", + "iopub.status.busy": "2024-01-17T17:58:34.755375Z", + "iopub.status.idle": "2024-01-17T17:58:36.724878Z", + "shell.execute_reply": "2024-01-17T17:58:36.723947Z" } }, "outputs": [], @@ -575,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.334192Z", - "iopub.status.busy": "2024-01-16T18:26:57.333377Z", - "iopub.status.idle": "2024-01-16T18:26:57.340257Z", - "shell.execute_reply": "2024-01-16T18:26:57.339626Z" + "iopub.execute_input": "2024-01-17T17:58:36.730399Z", + "iopub.status.busy": "2024-01-17T17:58:36.727865Z", + "iopub.status.idle": "2024-01-17T17:58:36.735089Z", + "shell.execute_reply": "2024-01-17T17:58:36.734419Z" } }, "outputs": [ @@ -614,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.342851Z", - "iopub.status.busy": "2024-01-16T18:26:57.342436Z", - "iopub.status.idle": "2024-01-16T18:26:57.360032Z", - "shell.execute_reply": "2024-01-16T18:26:57.359548Z" + "iopub.execute_input": "2024-01-17T17:58:36.737747Z", + "iopub.status.busy": "2024-01-17T17:58:36.737272Z", + "iopub.status.idle": "2024-01-17T17:58:36.761752Z", + "shell.execute_reply": "2024-01-17T17:58:36.761145Z" } }, "outputs": [ @@ -795,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.362505Z", - "iopub.status.busy": "2024-01-16T18:26:57.362141Z", - "iopub.status.idle": "2024-01-16T18:26:57.393875Z", - "shell.execute_reply": "2024-01-16T18:26:57.393317Z" + "iopub.execute_input": "2024-01-17T17:58:36.764355Z", + "iopub.status.busy": "2024-01-17T17:58:36.764016Z", + "iopub.status.idle": "2024-01-17T17:58:36.799290Z", + "shell.execute_reply": "2024-01-17T17:58:36.798797Z" } }, "outputs": [ @@ -900,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.396419Z", - "iopub.status.busy": "2024-01-16T18:26:57.396040Z", - "iopub.status.idle": "2024-01-16T18:26:57.404752Z", - "shell.execute_reply": "2024-01-16T18:26:57.404255Z" + "iopub.execute_input": "2024-01-17T17:58:36.801809Z", + "iopub.status.busy": "2024-01-17T17:58:36.801371Z", + "iopub.status.idle": "2024-01-17T17:58:36.809794Z", + "shell.execute_reply": "2024-01-17T17:58:36.809297Z" } }, "outputs": [ @@ -977,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.406914Z", - "iopub.status.busy": "2024-01-16T18:26:57.406703Z", - "iopub.status.idle": "2024-01-16T18:26:59.250819Z", - "shell.execute_reply": "2024-01-16T18:26:59.250197Z" + "iopub.execute_input": "2024-01-17T17:58:36.812236Z", + "iopub.status.busy": "2024-01-17T17:58:36.811808Z", + "iopub.status.idle": "2024-01-17T17:58:38.694852Z", + "shell.execute_reply": "2024-01-17T17:58:38.694278Z" } }, "outputs": [ @@ -1152,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:59.253304Z", - "iopub.status.busy": "2024-01-16T18:26:59.253057Z", - "iopub.status.idle": "2024-01-16T18:26:59.257459Z", - "shell.execute_reply": "2024-01-16T18:26:59.256934Z" + "iopub.execute_input": "2024-01-17T17:58:38.697532Z", + "iopub.status.busy": "2024-01-17T17:58:38.697105Z", + "iopub.status.idle": "2024-01-17T17:58:38.701595Z", + "shell.execute_reply": "2024-01-17T17:58:38.701051Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 11eac3d19..c37486deb 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "a8d2170f0db89b804931917dd930161c971bea94", + commit_hash: "15bec56103a268b4cbc829af93459cd8a66649de", }; \ No newline at end of file