diff --git a/master/.buildinfo b/master/.buildinfo index 3f03c2749..ae5f365c3 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 53bf9165ae252f06cf47c722384f3dda +config: 23915d37363845cce4345d7e29f06c92 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 842e305f5..4ac27a103 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 81a6e8e4f..a3b2bd3c0 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 0d41e6437..bf68bee1f 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index da8448728..b937b9418 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 6eb1edb95..573c68517 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index c62cc5d97..91dbe8a64 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index bd426c815..b9e44b7ee 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index f5d31c602..1947e685a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index ec618a9d8..47f1b719d 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index e5d0d2609..8e658b5d2 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index a98ad050d..05cc61e4b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index cbcb50464..a9b8edb99 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index d86bbe2a7..839182624 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 2d38aea2b..63f62e107 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 8d694f3f5..ab82a0f2a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 20b9f5bda..ddd89d809 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 0fc745aa0..9b234f981 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b403d052d..c1f930b9c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 66ef97a6b..df64b4b6c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 892a5f3bc..03997fec7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 77c45722f..87f6baedc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 3f7b9c2e8..3fa0ba44d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 43f6c6e95..8ca57ad9e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 92369e932..99b228c07 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 5595d86ce..3b6f85484 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index eee681541..de8e053e5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 10f7e9c9c..a64cda317 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 48f17328a..807edc014 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 120bed9ab..0899ed792 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index df23db062..f3a30b7d9 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 058cfa969..119f99602 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 8027c5feb..4d530b256 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 4fb3b402d..73e22caa4 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 812e7bded..347ff2390 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index a367cf1e7..69338bd4b 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 291bccdc9..a38fec140 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index cfaa37983..bb4064624 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 95867a017..fb6f1d086 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 2472738ca..c4f8258e5 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index dfd8fadfc..fd8d526c9 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 10465de98..2cc487bbe 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index f12e93998..fbb0eee19 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 9834e7141..c28cc7038 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index e2eb0b85d..5d430d44f 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 2daf25c67..0aa3d114a 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index ef3c2b4b7..01daf7e90 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index aeb81b784..0e3c3cad8 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index b1ed4926a..d6321780a 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 9e8680663..5c20b3097 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 9cb327290..3db4f94bc 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c2296ec38..f4f532164 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 66ca00d3e..719aef364 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index e86e2eea1..3757a3f8a 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index e48e87411..1ec628098 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index f012eca0f..de4e4e799 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index b3f43adc0..e23f35c2b 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index d0fc5c588..2e66cee38 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 5aae68045..9fc450d44 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 7a9bf53f6..9ac83eef3 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 80d7735f4..3ddd8bb09 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index b75034aa0..1a5c2acf5 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 307b7f933..a84742399 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index d6be5cb7e..c27da26e4 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 621e507e8..ff37a1a5b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index b0db7d617..d0d1c9f8f 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 32d21e5d4..7eaab7b0b 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index da8b42b0f..dd9824f02 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index da9e25fe4..299c52754 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index b97b1b255..1fe975d4a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 5dec5ca93..eb56c2237 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index a947d707f..73c852f1b 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 2a90bca8d..bf6a1dfcc 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index eaea76f47..b901d136d 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 138f34d81..4b53d8816 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index deb33cd1f..df15b5d56 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:20.915176Z", - "iopub.status.busy": "2024-01-16T18:14:20.914635Z", - "iopub.status.idle": "2024-01-16T18:14:24.352375Z", - "shell.execute_reply": "2024-01-16T18:14:24.351733Z" + "iopub.execute_input": "2024-01-17T17:45:48.281803Z", + "iopub.status.busy": "2024-01-17T17:45:48.281265Z", + "iopub.status.idle": "2024-01-17T17:45:51.532977Z", + "shell.execute_reply": "2024-01-17T17:45:51.532344Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.355565Z", - "iopub.status.busy": "2024-01-16T18:14:24.355063Z", - "iopub.status.idle": "2024-01-16T18:14:24.358719Z", - "shell.execute_reply": "2024-01-16T18:14:24.358098Z" + "iopub.execute_input": "2024-01-17T17:45:51.536196Z", + "iopub.status.busy": "2024-01-17T17:45:51.535669Z", + "iopub.status.idle": "2024-01-17T17:45:51.539177Z", + "shell.execute_reply": "2024-01-17T17:45:51.538560Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.361182Z", - "iopub.status.busy": "2024-01-16T18:14:24.360808Z", - "iopub.status.idle": "2024-01-16T18:14:24.366113Z", - "shell.execute_reply": "2024-01-16T18:14:24.365612Z" + "iopub.execute_input": "2024-01-17T17:45:51.541699Z", + "iopub.status.busy": "2024-01-17T17:45:51.541317Z", + "iopub.status.idle": "2024-01-17T17:45:51.546258Z", + "shell.execute_reply": "2024-01-17T17:45:51.545660Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.368536Z", - "iopub.status.busy": "2024-01-16T18:14:24.368241Z", - "iopub.status.idle": "2024-01-16T18:14:25.927558Z", - "shell.execute_reply": "2024-01-16T18:14:25.926708Z" + "iopub.execute_input": "2024-01-17T17:45:51.548974Z", + "iopub.status.busy": "2024-01-17T17:45:51.548436Z", + "iopub.status.idle": "2024-01-17T17:45:53.511722Z", + "shell.execute_reply": "2024-01-17T17:45:53.511012Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.931098Z", - "iopub.status.busy": "2024-01-16T18:14:25.930650Z", - "iopub.status.idle": "2024-01-16T18:14:25.943296Z", - "shell.execute_reply": "2024-01-16T18:14:25.942596Z" + "iopub.execute_input": "2024-01-17T17:45:53.515083Z", + "iopub.status.busy": "2024-01-17T17:45:53.514556Z", + "iopub.status.idle": "2024-01-17T17:45:53.526750Z", + "shell.execute_reply": "2024-01-17T17:45:53.526120Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.979754Z", - "iopub.status.busy": "2024-01-16T18:14:25.979232Z", - "iopub.status.idle": "2024-01-16T18:14:25.985428Z", - "shell.execute_reply": "2024-01-16T18:14:25.984757Z" + "iopub.execute_input": "2024-01-17T17:45:53.559421Z", + "iopub.status.busy": "2024-01-17T17:45:53.558892Z", + "iopub.status.idle": "2024-01-17T17:45:53.565993Z", + "shell.execute_reply": "2024-01-17T17:45:53.565333Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.987972Z", - "iopub.status.busy": "2024-01-16T18:14:25.987598Z", - "iopub.status.idle": "2024-01-16T18:14:26.769043Z", - "shell.execute_reply": "2024-01-16T18:14:26.768365Z" + "iopub.execute_input": "2024-01-17T17:45:53.568501Z", + "iopub.status.busy": "2024-01-17T17:45:53.568032Z", + "iopub.status.idle": "2024-01-17T17:45:54.251679Z", + "shell.execute_reply": "2024-01-17T17:45:54.251003Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:26.771757Z", - "iopub.status.busy": "2024-01-16T18:14:26.771377Z", - "iopub.status.idle": "2024-01-16T18:14:27.516544Z", - "shell.execute_reply": "2024-01-16T18:14:27.515950Z" + "iopub.execute_input": "2024-01-17T17:45:54.254434Z", + "iopub.status.busy": "2024-01-17T17:45:54.254191Z", + "iopub.status.idle": "2024-01-17T17:45:56.394373Z", + "shell.execute_reply": "2024-01-17T17:45:56.393785Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.519604Z", - "iopub.status.busy": "2024-01-16T18:14:27.519261Z", - "iopub.status.idle": "2024-01-16T18:14:27.543790Z", - "shell.execute_reply": "2024-01-16T18:14:27.543172Z" + "iopub.execute_input": "2024-01-17T17:45:56.397301Z", + "iopub.status.busy": "2024-01-17T17:45:56.397065Z", + "iopub.status.idle": "2024-01-17T17:45:56.421258Z", + "shell.execute_reply": "2024-01-17T17:45:56.420692Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.546452Z", - "iopub.status.busy": "2024-01-16T18:14:27.546073Z", - "iopub.status.idle": "2024-01-16T18:14:27.549426Z", - "shell.execute_reply": "2024-01-16T18:14:27.548863Z" + "iopub.execute_input": "2024-01-17T17:45:56.423783Z", + "iopub.status.busy": "2024-01-17T17:45:56.423475Z", + "iopub.status.idle": "2024-01-17T17:45:56.426947Z", + "shell.execute_reply": "2024-01-17T17:45:56.426388Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.551820Z", - "iopub.status.busy": "2024-01-16T18:14:27.551439Z", - "iopub.status.idle": "2024-01-16T18:14:47.423185Z", - "shell.execute_reply": "2024-01-16T18:14:47.422549Z" + "iopub.execute_input": "2024-01-17T17:45:56.429235Z", + "iopub.status.busy": "2024-01-17T17:45:56.429021Z", + "iopub.status.idle": "2024-01-17T17:46:15.035396Z", + "shell.execute_reply": "2024-01-17T17:46:15.034680Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.426361Z", - "iopub.status.busy": "2024-01-16T18:14:47.425953Z", - "iopub.status.idle": "2024-01-16T18:14:47.430484Z", - "shell.execute_reply": "2024-01-16T18:14:47.429961Z" + "iopub.execute_input": "2024-01-17T17:46:15.039000Z", + "iopub.status.busy": "2024-01-17T17:46:15.038397Z", + "iopub.status.idle": "2024-01-17T17:46:15.043348Z", + "shell.execute_reply": "2024-01-17T17:46:15.042799Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.432783Z", - "iopub.status.busy": "2024-01-16T18:14:47.432571Z", - "iopub.status.idle": "2024-01-16T18:14:52.936048Z", - "shell.execute_reply": "2024-01-16T18:14:52.935345Z" + "iopub.execute_input": "2024-01-17T17:46:15.045907Z", + "iopub.status.busy": "2024-01-17T17:46:15.045507Z", + "iopub.status.idle": "2024-01-17T17:46:20.498119Z", + "shell.execute_reply": "2024-01-17T17:46:20.497438Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.939625Z", - "iopub.status.busy": "2024-01-16T18:14:52.939206Z", - "iopub.status.idle": "2024-01-16T18:14:52.944490Z", - "shell.execute_reply": "2024-01-16T18:14:52.943903Z" + "iopub.execute_input": "2024-01-17T17:46:20.501565Z", + "iopub.status.busy": "2024-01-17T17:46:20.501133Z", + "iopub.status.idle": "2024-01-17T17:46:20.506455Z", + "shell.execute_reply": "2024-01-17T17:46:20.505871Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.947481Z", - "iopub.status.busy": "2024-01-16T18:14:52.947081Z", - "iopub.status.idle": "2024-01-16T18:14:53.052663Z", - "shell.execute_reply": "2024-01-16T18:14:53.051903Z" + "iopub.execute_input": "2024-01-17T17:46:20.509424Z", + "iopub.status.busy": "2024-01-17T17:46:20.509004Z", + "iopub.status.idle": "2024-01-17T17:46:20.620924Z", + "shell.execute_reply": "2024-01-17T17:46:20.620197Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.055771Z", - "iopub.status.busy": "2024-01-16T18:14:53.055272Z", - "iopub.status.idle": "2024-01-16T18:14:53.064890Z", - "shell.execute_reply": "2024-01-16T18:14:53.064330Z" + "iopub.execute_input": "2024-01-17T17:46:20.623691Z", + "iopub.status.busy": "2024-01-17T17:46:20.623431Z", + "iopub.status.idle": "2024-01-17T17:46:20.633797Z", + "shell.execute_reply": "2024-01-17T17:46:20.633256Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.067387Z", - "iopub.status.busy": "2024-01-16T18:14:53.066935Z", - "iopub.status.idle": "2024-01-16T18:14:53.075177Z", - "shell.execute_reply": "2024-01-16T18:14:53.074580Z" + "iopub.execute_input": "2024-01-17T17:46:20.636241Z", + "iopub.status.busy": "2024-01-17T17:46:20.635862Z", + "iopub.status.idle": "2024-01-17T17:46:20.643973Z", + "shell.execute_reply": "2024-01-17T17:46:20.643340Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.077704Z", - "iopub.status.busy": "2024-01-16T18:14:53.077211Z", - "iopub.status.idle": "2024-01-16T18:14:53.081922Z", - "shell.execute_reply": "2024-01-16T18:14:53.081326Z" + "iopub.execute_input": "2024-01-17T17:46:20.646449Z", + "iopub.status.busy": "2024-01-17T17:46:20.646021Z", + "iopub.status.idle": "2024-01-17T17:46:20.650715Z", + "shell.execute_reply": "2024-01-17T17:46:20.650105Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.084209Z", - "iopub.status.busy": "2024-01-16T18:14:53.083853Z", - "iopub.status.idle": "2024-01-16T18:14:53.090102Z", - "shell.execute_reply": "2024-01-16T18:14:53.089456Z" + "iopub.execute_input": "2024-01-17T17:46:20.653034Z", + "iopub.status.busy": "2024-01-17T17:46:20.652730Z", + "iopub.status.idle": "2024-01-17T17:46:20.659144Z", + "shell.execute_reply": "2024-01-17T17:46:20.658590Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.092579Z", - "iopub.status.busy": "2024-01-16T18:14:53.092207Z", - "iopub.status.idle": "2024-01-16T18:14:53.205798Z", - "shell.execute_reply": "2024-01-16T18:14:53.205139Z" + "iopub.execute_input": "2024-01-17T17:46:20.661540Z", + "iopub.status.busy": "2024-01-17T17:46:20.661169Z", + "iopub.status.idle": "2024-01-17T17:46:20.774456Z", + "shell.execute_reply": "2024-01-17T17:46:20.773805Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.208272Z", - "iopub.status.busy": "2024-01-16T18:14:53.208068Z", - "iopub.status.idle": "2024-01-16T18:14:53.317424Z", - "shell.execute_reply": "2024-01-16T18:14:53.316763Z" + "iopub.execute_input": "2024-01-17T17:46:20.777081Z", + "iopub.status.busy": "2024-01-17T17:46:20.776686Z", + "iopub.status.idle": "2024-01-17T17:46:20.883619Z", + "shell.execute_reply": "2024-01-17T17:46:20.883017Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.319798Z", - "iopub.status.busy": "2024-01-16T18:14:53.319580Z", - "iopub.status.idle": "2024-01-16T18:14:53.430801Z", - "shell.execute_reply": "2024-01-16T18:14:53.430125Z" + "iopub.execute_input": "2024-01-17T17:46:20.886375Z", + "iopub.status.busy": "2024-01-17T17:46:20.885897Z", + "iopub.status.idle": "2024-01-17T17:46:20.992300Z", + "shell.execute_reply": "2024-01-17T17:46:20.991606Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.433289Z", - "iopub.status.busy": "2024-01-16T18:14:53.433043Z", - "iopub.status.idle": "2024-01-16T18:14:53.542938Z", - "shell.execute_reply": "2024-01-16T18:14:53.542233Z" + "iopub.execute_input": "2024-01-17T17:46:20.994767Z", + "iopub.status.busy": "2024-01-17T17:46:20.994535Z", + "iopub.status.idle": "2024-01-17T17:46:21.104534Z", + "shell.execute_reply": "2024-01-17T17:46:21.103866Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.545707Z", - "iopub.status.busy": "2024-01-16T18:14:53.545287Z", - "iopub.status.idle": "2024-01-16T18:14:53.548752Z", - "shell.execute_reply": "2024-01-16T18:14:53.548195Z" + "iopub.execute_input": "2024-01-17T17:46:21.106933Z", + "iopub.status.busy": "2024-01-17T17:46:21.106710Z", + "iopub.status.idle": "2024-01-17T17:46:21.110311Z", + "shell.execute_reply": "2024-01-17T17:46:21.109761Z" }, "nbsphinx": "hidden" }, @@ -1377,28 +1377,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a2ba5f5018944be8ed66d1b5c89af1f": { + "033e01a89ac943ceab57fa1a4f52efcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb75104ef4734fac8938c1cb88c8c4d1", - "placeholder": "​", - "style": "IPY_MODEL_f0c363be2cbb4cca8bafc15e33588fdb", - "value": "hyperparams.yaml: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "043a7d1958904863b243b004e8a70c95": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0da3d4dc1dd649639ab6d431992c8699": { + "11dd8f7214c1495f8942d7606f19e55f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1414,15 +1461,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2771b9bc9a14ee3aa56157b0502327a", - "max": 2041.0, + "layout": "IPY_MODEL_42c2b63db215400f9509bd6009308cf0", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ca661ab1b9cc4a8db6fdb49de9d2f0c9", - "value": 2041.0 + "style": "IPY_MODEL_732c20c4646c4cd59b45fdbb3e8759e3", + "value": 3201.0 } }, - "163a2cb346774198bc099216c4e65b17": { + "135a53de75034cf3a988d961a93a764c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1437,29 +1484,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e12ba550026940d29711487f772c6c67", - "IPY_MODEL_c977f9ffb7814ff39c752ed264ea6ce0", - "IPY_MODEL_57e717f107df4db2a84f2b734de5c2a9" + "IPY_MODEL_d8f0ee2d62d24af3ae6398d396346369", + "IPY_MODEL_5c0fb3f05454429e9df1ac90056fbcf6", + "IPY_MODEL_7dd68e4d78284f769acb5eebb84a0d11" ], - "layout": "IPY_MODEL_ad84d2897f0147aca8181eff243a5288" + "layout": "IPY_MODEL_d1d5d1e6560446a9b5567eceb2e4f236" } }, - "377d0e114663431a88b321ccf5671118": { + "1885bdd348aa473fa45d0f7040aff37e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "3b1c4b52ad9f42a8bd31850343c868ca": { + "19c6fa508c724059bd1a9a55fc1cccca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1511,7 +1559,46 @@ "width": null } }, - "3db09cbbf6c241a6a00d6438d3b146be": { + "2148259a1f30469d94ad6e790e5b93fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23364e8eaa2c43ef8904b7bf3a94adc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a687ff927d5468d9b01aedcade78b01", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1885bdd348aa473fa45d0f7040aff37e", + "value": 15856877.0 + } + }, + "24195dc95d4145d79d3b11c2411a1607": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1563,7 +1650,7 @@ "width": null } }, - "3ef5ca1cce374925a0b399b2514eb5c2": { + "26d1aab6d79c42fb99c1264a3cd973ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1615,7 +1702,43 @@ "width": null } }, - "42bdae19bfbd46f5906edd9af2a8ca32": { + "3e0b5cde430c4f61813e5553d2fc36f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "41605a719db444b9a7b57ffa9d3d03f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e89d06ba50d846a487da348c700a0a7f", + "placeholder": "​", + "style": "IPY_MODEL_2148259a1f30469d94ad6e790e5b93fd", + "value": " 2.04k/2.04k [00:00<00:00, 325kB/s]" + } + }, + "42c2b63db215400f9509bd6009308cf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,7 +1790,7 @@ "width": null } }, - "43834e35ff2f465b9386c606893763df": { + "4a2fdbcd033b4a93ba2d5252dc7f5fae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1683,7 +1806,7 @@ "description_width": "" } }, - "43feddf15ba2438eb51c014be162befb": { + "52b4dbafc58b4e8c9ec8a8c66e413a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1735,7 +1858,7 @@ "width": null } }, - "46f6785b3d2c48b98f54410575394ffa": { + "556fb5f813714c41b05adaabbe3a96ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1751,103 +1874,55 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b5ba087d11514272a9e9faeb1ff627a9", - "max": 3201.0, + "layout": "IPY_MODEL_26d1aab6d79c42fb99c1264a3cd973ab", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ebc1cd16d38b4793bf1112d0927953b7", - "value": 3201.0 + "style": "IPY_MODEL_4a2fdbcd033b4a93ba2d5252dc7f5fae", + "value": 16887676.0 } }, - "4a2768a8302843e29697b819b2e21c83": { + "5c0fb3f05454429e9df1ac90056fbcf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd5bfe756d9c4ac2bb7970db7efd158f", - "placeholder": "​", - "style": "IPY_MODEL_377d0e114663431a88b321ccf5671118", - "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]" - } - }, - "4a9672c6f7774b5291013e7b10fe0ec1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_52b4dbafc58b4e8c9ec8a8c66e413a7b", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5da4ee7e5a74424781dc4b5700bef698", + "value": 128619.0 } }, - "543d0e73290749499fa54afede2bd07f": { + "5da4ee7e5a74424781dc4b5700bef698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "57e717f107df4db2a84f2b734de5c2a9": { + "6e39de55bafc418eb42a575b35063e0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1862,49 +1937,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a9672c6f7774b5291013e7b10fe0ec1", + "layout": "IPY_MODEL_b07280c8ecc6456cad587a3752cb2d16", "placeholder": "​", - "style": "IPY_MODEL_c4ba9128671b432b820ac648a68895c3", - "value": " 129k/129k [00:00<00:00, 7.55MB/s]" + "style": "IPY_MODEL_3e0b5cde430c4f61813e5553d2fc36f1", + "value": "classifier.ckpt: 100%" } }, - "5e4afca7fbd94824a33aac1479f05792": { + "732c20c4646c4cd59b45fdbb3e8759e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5f6b1e0a3c8741dba0d9eb4b7f6e7db9": { + "7c0ac0cdd53242a6a002865e387bd8c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3db09cbbf6c241a6a00d6438d3b146be", - "placeholder": "​", - "style": "IPY_MODEL_fe1ddb8e1c9f4597a20eaae2164d6f14", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6bc17f07c1674ca9b444cdcf99e8c308": { + "7cee4d0269ef47308b8319e509277ceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1956,7 +2026,7 @@ "width": null } }, - "6ccc26a8049e42108a1980a281c22a4d": { + "7dafc44b77354f96b68181fc2f694955": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2008,59 +2078,71 @@ "width": null } }, - "72156103dd1640869663d6b7f50d0f03": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "7dd68e4d78284f769acb5eebb84a0d11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88c63d79c4f44cb9bcfd62c1dd5ecbea", + "placeholder": "​", + "style": "IPY_MODEL_b8e3054079974d77b073afa288255be1", + "value": " 129k/129k [00:00<00:00, 7.14MB/s]" + } + }, + "7edcc39451c1450fad3fd357b026d543": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a05f4bffcdb840009c9bd506092c82a7", + "placeholder": "​", + "style": "IPY_MODEL_f01752874a4843f0a24d63f445cc198f", + "value": " 3.20k/3.20k [00:00<00:00, 568kB/s]" } }, - "76daed84b81e433c905e360952995f85": { + "84e7a3c113c44726929580012c3b7a19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a62e150c641f4a7ca85a7b3592d00cca", + "IPY_MODEL_556fb5f813714c41b05adaabbe3a96ff", + "IPY_MODEL_b944b32f46ff40d58646cfbb4ed25597" + ], + "layout": "IPY_MODEL_8deee4161483420fa90522b81b099f27" + } + }, + "88c63d79c4f44cb9bcfd62c1dd5ecbea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2112,7 +2194,7 @@ "width": null } }, - "82d96704716d454793313b040ef1f84e": { + "8deee4161483420fa90522b81b099f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2164,59 +2246,28 @@ "width": null } }, - "85ef3c651b874a608bb9ca2cf868035b": { + "91ce7bb076c545c093b975ef94c07985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "86798b98961f4f3bb40902f9a4b53b80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8bdbe1b999184bb2846ce3cbdd16c6b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de75cd8f0c224d62b9fdf323a5417c96", - "IPY_MODEL_a4d9e3c2c1204a92982d6de58fe386c7", - "IPY_MODEL_cc3d1b8c3f05463e8e6ca0ed6e0b6b87" - ], - "layout": "IPY_MODEL_3b1c4b52ad9f42a8bd31850343c868ca" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7dafc44b77354f96b68181fc2f694955", + "placeholder": "​", + "style": "IPY_MODEL_aaf9a4ac25ab432aa31f866253ae9e2d", + "value": " 15.9M/15.9M [00:00<00:00, 62.4MB/s]" } }, - "909c8ea39710440a9375312bc771a258": { + "928d89df3103412f870ee8942af69ce5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2231,14 +2282,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a2ba5f5018944be8ed66d1b5c89af1f", - "IPY_MODEL_0da3d4dc1dd649639ab6d431992c8699", - "IPY_MODEL_4a2768a8302843e29697b819b2e21c83" + "IPY_MODEL_6e39de55bafc418eb42a575b35063e0f", + "IPY_MODEL_23364e8eaa2c43ef8904b7bf3a94adc8", + "IPY_MODEL_91ce7bb076c545c093b975ef94c07985" ], - "layout": "IPY_MODEL_e40bbd2e388548f3babf5b73b54786ba" + "layout": "IPY_MODEL_7cee4d0269ef47308b8319e509277ceb" } }, - "947b044fce4d46cd94d78fac9e154a87": { + "9a687ff927d5468d9b01aedcade78b01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2290,7 +2341,7 @@ "width": null } }, - "a07d0d565d3a472a8e079a1ecf913022": { + "9df8b7d57ffc4b10a35332e34db31c0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2342,62 +2393,7 @@ "width": null } }, - "a481a55ede054d3aa8522ed074eb12cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a4d9e3c2c1204a92982d6de58fe386c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_42bdae19bfbd46f5906edd9af2a8ca32", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e01a67977a604991b8b00fcf581ad547", - "value": 16887676.0 - } - }, - "a6c29c1a8d9d46cfb56507d2d4955bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad84d2897f0147aca8181eff243a5288": { + "9e2b6e27deb4444397d5196935e4bd62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2449,7 +2445,7 @@ "width": null } }, - "b5ba087d11514272a9e9faeb1ff627a9": { + "a05f4bffcdb840009c9bd506092c82a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2501,7 +2497,7 @@ "width": null } }, - "b5f5706e3e7a42a381d9516fce9757ab": { + "a62e150c641f4a7ca85a7b3592d00cca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2516,87 +2512,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ccc26a8049e42108a1980a281c22a4d", + "layout": "IPY_MODEL_24195dc95d4145d79d3b11c2411a1607", "placeholder": "​", - "style": "IPY_MODEL_5e4afca7fbd94824a33aac1479f05792", - "value": "classifier.ckpt: 100%" + "style": "IPY_MODEL_f0be994ae5a44b0fa8736dca37ac2d35", + "value": "embedding_model.ckpt: 100%" } }, - "bd5bfe756d9c4ac2bb7970db7efd158f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a9fa5db29ed9455c894ff00cd62f8eec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "bdacc2cd81a3435f83ae3314ecb44041": { + "aaf9a4ac25ab432aa31f866253ae9e2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5f6b1e0a3c8741dba0d9eb4b7f6e7db9", - "IPY_MODEL_46f6785b3d2c48b98f54410575394ffa", - "IPY_MODEL_ce9615a248654a39a822ea42c7a8bb45" - ], - "layout": "IPY_MODEL_3ef5ca1cce374925a0b399b2514eb5c2" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bffa004404b4462296f6f8103e02601e": { + "b07280c8ecc6456cad587a3752cb2d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2648,62 +2600,43 @@ "width": null } }, - "c4ba9128671b432b820ac648a68895c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c977f9ffb7814ff39c752ed264ea6ce0": { + "b4938061210f431d98a5bf349df11369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_43feddf15ba2438eb51c014be162befb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6c29c1a8d9d46cfb56507d2d4955bda", - "value": 128619.0 + "layout": "IPY_MODEL_ff6c319c736649f9b5fd91bf069cbc86", + "placeholder": "​", + "style": "IPY_MODEL_a9fa5db29ed9455c894ff00cd62f8eec", + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ca661ab1b9cc4a8db6fdb49de9d2f0c9": { + "b8e3054079974d77b073afa288255be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "cb75104ef4734fac8938c1cb88c8c4d1": { + "b8f94f5f6d9d48e985836cd4e05de68b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2755,7 +2688,7 @@ "width": null } }, - "cc3d1b8c3f05463e8e6ca0ed6e0b6b87": { + "b944b32f46ff40d58646cfbb4ed25597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2770,13 +2703,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_76daed84b81e433c905e360952995f85", + "layout": "IPY_MODEL_9e2b6e27deb4444397d5196935e4bd62", "placeholder": "​", - "style": "IPY_MODEL_543d0e73290749499fa54afede2bd07f", - "value": " 16.9M/16.9M [00:00<00:00, 187MB/s]" + "style": "IPY_MODEL_c7a92eba64484655ac97269ff6abbbdd", + "value": " 16.9M/16.9M [00:00<00:00, 39.8MB/s]" } }, - "ce9615a248654a39a822ea42c7a8bb45": { + "bed75d44ae61481e82459a68035af3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2791,34 +2724,57 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_82d96704716d454793313b040ef1f84e", + "layout": "IPY_MODEL_9df8b7d57ffc4b10a35332e34db31c0b", "placeholder": "​", - "style": "IPY_MODEL_a481a55ede054d3aa8522ed074eb12cb", - "value": " 3.20k/3.20k [00:00<00:00, 526kB/s]" + "style": "IPY_MODEL_ec6bf18d0b6f4b889b872c2367fbf92a", + "value": "hyperparams.yaml: 100%" } }, - "d9f2f07b06fe4caba0db1beb29d785dd": { + "c0dbde17600f49929743b2d570ae951f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a07d0d565d3a472a8e079a1ecf913022", - "placeholder": "​", - "style": "IPY_MODEL_85ef3c651b874a608bb9ca2cf868035b", - "value": " 15.9M/15.9M [00:00<00:00, 135MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bed75d44ae61481e82459a68035af3c2", + "IPY_MODEL_df99da8f96ff423ea4024cf79c5c6c0c", + "IPY_MODEL_41605a719db444b9a7b57ffa9d3d03f5" + ], + "layout": "IPY_MODEL_ddfc7066dc7046e2a7b358ccbe375515" + } + }, + "c716483215634ba4867d20fda8db3aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4938061210f431d98a5bf349df11369", + "IPY_MODEL_11dd8f7214c1495f8942d7606f19e55f", + "IPY_MODEL_7edcc39451c1450fad3fd357b026d543" + ], + "layout": "IPY_MODEL_19c6fa508c724059bd1a9a55fc1cccca" } }, - "db4da918ead840ebacc04ce7461a4988": { + "c7a92eba64484655ac97269ff6abbbdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2833,7 +2789,59 @@ "description_width": "" } }, - "de75cd8f0c224d62b9fdf323a5417c96": { + "d1d5d1e6560446a9b5567eceb2e4f236": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8f0ee2d62d24af3ae6398d396346369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2848,29 +2856,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_947b044fce4d46cd94d78fac9e154a87", + "layout": "IPY_MODEL_043a7d1958904863b243b004e8a70c95", "placeholder": "​", - "style": "IPY_MODEL_db4da918ead840ebacc04ce7461a4988", - "value": "embedding_model.ckpt: 100%" + "style": "IPY_MODEL_7c0ac0cdd53242a6a002865e387bd8c4", + "value": "label_encoder.txt: 100%" } }, - "e01a67977a604991b8b00fcf581ad547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "ddfc7066dc7046e2a7b358ccbe375515": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e06edccc93074bdebf00e63fba330bd6": { + "df99da8f96ff423ea4024cf79c5c6c0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2886,36 +2930,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_72156103dd1640869663d6b7f50d0f03", - "max": 15856877.0, + "layout": "IPY_MODEL_b8f94f5f6d9d48e985836cd4e05de68b", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_43834e35ff2f465b9386c606893763df", - "value": 15856877.0 - } - }, - "e12ba550026940d29711487f772c6c67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bffa004404b4462296f6f8103e02601e", - "placeholder": "​", - "style": "IPY_MODEL_86798b98961f4f3bb40902f9a4b53b80", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_033e01a89ac943ceab57fa1a4f52efcb", + "value": 2041.0 } }, - "e40bbd2e388548f3babf5b73b54786ba": { + "e89d06ba50d846a487da348c700a0a7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2967,23 +2990,37 @@ "width": null } }, - "ebc1cd16d38b4793bf1112d0927953b7": { + "ec6bf18d0b6f4b889b872c2367fbf92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f01752874a4843f0a24d63f445cc198f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f0c363be2cbb4cca8bafc15e33588fdb": { + "f0be994ae5a44b0fa8736dca37ac2d35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2998,7 +3035,7 @@ "description_width": "" } }, - "f2771b9bc9a14ee3aa56157b0502327a": { + "ff6c319c736649f9b5fd91bf069cbc86": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3049,43 +3086,6 @@ "visibility": null, "width": null } - }, - "f33fb49d865d44168fb5d6baa65c54d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5f5706e3e7a42a381d9516fce9757ab", - "IPY_MODEL_e06edccc93074bdebf00e63fba330bd6", - "IPY_MODEL_d9f2f07b06fe4caba0db1beb29d785dd" - ], - "layout": "IPY_MODEL_6bc17f07c1674ca9b444cdcf99e8c308" - } - }, - "fe1ddb8e1c9f4597a20eaae2164d6f14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 695d18089..5376434e7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:59.190807Z", - "iopub.status.busy": "2024-01-16T18:14:59.190598Z", - "iopub.status.idle": "2024-01-16T18:15:00.334362Z", - "shell.execute_reply": "2024-01-16T18:15:00.333678Z" + "iopub.execute_input": "2024-01-17T17:46:26.531087Z", + "iopub.status.busy": "2024-01-17T17:46:26.530895Z", + "iopub.status.idle": "2024-01-17T17:46:27.626130Z", + "shell.execute_reply": "2024-01-17T17:46:27.625413Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.337479Z", - "iopub.status.busy": "2024-01-16T18:15:00.336938Z", - "iopub.status.idle": "2024-01-16T18:15:00.340299Z", - "shell.execute_reply": "2024-01-16T18:15:00.339696Z" + "iopub.execute_input": "2024-01-17T17:46:27.629155Z", + "iopub.status.busy": "2024-01-17T17:46:27.628840Z", + "iopub.status.idle": "2024-01-17T17:46:27.632053Z", + "shell.execute_reply": "2024-01-17T17:46:27.631492Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.342974Z", - "iopub.status.busy": "2024-01-16T18:15:00.342580Z", - "iopub.status.idle": "2024-01-16T18:15:00.352513Z", - "shell.execute_reply": "2024-01-16T18:15:00.351788Z" + "iopub.execute_input": "2024-01-17T17:46:27.634434Z", + "iopub.status.busy": "2024-01-17T17:46:27.634232Z", + "iopub.status.idle": "2024-01-17T17:46:27.643719Z", + "shell.execute_reply": "2024-01-17T17:46:27.643067Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.355239Z", - "iopub.status.busy": "2024-01-16T18:15:00.354828Z", - "iopub.status.idle": "2024-01-16T18:15:00.360093Z", - "shell.execute_reply": "2024-01-16T18:15:00.359544Z" + "iopub.execute_input": "2024-01-17T17:46:27.646002Z", + "iopub.status.busy": "2024-01-17T17:46:27.645648Z", + "iopub.status.idle": "2024-01-17T17:46:27.650899Z", + "shell.execute_reply": "2024-01-17T17:46:27.650373Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.362926Z", - "iopub.status.busy": "2024-01-16T18:15:00.362525Z", - "iopub.status.idle": "2024-01-16T18:15:00.669314Z", - "shell.execute_reply": "2024-01-16T18:15:00.668558Z" + "iopub.execute_input": "2024-01-17T17:46:27.653554Z", + "iopub.status.busy": "2024-01-17T17:46:27.653032Z", + "iopub.status.idle": "2024-01-17T17:46:27.924861Z", + "shell.execute_reply": "2024-01-17T17:46:27.924234Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.672435Z", - "iopub.status.busy": "2024-01-16T18:15:00.672157Z", - "iopub.status.idle": "2024-01-16T18:15:01.063788Z", - "shell.execute_reply": "2024-01-16T18:15:01.063086Z" + "iopub.execute_input": "2024-01-17T17:46:27.927989Z", + "iopub.status.busy": "2024-01-17T17:46:27.927358Z", + "iopub.status.idle": "2024-01-17T17:46:28.302276Z", + "shell.execute_reply": "2024-01-17T17:46:28.301600Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.066563Z", - "iopub.status.busy": "2024-01-16T18:15:01.066212Z", - "iopub.status.idle": "2024-01-16T18:15:01.091850Z", - "shell.execute_reply": "2024-01-16T18:15:01.091241Z" + "iopub.execute_input": "2024-01-17T17:46:28.305482Z", + "iopub.status.busy": "2024-01-17T17:46:28.304916Z", + "iopub.status.idle": "2024-01-17T17:46:28.330184Z", + "shell.execute_reply": "2024-01-17T17:46:28.329666Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.095118Z", - "iopub.status.busy": "2024-01-16T18:15:01.094621Z", - "iopub.status.idle": "2024-01-16T18:15:01.107088Z", - "shell.execute_reply": "2024-01-16T18:15:01.106526Z" + "iopub.execute_input": "2024-01-17T17:46:28.332877Z", + "iopub.status.busy": "2024-01-17T17:46:28.332372Z", + "iopub.status.idle": "2024-01-17T17:46:28.344293Z", + "shell.execute_reply": "2024-01-17T17:46:28.343665Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.110020Z", - "iopub.status.busy": "2024-01-16T18:15:01.109614Z", - "iopub.status.idle": "2024-01-16T18:15:02.507580Z", - "shell.execute_reply": "2024-01-16T18:15:02.506721Z" + "iopub.execute_input": "2024-01-17T17:46:28.346997Z", + "iopub.status.busy": "2024-01-17T17:46:28.346641Z", + "iopub.status.idle": "2024-01-17T17:46:29.636585Z", + "shell.execute_reply": "2024-01-17T17:46:29.635810Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.510601Z", - "iopub.status.busy": "2024-01-16T18:15:02.510056Z", - "iopub.status.idle": "2024-01-16T18:15:02.534510Z", - "shell.execute_reply": "2024-01-16T18:15:02.533834Z" + "iopub.execute_input": "2024-01-17T17:46:29.639229Z", + "iopub.status.busy": "2024-01-17T17:46:29.638907Z", + "iopub.status.idle": "2024-01-17T17:46:29.661603Z", + "shell.execute_reply": "2024-01-17T17:46:29.660982Z" } }, "outputs": [ @@ -761,15 +761,15 @@ " \n", "\n", "Number of examples with this issue: 6\n", - "Overall dataset quality in terms of this issue: 0.5221\n", + "Overall dataset quality in terms of this issue: 0.3558\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.046465\n", - "130 True 0.068695\n", - "129 True 0.068695\n", - "127 True 0.076251\n", - "128 True 0.083941\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.537296Z", - "iopub.status.busy": "2024-01-16T18:15:02.536906Z", - "iopub.status.idle": "2024-01-16T18:15:02.559431Z", - "shell.execute_reply": "2024-01-16T18:15:02.558731Z" + "iopub.execute_input": "2024-01-17T17:46:29.663889Z", + "iopub.status.busy": "2024-01-17T17:46:29.663690Z", + "iopub.status.idle": "2024-01-17T17:46:29.683442Z", + "shell.execute_reply": "2024-01-17T17:46:29.682806Z" } }, "outputs": [ @@ -872,15 +872,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.562402Z", - "iopub.status.busy": "2024-01-16T18:15:02.561995Z", - "iopub.status.idle": "2024-01-16T18:15:02.577600Z", - "shell.execute_reply": "2024-01-16T18:15:02.576984Z" + "iopub.execute_input": "2024-01-17T17:46:29.685995Z", + "iopub.status.busy": "2024-01-17T17:46:29.685689Z", + "iopub.status.idle": "2024-01-17T17:46:29.700170Z", + "shell.execute_reply": "2024-01-17T17:46:29.699633Z" } }, "outputs": [ @@ -988,23 +988,23 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", - "125 True 0.090878\n", - "37 True 0.169462\n", - "109 False 0.194566\n", - "35 False 0.196302\n", - "5 False 0.206314\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "125 True 0.101107\n", + "37 True 0.183382\n", + "109 False 0.209259\n", + "35 False 0.211042\n", + "5 False 0.221316\n", "\n", "Additional Information: \n", - "average_ood_score: 0.32933380816554325\n", + "average_ood_score: 0.34530442089193386\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.580154Z", - "iopub.status.busy": "2024-01-16T18:15:02.579938Z", - "iopub.status.idle": "2024-01-16T18:15:02.604035Z", - "shell.execute_reply": "2024-01-16T18:15:02.603347Z" + "iopub.execute_input": "2024-01-17T17:46:29.702709Z", + "iopub.status.busy": "2024-01-17T17:46:29.702323Z", + "iopub.status.idle": "2024-01-17T17:46:29.725561Z", + "shell.execute_reply": "2024-01-17T17:46:29.724870Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb5604d45e6a43028f6b1ff13d871a34", + "model_id": "5c0c4ef1e9db4712a8f263817cf218c9", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.607374Z", - "iopub.status.busy": "2024-01-16T18:15:02.607045Z", - "iopub.status.idle": "2024-01-16T18:15:02.623883Z", - "shell.execute_reply": "2024-01-16T18:15:02.623173Z" + "iopub.execute_input": "2024-01-17T17:46:29.727960Z", + "iopub.status.busy": "2024-01-17T17:46:29.727582Z", + "iopub.status.idle": "2024-01-17T17:46:29.743329Z", + "shell.execute_reply": "2024-01-17T17:46:29.742799Z" } }, "outputs": [ @@ -1163,15 +1163,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.626805Z", - "iopub.status.busy": "2024-01-16T18:15:02.626365Z", - "iopub.status.idle": "2024-01-16T18:15:02.633286Z", - "shell.execute_reply": "2024-01-16T18:15:02.632658Z" + "iopub.execute_input": "2024-01-17T17:46:29.745890Z", + "iopub.status.busy": "2024-01-17T17:46:29.745520Z", + "iopub.status.idle": "2024-01-17T17:46:29.751885Z", + "shell.execute_reply": "2024-01-17T17:46:29.751225Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.635969Z", - "iopub.status.busy": "2024-01-16T18:15:02.635563Z", - "iopub.status.idle": "2024-01-16T18:15:02.655436Z", - "shell.execute_reply": "2024-01-16T18:15:02.654832Z" + "iopub.execute_input": "2024-01-17T17:46:29.754322Z", + "iopub.status.busy": "2024-01-17T17:46:29.753962Z", + "iopub.status.idle": "2024-01-17T17:46:29.773941Z", + "shell.execute_reply": "2024-01-17T17:46:29.773394Z" } }, "outputs": [ @@ -1364,15 +1364,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1430,22 +1430,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "341f9927e2414cbabcc91e79e1daf284": { + "10382a80e39e4fc699a36f0e573519cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37648a1d3ed64712bad1dc62d91bcc20", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcd37a9ca1084ab7abb9402dc6f3d464", + "value": 132.0 } }, - "3b03c17da7b24f6c965e487602b7a7b3": { + "1da516bda2144843b9fdbd221bba7fbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1497,7 +1506,22 @@ "width": null } }, - "3b52babb106e458eafe99147a0ccbae6": { + "2c6feedc04694baeba539aea8d458dab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37648a1d3ed64712bad1dc62d91bcc20": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1549,52 +1573,29 @@ "width": null } }, - "7dd7442d04fd48188ad012ca7a6d254f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec240dd3f24540b6be00a9f55d52713b", - "placeholder": "​", - "style": "IPY_MODEL_e7b2f3b79b094685bf14c3cf8e38b861", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "95b4ac771b364b53832e72f148c7ebbf": { + "5c0c4ef1e9db4712a8f263817cf218c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6a02b7eb5194f79aa13c36ca6be9adb", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0612c3cfd464ff0b5e0d8c32aec21a2", - "value": 132.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71a70bdb1c384d38aaaaebe31d994340", + "IPY_MODEL_10382a80e39e4fc699a36f0e573519cb", + "IPY_MODEL_b8557e0bb3eb40dab898bc081f85d009" + ], + "layout": "IPY_MODEL_8bd8889a13f547acb9ed70e8759024b9" } }, - "a08a482690c74605b8f939333c210bfd": { + "71a70bdb1c384d38aaaaebe31d994340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1609,13 +1610,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3b52babb106e458eafe99147a0ccbae6", + "layout": "IPY_MODEL_1da516bda2144843b9fdbd221bba7fbf", "placeholder": "​", - "style": "IPY_MODEL_341f9927e2414cbabcc91e79e1daf284", - "value": " 132/132 [00:00<00:00, 10134.69 examples/s]" + "style": "IPY_MODEL_2c6feedc04694baeba539aea8d458dab", + "value": "Saving the dataset (1/1 shards): 100%" } }, - "a6a02b7eb5194f79aa13c36ca6be9adb": { + "8bd8889a13f547acb9ed70e8759024b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,60 +1668,7 @@ "width": null } }, - "bb5604d45e6a43028f6b1ff13d871a34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dd7442d04fd48188ad012ca7a6d254f", - "IPY_MODEL_95b4ac771b364b53832e72f148c7ebbf", - "IPY_MODEL_a08a482690c74605b8f939333c210bfd" - ], - "layout": "IPY_MODEL_3b03c17da7b24f6c965e487602b7a7b3" - } - }, - "c0612c3cfd464ff0b5e0d8c32aec21a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7b2f3b79b094685bf14c3cf8e38b861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec240dd3f24540b6be00a9f55d52713b": { + "a2de29b3d3c74030a4badec62f04530e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,6 +1719,58 @@ "visibility": null, "width": null } + }, + "b8557e0bb3eb40dab898bc081f85d009": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2de29b3d3c74030a4badec62f04530e", + "placeholder": "​", + "style": "IPY_MODEL_e486cfe0d5ab48229b33556ab089c589", + "value": " 132/132 [00:00<00:00, 11199.74 examples/s]" + } + }, + "bcd37a9ca1084ab7abb9402dc6f3d464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e486cfe0d5ab48229b33556ab089c589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 3545be137..d5a598e31 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:07.194941Z", - "iopub.status.busy": "2024-01-16T18:15:07.194765Z", - "iopub.status.idle": "2024-01-16T18:15:08.312657Z", - "shell.execute_reply": "2024-01-16T18:15:08.311928Z" + "iopub.execute_input": "2024-01-17T17:46:34.525855Z", + "iopub.status.busy": "2024-01-17T17:46:34.525336Z", + "iopub.status.idle": "2024-01-17T17:46:35.617356Z", + "shell.execute_reply": "2024-01-17T17:46:35.616742Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.315847Z", - "iopub.status.busy": "2024-01-16T18:15:08.315495Z", - "iopub.status.idle": "2024-01-16T18:15:08.318960Z", - "shell.execute_reply": "2024-01-16T18:15:08.318462Z" + "iopub.execute_input": "2024-01-17T17:46:35.620353Z", + "iopub.status.busy": "2024-01-17T17:46:35.619825Z", + "iopub.status.idle": "2024-01-17T17:46:35.623151Z", + "shell.execute_reply": "2024-01-17T17:46:35.622546Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.321605Z", - "iopub.status.busy": "2024-01-16T18:15:08.321119Z", - "iopub.status.idle": "2024-01-16T18:15:08.331196Z", - "shell.execute_reply": "2024-01-16T18:15:08.330560Z" + "iopub.execute_input": "2024-01-17T17:46:35.625802Z", + "iopub.status.busy": "2024-01-17T17:46:35.625434Z", + "iopub.status.idle": "2024-01-17T17:46:35.635399Z", + "shell.execute_reply": "2024-01-17T17:46:35.634762Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.333762Z", - "iopub.status.busy": "2024-01-16T18:15:08.333317Z", - "iopub.status.idle": "2024-01-16T18:15:08.338624Z", - "shell.execute_reply": "2024-01-16T18:15:08.337963Z" + "iopub.execute_input": "2024-01-17T17:46:35.637968Z", + "iopub.status.busy": "2024-01-17T17:46:35.637596Z", + "iopub.status.idle": "2024-01-17T17:46:35.642465Z", + "shell.execute_reply": "2024-01-17T17:46:35.641950Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.341624Z", - "iopub.status.busy": "2024-01-16T18:15:08.341208Z", - "iopub.status.idle": "2024-01-16T18:15:08.639093Z", - "shell.execute_reply": "2024-01-16T18:15:08.638383Z" + "iopub.execute_input": "2024-01-17T17:46:35.645130Z", + "iopub.status.busy": "2024-01-17T17:46:35.644729Z", + "iopub.status.idle": "2024-01-17T17:46:35.924836Z", + "shell.execute_reply": "2024-01-17T17:46:35.924191Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:08.642044Z", - "iopub.status.busy": "2024-01-16T18:15:08.641758Z", - "iopub.status.idle": "2024-01-16T18:15:09.023593Z", - "shell.execute_reply": "2024-01-16T18:15:09.022895Z" + "iopub.execute_input": "2024-01-17T17:46:35.927831Z", + "iopub.status.busy": "2024-01-17T17:46:35.927397Z", + "iopub.status.idle": "2024-01-17T17:46:36.244227Z", + "shell.execute_reply": "2024-01-17T17:46:36.243561Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.026598Z", - "iopub.status.busy": "2024-01-16T18:15:09.026161Z", - "iopub.status.idle": "2024-01-16T18:15:09.029337Z", - "shell.execute_reply": "2024-01-16T18:15:09.028707Z" + "iopub.execute_input": "2024-01-17T17:46:36.246804Z", + "iopub.status.busy": "2024-01-17T17:46:36.246417Z", + "iopub.status.idle": "2024-01-17T17:46:36.249331Z", + "shell.execute_reply": "2024-01-17T17:46:36.248750Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.032072Z", - "iopub.status.busy": "2024-01-16T18:15:09.031662Z", - "iopub.status.idle": "2024-01-16T18:15:09.072300Z", - "shell.execute_reply": "2024-01-16T18:15:09.071614Z" + "iopub.execute_input": "2024-01-17T17:46:36.251689Z", + "iopub.status.busy": "2024-01-17T17:46:36.251324Z", + "iopub.status.idle": "2024-01-17T17:46:36.289123Z", + "shell.execute_reply": "2024-01-17T17:46:36.288433Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:09.075422Z", - "iopub.status.busy": "2024-01-16T18:15:09.074821Z", - "iopub.status.idle": "2024-01-16T18:15:10.501305Z", - "shell.execute_reply": "2024-01-16T18:15:10.500596Z" + "iopub.execute_input": "2024-01-17T17:46:36.291653Z", + "iopub.status.busy": "2024-01-17T17:46:36.291300Z", + "iopub.status.idle": "2024-01-17T17:46:37.573984Z", + "shell.execute_reply": "2024-01-17T17:46:37.573345Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.504212Z", - "iopub.status.busy": "2024-01-16T18:15:10.503754Z", - "iopub.status.idle": "2024-01-16T18:15:10.530872Z", - "shell.execute_reply": "2024-01-16T18:15:10.530203Z" + "iopub.execute_input": "2024-01-17T17:46:37.576872Z", + "iopub.status.busy": "2024-01-17T17:46:37.576317Z", + "iopub.status.idle": "2024-01-17T17:46:37.600908Z", + "shell.execute_reply": "2024-01-17T17:46:37.600367Z" } }, "outputs": [ @@ -752,15 +752,15 @@ " \n", "\n", "Number of examples with this issue: 6\n", - "Overall dataset quality in terms of this issue: 0.5221\n", + "Overall dataset quality in terms of this issue: 0.3558\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.046465\n", - "130 True 0.068695\n", - "129 True 0.068695\n", - "127 True 0.076251\n", - "128 True 0.083941\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.533720Z", - "iopub.status.busy": "2024-01-16T18:15:10.533266Z", - "iopub.status.idle": "2024-01-16T18:15:10.540884Z", - "shell.execute_reply": "2024-01-16T18:15:10.540304Z" + "iopub.execute_input": "2024-01-17T17:46:37.603377Z", + "iopub.status.busy": "2024-01-17T17:46:37.602935Z", + "iopub.status.idle": "2024-01-17T17:46:37.609874Z", + "shell.execute_reply": "2024-01-17T17:46:37.609246Z" } }, "outputs": [ @@ -927,7 +927,7 @@ " \n", " 2\n", " outlier\n", - " 0.522080\n", + " 0.355772\n", " 6\n", " \n", " \n", @@ -956,7 +956,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.856061 17\n", - "2 outlier 0.522080 6\n", + "2 outlier 0.355772 6\n", "3 near_duplicate 0.616034 4\n", "4 non_iid 0.821750 0\n", "5 class_imbalance 0.022727 3" @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.543588Z", - "iopub.status.busy": "2024-01-16T18:15:10.543240Z", - "iopub.status.idle": "2024-01-16T18:15:10.551015Z", - "shell.execute_reply": "2024-01-16T18:15:10.550348Z" + "iopub.execute_input": "2024-01-17T17:46:37.612210Z", + "iopub.status.busy": "2024-01-17T17:46:37.611774Z", + "iopub.status.idle": "2024-01-17T17:46:37.617979Z", + "shell.execute_reply": "2024-01-17T17:46:37.617429Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.553779Z", - "iopub.status.busy": "2024-01-16T18:15:10.553337Z", - "iopub.status.idle": "2024-01-16T18:15:10.565073Z", - "shell.execute_reply": "2024-01-16T18:15:10.564364Z" + "iopub.execute_input": "2024-01-17T17:46:37.620289Z", + "iopub.status.busy": "2024-01-17T17:46:37.619926Z", + "iopub.status.idle": "2024-01-17T17:46:37.630411Z", + "shell.execute_reply": "2024-01-17T17:46:37.629882Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ " False\n", " 0.859109\n", " False\n", - " 0.586131\n", + " 0.417707\n", " False\n", " 0.664083\n", " False\n", @@ -1120,7 +1120,7 @@ " False\n", " 0.816965\n", " False\n", - " 0.548979\n", + " 0.375317\n", " False\n", " 0.641516\n", " False\n", @@ -1135,7 +1135,7 @@ " False\n", " 0.530924\n", " False\n", - " 0.622256\n", + " 0.460593\n", " False\n", " 0.601188\n", " False\n", @@ -1150,7 +1150,7 @@ " False\n", " 0.752776\n", " False\n", - " 0.499498\n", + " 0.321635\n", " False\n", " 0.562539\n", " False\n", @@ -1165,7 +1165,7 @@ " True\n", " 0.090224\n", " False\n", - " 0.632385\n", + " 0.472909\n", " False\n", " 0.746763\n", " False\n", @@ -1186,11 +1186,11 @@ "4 False 1.0 True 0.090224 False \n", "\n", " outlier_score is_near_duplicate_issue near_duplicate_score \\\n", - "0 0.586131 False 0.664083 \n", - "1 0.548979 False 0.641516 \n", - "2 0.622256 False 0.601188 \n", - "3 0.499498 False 0.562539 \n", - "4 0.632385 False 0.746763 \n", + "0 0.417707 False 0.664083 \n", + "1 0.375317 False 0.641516 \n", + "2 0.460593 False 0.601188 \n", + "3 0.321635 False 0.562539 \n", + "4 0.472909 False 0.746763 \n", "\n", " is_non_iid_issue non_iid_score is_class_imbalance_issue \\\n", "0 False 0.970324 False \n", @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.567794Z", - "iopub.status.busy": "2024-01-16T18:15:10.567561Z", - "iopub.status.idle": "2024-01-16T18:15:10.578738Z", - "shell.execute_reply": "2024-01-16T18:15:10.578074Z" + "iopub.execute_input": "2024-01-17T17:46:37.632763Z", + "iopub.status.busy": "2024-01-17T17:46:37.632381Z", + "iopub.status.idle": "2024-01-17T17:46:37.641479Z", + "shell.execute_reply": "2024-01-17T17:46:37.640909Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.581561Z", - "iopub.status.busy": "2024-01-16T18:15:10.581093Z", - "iopub.status.idle": "2024-01-16T18:15:10.589204Z", - "shell.execute_reply": "2024-01-16T18:15:10.588527Z" + "iopub.execute_input": "2024-01-17T17:46:37.643878Z", + "iopub.status.busy": "2024-01-17T17:46:37.643444Z", + "iopub.status.idle": "2024-01-17T17:46:37.650979Z", + "shell.execute_reply": "2024-01-17T17:46:37.650343Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.591582Z", - "iopub.status.busy": "2024-01-16T18:15:10.591242Z", - "iopub.status.idle": "2024-01-16T18:15:10.602108Z", - "shell.execute_reply": "2024-01-16T18:15:10.601446Z" + "iopub.execute_input": "2024-01-17T17:46:37.653232Z", + "iopub.status.busy": "2024-01-17T17:46:37.653033Z", + "iopub.status.idle": "2024-01-17T17:46:37.664158Z", + "shell.execute_reply": "2024-01-17T17:46:37.663528Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 1179874d8..eba843e6b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:15.261050Z", - "iopub.status.busy": "2024-01-16T18:15:15.260847Z", - "iopub.status.idle": "2024-01-16T18:15:16.361343Z", - "shell.execute_reply": "2024-01-16T18:15:16.360750Z" + "iopub.execute_input": "2024-01-17T17:46:42.709645Z", + "iopub.status.busy": "2024-01-17T17:46:42.709096Z", + "iopub.status.idle": "2024-01-17T17:46:43.749274Z", + "shell.execute_reply": "2024-01-17T17:46:43.748565Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.364483Z", - "iopub.status.busy": "2024-01-16T18:15:16.364027Z", - "iopub.status.idle": "2024-01-16T18:15:16.381847Z", - "shell.execute_reply": "2024-01-16T18:15:16.381264Z" + "iopub.execute_input": "2024-01-17T17:46:43.752079Z", + "iopub.status.busy": "2024-01-17T17:46:43.751759Z", + "iopub.status.idle": "2024-01-17T17:46:43.768756Z", + "shell.execute_reply": "2024-01-17T17:46:43.768208Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.385043Z", - "iopub.status.busy": "2024-01-16T18:15:16.384660Z", - "iopub.status.idle": "2024-01-16T18:15:16.528500Z", - "shell.execute_reply": "2024-01-16T18:15:16.527770Z" + "iopub.execute_input": "2024-01-17T17:46:43.771374Z", + "iopub.status.busy": "2024-01-17T17:46:43.770963Z", + "iopub.status.idle": "2024-01-17T17:46:44.131078Z", + "shell.execute_reply": "2024-01-17T17:46:44.130428Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.531279Z", - "iopub.status.busy": "2024-01-16T18:15:16.530787Z", - "iopub.status.idle": "2024-01-16T18:15:16.534995Z", - "shell.execute_reply": "2024-01-16T18:15:16.534371Z" + "iopub.execute_input": "2024-01-17T17:46:44.133659Z", + "iopub.status.busy": "2024-01-17T17:46:44.133255Z", + "iopub.status.idle": "2024-01-17T17:46:44.137054Z", + "shell.execute_reply": "2024-01-17T17:46:44.136460Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.537545Z", - "iopub.status.busy": "2024-01-16T18:15:16.537095Z", - "iopub.status.idle": "2024-01-16T18:15:16.545713Z", - "shell.execute_reply": "2024-01-16T18:15:16.545037Z" + "iopub.execute_input": "2024-01-17T17:46:44.139530Z", + "iopub.status.busy": "2024-01-17T17:46:44.139099Z", + "iopub.status.idle": "2024-01-17T17:46:44.146866Z", + "shell.execute_reply": "2024-01-17T17:46:44.146377Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.548482Z", - "iopub.status.busy": "2024-01-16T18:15:16.548262Z", - "iopub.status.idle": "2024-01-16T18:15:16.551168Z", - "shell.execute_reply": "2024-01-16T18:15:16.550604Z" + "iopub.execute_input": "2024-01-17T17:46:44.149340Z", + "iopub.status.busy": "2024-01-17T17:46:44.148901Z", + "iopub.status.idle": "2024-01-17T17:46:44.151760Z", + "shell.execute_reply": "2024-01-17T17:46:44.151144Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:16.553679Z", - "iopub.status.busy": "2024-01-16T18:15:16.553468Z", - "iopub.status.idle": "2024-01-16T18:15:20.205051Z", - "shell.execute_reply": "2024-01-16T18:15:20.204321Z" + "iopub.execute_input": "2024-01-17T17:46:44.154094Z", + "iopub.status.busy": "2024-01-17T17:46:44.153662Z", + "iopub.status.idle": "2024-01-17T17:46:47.813357Z", + "shell.execute_reply": "2024-01-17T17:46:47.812651Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:20.208236Z", - "iopub.status.busy": "2024-01-16T18:15:20.208016Z", - "iopub.status.idle": "2024-01-16T18:15:20.217533Z", - "shell.execute_reply": "2024-01-16T18:15:20.216912Z" + "iopub.execute_input": "2024-01-17T17:46:47.816357Z", + "iopub.status.busy": "2024-01-17T17:46:47.816154Z", + "iopub.status.idle": "2024-01-17T17:46:47.826058Z", + "shell.execute_reply": "2024-01-17T17:46:47.825575Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:20.220342Z", - "iopub.status.busy": "2024-01-16T18:15:20.219984Z", - "iopub.status.idle": "2024-01-16T18:15:21.605159Z", - "shell.execute_reply": "2024-01-16T18:15:21.604419Z" + "iopub.execute_input": "2024-01-17T17:46:47.828430Z", + "iopub.status.busy": "2024-01-17T17:46:47.828229Z", + "iopub.status.idle": "2024-01-17T17:46:49.163223Z", + "shell.execute_reply": "2024-01-17T17:46:49.162487Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.609747Z", - "iopub.status.busy": "2024-01-16T18:15:21.608356Z", - "iopub.status.idle": "2024-01-16T18:15:21.636431Z", - "shell.execute_reply": "2024-01-16T18:15:21.635827Z" + "iopub.execute_input": "2024-01-17T17:46:49.167790Z", + "iopub.status.busy": "2024-01-17T17:46:49.166412Z", + "iopub.status.idle": "2024-01-17T17:46:49.194682Z", + "shell.execute_reply": "2024-01-17T17:46:49.194077Z" }, "scrolled": true }, @@ -526,15 +526,15 @@ " \n", "\n", "Number of examples with this issue: 46\n", - "Overall dataset quality in terms of this issue: 0.7154\n", + "Overall dataset quality in terms of this issue: 0.3590\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "3 True 0.012085\n", - "7 True 0.061510\n", - "0 True 0.115512\n", - "4 True 0.124391\n", - "8 True 0.214163\n", + "3 True 3.051882e-07\n", + "7 True 7.683133e-05\n", + "0 True 6.536582e-04\n", + "4 True 8.406589e-04\n", + "8 True 5.324246e-03\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.640885Z", - "iopub.status.busy": "2024-01-16T18:15:21.639735Z", - "iopub.status.idle": "2024-01-16T18:15:21.652684Z", - "shell.execute_reply": "2024-01-16T18:15:21.652080Z" + "iopub.execute_input": "2024-01-17T17:46:49.198991Z", + "iopub.status.busy": "2024-01-17T17:46:49.197855Z", + "iopub.status.idle": "2024-01-17T17:46:49.210521Z", + "shell.execute_reply": "2024-01-17T17:46:49.209924Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.657261Z", - "iopub.status.busy": "2024-01-16T18:15:21.656072Z", - "iopub.status.idle": "2024-01-16T18:15:21.671093Z", - "shell.execute_reply": "2024-01-16T18:15:21.670472Z" + "iopub.execute_input": "2024-01-17T17:46:49.214792Z", + "iopub.status.busy": "2024-01-17T17:46:49.213647Z", + "iopub.status.idle": "2024-01-17T17:46:49.228232Z", + "shell.execute_reply": "2024-01-17T17:46:49.227628Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.675659Z", - "iopub.status.busy": "2024-01-16T18:15:21.674516Z", - "iopub.status.idle": "2024-01-16T18:15:21.688175Z", - "shell.execute_reply": "2024-01-16T18:15:21.687587Z" + "iopub.execute_input": "2024-01-17T17:46:49.232606Z", + "iopub.status.busy": "2024-01-17T17:46:49.231400Z", + "iopub.status.idle": "2024-01-17T17:46:49.244209Z", + "shell.execute_reply": "2024-01-17T17:46:49.243612Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.692614Z", - "iopub.status.busy": "2024-01-16T18:15:21.691497Z", - "iopub.status.idle": "2024-01-16T18:15:21.703844Z", - "shell.execute_reply": "2024-01-16T18:15:21.703372Z" + "iopub.execute_input": "2024-01-17T17:46:49.248517Z", + "iopub.status.busy": "2024-01-17T17:46:49.247377Z", + "iopub.status.idle": "2024-01-17T17:46:49.260725Z", + "shell.execute_reply": "2024-01-17T17:46:49.260149Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.706228Z", - "iopub.status.busy": "2024-01-16T18:15:21.705875Z", - "iopub.status.idle": "2024-01-16T18:15:21.713061Z", - "shell.execute_reply": "2024-01-16T18:15:21.712475Z" + "iopub.execute_input": "2024-01-17T17:46:49.263270Z", + "iopub.status.busy": "2024-01-17T17:46:49.263062Z", + "iopub.status.idle": "2024-01-17T17:46:49.270819Z", + "shell.execute_reply": "2024-01-17T17:46:49.270283Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.715416Z", - "iopub.status.busy": "2024-01-16T18:15:21.715229Z", - "iopub.status.idle": "2024-01-16T18:15:21.722237Z", - "shell.execute_reply": "2024-01-16T18:15:21.721648Z" + "iopub.execute_input": "2024-01-17T17:46:49.273210Z", + "iopub.status.busy": "2024-01-17T17:46:49.272840Z", + "iopub.status.idle": "2024-01-17T17:46:49.280151Z", + "shell.execute_reply": "2024-01-17T17:46:49.279607Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:21.724728Z", - "iopub.status.busy": "2024-01-16T18:15:21.724346Z", - "iopub.status.idle": "2024-01-16T18:15:21.731514Z", - "shell.execute_reply": "2024-01-16T18:15:21.730878Z" + "iopub.execute_input": "2024-01-17T17:46:49.282563Z", + "iopub.status.busy": "2024-01-17T17:46:49.282191Z", + "iopub.status.idle": "2024-01-17T17:46:49.289117Z", + "shell.execute_reply": "2024-01-17T17:46:49.288607Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 06b409dd3..d410d5bda 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:26.509613Z", - "iopub.status.busy": "2024-01-16T18:15:26.508992Z", - "iopub.status.idle": "2024-01-16T18:15:29.583094Z", - "shell.execute_reply": "2024-01-16T18:15:29.582453Z" + "iopub.execute_input": "2024-01-17T17:46:54.794639Z", + "iopub.status.busy": "2024-01-17T17:46:54.794127Z", + "iopub.status.idle": "2024-01-17T17:46:57.201149Z", + "shell.execute_reply": "2024-01-17T17:46:57.200448Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de260d01cdf74722b4e223abf02249b9", + "model_id": "4d6dd824714e47ea8e86861033721abe", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.586111Z", - "iopub.status.busy": "2024-01-16T18:15:29.585750Z", - "iopub.status.idle": "2024-01-16T18:15:29.589598Z", - "shell.execute_reply": "2024-01-16T18:15:29.589069Z" + "iopub.execute_input": "2024-01-17T17:46:57.203915Z", + "iopub.status.busy": "2024-01-17T17:46:57.203597Z", + "iopub.status.idle": "2024-01-17T17:46:57.207148Z", + "shell.execute_reply": "2024-01-17T17:46:57.206641Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.591927Z", - "iopub.status.busy": "2024-01-16T18:15:29.591714Z", - "iopub.status.idle": "2024-01-16T18:15:29.595249Z", - "shell.execute_reply": "2024-01-16T18:15:29.594697Z" + "iopub.execute_input": "2024-01-17T17:46:57.209506Z", + "iopub.status.busy": "2024-01-17T17:46:57.209143Z", + "iopub.status.idle": "2024-01-17T17:46:57.212305Z", + "shell.execute_reply": "2024-01-17T17:46:57.211735Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.597544Z", - "iopub.status.busy": "2024-01-16T18:15:29.597342Z", - "iopub.status.idle": "2024-01-16T18:15:29.651467Z", - "shell.execute_reply": "2024-01-16T18:15:29.650775Z" + "iopub.execute_input": "2024-01-17T17:46:57.214707Z", + "iopub.status.busy": "2024-01-17T17:46:57.214347Z", + "iopub.status.idle": "2024-01-17T17:46:57.395709Z", + "shell.execute_reply": "2024-01-17T17:46:57.395061Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.653996Z", - "iopub.status.busy": "2024-01-16T18:15:29.653769Z", - "iopub.status.idle": "2024-01-16T18:15:29.657897Z", - "shell.execute_reply": "2024-01-16T18:15:29.657229Z" + "iopub.execute_input": "2024-01-17T17:46:57.398252Z", + "iopub.status.busy": "2024-01-17T17:46:57.397904Z", + "iopub.status.idle": "2024-01-17T17:46:57.402203Z", + "shell.execute_reply": "2024-01-17T17:46:57.401577Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.660550Z", - "iopub.status.busy": "2024-01-16T18:15:29.660142Z", - "iopub.status.idle": "2024-01-16T18:15:29.663721Z", - "shell.execute_reply": "2024-01-16T18:15:29.663103Z" + "iopub.execute_input": "2024-01-17T17:46:57.404586Z", + "iopub.status.busy": "2024-01-17T17:46:57.404121Z", + "iopub.status.idle": "2024-01-17T17:46:57.407873Z", + "shell.execute_reply": "2024-01-17T17:46:57.407230Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.666330Z", - "iopub.status.busy": "2024-01-16T18:15:29.666118Z", - "iopub.status.idle": "2024-01-16T18:15:38.978494Z", - "shell.execute_reply": "2024-01-16T18:15:38.977700Z" + "iopub.execute_input": "2024-01-17T17:46:57.410288Z", + "iopub.status.busy": "2024-01-17T17:46:57.409861Z", + "iopub.status.idle": "2024-01-17T17:47:08.188805Z", + "shell.execute_reply": "2024-01-17T17:47:08.188077Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2d756e44dfbf485099a71c223ecdab7c", + "model_id": "a1ca6409d41942189022d65764a2e1d3", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c9a526e6c2b45fda4662662ff0171be", + "model_id": "f9ab6d66a2874b62b0add606d9b5faf0", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d052a42e758d4da29b6a2579a4ed6281", + "model_id": "e02d6b41b3174376a04e2e344f27c124", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24670ac584954e668f7500a5b300bfa9", + "model_id": "486cd83d8c4d41b2b5ed41c9e027bd17", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd2df2a857194f3c84ec7c439c06c633", + "model_id": "fddc599b9d9045e89eca6200bda0fb08", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6fd01a4acf2415a903c408b22c39a23", + "model_id": "923ac1abf41345f8b59ae734d2028678", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c62d0fb18a343ccb8752db0f8f5d7e7", + "model_id": "93cef699b3cb436aabe16091e28e15b2", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:38.982207Z", - "iopub.status.busy": "2024-01-16T18:15:38.981652Z", - "iopub.status.idle": "2024-01-16T18:15:40.151729Z", - "shell.execute_reply": "2024-01-16T18:15:40.151039Z" + "iopub.execute_input": "2024-01-17T17:47:08.191908Z", + "iopub.status.busy": "2024-01-17T17:47:08.191455Z", + "iopub.status.idle": "2024-01-17T17:47:09.358257Z", + "shell.execute_reply": "2024-01-17T17:47:09.357576Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:40.156580Z", - "iopub.status.busy": "2024-01-16T18:15:40.155214Z", - "iopub.status.idle": "2024-01-16T18:15:40.160059Z", - "shell.execute_reply": "2024-01-16T18:15:40.159490Z" + "iopub.execute_input": "2024-01-17T17:47:09.361562Z", + "iopub.status.busy": "2024-01-17T17:47:09.361157Z", + "iopub.status.idle": "2024-01-17T17:47:09.364367Z", + "shell.execute_reply": "2024-01-17T17:47:09.363807Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:40.164401Z", - "iopub.status.busy": "2024-01-16T18:15:40.163271Z", - "iopub.status.idle": "2024-01-16T18:15:41.545769Z", - "shell.execute_reply": "2024-01-16T18:15:41.544995Z" + "iopub.execute_input": "2024-01-17T17:47:09.367089Z", + "iopub.status.busy": "2024-01-17T17:47:09.366658Z", + "iopub.status.idle": "2024-01-17T17:47:10.684064Z", + "shell.execute_reply": "2024-01-17T17:47:10.683341Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.549323Z", - "iopub.status.busy": "2024-01-16T18:15:41.548635Z", - "iopub.status.idle": "2024-01-16T18:15:41.583393Z", - "shell.execute_reply": "2024-01-16T18:15:41.582767Z" + "iopub.execute_input": "2024-01-17T17:47:10.687570Z", + "iopub.status.busy": "2024-01-17T17:47:10.686928Z", + "iopub.status.idle": "2024-01-17T17:47:10.720892Z", + "shell.execute_reply": "2024-01-17T17:47:10.720268Z" }, "scrolled": true }, @@ -692,15 +692,15 @@ " \n", "\n", "Number of examples with this issue: 38\n", - "Overall dataset quality in terms of this issue: 0.9122\n", + "Overall dataset quality in terms of this issue: 0.3584\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "994 True 0.676322\n", - "999 True 0.693868\n", - "81 True 0.697240\n", - "433 True 0.700874\n", - "989 True 0.713590\n", + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.586714Z", - "iopub.status.busy": "2024-01-16T18:15:41.586322Z", - "iopub.status.idle": "2024-01-16T18:15:41.596933Z", - "shell.execute_reply": "2024-01-16T18:15:41.596308Z" + "iopub.execute_input": "2024-01-17T17:47:10.723864Z", + "iopub.status.busy": "2024-01-17T17:47:10.723437Z", + "iopub.status.idle": "2024-01-17T17:47:10.733843Z", + "shell.execute_reply": "2024-01-17T17:47:10.733248Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.600215Z", - "iopub.status.busy": "2024-01-16T18:15:41.599840Z", - "iopub.status.idle": "2024-01-16T18:15:41.604692Z", - "shell.execute_reply": "2024-01-16T18:15:41.604235Z" + "iopub.execute_input": "2024-01-17T17:47:10.736785Z", + "iopub.status.busy": "2024-01-17T17:47:10.736347Z", + "iopub.status.idle": "2024-01-17T17:47:10.741503Z", + "shell.execute_reply": "2024-01-17T17:47:10.740915Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.607014Z", - "iopub.status.busy": "2024-01-16T18:15:41.606716Z", - "iopub.status.idle": "2024-01-16T18:15:41.613217Z", - "shell.execute_reply": "2024-01-16T18:15:41.612550Z" + "iopub.execute_input": "2024-01-17T17:47:10.743853Z", + "iopub.status.busy": "2024-01-17T17:47:10.743531Z", + "iopub.status.idle": "2024-01-17T17:47:10.750194Z", + "shell.execute_reply": "2024-01-17T17:47:10.749572Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.615380Z", - "iopub.status.busy": "2024-01-16T18:15:41.615184Z", - "iopub.status.idle": "2024-01-16T18:15:41.622167Z", - "shell.execute_reply": "2024-01-16T18:15:41.621648Z" + "iopub.execute_input": "2024-01-17T17:47:10.752450Z", + "iopub.status.busy": "2024-01-17T17:47:10.752254Z", + "iopub.status.idle": "2024-01-17T17:47:10.759014Z", + "shell.execute_reply": "2024-01-17T17:47:10.758395Z" } }, "outputs": [ @@ -1118,27 +1118,27 @@ " \n", " 994\n", " True\n", - " 0.676322\n", + " 0.009642\n", " \n", " \n", " 999\n", " True\n", - " 0.693868\n", + " 0.013067\n", " \n", " \n", " 81\n", " True\n", - " 0.697240\n", + " 0.013841\n", " \n", " \n", " 433\n", " True\n", - " 0.700874\n", + " 0.014722\n", " \n", " \n", " 989\n", " True\n", - " 0.713590\n", + " 0.018224\n", " \n", " \n", "\n", @@ -1146,11 +1146,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "994 True 0.676322\n", - "999 True 0.693868\n", - "81 True 0.697240\n", - "433 True 0.700874\n", - "989 True 0.713590" + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224" ] }, "execution_count": 15, @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.624305Z", - "iopub.status.busy": "2024-01-16T18:15:41.624107Z", - "iopub.status.idle": "2024-01-16T18:15:41.630553Z", - "shell.execute_reply": "2024-01-16T18:15:41.630039Z" + "iopub.execute_input": "2024-01-17T17:47:10.761412Z", + "iopub.status.busy": "2024-01-17T17:47:10.760942Z", + "iopub.status.idle": "2024-01-17T17:47:10.767290Z", + "shell.execute_reply": "2024-01-17T17:47:10.766679Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.633149Z", - "iopub.status.busy": "2024-01-16T18:15:41.632699Z", - "iopub.status.idle": "2024-01-16T18:15:41.642212Z", - "shell.execute_reply": "2024-01-16T18:15:41.641706Z" + "iopub.execute_input": "2024-01-17T17:47:10.769715Z", + "iopub.status.busy": "2024-01-17T17:47:10.769271Z", + "iopub.status.idle": "2024-01-17T17:47:10.778482Z", + "shell.execute_reply": "2024-01-17T17:47:10.777865Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.644490Z", - "iopub.status.busy": "2024-01-16T18:15:41.644124Z", - "iopub.status.idle": "2024-01-16T18:15:41.649988Z", - "shell.execute_reply": "2024-01-16T18:15:41.649357Z" + "iopub.execute_input": "2024-01-17T17:47:10.780879Z", + "iopub.status.busy": "2024-01-17T17:47:10.780485Z", + "iopub.status.idle": "2024-01-17T17:47:10.786496Z", + "shell.execute_reply": "2024-01-17T17:47:10.785953Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.652099Z", - "iopub.status.busy": "2024-01-16T18:15:41.651906Z", - "iopub.status.idle": "2024-01-16T18:15:41.849399Z", - "shell.execute_reply": "2024-01-16T18:15:41.848691Z" + "iopub.execute_input": "2024-01-17T17:47:10.788874Z", + "iopub.status.busy": "2024-01-17T17:47:10.788487Z", + "iopub.status.idle": "2024-01-17T17:47:10.964483Z", + "shell.execute_reply": "2024-01-17T17:47:10.963721Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.851970Z", - "iopub.status.busy": "2024-01-16T18:15:41.851583Z", - "iopub.status.idle": "2024-01-16T18:15:41.855616Z", - "shell.execute_reply": "2024-01-16T18:15:41.855099Z" + "iopub.execute_input": "2024-01-17T17:47:10.967554Z", + "iopub.status.busy": "2024-01-17T17:47:10.967080Z", + "iopub.status.idle": "2024-01-17T17:47:10.971956Z", + "shell.execute_reply": "2024-01-17T17:47:10.971261Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.857981Z", - "iopub.status.busy": "2024-01-16T18:15:41.857779Z", - "iopub.status.idle": "2024-01-16T18:15:41.863584Z", - "shell.execute_reply": "2024-01-16T18:15:41.863084Z" + "iopub.execute_input": "2024-01-17T17:47:10.974823Z", + "iopub.status.busy": "2024-01-17T17:47:10.974370Z", + "iopub.status.idle": "2024-01-17T17:47:10.981476Z", + "shell.execute_reply": "2024-01-17T17:47:10.980915Z" }, "nbsphinx": "hidden" }, @@ -1650,7 +1650,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0759285a3305483ea269c5bf9e1cbe2e": { + "0067bb0fb19d4d0db5c07f22950a8060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "02a5a9625e224314839f73f9c9a63690": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1702,69 +1718,28 @@ "width": null } }, - "0c62d0fb18a343ccb8752db0f8f5d7e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54895c993f4c4f7f8cf209fafd741e8a", - "IPY_MODEL_bcbd3e96badf4a949942f2923a88ad19", - "IPY_MODEL_27ed2b3393a947f7843f72bd5f321ea7" - ], - "layout": "IPY_MODEL_de4dccc6dcf94826817b4bc10f412c0c" - } - }, - "11fd84d755ed451282932c3b1faddcad": { + "0338da529934419eb729317fb2b1c4cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63942c701b8e416e84b688d94be3db4d", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb0b3002d60a487091cfa4757167b277", - "value": 0.0 - } - }, - "12a066c9f8cd49c9a9581687783f20b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_b09047dce1f3479bab3ec10871168a97", + "placeholder": "​", + "style": "IPY_MODEL_8c475ed55973414aa5bfdb6fcf8a3d25", + "value": "tokenizer_config.json: 100%" } }, - "18edfd08b69444c8aa9231fba2faedfe": { + "03adea5765d145cca17349693a9cae9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1816,7 +1791,7 @@ "width": null } }, - "1cf20ff1f5984802a5cd16b1eaec1394": { + "054c50637ad44fa2be3b1ba75cd08e81": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1868,7 +1843,28 @@ "width": null } }, - "1dca7bf2b7c04ee09624ffbb8f1f627c": { + "0c73f115c24a42258d945adc1b4d6077": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69910eb05079410b81c419e4990a0c88", + "placeholder": "​", + "style": "IPY_MODEL_291a447579914c2cac84a578abe1d905", + "value": " 29.0/29.0 [00:00<00:00, 4.00kB/s]" + } + }, + "0f3fc51a7f7c429e88b4fe08e68d485c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1883,7 +1879,7 @@ "description_width": "" } }, - "2311ec33df4844579fa2e16ac4eabc86": { + "11385ec891b941f7ab74b6309be38545": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1935,29 +1931,7 @@ "width": null } }, - "24670ac584954e668f7500a5b300bfa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6fb829d1c5a4579bc2eb2aa68e79c11", - "IPY_MODEL_e49beb65e9f44f59a51c7b4cf2e5f4a2", - "IPY_MODEL_94910b9574b349018834a2b17db718db" - ], - "layout": "IPY_MODEL_826a7a8da0bc43f1ad485aad4195b624" - } - }, - "24e32a04a58f4a75b4932d1d0459729b": { + "13a65b4496184513bd6e5203847379c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2009,49 +1983,7 @@ "width": null } }, - "25a969a86e874ee0a0e989f4ebafa629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_18edfd08b69444c8aa9231fba2faedfe", - "placeholder": "​", - "style": "IPY_MODEL_477b5465c7a048508133c29a2ed560a5", - "value": "tokenizer.json: 100%" - } - }, - "27ed2b3393a947f7843f72bd5f321ea7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2311ec33df4844579fa2e16ac4eabc86", - "placeholder": "​", - "style": "IPY_MODEL_ff97dd840c5f447cb8e605fc19d99093", - "value": " 232k/232k [00:00<00:00, 24.7MB/s]" - } - }, - "2cab135dfb3a4627bb402b10d13604c1": { + "1669234d9fdd4410b6e7d5b68b80c4c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2103,29 +2035,7 @@ "width": null } }, - "2d756e44dfbf485099a71c223ecdab7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b7450c692704d618cb02b7edd69b688", - "IPY_MODEL_f2a08afd6b304032ab5a15ce051ad717", - "IPY_MODEL_a20cac4c96204c5aa6d6eb86c061fef8" - ], - "layout": "IPY_MODEL_bce94b677d8f4fb58039ba3377b9734b" - } - }, - "387cbf589c65434699135302c7c597ea": { + "1aa8f4785bf44ef6ba2f2e0b4a5fe9ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2177,28 +2087,7 @@ "width": null } }, - "3b7450c692704d618cb02b7edd69b688": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d3ecb04608c24054b87f2788b0567e59", - "placeholder": "​", - "style": "IPY_MODEL_b46f39a54b4b43ea8a50eda0bd5fd5a4", - "value": ".gitattributes: 100%" - } - }, - "43ecd77a189649a4bece7f7c497a9791": { + "1e95192ae214498f927e6d1d937f9fce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2250,7 +2139,22 @@ "width": null } }, - "477b5465c7a048508133c29a2ed560a5": { + "249d35c098cf41e3874398d7055faefe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "291a447579914c2cac84a578abe1d905": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2265,7 +2169,7 @@ "description_width": "" } }, - "4a064b70d21649b0832c8e78d8ac719a": { + "294be2883cc14148b7e17de02ff8a2ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2317,38 +2221,62 @@ "width": null } }, - "4fc2aff13970436ab2e22b04b1a81610": { + "2a62b2b9eaa046e78f94b1a29015b277": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "52ab5d5dc2354538bf67a45e8b4c8742": { + "2f8c5f8e509f4ba9bc1e9b7a4dabd7e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_64d266dbbf55458f84f8dfcd4b67ebde", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4f7935eee354f0fa142256b49628634", + "value": 0.0 + } + }, + "30c5df65eb524dd8bd7000f315f08ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "54895c993f4c4f7f8cf209fafd741e8a": { + "3209ed10a1e6424dabb46fd6cd0cd3ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2363,50 +2291,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d2a980b8c84d43479fb5662acd529811", + "layout": "IPY_MODEL_73db8f138cdf44c6bf433f5081af18de", "placeholder": "​", - "style": "IPY_MODEL_7ae9173345b446c897e5ed59b464467f", - "value": "vocab.txt: 100%" + "style": "IPY_MODEL_46947765e2b74ba881f97c32ed0bb8ae", + "value": " 665/665 [00:00<00:00, 85.9kB/s]" } }, - "5776482a74ef4b36b277198485d620f5": { + "3a746b2db1cc41368c93dbf4b73ea5e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_647e245b69a94a95862fd1d8a0aa45de", - "placeholder": "​", - "style": "IPY_MODEL_c0186adb5d2940f190ce7f6e1631fcd2", - "value": "" - } - }, - "59e23ba3bc354ef78d44e97773ebd565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_1aa8f4785bf44ef6ba2f2e0b4a5fe9ca", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c335c98cd337466f9e2f612ffc667c3f", + "value": 29.0 } }, - "5bdda1425a294a3687d354f498b8165f": { + "423f214830734939866c81dcb7004f51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2421,102 +2336,119 @@ "description_width": "" } }, - "5c9a526e6c2b45fda4662662ff0171be": { + "429b1c5f5d6f4c89a8836b0ffac6a522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd4ee0e835504f9d906840c87f3af567", - "IPY_MODEL_ed55ce8671e74ae4933b1e8be1ea80fb", - "IPY_MODEL_9b9f7191a50d4ac1968b4b10557648f2" - ], - "layout": "IPY_MODEL_1cf20ff1f5984802a5cd16b1eaec1394" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e95192ae214498f927e6d1d937f9fce", + "placeholder": "​", + "style": "IPY_MODEL_ec422dd4d7cf40e09e692f5cbc381d5c", + "value": " 54.2M/54.2M [00:00<00:00, 76.5MB/s]" } }, - "5d1319569c2c4b3ba8bd8bef6523e4d2": { + "42f1360c968340d69af166afc43a23a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6fa295ea87e4e96bd907e949586cbb8", - "placeholder": "​", - "style": "IPY_MODEL_f91fe6d6fa7641f7ab0fe94cadc9c088", - "value": "config.json: 100%" + "layout": "IPY_MODEL_294be2883cc14148b7e17de02ff8a2ec", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bbcc5aadcba475581ea7963c33ce08b", + "value": 54245363.0 } }, - "63942c701b8e416e84b688d94be3db4d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "468f7d902d62428b932de8243be2cb54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "description_width": "" + } + }, + "46947765e2b74ba881f97c32ed0bb8ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "483b23ab5e5247aba7fc443cb9f62133": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "647e245b69a94a95862fd1d8a0aa45de": { + "486cd83d8c4d41b2b5ed41c9e027bd17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9a1b92d91d3946ee8c9ec73472837040", + "IPY_MODEL_42f1360c968340d69af166afc43a23a7", + "IPY_MODEL_429b1c5f5d6f4c89a8836b0ffac6a522" + ], + "layout": "IPY_MODEL_710b2f9bfe0f46da843033c3563968b6" + } + }, + "48d6311d566148349ecbd5b73cca9584": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2568,7 +2500,7 @@ "width": null } }, - "65253723f099411fb25f091ca732f04a": { + "48dff4f1e99643c283ddf4c4d590112d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2620,7 +2552,7 @@ "width": null } }, - "6a66f605c8a547ad9f9b932645d16171": { + "4ce415f4cce24a47b14587233966d96a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2672,73 +2604,50 @@ "width": null } }, - "6b3a869420cf4e399a40a5edd99f61e1": { + "4d6dd824714e47ea8e86861033721abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eabdcefb16c0418a837d5b1c7a9a2e84", - "placeholder": "​", - "style": "IPY_MODEL_4fc2aff13970436ab2e22b04b1a81610", - "value": " 466k/466k [00:00<00:00, 10.1MB/s]" - } - }, - "6d408f76954c4a7488399a15c8757daf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "786c830378aa4260831d7b81ed545420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9f5f644405fc4eb18efeeb0e13c92b6c", + "IPY_MODEL_2f8c5f8e509f4ba9bc1e9b7a4dabd7e1", + "IPY_MODEL_9412e50af8bd44279b016cc9e65ec9aa" + ], + "layout": "IPY_MODEL_7ca7bff39f7646ff80b0050a21dc2c9a" } }, - "7ae9173345b446c897e5ed59b464467f": { + "55b7e2b7864446078a13d21540ea77c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_787bd39d5efa47fba7695728d2fb5211", + "placeholder": "​", + "style": "IPY_MODEL_468f7d902d62428b932de8243be2cb54", + "value": ".gitattributes: 100%" } }, - "7ea85a51f5a749d585089639d8e15c8a": { + "5983ffde83ad40d4ac9c66ac6c11e258": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2754,7 +2663,7 @@ "description_width": "" } }, - "826a7a8da0bc43f1ad485aad4195b624": { + "5c614e105e6c408fbccea6644029883b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2806,38 +2715,31 @@ "width": null } }, - "88e85f5ae8f3426383890b02660b14af": { + "5ebe7e2ced2648baa64fc110ca56d5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8e6a4060f72c4cdbb1c101ebbea804bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c614e105e6c408fbccea6644029883b", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db51c4f27ffe4d5aac5189f38eb8ee23", + "value": 665.0 } }, - "91536bbb047647948c01ff8c70fc1292": { + "606d2cf7f7344cabb17bec474e84972b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2889,28 +2791,7 @@ "width": null } }, - "94910b9574b349018834a2b17db718db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dee4ca8ffc86463a9496610806db5123", - "placeholder": "​", - "style": "IPY_MODEL_c1bdd22ec39244fc803edc22f327714a", - "value": " 54.2M/54.2M [00:00<00:00, 262MB/s]" - } - }, - "981d4672c7964429b79724616f686f79": { + "64d266dbbf55458f84f8dfcd4b67ebde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2959,211 +2840,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "9b9f7191a50d4ac1968b4b10557648f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d228257b1fb844559daa0c990cecf863", - "placeholder": "​", - "style": "IPY_MODEL_5bdda1425a294a3687d354f498b8165f", - "value": " 2.21k/2.21k [00:00<00:00, 270kB/s]" - } - }, - "a06939c59aea4e8e84fb8d8f8c3c21dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7a76476648546ed8dfd09ac41efb2a6", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b14ce78e8fe54c19bc28269231c849b5", - "value": 466062.0 - } - }, - "a20cac4c96204c5aa6d6eb86c061fef8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa42cfff79a04e139a608e50e722509b", - "placeholder": "​", - "style": "IPY_MODEL_8e6a4060f72c4cdbb1c101ebbea804bd", - "value": " 391/391 [00:00<00:00, 46.4kB/s]" - } - }, - "a6fb829d1c5a4579bc2eb2aa68e79c11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_91536bbb047647948c01ff8c70fc1292", - "placeholder": "​", - "style": "IPY_MODEL_6d408f76954c4a7488399a15c8757daf", - "value": "pytorch_model.bin: 100%" - } - }, - "a8cd347dfd22417eb1f6ecd29a8cd6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0759285a3305483ea269c5bf9e1cbe2e", - "placeholder": "​", - "style": "IPY_MODEL_786c830378aa4260831d7b81ed545420", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "b14ce78e8fe54c19bc28269231c849b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b46f39a54b4b43ea8a50eda0bd5fd5a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b6fd01a4acf2415a903c408b22c39a23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d711812544a646f09ee951e96c4f18c2", - "IPY_MODEL_d32a1e72d6c54c6cb9dd30ed3925efb4", - "IPY_MODEL_d2f3e01c676c4dd19c48b467a7c4ade5" - ], - "layout": "IPY_MODEL_2cab135dfb3a4627bb402b10d13604c1" - } - }, - "bb0b3002d60a487091cfa4757167b277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bcbd3e96badf4a949942f2923a88ad19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6a66f605c8a547ad9f9b932645d16171", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_52ab5d5dc2354538bf67a45e8b4c8742", - "value": 231508.0 + "width": "20px" } }, - "bce94b677d8f4fb58039ba3377b9734b": { + "69910eb05079410b81c419e4990a0c88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3215,61 +2895,44 @@ "width": null } }, - "c0186adb5d2940f190ce7f6e1631fcd2": { + "6bbcc5aadcba475581ea7963c33ce08b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c1bdd22ec39244fc803edc22f327714a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "c2a05ee035844ad78a62df83fb1d8845": { + "70609e92fedd40868d71ad86e80e8604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a064b70d21649b0832c8e78d8ac719a", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_59e23ba3bc354ef78d44e97773ebd565", - "value": 665.0 + "layout": "IPY_MODEL_d493f1c28852403ba4c72f6e081c1c4e", + "placeholder": "​", + "style": "IPY_MODEL_0f3fc51a7f7c429e88b4fe08e68d485c", + "value": "README.md: 100%" } }, - "c5e1115d835d4fffa9f47c8247010624": { + "710b2f9bfe0f46da843033c3563968b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3321,7 +2984,28 @@ "width": null } }, - "c6fa295ea87e4e96bd907e949586cbb8": { + "72cbeb249fe5498388bf07fc7348ebd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_783a531b94474919b90dcaa1fa105fab", + "placeholder": "​", + "style": "IPY_MODEL_c3a2397e9e404f0f817d70cb720a9030", + "value": " 391/391 [00:00<00:00, 50.4kB/s]" + } + }, + "73db8f138cdf44c6bf433f5081af18de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3373,7 +3057,7 @@ "width": null } }, - "cc2b7ef567474499a646b190cb8eb39b": { + "783a531b94474919b90dcaa1fa105fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3425,50 +3109,7 @@ "width": null } }, - "cd4ee0e835504f9d906840c87f3af567": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed0f27baadac442eb8563f748bd6ea55", - "placeholder": "​", - "style": "IPY_MODEL_1dca7bf2b7c04ee09624ffbb8f1f627c", - "value": "README.md: 100%" - } - }, - "d052a42e758d4da29b6a2579a4ed6281": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d1319569c2c4b3ba8bd8bef6523e4d2", - "IPY_MODEL_c2a05ee035844ad78a62df83fb1d8845", - "IPY_MODEL_dae96f655ae740a09964e807b5179949" - ], - "layout": "IPY_MODEL_dd05de202f964dbdb860c50271e47a6c" - } - }, - "d228257b1fb844559daa0c990cecf863": { + "787bd39d5efa47fba7695728d2fb5211": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3520,7 +3161,7 @@ "width": null } }, - "d2a980b8c84d43479fb5662acd529811": { + "7ca7bff39f7646ff80b0050a21dc2c9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3572,7 +3213,7 @@ "width": null } }, - "d2f3e01c676c4dd19c48b467a7c4ade5": { + "7d2cd7f3a1a847b5b0ff52027693c3b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3587,13 +3228,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_387cbf589c65434699135302c7c597ea", + "layout": "IPY_MODEL_9f263277ef4640ad8c3eec125eac8d8d", "placeholder": "​", - "style": "IPY_MODEL_d360b41309bb4fbaaebde90402c9d655", - "value": " 29.0/29.0 [00:00<00:00, 3.60kB/s]" + "style": "IPY_MODEL_483b23ab5e5247aba7fc443cb9f62133", + "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" } }, - "d32a1e72d6c54c6cb9dd30ed3925efb4": { + "7d8b8c6928d0439ab67e2d6e11ad0638": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3609,15 +3250,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc2b7ef567474499a646b190cb8eb39b", - "max": 29.0, + "layout": "IPY_MODEL_ae02f5fe67704914b34f943c58412e4a", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_12a066c9f8cd49c9a9581687783f20b8", - "value": 29.0 + "style": "IPY_MODEL_93509f98d59a4d46b4aefb5e63c53ba9", + "value": 231508.0 + } + }, + "7ed09c053d1e48b282f75b70848057b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d360b41309bb4fbaaebde90402c9d655": { + "8c475ed55973414aa5bfdb6fcf8a3d25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3632,7 +3288,109 @@ "description_width": "" } }, - "d3ecb04608c24054b87f2788b0567e59": { + "923ac1abf41345f8b59ae734d2028678": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0338da529934419eb729317fb2b1c4cf", + "IPY_MODEL_3a746b2db1cc41368c93dbf4b73ea5e0", + "IPY_MODEL_0c73f115c24a42258d945adc1b4d6077" + ], + "layout": "IPY_MODEL_9a1cbe12ecb54f87b65b1373fffb822b" + } + }, + "93509f98d59a4d46b4aefb5e63c53ba9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "93cef699b3cb436aabe16091e28e15b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b09391fcf9c149bc9b2ffdc9c692d04f", + "IPY_MODEL_7d8b8c6928d0439ab67e2d6e11ad0638", + "IPY_MODEL_becb652d53c442b0af79c779f6558196" + ], + "layout": "IPY_MODEL_af24768a744e4fc9b5046d759443df43" + } + }, + "9412e50af8bd44279b016cc9e65ec9aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48d6311d566148349ecbd5b73cca9584", + "placeholder": "​", + "style": "IPY_MODEL_249d35c098cf41e3874398d7055faefe", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "9a1b92d91d3946ee8c9ec73472837040": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1669234d9fdd4410b6e7d5b68b80c4c4", + "placeholder": "​", + "style": "IPY_MODEL_d43649e3991441c9869ff4641c4ced26", + "value": "pytorch_model.bin: 100%" + } + }, + "9a1cbe12ecb54f87b65b1373fffb822b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3684,49 +3442,7 @@ "width": null } }, - "d711812544a646f09ee951e96c4f18c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_981d4672c7964429b79724616f686f79", - "placeholder": "​", - "style": "IPY_MODEL_f78cb0b5fcf2491eb3c5d86c12bb736f", - "value": "tokenizer_config.json: 100%" - } - }, - "dae96f655ae740a09964e807b5179949": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fea9d00fd52f4bb2a610ba8f4872f747", - "placeholder": "​", - "style": "IPY_MODEL_e73dd064354640f8912763f902297c2b", - "value": " 665/665 [00:00<00:00, 79.1kB/s]" - } - }, - "dd05de202f964dbdb860c50271e47a6c": { + "9f263277ef4640ad8c3eec125eac8d8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3778,29 +3494,28 @@ "width": null } }, - "dd2df2a857194f3c84ec7c439c06c633": { + "9f5f644405fc4eb18efeeb0e13c92b6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25a969a86e874ee0a0e989f4ebafa629", - "IPY_MODEL_a06939c59aea4e8e84fb8d8f8c3c21dc", - "IPY_MODEL_6b3a869420cf4e399a40a5edd99f61e1" - ], - "layout": "IPY_MODEL_24e32a04a58f4a75b4932d1d0459729b" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ce415f4cce24a47b14587233966d96a", + "placeholder": "​", + "style": "IPY_MODEL_7ed09c053d1e48b282f75b70848057b2", + "value": "" } }, - "de260d01cdf74722b4e223abf02249b9": { + "a1ca6409d41942189022d65764a2e1d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3815,14 +3530,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5776482a74ef4b36b277198485d620f5", - "IPY_MODEL_11fd84d755ed451282932c3b1faddcad", - "IPY_MODEL_a8cd347dfd22417eb1f6ecd29a8cd6fd" + "IPY_MODEL_55b7e2b7864446078a13d21540ea77c2", + "IPY_MODEL_dfb865d26120426d8d6e0b8b8fb569e7", + "IPY_MODEL_72cbeb249fe5498388bf07fc7348ebd2" ], - "layout": "IPY_MODEL_eede8854926c4fdd8d320611201e5e8e" + "layout": "IPY_MODEL_48dff4f1e99643c283ddf4c4d590112d" } }, - "de4dccc6dcf94826817b4bc10f412c0c": { + "ae02f5fe67704914b34f943c58412e4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3874,7 +3589,7 @@ "width": null } }, - "dee4ca8ffc86463a9496610806db5123": { + "af24768a744e4fc9b5046d759443df43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3926,62 +3641,80 @@ "width": null } }, - "e49beb65e9f44f59a51c7b4cf2e5f4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_65253723f099411fb25f091ca732f04a", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e934f5a6577a4c4fb0bf6af9553d25bf", - "value": 54245363.0 - } - }, - "e73dd064354640f8912763f902297c2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "b09047dce1f3479bab3ec10871168a97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e934f5a6577a4c4fb0bf6af9553d25bf": { + "b09391fcf9c149bc9b2ffdc9c692d04f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c36fbadf89c347e89116c0fd54da89ac", + "placeholder": "​", + "style": "IPY_MODEL_30c5df65eb524dd8bd7000f315f08ee1", + "value": "vocab.txt: 100%" } }, - "eabdcefb16c0418a837d5b1c7a9a2e84": { + "b64ebfd797cf4bfc867a1dccc2569a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4033,7 +3766,7 @@ "width": null } }, - "ed0f27baadac442eb8563f748bd6ea55": { + "b77a7caa73f048949f0eeed0ac5b1930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4085,7 +3818,64 @@ "width": null } }, - "ed55ce8671e74ae4933b1e8be1ea80fb": { + "bae04348c10e4715b8ed0d1ed7c375a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdbf849896ef43d7b1bca246a4fbaaff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03adea5765d145cca17349693a9cae9e", + "placeholder": "​", + "style": "IPY_MODEL_bae04348c10e4715b8ed0d1ed7c375a9", + "value": "tokenizer.json: 100%" + } + }, + "becb652d53c442b0af79c779f6558196": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13a65b4496184513bd6e5203847379c8", + "placeholder": "​", + "style": "IPY_MODEL_e10f33de2615427d81424162f43ba331", + "value": " 232k/232k [00:00<00:00, 27.0MB/s]" + } + }, + "bf90567275904b34a7d6ec97da8644b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4101,15 +3891,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_43ecd77a189649a4bece7f7c497a9791", + "layout": "IPY_MODEL_606d2cf7f7344cabb17bec474e84972b", "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ea85a51f5a749d585089639d8e15c8a", + "style": "IPY_MODEL_2a62b2b9eaa046e78f94b1a29015b277", "value": 2211.0 } }, - "eede8854926c4fdd8d320611201e5e8e": { + "c335c98cd337466f9e2f612ffc667c3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c36fbadf89c347e89116c0fd54da89ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4161,7 +3967,22 @@ "width": null } }, - "f2a08afd6b304032ab5a15ce051ad717": { + "c3a2397e9e404f0f817d70cb720a9030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cb98ae6f34574525947ed5158c6eda6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4177,15 +3998,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5e1115d835d4fffa9f47c8247010624", - "max": 391.0, + "layout": "IPY_MODEL_b77a7caa73f048949f0eeed0ac5b1930", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_88e85f5ae8f3426383890b02660b14af", - "value": 391.0 + "style": "IPY_MODEL_0067bb0fb19d4d0db5c07f22950a8060", + "value": 466062.0 + } + }, + "cd82f44e20044634baaef3fb42d786c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd7ccc9afe4d490d9ad67b89bc252b21", + "placeholder": "​", + "style": "IPY_MODEL_423f214830734939866c81dcb7004f51", + "value": " 466k/466k [00:00<00:00, 10.7MB/s]" } }, - "f78cb0b5fcf2491eb3c5d86c12bb736f": { + "d43649e3991441c9869ff4641c4ced26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4200,7 +4042,7 @@ "description_width": "" } }, - "f7a76476648546ed8dfd09ac41efb2a6": { + "d493f1c28852403ba4c72f6e081c1c4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4252,7 +4094,23 @@ "width": null } }, - "f91fe6d6fa7641f7ab0fe94cadc9c088": { + "db51c4f27ffe4d5aac5189f38eb8ee23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dd0eb1d6c24246e59a3504ce7a5fcf21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4267,7 +4125,7 @@ "description_width": "" } }, - "fa42cfff79a04e139a608e50e722509b": { + "dd7ccc9afe4d490d9ad67b89bc252b21": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4319,7 +4177,68 @@ "width": null } }, - "fea9d00fd52f4bb2a610ba8f4872f747": { + "dfb865d26120426d8d6e0b8b8fb569e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02a5a9625e224314839f73f9c9a63690", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5983ffde83ad40d4ac9c66ac6c11e258", + "value": 391.0 + } + }, + "e02d6b41b3174376a04e2e344f27c124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff1bfe711cbe4c399088c04424f8f747", + "IPY_MODEL_5ebe7e2ced2648baa64fc110ca56d5d2", + "IPY_MODEL_3209ed10a1e6424dabb46fd6cd0cd3ed" + ], + "layout": "IPY_MODEL_b64ebfd797cf4bfc867a1dccc2569a0b" + } + }, + "e10f33de2615427d81424162f43ba331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e805e10f3a0b4cb795c85508c3b87539": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4371,7 +4290,7 @@ "width": null } }, - "ff97dd840c5f447cb8e605fc19d99093": { + "ec422dd4d7cf40e09e692f5cbc381d5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4385,6 +4304,87 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f4f7935eee354f0fa142256b49628634": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f9ab6d66a2874b62b0add606d9b5faf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_70609e92fedd40868d71ad86e80e8604", + "IPY_MODEL_bf90567275904b34a7d6ec97da8644b2", + "IPY_MODEL_7d2cd7f3a1a847b5b0ff52027693c3b4" + ], + "layout": "IPY_MODEL_e805e10f3a0b4cb795c85508c3b87539" + } + }, + "fddc599b9d9045e89eca6200bda0fb08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bdbf849896ef43d7b1bca246a4fbaaff", + "IPY_MODEL_cb98ae6f34574525947ed5158c6eda6c", + "IPY_MODEL_cd82f44e20044634baaef3fb42d786c8" + ], + "layout": "IPY_MODEL_054c50637ad44fa2be3b1ba75cd08e81" + } + }, + "ff1bfe711cbe4c399088c04424f8f747": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11385ec891b941f7ab74b6309be38545", + "placeholder": "​", + "style": "IPY_MODEL_dd0eb1d6c24246e59a3504ce7a5fcf21", + "value": "config.json: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 00dcabcd6..1c1fc6471 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:46.655952Z", - "iopub.status.busy": "2024-01-16T18:15:46.655756Z", - "iopub.status.idle": "2024-01-16T18:15:47.727799Z", - "shell.execute_reply": "2024-01-16T18:15:47.727095Z" + "iopub.execute_input": "2024-01-17T17:47:15.853697Z", + "iopub.status.busy": "2024-01-17T17:47:15.853497Z", + "iopub.status.idle": "2024-01-17T17:47:16.875342Z", + "shell.execute_reply": "2024-01-17T17:47:16.874735Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.730957Z", - "iopub.status.busy": "2024-01-16T18:15:47.730515Z", - "iopub.status.idle": "2024-01-16T18:15:47.733559Z", - "shell.execute_reply": "2024-01-16T18:15:47.733012Z" + "iopub.execute_input": "2024-01-17T17:47:16.878056Z", + "iopub.status.busy": "2024-01-17T17:47:16.877749Z", + "iopub.status.idle": "2024-01-17T17:47:16.880815Z", + "shell.execute_reply": "2024-01-17T17:47:16.880281Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.736056Z", - "iopub.status.busy": "2024-01-16T18:15:47.735868Z", - "iopub.status.idle": "2024-01-16T18:15:47.749472Z", - "shell.execute_reply": "2024-01-16T18:15:47.748930Z" + "iopub.execute_input": "2024-01-17T17:47:16.883231Z", + "iopub.status.busy": "2024-01-17T17:47:16.882975Z", + "iopub.status.idle": "2024-01-17T17:47:16.895523Z", + "shell.execute_reply": "2024-01-17T17:47:16.894973Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.752187Z", - "iopub.status.busy": "2024-01-16T18:15:47.751804Z", - "iopub.status.idle": "2024-01-16T18:15:52.848159Z", - "shell.execute_reply": "2024-01-16T18:15:52.847593Z" + "iopub.execute_input": "2024-01-17T17:47:16.897933Z", + "iopub.status.busy": "2024-01-17T17:47:16.897567Z", + "iopub.status.idle": "2024-01-17T17:47:22.561075Z", + "shell.execute_reply": "2024-01-17T17:47:22.560373Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 75e655dca..197f0cc47 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:57.418817Z", - "iopub.status.busy": "2024-01-16T18:15:57.418221Z", - "iopub.status.idle": "2024-01-16T18:15:58.476986Z", - "shell.execute_reply": "2024-01-16T18:15:58.476369Z" + "iopub.execute_input": "2024-01-17T17:47:27.636950Z", + "iopub.status.busy": "2024-01-17T17:47:27.636331Z", + "iopub.status.idle": "2024-01-17T17:47:28.673494Z", + "shell.execute_reply": "2024-01-17T17:47:28.672886Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:58.480056Z", - "iopub.status.busy": "2024-01-16T18:15:58.479609Z", - "iopub.status.idle": "2024-01-16T18:15:58.483407Z", - "shell.execute_reply": "2024-01-16T18:15:58.482875Z" + "iopub.execute_input": "2024-01-17T17:47:28.676967Z", + "iopub.status.busy": "2024-01-17T17:47:28.676319Z", + "iopub.status.idle": "2024-01-17T17:47:28.680081Z", + "shell.execute_reply": "2024-01-17T17:47:28.679568Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:58.485825Z", - "iopub.status.busy": "2024-01-16T18:15:58.485453Z", - "iopub.status.idle": "2024-01-16T18:16:00.548527Z", - "shell.execute_reply": "2024-01-16T18:16:00.547841Z" + "iopub.execute_input": "2024-01-17T17:47:28.682651Z", + "iopub.status.busy": "2024-01-17T17:47:28.682199Z", + "iopub.status.idle": "2024-01-17T17:47:30.662113Z", + "shell.execute_reply": "2024-01-17T17:47:30.661305Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.551920Z", - "iopub.status.busy": "2024-01-16T18:16:00.551273Z", - "iopub.status.idle": "2024-01-16T18:16:00.586863Z", - "shell.execute_reply": "2024-01-16T18:16:00.586069Z" + "iopub.execute_input": "2024-01-17T17:47:30.665838Z", + "iopub.status.busy": "2024-01-17T17:47:30.664985Z", + "iopub.status.idle": "2024-01-17T17:47:30.702802Z", + "shell.execute_reply": "2024-01-17T17:47:30.702035Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.590183Z", - "iopub.status.busy": "2024-01-16T18:16:00.589693Z", - "iopub.status.idle": "2024-01-16T18:16:00.628675Z", - "shell.execute_reply": "2024-01-16T18:16:00.627875Z" + "iopub.execute_input": "2024-01-17T17:47:30.705974Z", + "iopub.status.busy": "2024-01-17T17:47:30.705483Z", + "iopub.status.idle": "2024-01-17T17:47:30.740910Z", + "shell.execute_reply": "2024-01-17T17:47:30.740189Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.632522Z", - "iopub.status.busy": "2024-01-16T18:16:00.632252Z", - "iopub.status.idle": "2024-01-16T18:16:00.635413Z", - "shell.execute_reply": "2024-01-16T18:16:00.634891Z" + "iopub.execute_input": "2024-01-17T17:47:30.743971Z", + "iopub.status.busy": "2024-01-17T17:47:30.743470Z", + "iopub.status.idle": "2024-01-17T17:47:30.746772Z", + "shell.execute_reply": "2024-01-17T17:47:30.746178Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.638191Z", - "iopub.status.busy": "2024-01-16T18:16:00.637827Z", - "iopub.status.idle": "2024-01-16T18:16:00.640620Z", - "shell.execute_reply": "2024-01-16T18:16:00.640097Z" + "iopub.execute_input": "2024-01-17T17:47:30.749236Z", + "iopub.status.busy": "2024-01-17T17:47:30.748768Z", + "iopub.status.idle": "2024-01-17T17:47:30.751621Z", + "shell.execute_reply": "2024-01-17T17:47:30.751123Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.643155Z", - "iopub.status.busy": "2024-01-16T18:16:00.642713Z", - "iopub.status.idle": "2024-01-16T18:16:00.670851Z", - "shell.execute_reply": "2024-01-16T18:16:00.670234Z" + "iopub.execute_input": "2024-01-17T17:47:30.754142Z", + "iopub.status.busy": "2024-01-17T17:47:30.753710Z", + "iopub.status.idle": "2024-01-17T17:47:30.781205Z", + "shell.execute_reply": "2024-01-17T17:47:30.780598Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be6b89c05bf54e629d5214f135ecc2d9", + "model_id": "6118415ae7394ffd96f150429a30c90e", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55e901a991824e3fbda53e2d393455d9", + "model_id": "74b94b74c8204c518111c5334e52842b", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.678225Z", - "iopub.status.busy": "2024-01-16T18:16:00.677825Z", - "iopub.status.idle": "2024-01-16T18:16:00.684491Z", - "shell.execute_reply": "2024-01-16T18:16:00.683970Z" + "iopub.execute_input": "2024-01-17T17:47:30.788205Z", + "iopub.status.busy": "2024-01-17T17:47:30.787789Z", + "iopub.status.idle": "2024-01-17T17:47:30.794524Z", + "shell.execute_reply": "2024-01-17T17:47:30.794019Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.686812Z", - "iopub.status.busy": "2024-01-16T18:16:00.686368Z", - "iopub.status.idle": "2024-01-16T18:16:00.690083Z", - "shell.execute_reply": "2024-01-16T18:16:00.689559Z" + "iopub.execute_input": "2024-01-17T17:47:30.796854Z", + "iopub.status.busy": "2024-01-17T17:47:30.796459Z", + "iopub.status.idle": "2024-01-17T17:47:30.800312Z", + "shell.execute_reply": "2024-01-17T17:47:30.799775Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.692161Z", - "iopub.status.busy": "2024-01-16T18:16:00.691959Z", - "iopub.status.idle": "2024-01-16T18:16:00.699054Z", - "shell.execute_reply": "2024-01-16T18:16:00.698536Z" + "iopub.execute_input": "2024-01-17T17:47:30.802703Z", + "iopub.status.busy": "2024-01-17T17:47:30.802357Z", + "iopub.status.idle": "2024-01-17T17:47:30.809258Z", + "shell.execute_reply": "2024-01-17T17:47:30.808727Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.701373Z", - "iopub.status.busy": "2024-01-16T18:16:00.700937Z", - "iopub.status.idle": "2024-01-16T18:16:00.739221Z", - "shell.execute_reply": "2024-01-16T18:16:00.738543Z" + "iopub.execute_input": "2024-01-17T17:47:30.811612Z", + "iopub.status.busy": "2024-01-17T17:47:30.811247Z", + "iopub.status.idle": "2024-01-17T17:47:30.848892Z", + "shell.execute_reply": "2024-01-17T17:47:30.848075Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.742109Z", - "iopub.status.busy": "2024-01-16T18:16:00.741846Z", - "iopub.status.idle": "2024-01-16T18:16:00.780149Z", - "shell.execute_reply": "2024-01-16T18:16:00.779344Z" + "iopub.execute_input": "2024-01-17T17:47:30.852080Z", + "iopub.status.busy": "2024-01-17T17:47:30.851683Z", + "iopub.status.idle": "2024-01-17T17:47:30.890113Z", + "shell.execute_reply": "2024-01-17T17:47:30.889434Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.783325Z", - "iopub.status.busy": "2024-01-16T18:16:00.783062Z", - "iopub.status.idle": "2024-01-16T18:16:00.902882Z", - "shell.execute_reply": "2024-01-16T18:16:00.902217Z" + "iopub.execute_input": "2024-01-17T17:47:30.893308Z", + "iopub.status.busy": "2024-01-17T17:47:30.892889Z", + "iopub.status.idle": "2024-01-17T17:47:31.012408Z", + "shell.execute_reply": "2024-01-17T17:47:31.011727Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.905753Z", - "iopub.status.busy": "2024-01-16T18:16:00.905355Z", - "iopub.status.idle": "2024-01-16T18:16:03.441187Z", - "shell.execute_reply": "2024-01-16T18:16:03.440427Z" + "iopub.execute_input": "2024-01-17T17:47:31.015249Z", + "iopub.status.busy": "2024-01-17T17:47:31.014843Z", + "iopub.status.idle": "2024-01-17T17:47:33.505335Z", + "shell.execute_reply": "2024-01-17T17:47:33.504572Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.444116Z", - "iopub.status.busy": "2024-01-16T18:16:03.443692Z", - "iopub.status.idle": "2024-01-16T18:16:03.502832Z", - "shell.execute_reply": "2024-01-16T18:16:03.502159Z" + "iopub.execute_input": "2024-01-17T17:47:33.508187Z", + "iopub.status.busy": "2024-01-17T17:47:33.507786Z", + "iopub.status.idle": "2024-01-17T17:47:33.565362Z", + "shell.execute_reply": "2024-01-17T17:47:33.564757Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "a63586b5", + "id": "2e2ede4c", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "2b31716f", + "id": "b85b170d", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "4887263e", + "id": "f888ecd3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.505582Z", - "iopub.status.busy": "2024-01-16T18:16:03.505191Z", - "iopub.status.idle": "2024-01-16T18:16:03.613248Z", - "shell.execute_reply": "2024-01-16T18:16:03.612541Z" + "iopub.execute_input": "2024-01-17T17:47:33.567937Z", + "iopub.status.busy": "2024-01-17T17:47:33.567572Z", + "iopub.status.idle": "2024-01-17T17:47:33.681531Z", + "shell.execute_reply": "2024-01-17T17:47:33.680872Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "699098e7", + "id": "035f5521", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "f8a445ea", + "id": "4eca8e3f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.616923Z", - "iopub.status.busy": "2024-01-16T18:16:03.616277Z", - "iopub.status.idle": "2024-01-16T18:16:03.693439Z", - "shell.execute_reply": "2024-01-16T18:16:03.692848Z" + "iopub.execute_input": "2024-01-17T17:47:33.684745Z", + "iopub.status.busy": "2024-01-17T17:47:33.684425Z", + "iopub.status.idle": "2024-01-17T17:47:33.755644Z", + "shell.execute_reply": "2024-01-17T17:47:33.754828Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "6af9e5a8", + "id": "02bcd7ad", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "326f5f2c", + "id": "8d96a258", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.696323Z", - "iopub.status.busy": "2024-01-16T18:16:03.695897Z", - "iopub.status.idle": "2024-01-16T18:16:03.704431Z", - "shell.execute_reply": "2024-01-16T18:16:03.703903Z" + "iopub.execute_input": "2024-01-17T17:47:33.758921Z", + "iopub.status.busy": "2024-01-17T17:47:33.758478Z", + "iopub.status.idle": "2024-01-17T17:47:33.766911Z", + "shell.execute_reply": "2024-01-17T17:47:33.766290Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "ac16d60c", + "id": "226cb25c", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "38316429", + "id": "7d3ac0da", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.706739Z", - "iopub.status.busy": "2024-01-16T18:16:03.706553Z", - "iopub.status.idle": "2024-01-16T18:16:03.725715Z", - "shell.execute_reply": "2024-01-16T18:16:03.725160Z" + "iopub.execute_input": "2024-01-17T17:47:33.769300Z", + "iopub.status.busy": "2024-01-17T17:47:33.768858Z", + "iopub.status.idle": "2024-01-17T17:47:33.788533Z", + "shell.execute_reply": "2024-01-17T17:47:33.787972Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "4475f99d", + "id": "5f110e92", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.727911Z", - "iopub.status.busy": "2024-01-16T18:16:03.727702Z", - "iopub.status.idle": "2024-01-16T18:16:03.731529Z", - "shell.execute_reply": "2024-01-16T18:16:03.730928Z" + "iopub.execute_input": "2024-01-17T17:47:33.791079Z", + "iopub.status.busy": "2024-01-17T17:47:33.790637Z", + "iopub.status.idle": "2024-01-17T17:47:33.794932Z", + "shell.execute_reply": "2024-01-17T17:47:33.794293Z" } }, "outputs": [ @@ -1205,23 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c5ddfa9e5af4c71a2d795d08917ce30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "30c07688294b4590a6c7af60e7ff150e": { + "0680087d65da4687af801f9791a73ee3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1273,49 +1257,46 @@ "width": null } }, - "3bbb2ac2044944728ad50b54dcae679f": { + "273eb8d115c6410abc0262fbfa22e139": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_30c07688294b4590a6c7af60e7ff150e", - "placeholder": "​", - "style": "IPY_MODEL_bbe01bd7cc39481792b9eeaf75e59865", - "value": "number of examples processed for checking labels: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "3d1ea18088b44578a82494404b4b6526": { + "37cd3deaba0843e58ae650a5f2b9eba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f73e12450e9b44ffbfa3ae849f007f15", - "placeholder": "​", - "style": "IPY_MODEL_ad9470941b23485fa612c05bb92d68db", - "value": "number of examples processed for estimating thresholds: " + "layout": "IPY_MODEL_b336bc30a3f1468fb0ac077e66155b8f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cb4c9a997a9144b0bca590e9c5a87fcf", + "value": 50.0 } }, - "3dda280f8336451eb0557e975ff2d908": { + "4bb19eea1d494d8eb5233dc1bd64954e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1367,31 +1348,7 @@ "width": null } }, - "46495bfb8ba446f182bc0b5984620664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3dda280f8336451eb0557e975ff2d908", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c5ddfa9e5af4c71a2d795d08917ce30", - "value": 50.0 - } - }, - "4aa8b4daf9104ecdad120225e68f5540": { + "55ddbe71f01946b59b3b52ff188200fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1406,13 +1363,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_843c6dffeed048149fd41953b533bc03", + "layout": "IPY_MODEL_7555045e76474233b6507a2227ce4f0a", "placeholder": "​", - "style": "IPY_MODEL_ab88fab8f4b94597aaf043f3a536c65d", - "value": " 10000/? [00:00<00:00, 1147458.21it/s]" + "style": "IPY_MODEL_83622b18675745048d9ab04083fdc590", + "value": "number of examples processed for checking labels: " } }, - "55e901a991824e3fbda53e2d393455d9": { + "6118415ae7394ffd96f150429a30c90e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1427,14 +1384,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3bbb2ac2044944728ad50b54dcae679f", - "IPY_MODEL_adaf23d194974baeafd98c18646daaa2", - "IPY_MODEL_4aa8b4daf9104ecdad120225e68f5540" + "IPY_MODEL_86a78a185e1b4ae2b0c6a4639821badf", + "IPY_MODEL_b2c68c2109c44faf921e9a02ec6da38d", + "IPY_MODEL_edb94b7bb6da4cd1b553c2a09d077afa" ], - "layout": "IPY_MODEL_cb711b84f8214d82b8fb35645767879f" + "layout": "IPY_MODEL_4bb19eea1d494d8eb5233dc1bd64954e" } }, - "5659f0502a6a46cf960fcebc58d41908": { + "6a88e2b5655941a7acb9e31b017db356": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1486,59 +1443,44 @@ "width": null } }, - "6cd09bf4c6054f069102d38e86fbf3a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "706fe2da65784a29b025e5c5a8b19f2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "74b94b74c8204c518111c5334e52842b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55ddbe71f01946b59b3b52ff188200fe", + "IPY_MODEL_37cd3deaba0843e58ae650a5f2b9eba2", + "IPY_MODEL_bddc566f81704fa6ae3a1a5f075e30e6" + ], + "layout": "IPY_MODEL_0680087d65da4687af801f9791a73ee3" } }, - "843c6dffeed048149fd41953b533bc03": { + "7555045e76474233b6507a2227ce4f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1590,7 +1532,7 @@ "width": null } }, - "8d80ffdedeb54d11a72f70399337228a": { + "83622b18675745048d9ab04083fdc590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1605,7 +1547,7 @@ "description_width": "" } }, - "9e1c0c8f682f4016b92735695db0fb3e": { + "86a78a185e1b4ae2b0c6a4639821badf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1620,43 +1562,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec10984034094ee694d8330b9a1dbeb4", + "layout": "IPY_MODEL_b936e9c3b0db4d879a8fe2972783d51b", "placeholder": "​", - "style": "IPY_MODEL_8d80ffdedeb54d11a72f70399337228a", - "value": " 10000/? [00:00<00:00, 931467.28it/s]" - } - }, - "ab88fab8f4b94597aaf043f3a536c65d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ad9470941b23485fa612c05bb92d68db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_706fe2da65784a29b025e5c5a8b19f2e", + "value": "number of examples processed for estimating thresholds: " } }, - "adaf23d194974baeafd98c18646daaa2": { + "b2c68c2109c44faf921e9a02ec6da38d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1672,68 +1584,67 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd09bf4c6054f069102d38e86fbf3a5", + "layout": "IPY_MODEL_f58ef3392b4f4c98b9bd4e3ef1be0755", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b6792e9f834946c19abe2c49ce1d8f8f", + "style": "IPY_MODEL_e31e202e50d7490f927466e3e3160fdf", "value": 50.0 } }, - "b6792e9f834946c19abe2c49ce1d8f8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bbe01bd7cc39481792b9eeaf75e59865": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "b336bc30a3f1468fb0ac077e66155b8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "be6b89c05bf54e629d5214f135ecc2d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d1ea18088b44578a82494404b4b6526", - "IPY_MODEL_46495bfb8ba446f182bc0b5984620664", - "IPY_MODEL_9e1c0c8f682f4016b92735695db0fb3e" - ], - "layout": "IPY_MODEL_5659f0502a6a46cf960fcebc58d41908" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cb711b84f8214d82b8fb35645767879f": { + "b936e9c3b0db4d879a8fe2972783d51b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1785,7 +1696,28 @@ "width": null } }, - "ec10984034094ee694d8330b9a1dbeb4": { + "bddc566f81704fa6ae3a1a5f075e30e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c7a5cae349064d418fda512643b08663", + "placeholder": "​", + "style": "IPY_MODEL_273eb8d115c6410abc0262fbfa22e139", + "value": " 10000/? [00:00<00:00, 1185903.64it/s]" + } + }, + "c7a5cae349064d418fda512643b08663": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1837,7 +1769,75 @@ "width": null } }, - "f73e12450e9b44ffbfa3ae849f007f15": { + "cb4c9a997a9144b0bca590e9c5a87fcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e162ce4d2c78466287cde1b641c033ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e31e202e50d7490f927466e3e3160fdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "edb94b7bb6da4cd1b553c2a09d077afa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6a88e2b5655941a7acb9e31b017db356", + "placeholder": "​", + "style": "IPY_MODEL_e162ce4d2c78466287cde1b641c033ca", + "value": " 10000/? [00:00<00:00, 964429.52it/s]" + } + }, + "f58ef3392b4f4c98b9bd4e3ef1be0755": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 2c70dd994..e3e8b3076 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:08.867021Z", - "iopub.status.busy": "2024-01-16T18:16:08.866639Z", - "iopub.status.idle": "2024-01-16T18:16:11.032583Z", - "shell.execute_reply": "2024-01-16T18:16:11.031965Z" + "iopub.execute_input": "2024-01-17T17:47:38.828995Z", + "iopub.status.busy": "2024-01-17T17:47:38.828514Z", + "iopub.status.idle": "2024-01-17T17:47:40.959203Z", + "shell.execute_reply": "2024-01-17T17:47:40.958571Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:11.035412Z", - "iopub.status.busy": "2024-01-16T18:16:11.035037Z", - "iopub.status.idle": "2024-01-16T18:16:11.038833Z", - "shell.execute_reply": "2024-01-16T18:16:11.038285Z" + "iopub.execute_input": "2024-01-17T17:47:40.962263Z", + "iopub.status.busy": "2024-01-17T17:47:40.961696Z", + "iopub.status.idle": "2024-01-17T17:47:40.965442Z", + "shell.execute_reply": "2024-01-17T17:47:40.964854Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:11.041170Z", - "iopub.status.busy": "2024-01-16T18:16:11.040806Z", - "iopub.status.idle": "2024-01-16T18:16:12.760017Z", - "shell.execute_reply": "2024-01-16T18:16:12.759487Z" + "iopub.execute_input": "2024-01-17T17:47:40.967927Z", + "iopub.status.busy": "2024-01-17T17:47:40.967416Z", + "iopub.status.idle": "2024-01-17T17:47:46.436567Z", + "shell.execute_reply": "2024-01-17T17:47:46.435874Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0defe72ac3f54ed59165d32126c59303", + "model_id": "2cd6991966a149ad8c8253c8a436fcb6", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8b4d683ee6dc42839093764c05d01557", + "model_id": "867c9e6e93ab4f0aa2763d003f7e9037", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88011db5921c4bf99f950c37e4ef4adc", + "model_id": "138e8569d73c4286b12b8b4a8491a5eb", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e78a910f7b04430ba9e6ad8321f0123e", + "model_id": "212e8f8dbed64e4090645ba650c4c40d", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:12.762489Z", - "iopub.status.busy": "2024-01-16T18:16:12.762174Z", - "iopub.status.idle": "2024-01-16T18:16:12.766324Z", - "shell.execute_reply": "2024-01-16T18:16:12.765829Z" + "iopub.execute_input": "2024-01-17T17:47:46.438945Z", + "iopub.status.busy": "2024-01-17T17:47:46.438730Z", + "iopub.status.idle": "2024-01-17T17:47:46.442968Z", + "shell.execute_reply": "2024-01-17T17:47:46.442443Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:12.768599Z", - "iopub.status.busy": "2024-01-16T18:16:12.768246Z", - "iopub.status.idle": "2024-01-16T18:16:24.994428Z", - "shell.execute_reply": "2024-01-16T18:16:24.993816Z" + "iopub.execute_input": "2024-01-17T17:47:46.445291Z", + "iopub.status.busy": "2024-01-17T17:47:46.445084Z", + "iopub.status.idle": "2024-01-17T17:47:58.483080Z", + "shell.execute_reply": "2024-01-17T17:47:58.482363Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03707ead2a3046f595e77370955c0e67", + "model_id": "63f8d37ac2ee41b8b8a094f0ac086ed0", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:24.997442Z", - "iopub.status.busy": "2024-01-16T18:16:24.997127Z", - "iopub.status.idle": "2024-01-16T18:16:46.005009Z", - "shell.execute_reply": "2024-01-16T18:16:46.004343Z" + "iopub.execute_input": "2024-01-17T17:47:58.486265Z", + "iopub.status.busy": "2024-01-17T17:47:58.485782Z", + "iopub.status.idle": "2024-01-17T17:48:19.372732Z", + "shell.execute_reply": "2024-01-17T17:48:19.372080Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.007998Z", - "iopub.status.busy": "2024-01-16T18:16:46.007630Z", - "iopub.status.idle": "2024-01-16T18:16:46.012922Z", - "shell.execute_reply": "2024-01-16T18:16:46.012307Z" + "iopub.execute_input": "2024-01-17T17:48:19.375687Z", + "iopub.status.busy": "2024-01-17T17:48:19.375485Z", + "iopub.status.idle": "2024-01-17T17:48:19.380679Z", + "shell.execute_reply": "2024-01-17T17:48:19.380140Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.015281Z", - "iopub.status.busy": "2024-01-16T18:16:46.014938Z", - "iopub.status.idle": "2024-01-16T18:16:46.019198Z", - "shell.execute_reply": "2024-01-16T18:16:46.018616Z" + "iopub.execute_input": "2024-01-17T17:48:19.382762Z", + "iopub.status.busy": "2024-01-17T17:48:19.382567Z", + "iopub.status.idle": "2024-01-17T17:48:19.386591Z", + "shell.execute_reply": "2024-01-17T17:48:19.386119Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.021498Z", - "iopub.status.busy": "2024-01-16T18:16:46.021173Z", - "iopub.status.idle": "2024-01-16T18:16:46.030847Z", - "shell.execute_reply": "2024-01-16T18:16:46.030242Z" + "iopub.execute_input": "2024-01-17T17:48:19.388870Z", + "iopub.status.busy": "2024-01-17T17:48:19.388670Z", + "iopub.status.idle": "2024-01-17T17:48:19.398149Z", + "shell.execute_reply": "2024-01-17T17:48:19.397655Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.033321Z", - "iopub.status.busy": "2024-01-16T18:16:46.032957Z", - "iopub.status.idle": "2024-01-16T18:16:46.063139Z", - "shell.execute_reply": "2024-01-16T18:16:46.062409Z" + "iopub.execute_input": "2024-01-17T17:48:19.400312Z", + "iopub.status.busy": "2024-01-17T17:48:19.400110Z", + "iopub.status.idle": "2024-01-17T17:48:19.430137Z", + "shell.execute_reply": "2024-01-17T17:48:19.429642Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.066459Z", - "iopub.status.busy": "2024-01-16T18:16:46.066043Z", - "iopub.status.idle": "2024-01-16T18:17:17.528059Z", - "shell.execute_reply": "2024-01-16T18:17:17.527325Z" + "iopub.execute_input": "2024-01-17T17:48:19.432421Z", + "iopub.status.busy": "2024-01-17T17:48:19.432225Z", + "iopub.status.idle": "2024-01-17T17:48:50.080270Z", + "shell.execute_reply": "2024-01-17T17:48:50.079429Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.688\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.468\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.364\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.74it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.45it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.17it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 55.88it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]" ] }, { @@ -790,15 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 68.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.25it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.11it/s]" ] }, { @@ -828,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.91it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.86it/s]" ] }, { @@ -836,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]" + " 20%|██ | 8/40 [00:00<00:00, 42.86it/s]" ] }, { @@ -844,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]" + " 40%|████ | 16/40 [00:00<00:00, 58.37it/s]" ] }, { @@ -852,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.10it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 63.77it/s]" ] }, { @@ -860,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.59it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 68.50it/s]" ] }, { @@ -868,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.03it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.87it/s]" ] }, { @@ -890,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.639\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.502\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.725\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331\n", "Computing feature embeddings ...\n" ] }, @@ -914,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.09it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.21it/s]" ] }, { @@ -922,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]" ] }, { @@ -930,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]" ] }, { @@ -938,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]" ] }, { @@ -946,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]" ] }, { @@ -954,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.06it/s]" ] }, { @@ -984,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.24it/s]" ] }, { @@ -992,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]" ] }, { @@ -1000,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]" ] }, { @@ -1008,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]" ] }, { @@ -1016,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]" ] }, { @@ -1024,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.77it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.75it/s]" ] }, { @@ -1046,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.694\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.840\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.370\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.363\n", "Computing feature embeddings ...\n" ] }, @@ -1070,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.57it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 27.33it/s]" ] }, { @@ -1078,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]" ] }, { @@ -1086,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]" ] }, { @@ -1094,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]" ] }, { @@ -1102,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]" ] }, { @@ -1110,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.39it/s]" ] }, { @@ -1140,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.47it/s]" ] }, { @@ -1148,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]" ] }, { @@ -1156,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]" ] }, { @@ -1164,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]" ] }, { @@ -1172,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]" ] }, { @@ -1180,21 +1172,21 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.73it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.51it/s]" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\n" + "Finished Training\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Finished Training\n" + "\n" ] } ], @@ -1257,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:17.531136Z", - "iopub.status.busy": "2024-01-16T18:17:17.530850Z", - "iopub.status.idle": "2024-01-16T18:17:17.547518Z", - "shell.execute_reply": "2024-01-16T18:17:17.546961Z" + "iopub.execute_input": "2024-01-17T17:48:50.083639Z", + "iopub.status.busy": "2024-01-17T17:48:50.083073Z", + "iopub.status.idle": "2024-01-17T17:48:50.098729Z", + "shell.execute_reply": "2024-01-17T17:48:50.098220Z" } }, "outputs": [], @@ -1285,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:17.550500Z", - "iopub.status.busy": "2024-01-16T18:17:17.550024Z", - "iopub.status.idle": "2024-01-16T18:17:18.021632Z", - "shell.execute_reply": "2024-01-16T18:17:18.020999Z" + "iopub.execute_input": "2024-01-17T17:48:50.101328Z", + "iopub.status.busy": "2024-01-17T17:48:50.100950Z", + "iopub.status.idle": "2024-01-17T17:48:50.540668Z", + "shell.execute_reply": "2024-01-17T17:48:50.540011Z" } }, "outputs": [], @@ -1308,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:18.024339Z", - "iopub.status.busy": "2024-01-16T18:17:18.024122Z", - "iopub.status.idle": "2024-01-16T18:20:38.928427Z", - "shell.execute_reply": "2024-01-16T18:20:38.927718Z" + "iopub.execute_input": "2024-01-17T17:48:50.543375Z", + "iopub.status.busy": "2024-01-17T17:48:50.543164Z", + "iopub.status.idle": "2024-01-17T17:52:10.610301Z", + "shell.execute_reply": "2024-01-17T17:52:10.609609Z" } }, "outputs": [ @@ -1350,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a98216727a8343779027d9b0dca33af1", + "model_id": "598da123a65b4ee48e0631a58c583c22", "version_major": 2, "version_minor": 0 }, @@ -1389,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:38.931159Z", - "iopub.status.busy": "2024-01-16T18:20:38.930750Z", - "iopub.status.idle": "2024-01-16T18:20:39.442668Z", - "shell.execute_reply": "2024-01-16T18:20:39.442032Z" + "iopub.execute_input": "2024-01-17T17:52:10.613299Z", + "iopub.status.busy": "2024-01-17T17:52:10.612696Z", + "iopub.status.idle": "2024-01-17T17:52:11.129890Z", + "shell.execute_reply": "2024-01-17T17:52:11.129081Z" } }, "outputs": [ @@ -1427,15 +1419,15 @@ " \n", "\n", "Number of examples with this issue: 3692\n", - "Overall dataset quality in terms of this issue: 0.9661\n", + "Overall dataset quality in terms of this issue: 0.3691\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "40378 True 0.687452\n", - "54473 True 0.705050\n", - "29412 True 0.715470\n", - "25316 True 0.716273\n", - "52247 True 0.725283\n", + "40378 True 3.943831e-07\n", + "54473 True 1.066211e-06\n", + "29412 True 1.899069e-06\n", + "25316 True 1.984817e-06\n", + "52247 True 3.245879e-06\n", "\n", "\n", "----------------------- label issues -----------------------\n", @@ -1604,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.446030Z", - "iopub.status.busy": "2024-01-16T18:20:39.445449Z", - "iopub.status.idle": "2024-01-16T18:20:39.508450Z", - "shell.execute_reply": "2024-01-16T18:20:39.507912Z" + "iopub.execute_input": "2024-01-17T17:52:11.133342Z", + "iopub.status.busy": "2024-01-17T17:52:11.132766Z", + "iopub.status.idle": "2024-01-17T17:52:11.195843Z", + "shell.execute_reply": "2024-01-17T17:52:11.195277Z" } }, "outputs": [ @@ -1711,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.510936Z", - "iopub.status.busy": "2024-01-16T18:20:39.510555Z", - "iopub.status.idle": "2024-01-16T18:20:39.519287Z", - "shell.execute_reply": "2024-01-16T18:20:39.518801Z" + "iopub.execute_input": "2024-01-17T17:52:11.198394Z", + "iopub.status.busy": "2024-01-17T17:52:11.198010Z", + "iopub.status.idle": "2024-01-17T17:52:11.206787Z", + "shell.execute_reply": "2024-01-17T17:52:11.206277Z" } }, "outputs": [ @@ -1844,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.521787Z", - "iopub.status.busy": "2024-01-16T18:20:39.521427Z", - "iopub.status.idle": "2024-01-16T18:20:39.526319Z", - "shell.execute_reply": "2024-01-16T18:20:39.525827Z" + "iopub.execute_input": "2024-01-17T17:52:11.209113Z", + "iopub.status.busy": "2024-01-17T17:52:11.208750Z", + "iopub.status.idle": "2024-01-17T17:52:11.213923Z", + "shell.execute_reply": "2024-01-17T17:52:11.213397Z" }, "nbsphinx": "hidden" }, @@ -1893,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.528614Z", - "iopub.status.busy": "2024-01-16T18:20:39.528190Z", - "iopub.status.idle": "2024-01-16T18:20:40.025362Z", - "shell.execute_reply": "2024-01-16T18:20:40.024668Z" + "iopub.execute_input": "2024-01-17T17:52:11.216190Z", + "iopub.status.busy": "2024-01-17T17:52:11.215986Z", + "iopub.status.idle": "2024-01-17T17:52:11.704310Z", + "shell.execute_reply": "2024-01-17T17:52:11.703667Z" } }, "outputs": [ @@ -1931,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.027883Z", - "iopub.status.busy": "2024-01-16T18:20:40.027673Z", - "iopub.status.idle": "2024-01-16T18:20:40.037084Z", - "shell.execute_reply": "2024-01-16T18:20:40.036465Z" + "iopub.execute_input": "2024-01-17T17:52:11.706846Z", + "iopub.status.busy": "2024-01-17T17:52:11.706616Z", + "iopub.status.idle": "2024-01-17T17:52:11.715817Z", + "shell.execute_reply": "2024-01-17T17:52:11.715186Z" } }, "outputs": [ @@ -1967,27 +1959,27 @@ " \n", " 40378\n", " True\n", - " 0.687452\n", + " 3.943831e-07\n", " \n", " \n", " 54473\n", " True\n", - " 0.705050\n", + " 1.066211e-06\n", " \n", " \n", " 29412\n", " True\n", - " 0.715470\n", + " 1.899069e-06\n", " \n", " \n", " 25316\n", " True\n", - " 0.716273\n", + " 1.984817e-06\n", " \n", " \n", " 52247\n", " True\n", - " 0.725283\n", + " 3.245879e-06\n", " \n", " \n", "\n", @@ -1995,11 +1987,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "40378 True 0.687452\n", - "54473 True 0.705050\n", - "29412 True 0.715470\n", - "25316 True 0.716273\n", - "52247 True 0.725283" + "40378 True 3.943831e-07\n", + "54473 True 1.066211e-06\n", + "29412 True 1.899069e-06\n", + "25316 True 1.984817e-06\n", + "52247 True 3.245879e-06" ] }, "execution_count": 20, @@ -2101,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.039499Z", - "iopub.status.busy": "2024-01-16T18:20:40.039059Z", - "iopub.status.idle": "2024-01-16T18:20:40.046811Z", - "shell.execute_reply": "2024-01-16T18:20:40.046333Z" + "iopub.execute_input": "2024-01-17T17:52:11.718087Z", + "iopub.status.busy": "2024-01-17T17:52:11.717888Z", + "iopub.status.idle": "2024-01-17T17:52:11.725871Z", + "shell.execute_reply": "2024-01-17T17:52:11.725260Z" }, "nbsphinx": "hidden" }, @@ -2180,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.049159Z", - "iopub.status.busy": "2024-01-16T18:20:40.048701Z", - "iopub.status.idle": "2024-01-16T18:20:40.513575Z", - "shell.execute_reply": "2024-01-16T18:20:40.512900Z" + "iopub.execute_input": "2024-01-17T17:52:11.728438Z", + "iopub.status.busy": "2024-01-17T17:52:11.727929Z", + "iopub.status.idle": "2024-01-17T17:52:12.193127Z", + "shell.execute_reply": "2024-01-17T17:52:12.192411Z" } }, "outputs": [ @@ -2220,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.516343Z", - "iopub.status.busy": "2024-01-16T18:20:40.515879Z", - "iopub.status.idle": "2024-01-16T18:20:40.532269Z", - "shell.execute_reply": "2024-01-16T18:20:40.531651Z" + "iopub.execute_input": "2024-01-17T17:52:12.195794Z", + "iopub.status.busy": "2024-01-17T17:52:12.195442Z", + "iopub.status.idle": "2024-01-17T17:52:12.211743Z", + "shell.execute_reply": "2024-01-17T17:52:12.211096Z" } }, "outputs": [ @@ -2380,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.534935Z", - "iopub.status.busy": "2024-01-16T18:20:40.534584Z", - "iopub.status.idle": "2024-01-16T18:20:40.540529Z", - "shell.execute_reply": "2024-01-16T18:20:40.539984Z" + "iopub.execute_input": "2024-01-17T17:52:12.214299Z", + "iopub.status.busy": "2024-01-17T17:52:12.213915Z", + "iopub.status.idle": "2024-01-17T17:52:12.219994Z", + "shell.execute_reply": "2024-01-17T17:52:12.219452Z" }, "nbsphinx": "hidden" }, @@ -2428,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.542833Z", - "iopub.status.busy": "2024-01-16T18:20:40.542497Z", - "iopub.status.idle": "2024-01-16T18:20:41.211741Z", - "shell.execute_reply": "2024-01-16T18:20:41.211144Z" + "iopub.execute_input": "2024-01-17T17:52:12.222248Z", + "iopub.status.busy": "2024-01-17T17:52:12.221885Z", + "iopub.status.idle": "2024-01-17T17:52:12.894014Z", + "shell.execute_reply": "2024-01-17T17:52:12.893111Z" } }, "outputs": [ @@ -2513,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.214924Z", - "iopub.status.busy": "2024-01-16T18:20:41.214349Z", - "iopub.status.idle": "2024-01-16T18:20:41.224615Z", - "shell.execute_reply": "2024-01-16T18:20:41.223941Z" + "iopub.execute_input": "2024-01-17T17:52:12.897441Z", + "iopub.status.busy": "2024-01-17T17:52:12.896919Z", + "iopub.status.idle": "2024-01-17T17:52:12.907357Z", + "shell.execute_reply": "2024-01-17T17:52:12.906686Z" } }, "outputs": [ @@ -2644,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.227838Z", - "iopub.status.busy": "2024-01-16T18:20:41.227598Z", - "iopub.status.idle": "2024-01-16T18:20:41.235427Z", - "shell.execute_reply": "2024-01-16T18:20:41.234708Z" + "iopub.execute_input": "2024-01-17T17:52:12.910215Z", + "iopub.status.busy": "2024-01-17T17:52:12.909978Z", + "iopub.status.idle": "2024-01-17T17:52:12.916505Z", + "shell.execute_reply": "2024-01-17T17:52:12.915851Z" }, "nbsphinx": "hidden" }, @@ -2684,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.238223Z", - "iopub.status.busy": "2024-01-16T18:20:41.237815Z", - "iopub.status.idle": "2024-01-16T18:20:41.435305Z", - "shell.execute_reply": "2024-01-16T18:20:41.434818Z" + "iopub.execute_input": "2024-01-17T17:52:12.919378Z", + "iopub.status.busy": "2024-01-17T17:52:12.919145Z", + "iopub.status.idle": "2024-01-17T17:52:13.117373Z", + "shell.execute_reply": "2024-01-17T17:52:13.116789Z" } }, "outputs": [ @@ -2729,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.437816Z", - "iopub.status.busy": "2024-01-16T18:20:41.437350Z", - "iopub.status.idle": "2024-01-16T18:20:41.445096Z", - "shell.execute_reply": "2024-01-16T18:20:41.444650Z" + "iopub.execute_input": "2024-01-17T17:52:13.119885Z", + "iopub.status.busy": "2024-01-17T17:52:13.119681Z", + "iopub.status.idle": "2024-01-17T17:52:13.127900Z", + "shell.execute_reply": "2024-01-17T17:52:13.127383Z" } }, "outputs": [ @@ -2818,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.447274Z", - "iopub.status.busy": "2024-01-16T18:20:41.446816Z", - "iopub.status.idle": "2024-01-16T18:20:41.634820Z", - "shell.execute_reply": "2024-01-16T18:20:41.634364Z" + "iopub.execute_input": "2024-01-17T17:52:13.130018Z", + "iopub.status.busy": "2024-01-17T17:52:13.129834Z", + "iopub.status.idle": "2024-01-17T17:52:13.323481Z", + "shell.execute_reply": "2024-01-17T17:52:13.322819Z" } }, "outputs": [ @@ -2861,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.637243Z", - "iopub.status.busy": "2024-01-16T18:20:41.636801Z", - "iopub.status.idle": "2024-01-16T18:20:41.641327Z", - "shell.execute_reply": "2024-01-16T18:20:41.640829Z" + "iopub.execute_input": "2024-01-17T17:52:13.325960Z", + "iopub.status.busy": "2024-01-17T17:52:13.325754Z", + "iopub.status.idle": "2024-01-17T17:52:13.330514Z", + "shell.execute_reply": "2024-01-17T17:52:13.329899Z" }, "nbsphinx": "hidden" }, @@ -2901,86 +2893,106 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ec1914538341238b162e9865cb6c84": { + "00484bc43f3842418c8c184e2abe97bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_60cc83feeaf44c12a719dd3508ebc70d", - "placeholder": "​", - "style": "IPY_MODEL_4346d7cc8d4241458d55a20e2a3d0b7e", - "value": "Map (num_proc=4): 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "0325d2955b93490791fb6f6a6651f083": { + "012ce53e9ae1456484a26ed1f4cea9cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02f3844c20314b10980479813fca0c8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2939a97c7cf45a1b447ce953b794405", - "placeholder": "​", - "style": "IPY_MODEL_8dae2e69fc9f40519bf92e500df3f6d5", - "value": "100%" + "layout": "IPY_MODEL_48a3fab7236e44bc8914cfbe1ddffe31", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f6ed1fc5be74f059e67d03dc53e7279", + "value": 60000.0 } }, - "03707ead2a3046f595e77370955c0e67": { + "047740b6c804409495749f4c8350c122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_00ec1914538341238b162e9865cb6c84", - "IPY_MODEL_37bbc3a4a224472fa26566ef88b7037b", - "IPY_MODEL_bd55b58158bc4300a6249b7734c542d2" - ], - "layout": "IPY_MODEL_d5ff25bf1b664f7ba30a3ef36085b3d1" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_721389c714804214a8bad33c219e610c", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4154f5a2f2fc44f8aabbc435cf3ae132", + "value": 1.0 } }, - "0440fce6015546c9afec1289df03d34b": { + "088b801a3ad44b83aeadc8684c712ee3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d7549e257bc4e968cb5eaa91f3bdf51", + "placeholder": "​", + "style": "IPY_MODEL_d0ff8e31e8544df784c1da094fcdee49", + "value": " 2/2 [00:00<00:00, 300.04it/s]" } }, - "0729958302a74152bd92f48834ebe27c": { + "0fafa6342fdd42968dd30882c6ee4c19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3032,60 +3044,7 @@ "width": null } }, - "0dd0f772d6044aa387e2e1f8175c54ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0defe72ac3f54ed59165d32126c59303": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_272c8bebd0dd4881bcd693562e0f41e2", - "IPY_MODEL_9103ef3d70b147019a21b23de4a9f5f0", - "IPY_MODEL_5b137d643e1d43ffb4a42bdf6a3d11f0" - ], - "layout": "IPY_MODEL_a0c23618196b43f499832226ad663de2" - } - }, - "0e05ae2f485547259b107e4f3bd66066": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0febc3768c044db4806712166d22bf5e": { + "10e100a0644e40188295f9538270376a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3137,7 +3096,7 @@ "width": null } }, - "106055570b234d78b9eb202c3b87afee": { + "11338e9520944ab0b6088713cdbdbeb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3189,7 +3148,44 @@ "width": null } }, - "177e49590d954279b13cf032c7fba79e": { + "138e8569d73c4286b12b8b4a8491a5eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55f19c97d03d4dc988684a1f948c11d3", + "IPY_MODEL_047740b6c804409495749f4c8350c122", + "IPY_MODEL_e620c04c5e9c438dbb19e8a0e7f1cced" + ], + "layout": "IPY_MODEL_7f9c53436f43411598a1141836d72fcc" + } + }, + "170c4abcb1d641c2b9264b3885807a5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "192cc2fb9ec9434c88d85a3e7e47ee32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3238,10 +3234,25 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "19dba4b33de0448c881018407726475e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "186de098e4fe42cba02198058794a103": { + "1e2664d26dec493caeb01285db805670": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3293,7 +3304,45 @@ "width": null } }, - "24b25b2277454d01bf17a696e31b9309": { + "20c0511ac79d40b1ba77fc180f7de46a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "212e8f8dbed64e4090645ba650c4c40d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b41509348714dbbb42d2e55ed4a35fd", + "IPY_MODEL_9d4fdbdcbadd4ab387f294a6f19cdd33", + "IPY_MODEL_82aa21bbbeb94afbb37bfd471a242368" + ], + "layout": "IPY_MODEL_2204458deea048748a121c56aaf56059" + } + }, + "2204458deea048748a121c56aaf56059": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3345,7 +3394,7 @@ "width": null } }, - "272c8bebd0dd4881bcd693562e0f41e2": { + "235693a9bd704ba5a114c1d746c464aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3360,28 +3409,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ce701a2fe5b54d5db9d0c80b333ec6c0", + "layout": "IPY_MODEL_8fceea0f9fe645bba1b05e30cfc3fe3d", "placeholder": "​", - "style": "IPY_MODEL_3be7226bc4cd4c0c997e76b59ccef963", + "style": "IPY_MODEL_6f788c275b5b41c78b6dbdf549c88509", "value": "Downloading data: 100%" } }, - "29d83a407bb74be4aa86e11e876ca5a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2b131449546f44908690da4f963613bb": { + "2c75da38e3c241c0ba009dee5ee35b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3397,123 +3431,36 @@ "description_width": "" } }, - "2b15bc453a344195b98818321d66bdd5": { + "2cd6991966a149ad8c8253c8a436fcb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_96e30dc3b4bc4ff2bd7509aba94f4ea0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7b93eb95a052411283d96001daa87620", - "value": 60000.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aafd769665844ac390a612faf9e8d648", + "IPY_MODEL_97a64fd255f449e9bcc4a9408c8928fb", + "IPY_MODEL_8141ae3891d448edb8c921ed480fe9ef" + ], + "layout": "IPY_MODEL_0fafa6342fdd42968dd30882c6ee4c19" } }, - "2d5b6dcb06e94114b23dc106d69b9616": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "33f22d7dee1f44a1bcb18d3fc3dfef85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35ed5152390740f5a3450599997c7ca4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa820ace104e4c988fdd079f432c1cc0", - "placeholder": "​", - "style": "IPY_MODEL_6515e9ee86dc450790fc9b67073a7b0a", - "value": "Computing checksums: 100%" - } - }, - "3758cba0a2e7421aaafa0983f21ec9a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d67d6436c5104eb4b30412a9900668bf", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e05ae2f485547259b107e4f3bd66066", - "value": 1.0 - } - }, - "37bbc3a4a224472fa26566ef88b7037b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3bb459d1c23d45729ecfa4c483326ce4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d5b6dcb06e94114b23dc106d69b9616", - "value": 60000.0 - } - }, - "3b4787d6b66e4fceb0698f6618c8d93a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -3558,59 +3505,38 @@ "width": null } }, - "3b97d4f99f984e49a827168e0b594422": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4154f5a2f2fc44f8aabbc435cf3ae132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3bb459d1c23d45729ecfa4c483326ce4": { + "4784dddc37b64d8faafce69faa22c5f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48a3fab7236e44bc8914cfbe1ddffe31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3662,83 +3588,28 @@ "width": null } }, - "3be7226bc4cd4c0c997e76b59ccef963": { + "53549762976447c4be4bdb4a7c045d9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4039d97f5e8c46ccb8fb9904399c3dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df208a463d7a4f43b7ecf89e6c3827c4", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_61b04e22b015441d954e585126bcc9cc", - "value": 1.0 - } - }, - "4346d7cc8d4241458d55a20e2a3d0b7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "483fbb8e47af4cf39d4e17cc29673fd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_35ed5152390740f5a3450599997c7ca4", - "IPY_MODEL_558c281446904f0cb415dc94fa8dc27a", - "IPY_MODEL_5d1fa10a86b94da4bd34a932e96b031b" - ], - "layout": "IPY_MODEL_e19f1b6415534e41958b05129284f139" + "layout": "IPY_MODEL_1e2664d26dec493caeb01285db805670", + "placeholder": "​", + "style": "IPY_MODEL_c394d286fe594da2bafc29756b113367", + "value": " 60000/60000 [00:11<00:00, 6162.51 examples/s]" } }, - "50dc3ef321e24ab7ad8d390e5cbde40b": { + "554a8ef753234925ba5770314b084d56": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3790,46 +3661,7 @@ "width": null } }, - "53ca8a7df1d941b4b9213df932aa7567": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "558c281446904f0cb415dc94fa8dc27a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_819dfd25a64043e69af05bb77fb3b99b", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7cc1412d2f544df28d3680e03c0a9045", - "value": 2.0 - } - }, - "5b137d643e1d43ffb4a42bdf6a3d11f0": { + "55f19c97d03d4dc988684a1f948c11d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3844,34 +3676,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a6b1fb58cac048ddb6d1e51647a3c6ca", + "layout": "IPY_MODEL_a53af80455b84a7287ce21d2a8f1d621", "placeholder": "​", - "style": "IPY_MODEL_0dd0f772d6044aa387e2e1f8175c54ab", - "value": " 30.9M/30.9M [00:00<00:00, 91.8MB/s]" + "style": "IPY_MODEL_19dba4b33de0448c881018407726475e", + "value": "Generating train split: " } }, - "5d1fa10a86b94da4bd34a932e96b031b": { + "598da123a65b4ee48e0631a58c583c22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_50dc3ef321e24ab7ad8d390e5cbde40b", - "placeholder": "​", - "style": "IPY_MODEL_0440fce6015546c9afec1289df03d34b", - "value": " 2/2 [00:00<00:00, 346.69it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b70c3b20c02f447796fbf1a9a2e134cc", + "IPY_MODEL_02f3844c20314b10980479813fca0c8f", + "IPY_MODEL_f7a547a1cc4746738ddd6d8ad82ddf95" + ], + "layout": "IPY_MODEL_c63d98948d25442e80e7fdfa492eb0de" } }, - "60cc83feeaf44c12a719dd3508ebc70d": { + "62a1cb85b32c4f698880ff1180fe2707": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3923,53 +3756,29 @@ "width": null } }, - "617473bdcf7a4e9cb5efab229bb49c4e": { + "63f8d37ac2ee41b8b8a094f0ac086ed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "61b04e22b015441d954e585126bcc9cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6515e9ee86dc450790fc9b67073a7b0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dada9a8c29694cbdaef3690eab4f1f34", + "IPY_MODEL_a37d761ffa944640ad974508a4b3011c", + "IPY_MODEL_53549762976447c4be4bdb4a7c045d9a" + ], + "layout": "IPY_MODEL_554a8ef753234925ba5770314b084d56" } }, - "659ba8dff624402e8011ef915c770182": { + "675e239fe91e46f88302492afd1ed474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3985,7 +3794,7 @@ "description_width": "" } }, - "721074f8da064ec3a0351d0bc70ca7e8": { + "6d06f56153a84a64b540a069e52ad2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4037,69 +3846,7 @@ "width": null } }, - "7288ae4291bf4170949e6bf435d33f01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "76e19d94cc9c4c3182d766ab0c7a6dc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b93eb95a052411283d96001daa87620": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7cc1412d2f544df28d3680e03c0a9045": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "819dfd25a64043e69af05bb77fb3b99b": { + "6d7549e257bc4e968cb5eaa91f3bdf51": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4151,111 +3898,7 @@ "width": null } }, - "88011db5921c4bf99f950c37e4ef4adc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a5320019fd944931844543c042742d96", - "IPY_MODEL_4039d97f5e8c46ccb8fb9904399c3dff", - "IPY_MODEL_b2ff003386fa47c58e37c006d268ae77" - ], - "layout": "IPY_MODEL_d417c024ea9c41e6af120caeaa9392b4" - } - }, - "8b4d683ee6dc42839093764c05d01557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98eb77f85fdc4618964fe50a07d0b40f", - "IPY_MODEL_aad7e5b2feb74ab5aad8b81263862d92", - "IPY_MODEL_8b74a19dc2264bfca5b7710313274bfe" - ], - "layout": "IPY_MODEL_3b97d4f99f984e49a827168e0b594422" - } - }, - "8b74a19dc2264bfca5b7710313274bfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d5e212f8859e4d679e2d13c477cb82a3", - "placeholder": "​", - "style": "IPY_MODEL_94f0f9710132489ea6c9da1a851844ce", - "value": " 5.18M/5.18M [00:00<00:00, 54.6MB/s]" - } - }, - "8dae2e69fc9f40519bf92e500df3f6d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9103ef3d70b147019a21b23de4a9f5f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d21967875ab140e598f26e4f48247e40", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_659ba8dff624402e8011ef915c770182", - "value": 30931277.0 - } - }, - "94f0f9710132489ea6c9da1a851844ce": { + "6f788c275b5b41c78b6dbdf549c88509": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4270,7 +3913,7 @@ "description_width": "" } }, - "96e30dc3b4bc4ff2bd7509aba94f4ea0": { + "721389c714804214a8bad33c219e610c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4319,31 +3962,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "98eb77f85fdc4618964fe50a07d0b40f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db121d8d66704795b9581beb380cd2ad", - "placeholder": "​", - "style": "IPY_MODEL_76e19d94cc9c4c3182d766ab0c7a6dc0", - "value": "Downloading data: 100%" + "width": "20px" } }, - "a0c23618196b43f499832226ad663de2": { + "744def1450374b2980598b6ada095c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4395,7 +4017,58 @@ "width": null } }, - "a2939a97c7cf45a1b447ce953b794405": { + "78864596e2c446808c02ea689298c872": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b41509348714dbbb42d2e55ed4a35fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b419c60979de402db8cca25a7a7ea3d2", + "placeholder": "​", + "style": "IPY_MODEL_4784dddc37b64d8faafce69faa22c5f1", + "value": "Generating test split: " + } + }, + "7d525a804306436ea7215c1fa6c47ab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7f9c53436f43411598a1141836d72fcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4447,7 +4120,7 @@ "width": null } }, - "a5320019fd944931844543c042742d96": { + "8141ae3891d448edb8c921ed480fe9ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4462,13 +4135,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0febc3768c044db4806712166d22bf5e", + "layout": "IPY_MODEL_8dca1f8ed8314bc9ae2554fbcd40fdde", "placeholder": "​", - "style": "IPY_MODEL_617473bdcf7a4e9cb5efab229bb49c4e", - "value": "Generating train split: " + "style": "IPY_MODEL_00484bc43f3842418c8c184e2abe97bf", + "value": " 30.9M/30.9M [00:01<00:00, 25.0MB/s]" + } + }, + "82aa21bbbeb94afbb37bfd471a242368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f16dec36b6c455cb6e2933dbd5d2bef", + "placeholder": "​", + "style": "IPY_MODEL_170c4abcb1d641c2b9264b3885807a5c", + "value": " 10000/0 [00:00<00:00, 464675.89 examples/s]" } }, - "a6b1fb58cac048ddb6d1e51647a3c6ca": { + "84c587358e7a45549493cd0e2fd0171d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4520,110 +4214,7 @@ "width": null } }, - "a98216727a8343779027d9b0dca33af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0325d2955b93490791fb6f6a6651f083", - "IPY_MODEL_2b15bc453a344195b98818321d66bdd5", - "IPY_MODEL_f45369238740438089a6fd0fcef6c732" - ], - "layout": "IPY_MODEL_721074f8da064ec3a0351d0bc70ca7e8" - } - }, - "aad7e5b2feb74ab5aad8b81263862d92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_106055570b234d78b9eb202c3b87afee", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b131449546f44908690da4f963613bb", - "value": 5175617.0 - } - }, - "b06b547c9dce4b1492b8f403f94f2cee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b1f61e53d24d4416bbf9d627ebb74608": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0729958302a74152bd92f48834ebe27c", - "placeholder": "​", - "style": "IPY_MODEL_29d83a407bb74be4aa86e11e876ca5a6", - "value": " 10000/0 [00:00<00:00, 483348.39 examples/s]" - } - }, - "b2ff003386fa47c58e37c006d268ae77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_186de098e4fe42cba02198058794a103", - "placeholder": "​", - "style": "IPY_MODEL_b06b547c9dce4b1492b8f403f94f2cee", - "value": " 60000/0 [00:00<00:00, 920361.92 examples/s]" - } - }, - "bc6a62bbf5344c9e9ce02f0c0da45680": { + "85aef2353eb44d09925ba1eddd664674": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4638,28 +4229,29 @@ "description_width": "" } }, - "bd55b58158bc4300a6249b7734c542d2": { + "867c9e6e93ab4f0aa2763d003f7e9037": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0cabfa5e2b042f09532c8c3df947ff7", - "placeholder": "​", - "style": "IPY_MODEL_bc6a62bbf5344c9e9ce02f0c0da45680", - "value": " 60000/60000 [00:12<00:00, 6622.64 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_235693a9bd704ba5a114c1d746c464aa", + "IPY_MODEL_a236404bf6854af28abc405f2a9af647", + "IPY_MODEL_b27bed368ff84315b56e382bdd305156" + ], + "layout": "IPY_MODEL_f18822a273ed458298737745e5b0d3a9" } }, - "c0cabfa5e2b042f09532c8c3df947ff7": { + "8dca1f8ed8314bc9ae2554fbcd40fdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4711,7 +4303,7 @@ "width": null } }, - "ce701a2fe5b54d5db9d0c80b333ec6c0": { + "8fceea0f9fe645bba1b05e30cfc3fe3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4763,7 +4355,7 @@ "width": null } }, - "d21967875ab140e598f26e4f48247e40": { + "91ac4df283bf4489a47ffb5d65753374": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4815,7 +4407,7 @@ "width": null } }, - "d417c024ea9c41e6af120caeaa9392b4": { + "937d8b75258e4158b70cebcf36354940": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4867,7 +4459,55 @@ "width": null } }, - "d5e212f8859e4d679e2d13c477cb82a3": { + "97a64fd255f449e9bcc4a9408c8928fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_abc91fdefd104f3aa9e086fbec0e8dc2", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d859c6c8684d4879abc354c3da7b4a68", + "value": 30931277.0 + } + }, + "9d4fdbdcbadd4ab387f294a6f19cdd33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_192cc2fb9ec9434c88d85a3e7e47ee32", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c75da38e3c241c0ba009dee5ee35b4f", + "value": 1.0 + } + }, + "9f16dec36b6c455cb6e2933dbd5d2bef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4919,7 +4559,86 @@ "width": null } }, - "d5ff25bf1b664f7ba30a3ef36085b3d1": { + "9f6ed1fc5be74f059e67d03dc53e7279": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1663391dc224171b781d2df0286325b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a236404bf6854af28abc405f2a9af647": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33f22d7dee1f44a1bcb18d3fc3dfef85", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbb05af406a24d9ba3449095554be419", + "value": 5175617.0 + } + }, + "a37d761ffa944640ad974508a4b3011c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f494cda750f04862a69d0c9b6ebc3e63", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_675e239fe91e46f88302492afd1ed474", + "value": 60000.0 + } + }, + "a53af80455b84a7287ce21d2a8f1d621": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4971,7 +4690,28 @@ "width": null } }, - "d67d6436c5104eb4b30412a9900668bf": { + "aafd769665844ac390a612faf9e8d648": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62a1cb85b32c4f698880ff1180fe2707", + "placeholder": "​", + "style": "IPY_MODEL_d7adeccb09754028b7741cc2d7610321", + "value": "Downloading data: 100%" + } + }, + "abc91fdefd104f3aa9e086fbec0e8dc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5020,10 +4760,31 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "b27bed368ff84315b56e382bdd305156": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10e100a0644e40188295f9538270376a", + "placeholder": "​", + "style": "IPY_MODEL_7d525a804306436ea7215c1fa6c47ab2", + "value": " 5.18M/5.18M [00:01<00:00, 3.89MB/s]" } }, - "db121d8d66704795b9581beb380cd2ad": { + "b419c60979de402db8cca25a7a7ea3d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5075,7 +4836,81 @@ "width": null } }, - "df208a463d7a4f43b7ecf89e6c3827c4": { + "b70c3b20c02f447796fbf1a9a2e134cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91ac4df283bf4489a47ffb5d65753374", + "placeholder": "​", + "style": "IPY_MODEL_78864596e2c446808c02ea689298c872", + "value": "100%" + } + }, + "bbb05af406a24d9ba3449095554be419": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be8914c9cb0a4ac2b3bb62ed13e92f6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e169aec8c4ac4ad7b19d1373b34d0c17", + "IPY_MODEL_d48126eab93e4281b2b9019a193a81d9", + "IPY_MODEL_088b801a3ad44b83aeadc8684c712ee3" + ], + "layout": "IPY_MODEL_6d06f56153a84a64b540a069e52ad2ee" + } + }, + "c394d286fe594da2bafc29756b113367": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c63d98948d25442e80e7fdfa492eb0de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5124,10 +4959,40 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "c79a769381a94cedb1c10b4d9d579438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0ff8e31e8544df784c1da094fcdee49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e19f1b6415534e41958b05129284f139": { + "d11f98d661db4eb39ac17b58f0dbc0c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5179,29 +5044,62 @@ "width": null } }, - "e78a910f7b04430ba9e6ad8321f0123e": { + "d48126eab93e4281b2b9019a193a81d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f132d516a53d4855840bab07ebe90d3e", - "IPY_MODEL_3758cba0a2e7421aaafa0983f21ec9a5", - "IPY_MODEL_b1f61e53d24d4416bbf9d627ebb74608" - ], - "layout": "IPY_MODEL_3b4787d6b66e4fceb0698f6618c8d93a" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_744def1450374b2980598b6ada095c0a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_20c0511ac79d40b1ba77fc180f7de46a", + "value": 2.0 + } + }, + "d7adeccb09754028b7741cc2d7610321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d859c6c8684d4879abc354c3da7b4a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f132d516a53d4855840bab07ebe90d3e": { + "dada9a8c29694cbdaef3690eab4f1f34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5216,13 +5114,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_24b25b2277454d01bf17a696e31b9309", + "layout": "IPY_MODEL_11338e9520944ab0b6088713cdbdbeb5", "placeholder": "​", - "style": "IPY_MODEL_53ca8a7df1d941b4b9213df932aa7567", - "value": "Generating test split: " + "style": "IPY_MODEL_85aef2353eb44d09925ba1eddd664674", + "value": "Map (num_proc=4): 100%" + } + }, + "e169aec8c4ac4ad7b19d1373b34d0c17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_937d8b75258e4158b70cebcf36354940", + "placeholder": "​", + "style": "IPY_MODEL_012ce53e9ae1456484a26ed1f4cea9cc", + "value": "Computing checksums: 100%" } }, - "f45369238740438089a6fd0fcef6c732": { + "e620c04c5e9c438dbb19e8a0e7f1cced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5237,13 +5156,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_177e49590d954279b13cf032c7fba79e", + "layout": "IPY_MODEL_84c587358e7a45549493cd0e2fd0171d", "placeholder": "​", - "style": "IPY_MODEL_7288ae4291bf4170949e6bf435d33f01", - "value": " 60000/60000 [00:34<00:00, 1795.17it/s]" + "style": "IPY_MODEL_c79a769381a94cedb1c10b4d9d579438", + "value": " 60000/0 [00:00<00:00, 957610.94 examples/s]" + } + }, + "f18822a273ed458298737745e5b0d3a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fa820ace104e4c988fdd079f432c1cc0": { + "f494cda750f04862a69d0c9b6ebc3e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5294,6 +5265,27 @@ "visibility": null, "width": null } + }, + "f7a547a1cc4746738ddd6d8ad82ddf95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d11f98d661db4eb39ac17b58f0dbc0c5", + "placeholder": "​", + "style": "IPY_MODEL_a1663391dc224171b781d2df0286325b", + "value": " 60000/60000 [00:34<00:00, 1794.67it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 30711a4b6..6ec0b9f27 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:47.662417Z", - "iopub.status.busy": "2024-01-16T18:20:47.661900Z", - "iopub.status.idle": "2024-01-16T18:20:48.738479Z", - "shell.execute_reply": "2024-01-16T18:20:48.737880Z" + "iopub.execute_input": "2024-01-17T17:52:18.751130Z", + "iopub.status.busy": "2024-01-17T17:52:18.750664Z", + "iopub.status.idle": "2024-01-17T17:52:19.838391Z", + "shell.execute_reply": "2024-01-17T17:52:19.837783Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:48.741600Z", - "iopub.status.busy": "2024-01-16T18:20:48.740918Z", - "iopub.status.idle": "2024-01-16T18:20:49.010042Z", - "shell.execute_reply": "2024-01-16T18:20:49.009355Z" + "iopub.execute_input": "2024-01-17T17:52:19.841329Z", + "iopub.status.busy": "2024-01-17T17:52:19.840861Z", + "iopub.status.idle": "2024-01-17T17:52:20.110709Z", + "shell.execute_reply": "2024-01-17T17:52:20.110096Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:49.013100Z", - "iopub.status.busy": "2024-01-16T18:20:49.012772Z", - "iopub.status.idle": "2024-01-16T18:20:49.025153Z", - "shell.execute_reply": "2024-01-16T18:20:49.024634Z" + "iopub.execute_input": "2024-01-17T17:52:20.113630Z", + "iopub.status.busy": "2024-01-17T17:52:20.113240Z", + "iopub.status.idle": "2024-01-17T17:52:20.125618Z", + "shell.execute_reply": "2024-01-17T17:52:20.125121Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:49.027397Z", - "iopub.status.busy": "2024-01-16T18:20:49.027096Z", - "iopub.status.idle": "2024-01-16T18:20:49.257137Z", - "shell.execute_reply": "2024-01-16T18:20:49.256476Z" + "iopub.execute_input": "2024-01-17T17:52:20.128113Z", + "iopub.status.busy": "2024-01-17T17:52:20.127743Z", + "iopub.status.idle": "2024-01-17T17:52:20.360603Z", + "shell.execute_reply": "2024-01-17T17:52:20.359938Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:49.259927Z", - "iopub.status.busy": "2024-01-16T18:20:49.259560Z", - "iopub.status.idle": "2024-01-16T18:20:49.285691Z", - "shell.execute_reply": "2024-01-16T18:20:49.285211Z" + "iopub.execute_input": "2024-01-17T17:52:20.363457Z", + "iopub.status.busy": "2024-01-17T17:52:20.363036Z", + "iopub.status.idle": "2024-01-17T17:52:20.389843Z", + "shell.execute_reply": "2024-01-17T17:52:20.389284Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:49.288090Z", - "iopub.status.busy": "2024-01-16T18:20:49.287723Z", - "iopub.status.idle": "2024-01-16T18:20:50.586317Z", - "shell.execute_reply": "2024-01-16T18:20:50.585587Z" + "iopub.execute_input": "2024-01-17T17:52:20.392488Z", + "iopub.status.busy": "2024-01-17T17:52:20.392057Z", + "iopub.status.idle": "2024-01-17T17:52:21.709291Z", + "shell.execute_reply": "2024-01-17T17:52:21.708566Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:50.589267Z", - "iopub.status.busy": "2024-01-16T18:20:50.588623Z", - "iopub.status.idle": "2024-01-16T18:20:50.613477Z", - "shell.execute_reply": "2024-01-16T18:20:50.612939Z" + "iopub.execute_input": "2024-01-17T17:52:21.712206Z", + "iopub.status.busy": "2024-01-17T17:52:21.711642Z", + "iopub.status.idle": "2024-01-17T17:52:21.736430Z", + "shell.execute_reply": "2024-01-17T17:52:21.735875Z" }, "scrolled": true }, @@ -525,15 +525,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.4643\n", + "Overall dataset quality in terms of this issue: 0.3454\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "147 True 0.050286\n", - "10 True 0.065420\n", - "249 True 0.109420\n", - "132 True 0.111687\n", - "189 True 0.115403\n", + "147 True 0.014051\n", + "10 True 0.020451\n", + "249 True 0.042594\n", + "132 True 0.043859\n", + "189 True 0.045954\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:50.615695Z", - "iopub.status.busy": "2024-01-16T18:20:50.615492Z", - "iopub.status.idle": "2024-01-16T18:20:51.497301Z", - "shell.execute_reply": "2024-01-16T18:20:51.496643Z" + "iopub.execute_input": "2024-01-17T17:52:21.738883Z", + "iopub.status.busy": "2024-01-17T17:52:21.738635Z", + "iopub.status.idle": "2024-01-17T17:52:22.621589Z", + "shell.execute_reply": "2024-01-17T17:52:22.620835Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.499986Z", - "iopub.status.busy": "2024-01-16T18:20:51.499585Z", - "iopub.status.idle": "2024-01-16T18:20:51.514066Z", - "shell.execute_reply": "2024-01-16T18:20:51.513527Z" + "iopub.execute_input": "2024-01-17T17:52:22.624392Z", + "iopub.status.busy": "2024-01-17T17:52:22.624099Z", + "iopub.status.idle": "2024-01-17T17:52:22.639382Z", + "shell.execute_reply": "2024-01-17T17:52:22.638723Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.516626Z", - "iopub.status.busy": "2024-01-16T18:20:51.516125Z", - "iopub.status.idle": "2024-01-16T18:20:51.601830Z", - "shell.execute_reply": "2024-01-16T18:20:51.601107Z" + "iopub.execute_input": "2024-01-17T17:52:22.642040Z", + "iopub.status.busy": "2024-01-17T17:52:22.641546Z", + "iopub.status.idle": "2024-01-17T17:52:22.725840Z", + "shell.execute_reply": "2024-01-17T17:52:22.725137Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.604579Z", - "iopub.status.busy": "2024-01-16T18:20:51.604141Z", - "iopub.status.idle": "2024-01-16T18:20:51.808350Z", - "shell.execute_reply": "2024-01-16T18:20:51.807725Z" + "iopub.execute_input": "2024-01-17T17:52:22.728745Z", + "iopub.status.busy": "2024-01-17T17:52:22.728231Z", + "iopub.status.idle": "2024-01-17T17:52:22.931661Z", + "shell.execute_reply": "2024-01-17T17:52:22.930875Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.811229Z", - "iopub.status.busy": "2024-01-16T18:20:51.810631Z", - "iopub.status.idle": "2024-01-16T18:20:51.828444Z", - "shell.execute_reply": "2024-01-16T18:20:51.827851Z" + "iopub.execute_input": "2024-01-17T17:52:22.934364Z", + "iopub.status.busy": "2024-01-17T17:52:22.934149Z", + "iopub.status.idle": "2024-01-17T17:52:22.952201Z", + "shell.execute_reply": "2024-01-17T17:52:22.951591Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.830942Z", - "iopub.status.busy": "2024-01-16T18:20:51.830594Z", - "iopub.status.idle": "2024-01-16T18:20:51.841047Z", - "shell.execute_reply": "2024-01-16T18:20:51.840469Z" + "iopub.execute_input": "2024-01-17T17:52:22.954822Z", + "iopub.status.busy": "2024-01-17T17:52:22.954442Z", + "iopub.status.idle": "2024-01-17T17:52:22.964421Z", + "shell.execute_reply": "2024-01-17T17:52:22.963822Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.843570Z", - "iopub.status.busy": "2024-01-16T18:20:51.843221Z", - "iopub.status.idle": "2024-01-16T18:20:51.937426Z", - "shell.execute_reply": "2024-01-16T18:20:51.936781Z" + "iopub.execute_input": "2024-01-17T17:52:22.966979Z", + "iopub.status.busy": "2024-01-17T17:52:22.966604Z", + "iopub.status.idle": "2024-01-17T17:52:23.068881Z", + "shell.execute_reply": "2024-01-17T17:52:23.068050Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:51.940436Z", - "iopub.status.busy": "2024-01-16T18:20:51.939850Z", - "iopub.status.idle": "2024-01-16T18:20:52.078795Z", - "shell.execute_reply": "2024-01-16T18:20:52.078084Z" + "iopub.execute_input": "2024-01-17T17:52:23.071998Z", + "iopub.status.busy": "2024-01-17T17:52:23.071418Z", + "iopub.status.idle": "2024-01-17T17:52:23.213013Z", + "shell.execute_reply": "2024-01-17T17:52:23.212290Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.081669Z", - "iopub.status.busy": "2024-01-16T18:20:52.081237Z", - "iopub.status.idle": "2024-01-16T18:20:52.086085Z", - "shell.execute_reply": "2024-01-16T18:20:52.085573Z" + "iopub.execute_input": "2024-01-17T17:52:23.215803Z", + "iopub.status.busy": "2024-01-17T17:52:23.215537Z", + "iopub.status.idle": "2024-01-17T17:52:23.219794Z", + "shell.execute_reply": "2024-01-17T17:52:23.219188Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.088528Z", - "iopub.status.busy": "2024-01-16T18:20:52.088045Z", - "iopub.status.idle": "2024-01-16T18:20:52.092973Z", - "shell.execute_reply": "2024-01-16T18:20:52.092404Z" + "iopub.execute_input": "2024-01-17T17:52:23.222329Z", + "iopub.status.busy": "2024-01-17T17:52:23.221838Z", + "iopub.status.idle": "2024-01-17T17:52:23.226518Z", + "shell.execute_reply": "2024-01-17T17:52:23.225907Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.095377Z", - "iopub.status.busy": "2024-01-16T18:20:52.094919Z", - "iopub.status.idle": "2024-01-16T18:20:52.134211Z", - "shell.execute_reply": "2024-01-16T18:20:52.133692Z" + "iopub.execute_input": "2024-01-17T17:52:23.228782Z", + "iopub.status.busy": "2024-01-17T17:52:23.228464Z", + "iopub.status.idle": "2024-01-17T17:52:23.268085Z", + "shell.execute_reply": "2024-01-17T17:52:23.267521Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.136524Z", - "iopub.status.busy": "2024-01-16T18:20:52.136190Z", - "iopub.status.idle": "2024-01-16T18:20:52.184024Z", - "shell.execute_reply": "2024-01-16T18:20:52.183398Z" + "iopub.execute_input": "2024-01-17T17:52:23.270538Z", + "iopub.status.busy": "2024-01-17T17:52:23.270157Z", + "iopub.status.idle": "2024-01-17T17:52:23.316747Z", + "shell.execute_reply": "2024-01-17T17:52:23.316102Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.186356Z", - "iopub.status.busy": "2024-01-16T18:20:52.186006Z", - "iopub.status.idle": "2024-01-16T18:20:52.295731Z", - "shell.execute_reply": "2024-01-16T18:20:52.294941Z" + "iopub.execute_input": "2024-01-17T17:52:23.319157Z", + "iopub.status.busy": "2024-01-17T17:52:23.318801Z", + "iopub.status.idle": "2024-01-17T17:52:23.423167Z", + "shell.execute_reply": "2024-01-17T17:52:23.422385Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.299238Z", - "iopub.status.busy": "2024-01-16T18:20:52.298639Z", - "iopub.status.idle": "2024-01-16T18:20:52.394306Z", - "shell.execute_reply": "2024-01-16T18:20:52.393606Z" + "iopub.execute_input": "2024-01-17T17:52:23.426239Z", + "iopub.status.busy": "2024-01-17T17:52:23.425971Z", + "iopub.status.idle": "2024-01-17T17:52:23.531138Z", + "shell.execute_reply": "2024-01-17T17:52:23.530431Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.397194Z", - "iopub.status.busy": "2024-01-16T18:20:52.396647Z", - "iopub.status.idle": "2024-01-16T18:20:52.595620Z", - "shell.execute_reply": "2024-01-16T18:20:52.594995Z" + "iopub.execute_input": "2024-01-17T17:52:23.533826Z", + "iopub.status.busy": "2024-01-17T17:52:23.533545Z", + "iopub.status.idle": "2024-01-17T17:52:23.736836Z", + "shell.execute_reply": "2024-01-17T17:52:23.736052Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.598029Z", - "iopub.status.busy": "2024-01-16T18:20:52.597823Z", - "iopub.status.idle": "2024-01-16T18:20:52.804484Z", - "shell.execute_reply": "2024-01-16T18:20:52.803851Z" + "iopub.execute_input": "2024-01-17T17:52:23.739630Z", + "iopub.status.busy": "2024-01-17T17:52:23.739234Z", + "iopub.status.idle": "2024-01-17T17:52:23.949936Z", + "shell.execute_reply": "2024-01-17T17:52:23.949268Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.807274Z", - "iopub.status.busy": "2024-01-16T18:20:52.806909Z", - "iopub.status.idle": "2024-01-16T18:20:52.813628Z", - "shell.execute_reply": "2024-01-16T18:20:52.813023Z" + "iopub.execute_input": "2024-01-17T17:52:23.952946Z", + "iopub.status.busy": "2024-01-17T17:52:23.952398Z", + "iopub.status.idle": "2024-01-17T17:52:23.958723Z", + "shell.execute_reply": "2024-01-17T17:52:23.958193Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:52.815909Z", - "iopub.status.busy": "2024-01-16T18:20:52.815605Z", - "iopub.status.idle": "2024-01-16T18:20:53.028859Z", - "shell.execute_reply": "2024-01-16T18:20:53.028148Z" + "iopub.execute_input": "2024-01-17T17:52:23.961265Z", + "iopub.status.busy": "2024-01-17T17:52:23.960780Z", + "iopub.status.idle": "2024-01-17T17:52:24.172199Z", + "shell.execute_reply": "2024-01-17T17:52:24.171550Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:53.031771Z", - "iopub.status.busy": "2024-01-16T18:20:53.031363Z", - "iopub.status.idle": "2024-01-16T18:20:54.102718Z", - "shell.execute_reply": "2024-01-16T18:20:54.102097Z" + "iopub.execute_input": "2024-01-17T17:52:24.174907Z", + "iopub.status.busy": "2024-01-17T17:52:24.174677Z", + "iopub.status.idle": "2024-01-17T17:52:25.249117Z", + "shell.execute_reply": "2024-01-17T17:52:25.248402Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 39ad400f9..ce0a780c2 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:59.894319Z", - "iopub.status.busy": "2024-01-16T18:20:59.894124Z", - "iopub.status.idle": "2024-01-16T18:21:00.926671Z", - "shell.execute_reply": "2024-01-16T18:21:00.925978Z" + "iopub.execute_input": "2024-01-17T17:52:30.192012Z", + "iopub.status.busy": "2024-01-17T17:52:30.191820Z", + "iopub.status.idle": "2024-01-17T17:52:31.225877Z", + "shell.execute_reply": "2024-01-17T17:52:31.225192Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:00.929529Z", - "iopub.status.busy": "2024-01-16T18:21:00.929202Z", - "iopub.status.idle": "2024-01-16T18:21:00.932528Z", - "shell.execute_reply": "2024-01-16T18:21:00.931944Z" + "iopub.execute_input": "2024-01-17T17:52:31.228819Z", + "iopub.status.busy": "2024-01-17T17:52:31.228273Z", + "iopub.status.idle": "2024-01-17T17:52:31.231742Z", + "shell.execute_reply": "2024-01-17T17:52:31.231237Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:00.935122Z", - "iopub.status.busy": "2024-01-16T18:21:00.934752Z", - "iopub.status.idle": "2024-01-16T18:21:00.943247Z", - "shell.execute_reply": "2024-01-16T18:21:00.942657Z" + "iopub.execute_input": "2024-01-17T17:52:31.234133Z", + "iopub.status.busy": "2024-01-17T17:52:31.233846Z", + "iopub.status.idle": "2024-01-17T17:52:31.242113Z", + "shell.execute_reply": "2024-01-17T17:52:31.241569Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:00.945550Z", - "iopub.status.busy": "2024-01-16T18:21:00.945180Z", - "iopub.status.idle": "2024-01-16T18:21:00.992869Z", - "shell.execute_reply": "2024-01-16T18:21:00.992379Z" + "iopub.execute_input": "2024-01-17T17:52:31.244337Z", + "iopub.status.busy": "2024-01-17T17:52:31.243977Z", + "iopub.status.idle": "2024-01-17T17:52:31.292922Z", + "shell.execute_reply": "2024-01-17T17:52:31.292305Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:00.995278Z", - "iopub.status.busy": "2024-01-16T18:21:00.994919Z", - "iopub.status.idle": "2024-01-16T18:21:01.013607Z", - "shell.execute_reply": "2024-01-16T18:21:01.013032Z" + "iopub.execute_input": "2024-01-17T17:52:31.295306Z", + "iopub.status.busy": "2024-01-17T17:52:31.294936Z", + "iopub.status.idle": "2024-01-17T17:52:31.313980Z", + "shell.execute_reply": "2024-01-17T17:52:31.313385Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:01.016004Z", - "iopub.status.busy": "2024-01-16T18:21:01.015543Z", - "iopub.status.idle": "2024-01-16T18:21:01.019569Z", - "shell.execute_reply": "2024-01-16T18:21:01.019029Z" + "iopub.execute_input": "2024-01-17T17:52:31.316421Z", + "iopub.status.busy": "2024-01-17T17:52:31.315969Z", + "iopub.status.idle": "2024-01-17T17:52:31.319882Z", + "shell.execute_reply": "2024-01-17T17:52:31.319394Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:01.021944Z", - "iopub.status.busy": "2024-01-16T18:21:01.021745Z", - "iopub.status.idle": "2024-01-16T18:21:01.050539Z", - "shell.execute_reply": "2024-01-16T18:21:01.050064Z" + "iopub.execute_input": "2024-01-17T17:52:31.322483Z", + "iopub.status.busy": "2024-01-17T17:52:31.322023Z", + "iopub.status.idle": "2024-01-17T17:52:31.350565Z", + "shell.execute_reply": "2024-01-17T17:52:31.350029Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:01.052636Z", - "iopub.status.busy": "2024-01-16T18:21:01.052439Z", - "iopub.status.idle": "2024-01-16T18:21:01.079660Z", - "shell.execute_reply": "2024-01-16T18:21:01.079163Z" + "iopub.execute_input": "2024-01-17T17:52:31.353046Z", + "iopub.status.busy": "2024-01-17T17:52:31.352697Z", + "iopub.status.idle": "2024-01-17T17:52:31.380689Z", + "shell.execute_reply": "2024-01-17T17:52:31.380050Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:01.082128Z", - "iopub.status.busy": "2024-01-16T18:21:01.081787Z", - "iopub.status.idle": "2024-01-16T18:21:02.396293Z", - "shell.execute_reply": "2024-01-16T18:21:02.395569Z" + "iopub.execute_input": "2024-01-17T17:52:31.383242Z", + "iopub.status.busy": "2024-01-17T17:52:31.382797Z", + "iopub.status.idle": "2024-01-17T17:52:32.705424Z", + "shell.execute_reply": "2024-01-17T17:52:32.704790Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.399264Z", - "iopub.status.busy": "2024-01-16T18:21:02.398893Z", - "iopub.status.idle": "2024-01-16T18:21:02.406304Z", - "shell.execute_reply": "2024-01-16T18:21:02.405730Z" + "iopub.execute_input": "2024-01-17T17:52:32.708381Z", + "iopub.status.busy": "2024-01-17T17:52:32.707923Z", + "iopub.status.idle": "2024-01-17T17:52:32.715139Z", + "shell.execute_reply": "2024-01-17T17:52:32.714528Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.408692Z", - "iopub.status.busy": "2024-01-16T18:21:02.408282Z", - "iopub.status.idle": "2024-01-16T18:21:02.421869Z", - "shell.execute_reply": "2024-01-16T18:21:02.421315Z" + "iopub.execute_input": "2024-01-17T17:52:32.717611Z", + "iopub.status.busy": "2024-01-17T17:52:32.717142Z", + "iopub.status.idle": "2024-01-17T17:52:32.730722Z", + "shell.execute_reply": "2024-01-17T17:52:32.730108Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.424104Z", - "iopub.status.busy": "2024-01-16T18:21:02.423805Z", - "iopub.status.idle": "2024-01-16T18:21:02.430473Z", - "shell.execute_reply": "2024-01-16T18:21:02.429892Z" + "iopub.execute_input": "2024-01-17T17:52:32.732917Z", + "iopub.status.busy": "2024-01-17T17:52:32.732713Z", + "iopub.status.idle": "2024-01-17T17:52:32.739808Z", + "shell.execute_reply": "2024-01-17T17:52:32.739288Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.432780Z", - "iopub.status.busy": "2024-01-16T18:21:02.432469Z", - "iopub.status.idle": "2024-01-16T18:21:02.435382Z", - "shell.execute_reply": "2024-01-16T18:21:02.434877Z" + "iopub.execute_input": "2024-01-17T17:52:32.742218Z", + "iopub.status.busy": "2024-01-17T17:52:32.742005Z", + "iopub.status.idle": "2024-01-17T17:52:32.744950Z", + "shell.execute_reply": "2024-01-17T17:52:32.744343Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.437701Z", - "iopub.status.busy": "2024-01-16T18:21:02.437243Z", - "iopub.status.idle": "2024-01-16T18:21:02.441380Z", - "shell.execute_reply": "2024-01-16T18:21:02.440763Z" + "iopub.execute_input": "2024-01-17T17:52:32.747449Z", + "iopub.status.busy": "2024-01-17T17:52:32.747029Z", + "iopub.status.idle": "2024-01-17T17:52:32.751609Z", + "shell.execute_reply": "2024-01-17T17:52:32.750972Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.443676Z", - "iopub.status.busy": "2024-01-16T18:21:02.443299Z", - "iopub.status.idle": "2024-01-16T18:21:02.446058Z", - "shell.execute_reply": "2024-01-16T18:21:02.445496Z" + "iopub.execute_input": "2024-01-17T17:52:32.754374Z", + "iopub.status.busy": "2024-01-17T17:52:32.753963Z", + "iopub.status.idle": "2024-01-17T17:52:32.757055Z", + "shell.execute_reply": "2024-01-17T17:52:32.756486Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.448373Z", - "iopub.status.busy": "2024-01-16T18:21:02.448012Z", - "iopub.status.idle": "2024-01-16T18:21:02.452863Z", - "shell.execute_reply": "2024-01-16T18:21:02.452334Z" + "iopub.execute_input": "2024-01-17T17:52:32.759475Z", + "iopub.status.busy": "2024-01-17T17:52:32.759111Z", + "iopub.status.idle": "2024-01-17T17:52:32.764157Z", + "shell.execute_reply": "2024-01-17T17:52:32.763647Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.455097Z", - "iopub.status.busy": "2024-01-16T18:21:02.454802Z", - "iopub.status.idle": "2024-01-16T18:21:02.488214Z", - "shell.execute_reply": "2024-01-16T18:21:02.487738Z" + "iopub.execute_input": "2024-01-17T17:52:32.766614Z", + "iopub.status.busy": "2024-01-17T17:52:32.766249Z", + "iopub.status.idle": "2024-01-17T17:52:32.800242Z", + "shell.execute_reply": "2024-01-17T17:52:32.799718Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:02.490612Z", - "iopub.status.busy": "2024-01-16T18:21:02.490245Z", - "iopub.status.idle": "2024-01-16T18:21:02.495093Z", - "shell.execute_reply": "2024-01-16T18:21:02.494575Z" + "iopub.execute_input": "2024-01-17T17:52:32.802858Z", + "iopub.status.busy": "2024-01-17T17:52:32.802489Z", + "iopub.status.idle": "2024-01-17T17:52:32.807501Z", + "shell.execute_reply": "2024-01-17T17:52:32.806937Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index c63d59cd3..6b417a792 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:07.132923Z", - "iopub.status.busy": "2024-01-16T18:21:07.132392Z", - "iopub.status.idle": "2024-01-16T18:21:08.206337Z", - "shell.execute_reply": "2024-01-16T18:21:08.205730Z" + "iopub.execute_input": "2024-01-17T17:52:38.549090Z", + "iopub.status.busy": "2024-01-17T17:52:38.548898Z", + "iopub.status.idle": "2024-01-17T17:52:39.627165Z", + "shell.execute_reply": "2024-01-17T17:52:39.626496Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:08.209431Z", - "iopub.status.busy": "2024-01-16T18:21:08.208836Z", - "iopub.status.idle": "2024-01-16T18:21:08.497378Z", - "shell.execute_reply": "2024-01-16T18:21:08.496654Z" + "iopub.execute_input": "2024-01-17T17:52:39.630080Z", + "iopub.status.busy": "2024-01-17T17:52:39.629799Z", + "iopub.status.idle": "2024-01-17T17:52:39.916347Z", + "shell.execute_reply": "2024-01-17T17:52:39.915661Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:08.500532Z", - "iopub.status.busy": "2024-01-16T18:21:08.500304Z", - "iopub.status.idle": "2024-01-16T18:21:08.514001Z", - "shell.execute_reply": "2024-01-16T18:21:08.513469Z" + "iopub.execute_input": "2024-01-17T17:52:39.919213Z", + "iopub.status.busy": "2024-01-17T17:52:39.919005Z", + "iopub.status.idle": "2024-01-17T17:52:39.932876Z", + "shell.execute_reply": "2024-01-17T17:52:39.932232Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:08.516358Z", - "iopub.status.busy": "2024-01-16T18:21:08.515990Z", - "iopub.status.idle": "2024-01-16T18:21:11.180220Z", - "shell.execute_reply": "2024-01-16T18:21:11.179524Z" + "iopub.execute_input": "2024-01-17T17:52:39.935378Z", + "iopub.status.busy": "2024-01-17T17:52:39.935014Z", + "iopub.status.idle": "2024-01-17T17:52:42.596002Z", + "shell.execute_reply": "2024-01-17T17:52:42.595347Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:11.182756Z", - "iopub.status.busy": "2024-01-16T18:21:11.182373Z", - "iopub.status.idle": "2024-01-16T18:21:12.769008Z", - "shell.execute_reply": "2024-01-16T18:21:12.768384Z" + "iopub.execute_input": "2024-01-17T17:52:42.598345Z", + "iopub.status.busy": "2024-01-17T17:52:42.598144Z", + "iopub.status.idle": "2024-01-17T17:52:44.159746Z", + "shell.execute_reply": "2024-01-17T17:52:44.159035Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:12.771823Z", - "iopub.status.busy": "2024-01-16T18:21:12.771429Z", - "iopub.status.idle": "2024-01-16T18:21:12.775838Z", - "shell.execute_reply": "2024-01-16T18:21:12.775235Z" + "iopub.execute_input": "2024-01-17T17:52:44.162750Z", + "iopub.status.busy": "2024-01-17T17:52:44.162535Z", + "iopub.status.idle": "2024-01-17T17:52:44.167659Z", + "shell.execute_reply": "2024-01-17T17:52:44.167127Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:12.778203Z", - "iopub.status.busy": "2024-01-16T18:21:12.777833Z", - "iopub.status.idle": "2024-01-16T18:21:14.095732Z", - "shell.execute_reply": "2024-01-16T18:21:14.094999Z" + "iopub.execute_input": "2024-01-17T17:52:44.169914Z", + "iopub.status.busy": "2024-01-17T17:52:44.169714Z", + "iopub.status.idle": "2024-01-17T17:52:45.498454Z", + "shell.execute_reply": "2024-01-17T17:52:45.497759Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:14.098684Z", - "iopub.status.busy": "2024-01-16T18:21:14.098099Z", - "iopub.status.idle": "2024-01-16T18:21:16.916568Z", - "shell.execute_reply": "2024-01-16T18:21:16.915913Z" + "iopub.execute_input": "2024-01-17T17:52:45.501764Z", + "iopub.status.busy": "2024-01-17T17:52:45.500901Z", + "iopub.status.idle": "2024-01-17T17:52:48.275620Z", + "shell.execute_reply": "2024-01-17T17:52:48.274932Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:16.919048Z", - "iopub.status.busy": "2024-01-16T18:21:16.918836Z", - "iopub.status.idle": "2024-01-16T18:21:16.923782Z", - "shell.execute_reply": "2024-01-16T18:21:16.923254Z" + "iopub.execute_input": "2024-01-17T17:52:48.278321Z", + "iopub.status.busy": "2024-01-17T17:52:48.277969Z", + "iopub.status.idle": "2024-01-17T17:52:48.282958Z", + "shell.execute_reply": "2024-01-17T17:52:48.282412Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:16.926178Z", - "iopub.status.busy": "2024-01-16T18:21:16.925827Z", - "iopub.status.idle": "2024-01-16T18:21:16.929978Z", - "shell.execute_reply": "2024-01-16T18:21:16.929361Z" + "iopub.execute_input": "2024-01-17T17:52:48.285205Z", + "iopub.status.busy": "2024-01-17T17:52:48.285003Z", + "iopub.status.idle": "2024-01-17T17:52:48.289083Z", + "shell.execute_reply": "2024-01-17T17:52:48.288533Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:16.932443Z", - "iopub.status.busy": "2024-01-16T18:21:16.932080Z", - "iopub.status.idle": "2024-01-16T18:21:16.935398Z", - "shell.execute_reply": "2024-01-16T18:21:16.934866Z" + "iopub.execute_input": "2024-01-17T17:52:48.291364Z", + "iopub.status.busy": "2024-01-17T17:52:48.291165Z", + "iopub.status.idle": "2024-01-17T17:52:48.294523Z", + "shell.execute_reply": "2024-01-17T17:52:48.293887Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 559ebd1c2..dcdb5d2c3 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:21.869349Z", - "iopub.status.busy": "2024-01-16T18:21:21.869153Z", - "iopub.status.idle": "2024-01-16T18:21:22.947879Z", - "shell.execute_reply": "2024-01-16T18:21:22.947262Z" + "iopub.execute_input": "2024-01-17T17:52:53.263446Z", + "iopub.status.busy": "2024-01-17T17:52:53.263266Z", + "iopub.status.idle": "2024-01-17T17:52:54.352805Z", + "shell.execute_reply": "2024-01-17T17:52:54.352141Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:22.951046Z", - "iopub.status.busy": "2024-01-16T18:21:22.950459Z", - "iopub.status.idle": "2024-01-16T18:21:24.051444Z", - "shell.execute_reply": "2024-01-16T18:21:24.050603Z" + "iopub.execute_input": "2024-01-17T17:52:54.355681Z", + "iopub.status.busy": "2024-01-17T17:52:54.355200Z", + "iopub.status.idle": "2024-01-17T17:52:56.777512Z", + "shell.execute_reply": "2024-01-17T17:52:56.776662Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.054494Z", - "iopub.status.busy": "2024-01-16T18:21:24.054239Z", - "iopub.status.idle": "2024-01-16T18:21:24.057796Z", - "shell.execute_reply": "2024-01-16T18:21:24.057273Z" + "iopub.execute_input": "2024-01-17T17:52:56.780648Z", + "iopub.status.busy": "2024-01-17T17:52:56.780367Z", + "iopub.status.idle": "2024-01-17T17:52:56.784658Z", + "shell.execute_reply": "2024-01-17T17:52:56.783985Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.059947Z", - "iopub.status.busy": "2024-01-16T18:21:24.059758Z", - "iopub.status.idle": "2024-01-16T18:21:24.065615Z", - "shell.execute_reply": "2024-01-16T18:21:24.065147Z" + "iopub.execute_input": "2024-01-17T17:52:56.787121Z", + "iopub.status.busy": "2024-01-17T17:52:56.786770Z", + "iopub.status.idle": "2024-01-17T17:52:56.792886Z", + "shell.execute_reply": "2024-01-17T17:52:56.792389Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.067995Z", - "iopub.status.busy": "2024-01-16T18:21:24.067640Z", - "iopub.status.idle": "2024-01-16T18:21:24.667826Z", - "shell.execute_reply": "2024-01-16T18:21:24.667147Z" + "iopub.execute_input": "2024-01-17T17:52:56.795015Z", + "iopub.status.busy": "2024-01-17T17:52:56.794819Z", + "iopub.status.idle": "2024-01-17T17:52:57.397145Z", + "shell.execute_reply": "2024-01-17T17:52:57.396420Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.671047Z", - "iopub.status.busy": "2024-01-16T18:21:24.670658Z", - "iopub.status.idle": "2024-01-16T18:21:24.676650Z", - "shell.execute_reply": "2024-01-16T18:21:24.676144Z" + "iopub.execute_input": "2024-01-17T17:52:57.400064Z", + "iopub.status.busy": "2024-01-17T17:52:57.399835Z", + "iopub.status.idle": "2024-01-17T17:52:57.406054Z", + "shell.execute_reply": "2024-01-17T17:52:57.405543Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.679026Z", - "iopub.status.busy": "2024-01-16T18:21:24.678690Z", - "iopub.status.idle": "2024-01-16T18:21:24.682886Z", - "shell.execute_reply": "2024-01-16T18:21:24.682382Z" + "iopub.execute_input": "2024-01-17T17:52:57.408611Z", + "iopub.status.busy": "2024-01-17T17:52:57.408180Z", + "iopub.status.idle": "2024-01-17T17:52:57.412456Z", + "shell.execute_reply": "2024-01-17T17:52:57.411846Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:24.685082Z", - "iopub.status.busy": "2024-01-16T18:21:24.684887Z", - "iopub.status.idle": "2024-01-16T18:21:25.292752Z", - "shell.execute_reply": "2024-01-16T18:21:25.292007Z" + "iopub.execute_input": "2024-01-17T17:52:57.415044Z", + "iopub.status.busy": "2024-01-17T17:52:57.414663Z", + "iopub.status.idle": "2024-01-17T17:52:57.992298Z", + "shell.execute_reply": "2024-01-17T17:52:57.991653Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:25.295271Z", - "iopub.status.busy": "2024-01-16T18:21:25.295016Z", - "iopub.status.idle": "2024-01-16T18:21:25.389351Z", - "shell.execute_reply": "2024-01-16T18:21:25.388644Z" + "iopub.execute_input": "2024-01-17T17:52:57.995057Z", + "iopub.status.busy": "2024-01-17T17:52:57.994639Z", + "iopub.status.idle": "2024-01-17T17:52:58.084012Z", + "shell.execute_reply": "2024-01-17T17:52:58.083355Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:25.392153Z", - "iopub.status.busy": "2024-01-16T18:21:25.391658Z", - "iopub.status.idle": "2024-01-16T18:21:25.396663Z", - "shell.execute_reply": "2024-01-16T18:21:25.395996Z" + "iopub.execute_input": "2024-01-17T17:52:58.086615Z", + "iopub.status.busy": "2024-01-17T17:52:58.086223Z", + "iopub.status.idle": "2024-01-17T17:52:58.091043Z", + "shell.execute_reply": "2024-01-17T17:52:58.090542Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:25.398938Z", - "iopub.status.busy": "2024-01-16T18:21:25.398735Z", - "iopub.status.idle": "2024-01-16T18:21:25.774577Z", - "shell.execute_reply": "2024-01-16T18:21:25.773916Z" + "iopub.execute_input": "2024-01-17T17:52:58.093459Z", + "iopub.status.busy": "2024-01-17T17:52:58.093160Z", + "iopub.status.idle": "2024-01-17T17:52:58.468728Z", + "shell.execute_reply": "2024-01-17T17:52:58.468030Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:25.778114Z", - "iopub.status.busy": "2024-01-16T18:21:25.777709Z", - "iopub.status.idle": "2024-01-16T18:21:26.113935Z", - "shell.execute_reply": "2024-01-16T18:21:26.113264Z" + "iopub.execute_input": "2024-01-17T17:52:58.471338Z", + "iopub.status.busy": "2024-01-17T17:52:58.471094Z", + "iopub.status.idle": "2024-01-17T17:52:58.808001Z", + "shell.execute_reply": "2024-01-17T17:52:58.807320Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:26.116532Z", - "iopub.status.busy": "2024-01-16T18:21:26.116316Z", - "iopub.status.idle": "2024-01-16T18:21:26.499587Z", - "shell.execute_reply": "2024-01-16T18:21:26.498928Z" + "iopub.execute_input": "2024-01-17T17:52:58.810724Z", + "iopub.status.busy": "2024-01-17T17:52:58.810271Z", + "iopub.status.idle": "2024-01-17T17:52:59.195439Z", + "shell.execute_reply": "2024-01-17T17:52:59.194743Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:26.502812Z", - "iopub.status.busy": "2024-01-16T18:21:26.502411Z", - "iopub.status.idle": "2024-01-16T18:21:26.961808Z", - "shell.execute_reply": "2024-01-16T18:21:26.961117Z" + "iopub.execute_input": "2024-01-17T17:52:59.198318Z", + "iopub.status.busy": "2024-01-17T17:52:59.197945Z", + "iopub.status.idle": "2024-01-17T17:52:59.629606Z", + "shell.execute_reply": "2024-01-17T17:52:59.628933Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:26.966242Z", - "iopub.status.busy": "2024-01-16T18:21:26.965807Z", - "iopub.status.idle": "2024-01-16T18:21:27.418765Z", - "shell.execute_reply": "2024-01-16T18:21:27.417923Z" + "iopub.execute_input": "2024-01-17T17:52:59.634465Z", + "iopub.status.busy": "2024-01-17T17:52:59.634066Z", + "iopub.status.idle": "2024-01-17T17:53:00.062450Z", + "shell.execute_reply": "2024-01-17T17:53:00.061750Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:27.422061Z", - "iopub.status.busy": "2024-01-16T18:21:27.421808Z", - "iopub.status.idle": "2024-01-16T18:21:27.746063Z", - "shell.execute_reply": "2024-01-16T18:21:27.745373Z" + "iopub.execute_input": "2024-01-17T17:53:00.066378Z", + "iopub.status.busy": "2024-01-17T17:53:00.065811Z", + "iopub.status.idle": "2024-01-17T17:53:00.376471Z", + "shell.execute_reply": "2024-01-17T17:53:00.375805Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:27.748549Z", - "iopub.status.busy": "2024-01-16T18:21:27.748336Z", - "iopub.status.idle": "2024-01-16T18:21:27.927774Z", - "shell.execute_reply": "2024-01-16T18:21:27.927105Z" + "iopub.execute_input": "2024-01-17T17:53:00.379736Z", + "iopub.status.busy": "2024-01-17T17:53:00.379214Z", + "iopub.status.idle": "2024-01-17T17:53:00.560395Z", + "shell.execute_reply": "2024-01-17T17:53:00.559774Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:27.930382Z", - "iopub.status.busy": "2024-01-16T18:21:27.930013Z", - "iopub.status.idle": "2024-01-16T18:21:27.933816Z", - "shell.execute_reply": "2024-01-16T18:21:27.933196Z" + "iopub.execute_input": "2024-01-17T17:53:00.563464Z", + "iopub.status.busy": "2024-01-17T17:53:00.563012Z", + "iopub.status.idle": "2024-01-17T17:53:00.566935Z", + "shell.execute_reply": "2024-01-17T17:53:00.566325Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index d81779d14..6db038120 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:30.239559Z", - "iopub.status.busy": "2024-01-16T18:21:30.239368Z", - "iopub.status.idle": "2024-01-16T18:21:32.172500Z", - "shell.execute_reply": "2024-01-16T18:21:32.171815Z" + "iopub.execute_input": "2024-01-17T17:53:02.831057Z", + "iopub.status.busy": "2024-01-17T17:53:02.830876Z", + "iopub.status.idle": "2024-01-17T17:53:04.788066Z", + "shell.execute_reply": "2024-01-17T17:53:04.787447Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.175606Z", - "iopub.status.busy": "2024-01-16T18:21:32.175233Z", - "iopub.status.idle": "2024-01-16T18:21:32.487679Z", - "shell.execute_reply": "2024-01-16T18:21:32.487070Z" + "iopub.execute_input": "2024-01-17T17:53:04.790886Z", + "iopub.status.busy": "2024-01-17T17:53:04.790554Z", + "iopub.status.idle": "2024-01-17T17:53:05.107342Z", + "shell.execute_reply": "2024-01-17T17:53:05.106722Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.490779Z", - "iopub.status.busy": "2024-01-16T18:21:32.490294Z", - "iopub.status.idle": "2024-01-16T18:21:32.494238Z", - "shell.execute_reply": "2024-01-16T18:21:32.493770Z" + "iopub.execute_input": "2024-01-17T17:53:05.110384Z", + "iopub.status.busy": "2024-01-17T17:53:05.109991Z", + "iopub.status.idle": "2024-01-17T17:53:05.114143Z", + "shell.execute_reply": "2024-01-17T17:53:05.113656Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.496632Z", - "iopub.status.busy": "2024-01-16T18:21:32.496174Z", - "iopub.status.idle": "2024-01-16T18:21:37.049215Z", - "shell.execute_reply": "2024-01-16T18:21:37.048493Z" + "iopub.execute_input": "2024-01-17T17:53:05.116476Z", + "iopub.status.busy": "2024-01-17T17:53:05.116169Z", + "iopub.status.idle": "2024-01-17T17:53:12.546219Z", + "shell.execute_reply": "2024-01-17T17:53:12.545609Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8b0c31123da41349ede0eeec606e480", + "model_id": "a6c7e398577b486e8fc9b649d6a83f90", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.051909Z", - "iopub.status.busy": "2024-01-16T18:21:37.051560Z", - "iopub.status.idle": "2024-01-16T18:21:37.056784Z", - "shell.execute_reply": "2024-01-16T18:21:37.056139Z" + "iopub.execute_input": "2024-01-17T17:53:12.548820Z", + "iopub.status.busy": "2024-01-17T17:53:12.548417Z", + "iopub.status.idle": "2024-01-17T17:53:12.553634Z", + "shell.execute_reply": "2024-01-17T17:53:12.553093Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.059263Z", - "iopub.status.busy": "2024-01-16T18:21:37.058922Z", - "iopub.status.idle": "2024-01-16T18:21:37.602002Z", - "shell.execute_reply": "2024-01-16T18:21:37.601378Z" + "iopub.execute_input": "2024-01-17T17:53:12.556059Z", + "iopub.status.busy": "2024-01-17T17:53:12.555593Z", + "iopub.status.idle": "2024-01-17T17:53:13.101729Z", + "shell.execute_reply": "2024-01-17T17:53:13.101188Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.604483Z", - "iopub.status.busy": "2024-01-16T18:21:37.604100Z", - "iopub.status.idle": "2024-01-16T18:21:38.233923Z", - "shell.execute_reply": "2024-01-16T18:21:38.233266Z" + "iopub.execute_input": "2024-01-17T17:53:13.104313Z", + "iopub.status.busy": "2024-01-17T17:53:13.103944Z", + "iopub.status.idle": "2024-01-17T17:53:13.746180Z", + "shell.execute_reply": "2024-01-17T17:53:13.745490Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:38.236501Z", - "iopub.status.busy": "2024-01-16T18:21:38.236126Z", - "iopub.status.idle": "2024-01-16T18:21:38.239843Z", - "shell.execute_reply": "2024-01-16T18:21:38.239237Z" + "iopub.execute_input": "2024-01-17T17:53:13.748783Z", + "iopub.status.busy": "2024-01-17T17:53:13.748393Z", + "iopub.status.idle": "2024-01-17T17:53:13.752019Z", + "shell.execute_reply": "2024-01-17T17:53:13.751493Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:38.241920Z", - "iopub.status.busy": "2024-01-16T18:21:38.241724Z", - "iopub.status.idle": "2024-01-16T18:21:50.205073Z", - "shell.execute_reply": "2024-01-16T18:21:50.204295Z" + "iopub.execute_input": "2024-01-17T17:53:13.754386Z", + "iopub.status.busy": "2024-01-17T17:53:13.754025Z", + "iopub.status.idle": "2024-01-17T17:53:27.572252Z", + "shell.execute_reply": "2024-01-17T17:53:27.571646Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:50.208098Z", - "iopub.status.busy": "2024-01-16T18:21:50.207873Z", - "iopub.status.idle": "2024-01-16T18:21:51.758169Z", - "shell.execute_reply": "2024-01-16T18:21:51.757556Z" + "iopub.execute_input": "2024-01-17T17:53:27.575001Z", + "iopub.status.busy": "2024-01-17T17:53:27.574747Z", + "iopub.status.idle": "2024-01-17T17:53:29.200876Z", + "shell.execute_reply": "2024-01-17T17:53:29.200177Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:51.761296Z", - "iopub.status.busy": "2024-01-16T18:21:51.760686Z", - "iopub.status.idle": "2024-01-16T18:21:51.995656Z", - "shell.execute_reply": "2024-01-16T18:21:51.994863Z" + "iopub.execute_input": "2024-01-17T17:53:29.203905Z", + "iopub.status.busy": "2024-01-17T17:53:29.203659Z", + "iopub.status.idle": "2024-01-17T17:53:29.468779Z", + "shell.execute_reply": "2024-01-17T17:53:29.468083Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:51.998600Z", - "iopub.status.busy": "2024-01-16T18:21:51.998375Z", - "iopub.status.idle": "2024-01-16T18:21:52.647778Z", - "shell.execute_reply": "2024-01-16T18:21:52.647094Z" + "iopub.execute_input": "2024-01-17T17:53:29.471893Z", + "iopub.status.busy": "2024-01-17T17:53:29.471649Z", + "iopub.status.idle": "2024-01-17T17:53:30.153982Z", + "shell.execute_reply": "2024-01-17T17:53:30.153298Z" } }, "outputs": [ @@ -719,16 +719,16 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:52.650972Z", - "iopub.status.busy": "2024-01-16T18:21:52.650384Z", - "iopub.status.idle": "2024-01-16T18:21:53.105237Z", - "shell.execute_reply": "2024-01-16T18:21:53.104537Z" + "iopub.execute_input": "2024-01-17T17:53:30.157322Z", + "iopub.status.busy": "2024-01-17T17:53:30.157080Z", + "iopub.status.idle": "2024-01-17T17:53:30.651123Z", + "shell.execute_reply": "2024-01-17T17:53:30.650433Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHDCAYAAABRfvt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3dd3xUVf7/8XcSkklIJZAqLSDSwTVKiCIgIAGyCBJXUVRAFFcDCtjAVSmiYbGAheLuYsBdEcVVXFF6c5WiIKwCGqmCQgKrkEAwCSTn98f+Ml+GFFKm3JDX8/GYB8y9Z858Tqac85lz7z1exhgjAAAAAABgOd6eDgAAAAAAAJSOpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdNUbTpk01bNgwT4dRbevXr5eXl5fWr19v3zZs2DA1bdrUYzHVZhe+r0p7fVxl0qRJ8vLyctjm5eWlUaNGufy5JWn+/Pny8vLSwYMH3fJ8AHAp82R/Akel9a/uGkcePHhQXl5emj9/vn3bsGHDFBQU5PLnLubl5aVJkya57fngeiTtcJqNGzdq0qRJOnnypKdDsYTZs2c7fGHj0vb8889ryZIlng6jVFaODUDN5a5+30rfYYx1apdPP/3UssmvlWOD85G0w2k2btyoyZMnu6wjy8jI0F//+leX1O0KlUna//rXvyojI8O1AaFCunbtqt9++01du3at1OOqMqh86qmn9Ntvv1XqMVVRVmx33XWXfvvtNzVp0sTlMQC49Li63y9mtaS9om2uan8C16jKOPLTTz/V5MmTK/WYJk2a6LffftNdd91VqcdVVnmx/fbbb3rqqadc+vxwL5J2eERRUZHy8vIq9RibzSZfX18XReRZvr6+stlsTqnLGOOWRNBZcnNzPR2CA29vb/n7+8vb23Vfj8VtrlOnjvz9/V32PBfj4+Mjf3//EocQAgCqz9n9idX6y/Lk5eWpqKjI02E4cPU48ty5cyooKJCXl5f8/f3l4+Pjsue6GH9/f9WpU8djzw/nI2mHU0yaNEmPPfaYJCkuLk5eXl4O58oWn6f79ttvq23btrLZbFq+fLkk6cUXX9S1116r+vXrKyAgQPHx8Xr//fdLPMeF5yIVn4/7xRdfaNy4cYqIiFBgYKBuvvlmHT9+vNJt2L59u/r27auQkBAFBQWpZ8+e2rx5c4l2lpbgXHhucNOmTbVr1y5t2LDB/rfo3r17mc9d2jntRUVFmjlzptq2bSt/f39FRUXp/vvv14kTJxzKNW3aVL///e+1YsUKXX311QoICNAbb7xRoTZnZmZq+PDhatiwoWw2m2JiYjRgwIAS5zgvW7ZM3bp1U3BwsEJCQnTNNddo4cKFDmUWL16s+Ph4BQQEqEGDBrrzzjv1888/l2hnUFCQ9u3bp379+ik4OFhDhgypVHu3bt2qpKQkNWjQQAEBAYqLi9M999xz0bYaYzR16lQ1bNhQdevW1Q033KBdu3aVKFfaOYh79uxRSkqKoqOj5e/vr4YNG2rw4MHKzs6W9L/3d25urhYsWGB/vYvfq8Xvmd27d+uOO+5QvXr11KVLF4d9pXn77bfVsmVL+fv7Kz4+Xp999lmJv2Vp10G4sM7yYivrnPbZs2fbP6exsbFKTU0tMavUvXt3tWvXTrt379YNN9ygunXr6rLLLtP06dNLbQ+AS8vF+n1J+sc//mHvF8LDwzV48GAdPnzYoZ7qfL9WRG5urh555BE1atRINptNLVu21IsvvihjjL1MaecgFzv/3OCKtPl8ZZ3TvmXLFvXp00ehoaGqW7euunXrpi+++MKhTHl9R0W89tpratu2rerWrat69erp6quvLtFv//zzzxoxYoRiY2Nls9kUFxenBx54QAUFBfYy+/fv1x/+8AeFh4erbt266ty5sz755JNS27lo0SI99dRTuuyyy1S3bl3l5ORUuL2nTp3SmDFj1LRpU9lsNkVGRurGG2/U119/fdG2fv7557rmmmvk7++v5s2blzkGunAcefbsWU2ePFktWrSQv7+/6tevry5dumjVqlWS/tfPzpo1S5Lsr3Vx/1r8nnnxxRc1c+ZMNW/eXDabTbt37y73/bR//34lJSUpMDBQsbGxmjJlisN7saz3zIV1lhdb8bYLD52vyDjX2WNrOA8/wcApBg0apB9++EHvvPOOZsyYoQYNGkiSIiIi7GXWrl2r9957T6NGjVKDBg3sCccrr7yim266SUOGDFFBQYEWLVqkP/zhD1q6dKmSk5Mv+tyjR49WvXr1NHHiRB08eFAzZ87UqFGj9O6771Y4/l27dun6669XSEiIHn/8cfn6+uqNN95Q9+7dtWHDBiUkJFTq7zFz5kyNHj1aQUFB+tOf/iRJioqKqlQd999/v+bPn6/hw4froYce0oEDB/T6669r+/bt+uKLLxx+Lc7IyNDtt9+u+++/X/fdd59atmxZoedISUnRrl27NHr0aDVt2lTHjh3TqlWrdOjQIfvrM3/+fN1zzz1q27atJkyYoLCwMG3fvl3Lly/XHXfcYS8zfPhwXXPNNUpLS1NWVpZeeeUVffHFF9q+fbvCwsLsz3nu3DklJSWpS5cuevHFF1W3bt0Kt/fYsWPq3bu3IiIiNH78eIWFhengwYP64IMPLtrWZ555RlOnTlW/fv3Ur18/ff311+rdu7fD4KQ0BQUFSkpKUn5+vkaPHq3o6Gj9/PPPWrp0qU6ePKnQ0FD9/e9/17333qtOnTpp5MiRkqTmzZs71POHP/xBLVq00PPPP+/QQZdmw4YNevfdd/XQQw/JZrNp9uzZ6tOnj7788ku1a9fuom09X0ViO9+kSZM0efJk9erVSw888IAyMjI0Z84cffXVVyXedydOnFCfPn00aNAg3XrrrXr//ff1xBNPqH379urbt2+l4gRQs1ys33/uuef09NNP69Zbb9W9996r48eP67XXXlPXrl3t/YKzvl/LYozRTTfdpHXr1mnEiBG68sortWLFCj322GP6+eefNWPGDKe2uSLWrl2rvn37Kj4+XhMnTpS3t7fS09PVo0cP/fvf/1anTp0cylem7yj217/+VQ899JBuueUWPfzww8rLy9M333yjLVu22PvtI0eOqFOnTjp58qRGjhypVq1a6eeff9b777+vM2fOyM/PT1lZWbr22mt15swZPfTQQ6pfv74WLFigm266Se+//75uvvlmh+d99tln5efnp0cffVT5+fny8/OrcHv/+Mc/6v3339eoUaPUpk0b/fLLL/r888/13Xff6aqrriqzrd9++619XDBp0iSdO3dOEydOrNCYa9KkSUpLS7O/v3JycrR161Z9/fXXuvHGG3X//ffryJEjWrVqlf7+97+XWkd6erry8vI0cuRI2Ww2hYeHl3mEQWFhofr06aPOnTtr+vTpWr58uSZOnKhz585pypQpF433fBWJ7XyVHec6Y2wNJzOAk7zwwgtGkjlw4ECJfZKMt7e32bVrV4l9Z86ccbhfUFBg2rVrZ3r06OGwvUmTJmbo0KH2++np6UaS6dWrlykqKrJvHzt2rPHx8TEnT56scOwDBw40fn5+Zt++ffZtR44cMcHBwaZr1672bRMnTjSlfWyKYzm/7W3btjXdunUrUXbdunVGklm3bp1929ChQ02TJk3s9//9738bSebtt992eOzy5ctLbG/SpImRZJYvX17h9hpjzIkTJ4wk88ILL5RZ5uTJkyY4ONgkJCSY3377zWFf8d+8oKDAREZGmnbt2jmUWbp0qZFknnnmGYd2SjLjx493qKui7f3www+NJPPVV19Vqq3Hjh0zfn5+Jjk52eG98uSTTxpJDu+rC1+f7du3G0lm8eLF5T5HYGCgQz3Fit8zt99+e5n7zifJSDJbt261b/vxxx+Nv7+/ufnmm+3bLnzPlFdnWbFd+L4t/jv17t3bFBYW2su9/vrrRpJ588037du6detmJJm33nrLvi0/P99ER0eblJSUEs8F4NJTVr9/8OBB4+PjY5577jmH7d9++62pU6eOfXt1v18vZsmSJUaSmTp1qsP2W265xXh5eZm9e/caY4w5cOCAkWTS09NL1CHJTJw40X6/vLHOheOUC/uToqIi06JFC5OUlOTQF505c8bExcWZG2+80b6tvL7jYgYMGGDatm1bbpm7777beHt7l9qfFsc2ZswYI8n8+9//tu87deqUiYuLM02bNrX3E8XtbNasmcOYrjLtDQ0NNampqZVu68CBA42/v7/58ccf7dt2795tfHx8SvSFF74+HTt2NMnJyeXWn5qaWuq4r/g9ExISYo4dO1bqvvPfT8Xjn9GjR9u3FRUVmeTkZOPn52eOHz9ujCl9jFhWnWXFZkzJ921Fx7nOHFvDuTg8Hm7TrVs3tWnTpsT2gIAA+/9PnDih7OxsXX/99RU6JEqSRo4c6XBI0PXXX6/CwkL9+OOPFXp8YWGhVq5cqYEDB6pZs2b27TExMbrjjjv0+eef2w/xcpfFixcrNDRUN954o/773//ab/Hx8QoKCtK6descysfFxSkpKalSzxEQECA/Pz+tX7++xCHoxVatWqVTp05p/PjxJc69Lv6bb926VceOHdODDz7oUCY5OVmtWrUqcRidJD3wwANVam/xjP3SpUt19uzZCrd19erVKigo0OjRox3eK2PGjLnoY0NDQyVJK1as0JkzZyr8nBf64x//WOGyiYmJio+Pt99v3LixBgwYoBUrVqiwsLDKMVxM8d9pzJgxDudg3nfffQoJCSnxWgYFBenOO++03/fz81OnTp20f/9+l8UIwPo++OADFRUV6dZbb3X4To+OjlaLFi3s3+nO+n4ty6effiofHx899NBDDtsfeeQRGWO0bNkypz9neXbs2KE9e/bojjvu0C+//GL/u+Tm5qpnz5767LPPSszSVqbvKBYWFqaffvpJX331Van7i4qKtGTJEvXv319XX311if3F/eSnn36qTp06ORyWHxQUpJEjR+rgwYPavXu3w+OGDh3qMKarTHvDwsK0ZcsWHTlypMLtLCws1IoVKzRw4EA1btzYvr1169YVGhOFhYVp165d2rNnT4Wf80IpKSmVOtLi/CVdi08dLSgo0OrVq6scw8VUZZxb3bE1nI+kHW4TFxdX6valS5eqc+fO8vf3V3h4uCIiIjRnzhz7+WwXc/4XtSTVq1dPkspMRC90/PhxnTlzptRDylu3bq2ioqIS5+C52p49e5Sdna3IyEhFREQ43E6fPq1jx445lC/rb1sem82mP//5z1q2bJmioqLUtWtXTZ8+XZmZmfYy+/btk6RyD8ku/gIv7e/XqlWrEl/wderUUcOGDR22VbS93bp1U0pKiiZPnqwGDRpowIABSk9PV35+frltLY6hRYsWDtsjIiLs75eyxMXFady4cfrb3/6mBg0aKCkpSbNmzarw+/P8eirqwjgl6YorrtCZM2dcek5ZWa+ln5+fmjVrVuK1bNiwYYlz8uvVq1fhzx6AS9OePXtkjFGLFi1KfKd/99139u90Z32/luXHH39UbGysgoODHba3bt3avt+dipPDoUOHlvi7/O1vf1N+fn6Jtlelf3/iiScUFBSkTp06qUWLFkpNTXU4h/z48ePKycm56OlWP/74Y5ljo+L95cVamfZOnz5dO3fuVKNGjdSpUydNmjTpoj8AHz9+XL/99lupfWZFThOcMmWKTp48qSuuuELt27fXY489pm+++eaijztfZV4fb29vh6RZ+l/fLqnM6yI4Q1XGudUdW8P5OKcdbnP+r6/F/v3vf+umm25S165dNXv2bMXExMjX11fp6eklLphSlrKuzmkqeO5XZZR10TBnz34WFRUpMjJSb7/9dqn7L/xVt7S/bUWMGTNG/fv315IlS7RixQo9/fTTSktL09q1a/W73/2uSnVejM1mK3El3Yq218vLS++//742b96sjz/+WCtWrNA999yjl156SZs3b1ZQUJBLYn7ppZc0bNgwffTRR1q5cqUeeughpaWlafPmzSV+gChLVV+jsrjrvVged372ANQcRUVF8vLy0rJly0r9njj/u9oZ36/V5c6+XZJeeOEFXXnllaWWubAfq0rf0bp1a2VkZGjp0qVavny5/vnPf2r27Nl65plnKr18WWVcGGtl2nvrrbfq+uuv14cffqiVK1fqhRde0J///Gd98MEHLrtGSteuXbVv3z77e+9vf/ubZsyYoblz5+ree++tUB2XYt8u0b9bEUk7nKYqy0b985//lL+/v1asWOGw5Fl6erozQytXRESE6tatW+o66d9//728vb3VqFEjSf/3S+PJkycdLq5W2q/11VlGq3nz5lq9erWuu+46p3cIpT3XI488okceeUR79uzRlVdeqZdeekn/+Mc/7Bf72blzpy6//PJSH1+8xndGRoZ69OjhsC8jI6NCa4BXtr2dO3dW586d9dxzz2nhwoUaMmSIFi1aVGYnWxzDnj17HH7lPn78eIV/NW7fvr3at2+vp556Shs3btR1112nuXPnaurUqZKq93pfqLRD9X744QfVrVvX/gNGvXr1Sl0nuDrvxfNfy/P/TgUFBTpw4IB69epVoXoA1A5lfbc0b95cxhjFxcXZZxLL46rv1yZNmmj16tU6deqUw2z7999/b98vOfbt53NF3y5JISEhLv8+DQwM1G233abbbrtNBQUFGjRokJ577jlNmDBBERERCgkJ0c6dO8uto0mTJmWOjYr3l6ey7Y2JidGDDz6oBx98UMeOHdNVV12l5557rsykPSIiQgEBAaX2maXFXZrw8HANHz5cw4cP1+nTp9W1a1dNmjTJPp5wZt9eVFSk/fv3O3wmfvjhB0myX/zXFe/FyoxzYV0cHg+nCQwMlFTyi6Y8Pj4+8vLycvgF8eDBg1qyZImToys/ht69e+ujjz5yODwpKytLCxcuVJcuXRQSEiLp/zqg85ffKl6K5kKBgYGV+luc79Zbb1VhYaGeffbZEvvOnTtX5XrPd+bMGeXl5Tlsa968uYKDg+2Hm/fu3VvBwcFKS0srUbb419arr75akZGRmjt3rsNh6suWLdN3331XoRUAKtreEydOlPiVt/jX+/IOke/Vq5d8fX312muvOTx+5syZF40tJydH586dc9jWvn17eXt7OzxndV7vC23atMnhmg6HDx/WRx99pN69e9t//W7evLmys7MdDuU7evSoPvzwwxL1VTS2Xr16yc/PT6+++qrD32nevHnKzs6u0GsJoPYoq98fNGiQfHx8NHny5BLf2cYY/fLLL5Jc//3ar18/FRYW6vXXX3fYPmPGDHl5edmTwZCQEDVo0KDE0pqzZ88uUWdVxjrF4uPj1bx5c7344os6ffp0if3OOv2p+O9bzM/PT23atJExRmfPnpW3t7cGDhyojz/+WFu3bi3x+OLXrF+/fvryyy+1adMm+77c3Fz95S9/UdOmTUu9TtH5KtrewsLCEqcFREZGKjY2tty+3cfHR0lJSVqyZIkOHTpk3/7dd99pxYoV5cYmlfw7BQUF6fLLLy/x3pOq9nqX5vz3ojFGr7/+unx9fdWzZ09J//shxMfHx6nvxcqMc2FdzLTDaYovnPWnP/1JgwcPlq+vr/r372//UilNcnKyXn75ZfXp00d33HGHjh07plmzZunyyy+v9HlF1TF16lStWrVKXbp00YMPPqg6derojTfeUH5+vsO6071791bjxo01YsQIPfbYY/Lx8dGbb76piIgIhw5D+t/fY86cOZo6daouv/xyRUZGlpiJLku3bt10//33Ky0tTTt27FDv3r3l6+urPXv2aPHixXrllVd0yy23VKvNP/zwg3r27Klbb71Vbdq0UZ06dfThhx8qKytLgwcPlvS/gcyMGTN077336pprrrGvFfuf//xHZ86c0YIFC+Tr66s///nPGj58uLp166bbb7/dvuRb06ZNNXbsWKe1d8GCBZo9e7ZuvvlmNW/eXKdOndJf//pXhYSEqF+/fmXWHxERoUcffVRpaWn6/e9/r379+mn79u1atmyZfcmesqxdu1ajRo3SH/7wB11xxRU6d+6c/v73v8vHx0cpKSn2cvHx8Vq9erVefvllxcbGKi4urtJLBRZr166dkpKSHJZ8k+RwWOPgwYP1xBNP6Oabb9ZDDz2kM2fOaM6cObriiitKXMSxorFFRERowoQJmjx5svr06aObbrpJGRkZmj17tq655hqHi84BQFn9fvPmzTV16lRNmDBBBw8e1MCBAxUcHKwDBw7oww8/1MiRI/Xoo4+6/Pu1f//+uuGGG/SnP/1JBw8eVMeOHbVy5Up99NFHGjNmjMPScffee6+mTZume++9V1dffbU+++wz+yxoRdpc3linmLe3t/72t7+pb9++atu2rYYPH67LLrtMP//8s9atW6eQkBB9/PHHF63nYnr37q3o6Ghdd911ioqK0nfffafXX39dycnJ9iMOnn/+ea1cuVLdunXTyJEj1bp1ax09elSLFy/W559/rrCwMI0fP17vvPOO+vbtq4ceekjh4eFasGCBDhw4oH/+858lTnWrantPnTqlhg0b6pZbblHHjh0VFBSk1atX66uvvtJLL71U7nNMnjxZy5cv1/XXX68HH3xQ586ds69Rf7FxZJs2bdS9e3fFx8crPDxcW7dutS87V6z49X7ooYeUlJQkHx8f+xipsvz9/bV8+XINHTpUCQkJWrZsmT755BM9+eST9qPoQkND9Yc//EGvvfaavLy81Lx5cy1durTEtYwqG1tFx7mwMA9csR6XsGeffdZcdtllxtvb22FJFEllLuUxb94806JFC2Oz2UyrVq1Menp6qctWlbXk24XLlZS1XMbFfP311yYpKckEBQWZunXrmhtuuMFs3LixRLlt27aZhIQE4+fnZxo3bmxefvnlUpd8y8zMNMnJySY4ONhIsi//VpEl34r95S9/MfHx8SYgIMAEBweb9u3bm8cff9wcOXLE4e9ysSVLSvPf//7XpKammlatWpnAwEATGhpqEhISzHvvvVei7L/+9S9z7bXXmoCAABMSEmI6depk3nnnHYcy7777rvnd735nbDabCQ8PN0OGDDE//fSTQ5mhQ4eawMDAMmO6WHu//vprc/vtt5vGjRsbm81mIiMjze9//3uH5dHKUlhYaCZPnmxiYmJMQECA6d69u9m5c+dFl+jZv3+/ueeee0zz5s2Nv7+/CQ8PNzfccINZvXq1Q/3ff/+96dq1qwkICHBYRq74vVy8nMv5ylryLTU11fzjH/+wfy5+97vflfp+XrlypWnXrp3x8/MzLVu2NP/4xz9KrbOs2Ep73xrzvyXeWrVqZXx9fU1UVJR54IEHzIkTJxzKdOvWrdQlhcp6LwO4NJXV7xtjzD//+U/TpUsXExgYaAIDA02rVq1MamqqycjIMMZU//u1Ik6dOmXGjh1rYmNjja+vr2nRooV54YUXHJazMuZ/y5CNGDHChIaGmuDgYHPrrbeaY8eOlVg6q7w2X6w/KbZ9+3YzaNAgU79+fWOz2UyTJk3MrbfeatasWWMvU17fcTFvvPGG6dq1q73+5s2bm8cee8xkZ2c7lPvxxx/N3XffbSIiIozNZjPNmjUzqampJj8/315m37595pZbbjFhYWHG39/fdOrUySxdutShnuJ2lrV038Xam5+fbx577DHTsWNHExwcbAIDA03Hjh3N7NmzK9TeDRs2mPj4eOPn52eaNWtm5s6dW6Fx5NSpU02nTp1MWFiYCQgIMK1atTLPPfecKSgosJc5d+6cGT16tImIiDBeXl72OouXYCtt2dyylnwLDAw0+/btM7179zZ169Y1UVFRZuLEiQ5LrBpjzPHjx01KSoqpW7euqVevnrn//vvNzp07S9RZVmzGlFzyzZiKjXOdPbaG83gZwxUFAAAAAACwIs5pBwAAAADAojinHZe006dPl3rxk/NFRESUubRFTZWdna3ffvut3DLR0dFuigYAAOcpLCy86EXbgoKCXLYMqKcUFBTo119/LbdMaGioy1edAeB+JO24pL344osXXZP0wIED9qU2LhUPP/xwqVe0Px9nxgAAaqLDhw8rLi6u3DITJ07UpEmT3BOQm2zcuFE33HBDuWXS09M1bNgw9wQEwG04px2XtP3792v//v3llunSpYv8/f3dFJF77N69W0eOHCm3DGtuAwBqory8PH3++efllmnWrJmaNWvmpojc48SJE9q2bVu5Zdq2bauYmBg3RQTAXUjaAQAAAACwKC5EBwAAAACARXFOu6SioiIdOXJEwcHB8vLy8nQ4AIBazhijU6dOKTY2Vt7e/L7uDPT1AACrqWh/T9Iu6ciRI2rUqJGnwwAAwMHhw4fVsGFDT4dxSaCvBwBY1cX6e5J2ScHBwZL+98cKCQnxcDRwi1atpKNHpZgY6fvvPR0NADjIyclRo0aN7P0Tqo++vhairwdgcRXt70naJfthciEhIXTktUXx4Sfe3hKvOQCL4jBu56Gvr4Xo6wHUEBfr7zlRDgAAAAAAi/Jo0j5nzhx16NDB/qt3YmKili1bZt+fl5en1NRU1a9fX0FBQUpJSVFWVpZDHYcOHVJycrLq1q2ryMhIPfbYYzp37py7mwIAAAAAgNN5NGlv2LChpk2bpm3btmnr1q3q0aOHBgwYoF27dkmSxo4dq48//liLFy/Whg0bdOTIEQ0aNMj++MLCQiUnJ6ugoEAbN27UggULNH/+fD3zzDOeahIAAAAAAE7jZYwxng7ifOHh4XrhhRd0yy23KCIiQgsXLtQtt9wiSfr+++/VunVrbdq0SZ07d9ayZcv0+9//XkeOHFFUVJQkae7cuXriiSd0/Phx+fn5Veg5c3JyFBoaquzsbM5zqy0aNpR+/lm67DLpp588HQ0AOKBfcj7+prUQfT0Ai6to32SZc9oLCwu1aNEi5ebmKjExUdu2bdPZs2fVq1cve5lWrVqpcePG2rRpkyRp06ZNat++vT1hl6SkpCTl5OTYZ+sBAAAAAKipPH71+G+//VaJiYnKy8tTUFCQPvzwQ7Vp00Y7duyQn5+fwsLCHMpHRUUpMzNTkpSZmemQsBfvL95Xlvz8fOXn59vv5+TkOKk1AAAAAAA4j8dn2lu2bKkdO3Zoy5YteuCBBzR06FDt3r3bpc+Zlpam0NBQ+61Ro0YufT4AAAAAAKrC40m7n5+fLr/8csXHxystLU0dO3bUK6+8oujoaBUUFOjkyZMO5bOyshQdHS1Jio6OLnE1+eL7xWVKM2HCBGVnZ9tvhw8fdm6jAAAAAABwAo8n7RcqKipSfn6+4uPj5evrqzVr1tj3ZWRk6NChQ0pMTJQkJSYm6ttvv9WxY8fsZVatWqWQkBC1adOmzOew2Wz2ZeaKbwAAAAAAWI1Hz2mfMGGC+vbtq8aNG+vUqVNauHCh1q9frxUrVig0NFQjRozQuHHjFB4erpCQEI0ePVqJiYnq3LmzJKl3795q06aN7rrrLk2fPl2ZmZl66qmnlJqaKpvN5smmAQAAAABQbR5N2o8dO6a7775bR48eVWhoqDp06KAVK1boxhtvlCTNmDFD3t7eSklJUX5+vpKSkjR79mz74318fLR06VI98MADSkxMVGBgoIYOHaopU6Z4qkkAAAAAADiN5dZp9wTWbq2FWLsVgIXRLzkff9NaiL4egMXVuHXaAQAAAACAI5J2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiPHr1eADW1HT8J2XuOzgt2Y2RAACAstBfA7UDM+0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRXjwcAAAAsqLyrwwOoPZhpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACL4kJ0QC3EhW0AAACAmoGZdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALCoOp4OAAAAAAAkqen4T8rdf3BaspsiAayDmXYAAAAAACyKmXYAblXeL+j8eg4AAAA4YqYdAAAAAACLImkHAAAAAMCiSNoBAAAAALAozmkHUClc1RUAAOe4WJ/qyeemPwesg5l2AAAAAAAsiqQdAAB41KRJk+Tl5eVwa9WqlX1/Xl6eUlNTVb9+fQUFBSklJUVZWVkejBgAAPchaQcAAB7Xtm1bHT161H77/PPP7fvGjh2rjz/+WIsXL9aGDRt05MgRDRo0yIPRAgDgPpzTDgAAPK5OnTqKjo4usT07O1vz5s3TwoUL1aNHD0lSenq6Wrdurc2bN6tz587uDhUAALdiph0AAHjcnj17FBsbq2bNmmnIkCE6dOiQJGnbtm06e/asevXqZS/bqlUrNW7cWJs2bfJUuAAAuA0z7QAAwKMSEhI0f/58tWzZUkePHtXkyZN1/fXXa+fOncrMzJSfn5/CwsIcHhMVFaXMzMwy68zPz1d+fr79fk5OjqvCBwDApUjaAQCAR/Xt29f+/w4dOighIUFNmjTRe++9p4CAgCrVmZaWpsmTJzsrRAAAPIbD4wEAgKWEhYXpiiuu0N69exUdHa2CggKdPHnSoUxWVlap58AXmzBhgrKzs+23w4cPuzhqAABcg6QdAABYyunTp7Vv3z7FxMQoPj5evr6+WrNmjX1/RkaGDh06pMTExDLrsNlsCgkJcbgBAFATcXg8AADwqEcffVT9+/dXkyZNdOTIEU2cOFE+Pj66/fbbFRoaqhEjRmjcuHEKDw9XSEiIRo8ercTERK4cDwCoFUjaAQCAR/3000+6/fbb9csvvygiIkJdunTR5s2bFRERIUmaMWOGvL29lZKSovz8fCUlJWn27NkejhoAAPcgaQcAAB61aNGicvf7+/tr1qxZmjVrlpsiAgDAOjinHQAAAAAAi2KmHQAAAICDpuM/KXPfwWnJbowEADPtAAAAAABYFDPtwCWovF/HAQAAANQczLQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABbFOe0AAADAJYbr2wCXDmbaAQAAAACwKI8m7WlpabrmmmsUHBysyMhIDRw4UBkZGQ5lunfvLi8vL4fbH//4R4cyhw4dUnJysurWravIyEg99thjOnfunDubAgAAAACA03n08PgNGzYoNTVV11xzjc6dO6cnn3xSvXv31u7duxUYGGgvd99992nKlCn2+3Xr1rX/v7CwUMnJyYqOjtbGjRt19OhR3X333fL19dXzzz/v1vYA4HA8AAAAwJk8mrQvX77c4f78+fMVGRmpbdu2qWvXrvbtdevWVXR0dKl1rFy5Urt379bq1asVFRWlK6+8Us8++6yeeOIJTZo0SX5+fi5tAwAAAAAArmKpc9qzs7MlSeHh4Q7b3377bTVo0EDt2rXThAkTdObMGfu+TZs2qX379oqKirJvS0pKUk5Ojnbt2lXq8+Tn5ysnJ8fhBgAAAACA1Vjm6vFFRUUaM2aMrrvuOrVr186+/Y477lCTJk0UGxurb775Rk888YQyMjL0wQcfSJIyMzMdEnZJ9vuZmZmlPldaWpomT57sopYAAAAAAOAclknaU1NTtXPnTn3++ecO20eOHGn/f/v27RUTE6OePXtq3759at68eZWea8KECRo3bpz9fk5Ojho1alS1wAEAAAAAcBFLHB4/atQoLV26VOvWrVPDhg3LLZuQkCBJ2rt3ryQpOjpaWVlZDmWK75d1HrzNZlNISIjDDQAAAAAAq/Fo0m6M0ahRo/Thhx9q7dq1iouLu+hjduzYIUmKiYmRJCUmJurbb7/VsWPH7GVWrVqlkJAQtWnTxiVxAwAAAADgDh49PD41NVULFy7URx99pODgYPs56KGhoQoICNC+ffu0cOFC9evXT/Xr19c333yjsWPHqmvXrurQoYMkqXfv3mrTpo3uuusuTZ8+XZmZmXrqqaeUmpoqm83myeYBAAAAAFAtHp1pnzNnjrKzs9W9e3fFxMTYb++++64kyc/PT6tXr1bv3r3VqlUrPfLII0pJSdHHH39sr8PHx0dLly6Vj4+PEhMTdeedd+ruu+92WNcdAAAAAICayKMz7caYcvc3atRIGzZsuGg9TZo00aeffuqssAAAAAAAsARLXIgOAAAAAACUZJkl3wAAAADUfE3Hf+LpEIBLCkk7gBrjYoOAg9OS3RQJAAAA4B4cHg8AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBTntAMWxfnbAAAAAEjaAQAAAFQYV4cH3IukHYBlMAgAAAAAHHFOOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFhUHU8HAKBqmo7/xNMhAAAAAHAxZtoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAWMa0adPk5eWlMWPG2Lfl5eUpNTVV9evXV1BQkFJSUpSVleW5IAEAcCOSdgAAYAlfffWV3njjDXXo0MFh+9ixY/Xxxx9r8eLF2rBhg44cOaJBgwZ5KEoAANyLpB0AAHjc6dOnNWTIEP31r39VvXr17Nuzs7M1b948vfzyy+rRo4fi4+OVnp6ujRs3avPmzR6MGAAA9yBpBwAAHpeamqrk5GT16tXLYfu2bdt09uxZh+2tWrVS48aNtWnTJneHCQCA29XxdAAAAKB2W7Rokb7++mt99dVXJfZlZmbKz89PYWFhDtujoqKUmZlZZp35+fnKz8+338/JyXFavAAAuBMz7QAAwGMOHz6shx9+WG+//bb8/f2dVm9aWppCQ0Ptt0aNGjmtbgAA3ImkHQAAeMy2bdt07NgxXXXVVapTp47q1KmjDRs26NVXX1WdOnUUFRWlgoICnTx50uFxWVlZio6OLrPeCRMmKDs72347fPiwi1sCAIBrcHg8AADwmJ49e+rbb7912DZ8+HC1atVKTzzxhBo1aiRfX1+tWbNGKSkpkqSMjAwdOnRIiYmJZdZrs9lks9lcGjsAAO5A0g4AADwmODhY7dq1c9gWGBio+vXr27ePGDFC48aNU3h4uEJCQjR69GglJiaqc+fOnggZAAC3ImkHAACWNmPGDHl7eyslJUX5+flKSkrS7NmzPR0WAABuQdIOAAAsZf369Q73/f39NWvWLM2aNcszAQEA4EFciA4AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIoL0QEe0nT8J54OAQAAAIDFeXSmPS0tTddcc42Cg4MVGRmpgQMHKiMjw6FMXl6eUlNTVb9+fQUFBSklJUVZWVkOZQ4dOqTk5GTVrVtXkZGReuyxx3Tu3Dl3NgUAAAAAAKfzaNK+YcMGpaamavPmzVq1apXOnj2r3r17Kzc3115m7Nix+vjjj7V48WJt2LBBR44c0aBBg+z7CwsLlZycrIKCAm3cuFELFizQ/Pnz9cwzz3iiSQAAAAAAOI1HD49fvny5w/358+crMjJS27ZtU9euXZWdna158+Zp4cKF6tGjhyQpPT1drVu31ubNm9W5c2etXLlSu3fv1urVqxUVFaUrr7xSzz77rJ544glNmjRJfn5+nmgaAAAAADcr7/TDg9OS3RgJ4DyWuhBddna2JCk8PFyStG3bNp09e1a9evWyl2nVqpUaN26sTZs2SZI2bdqk9u3bKyoqyl4mKSlJOTk52rVrV6nPk5+fr5ycHIcbAAAAAABWY5mkvaioSGPGjNF1112ndu3aSZIyMzPl5+ensLAwh7JRUVHKzMy0lzk/YS/eX7yvNGlpaQoNDbXfGjVq5OTWAAAAAABQfZZJ2lNTU7Vz504tWrTI5c81YcIEZWdn22+HDx92+XMCAAAAAFBZlljybdSoUVq6dKk+++wzNWzY0L49OjpaBQUFOnnypMNse1ZWlqKjo+1lvvzyS4f6iq8uX1zmQjabTTabzcmtAAAAAADAuTw6026M0ahRo/Thhx9q7dq1iouLc9gfHx8vX19frVmzxr4tIyNDhw4dUmJioiQpMTFR3377rY4dO2Yvs2rVKoWEhKhNmzbuaQgAAAAAAC7g0Zn21NRULVy4UB999JGCg4Pt56CHhoYqICBAoaGhGjFihMaNG6fw8HCFhIRo9OjRSkxMVOfOnSVJvXv3Vps2bXTXXXdp+vTpyszM1FNPPaXU1FRm0wHYlXc1WYkrygIAAMCaPJq0z5kzR5LUvXt3h+3p6ekaNmyYJGnGjBny9vZWSkqK8vPzlZSUpNmzZ9vL+vj4aOnSpXrggQeUmJiowMBADR06VFOmTHFXMwAAAFBLXexHYQCoLo8m7caYi5bx9/fXrFmzNGvWrDLLNGnSRJ9++qkzQwMAAAAAwOMsc/V4AAAAAADgiKQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIuq4+kAAAAAAKAimo7/xNMhAG5XpZn2/fv3OzsOAABQwzAeAADA9ao003755ZerW7duGjFihG655Rb5+/s7Oy7gksCvwQAuZYwHAABwvSrNtH/99dfq0KGDxo0bp+joaN1///368ssvnR0bAACwMMYDAAC4XpWS9iuvvFKvvPKKjhw5ojfffFNHjx5Vly5d1K5dO7388ss6fvy4s+MEAAAWw3gAAADXq9bV4+vUqaNBgwZp8eLF+vOf/6y9e/fq0UcfVaNGjXT33Xfr6NGjzooTAABYFOMBAABcp1pJ+9atW/Xggw8qJiZGL7/8sh599FHt27dPq1at0pEjRzRgwABnxQkAACyK8QAAAK5TpQvRvfzyy0pPT1dGRob69eunt956S/369ZO39/9+A4iLi9P8+fPVtGlTZ8YKAAAshPEAAACuV6Wkfc6cObrnnns0bNgwxcTElFomMjJS8+bNq1ZwAFAZXK0fcC/GAwAAuF6VkvY9e/ZctIyfn5+GDh1aleoBAEANwHgAAADXq9I57enp6Vq8eHGJ7YsXL9aCBQuqHRQAALA+xgMAALhelZL2tLQ0NWjQoMT2yMhIPf/889UOCgAAWB/jAQAAXK9KSfuhQ4cUFxdXYnuTJk106NChagcFAACsj/EAAACuV6Vz2iMjI/XNN9+UuBrsf/7zH9WvX98ZcQEAAItjPICaorwLlR6cluzGSACg8qo003777bfroYce0rp161RYWKjCwkKtXbtWDz/8sAYPHuzsGAEAgAUxHgAAwPWqNNP+7LPP6uDBg+rZs6fq1PlfFUVFRbr77rs5hw1AjXSx5eKYiQFKYjwAAIDrVSlp9/Pz07vvvqtnn31W//nPfxQQEKD27durSZMmzo4PAABYFOMBAABcr0pJe7ErrrhCV1xxhbNiAQAANRDjAQAAXKdKSXthYaHmz5+vNWvW6NixYyoqKnLYv3btWqcEBwAArIvxAAAArlelpP3hhx/W/PnzlZycrHbt2snLy8vZcQEAAItjPAAAgOtVKWlftGiR3nvvPfXr18/Z8QAAgBqC8QCAmuRiF529GC5KC0+p0pJvfn5+uvzyy50dCwAAqEEYDwAA4HpVStofeeQRvfLKKzLGODseAABQQzhrPDBnzhx16NBBISEhCgkJUWJiopYtW2bfn5eXp9TUVNWvX19BQUFKSUlRVlZWdcMHAKBGqNLh8Z9//rnWrVunZcuWqW3btvL19XXY/8EHHzglOAAAYF3OGg80bNhQ06ZNU4sWLWSM0YIFCzRgwABt375dbdu21dixY/XJJ59o8eLFCg0N1ahRozRo0CB98cUXrmgWAACWUqWkPSwsTDfffLOzYwEAADWIs8YD/fv3d7j/3HPPac6cOdq8ebMaNmyoefPmaeHCherRo4ckKT09Xa1bt9bmzZvVuXPnaj8/AABWVqWkPT093dlxAACAGsYV44HCwkItXrxYubm5SkxM1LZt23T27Fn16tXLXqZVq1Zq3LixNm3aVGbSnp+fr/z8fPv9nJwcp8cKAIA7VClpl6Rz585p/fr12rdvn+644w4FBwfryJEjCgkJUVBQkDNjBAAAFuWs8cC3336rxMRE5eXlKSgoSB9++KHatGmjHTt2yM/PT2FhYQ7lo6KilJmZWWZ9aWlpmjx5clWbhVrkYlcU54rhADytSkn7jz/+qD59+ujQoUPKz8/XjTfeqODgYP35z39Wfn6+5s6d6+w4AQCAxThzPNCyZUvt2LFD2dnZev/99zV06FBt2LChyrFNmDBB48aNs9/PyclRo0aNqlwfAACeUqWrxz/88MO6+uqrdeLECQUEBNi333zzzVqzZo3TggMAANblzPFA8fJx8fHxSktLU8eOHfXKK68oOjpaBQUFOnnypEP5rKwsRUdHl1mfzWazX42++AYAQE1UpZn2f//739q4caP8/Pwctjdt2lQ///yzUwIDAADW5srxQFFRkfLz8xUfHy9fX1+tWbNGKSkpkqSMjAwdOnRIiYmJ1XoOAABqgiol7UVFRSosLCyx/aefflJwcHC1gwIAANbnrPHAhAkT1LdvXzVu3FinTp3SwoULtX79eq1YsUKhoaEaMWKExo0bp/DwcIWEhGj06NFKTEzkyvEAgFqhSofH9+7dWzNnzrTf9/Ly0unTpzVx4kT169fPWbEBAAALc9Z44NixY7r77rvVsmVL9ezZU1999ZVWrFihG2+8UZI0Y8YM/f73v1dKSoq6du2q6OjoCq8BDwBATVelmfaXXnpJSUlJatOmjfLy8nTHHXdoz549atCggd555x1nxwgAACzIWeOBefPmlbvf399fs2bN0qxZs6obMgAANU6VZtobNmyo//znP3ryySc1duxY/e53v9O0adO0fft2RUZGVriezz77TP3791dsbKy8vLy0ZMkSh/3Dhg2Tl5eXw61Pnz4OZX799VcNGTJEISEhCgsL04gRI3T69OmqNAsAAFSCs8YDAACgbFVep71OnTq68847q/Xkubm56tixo+655x4NGjSo1DJ9+vRRenq6/b7NZnPYP2TIEB09elSrVq3S2bNnNXz4cI0cOVILFy6sVmwAcD7W8QVK54zxAAAAKFuVkva33nqr3P133313herp27ev+vbtW24Zm81W5pIu3333nZYvX66vvvpKV199tSTptddeU79+/fTiiy8qNja2QnEAAIDKc9Z4AAAAlK1KSfvDDz/scP/s2bM6c+aM/Pz8VLduXad20uvXr1dkZKTq1aunHj16aOrUqapfv74kadOmTQoLC7Mn7JLUq1cveXt7a8uWLbr55pudFgcAAHDkzvEAAAC1VZWS9hMnTpTYtmfPHj3wwAN67LHHqh1UsT59+mjQoEGKi4vTvn379OSTT6pv377atGmTfHx8lJmZWeKcuTp16ig8PFyZmZll1pufn6/8/Hz7/ZycHKfFDABAbeGu8QAAALVZlc9pv1CLFi00bdo03Xnnnfr++++dUufgwYPt/2/fvr06dOig5s2ba/369erZs2eV601LS9PkyZOdESIAADiPK8YDAADUZlW6enxZ6tSpoyNHjjizSgfNmjVTgwYNtHfvXklSdHS0jh075lDm3Llz+vXXX8s8D16SJkyYoOzsbPvt8OHDLosZAIDaxtXjAQAAapMqzbT/61//crhvjNHRo0f1+uuv67rrrnNKYKX56aef9MsvvygmJkaSlJiYqJMnT2rbtm2Kj4+XJK1du1ZFRUVKSEgosx6bzVbiKvQAAKByPDUeAACgNqlS0j5w4ECH+15eXoqIiFCPHj300ksvVbie06dP22fNJenAgQPasWOHwsPDFR4ersmTJyslJUXR0dHat2+fHn/8cV1++eVKSkqSJLVu3Vp9+vTRfffdp7lz5+rs2bMaNWqUBg8ezJXjAQBwMWeNBwAAQNmqlLQXFRU55cm3bt2qG264wX5/3LhxkqShQ4dqzpw5+uabb7RgwQKdPHlSsbGx6t27t5599lmHWfK3335bo0aNUs+ePeXt7a2UlBS9+uqrTokPAACUzVnjAQAAUDanXYiuKrp37y5jTJn7V6xYcdE6wsPDtXDhQmeGBQAAAACAJVQpaS+eEa+Il19+uSpPAQAALI7xAAAArlelpH379u3avn27zp49q5YtW0qSfvjhB/n4+Oiqq66yl/Py8nJOlAAAwHIYDwAA4HpVStr79++v4OBgLViwQPXq1ZMknThxQsOHD9f111+vRx55xKlBAgAA62E8AACA61VpnfaXXnpJaWlp9g5akurVq6epU6dytVgAAGoJxgMAALhelZL2nJwcHT9+vMT248eP69SpU9UOCgAAWB/jAQAAXK9KSfvNN9+s4cOH64MPPtBPP/2kn376Sf/85z81YsQIDRo0yNkxAgAAC2I8AACA61XpnPa5c+fq0Ucf1R133KGzZ8/+r6I6dTRixAi98MILTg0QAABYE+MBAABcr0pJe926dTV79my98MIL2rdvnySpefPmCgwMdGpwAADAuhgPAADgelU6PL7Y0aNHdfToUbVo0UKBgYEyxjgrLgAAUEMwHgAAwHWqNNP+yy+/6NZbb9W6devk5eWlPXv2qFmzZhoxYoTq1avHFWMBAKgFGA/AKpqO/6TEtk3ZeYqRdDQ7z+l1A4A7VWmmfezYsfL19dWhQ4dUt25d+/bbbrtNy5cvd1pwAADAuhgPAADgelWaaV+5cqVWrFihhg0bOmxv0aKFfvzxR6cEBgAArI3xAAAArlelmfbc3FyHX9SL/frrr7LZbNUOCgAAWB/jAQAAXK9KSfv111+vt956y37fy8tLRUVFmj59um644QanBQcAAKyL8QAAAK5XpcPjp0+frp49e2rr1q0qKCjQ448/rl27dunXX3/VF1984ewYAQCABTEeAADA9ao0096uXTv98MMP6tKliwYMGKDc3FwNGjRI27dvV/PmzZ0dIwAAsCDGAwAAuF6lZ9rPnj2rPn36aO7cufrTn/7kipgAAIDFMR4AAMA9Kj3T7uvrq2+++cYVsQAAgBqC8QAAAO5RpcPj77zzTs2bN8/ZsQAAgBqE8QAAAK5XpQvRnTt3Tm+++aZWr16t+Ph4BQYGOux/+eWXnRIcANQUTcd/Uua+g9OS3RgJ4D6MBwAAcL1KJe379+9X06ZNtXPnTl111VWSpB9++MGhjJeXl/OiAwAAlsN4AAAA96lU0t6iRQsdPXpU69atkyTddtttevXVVxUVFeWS4AAAgPUwHgAAwH0qdU67Mcbh/rJly5Sbm+vUgAAAgLUxHgAAwH2qdCG6Yhd22gAAoPZhPAAAgOtUKmn38vIqcY4a56wBAFC7MB4AAMB9KnVOuzFGw4YNk81mkyTl5eXpj3/8Y4mrxX7wwQfOixAAAFgK4wEAANynUkn70KFDHe7feeedTg0GAABYH+MBAADcp1JJe3p6uqviAAAANQTjAQAA3KdaF6IDAAAAAACuQ9IOAAAAAIBFVerweKC2aTr+k3L3H5yW7KZIAAAAANRGzLQDAAAAAGBRzLQD1XCxmXgAAAAAqA5m2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAi+KcdgAAAAC4iPKuZcSKQnAlZtoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQCAR6Wlpemaa65RcHCwIiMjNXDgQGVkZDiUycvLU2pqqurXr6+goCClpKQoKyvLQxEDAOA+JO0AAMCjNmzYoNTUVG3evFmrVq3S2bNn1bt3b+Xm5trLjB07Vh9//LEWL16sDRs26MiRIxo0aJAHowYAwD3qeDoAAABQuy1fvtzh/vz58xUZGalt27apa9euys7O1rx587Rw4UL16NFDkpSenq7WrVtr8+bN6ty5syfCBgDALZhpBwAAlpKdnS1JCg8PlyRt27ZNZ8+eVa9evexlWrVqpcaNG2vTpk2l1pGfn6+cnByHGwAANREz7QAAwDKKioo0ZswYXXfddWrXrp0kKTMzU35+fgoLC3MoGxUVpczMzFLrSUtL0+TJk10dLgBUSNPxn5S7/+C0ZDdFgpqImXYAAGAZqamp2rlzpxYtWlSteiZMmKDs7Gz77fDhw06KEAAA92KmHQAAWMKoUaO0dOlSffbZZ2rYsKF9e3R0tAoKCnTy5EmH2fasrCxFR0eXWpfNZpPNZnN1yAAAuJxHZ9o/++wz9e/fX7GxsfLy8tKSJUsc9htj9MwzzygmJkYBAQHq1auX9uzZ41Dm119/1ZAhQxQSEqKwsDCNGDFCp0+fdmMrAABAdRhjNGrUKH344Ydau3at4uLiHPbHx8fL19dXa9assW/LyMjQoUOHlJiY6O5wAQBwK48m7bm5uerYsaNmzZpV6v7p06fr1Vdf1dy5c7VlyxYFBgYqKSlJeXl59jJDhgzRrl27tGrVKvuv8yNHjnRXEwAAQDWlpqbqH//4hxYuXKjg4GBlZmYqMzNTv/32myQpNDRUI0aM0Lhx47Ru3Tpt27ZNw4cPV2JiIleOBwBc8jx6eHzfvn3Vt2/fUvcZYzRz5kw99dRTGjBggCTprbfeUlRUlJYsWaLBgwfru+++0/Lly/XVV1/p6quvliS99tpr6tevn1588UXFxsa6rS0AAKBq5syZI0nq3r27w/b09HQNGzZMkjRjxgx5e3srJSVF+fn5SkpK0uzZs90cKQAA7mfZC9EdOHBAmZmZDsu7hIaGKiEhwb68y6ZNmxQWFmZP2CWpV69e8vb21pYtW9weMwAAqDxjTKm34oRdkvz9/TVr1iz9+uuvys3N1QcffFDm+ewAAFxKLHshuuIlXKKiohy2n7+8S2ZmpiIjIx3216lTR+Hh4WUuASP9b+3W/Px8+33WbgUAALCuiy2XBQCXMssm7a7E2q0odjQ7T4kMBOBirM0KAACAqrLs4fHFh7xlZWU5bD9/eZfo6GgdO3bMYf+5c+f066+/lnvIHGu3AgAAAABqAssm7XFxcYqOjnZY3iUnJ0dbtmyxL++SmJiokydPatu2bfYya9euVVFRkRISEsqs22azKSQkxOEGAAAAAIDVePTw+NOnT2vv3r32+wcOHNCOHTsUHh6uxo0ba8yYMZo6dapatGihuLg4Pf3004qNjdXAgQMlSa1bt1afPn103333ae7cuTp79qxGjRqlwYMHc+V4AAAAAECN59GkfevWrbrhhhvs98eNGydJGjp0qObPn6/HH39cubm5GjlypE6ePKkuXbpo+fLl8vf3tz/m7bff1qhRo9SzZ0/7UjCvvvqq29sCAAAAAICzeTRp7969u4wxZe738vLSlClTNGXKlDLLhIeHa+HCha4IDwAAAAAAj7LsOe0AAAAAANR2JO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYVB1PBwC4WtPxn5TYtik7TzEeiAUAAAAAKoOZdgAAAAAALIqkHQAAAAAAi+LweADwsNJO4TjfwWnJbooEAABUxcX6cqA6SNoBwOLKGwiQ0AMAAFzaODweAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwqDqeDgAAAABoOv4TT4cAAJbETDsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARbHkGwAAAAB4UHWWPDw4LdmJkcCKmGkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIviQnQAUINd7MI1XJwGAACgZmOmHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiWPINAC5hLAkHAABQszHTDgAAAACARZG0AwAAAABgUSTtAADAoz777DP1799fsbGx8vLy0pIlSxz2G2P0zDPPKCYmRgEBAerVq5f27NnjmWABAHAzknYAAOBRubm56tixo2bNmlXq/unTp+vVV1/V3LlztWXLFgUGBiopKUl5eXlujhQAAPfjQnQAAMCj+vbtq759+5a6zxijmTNn6qmnntKAAQMkSW+99ZaioqK0ZMkSDR482J2hAgDgdsy0AwAAyzpw4IAyMzPVq1cv+7bQ0FAlJCRo06ZNHowMAAD3sHTSPmnSJHl5eTncWrVqZd+fl5en1NRU1a9fX0FBQUpJSVFWVpYHIwYAAM6UmZkpSYqKinLYHhUVZd9Xmvz8fOXk5DjcAACoiSydtEtS27ZtdfToUfvt888/t+8bO3asPv74Yy1evFgbNmzQkSNHNGjQIA9GCwAArCAtLU2hoaH2W6NGjTwdEgAAVWL5c9rr1Kmj6OjoEtuzs7M1b948LVy4UD169JAkpaenq3Xr1tq8ebM6d+7s7lAB4JLSdPwn5e4/OC3ZTZGgNiseA2RlZSkmJsa+PSsrS1deeWWZj5swYYLGjRtnv5+Tk0PiDgCokSw/075nzx7FxsaqWbNmGjJkiA4dOiRJ2rZtm86ePetwjlurVq3UuHHji57jxiFzAADUDHFxcYqOjtaaNWvs23JycrRlyxYlJiaW+TibzaaQkBCHGwAANZGlk/aEhATNnz9fy5cv15w5c3TgwAFdf/31OnXqlDIzM+Xn56ewsDCHx1zsHDeJQ+YAALCS06dPa8eOHdqxY4ek/118bseOHTp06JC8vLw0ZswYTZ06Vf/617/07bff6u6771ZsbKwGDhzo0bgBAHAHSx8ef/7yLx06dFBCQoKaNGmi9957TwEBAVWul0PmAACwjq1bt+qGG26w3y/uo4cOHar58+fr8ccfV25urkaOHKmTJ0+qS5cuWr58ufz9/T0VMgAAbmPppP1CYWFhuuKKK7R3717deOONKigo0MmTJx1m27Oysko9B/58NptNNpvNxdECAICK6N69u4wxZe738vLSlClTNGXKFDdGBQCANVj68PgLnT59Wvv27VNMTIzi4+Pl6+vrcI5bRkaGDh06VO45bgAAAAAA1BSWnml/9NFH1b9/fzVp0kRHjhzRxIkT5ePjo9tvv12hoaEaMWKExo0bp/DwcIWEhGj06NFKTEzkyvEAAAAAgEuCpZP2n376Sbfffrt++eUXRUREqEuXLtq8ebMiIiIkSTNmzJC3t7dSUlKUn5+vpKQkzZ4928NRAwAAAADgHJZO2hctWlTufn9/f82aNUuzZs1yU0QAcGm52FrsAAAA8CxLJ+2AdPGk4uC0ZDdFAgAAAADuRdKOGo+ZQgAAAACXqhp19XgAAAAAAGoTZtoBAAAAoIbiVNJLHzPtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFcU47AKBKOIcOAADA9ZhpBwAAAADAokjaAQAAAACwKA6PhyVc7DBbAADgetU57YW+HKiZyvvscqqbNTDTDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFcfV4AAAAALhEsbJDzcdMOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABZVx9MBAABqn6bjPyl3/8FpyW6KBAAAwNqYaQcAAAAAwKJI2gEAAAAAsCgOj4dbXOxQWAAAAABASSTtcAqScgAArKG8Prm614ugvwcA9+PweAAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqvHAwBcojpXmb7YY6t7BWygtuLq7wBQ8zDTDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRLPkGAABgISx5CMAqqvt9VN7j+S6rOGbaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACL4px2AECNwzlyAACgtmCmHQAAAAAAi2KmHRV2satHAgAAAACci6T9ElOdQ0ZJygEAqJjq9pnVOY2D/hqAVVTn+4jlLSuOpB0AcElhEAAAAC4ll8w57bNmzVLTpk3l7++vhIQEffnll54OCQAAOBF9PQCgNrokZtrfffddjRs3TnPnzlVCQoJmzpyppKQkZWRkKDIy0tPhAQAshJn4mom+HgBQW10SSfvLL7+s++67T8OHD5ckzZ07V5988onefPNNjR8/3sPRlVSdcz84Bw4AUBvVtL4eAABnqfFJe0FBgbZt26YJEybYt3l7e6tXr17atGlTqY/Jz89Xfn6+/X52drYkKScnx7XB/n9F+Weq/NjGYxc7MZLa65QpUuD//7c6rweAS095fUG7iSvKfezOyUlOjcEY45T6ajor9vXV7TvKi4N+yTno64GazV25mSdVtL+v8Un7f//7XxUWFioqKsphe1RUlL7//vtSH5OWlqbJkyeX2N6oUSOXxAjraVn8n9wT0sxbPRkKAIsJnemZx5bm1KlTCg0NdW6lNdCl2Nc7+72CkujrgZqtNn1PXqy/r/FJe1VMmDBB48aNs98vKirSr7/+qvr168vLy8slz5mTk6NGjRrp8OHDCgkJcclzWEVtaWttaadEWy9FtaWdUs1sqzFGp06dUmxsrKdDqbHo612Ltl56aks7Jdp6Kaqp7axof1/jk/YGDRrIx8dHWVlZDtuzsrIUHR1d6mNsNptsNpvDtrCwMFeF6CAkJKRGvZGqo7a0tba0U6Ktl6La0k6p5rWVGfb/Q19vXbT10lNb2inR1ktRTWxnRfr7Gr/km5+fn+Lj47VmzRr7tqKiIq1Zs0aJiYkejAwAADgDfT0AoDar8TPtkjRu3DgNHTpUV199tTp16qSZM2cqNzfXfoVZAABQs9HXAwBqq0siab/tttt0/PhxPfPMM8rMzNSVV16p5cuXl7hgjSfZbDZNnDixxKF6l6La0tba0k6Jtl6Kaks7pdrV1ksZfb210NZLT21pp0RbL0WXeju9DOvJAAAAAABgSTX+nHYAAAAAAC5VJO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtFfDrFmz1LRpU/n7+yshIUFffvllmWXnz58vLy8vh5u/v79DmWHDhpUo06dPH1c346Iq005JOnnypFJTUxUTEyObzaYrrrhCn376abXqdBdnt3XSpEklXtNWrVq5uhkVUpm2du/evUQ7vLy8lJycbC9jjNEzzzyjmJgYBQQEqFevXtqzZ487mlIuZ7fTqp9TqfLv35kzZ6ply5YKCAhQo0aNNHbsWOXl5VWrTndwdjut/DmF59HXl46+nr6evt4zaktfL9HfOzCokkWLFhk/Pz/z5ptvml27dpn77rvPhIWFmaysrFLLp6enm5CQEHP06FH7LTMz06HM0KFDTZ8+fRzK/Prrr+5oTpkq2878/Hxz9dVXm379+pnPP//cHDhwwKxfv97s2LGjynW6iyvaOnHiRNO2bVuH1/T48ePualKZKtvWX375xaENO3fuND4+PiY9Pd1eZtq0aSY0NNQsWbLE/Oc//zE33XSTiYuLM7/99pubWlWSK9ppxc+pMZVv69tvv21sNpt5++23zYEDB8yKFStMTEyMGTt2bJXrdAdXtNOqn1N4Hn09fT19PX29VT6nxtSevr4qcV3q/T1JexV16tTJpKam2u8XFhaa2NhYk5aWVmr59PR0ExoaWm6dQ4cONQMGDHBilNVX2XbOmTPHNGvWzBQUFDitTndxRVsnTpxoOnbs6OxQq626r8GMGTNMcHCwOX36tDHGmKKiIhMdHW1eeOEFe5mTJ08am81m3nnnHecGXwnObqcx1vycGlP5tqamppoePXo4bBs3bpy57rrrqlynO7iinVb9nMLz6Ovp6+nr6eutpLb09cbQ31+Iw+OroKCgQNu2bVOvXr3s27y9vdWrVy9t2rSpzMedPn1aTZo0UaNGjTRgwADt2rWrRJn169crMjJSLVu21AMPPKBffvnFJW2oiKq081//+pcSExOVmpqqqKgotWvXTs8//7wKCwurXKc7uKKtxfbs2aPY2Fg1a9ZMQ4YM0aFDh1zalotxxmswb948DR48WIGBgZKkAwcOKDMz06HO0NBQJSQkeOx1dUU7i1npcypVra3XXnuttm3bZj/UbP/+/fr000/Vr1+/Ktfpaq5oZzGrfU7hefT19PUSfT19vTU+p1Lt6eurGtel3t/X8XQANdF///tfFRYWKioqymF7VFSUvv/++1If07JlS7355pvq0KGDsrOz9eKLL+raa6/Vrl271LBhQ0lSnz59NGjQIMXFxWnfvn168skn1bdvX23atEk+Pj4ub9eFqtLO/fv3a+3atRoyZIg+/fRT7d27Vw8++KDOnj2riRMnVqlOd3BFWyUpISFB8+fPV8uWLXX06FFNnjxZ119/vXbu3Kng4GCXt6s01X0NvvzyS+3cuVPz5s2zb8vMzLTXcWGdxfvczRXtlKz3OZWq1tY77rhD//3vf9WlSxcZY3Tu3Dn98Y9/1JNPPlnlOl3NFe2UrPk5hefR19PXS/T19PXW+JxKtaevl+jvS0PS7iaJiYlKTEy037/22mvVunVrvfHGG3r22WclSYMHD7bvb9++vTp06KDmzZtr/fr16tmzp9tjroqioiJFRkbqL3/5i3x8fBQfH6+ff/5ZL7zwgr1zu1RUpK19+/a1l+/QoYMSEhLUpEkTvffeexoxYoSnQq+WefPmqX379urUqZOnQ3Gpstp5KXxOpf/NIDz//POaPXu2EhIStHfvXj388MN69tln9fTTT3s6PKepSDsvxc8pPIO+nr7+UvkOoa+v+Z9Tqfb09dKl39+TtFdBgwYN5OPjo6ysLIftWVlZio6OrlAdvr6++t3vfqe9e/eWWaZZs2Zq0KCB9u7d65EviKq0MyYmRr6+vg6/QrZu3VqZmZkqKChwyt/OFVzRVj8/vxKPCQsL0xVXXFHu6+5q1XkNcnNztWjRIk2ZMsVhe/HjsrKyFBMT41DnlVde6ZzAK8kV7SyNpz+nUtXa+vTTT+uuu+7SvffeK+l/g5Lc3FyNHDlSf/rTnyz5WXVFO729S54lZoXPKTyPvp6+XqKvPx99PX29u9Dfl8Q57VXg5+en+Ph4rVmzxr6tqKhIa9ascfiFvTyFhYX69ttvHb70LvTTTz/pl19+KbeMK1Wlndddd5327t2roqIi+7YffvhBMTEx8vPzc8rfzhVc0dbSnD59Wvv27fPYaypV7/27ePFi5efn684773TYHhcXp+joaIc6c3JytGXLFo+9rq5oZ2k8/TmVqtbWM2fOlOjAigelxhhLflZd0c7SWOFzCs+jr6evl+jrz0dfT1/vLvT3pfDcNfBqtkWLFhmbzWbmz59vdu/ebUaOHGnCwsLsS7vcddddZvz48fbykydPNitWrDD79u0z27ZtM4MHDzb+/v5m165dxhhjTp06ZR599FGzadMmc+DAAbN69Wpz1VVXmRYtWpi8vDyPtNGYyrfz0KFDJjg42IwaNcpkZGSYpUuXmsjISDN16tQK1+kprmjrI488YtavX28OHDhgvvjiC9OrVy/ToEEDc+zYMbe373yVbWuxLl26mNtuu63UOqdNm2bCwsLMRx99ZL755hszYMAASywD48x2WvVzakzl2zpx4kQTHBxs3nnnHbN//36zcuVK07x5c3PrrbdWuE5PcEU7rfo5hefR19PX09c7oq+nr3cX+ntHJO3V8Nprr5nGjRsbPz8/06lTJ7N582b7vm7dupmhQ4fa748ZM8ZeNioqyvTr1898/fXX9v1nzpwxvXv3NhEREcbX19c0adLE3HfffR7/wBhTuXYaY8zGjRtNQkKCsdlsplmzZua5554z586dq3CdnuTstt52220mJibG+Pn5mcsuu8zcdtttZu/eve5qTrkq29bvv//eSDIrV64stb6ioiLz9NNPm6ioKGOz2UzPnj1NRkaGK5tQIc5sp5U/p8ZUrq1nz541kyZNMs2bNzf+/v6mUaNG5sEHHzQnTpyocJ2e4ux2WvlzCs+jr6evp6//P/T1nldb+npj6O/P52VMGccLAAAAAAAAj+KcdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsKj/B97ASdK/R4ndAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHDCAYAAABRfvt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABam0lEQVR4nO3deVyU5f7/8TcgDMgqKiC5oZm72cGNXFMTl0yTMstKzbIMNaXVTuVamFnaglodQzvlsWNH7WSJu3bMJSU9pRa5hqagpwRcclC4f3/0Y76OLDI4zNzo6/l4zKPmvq+553PdjHNdn7nv67o8DMMwBAAAAAAATMfT3QEAAAAAAICikbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0o8KoW7euhg4d6u4wrtqGDRvk4eGhDRs22LYNHTpUdevWdVtM17PLP1dF/X3Ky8SJE+Xh4WG3zcPDQ6NGjSr395ak+fPny8PDQ4cPH3bJ+wHAtcyd7QnsFdW+uqofefjwYXl4eGj+/Pm2bUOHDlVAQEC5v3cBDw8PTZw40WXvh/JH0g6n2bx5syZOnKisrCx3h2IKs2fPtvvCxrXt1Vdf1bJly9wdRpHMHBuAistV7b6ZvsPo61xfvvrqK9Mmv2aODc5H0g6n2bx5syZNmlRuDVlaWpo++OCDcjl2eXAkaf/ggw+UlpZWvgGhVDp16qQ//vhDnTp1cuh1ZelUvvjii/rjjz8cek1ZFBfbgw8+qD/++EN16tQp9xgAXHvKu90vYLakvbR1Lmt7gvJRln7kV199pUmTJjn0mjp16uiPP/7Qgw8+6NDrHFVSbH/88YdefPHFcn1/uBZJO9wiPz9f58+fd+g1FotF3t7e5RSRe3l7e8tisTjlWIZhuCQRdJazZ8+6OwQ7np6e8vX1ladn+X09FtS5UqVK8vX1Lbf3uRIvLy/5+voWuoUQAHD1nN2emK29LMn58+eVn5/v7jDslHc/8uLFi8rNzZWHh4d8fX3l5eVVbu91Jb6+vqpUqZLb3h/OR9IOp5g4caKeeeYZSVJUVJQ8PDzsxsoWjNP95JNP1LRpU1ksFqWkpEiSZsyYoVtvvVVVq1aVn5+foqOj9dlnnxV6j8vHIhWMx/3mm2+UkJCg6tWry9/fX3fddZdOnjzpcB127typXr16KSgoSAEBAerWrZu2bt1aqJ5FJTiXjw2uW7eu9uzZo40bN9rORZcuXYp976LGtOfn52vWrFlq2rSpfH19FR4erscee0ynTp2yK1e3bl3dcccdWrlypVq1aiU/Pz+99957papzRkaGhg0bppo1a8pisahGjRrq169foTHOK1asUOfOnRUYGKigoCC1bt1aCxcutCuzePFiRUdHy8/PT9WqVdMDDzygX3/9tVA9AwICdODAAfXu3VuBgYEaPHiwQ/XdsWOHYmNjVa1aNfn5+SkqKkoPP/zwFetqGIamTp2qmjVrqnLlyrrtttu0Z8+eQuWKGoO4b98+xcXFKSIiQr6+vqpZs6YGDRqk7OxsSX9+vs+ePasFCxbY/t4Fn9WCz8zevXt1//33q0qVKurQoYPdvqJ88sknatiwoXx9fRUdHa2vv/660Lksah6Ey49ZUmzFjWmfPXu27d9pZGSk4uPjC11V6tKli5o1a6a9e/fqtttuU+XKlXXDDTdo+vTpRdYHwLXlSu2+JH388ce2diE0NFSDBg3SkSNH7I5zNd+vpXH27Fk99dRTqlWrliwWixo2bKgZM2bIMAxbmaLGIBe4dGxwaep8qeLGtG/btk09e/ZUcHCwKleurM6dO+ubb76xK1NS21Ea77zzjpo2barKlSurSpUqatWqVaF2+9dff9Xw4cMVGRkpi8WiqKgojRw5Urm5ubYyBw8e1D333KPQ0FBVrlxZ7dq105dffllkPRctWqQXX3xRN9xwgypXrqycnJxS1/f06dMaO3as6tatK4vForCwMN1+++367rvvrljXTZs2qXXr1vL19VX9+vWL7QNd3o+8cOGCJk2apAYNGsjX11dVq1ZVhw4dtHr1akl/trNJSUmSZPtbF7SvBZ+ZGTNmaNasWapfv74sFov27t1b4ufp4MGDio2Nlb+/vyIjIzV58mS7z2Jxn5nLj1lSbAXbLr91vjT9XGf3reE8/AQDpxgwYIB+/vln/eMf/9DMmTNVrVo1SVL16tVtZdatW6d//vOfGjVqlKpVq2ZLON566y3deeedGjx4sHJzc7Vo0SLdc889Wr58ufr06XPF9x49erSqVKmiCRMm6PDhw5o1a5ZGjRqlTz/9tNTx79mzRx07dlRQUJCeffZZeXt767333lOXLl20ceNGtW3b1qHzMWvWLI0ePVoBAQH661//KkkKDw936BiPPfaY5s+fr2HDhmnMmDE6dOiQ3n33Xe3cuVPffPON3a/FaWlpuu+++/TYY4/p0UcfVcOGDUv1HnFxcdqzZ49Gjx6tunXr6sSJE1q9erXS09Ntf5/58+fr4YcfVtOmTTV+/HiFhIRo586dSklJ0f33328rM2zYMLVu3VqJiYnKzMzUW2+9pW+++UY7d+5USEiI7T0vXryo2NhYdejQQTNmzFDlypVLXd8TJ06oR48eql69up5//nmFhITo8OHDWrJkyRXr+vLLL2vq1Knq3bu3evfure+++049evSw65wUJTc3V7GxsbJarRo9erQiIiL066+/avny5crKylJwcLD+/ve/65FHHlGbNm00YsQISVL9+vXtjnPPPfeoQYMGevXVV+0a6KJs3LhRn376qcaMGSOLxaLZs2erZ8+e+vbbb9WsWbMr1vVSpYntUhMnTtSkSZPUvXt3jRw5UmlpaZozZ462b99e6HN36tQp9ezZUwMGDNDAgQP12Wef6bnnnlPz5s3Vq1cvh+IEULFcqd1/5ZVX9NJLL2ngwIF65JFHdPLkSb3zzjvq1KmTrV1w1vdrcQzD0J133qn169dr+PDhatmypVauXKlnnnlGv/76q2bOnOnUOpfGunXr1KtXL0VHR2vChAny9PRUcnKyunbtqv/85z9q06aNXXlH2o4CH3zwgcaMGaO7775bTz75pM6fP6/vv/9e27Zts7Xbx44dU5s2bZSVlaURI0aoUaNG+vXXX/XZZ5/p3Llz8vHxUWZmpm699VadO3dOY8aMUdWqVbVgwQLdeeed+uyzz3TXXXfZve+UKVPk4+Ojp59+WlarVT4+PqWu7+OPP67PPvtMo0aNUpMmTfTbb79p06ZN+vHHH/WXv/yl2Lr+8MMPtn7BxIkTdfHiRU2YMKFUfa6JEycqMTHR9vnKycnRjh079N133+n222/XY489pmPHjmn16tX6+9//XuQxkpOTdf78eY0YMUIWi0WhoaHF3mGQl5ennj17ql27dpo+fbpSUlI0YcIEXbx4UZMnT75ivJcqTWyXcrSf64y+NZzMAJzk9ddfNyQZhw4dKrRPkuHp6Wns2bOn0L5z587ZPc/NzTWaNWtmdO3a1W57nTp1jCFDhtieJycnG5KM7t27G/n5+bbt48aNM7y8vIysrKxSx96/f3/Dx8fHOHDggG3bsWPHjMDAQKNTp062bRMmTDCK+mdTEMuldW/atKnRuXPnQmXXr19vSDLWr19v2zZkyBCjTp06tuf/+c9/DEnGJ598YvfalJSUQtvr1KljSDJSUlJKXV/DMIxTp04ZkozXX3+92DJZWVlGYGCg0bZtW+OPP/6w21dwznNzc42wsDCjWbNmdmWWL19uSDJefvllu3pKMp5//nm7Y5W2vkuXLjUkGdu3b3eoridOnDB8fHyMPn362H1WXnjhBUOS3efq8r/Pzp07DUnG4sWLS3wPf39/u+MUKPjM3HfffcXuu5QkQ5KxY8cO27ZffvnF8PX1Ne666y7btss/MyUds7jYLv/cFpynHj16GHl5ebZy7777riHJ+PDDD23bOnfubEgyPvroI9s2q9VqREREGHFxcYXeC8C1p7h2//Dhw4aXl5fxyiuv2G3/4YcfjEqVKtm2X+3365UsW7bMkGRMnTrVbvvdd99teHh4GPv37zcMwzAOHTpkSDKSk5MLHUOSMWHCBNvzkvo6l/dTLm9P8vPzjQYNGhixsbF2bdG5c+eMqKgo4/bbb7dtK6ntuJJ+/foZTZs2LbHMQw89ZHh6ehbZnhbENnbsWEOS8Z///Me27/Tp00ZUVJRRt25dWztRUM969erZ9ekcqW9wcLARHx/vcF379+9v+Pr6Gr/88ott2969ew0vL69CbeHlf5+bb77Z6NOnT4nHj4+PL7LfV/CZCQoKMk6cOFHkvks/TwX9n9GjR9u25efnG3369DF8fHyMkydPGoZRdB+xuGMWF5thFP7clraf68y+NZyL2+PhMp07d1aTJk0Kbffz87P9/6lTp5Sdna2OHTuW6pYoSRoxYoTdLUEdO3ZUXl6efvnll1K9Pi8vT6tWrVL//v1Vr1492/YaNWro/vvv16ZNm2y3eLnK4sWLFRwcrNtvv13/+9//bI/o6GgFBARo/fr1duWjoqIUGxvr0Hv4+fnJx8dHGzZsKHQLeoHVq1fr9OnTev755wuNvS445zt27NCJEyf0xBNP2JXp06ePGjVqVOg2OkkaOXJkmepbcMV++fLlunDhQqnrumbNGuXm5mr06NF2n5WxY8de8bXBwcGSpJUrV+rcuXOlfs/LPf7446UuGxMTo+joaNvz2rVrq1+/flq5cqXy8vLKHMOVFJynsWPH2o3BfPTRRxUUFFTobxkQEKAHHnjA9tzHx0dt2rTRwYMHyy1GAOa3ZMkS5efna+DAgXbf6REREWrQoIHtO91Z36/F+eqrr+Tl5aUxY8bYbX/qqadkGIZWrFjh9Pcsya5du7Rv3z7df//9+u2332zn5ezZs+rWrZu+/vrrQldpHWk7CoSEhOjo0aPavn17kfvz8/O1bNky9e3bV61atSq0v6Cd/Oqrr9SmTRu72/IDAgI0YsQIHT58WHv37rV73ZAhQ+z6dI7UNyQkRNu2bdOxY8dKXc+8vDytXLlS/fv3V+3atW3bGzduXKo+UUhIiPbs2aN9+/aV+j0vFxcX59CdFpcu6VowdDQ3N1dr1qwpcwxXUpZ+7tX2reF8JO1wmaioqCK3L1++XO3atZOvr69CQ0NVvXp1zZkzxzae7Uou/aKWpCpVqkhSsYno5U6ePKlz584VeUt548aNlZ+fX2gMXnnbt2+fsrOzFRYWpurVq9s9zpw5oxMnTtiVL+7clsRisei1117TihUrFB4erk6dOmn69OnKyMiwlTlw4IAklXhLdsEXeFHnr1GjRoW+4CtVqqSaNWvabSttfTt37qy4uDhNmjRJ1apVU79+/ZScnCyr1VpiXQtiaNCggd326tWr2z4vxYmKilJCQoL+9re/qVq1aoqNjVVSUlKpP5+XHqe0Lo9Tkm666SadO3euXMeUFfe39PHxUb169Qr9LWvWrFloTH6VKlVK/W8PwLVp3759MgxDDRo0KPSd/uOPP9q+0531/VqcX375RZGRkQoMDLTb3rhxY9t+VypIDocMGVLovPztb3+T1WotVPeytO/PPfecAgIC1KZNGzVo0EDx8fF2Y8hPnjypnJycKw63+uWXX4rtGxXsLylWR+o7ffp07d69W7Vq1VKbNm00ceLEK/4AfPLkSf3xxx9FtpmlGSY4efJkZWVl6aabblLz5s31zDPP6Pvvv7/i6y7lyN/H09PTLmmW/mzbJRU7L4IzlKWfe7V9azgfY9rhMpf++lrgP//5j+6880516tRJs2fPVo0aNeTt7a3k5ORCE6YUp7jZOY1Sjv1yRHGThjn76md+fr7CwsL0ySefFLn/8l91izq3pTF27Fj17dtXy5Yt08qVK/XSSy8pMTFR69at0y233FKmY16JxWIpNJNuaevr4eGhzz77TFu3btUXX3yhlStX6uGHH9Ybb7yhrVu3KiAgoFxifuONNzR06FB9/vnnWrVqlcaMGaPExERt3bq10A8QxSnr36g4rvoslsSV//YAVBz5+fny8PDQihUrivyeuPS72hnfr1fLlW27JL3++utq2bJlkWUub8fK0nY0btxYaWlpWr58uVJSUvSvf/1Ls2fP1ssvv+zw8mWOuDxWR+o7cOBAdezYUUuXLtWqVav0+uuv67XXXtOSJUvKbY6UTp066cCBA7bP3t/+9jfNnDlTc+fO1SOPPFKqY1yLbbtE+25GJO1wmrIsG/Wvf/1Lvr6+Wrlypd2SZ8nJyc4MrUTVq1dX5cqVi1wn/aeffpKnp6dq1aol6f9+aczKyrKbXK2oX+uvZhmt+vXra82aNWrfvr3TG4Si3uupp57SU089pX379qlly5Z644039PHHH9sm+9m9e7duvPHGIl9fsMZ3WlqaunbtarcvLS2tVGuAO1rfdu3aqV27dnrllVe0cOFCDR48WIsWLSq2kS2IYd++fXa/cp88ebLUvxo3b95czZs314svvqjNmzerffv2mjt3rqZOnSrp6v7elyvqVr2ff/5ZlStXtv2AUaVKlSLXCb6az+Klf8tLz1Nubq4OHTqk7t27l+o4AK4PxX231K9fX4ZhKCoqynYlsSTl9f1ap04drVmzRqdPn7a72v7TTz/Z9kv2bfulyqNtl6SgoKBy/z719/fXvffeq3vvvVe5ubkaMGCAXnnlFY0fP17Vq1dXUFCQdu/eXeIx6tSpU2zfqGB/SRytb40aNfTEE0/oiSee0IkTJ/SXv/xFr7zySrFJe/Xq1eXn51dkm1lU3EUJDQ3VsGHDNGzYMJ05c0adOnXSxIkTbf0JZ7bt+fn5OnjwoN2/iZ9//lmSbJP/lsdn0ZF+LsyL2+PhNP7+/pIKf9GUxMvLSx4eHna/IB4+fFjLli1zcnQlx9CjRw99/vnndrcnZWZmauHCherQoYOCgoIk/V8DdOnyWwVL0VzO39/foXNxqYEDByovL09TpkwptO/ixYtlPu6lzp07p/Pnz9ttq1+/vgIDA223m/fo0UOBgYFKTEwsVLbg19ZWrVopLCxMc+fOtbtNfcWKFfrxxx9LtQJAaet76tSpQr/yFvx6X9It8t27d5e3t7feeecdu9fPmjXrirHl5OTo4sWLdtuaN28uT09Pu/e8mr/35bZs2WI3p8ORI0f0+eefq0ePHrZfv+vXr6/s7Gy7W/mOHz+upUuXFjpeaWPr3r27fHx89Pbbb9udp3nz5ik7O7tUf0sA14/i2v0BAwbIy8tLkyZNKvSdbRiGfvvtN0nl//3au3dv5eXl6d1337XbPnPmTHl4eNiSwaCgIFWrVq3Q0pqzZ88udMyy9HUKREdHq379+poxY4bOnDlTaL+zhj8VnN8CPj4+atKkiQzD0IULF+Tp6an+/fvriy++0I4dOwq9vuBv1rt3b3377bfasmWLbd/Zs2f1/vvvq27dukXOU3Sp0tY3Ly+v0LCAsLAwRUZGlti2e3l5KTY2VsuWLVN6erpt+48//qiVK1eWGJtU+DwFBAToxhtvLPTZk8r29y7KpZ9FwzD07rvvytvbW926dZP05w8hXl5eTv0sOtLPhXlxpR1OUzBx1l//+lcNGjRI3t7e6tu3r+1LpSh9+vTRm2++qZ49e+r+++/XiRMnlJSUpBtvvNHhcUVXY+rUqVq9erU6dOigJ554QpUqVdJ7770nq9Vqt+50jx49VLt2bQ0fPlzPPPOMvLy89OGHH6p69ep2DYb05/mYM2eOpk6dqhtvvFFhYWGFrkQXp3PnznrssceUmJioXbt2qUePHvL29ta+ffu0ePFivfXWW7r77ruvqs4///yzunXrpoEDB6pJkyaqVKmSli5dqszMTA0aNEjSnx2ZmTNn6pFHHlHr1q1ta8X+97//1blz57RgwQJ5e3vrtdde07Bhw9S5c2fdd999tiXf6tatq3HjxjmtvgsWLNDs2bN11113qX79+jp9+rQ++OADBQUFqXfv3sUev3r16nr66aeVmJioO+64Q71799bOnTu1YsUK25I9xVm3bp1GjRqle+65RzfddJMuXryov//97/Ly8lJcXJytXHR0tNasWaM333xTkZGRioqKcnipwALNmjVTbGys3ZJvkuxuaxw0aJCee+453XXXXRozZozOnTunOXPm6Kabbio0iWNpY6tevbrGjx+vSZMmqWfPnrrzzjuVlpam2bNnq3Xr1naTzgFAce1+/fr1NXXqVI0fP16HDx9W//79FRgYqEOHDmnp0qUaMWKEnn766XL/fu3bt69uu+02/fWvf9Xhw4d18803a9WqVfr88881duxYu6XjHnnkEU2bNk2PPPKIWrVqpa+//tp2FbQ0dS6pr1PA09NTf/vb39SrVy81bdpUw4YN0w033KBff/1V69evV1BQkL744osrHudKevTooYiICLVv317h4eH68ccf9e6776pPnz62Ow5effVVrVq1Sp07d9aIESPUuHFjHT9+XIsXL9amTZsUEhKi559/Xv/4xz/Uq1cvjRkzRqGhoVqwYIEOHTqkf/3rX4WGupW1vqdPn1bNmjV199136+abb1ZAQIDWrFmj7du364033ijxPSZNmqSUlBR17NhRTzzxhC5evGhbo/5K/cgmTZqoS5cuio6OVmhoqHbs2GFbdq5Awd97zJgxio2NlZeXl62P5ChfX1+lpKRoyJAhatu2rVasWKEvv/xSL7zwgu0uuuDgYN1zzz1655135OHhofr162v58uWF5jJyNLbS9nNhYm6YsR7XsClTphg33HCD4enpabckiqRil/KYN2+e0aBBA8NisRiNGjUykpOTi1y2qrgl3y5frqS45TKu5LvvvjNiY2ONgIAAo3LlysZtt91mbN68uVC51NRUo23btoaPj49Ru3Zt48033yxyybeMjAyjT58+RmBgoCHJtvxbaZZ8K/D+++8b0dHRhp+fnxEYGGg0b97cePbZZ41jx47ZnZcrLVlSlP/9739GfHy80ahRI8Pf398IDg422rZta/zzn/8sVPbf//63ceuttxp+fn5GUFCQ0aZNG+Mf//iHXZlPP/3UuOWWWwyLxWKEhoYagwcPNo4ePWpXZsiQIYa/v3+xMV2pvt99951x3333GbVr1zYsFosRFhZm3HHHHXbLoxUnLy/PmDRpklGjRg3Dz8/P6NKli7F79+4rLtFz8OBB4+GHHzbq169v+Pr6GqGhocZtt91mrFmzxu74P/30k9GpUyfDz8/Pbhm5gs9ywXIulypuybf4+Hjj448/tv27uOWWW4r8PK9atcpo1qyZ4ePjYzRs2ND4+OOPizxmcbEV9bk1jD+XeGvUqJHh7e1thIeHGyNHjjROnTplV6Zz585FLilU3GcZwLWpuHbfMAzjX//6l9GhQwfD39/f8Pf3Nxo1amTEx8cbaWlphmFc/fdraZw+fdoYN26cERkZaXh7exsNGjQwXn/9dbvlrAzjz2XIhg8fbgQHBxuBgYHGwIEDjRMnThRaOqukOl+pPSmwc+dOY8CAAUbVqlUNi8Vi1KlTxxg4cKCxdu1aW5mS2o4ree+994xOnTrZjl+/fn3jmWeeMbKzs+3K/fLLL8ZDDz1kVK9e3bBYLEa9evWM+Ph4w2q12socOHDAuPvuu42QkBDD19fXaNOmjbF8+XK74xTUs7il+65UX6vVajzzzDPGzTffbAQGBhr+/v7GzTffbMyePbtU9d24caMRHR1t+Pj4GPXq1TPmzp1bqn7k1KlTjTZt2hghISGGn5+f0ahRI+OVV14xcnNzbWUuXrxojB492qhevbrh4eFhO2bBEmxFLZtb3JJv/v7+xoEDB4wePXoYlStXNsLDw40JEybYLbFqGIZx8uRJIy4uzqhcubJRpUoV47HHHjN2795d6JjFxWYYhZd8M4zS9XOd3beG83gYBjMKAAAAAABgRoxpBwAAAADApBjTjmvamTNnipz85FLVq1cvdmmLiio7O1t//PFHiWUiIiJcFA0AAM6Tl5d3xUnbAgICym0ZUHfJzc3V77//XmKZ4ODgcl91BoDrkbTjmjZjxowrrkl66NAh21Ib14onn3yyyBntL8XIGABARXTkyBFFRUWVWGbChAmaOHGiawJykc2bN+u2224rsUxycrKGDh3qmoAAuAxj2nFNO3jwoA4ePFhimQ4dOsjX19dFEbnG3r17dezYsRLLsOY2AKAiOn/+vDZt2lRimXr16qlevXouisg1Tp06pdTU1BLLNG3aVDVq1HBRRABchaQdAAAAAACTYiI6AADgVnXr1pWHh0ehR3x8vKQ/r6zGx8eratWqCggIUFxcnDIzM90cNQAArsGVdkn5+fk6duyYAgMD5eHh4e5wAADXOcMwdPr0aUVGRsrT89r/ff3kyZPKy8uzPd+9e7duv/12rV+/Xl26dNHIkSP15Zdfav78+QoODtaoUaPk6empb775ptTvQVsPADCb0rb3JO2Sjh49qlq1ark7DAAA7Bw5ckQ1a9Z0dxguN3bsWC1fvlz79u1TTk6OqlevroULF+ruu++WJP30009q3LixtmzZonbt2pXqmLT1AACzulJ7z+zxkgIDAyX9ebKCgoLcHM11olEj6fhxqUYN6aef3B0NAJhKTk6OatWqZWufrie5ubn6+OOPlZCQIA8PD6WmpurChQt2k2c2atRItWvXLjFpt1qtslqttucF1yho612Ith4ASlTa9p6kXbLdJhcUFERD7ioFt394ekqccwAo0vV4G/eyZcuUlZVlW7YqIyNDPj4+CgkJsSsXHh6ujIyMYo+TmJhY5JKftPUuRFsPAKVypfb+2h8oBwAAKox58+apV69eioyMvKrjjB8/XtnZ2bbHkSNHnBQhAACuxZV2AABgCr/88ovWrFmjJUuW2LZFREQoNzdXWVlZdlfbMzMzFRERUeyxLBaLLBZLeYYLAIBLcKUdAACYQnJyssLCwtSnTx/btujoaHl7e2vt2rW2bWlpaUpPT1dMTIw7wgQAwKW40g4AANwuPz9fycnJGjJkiCpV+r/uSXBwsIYPH66EhASFhoYqKChIo0ePVkxMTKlnjgcAoCIjaQcAAG63Zs0apaen6+GHHy60b+bMmfL09FRcXJysVqtiY2M1e/ZsN0QJAIDrkbQDAAC369Gjh21Ztsv5+voqKSlJSUlJLo4KAAD3Y0w7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASVVydwDA9aru81+WuP/wtD4uigQAgOsX7TEAs+NKOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASbk1aZ8zZ45atGihoKAgBQUFKSYmRitWrLDtP3/+vOLj41W1alUFBAQoLi5OmZmZdsdIT09Xnz59VLlyZYWFhemZZ57RxYsXXV0VAAAAAACczq1Je82aNTVt2jSlpqZqx44d6tq1q/r166c9e/ZIksaNG6cvvvhCixcv1saNG3Xs2DENGDDA9vq8vDz16dNHubm52rx5sxYsWKD58+fr5ZdfdleVAAAAAABwmkrufPO+ffvaPX/llVc0Z84cbd26VTVr1tS8efO0cOFCde3aVZKUnJysxo0ba+vWrWrXrp1WrVqlvXv3as2aNQoPD1fLli01ZcoUPffcc5o4caJ8fHzcUS0AAAAAAJzCNGPa8/LytGjRIp09e1YxMTFKTU3VhQsX1L17d1uZRo0aqXbt2tqyZYskacuWLWrevLnCw8NtZWJjY5WTk2O7Wl8Uq9WqnJwcuwcAAAAAAGbj9qT9hx9+UEBAgCwWix5//HEtXbpUTZo0UUZGhnx8fBQSEmJXPjw8XBkZGZKkjIwMu4S9YH/BvuIkJiYqODjY9qhVq5ZzKwUAAAAAgBO4PWlv2LChdu3apW3btmnkyJEaMmSI9u7dW67vOX78eGVnZ9seR44cKdf3AwAAAACgLNw6pl2SfHx8dOONN0qSoqOjtX37dr311lu69957lZubq6ysLLur7ZmZmYqIiJAkRURE6Ntvv7U7XsHs8gVlimKxWGSxWJxcEwAAAAAAnMvtV9ovl5+fL6vVqujoaHl7e2vt2rW2fWlpaUpPT1dMTIwkKSYmRj/88INOnDhhK7N69WoFBQWpSZMmLo8dAAAAAABncuuV9vHjx6tXr16qXbu2Tp8+rYULF2rDhg1auXKlgoODNXz4cCUkJCg0NFRBQUEaPXq0YmJi1K5dO0lSjx491KRJEz344IOaPn26MjIy9OKLLyo+Pp4r6QAAAACACs+tSfuJEyf00EMP6fjx4woODlaLFi20cuVK3X777ZKkmTNnytPTU3FxcbJarYqNjdXs2bNtr/fy8tLy5cs1cuRIxcTEyN/fX0OGDNHkyZPdVSXATt3nv3R3CAAAAAAqMLcm7fPmzStxv6+vr5KSkpSUlFRsmTp16uirr75ydmgAAAAAALid6ca0AwAAAACAP5G0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAHC7X3/9VQ888ICqVq0qPz8/NW/eXDt27LDtNwxDL7/8smrUqCE/Pz91795d+/btc2PEAAC4Bkk7AABwq1OnTql9+/by9vbWihUrtHfvXr3xxhuqUqWKrcz06dP19ttva+7cudq2bZv8/f0VGxur8+fPuzFyAADKXyV3BwAAAK5vr732mmrVqqXk5GTbtqioKNv/G4ahWbNm6cUXX1S/fv0kSR999JHCw8O1bNkyDRo0yOUxAwDgKlxpBwAAbvXvf/9brVq10j333KOwsDDdcsst+uCDD2z7Dx06pIyMDHXv3t22LTg4WG3bttWWLVvcETIAAC7DlXbgKtR9/kt3hwAAFd7Bgwc1Z84cJSQk6IUXXtD27ds1ZswY+fj4aMiQIcrIyJAkhYeH270uPDzctu9yVqtVVqvV9jwnJ6f8KgAAQDkiaQcAAG6Vn5+vVq1a6dVXX5Uk3XLLLdq9e7fmzp2rIUOGlOmYiYmJmjRpkjPDBADALbg9HgAAuFWNGjXUpEkTu22NGzdWenq6JCkiIkKSlJmZaVcmMzPTtu9y48ePV3Z2tu1x5MiRcogcAIDyR9IOAADcqn379kpLS7Pb9vPPP6tOnTqS/pyULiIiQmvXrrXtz8nJ0bZt2xQTE1PkMS0Wi4KCguweAABURNweDwAA3GrcuHG69dZb9eqrr2rgwIH69ttv9f777+v999+XJHl4eGjs2LGaOnWqGjRooKioKL300kuKjIxU//793Rs8AADljKQdAAC4VevWrbV06VKNHz9ekydPVlRUlGbNmqXBgwfbyjz77LM6e/asRowYoaysLHXo0EEpKSny9fV1Y+QAAJQ/knYAAOB2d9xxh+64445i93t4eGjy5MmaPHmyC6MCAMD9GNMOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJVXJ3AIA71X3+yxL3H57Wx0WRAAAAAEBhXGkHAAAAAMCkSNoBAAAAADApbo8HAAAA3IBhegBKgyvtAAAAAACYFFfagQqqpF/n+WUeAAAAuDaQtAPXIG63AwAAAK4N3B4PAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIs+QaY1JWWbQMAAABw7eNKOwAAAAAAJkXSDgAAAACASbk1aU9MTFTr1q0VGBiosLAw9e/fX2lpaXZlunTpIg8PD7vH448/blcmPT1dffr0UeXKlRUWFqZnnnlGFy9edGVVAAAAAABwOreOad+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/f31bu0Ucf1eTJk23PK1eubPv/vLw89enTRxEREdq8ebOOHz+uhx56SN7e3nr11VddWh8AAAAAAJzJrUl7SkqK3fP58+crLCxMqamp6tSpk2175cqVFRERUeQxVq1apb1792rNmjUKDw9Xy5YtNWXKFD333HOaOHGifHx8yrUOAAAAAACUF1PNHp+dnS1JCg0Ntdv+ySef6OOPP1ZERIT69u2rl156yXa1fcuWLWrevLnCw8Nt5WNjYzVy5Ejt2bNHt9xyS6H3sVqtslqttuc5OTnlUR0AAACYgLtWZGElGADOYJqkPT8/X2PHjlX79u3VrFkz2/b7779fderUUWRkpL7//ns999xzSktL05IlSyRJGRkZdgm7JNvzjIyMIt8rMTFRkyZNKqea4FpCYwsAAADAnUyTtMfHx2v37t3atGmT3fYRI0bY/r958+aqUaOGunXrpgMHDqh+/fpleq/x48crISHB9jwnJ0e1atUqW+AAAAAAAJQTUyz5NmrUKC1fvlzr169XzZo1Syzbtm1bSdL+/fslSREREcrMzLQrU/C8uHHwFotFQUFBdg8AAAAAAMzGrUm7YRgaNWqUli5dqnXr1ikqKuqKr9m1a5ckqUaNGpKkmJgY/fDDDzpx4oStzOrVqxUUFKQmTZqUS9wAAAAAALiCW2+Pj4+P18KFC/X5558rMDDQNgY9ODhYfn5+OnDggBYuXKjevXuratWq+v777zVu3Dh16tRJLVq0kCT16NFDTZo00YMPPqjp06crIyNDL774ouLj42WxWNxZPQAAAAAAropbr7TPmTNH2dnZ6tKli2rUqGF7fPrpp5IkHx8frVmzRj169FCjRo301FNPKS4uTl988YXtGF5eXlq+fLm8vLwUExOjBx54QA899JDduu4AAAAAAFREbr3SbhhGiftr1aqljRs3XvE4derU0VdffeWssAAAAAAAMAVTTEQHAAAAAAAKI2kHAAAAAMCkSNoBAAAAADApt45pBwAAAMys7vNflrj/8LQ+LooEwPWKK+0AAMCtJk6cKA8PD7tHo0aNbPvPnz+v+Ph4Va1aVQEBAYqLi1NmZqYbIwYAwHVI2gEAgNs1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAADX4fZ4AADgdpUqVVJERESh7dnZ2Zo3b54WLlyorl27SpKSk5PVuHFjbd26Ve3atXN1qAAAuBRX2gEAgNvt27dPkZGRqlevngYPHqz09HRJUmpqqi5cuKDu3bvbyjZq1Ei1a9fWli1b3BUuAAAuw5V2AADgVm3bttX8+fPVsGFDHT9+XJMmTVLHjh21e/duZWRkyMfHRyEhIXavCQ8PV0ZGRrHHtFqtslqttuc5OTnlFT4AAOWKpB0AALhVr169bP/fokULtW3bVnXq1NE///lP+fn5lemYiYmJmjRpkrNCBIp1pdnlAeBqcXs8AAAwlZCQEN10003av3+/IiIilJubq6ysLLsymZmZRY6BLzB+/HhlZ2fbHkeOHCnnqAEAKB8k7QAAwFTOnDmjAwcOqEaNGoqOjpa3t7fWrl1r25+Wlqb09HTFxMQUewyLxaKgoCC7BwAAFRG3xwMAALd6+umn1bdvX9WpU0fHjh3ThAkT5OXlpfvuu0/BwcEaPny4EhISFBoaqqCgII0ePVoxMTHMHA8AuC6QtOOax1gzADC3o0eP6r777tNvv/2m6tWrq0OHDtq6dauqV68uSZo5c6Y8PT0VFxcnq9Wq2NhYzZ49281RAwDgGiTtAADArRYtWlTifl9fXyUlJSkpKclFEQEAYB6MaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJg9HgAAAKiASlrW9vC0Pi6MBEB54ko7AAAAAAAmxZV24DpU0i/zEr/OAwAAAGbBlXYAAAAAAEyKpB0AAAAAAJPi9ngAAADgOsNQOaDi4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACbF7PEAAAAwNWY6d9yVzhmAioMr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJuXWpD0xMVGtW7dWYGCgwsLC1L9/f6WlpdmVOX/+vOLj41W1alUFBAQoLi5OmZmZdmXS09PVp08fVa5cWWFhYXrmmWd08eJFV1YFAAAAAACnq+TON9+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/fX5I0btw4ffnll1q8eLGCg4M1atQoDRgwQN98840kKS8vT3369FFERIQ2b96s48eP66GHHpK3t7deffVVd1YPqLDqPv9lsfsOT+vjwkgAAACA65tbk/aUlBS75/Pnz1dYWJhSU1PVqVMnZWdna968eVq4cKG6du0qSUpOTlbjxo21detWtWvXTqtWrdLevXu1Zs0ahYeHq2XLlpoyZYqee+45TZw4UT4+Pu6oGgAAAAAAV81UY9qzs7MlSaGhoZKk1NRUXbhwQd27d7eVadSokWrXrq0tW7ZIkrZs2aLmzZsrPDzcViY2NlY5OTnas2ePC6MHAAAAAMC53Hql/VL5+fkaO3as2rdvr2bNmkmSMjIy5OPjo5CQELuy4eHhysjIsJW5NGEv2F+wryhWq1VWq9X2PCcnx1nVAAAAAADAaUxzpT0+Pl67d+/WokWLyv29EhMTFRwcbHvUqlWr3N8TAAAAAABHmSJpHzVqlJYvX67169erZs2atu0RERHKzc1VVlaWXfnMzExFRETYylw+m3zB84Iylxs/fryys7NtjyNHjjixNgAAAAAAOIdbk3bDMDRq1CgtXbpU69atU1RUlN3+6OhoeXt7a+3atbZtaWlpSk9PV0xMjCQpJiZGP/zwg06cOGErs3r1agUFBalJkyZFvq/FYlFQUJDdAwAAAAAAs3HrmPb4+HgtXLhQn3/+uQIDA21j0IODg+Xn56fg4GANHz5cCQkJCg0NVVBQkEaPHq2YmBi1a9dOktSjRw81adJEDz74oKZPn66MjAy9+OKLio+Pl8VicWf1AAAAAAC4Km5N2ufMmSNJ6tKli9325ORkDR06VJI0c+ZMeXp6Ki4uTlarVbGxsZo9e7atrJeXl5YvX66RI0cqJiZG/v7+GjJkiCZPnuyqagAAAAAAUC7cmrQbhnHFMr6+vkpKSlJSUlKxZerUqaOvvvrKmaEBAAAAAOB2ZRrTfvDgQWfHAQAAKhj6AwAAlL8yXWm/8cYb1blzZw0fPlx33323fH19nR0XAAAwOfoDMIu6z3/p7hAAoNyU6Ur7d999pxYtWighIUERERF67LHH9O233zo7NgAAYGLl0R+YNm2aPDw8NHbsWNu28+fPKz4+XlWrVlVAQIDi4uIKLfcKAMC1qkxJe8uWLfXWW2/p2LFj+vDDD3X8+HF16NBBzZo105tvvqmTJ086O04AAGAyzu4PbN++Xe+9955atGhht33cuHH64osvtHjxYm3cuFHHjh3TgAEDnFkVAABM66rWaa9UqZIGDBigxYsX67XXXtP+/fv19NNPq1atWnrooYd0/PhxZ8UJAABMyhn9gTNnzmjw4MH64IMPVKVKFdv27OxszZs3T2+++aa6du2q6OhoJScna/Pmzdq6dWt5VgsAAFO4qqR9x44deuKJJ1SjRg29+eabevrpp3XgwAGtXr1ax44dU79+/ZwVJwAAMCln9Afi4+PVp08fde/e3W57amqqLly4YLe9UaNGql27trZs2VLs8axWq3JycuweAABURGWaiO7NN99UcnKy0tLS1Lt3b3300Ufq3bu3PD3//A0gKipK8+fPV926dZ0ZKwAAMBFn9QcWLVqk7777Ttu3by+0LyMjQz4+PgoJCbHbHh4eroyMjGKPmZiYqEmTJjlcJ5SfK00Wd3haHxdFAgAVS5mS9jlz5ujhhx/W0KFDVaNGjSLLhIWFad68eVcVHAAAMC9n9AeOHDmiJ598UqtXr3bq7PPjx49XQkKC7XlOTo5q1arltOMDAOAqZUra9+3bd8UyPj4+GjJkSFkODwAAKgBn9AdSU1N14sQJ/eUvf7Fty8vL09dff613331XK1euVG5urrKysuyutmdmZioiIqLY41osFlksltJVBAAAEyvTmPbk5GQtXry40PbFixdrwYIFVx0UAAAwP2f0B7p166YffvhBu3btsj1atWqlwYMH2/7f29tba9eutb0mLS1N6enpiomJcVpdAAAwqzIl7YmJiapWrVqh7WFhYXr11VevOigAAGB+zugPBAYGqlmzZnYPf39/Va1aVc2aNVNwcLCGDx+uhIQErV+/XqmpqRo2bJhiYmLUrl07Z1cJAADTKdPt8enp6YqKiiq0vU6dOkpPT7/qoAAAgPm5qj8wc+ZMeXp6Ki4uTlarVbGxsZo9e7bTjg8AgJmVKWkPCwvT999/X2g22P/+97+qWrWqM+ICUEExOzBw/Siv/sCGDRvsnvv6+iopKUlJSUllPiYAABVVmW6Pv++++zRmzBitX79eeXl5ysvL07p16/Tkk09q0KBBzo4RAACYEP0BAADKX5mutE+ZMkWHDx9Wt27dVKnSn4fIz8/XQw89xJh2AACuE/QHAAAof2VK2n18fPTpp59qypQp+u9//ys/Pz81b95cderUcXZ8AADApOgPAABQ/sqUtBe46aabdNNNNzkrFgAAUAHRHwAAoPyUKWnPy8vT/PnztXbtWp04cUL5+fl2+9etW+eU4AAAgHnRHwAAoPyVKWl/8sknNX/+fPXp00fNmjWTh4eHs+MCAAAmR38AAIDyV6akfdGiRfrnP/+p3r17OzseAABQQdAfAACg/JVpyTcfHx/deOONzo4FAABUIPQHAAAof2VK2p966im99dZbMgzD2fEAAIAKgv4AAADlr0y3x2/atEnr16/XihUr1LRpU3l7e9vtX7JkiVOCA0qj7vNfujsEALgu0R8AAKD8lSlpDwkJ0V133eXsWAAAQAVCfwAAgPJXpqQ9OTnZ2XEAAIAKhv4AAADlr0xJuyRdvHhRGzZs0IEDB3T//fcrMDBQx44dU1BQkAICApwZIwATYTgCgEvRHwAAoHyVKWn/5Zdf1LNnT6Wnp8tqter2229XYGCgXnvtNVmtVs2dO9fZcQIAAJOhPwAAQPkr0+zxTz75pFq1aqVTp07Jz8/Ptv2uu+7S2rVrnRYcAAAwL/oDAACUvzJdaf/Pf/6jzZs3y8fHx2573bp19euvvzolMAAAYG70B4DyxZA0AFIZr7Tn5+crLy+v0PajR48qMDDwqoMCAADmR38AAIDyV6akvUePHpo1a5btuYeHh86cOaMJEyaod+/ezooNAACYGP0BAADKX5luj3/jjTcUGxurJk2a6Pz587r//vu1b98+VatWTf/4xz+cHSMAADAh+gMAAJS/MiXtNWvW1H//+18tWrRI33//vc6cOaPhw4dr8ODBdhPRAACAaxf9AQAAyl+Z12mvVKmSHnjgAWfGAgAAKhj6AwAAlK8yJe0fffRRifsfeuihMgUDAAAqDvoDwPXpSrPaH57Wx0WRANeHMiXtTz75pN3zCxcu6Ny5c/Lx8VHlypVppAEAuA7QHwAAoPyVafb4U6dO2T3OnDmjtLQ0dejQgYlnAAC4TtAfAACg/JUpaS9KgwYNNG3atEK/ugMAgOsH/QEAAJzLaUm79OdkNMeOHXPmIQEAQAVDfwAAAOcp05j2f//733bPDcPQ8ePH9e6776p9+/ZOCQwAAJgb/QEAAMpfmZL2/v372z338PBQ9erV1bVrV73xxhvOiAsAAJgc/QEAAMpfmZL2/Px8Z8cBFOtKy4oAANyD/gAAAOXPqWPaAQAAAACA85TpSntCQkKpy7755ptleQsAAGBy9AcAACh/ZUrad+7cqZ07d+rChQtq2LChJOnnn3+Wl5eX/vKXv9jKeXh4OCdKAABgOvQHAAAof2VK2vv27avAwEAtWLBAVapUkSSdOnVKw4YNU8eOHfXUU085NUgAAGA+9AdwqcvnoNmSfV41JB3PPq8Y5qcBgDIr05j2N954Q4mJibYGWpKqVKmiqVOnMlssAADXCfoDAACUvzIl7Tk5OTp58mSh7SdPntTp06dLfZyvv/5affv2VWRkpDw8PLRs2TK7/UOHDpWHh4fdo2fPnnZlfv/9dw0ePFhBQUEKCQnR8OHDdebMmbJUCwAAOMBZ/QEAAFC8MiXtd911l4YNG6YlS5bo6NGjOnr0qP71r39p+PDhGjBgQKmPc/bsWd18881KSkoqtkzPnj11/Phx2+Mf//iH3f7Bgwdrz549Wr16tZYvX66vv/5aI0aMKEu1AACAA5zVHwAAAMUr05j2uXPn6umnn9b999+vCxcu/HmgSpU0fPhwvf7666U+Tq9evdSrV68Sy1gsFkVERBS578cff1RKSoq2b9+uVq1aSZLeeecd9e7dWzNmzFBkZGSpYwEAAI5xVn8AAAAUr0xX2itXrqzZs2frt99+s80c+/vvv2v27Nny9/d3aoAbNmxQWFiYGjZsqJEjR+q3336z7duyZYtCQkJsCbskde/eXZ6entq2bZtT4wAAAPZc2R8AAOB6VaYr7QUKblnv1KmT/Pz8ZBiGU5d16dmzpwYMGKCoqCgdOHBAL7zwgnr16qUtW7bIy8tLGRkZCgsLs3tNpUqVFBoaqoyMjGKPa7VaZbVabc9zcnKcFjMAANeb8u4PAABwPStT0v7bb79p4MCBWr9+vTw8PLRv3z7Vq1dPw4cPV5UqVZw2Y+ygQYNs/9+8eXO1aNFC9evX14YNG9StW7cyHzcxMVGTJk1yRogAAFy3XNUfAADgelam2+PHjRsnb29vpaenq3Llyrbt9957r1JSUpwW3OXq1aunatWqaf/+/ZKkiIgInThxwq7MxYsX9fvvvxc7Dl6Sxo8fr+zsbNvjyJEj5RYzAADXKnf1BwAAuJ6U6Ur7qlWrtHLlStWsWdNue4MGDfTLL784JbCiHD16VL/99ptq1KghSYqJiVFWVpZSU1MVHR0tSVq3bp3y8/PVtm3bYo9jsVhksVjKLU4AAK4H7uoPAABwPSlT0n727Fm7X9QL/P777w4lw2fOnLFdNZekQ4cOadeuXQoNDVVoaKgmTZqkuLg4RURE6MCBA3r22Wd14403KjY2VpLUuHFj9ezZU48++qjmzp2rCxcuaNSoURo0aBAzxwMAUM6c1R8AAADFK1PS3rFjR3300UeaMmWKJMnDw0P5+fmaPn26brvttlIfZ8eOHXblExISJElDhgzRnDlz9P3332vBggXKyspSZGSkevTooSlTpth1BD755BONGjVK3bp1k6enp+Li4vT222+XpVoAAMABzuoPADCfus9/6e4QAPx/ZUrap0+frm7dumnHjh3Kzc3Vs88+qz179uj333/XN998U+rjdOnSRYZhFLt/5cqVVzxGaGioFi5cWOr3BAAAzuGs/sCcOXM0Z84cHT58WJLUtGlTvfzyy+rVq5ck6fz583rqqae0aNEiWa1WxcbGavbs2QoPDy+PagEAYCplStqbNWumn3/+We+++64CAwN15swZDRgwQPHx8bbx5gBQlJJ+uT88rY8LIwFwtZzVH6hZs6amTZumBg0ayDAMLViwQP369dPOnTvVtGlTjRs3Tl9++aUWL16s4OBgjRo1SgMGDHDohwEAACoqh5P2CxcuqGfPnpo7d67++te/lkdMAADA5JzZH+jbt6/d81deeUVz5szR1q1bVbNmTc2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2l3VewMAYHYOL/nm7e2t77//vjxiAQAAFUR59Qfy8vK0aNEinT17VjExMUpNTdWFCxfUvXt3W5lGjRqpdu3a2rJlS7HHsVqtysnJsXsAAFARlWmd9gceeEDz5s1zdiwAAKACcWZ/4IcfflBAQIAsFosef/xxLV26VE2aNFFGRoZ8fHwUEhJiVz48PFwZGRnFHi8xMVHBwcG2R61atZwSJwAArlamMe0XL17Uhx9+qDVr1ig6Olr+/v52+998802nBAcAAMzLmf2Bhg0bateuXcrOztZnn32mIUOGaOPGjWWObfz48bZVaSQpJyeHxB0AUCE5lLQfPHhQdevW1e7du/WXv/xFkvTzzz/blfHw8HBedAAAwHTKoz/g4+OjG2+8UZIUHR2t7du366233tK9996r3NxcZWVl2V1tz8zMVERERLHHs1gsrBUPALgmOJS0N2jQQMePH9f69eslSffee6/efvttllwBAOA64or+QH5+vqxWq6Kjo+Xt7a21a9cqLi5OkpSWlqb09HTFxMQ47f0AADArh5L2y9dUX7Fihc6ePevUgAAAgLk5uz8wfvx49erVS7Vr19bp06e1cOFCbdiwQStXrlRwcLCGDx+uhIQEhYaGKigoSKNHj1ZMTAwzxwMArgtlGtNe4PJGGwAAXH+utj9w4sQJPfTQQzp+/LiCg4PVokULrVy5UrfffrskaebMmfL09FRcXJysVqtiY2M1e/ZsZ4QOAIDpOZS0e3h4FBqjxhh2AACuL87uD1xpBnpfX18lJSUpKSmpzO8BAEBF5fDt8UOHDrVN7HL+/Hk9/vjjhWaLXbJkifMiBAAApkJ/AAAA13EoaR8yZIjd8wceeMCpwQC4vtV9/ssS9x+e1sdFkQAoCf0BAABcx6GkPTk5ubziAAAAFQT9AQAAXMfT3QEAAAAAAICiXdXs8QAAAIAzXGmIFK4dJf2tGQoHFMaVdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMitnjYQrMGAsAAHBtoF8HOBdX2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJiIDkCFcaWJbQ5P6+OiSAAAAADX4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSldwdAAAAACqGus9/6e4QAOC6w5V2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkGNMOl7h8DNyW7POqIel49nnFMD4OAAAAAIrElXYAAAAAAEzKrUn7119/rb59+yoyMlIeHh5atmyZ3X7DMPTyyy+rRo0a8vPzU/fu3bVv3z67Mr///rsGDx6soKAghYSEaPjw4Tpz5owLawEAAAAAQPlwa9J+9uxZ3XzzzUpKSipy//Tp0/X2229r7ty52rZtm/z9/RUbG6vz58/bygwePFh79uzR6tWrtXz5cn399dcaMWKEq6oAAAAAAEC5ceuY9l69eqlXr15F7jMMQ7NmzdKLL76ofv36SZI++ugjhYeHa9myZRo0aJB+/PFHpaSkaPv27WrVqpUk6Z133lHv3r01Y8YMRUZGuqwuAAAAAAA4m2nHtB86dEgZGRnq3r27bVtwcLDatm2rLVu2SJK2bNmikJAQW8IuSd27d5enp6e2bdvm8pgBAAAAAHAm084en5GRIUkKDw+32x4eHm7bl5GRobCwMLv9lSpVUmhoqK1MUaxWq6xWq+15Tk6Os8IGAAAAAMBpTHulvTwlJiYqODjY9qhVq5a7QwIAAAAAoBDTJu0RERGSpMzMTLvtmZmZtn0RERE6ceKE3f6LFy/q999/t5Upyvjx45WdnW17HDlyxMnRAwCA0kpMTFTr1q0VGBiosLAw9e/fX2lpaXZlzp8/r/j4eFWtWlUBAQGKi4sr1EcAAOBaZNqkPSoqShEREVq7dq1tW05OjrZt26aYmBhJUkxMjLKyspSammors27dOuXn56tt27bFHttisSgoKMjuAQAA3GPjxo2Kj4/X1q1btXr1al24cEE9evTQ2bNnbWXGjRunL774QosXL9bGjRt17NgxDRgwwI1RAwDgGm4d037mzBnt37/f9vzQoUPatWuXQkNDVbt2bY0dO1ZTp05VgwYNFBUVpZdeekmRkZHq37+/JKlx48bq2bOnHn30Uc2dO1cXLlzQqFGjNGjQIGaOBwCggkhJSbF7Pn/+fIWFhSk1NVWdOnVSdna25s2bp4ULF6pr166SpOTkZDVu3Fhbt25Vu3bt3BE2AAAu4dakfceOHbrttttszxMSEiRJQ4YM0fz58/Xss8/q7NmzGjFihLKystShQwelpKTI19fX9ppPPvlEo0aNUrdu3eTp6am4uDi9/fbbLq8LAABwjuzsbElSaGioJCk1NVUXLlywW1GmUaNGql27trZs2ULSDgC4prk1ae/SpYsMwyh2v4eHhyZPnqzJkycXWyY0NFQLFy4sj/AAAICL5efna+zYsWrfvr2aNWsm6c/VYnx8fBQSEmJX9tIVZS7HSjEAgGuFaZd8AwAA15/4+Hjt3r1bmzZtuqrjJCYmatKkSU6KCoCr1H3+yxL3H57Wx0WRAOZh2onoAADA9WXUqFFavny51q9fr5o1a9q2R0REKDc3V1lZWXblL11R5nKsFAMAuFaQtAMAALcyDEOjRo3S0qVLtW7dOkVFRdntj46Olre3t92KMmlpaUpPT7etKHM5VooBAFwruD0eAAC4VXx8vBYuXKjPP/9cgYGBtnHqwcHB8vPzU3BwsIYPH66EhASFhoYqKChIo0ePVkxMDJPQAQCueSTtAK4ZJY2DYwwcYF5z5syR9OcEtZdKTk7W0KFDJUkzZ860rRJjtVoVGxur2bNnuzhSAABcj6QdAAC4VUkryRTw9fVVUlKSkpKSXBARAADmwZh2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkSNoBAAAAADApknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkKrk7AABwhbrPf1ni/sPT+rgoEgAAAKD0SNoBAAAAVAj8CI/rEbfHAwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJMREdAAAAgGsek9ihoiJpB4BSoKEHAACAO3B7PAAAAAAAJkXSDgAAAACASXF7PADoyre/AwAAAO7AlXYAAAAAAEyKK+0AAAAArgncOYdrEVfaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkmIgOAAAAkpjEC9e3K33+D0/r46JIAHtcaQcAAAAAwKS40o5SK+nXR355BAAAAADn40o7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUE9HBKVgiBtc7JmoEAABAeeBKOwAAAAAAJmXqpH3ixIny8PCwezRq1Mi2//z584qPj1fVqlUVEBCguLg4ZWZmujFiAAAAAACcx9RJuyQ1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAAAAAADnMf2Y9kqVKikiIqLQ9uzsbM2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2rk6VAAAAFNjDhoAqHhMn7Tv27dPkZGR8vX1VUxMjBITE1W7dm2lpqbqwoUL6t69u61so0aNVLt2bW3ZsqXEpN1qtcpqtdqe5+TklGsdAFzfrtRJZqI6XO++/vprvf7660pNTdXx48e1dOlS9e/f37bfMAxNmDBBH3zwgbKystS+fXvNmTNHDRo0cF/QAAC4iKlvj2/btq3mz5+vlJQUzZkzR4cOHVLHjh11+vRpZWRkyMfHRyEhIXavCQ8PV0ZGRonHTUxMVHBwsO1Rq1atcqwFAAAoydmzZ3XzzTcrKSmpyP3Tp0/X22+/rblz52rbtm3y9/dXbGyszp8/7+JIAQBwPVNfae/Vq5ft/1u0aKG2bduqTp06+uc//yk/P78yH3f8+PFKSEiwPc/JySFxBwDATXr16mXX5l/KMAzNmjVLL774ovr16ydJ+uijjxQeHq5ly5Zp0KBBrgwVAACXM/WV9suFhITopptu0v79+xUREaHc3FxlZWXZlcnMzCxyDPylLBaLgoKC7B4AAMB8Dh06pIyMDLvhcMHBwWrbtq22bNnixsgAAHANU19pv9yZM2d04MABPfjgg4qOjpa3t7fWrl2ruLg4SVJaWprS09MVExPj5kgBwHlKGhPPeHhc6wqGvIWHh9ttv9JwOOavAQBcK0x9pf3pp5/Wxo0bdfjwYW3evFl33XWXvLy8dN999yk4OFjDhw9XQkKC1q9fr9TUVA0bNkwxMTHMHA8AwHWO+WsAANcKUyftR48e1X333aeGDRtq4MCBqlq1qrZu3arq1atLkmbOnKk77rhDcXFx6tSpkyIiIrRkyRI3Rw0AAJylYMhbZmam3fYrDYcbP368srOzbY8jR46Ua5wAAJQXU98ev2jRohL3+/r6KikpqdjZZgEAQMUWFRWliIgIrV27Vi1btpT0563u27Zt08iRI4t9ncVikcVicVGUAACUH1Mn7QAA4Np35swZ7d+/3/b80KFD2rVrl0JDQ1W7dm2NHTtWU6dOVYMGDRQVFaWXXnpJkZGRdmu5AwBwrSJpBwAAbrVjxw7ddttttucFy7IOGTJE8+fP17PPPquzZ89qxIgRysrKUocOHZSSkiJfX193hQwAgMuQtAMAALfq0qWLDMModr+Hh4cmT56syZMnuzAqALDHai5wF1NPRAcAAAAAwPWMpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCkmogMAAACAq1DSJHUSE9Xh6nClHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTYvZ4ALiGMZstUPFc7b/bK70eAFCxkLTDhkYeAAAAAMyFpB0A3IwfzAAAAFAcxrQDAAAAAGBSJO0AAAAAAJgUt8cDAAAAgBsxcSxKQtIOABUY4+EBAACubdweDwAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxUR0AAAAFQgTUAIVD/9ucTVI2q8jfFkAAAAAQMXC7fEAAAAAAJgUSTsAAAAAACbF7fEAgCJdaUjN4Wl9XBQJAADA9Ysr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxZJvAIAyYUk4AACA8kfSDgAoFyUl9ST0AAAApcPt8QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASTGmHQCuY1eaTA5A0a52Ikb+7QFwxNV8Z1zNPDJMOmsOJO3XGDoBAAAAAHDt4PZ4AAAAAABMiqQdAAAAAACT4vZ4k2HcCAAAAACgAEk7AMDl+IESAACgdEjaAQAAAOAaxUTVFd81k7QnJSXp9ddfV0ZGhm6++Wa98847atOmjbvDAgCUAVfiURTaegDA9eiaSNo//fRTJSQkaO7cuWrbtq1mzZql2NhYpaWlKSwszN3hFcKvXQBwdUr6HiWhvzZVtLYeAABnuSaS9jfffFOPPvqohg0bJkmaO3euvvzyS3344Yd6/vnn3Rydc5HwAwCuR9dTWw8AwKUqfNKem5ur1NRUjR8/3rbN09NT3bt315YtW4p8jdVqldVqtT3Pzs6WJOXk5DglpmYTVjrlONey00a+/P//f/Ot59wdDoBrSO1xi0vcv3tSbJmPfaXv96s59qUK2iPDMJxyvIrOjG39ldquK73P9dD20dYD1z5nfader0rb3lf4pP1///uf8vLyFB4ebrc9PDxcP/30U5GvSUxM1KRJkwptr1WrVrnEiMIaFvzP2VPSrIHuDAXAdSZ4VsU59unTpxUcHOzcg1ZAFbGtL8/PWUVBWw9c+/iuc44rtfcVPmkvi/HjxyshIcH2PD8/X7///ruqVq0qDw8PN0ZWWE5OjmrVqqUjR44oKCjI3eFUCJwzx3C+HMc5cxznzDGGYej06dOKjIx0dygVFm39tY1z5jjOmWM4X47jnDmutO19hU/aq1WrJi8vL2VmZtptz8zMVERERJGvsVgsslgsdttCQkLKK0SnCAoK4sPvIM6ZYzhfjuOcOY5zVnpcYf8/tPUoDufMcZwzx3C+HMc5c0xp2ntPF8RRrnx8fBQdHa21a9fatuXn52vt2rWKiYlxY2QAAMAZaOsBANezCn+lXZISEhI0ZMgQtWrVSm3atNGsWbN09uxZ2wyzAACgYqOtBwBcr66JpP3ee+/VyZMn9fLLLysjI0MtW7ZUSkpKoQlrKiKLxaIJEyYUusUPxeOcOYbz5TjOmeM4Z7hatPW4FOfMcZwzx3C+HMc5Kz8eBuvJAAAAAABgShV+TDsAAAAAANcqknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2k0gKSlJdevWla+vr9q2batvv/222LIffPCBOnbsqCpVqqhKlSrq3r17ieWvVY6csyVLlqhVq1YKCQmRv7+/WrZsqb///e8ujNb9HDlfl1q0aJE8PDzUv3//8g3QhBw5Z/Pnz5eHh4fdw9fX14XRmoOjn7OsrCzFx8erRo0aslgsuummm/TVV1+5KFrAtWjrHUdb7zjae8fQ1juOtt5NDLjVokWLDB8fH+PDDz809uzZYzz66KNGSEiIkZmZWWT5+++/30hKSjJ27txp/Pjjj8bQoUON4OBg4+jRoy6O3H0cPWfr1683lixZYuzdu9fYv3+/MWvWLMPLy8tISUlxceTu4ej5KnDo0CHjhhtuMDp27Gj069fPNcGahKPnLDk52QgKCjKOHz9ue2RkZLg4avdy9JxZrVajVatWRu/evY1NmzYZhw4dMjZs2GDs2rXLxZED5Y+23nG09Y6jvXcMbb3jaOvdh6Tdzdq0aWPEx8fbnufl5RmRkZFGYmJiqV5/8eJFIzAw0FiwYEF5hWg6V3vODMMwbrnlFuPFF18sj/BMpyzn6+LFi8att95q/O1vfzOGDBlyXTXihuH4OUtOTjaCg4NdFJ05OXrO5syZY9SrV8/Izc11VYiA29DWO4623nG0946hrXccbb37cHu8G+Xm5io1NVXdu3e3bfP09FT37t21ZcuWUh3j3LlzunDhgkJDQ8srTFO52nNmGIbWrl2rtLQ0derUqTxDNYWynq/JkycrLCxMw4cPd0WYplLWc3bmzBnVqVNHtWrVUr9+/bRnzx5XhGsKZTln//73vxUTE6P4+HiFh4erWbNmevXVV5WXl+eqsAGXoK13HG2942jvHUNb7zjaeveq5O4Armf/+9//lJeXp/DwcLvt4eHh+umnn0p1jOeee06RkZF2/4CuZWU9Z9nZ2brhhhtktVrl5eWl2bNn6/bbby/vcN2uLOdr06ZNmjdvnnbt2uWCCM2nLOesYcOG+vDDD9WiRQtlZ2drxowZuvXWW7Vnzx7VrFnTFWG7VVnO2cGDB7Vu3ToNHjxYX331lfbv368nnnhCFy5c0IQJE1wRNuAStPWOo613HO29Y2jrHUdb714k7RXYtGnTtGjRIm3YsOG6nAjDEYGBgdq1a5fOnDmjtWvXKiEhQfXq1VOXLl3cHZqpnD59Wg8++KA++OADVatWzd3hVBgxMTGKiYmxPb/11lvVuHFjvffee5oyZYobIzOv/Px8hYWF6f3335eXl5eio6P166+/6vXXX6chBy5BW196tPWlR3vvONp6x9HWOw9JuxtVq1ZNXl5eyszMtNuemZmpiIiIEl87Y8YMTZs2TWvWrFGLFi3KM0xTKes58/T01I033ihJatmypX788UclJiZe8w25o+frwIEDOnz4sPr27Wvblp+fL0mqVKmS0tLSVL9+/fIN2s2u5t9lAW9vb91yyy3av39/eYRoOmU5ZzVq1JC3t7e8vLxs2xo3bqyMjAzl5ubKx8enXGMGXIW23nG09Y6jvXcMbb3jaOvdizHtbuTj46Po6GitXbvWti0/P19r1661+yXvctOnT9eUKVOUkpKiVq1auSJU0yjrObtcfn6+rFZreYRoKo6er0aNGumHH37Qrl27bI8777xTt912m3bt2qVatWq5Mny3cMZnLC8vTz/88INq1KhRXmGaSlnOWfv27bV//35bJ1GSfv75Z9WoUYNGHNcU2nrH0dY7jvbeMbT1jqOtdzN3z4R3vVu0aJFhsViM+fPnG3v37jVGjBhhhISE2JaQePDBB43nn3/eVn7atGmGj4+P8dlnn9ktOXH69Gl3VcHlHD1nr776qrFq1SrjwIEDxt69e40ZM2YYlSpVMj744AN3VcGlHD1fl7veZpM1DMfP2aRJk4yVK1caBw4cMFJTU41BgwYZvr6+xp49e9xVBZdz9Jylp6cbgYGBxqhRo4y0tDRj+fLlRlhYmDF16lR3VQEoN7T1jqOtdxztvWNo6x1HW+8+3B7vZvfee69Onjypl19+WRkZGWrZsqVSUlJskzykp6fL0/P/boiYM2eOcnNzdffdd9sdZ8KECZo4caIrQ3cbR8/Z2bNn9cQTT+jo0aPy8/NTo0aN9PHHH+vee+91VxVcytHzBcfP2alTp/Too48qIyNDVapUUXR0tDZv3qwmTZq4qwou5+g5q1WrllauXKlx48apRYsWuuGGG/Tkk0/queeec1cVgHJDW+842nrH0d47hrbecbT17uNhGIbh7iAAAAAAAEBh/NwGAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAm9f8AHVFEjxwb1a0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.108160Z", - "iopub.status.busy": "2024-01-16T18:21:53.107642Z", - "iopub.status.idle": "2024-01-16T18:21:53.357816Z", - "shell.execute_reply": "2024-01-16T18:21:53.357029Z" + "iopub.execute_input": "2024-01-17T17:53:30.653860Z", + "iopub.status.busy": "2024-01-17T17:53:30.653384Z", + "iopub.status.idle": "2024-01-17T17:53:30.901213Z", + "shell.execute_reply": "2024-01-17T17:53:30.900483Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.361296Z", - "iopub.status.busy": "2024-01-16T18:21:53.360688Z", - "iopub.status.idle": "2024-01-16T18:21:53.449258Z", - "shell.execute_reply": "2024-01-16T18:21:53.448644Z" + "iopub.execute_input": "2024-01-17T17:53:30.904115Z", + "iopub.status.busy": "2024-01-17T17:53:30.903860Z", + "iopub.status.idle": "2024-01-17T17:53:30.994942Z", + "shell.execute_reply": "2024-01-17T17:53:30.994369Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.452061Z", - "iopub.status.busy": "2024-01-16T18:21:53.451687Z", - "iopub.status.idle": "2024-01-16T18:22:31.925538Z", - "shell.execute_reply": "2024-01-16T18:22:31.924793Z" + "iopub.execute_input": "2024-01-17T17:53:30.997740Z", + "iopub.status.busy": "2024-01-17T17:53:30.997365Z", + "iopub.status.idle": "2024-01-17T17:54:08.746481Z", + "shell.execute_reply": "2024-01-17T17:54:08.745736Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:31.928416Z", - "iopub.status.busy": "2024-01-16T18:22:31.927895Z", - "iopub.status.idle": "2024-01-16T18:22:33.100671Z", - "shell.execute_reply": "2024-01-16T18:22:33.100057Z" + "iopub.execute_input": "2024-01-17T17:54:08.749204Z", + "iopub.status.busy": "2024-01-17T17:54:08.748937Z", + "iopub.status.idle": "2024-01-17T17:54:09.920727Z", + "shell.execute_reply": "2024-01-17T17:54:09.920079Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.104171Z", - "iopub.status.busy": "2024-01-16T18:22:33.103308Z", - "iopub.status.idle": "2024-01-16T18:22:33.294042Z", - "shell.execute_reply": "2024-01-16T18:22:33.293442Z" + "iopub.execute_input": "2024-01-17T17:54:09.923916Z", + "iopub.status.busy": "2024-01-17T17:54:09.923285Z", + "iopub.status.idle": "2024-01-17T17:54:10.113786Z", + "shell.execute_reply": "2024-01-17T17:54:10.113099Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.297068Z", - "iopub.status.busy": "2024-01-16T18:22:33.296516Z", - "iopub.status.idle": "2024-01-16T18:22:33.300095Z", - "shell.execute_reply": "2024-01-16T18:22:33.299579Z" + "iopub.execute_input": "2024-01-17T17:54:10.116877Z", + "iopub.status.busy": "2024-01-17T17:54:10.116428Z", + "iopub.status.idle": "2024-01-17T17:54:10.119883Z", + "shell.execute_reply": "2024-01-17T17:54:10.119298Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.302656Z", - "iopub.status.busy": "2024-01-16T18:22:33.302209Z", - "iopub.status.idle": "2024-01-16T18:22:33.311187Z", - "shell.execute_reply": "2024-01-16T18:22:33.310714Z" + "iopub.execute_input": "2024-01-17T17:54:10.122302Z", + "iopub.status.busy": "2024-01-17T17:54:10.122095Z", + "iopub.status.idle": "2024-01-17T17:54:10.131101Z", + "shell.execute_reply": "2024-01-17T17:54:10.130622Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c08e2bd2b5f49d4b5b9c83ac5beb6a4": { + "00e1ae1937e04da1bd04f23c7c978453": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1032,7 +1032,7 @@ "description_width": "" } }, - "2f42a3128348471d9470f2c584143851": { + "014ace8565024b6bbdd739ec4c5dd284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1047,28 +1047,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_92ee4c36ef0b4e50832f04461acd76a4", + "layout": "IPY_MODEL_2623229e037b45a8a4337e0ca0c2b930", "placeholder": "​", - "style": "IPY_MODEL_320c5da3808e48cfbbef957df8c0a14b", - "value": " 170498071/170498071 [00:01<00:00, 100609555.84it/s]" + "style": "IPY_MODEL_00e1ae1937e04da1bd04f23c7c978453", + "value": " 170498071/170498071 [00:04<00:00, 43872310.41it/s]" } }, - "320c5da3808e48cfbbef957df8c0a14b": { + "1ab06b7c02b04fb396f30e2d22ab0e00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1e5d86ae4bb4b98a5cee834d6f74b7e", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93158de2cfc642c9884b6567c7fee0b0", + "value": 170498071.0 } }, - "382cf35f4ca9446abc8af4296ec1c7c1": { + "2623229e037b45a8a4337e0ca0c2b930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1120,7 +1129,7 @@ "width": null } }, - "640172acf8b940b8a0eca4c729dde802": { + "6ae893cb859f423698479e56f9924482": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1172,7 +1181,7 @@ "width": null } }, - "92ee4c36ef0b4e50832f04461acd76a4": { + "7b1bd7606cae425ea8f36da307ac2fc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1224,31 +1233,7 @@ "width": null } }, - "a0923dbb5ad64d32a0126c5351cc8bae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_febd7a9a32d5410d972167d6f41f6f49", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e6e4d39fdef74d1bb53a8f94ea767259", - "value": 170498071.0 - } - }, - "e6e4d39fdef74d1bb53a8f94ea767259": { + "93158de2cfc642c9884b6567c7fee0b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1264,50 +1249,7 @@ "description_width": "" } }, - "e8b0c31123da41349ede0eeec606e480": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ed028054a05a46d899f7f3c95a8bdc5b", - "IPY_MODEL_a0923dbb5ad64d32a0126c5351cc8bae", - "IPY_MODEL_2f42a3128348471d9470f2c584143851" - ], - "layout": "IPY_MODEL_640172acf8b940b8a0eca4c729dde802" - } - }, - "ed028054a05a46d899f7f3c95a8bdc5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_382cf35f4ca9446abc8af4296ec1c7c1", - "placeholder": "​", - "style": "IPY_MODEL_1c08e2bd2b5f49d4b5b9c83ac5beb6a4", - "value": "100%" - } - }, - "febd7a9a32d5410d972167d6f41f6f49": { + "a1e5d86ae4bb4b98a5cee834d6f74b7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1300,64 @@ "visibility": null, "width": null } + }, + "a6c7e398577b486e8fc9b649d6a83f90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9f08a81ccaa424db1749645e22af391", + "IPY_MODEL_1ab06b7c02b04fb396f30e2d22ab0e00", + "IPY_MODEL_014ace8565024b6bbdd739ec4c5dd284" + ], + "layout": "IPY_MODEL_7b1bd7606cae425ea8f36da307ac2fc3" + } + }, + "c9f08a81ccaa424db1749645e22af391": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ae893cb859f423698479e56f9924482", + "placeholder": "​", + "style": "IPY_MODEL_edac7d1176b048e0ae7dec29cb1d30af", + "value": "100%" + } + }, + "edac7d1176b048e0ae7dec29cb1d30af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 6625c8123..29c95d1fd 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:38.116838Z", - "iopub.status.busy": "2024-01-16T18:22:38.116637Z", - "iopub.status.idle": "2024-01-16T18:22:39.187452Z", - "shell.execute_reply": "2024-01-16T18:22:39.186824Z" + "iopub.execute_input": "2024-01-17T17:54:15.007278Z", + "iopub.status.busy": "2024-01-17T17:54:15.007085Z", + "iopub.status.idle": "2024-01-17T17:54:16.086532Z", + "shell.execute_reply": "2024-01-17T17:54:16.085857Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.190525Z", - "iopub.status.busy": "2024-01-16T18:22:39.190058Z", - "iopub.status.idle": "2024-01-16T18:22:39.205860Z", - "shell.execute_reply": "2024-01-16T18:22:39.205379Z" + "iopub.execute_input": "2024-01-17T17:54:16.089484Z", + "iopub.status.busy": "2024-01-17T17:54:16.089186Z", + "iopub.status.idle": "2024-01-17T17:54:16.105268Z", + "shell.execute_reply": "2024-01-17T17:54:16.104669Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.208336Z", - "iopub.status.busy": "2024-01-16T18:22:39.207956Z", - "iopub.status.idle": "2024-01-16T18:22:39.211011Z", - "shell.execute_reply": "2024-01-16T18:22:39.210464Z" + "iopub.execute_input": "2024-01-17T17:54:16.107803Z", + "iopub.status.busy": "2024-01-17T17:54:16.107440Z", + "iopub.status.idle": "2024-01-17T17:54:16.110701Z", + "shell.execute_reply": "2024-01-17T17:54:16.110172Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.213387Z", - "iopub.status.busy": "2024-01-16T18:22:39.213031Z", - "iopub.status.idle": "2024-01-16T18:22:39.320048Z", - "shell.execute_reply": "2024-01-16T18:22:39.319407Z" + "iopub.execute_input": "2024-01-17T17:54:16.112895Z", + "iopub.status.busy": "2024-01-17T17:54:16.112701Z", + "iopub.status.idle": "2024-01-17T17:54:16.421711Z", + "shell.execute_reply": "2024-01-17T17:54:16.421116Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.322833Z", - "iopub.status.busy": "2024-01-16T18:22:39.322456Z", - "iopub.status.idle": "2024-01-16T18:22:39.591964Z", - "shell.execute_reply": "2024-01-16T18:22:39.591358Z" + "iopub.execute_input": "2024-01-17T17:54:16.424402Z", + "iopub.status.busy": "2024-01-17T17:54:16.423998Z", + "iopub.status.idle": "2024-01-17T17:54:16.692752Z", + "shell.execute_reply": "2024-01-17T17:54:16.692024Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.594806Z", - "iopub.status.busy": "2024-01-16T18:22:39.594399Z", - "iopub.status.idle": "2024-01-16T18:22:39.848239Z", - "shell.execute_reply": "2024-01-16T18:22:39.847546Z" + "iopub.execute_input": "2024-01-17T17:54:16.695418Z", + "iopub.status.busy": "2024-01-17T17:54:16.695200Z", + "iopub.status.idle": "2024-01-17T17:54:16.949304Z", + "shell.execute_reply": "2024-01-17T17:54:16.948645Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.851127Z", - "iopub.status.busy": "2024-01-16T18:22:39.850474Z", - "iopub.status.idle": "2024-01-16T18:22:39.855174Z", - "shell.execute_reply": "2024-01-16T18:22:39.854672Z" + "iopub.execute_input": "2024-01-17T17:54:16.951844Z", + "iopub.status.busy": "2024-01-17T17:54:16.951634Z", + "iopub.status.idle": "2024-01-17T17:54:16.956470Z", + "shell.execute_reply": "2024-01-17T17:54:16.955953Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.857546Z", - "iopub.status.busy": "2024-01-16T18:22:39.857120Z", - "iopub.status.idle": "2024-01-16T18:22:39.863760Z", - "shell.execute_reply": "2024-01-16T18:22:39.863275Z" + "iopub.execute_input": "2024-01-17T17:54:16.958787Z", + "iopub.status.busy": "2024-01-17T17:54:16.958432Z", + "iopub.status.idle": "2024-01-17T17:54:16.964248Z", + "shell.execute_reply": "2024-01-17T17:54:16.963768Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.866099Z", - "iopub.status.busy": "2024-01-16T18:22:39.865901Z", - "iopub.status.idle": "2024-01-16T18:22:39.868607Z", - "shell.execute_reply": "2024-01-16T18:22:39.868059Z" + "iopub.execute_input": "2024-01-17T17:54:16.966530Z", + "iopub.status.busy": "2024-01-17T17:54:16.966188Z", + "iopub.status.idle": "2024-01-17T17:54:16.969045Z", + "shell.execute_reply": "2024-01-17T17:54:16.968434Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.870939Z", - "iopub.status.busy": "2024-01-16T18:22:39.870573Z", - "iopub.status.idle": "2024-01-16T18:22:50.023137Z", - "shell.execute_reply": "2024-01-16T18:22:50.022407Z" + "iopub.execute_input": "2024-01-17T17:54:16.971259Z", + "iopub.status.busy": "2024-01-17T17:54:16.970905Z", + "iopub.status.idle": "2024-01-17T17:54:27.352992Z", + "shell.execute_reply": "2024-01-17T17:54:27.352338Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.026675Z", - "iopub.status.busy": "2024-01-16T18:22:50.026017Z", - "iopub.status.idle": "2024-01-16T18:22:50.033605Z", - "shell.execute_reply": "2024-01-16T18:22:50.032991Z" + "iopub.execute_input": "2024-01-17T17:54:27.356637Z", + "iopub.status.busy": "2024-01-17T17:54:27.355930Z", + "iopub.status.idle": "2024-01-17T17:54:27.363535Z", + "shell.execute_reply": "2024-01-17T17:54:27.362912Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.036105Z", - "iopub.status.busy": "2024-01-16T18:22:50.035725Z", - "iopub.status.idle": "2024-01-16T18:22:50.039438Z", - "shell.execute_reply": "2024-01-16T18:22:50.038945Z" + "iopub.execute_input": "2024-01-17T17:54:27.366166Z", + "iopub.status.busy": "2024-01-17T17:54:27.365789Z", + "iopub.status.idle": "2024-01-17T17:54:27.369511Z", + "shell.execute_reply": "2024-01-17T17:54:27.369017Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.041787Z", - "iopub.status.busy": "2024-01-16T18:22:50.041427Z", - "iopub.status.idle": "2024-01-16T18:22:50.044834Z", - "shell.execute_reply": "2024-01-16T18:22:50.044228Z" + "iopub.execute_input": "2024-01-17T17:54:27.371734Z", + "iopub.status.busy": "2024-01-17T17:54:27.371389Z", + "iopub.status.idle": "2024-01-17T17:54:27.375010Z", + "shell.execute_reply": "2024-01-17T17:54:27.374392Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.047247Z", - "iopub.status.busy": "2024-01-16T18:22:50.046886Z", - "iopub.status.idle": "2024-01-16T18:22:50.050075Z", - "shell.execute_reply": "2024-01-16T18:22:50.049525Z" + "iopub.execute_input": "2024-01-17T17:54:27.377324Z", + "iopub.status.busy": "2024-01-17T17:54:27.376975Z", + "iopub.status.idle": "2024-01-17T17:54:27.380277Z", + "shell.execute_reply": "2024-01-17T17:54:27.379739Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.052062Z", - "iopub.status.busy": "2024-01-16T18:22:50.051866Z", - "iopub.status.idle": "2024-01-16T18:22:50.060351Z", - "shell.execute_reply": "2024-01-16T18:22:50.059773Z" + "iopub.execute_input": "2024-01-17T17:54:27.382482Z", + "iopub.status.busy": "2024-01-17T17:54:27.382140Z", + "iopub.status.idle": "2024-01-17T17:54:27.390755Z", + "shell.execute_reply": "2024-01-17T17:54:27.390135Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.062749Z", - "iopub.status.busy": "2024-01-16T18:22:50.062398Z", - "iopub.status.idle": "2024-01-16T18:22:50.212912Z", - "shell.execute_reply": "2024-01-16T18:22:50.212206Z" + "iopub.execute_input": "2024-01-17T17:54:27.393335Z", + "iopub.status.busy": "2024-01-17T17:54:27.392969Z", + "iopub.status.idle": "2024-01-17T17:54:27.544941Z", + "shell.execute_reply": "2024-01-17T17:54:27.544218Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.215869Z", - "iopub.status.busy": "2024-01-16T18:22:50.215393Z", - "iopub.status.idle": "2024-01-16T18:22:50.346105Z", - "shell.execute_reply": "2024-01-16T18:22:50.345444Z" + "iopub.execute_input": "2024-01-17T17:54:27.547742Z", + "iopub.status.busy": "2024-01-17T17:54:27.547287Z", + "iopub.status.idle": "2024-01-17T17:54:27.685665Z", + "shell.execute_reply": "2024-01-17T17:54:27.684978Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.349000Z", - "iopub.status.busy": "2024-01-16T18:22:50.348453Z", - "iopub.status.idle": "2024-01-16T18:22:50.940108Z", - "shell.execute_reply": "2024-01-16T18:22:50.939407Z" + "iopub.execute_input": "2024-01-17T17:54:27.688405Z", + "iopub.status.busy": "2024-01-17T17:54:27.688185Z", + "iopub.status.idle": "2024-01-17T17:54:28.292871Z", + "shell.execute_reply": "2024-01-17T17:54:28.292194Z" } }, "outputs": [], @@ -1014,18 +1014,17 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.943064Z", - "iopub.status.busy": "2024-01-16T18:22:50.942855Z", - "iopub.status.idle": "2024-01-16T18:22:51.025749Z", - "shell.execute_reply": "2024-01-16T18:22:51.025173Z" + "iopub.execute_input": "2024-01-17T17:54:28.295755Z", + "iopub.status.busy": "2024-01-17T17:54:28.295369Z", + "iopub.status.idle": "2024-01-17T17:54:28.378022Z", + "shell.execute_reply": "2024-01-17T17:54:28.377409Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([3.64404888e-02, 3.06755306e-01, 3.05302732e-04, 2.66635743e-01,\n", - " 2.53166364e-01])" + "array([0.13091885, 0.48412548, 0.00695165, 0.44421119, 0.43029854])" ] }, "execution_count": 19, @@ -1056,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:51.028522Z", - "iopub.status.busy": "2024-01-16T18:22:51.028130Z", - "iopub.status.idle": "2024-01-16T18:22:51.037939Z", - "shell.execute_reply": "2024-01-16T18:22:51.037446Z" + "iopub.execute_input": "2024-01-17T17:54:28.380846Z", + "iopub.status.busy": "2024-01-17T17:54:28.380394Z", + "iopub.status.idle": "2024-01-17T17:54:28.390383Z", + "shell.execute_reply": "2024-01-17T17:54:28.389874Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 406700e9f..e4b958875 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:56.197660Z", - "iopub.status.busy": "2024-01-16T18:22:56.197207Z", - "iopub.status.idle": "2024-01-16T18:22:58.044089Z", - "shell.execute_reply": "2024-01-16T18:22:58.043294Z" + "iopub.execute_input": "2024-01-17T17:54:33.185833Z", + "iopub.status.busy": "2024-01-17T17:54:33.185289Z", + "iopub.status.idle": "2024-01-17T17:54:38.730471Z", + "shell.execute_reply": "2024-01-17T17:54:38.729755Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:58.047230Z", - "iopub.status.busy": "2024-01-16T18:22:58.046784Z", - "iopub.status.idle": "2024-01-16T18:23:54.667377Z", - "shell.execute_reply": "2024-01-16T18:23:54.666670Z" + "iopub.execute_input": "2024-01-17T17:54:38.733553Z", + "iopub.status.busy": "2024-01-17T17:54:38.733149Z", + "iopub.status.idle": "2024-01-17T17:55:34.410031Z", + "shell.execute_reply": "2024-01-17T17:55:34.409280Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:54.670403Z", - "iopub.status.busy": "2024-01-16T18:23:54.669960Z", - "iopub.status.idle": "2024-01-16T18:23:55.686798Z", - "shell.execute_reply": "2024-01-16T18:23:55.686208Z" + "iopub.execute_input": "2024-01-17T17:55:34.412998Z", + "iopub.status.busy": "2024-01-17T17:55:34.412589Z", + "iopub.status.idle": "2024-01-17T17:55:35.451606Z", + "shell.execute_reply": "2024-01-17T17:55:35.450996Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.689787Z", - "iopub.status.busy": "2024-01-16T18:23:55.689213Z", - "iopub.status.idle": "2024-01-16T18:23:55.692592Z", - "shell.execute_reply": "2024-01-16T18:23:55.692093Z" + "iopub.execute_input": "2024-01-17T17:55:35.454593Z", + "iopub.status.busy": "2024-01-17T17:55:35.454072Z", + "iopub.status.idle": "2024-01-17T17:55:35.457610Z", + "shell.execute_reply": "2024-01-17T17:55:35.457092Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.694838Z", - "iopub.status.busy": "2024-01-16T18:23:55.694643Z", - "iopub.status.idle": "2024-01-16T18:23:55.698784Z", - "shell.execute_reply": "2024-01-16T18:23:55.698263Z" + "iopub.execute_input": "2024-01-17T17:55:35.459980Z", + "iopub.status.busy": "2024-01-17T17:55:35.459606Z", + "iopub.status.idle": "2024-01-17T17:55:35.463618Z", + "shell.execute_reply": "2024-01-17T17:55:35.463103Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.701075Z", - "iopub.status.busy": "2024-01-16T18:23:55.700688Z", - "iopub.status.idle": "2024-01-16T18:23:55.704328Z", - "shell.execute_reply": "2024-01-16T18:23:55.703833Z" + "iopub.execute_input": "2024-01-17T17:55:35.466124Z", + "iopub.status.busy": "2024-01-17T17:55:35.465756Z", + "iopub.status.idle": "2024-01-17T17:55:35.469740Z", + "shell.execute_reply": "2024-01-17T17:55:35.469205Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.706531Z", - "iopub.status.busy": "2024-01-16T18:23:55.706238Z", - "iopub.status.idle": "2024-01-16T18:23:55.709224Z", - "shell.execute_reply": "2024-01-16T18:23:55.708724Z" + "iopub.execute_input": "2024-01-17T17:55:35.472056Z", + "iopub.status.busy": "2024-01-17T17:55:35.471688Z", + "iopub.status.idle": "2024-01-17T17:55:35.474693Z", + "shell.execute_reply": "2024-01-17T17:55:35.474146Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.711504Z", - "iopub.status.busy": "2024-01-16T18:23:55.711215Z", - "iopub.status.idle": "2024-01-16T18:25:22.950562Z", - "shell.execute_reply": "2024-01-16T18:25:22.949772Z" + "iopub.execute_input": "2024-01-17T17:55:35.477343Z", + "iopub.status.busy": "2024-01-17T17:55:35.477068Z", + "iopub.status.idle": "2024-01-17T17:57:02.162514Z", + "shell.execute_reply": "2024-01-17T17:57:02.161814Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7265cd8663c14e55866a0fb07ede6714", + "model_id": "af52c292e7f247839109788208ff5922", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2537f39483ed4657adc21de78f6206fc", + "model_id": "4eb1b29351274d4aa33affc14e71ae2a", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:22.953734Z", - "iopub.status.busy": "2024-01-16T18:25:22.953257Z", - "iopub.status.idle": "2024-01-16T18:25:23.718514Z", - "shell.execute_reply": "2024-01-16T18:25:23.717840Z" + "iopub.execute_input": "2024-01-17T17:57:02.165671Z", + "iopub.status.busy": "2024-01-17T17:57:02.165235Z", + "iopub.status.idle": "2024-01-17T17:57:02.924551Z", + "shell.execute_reply": "2024-01-17T17:57:02.923895Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:23.721388Z", - "iopub.status.busy": "2024-01-16T18:25:23.720795Z", - "iopub.status.idle": "2024-01-16T18:25:25.857600Z", - "shell.execute_reply": "2024-01-16T18:25:25.856944Z" + "iopub.execute_input": "2024-01-17T17:57:02.927428Z", + "iopub.status.busy": "2024-01-17T17:57:02.926914Z", + "iopub.status.idle": "2024-01-17T17:57:05.032765Z", + "shell.execute_reply": "2024-01-17T17:57:05.032080Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:25.860249Z", - "iopub.status.busy": "2024-01-16T18:25:25.859989Z", - "iopub.status.idle": "2024-01-16T18:25:55.087025Z", - "shell.execute_reply": "2024-01-16T18:25:55.086359Z" + "iopub.execute_input": "2024-01-17T17:57:05.035349Z", + "iopub.status.busy": "2024-01-17T17:57:05.034956Z", + "iopub.status.idle": "2024-01-17T17:57:33.893233Z", + "shell.execute_reply": "2024-01-17T17:57:33.892612Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]" + " 0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]" + " 1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]" + " 1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]" + " 1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]" + " 2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]" + " 2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]" + " 2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]" + " 3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]" + " 3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]" + " 3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]" + " 4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]" + " 4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]" + " 4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]" + " 5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]" + " 5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]" + " 6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]" + " 6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]" + " 6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]" + " 7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]" + " 7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]" + " 7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]" + " 8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]" + " 8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]" + " 8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]" + " 9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]" + " 9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]" + " 9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]" + " 10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]" + " 10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]" + " 10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]" + " 11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]" + " 11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]" + " 11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]" + " 12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]" + " 12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]" + " 13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]" + " 13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]" + " 13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]" + " 14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]" + " 14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]" + " 14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]" + " 15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]" + " 15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]" + " 15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]" + " 16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]" + " 16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]" + " 16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]" + " 17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]" + " 17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]" + " 17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]" + " 18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]" + " 18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]" + " 18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]" + " 19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]" + " 19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]" + " 20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]" + " 20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]" + " 20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]" + " 21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]" + " 21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]" + " 21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]" + " 22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]" + " 22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]" + " 22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]" + " 23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]" + " 23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]" + " 23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]" + " 24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]" + " 24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]" + " 24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]" + " 25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]" + " 25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]" + " 26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]" + " 26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]" + " 26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]" + " 27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]" + " 27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]" + " 27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]" + " 28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]" + " 28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]" + " 28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]" + " 29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]" + " 29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]" + " 29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]" + " 30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]" + " 30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]" + " 30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]" + " 31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]" + " 31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]" + " 32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]" + " 32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]" + " 32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]" + " 33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]" + " 33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]" + " 33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]" + " 34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]" + " 34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]" + " 34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]" + " 35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]" + " 35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]" + " 35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]" + " 36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]" + " 36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]" + " 36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]" + " 37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]" + " 37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]" + " 37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]" + " 38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]" + " 38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]" + " 39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]" + " 39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]" + " 39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]" + " 40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]" + " 40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]" + " 40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]" + " 41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]" + " 41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]" + " 41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]" + " 42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]" + " 42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]" + " 42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]" + " 43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]" + " 43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]" + " 43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]" + " 44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]" + " 44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]" + " 45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]" + " 45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]" + " 45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]" + " 46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]" + " 46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]" + " 46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]" + " 47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]" + " 47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]" + " 47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]" + " 48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]" + " 48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]" + " 48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]" + " 49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]" + " 49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]" + " 49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]" + " 50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]" + " 50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]" + " 51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]" + " 51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]" + " 51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]" + " 52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]" + " 52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]" + " 52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]" + " 53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]" + " 53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]" + " 53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]" + " 54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]" + " 54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]" + " 54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]" + " 55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]" + " 55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]" + " 55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]" + " 56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]" + " 56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]" + " 56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]" + " 57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]" + " 57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]" + " 58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]" + " 58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]" + " 58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]" + " 59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]" + " 59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]" + " 59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]" + " 60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]" + " 60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]" + " 60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]" + " 61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]" + " 61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]" + " 61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]" + " 62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]" + " 62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]" + " 62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]" + " 63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]" + " 63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]" + " 64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]" + " 64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]" + " 64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]" + " 65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]" + " 65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]" + " 65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]" + " 66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]" + " 66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]" + " 66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]" + " 67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]" + " 67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]" + " 67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]" + " 68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]" + " 68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]" + " 68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]" + " 69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]" + " 69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]" + " 69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]" + " 70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]" + " 70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]" + " 71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]" + " 71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]" + " 71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]" + " 72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]" + " 72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]" + " 72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]" + " 73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]" + " 73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]" + " 73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]" + " 74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]" + " 74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]" + " 74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]" + " 75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]" + " 75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]" + " 75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]" + " 76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]" + " 76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]" + " 77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]" + " 77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]" + " 77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]" + " 78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]" + " 78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]" + " 78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]" + " 79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]" + " 79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]" + " 79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]" + " 80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]" + " 80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]" + " 80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]" + " 81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]" + " 81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]" + " 81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]" + " 82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]" + " 82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]" + " 82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]" + " 83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]" + " 83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]" + " 84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]" + " 84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]" + " 84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]" + " 85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]" + " 85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]" + " 85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]" + " 86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]" + " 86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]" + " 86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]" + " 87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]" + " 87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]" + " 87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]" + " 88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]" + " 88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]" + " 88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]" + " 89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]" + " 89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]" + " 89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]" + " 90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]" + " 90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]" + " 90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]" + " 91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]" + " 91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]" + " 92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]" + " 92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]" + " 92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]" + " 93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]" + " 93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]" + " 93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]" + " 94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]" + " 94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]" + " 94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]" + " 95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]" + " 95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]" + " 95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]" + " 96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]" + " 96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]" + " 96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]" + " 97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]" + " 97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]" + " 97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]" + " 98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]" + " 98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]" + " 99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]" + " 99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]" + " 99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928558/4997817 [00:28<00:00, 171916.69it/s]" + "100%|█████████▉| 4977398/4997817 [00:28<00:00, 173769.32it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4945889/4997817 [00:28<00:00, 172332.10it/s]" + "100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]" ] }, { @@ -2826,23 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963255/4997817 [00:28<00:00, 172726.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]" + "100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]" ] }, { @@ -3081,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:55.089485Z", - "iopub.status.busy": "2024-01-16T18:25:55.089232Z", - "iopub.status.idle": "2024-01-16T18:26:02.152549Z", - "shell.execute_reply": "2024-01-16T18:26:02.151780Z" + "iopub.execute_input": "2024-01-17T17:57:33.895705Z", + "iopub.status.busy": "2024-01-17T17:57:33.895349Z", + "iopub.status.idle": "2024-01-17T17:57:40.866713Z", + "shell.execute_reply": "2024-01-17T17:57:40.866094Z" } }, "outputs": [], @@ -3098,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:02.155949Z", - "iopub.status.busy": "2024-01-16T18:26:02.155488Z", - "iopub.status.idle": "2024-01-16T18:26:05.337062Z", - "shell.execute_reply": "2024-01-16T18:26:05.336475Z" + "iopub.execute_input": "2024-01-17T17:57:40.869711Z", + "iopub.status.busy": "2024-01-17T17:57:40.869250Z", + "iopub.status.idle": "2024-01-17T17:57:43.914104Z", + "shell.execute_reply": "2024-01-17T17:57:43.913524Z" } }, "outputs": [ @@ -3170,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:05.339629Z", - "iopub.status.busy": "2024-01-16T18:26:05.339398Z", - "iopub.status.idle": "2024-01-16T18:26:06.669675Z", - "shell.execute_reply": "2024-01-16T18:26:06.669040Z" + "iopub.execute_input": "2024-01-17T17:57:43.916459Z", + "iopub.status.busy": "2024-01-17T17:57:43.916254Z", + "iopub.status.idle": "2024-01-17T17:57:45.221752Z", + "shell.execute_reply": "2024-01-17T17:57:45.221119Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cc3298253471476bb2be84059397839b", + "model_id": "0f1e27caa1a14ef9b3b8dbd40ae65a86", "version_major": 2, "version_minor": 0 }, @@ -3210,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:06.672538Z", - "iopub.status.busy": "2024-01-16T18:26:06.672149Z", - "iopub.status.idle": "2024-01-16T18:26:06.890171Z", - "shell.execute_reply": "2024-01-16T18:26:06.889587Z" + "iopub.execute_input": "2024-01-17T17:57:45.224571Z", + "iopub.status.busy": "2024-01-17T17:57:45.224354Z", + "iopub.status.idle": "2024-01-17T17:57:45.440634Z", + "shell.execute_reply": "2024-01-17T17:57:45.439928Z" } }, "outputs": [], @@ -3227,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:06.892996Z", - "iopub.status.busy": "2024-01-16T18:26:06.892573Z", - "iopub.status.idle": "2024-01-16T18:26:11.664578Z", - "shell.execute_reply": "2024-01-16T18:26:11.663909Z" + "iopub.execute_input": "2024-01-17T17:57:45.443316Z", + "iopub.status.busy": "2024-01-17T17:57:45.443109Z", + "iopub.status.idle": "2024-01-17T17:57:49.972217Z", + "shell.execute_reply": "2024-01-17T17:57:49.971522Z" } }, "outputs": [ @@ -3303,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:11.667468Z", - "iopub.status.busy": "2024-01-16T18:26:11.666925Z", - "iopub.status.idle": "2024-01-16T18:26:11.724592Z", - "shell.execute_reply": "2024-01-16T18:26:11.723902Z" + "iopub.execute_input": "2024-01-17T17:57:49.974835Z", + "iopub.status.busy": "2024-01-17T17:57:49.974626Z", + "iopub.status.idle": "2024-01-17T17:57:50.030104Z", + "shell.execute_reply": "2024-01-17T17:57:50.029486Z" }, "nbsphinx": "hidden" }, @@ -3350,151 +3334,28 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0287b7c393564ba4826d89c2f9d6cf8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0c5d2f696eac43179cb082c3b2c23a25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1075b11ff74949078c4e22ce2fc5f8b9": { + "00c3e59d7d244af597f16fb343e03d1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7553ca4a0e6a42e38ac424ba3dc7525f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_442c4b1d852547b7804a91ac84aa2cb8", - "value": 30.0 - } - }, - "1cb0f026b87d4ae6993a4fa7249a8069": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_ca51262bf9524231a23378a92429938a", + "placeholder": "​", + "style": "IPY_MODEL_f1af59dab6f546bfbc0469e346baaf68", + "value": " 30/30 [00:00<00:00, 400.84it/s]" } }, - "2537f39483ed4657adc21de78f6206fc": { + "0f1e27caa1a14ef9b3b8dbd40ae65a86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3509,70 +3370,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e40e27fedf3d4ddb82c6a6d619455317", - "IPY_MODEL_f9de84b5a8d3400e8eab16b99fc7fa0d", - "IPY_MODEL_d74d38913ea5425e994d5da2889d784f" + "IPY_MODEL_7de801ef20ea442baa968adb14b633ca", + "IPY_MODEL_aaeb62906b67472181fb6d9eff73caf2", + "IPY_MODEL_739e1c48b55047b898dbae54b46400c4" ], - "layout": "IPY_MODEL_0287b7c393564ba4826d89c2f9d6cf8f" + "layout": "IPY_MODEL_7014ddfdc5ca4502ae5e8f8a16c8e83e" } }, - "3262fc457043473380cdd7edfa92baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4ebe86acc4994f7cb4822d338d391923", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0c5d2f696eac43179cb082c3b2c23a25", - "value": 30.0 - } - }, - "335db8ee290c40a1a47243010e5125e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "442c4b1d852547b7804a91ac84aa2cb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "492afedc485a402cbcf0858a87fc33ff": { + "1031ae860a8d40f78ad75a6d85cef9f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3587,13 +3392,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df6a7efa0c0f486d86388910b18ab9dc", + "layout": "IPY_MODEL_1881eb9735324b5caffc9b4beed76776", "placeholder": "​", - "style": "IPY_MODEL_8dab04e2e468429995d2bf045d872d7b", - "value": " 30/30 [00:00<00:00, 396.58it/s]" + "style": "IPY_MODEL_43b11210cae243aa8c3783e0e3622624", + "value": "number of examples processed for checking labels: 100%" } }, - "4ebe86acc4994f7cb4822d338d391923": { + "1313c53e832b4cde81ccb98806fa4ca9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3645,7 +3450,7 @@ "width": null } }, - "67823768b24b4699aeed9aeb6a7c6b59": { + "1881eb9735324b5caffc9b4beed76776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3697,29 +3502,44 @@ "width": null } }, - "7265cd8663c14e55866a0fb07ede6714": { + "2292c86728984723b8c80e0432d9d577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b2a221859674f0193bc880ff585ccbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c9b1d060a9e14488b26b6ee37b2549fe", - "IPY_MODEL_3262fc457043473380cdd7edfa92baf2", - "IPY_MODEL_492afedc485a402cbcf0858a87fc33ff" - ], - "layout": "IPY_MODEL_67823768b24b4699aeed9aeb6a7c6b59" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb471f4d9435473ab2ddb6a7f16f45c7", + "placeholder": "​", + "style": "IPY_MODEL_c932ad2aaf7a4c13aaf72c98bc031b4c", + "value": " 30/30 [00:37<00:00, 1.25s/it]" } }, - "7553ca4a0e6a42e38ac424ba3dc7525f": { + "337fd27a78fc413cbb9410907415daa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3771,7 +3591,22 @@ "width": null } }, - "825bfaf10d3d40d7ba9f49f4be9b3cb7": { + "43b11210cae243aa8c3783e0e3622624": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e0225defcb1446e83ce75a866b1b560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3786,13 +3621,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bfbe24bbbc654c8db82f9b0c37b1e5c8", + "layout": "IPY_MODEL_f3ecd9ff4d53434f9506d98cabc5e062", "placeholder": "​", - "style": "IPY_MODEL_b4c605d920f74c41af16a33749531610", - "value": " 30/30 [00:01<00:00, 22.81it/s]" + "style": "IPY_MODEL_b42822349fcf4807ace9a36a8655d3ca", + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "4eb1b29351274d4aa33affc14e71ae2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1031ae860a8d40f78ad75a6d85cef9f7", + "IPY_MODEL_5bb8c700a31b48d0813206acf7f94d28", + "IPY_MODEL_2b2a221859674f0193bc880ff585ccbd" + ], + "layout": "IPY_MODEL_ed847fe8426546678db9da2b0e59827f" } }, - "85748b16da5b474cbb0984f052b2c201": { + "52296e0e51f04d038b9f74610367ee7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3844,7 +3701,31 @@ "width": null } }, - "8dab04e2e468429995d2bf045d872d7b": { + "5bb8c700a31b48d0813206acf7f94d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8abe14247b17472d87bed8e579ddc8a3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0c5dabccd80447884aacc6543b0a29c", + "value": 30.0 + } + }, + "6b8f40d6cd83494abbd50a1ffbd0c140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3859,7 +3740,23 @@ "description_width": "" } }, - "93aa13676ddc411aab09198732f3580d": { + "6bd3806bac11434da5468ebbe4748d63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7014ddfdc5ca4502ae5e8f8a16c8e83e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3911,7 +3808,7 @@ "width": null } }, - "9ca6e877d0564cf7abbfb313556da941": { + "739e1c48b55047b898dbae54b46400c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3926,13 +3823,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_93aa13676ddc411aab09198732f3580d", + "layout": "IPY_MODEL_52296e0e51f04d038b9f74610367ee7f", "placeholder": "​", - "style": "IPY_MODEL_fcbc5d4f461c444eac1c2bca47b8a255", - "value": "images processed using softmin: 100%" + "style": "IPY_MODEL_85cb114ea843432ab3f307100326ed78", + "value": " 30/30 [00:01<00:00, 23.47it/s]" } }, - "abca464ea3ea4cc88ec14c37a595aebe": { + "7a3ae5f1f2d2401983a8b0cd8d4302ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3984,22 +3881,28 @@ "width": null } }, - "b4c605d920f74c41af16a33749531610": { + "7de801ef20ea442baa968adb14b633ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1313c53e832b4cde81ccb98806fa4ca9", + "placeholder": "​", + "style": "IPY_MODEL_6b8f40d6cd83494abbd50a1ffbd0c140", + "value": "images processed using softmin: 100%" } }, - "bcbb24f60f1c4a36bfa772c6fef8afaa": { + "85cb114ea843432ab3f307100326ed78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4014,7 +3917,7 @@ "description_width": "" } }, - "bfbe24bbbc654c8db82f9b0c37b1e5c8": { + "8abe14247b17472d87bed8e579ddc8a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4066,28 +3969,31 @@ "width": null } }, - "c9b1d060a9e14488b26b6ee37b2549fe": { + "aaeb62906b67472181fb6d9eff73caf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f7d59e715bba46e19c88c67c00ac18b2", - "placeholder": "​", - "style": "IPY_MODEL_bcbb24f60f1c4a36bfa772c6fef8afaa", - "value": "number of examples processed for estimating thresholds: 100%" + "layout": "IPY_MODEL_7a3ae5f1f2d2401983a8b0cd8d4302ef", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2292c86728984723b8c80e0432d9d577", + "value": 30.0 } }, - "cc3298253471476bb2be84059397839b": { + "af52c292e7f247839109788208ff5922": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4102,14 +4008,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9ca6e877d0564cf7abbfb313556da941", - "IPY_MODEL_1075b11ff74949078c4e22ce2fc5f8b9", - "IPY_MODEL_825bfaf10d3d40d7ba9f49f4be9b3cb7" + "IPY_MODEL_4e0225defcb1446e83ce75a866b1b560", + "IPY_MODEL_e4bd3681b88942b28c2c68163379c318", + "IPY_MODEL_00c3e59d7d244af597f16fb343e03d1e" ], - "layout": "IPY_MODEL_1cb0f026b87d4ae6993a4fa7249a8069" + "layout": "IPY_MODEL_337fd27a78fc413cbb9410907415daa7" } }, - "cc656dc9686f4736b5efe32ddf953db0": { + "b42822349fcf4807ace9a36a8655d3ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4124,28 +4030,22 @@ "description_width": "" } }, - "d74d38913ea5425e994d5da2889d784f": { + "c932ad2aaf7a4c13aaf72c98bc031b4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec17cd81455243cc9fbd17bc7a3730f5", - "placeholder": "​", - "style": "IPY_MODEL_e691b0e199074668b59fd99554cbfa66", - "value": " 30/30 [00:37<00:00, 1.45s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "df6a7efa0c0f486d86388910b18ab9dc": { + "ca51262bf9524231a23378a92429938a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4197,43 +4097,7 @@ "width": null } }, - "e40e27fedf3d4ddb82c6a6d619455317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85748b16da5b474cbb0984f052b2c201", - "placeholder": "​", - "style": "IPY_MODEL_cc656dc9686f4736b5efe32ddf953db0", - "value": "number of examples processed for checking labels: 100%" - } - }, - "e691b0e199074668b59fd99554cbfa66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec17cd81455243cc9fbd17bc7a3730f5": { + "cb471f4d9435473ab2ddb6a7f16f45c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4285,7 +4149,7 @@ "width": null } }, - "f7d59e715bba46e19c88c67c00ac18b2": { + "ddc75898d65c41a5992515a897c16f0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4337,7 +4201,23 @@ "width": null } }, - "f9de84b5a8d3400e8eab16b99fc7fa0d": { + "e0c5dabccd80447884aacc6543b0a29c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4bd3681b88942b28c2c68163379c318": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4353,15 +4233,67 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_abca464ea3ea4cc88ec14c37a595aebe", + "layout": "IPY_MODEL_ddc75898d65c41a5992515a897c16f0c", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_335db8ee290c40a1a47243010e5125e5", + "style": "IPY_MODEL_6bd3806bac11434da5468ebbe4748d63", "value": 30.0 } }, - "fcbc5d4f461c444eac1c2bca47b8a255": { + "ed847fe8426546678db9da2b0e59827f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1af59dab6f546bfbc0469e346baaf68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4375,6 +4307,58 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f3ecd9ff4d53434f9506d98cabc5e062": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 4e4f526cc..ac1bb7cd8 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:16.599093Z", - "iopub.status.busy": "2024-01-16T18:26:16.598896Z", - "iopub.status.idle": "2024-01-16T18:26:17.642982Z", - "shell.execute_reply": "2024-01-16T18:26:17.642384Z" + "iopub.execute_input": "2024-01-17T17:57:54.461991Z", + "iopub.status.busy": "2024-01-17T17:57:54.461802Z", + "iopub.status.idle": "2024-01-17T17:57:55.470180Z", + "shell.execute_reply": "2024-01-17T17:57:55.469570Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.645926Z", - "iopub.status.busy": "2024-01-16T18:26:17.645448Z", - "iopub.status.idle": "2024-01-16T18:26:17.661761Z", - "shell.execute_reply": "2024-01-16T18:26:17.661269Z" + "iopub.execute_input": "2024-01-17T17:57:55.473210Z", + "iopub.status.busy": "2024-01-17T17:57:55.472696Z", + "iopub.status.idle": "2024-01-17T17:57:55.489373Z", + "shell.execute_reply": "2024-01-17T17:57:55.488869Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.664056Z", - "iopub.status.busy": "2024-01-16T18:26:17.663856Z", - "iopub.status.idle": "2024-01-16T18:26:17.711971Z", - "shell.execute_reply": "2024-01-16T18:26:17.711413Z" + "iopub.execute_input": "2024-01-17T17:57:55.491740Z", + "iopub.status.busy": "2024-01-17T17:57:55.491432Z", + "iopub.status.idle": "2024-01-17T17:57:55.650860Z", + "shell.execute_reply": "2024-01-17T17:57:55.650179Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.714359Z", - "iopub.status.busy": "2024-01-16T18:26:17.713997Z", - "iopub.status.idle": "2024-01-16T18:26:17.717608Z", - "shell.execute_reply": "2024-01-16T18:26:17.717089Z" + "iopub.execute_input": "2024-01-17T17:57:55.653531Z", + "iopub.status.busy": "2024-01-17T17:57:55.653131Z", + "iopub.status.idle": "2024-01-17T17:57:55.656773Z", + "shell.execute_reply": "2024-01-17T17:57:55.656204Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.719855Z", - "iopub.status.busy": "2024-01-16T18:26:17.719505Z", - "iopub.status.idle": "2024-01-16T18:26:17.728102Z", - "shell.execute_reply": "2024-01-16T18:26:17.727606Z" + "iopub.execute_input": "2024-01-17T17:57:55.659246Z", + "iopub.status.busy": "2024-01-17T17:57:55.658888Z", + "iopub.status.idle": "2024-01-17T17:57:55.667300Z", + "shell.execute_reply": "2024-01-17T17:57:55.666830Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.730574Z", - "iopub.status.busy": "2024-01-16T18:26:17.730216Z", - "iopub.status.idle": "2024-01-16T18:26:17.732904Z", - "shell.execute_reply": "2024-01-16T18:26:17.732349Z" + "iopub.execute_input": "2024-01-17T17:57:55.669806Z", + "iopub.status.busy": "2024-01-17T17:57:55.669444Z", + "iopub.status.idle": "2024-01-17T17:57:55.672097Z", + "shell.execute_reply": "2024-01-17T17:57:55.671567Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.735156Z", - "iopub.status.busy": "2024-01-16T18:26:17.734795Z", - "iopub.status.idle": "2024-01-16T18:26:18.317193Z", - "shell.execute_reply": "2024-01-16T18:26:18.316555Z" + "iopub.execute_input": "2024-01-17T17:57:55.674513Z", + "iopub.status.busy": "2024-01-17T17:57:55.674156Z", + "iopub.status.idle": "2024-01-17T17:57:56.255254Z", + "shell.execute_reply": "2024-01-17T17:57:56.254627Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:18.320008Z", - "iopub.status.busy": "2024-01-16T18:26:18.319615Z", - "iopub.status.idle": "2024-01-16T18:26:19.527880Z", - "shell.execute_reply": "2024-01-16T18:26:19.527198Z" + "iopub.execute_input": "2024-01-17T17:57:56.258189Z", + "iopub.status.busy": "2024-01-17T17:57:56.257764Z", + "iopub.status.idle": "2024-01-17T17:57:57.492191Z", + "shell.execute_reply": "2024-01-17T17:57:57.491408Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.530861Z", - "iopub.status.busy": "2024-01-16T18:26:19.530165Z", - "iopub.status.idle": "2024-01-16T18:26:19.540810Z", - "shell.execute_reply": "2024-01-16T18:26:19.540255Z" + "iopub.execute_input": "2024-01-17T17:57:57.495068Z", + "iopub.status.busy": "2024-01-17T17:57:57.494502Z", + "iopub.status.idle": "2024-01-17T17:57:57.505626Z", + "shell.execute_reply": "2024-01-17T17:57:57.505006Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.543423Z", - "iopub.status.busy": "2024-01-16T18:26:19.542976Z", - "iopub.status.idle": "2024-01-16T18:26:19.547228Z", - "shell.execute_reply": "2024-01-16T18:26:19.546741Z" + "iopub.execute_input": "2024-01-17T17:57:57.508172Z", + "iopub.status.busy": "2024-01-17T17:57:57.507694Z", + "iopub.status.idle": "2024-01-17T17:57:57.512156Z", + "shell.execute_reply": "2024-01-17T17:57:57.511524Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.549639Z", - "iopub.status.busy": "2024-01-16T18:26:19.549206Z", - "iopub.status.idle": "2024-01-16T18:26:19.556613Z", - "shell.execute_reply": "2024-01-16T18:26:19.555975Z" + "iopub.execute_input": "2024-01-17T17:57:57.514670Z", + "iopub.status.busy": "2024-01-17T17:57:57.514186Z", + "iopub.status.idle": "2024-01-17T17:57:57.523107Z", + "shell.execute_reply": "2024-01-17T17:57:57.522498Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.559061Z", - "iopub.status.busy": "2024-01-16T18:26:19.558614Z", - "iopub.status.idle": "2024-01-16T18:26:19.681492Z", - "shell.execute_reply": "2024-01-16T18:26:19.680871Z" + "iopub.execute_input": "2024-01-17T17:57:57.525365Z", + "iopub.status.busy": "2024-01-17T17:57:57.525164Z", + "iopub.status.idle": "2024-01-17T17:57:57.647630Z", + "shell.execute_reply": "2024-01-17T17:57:57.646966Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.684012Z", - "iopub.status.busy": "2024-01-16T18:26:19.683652Z", - "iopub.status.idle": "2024-01-16T18:26:19.686760Z", - "shell.execute_reply": "2024-01-16T18:26:19.686124Z" + "iopub.execute_input": "2024-01-17T17:57:57.650170Z", + "iopub.status.busy": "2024-01-17T17:57:57.649728Z", + "iopub.status.idle": "2024-01-17T17:57:57.652837Z", + "shell.execute_reply": "2024-01-17T17:57:57.652183Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.689173Z", - "iopub.status.busy": "2024-01-16T18:26:19.688795Z", - "iopub.status.idle": "2024-01-16T18:26:21.120195Z", - "shell.execute_reply": "2024-01-16T18:26:21.119380Z" + "iopub.execute_input": "2024-01-17T17:57:57.655095Z", + "iopub.status.busy": "2024-01-17T17:57:57.654741Z", + "iopub.status.idle": "2024-01-17T17:57:59.080773Z", + "shell.execute_reply": "2024-01-17T17:57:59.080056Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:21.123317Z", - "iopub.status.busy": "2024-01-16T18:26:21.122849Z", - "iopub.status.idle": "2024-01-16T18:26:21.136614Z", - "shell.execute_reply": "2024-01-16T18:26:21.136083Z" + "iopub.execute_input": "2024-01-17T17:57:59.083888Z", + "iopub.status.busy": "2024-01-17T17:57:59.083463Z", + "iopub.status.idle": "2024-01-17T17:57:59.097212Z", + "shell.execute_reply": "2024-01-17T17:57:59.096569Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:21.139041Z", - "iopub.status.busy": "2024-01-16T18:26:21.138687Z", - "iopub.status.idle": "2024-01-16T18:26:21.185016Z", - "shell.execute_reply": "2024-01-16T18:26:21.184381Z" + "iopub.execute_input": "2024-01-17T17:57:59.099908Z", + "iopub.status.busy": "2024-01-17T17:57:59.099541Z", + "iopub.status.idle": "2024-01-17T17:57:59.231394Z", + "shell.execute_reply": "2024-01-17T17:57:59.230808Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index f324d2241..30e708f03 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:26.445820Z", - "iopub.status.busy": "2024-01-16T18:26:26.445377Z", - "iopub.status.idle": "2024-01-16T18:26:28.495593Z", - "shell.execute_reply": "2024-01-16T18:26:28.494982Z" + "iopub.execute_input": "2024-01-17T17:58:04.452112Z", + "iopub.status.busy": "2024-01-17T17:58:04.451920Z", + "iopub.status.idle": "2024-01-17T17:58:06.513490Z", + "shell.execute_reply": "2024-01-17T17:58:06.512794Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.498491Z", - "iopub.status.busy": "2024-01-16T18:26:28.498003Z", - "iopub.status.idle": "2024-01-16T18:26:28.501599Z", - "shell.execute_reply": "2024-01-16T18:26:28.501090Z" + "iopub.execute_input": "2024-01-17T17:58:06.516595Z", + "iopub.status.busy": "2024-01-17T17:58:06.516197Z", + "iopub.status.idle": "2024-01-17T17:58:06.519890Z", + "shell.execute_reply": "2024-01-17T17:58:06.519295Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.503791Z", - "iopub.status.busy": "2024-01-16T18:26:28.503503Z", - "iopub.status.idle": "2024-01-16T18:26:28.506652Z", - "shell.execute_reply": "2024-01-16T18:26:28.506135Z" + "iopub.execute_input": "2024-01-17T17:58:06.522149Z", + "iopub.status.busy": "2024-01-17T17:58:06.521812Z", + "iopub.status.idle": "2024-01-17T17:58:06.525082Z", + "shell.execute_reply": "2024-01-17T17:58:06.524478Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.508928Z", - "iopub.status.busy": "2024-01-16T18:26:28.508626Z", - "iopub.status.idle": "2024-01-16T18:26:28.557457Z", - "shell.execute_reply": "2024-01-16T18:26:28.556849Z" + "iopub.execute_input": "2024-01-17T17:58:06.527397Z", + "iopub.status.busy": "2024-01-17T17:58:06.527051Z", + "iopub.status.idle": "2024-01-17T17:58:06.696915Z", + "shell.execute_reply": "2024-01-17T17:58:06.696267Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.559740Z", - "iopub.status.busy": "2024-01-16T18:26:28.559386Z", - "iopub.status.idle": "2024-01-16T18:26:28.563106Z", - "shell.execute_reply": "2024-01-16T18:26:28.562607Z" + "iopub.execute_input": "2024-01-17T17:58:06.699410Z", + "iopub.status.busy": "2024-01-17T17:58:06.698895Z", + "iopub.status.idle": "2024-01-17T17:58:06.702802Z", + "shell.execute_reply": "2024-01-17T17:58:06.702205Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.565464Z", - "iopub.status.busy": "2024-01-16T18:26:28.565115Z", - "iopub.status.idle": "2024-01-16T18:26:28.568664Z", - "shell.execute_reply": "2024-01-16T18:26:28.568087Z" + "iopub.execute_input": "2024-01-17T17:58:06.705199Z", + "iopub.status.busy": "2024-01-17T17:58:06.704700Z", + "iopub.status.idle": "2024-01-17T17:58:06.708685Z", + "shell.execute_reply": "2024-01-17T17:58:06.708051Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.571005Z", - "iopub.status.busy": "2024-01-16T18:26:28.570638Z", - "iopub.status.idle": "2024-01-16T18:26:28.574416Z", - "shell.execute_reply": "2024-01-16T18:26:28.573895Z" + "iopub.execute_input": "2024-01-17T17:58:06.711074Z", + "iopub.status.busy": "2024-01-17T17:58:06.710625Z", + "iopub.status.idle": "2024-01-17T17:58:06.714277Z", + "shell.execute_reply": "2024-01-17T17:58:06.713674Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.576801Z", - "iopub.status.busy": "2024-01-16T18:26:28.576438Z", - "iopub.status.idle": "2024-01-16T18:26:28.580004Z", - "shell.execute_reply": "2024-01-16T18:26:28.579461Z" + "iopub.execute_input": "2024-01-17T17:58:06.716551Z", + "iopub.status.busy": "2024-01-17T17:58:06.716194Z", + "iopub.status.idle": "2024-01-17T17:58:06.719743Z", + "shell.execute_reply": "2024-01-17T17:58:06.719140Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.582254Z", - "iopub.status.busy": "2024-01-16T18:26:28.581918Z", - "iopub.status.idle": "2024-01-16T18:26:37.142048Z", - "shell.execute_reply": "2024-01-16T18:26:37.141403Z" + "iopub.execute_input": "2024-01-17T17:58:06.722197Z", + "iopub.status.busy": "2024-01-17T17:58:06.721848Z", + "iopub.status.idle": "2024-01-17T17:58:15.903407Z", + "shell.execute_reply": "2024-01-17T17:58:15.902766Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.145360Z", - "iopub.status.busy": "2024-01-16T18:26:37.144923Z", - "iopub.status.idle": "2024-01-16T18:26:37.148171Z", - "shell.execute_reply": "2024-01-16T18:26:37.147656Z" + "iopub.execute_input": "2024-01-17T17:58:15.906850Z", + "iopub.status.busy": "2024-01-17T17:58:15.906363Z", + "iopub.status.idle": "2024-01-17T17:58:15.909663Z", + "shell.execute_reply": "2024-01-17T17:58:15.909117Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.150527Z", - "iopub.status.busy": "2024-01-16T18:26:37.150155Z", - "iopub.status.idle": "2024-01-16T18:26:37.153089Z", - "shell.execute_reply": "2024-01-16T18:26:37.152539Z" + "iopub.execute_input": "2024-01-17T17:58:15.911984Z", + "iopub.status.busy": "2024-01-17T17:58:15.911780Z", + "iopub.status.idle": "2024-01-17T17:58:15.914788Z", + "shell.execute_reply": "2024-01-17T17:58:15.914152Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.155247Z", - "iopub.status.busy": "2024-01-16T18:26:37.154870Z", - "iopub.status.idle": "2024-01-16T18:26:39.352948Z", - "shell.execute_reply": "2024-01-16T18:26:39.352038Z" + "iopub.execute_input": "2024-01-17T17:58:15.917364Z", + "iopub.status.busy": "2024-01-17T17:58:15.916868Z", + "iopub.status.idle": "2024-01-17T17:58:18.153348Z", + "shell.execute_reply": "2024-01-17T17:58:18.152612Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.356461Z", - "iopub.status.busy": "2024-01-16T18:26:39.355758Z", - "iopub.status.idle": "2024-01-16T18:26:39.363742Z", - "shell.execute_reply": "2024-01-16T18:26:39.363219Z" + "iopub.execute_input": "2024-01-17T17:58:18.157203Z", + "iopub.status.busy": "2024-01-17T17:58:18.156132Z", + "iopub.status.idle": "2024-01-17T17:58:18.164623Z", + "shell.execute_reply": "2024-01-17T17:58:18.164085Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.366319Z", - "iopub.status.busy": "2024-01-16T18:26:39.365936Z", - "iopub.status.idle": "2024-01-16T18:26:39.370077Z", - "shell.execute_reply": "2024-01-16T18:26:39.369561Z" + "iopub.execute_input": "2024-01-17T17:58:18.167048Z", + "iopub.status.busy": "2024-01-17T17:58:18.166666Z", + "iopub.status.idle": "2024-01-17T17:58:18.171012Z", + "shell.execute_reply": "2024-01-17T17:58:18.170356Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.372290Z", - "iopub.status.busy": "2024-01-16T18:26:39.371921Z", - "iopub.status.idle": "2024-01-16T18:26:39.375337Z", - "shell.execute_reply": "2024-01-16T18:26:39.374711Z" + "iopub.execute_input": "2024-01-17T17:58:18.173331Z", + "iopub.status.busy": "2024-01-17T17:58:18.172904Z", + "iopub.status.idle": "2024-01-17T17:58:18.176499Z", + "shell.execute_reply": "2024-01-17T17:58:18.175881Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.377705Z", - "iopub.status.busy": "2024-01-16T18:26:39.377329Z", - "iopub.status.idle": "2024-01-16T18:26:39.380543Z", - "shell.execute_reply": "2024-01-16T18:26:39.380000Z" + "iopub.execute_input": "2024-01-17T17:58:18.178843Z", + "iopub.status.busy": "2024-01-17T17:58:18.178637Z", + "iopub.status.idle": "2024-01-17T17:58:18.181882Z", + "shell.execute_reply": "2024-01-17T17:58:18.181359Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.382924Z", - "iopub.status.busy": "2024-01-16T18:26:39.382422Z", - "iopub.status.idle": "2024-01-16T18:26:39.390013Z", - "shell.execute_reply": "2024-01-16T18:26:39.389515Z" + "iopub.execute_input": "2024-01-17T17:58:18.184292Z", + "iopub.status.busy": "2024-01-17T17:58:18.183941Z", + "iopub.status.idle": "2024-01-17T17:58:18.191627Z", + "shell.execute_reply": "2024-01-17T17:58:18.191112Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.392353Z", - "iopub.status.busy": "2024-01-16T18:26:39.392147Z", - "iopub.status.idle": "2024-01-16T18:26:39.634627Z", - "shell.execute_reply": "2024-01-16T18:26:39.633997Z" + "iopub.execute_input": "2024-01-17T17:58:18.194271Z", + "iopub.status.busy": "2024-01-17T17:58:18.193907Z", + "iopub.status.idle": "2024-01-17T17:58:18.459352Z", + "shell.execute_reply": "2024-01-17T17:58:18.458616Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.637681Z", - "iopub.status.busy": "2024-01-16T18:26:39.637242Z", - "iopub.status.idle": "2024-01-16T18:26:39.914774Z", - "shell.execute_reply": "2024-01-16T18:26:39.914171Z" + "iopub.execute_input": "2024-01-17T17:58:18.463589Z", + "iopub.status.busy": "2024-01-17T17:58:18.462420Z", + "iopub.status.idle": "2024-01-17T17:58:18.740920Z", + "shell.execute_reply": "2024-01-17T17:58:18.740191Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.917765Z", - "iopub.status.busy": "2024-01-16T18:26:39.917338Z", - "iopub.status.idle": "2024-01-16T18:26:39.921453Z", - "shell.execute_reply": "2024-01-16T18:26:39.920861Z" + "iopub.execute_input": "2024-01-17T17:58:18.745764Z", + "iopub.status.busy": "2024-01-17T17:58:18.744581Z", + "iopub.status.idle": "2024-01-17T17:58:18.750295Z", + "shell.execute_reply": "2024-01-17T17:58:18.749695Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index d03f7c050..9243d7ad9 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:44.432822Z", - "iopub.status.busy": "2024-01-16T18:26:44.432609Z", - "iopub.status.idle": "2024-01-16T18:26:46.060279Z", - "shell.execute_reply": "2024-01-16T18:26:46.059587Z" + "iopub.execute_input": "2024-01-17T17:58:23.424165Z", + "iopub.status.busy": "2024-01-17T17:58:23.423975Z", + "iopub.status.idle": "2024-01-17T17:58:25.202201Z", + "shell.execute_reply": "2024-01-17T17:58:25.201433Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-16 18:26:44-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-17 17:58:23-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "143.244.50.91, 2400:52e0:1a01::899:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -122,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", "\r\n", - "2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +123,30 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-01-17 17:58:24-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.40.201, 52.217.104.68, 52.217.165.25, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.40.201|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-16 18:26:45-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.171.89, 52.216.37.153, 54.231.192.249, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.171.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,7 +167,15 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 67%[============> ] 10.93M 54.7MB/s " + "pred_probs.npz 1%[ ] 262.53K 1.15MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 27%[====> ] 4.51M 10.1MB/s " ] }, { @@ -182,9 +183,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s \r\n", + "pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s \r\n", "\r\n", - "2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -201,10 +203,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:46.062757Z", - "iopub.status.busy": "2024-01-16T18:26:46.062552Z", - "iopub.status.idle": "2024-01-16T18:26:47.073438Z", - "shell.execute_reply": "2024-01-16T18:26:47.072752Z" + "iopub.execute_input": "2024-01-17T17:58:25.205535Z", + "iopub.status.busy": "2024-01-17T17:58:25.205105Z", + "iopub.status.idle": "2024-01-17T17:58:26.262369Z", + "shell.execute_reply": "2024-01-17T17:58:26.261719Z" }, "nbsphinx": "hidden" }, @@ -215,7 +217,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -241,10 +243,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.076275Z", - "iopub.status.busy": "2024-01-16T18:26:47.075796Z", - "iopub.status.idle": "2024-01-16T18:26:47.079464Z", - "shell.execute_reply": "2024-01-16T18:26:47.078949Z" + "iopub.execute_input": "2024-01-17T17:58:26.265615Z", + "iopub.status.busy": "2024-01-17T17:58:26.265000Z", + "iopub.status.idle": "2024-01-17T17:58:26.268761Z", + "shell.execute_reply": "2024-01-17T17:58:26.268164Z" } }, "outputs": [], @@ -294,10 +296,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.081729Z", - "iopub.status.busy": "2024-01-16T18:26:47.081527Z", - "iopub.status.idle": "2024-01-16T18:26:47.084579Z", - "shell.execute_reply": "2024-01-16T18:26:47.084042Z" + "iopub.execute_input": "2024-01-17T17:58:26.271286Z", + "iopub.status.busy": "2024-01-17T17:58:26.270877Z", + "iopub.status.idle": "2024-01-17T17:58:26.274169Z", + "shell.execute_reply": "2024-01-17T17:58:26.273608Z" }, "nbsphinx": "hidden" }, @@ -315,10 +317,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:47.086724Z", - "iopub.status.busy": "2024-01-16T18:26:47.086524Z", - "iopub.status.idle": "2024-01-16T18:26:54.928199Z", - "shell.execute_reply": "2024-01-16T18:26:54.927577Z" + "iopub.execute_input": "2024-01-17T17:58:26.276506Z", + "iopub.status.busy": "2024-01-17T17:58:26.276193Z", + "iopub.status.idle": "2024-01-17T17:58:34.303876Z", + "shell.execute_reply": "2024-01-17T17:58:34.303255Z" } }, "outputs": [], @@ -392,10 +394,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:54.931044Z", - "iopub.status.busy": "2024-01-16T18:26:54.930670Z", - "iopub.status.idle": "2024-01-16T18:26:54.936757Z", - "shell.execute_reply": "2024-01-16T18:26:54.936221Z" + "iopub.execute_input": "2024-01-17T17:58:34.306724Z", + "iopub.status.busy": "2024-01-17T17:58:34.306333Z", + "iopub.status.idle": "2024-01-17T17:58:34.312260Z", + "shell.execute_reply": "2024-01-17T17:58:34.311721Z" }, "nbsphinx": "hidden" }, @@ -435,10 +437,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:54.938947Z", - "iopub.status.busy": "2024-01-16T18:26:54.938584Z", - "iopub.status.idle": "2024-01-16T18:26:55.375633Z", - "shell.execute_reply": "2024-01-16T18:26:55.374948Z" + "iopub.execute_input": "2024-01-17T17:58:34.314518Z", + "iopub.status.busy": "2024-01-17T17:58:34.314319Z", + "iopub.status.idle": "2024-01-17T17:58:34.744940Z", + "shell.execute_reply": "2024-01-17T17:58:34.744292Z" } }, "outputs": [], @@ -475,10 +477,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:55.378776Z", - "iopub.status.busy": "2024-01-16T18:26:55.378226Z", - "iopub.status.idle": "2024-01-16T18:26:55.384946Z", - "shell.execute_reply": "2024-01-16T18:26:55.384227Z" + "iopub.execute_input": "2024-01-17T17:58:34.747755Z", + "iopub.status.busy": "2024-01-17T17:58:34.747534Z", + "iopub.status.idle": "2024-01-17T17:58:34.753183Z", + "shell.execute_reply": "2024-01-17T17:58:34.752676Z" } }, "outputs": [ @@ -550,10 +552,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:55.387617Z", - "iopub.status.busy": "2024-01-16T18:26:55.387265Z", - "iopub.status.idle": "2024-01-16T18:26:57.330447Z", - "shell.execute_reply": "2024-01-16T18:26:57.329532Z" + "iopub.execute_input": "2024-01-17T17:58:34.755736Z", + "iopub.status.busy": "2024-01-17T17:58:34.755375Z", + "iopub.status.idle": "2024-01-17T17:58:36.724878Z", + "shell.execute_reply": "2024-01-17T17:58:36.723947Z" } }, "outputs": [], @@ -575,10 +577,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.334192Z", - "iopub.status.busy": "2024-01-16T18:26:57.333377Z", - "iopub.status.idle": "2024-01-16T18:26:57.340257Z", - "shell.execute_reply": "2024-01-16T18:26:57.339626Z" + "iopub.execute_input": "2024-01-17T17:58:36.730399Z", + "iopub.status.busy": "2024-01-17T17:58:36.727865Z", + "iopub.status.idle": "2024-01-17T17:58:36.735089Z", + "shell.execute_reply": "2024-01-17T17:58:36.734419Z" } }, "outputs": [ @@ -614,10 +616,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.342851Z", - "iopub.status.busy": "2024-01-16T18:26:57.342436Z", - "iopub.status.idle": "2024-01-16T18:26:57.360032Z", - "shell.execute_reply": "2024-01-16T18:26:57.359548Z" + "iopub.execute_input": "2024-01-17T17:58:36.737747Z", + "iopub.status.busy": "2024-01-17T17:58:36.737272Z", + "iopub.status.idle": "2024-01-17T17:58:36.761752Z", + "shell.execute_reply": "2024-01-17T17:58:36.761145Z" } }, "outputs": [ @@ -795,10 +797,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.362505Z", - "iopub.status.busy": "2024-01-16T18:26:57.362141Z", - "iopub.status.idle": "2024-01-16T18:26:57.393875Z", - "shell.execute_reply": "2024-01-16T18:26:57.393317Z" + "iopub.execute_input": "2024-01-17T17:58:36.764355Z", + "iopub.status.busy": "2024-01-17T17:58:36.764016Z", + "iopub.status.idle": "2024-01-17T17:58:36.799290Z", + "shell.execute_reply": "2024-01-17T17:58:36.798797Z" } }, "outputs": [ @@ -900,10 +902,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.396419Z", - "iopub.status.busy": "2024-01-16T18:26:57.396040Z", - "iopub.status.idle": "2024-01-16T18:26:57.404752Z", - "shell.execute_reply": "2024-01-16T18:26:57.404255Z" + "iopub.execute_input": "2024-01-17T17:58:36.801809Z", + "iopub.status.busy": "2024-01-17T17:58:36.801371Z", + "iopub.status.idle": "2024-01-17T17:58:36.809794Z", + "shell.execute_reply": "2024-01-17T17:58:36.809297Z" } }, "outputs": [ @@ -977,10 +979,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:57.406914Z", - "iopub.status.busy": "2024-01-16T18:26:57.406703Z", - "iopub.status.idle": "2024-01-16T18:26:59.250819Z", - "shell.execute_reply": "2024-01-16T18:26:59.250197Z" + "iopub.execute_input": "2024-01-17T17:58:36.812236Z", + "iopub.status.busy": "2024-01-17T17:58:36.811808Z", + "iopub.status.idle": "2024-01-17T17:58:38.694852Z", + "shell.execute_reply": "2024-01-17T17:58:38.694278Z" } }, "outputs": [ @@ -1152,10 +1154,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:59.253304Z", - "iopub.status.busy": "2024-01-16T18:26:59.253057Z", - "iopub.status.idle": "2024-01-16T18:26:59.257459Z", - "shell.execute_reply": "2024-01-16T18:26:59.256934Z" + "iopub.execute_input": "2024-01-17T17:58:38.697532Z", + "iopub.status.busy": "2024-01-17T17:58:38.697105Z", + "iopub.status.idle": "2024-01-17T17:58:38.701595Z", + "shell.execute_reply": "2024-01-17T17:58:38.701051Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials_outliers_27_0.png b/master/.doctrees/nbsphinx/tutorials_outliers_27_0.png index 0126e1b3d..dd321e898 100644 Binary files a/master/.doctrees/nbsphinx/tutorials_outliers_27_0.png and b/master/.doctrees/nbsphinx/tutorials_outliers_27_0.png differ diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 66cc9f902..e4d0549ed 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index c61e5e4da..2375b3304 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 7c9f094b7..7823d9d65 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 6759248eb..9bc0c6b57 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 17f67e3b6..ed136eab5 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 173c79507..c1523856b 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index c6e3df1a9..fa93a8fa2 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 42728f1c0..42a8504d3 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index e75459f00..27d287a73 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 0723b6a56..c718b285f 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 5cec86d61..74eb1b693 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 940af94c2..3424f7ea1 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index e39431a4f..0fa753ca6 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index f2cae6470..541317bab 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index b884d9a46..e623d3c10 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 446a856df..9f0ea2b9e 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 0b862add2..359c2ff89 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index d03f5fd11..a7f6ec87a 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index f818b76a2..c1bccca17 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index f5fead771..3f344a1b3 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index f09c1ea0a..cdc435d77 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_images/tutorials_outliers_27_0.png b/master/_images/tutorials_outliers_27_0.png index 0126e1b3d..dd321e898 100644 Binary files a/master/_images/tutorials_outliers_27_0.png and b/master/_images/tutorials_outliers_27_0.png differ diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html index 2b979bafd..f621c2810 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html @@ -631,7 +631,11 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

t = cast(int, self.ood.params["t"]) distances = knn_graph.data.reshape(-1, k) assert isinstance(distances, np.ndarray) - scores = transform_distances_to_scores(distances, k=k, t=t) + avg_distances = distances.mean(axis=1) + median_avg_distance = np.median(avg_distances) + scores = transform_distances_to_scores( + avg_distances, t=t, scaling_factor=median_avg_distance + ) elif features is not None: scores = self._score_with_features(features, **kwargs) elif pred_probs is not None: diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html index f63538245..d2c24c2dd 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html @@ -571,7 +571,7 @@

Source code for cleanlab.datalab.internal.issue_manager.regression.label

The threshold to use to determine if an example has a label issue. It is a multiplier of the median label quality score that sets the absolute threshold. Only used if predictions are provided to `~RegressionLabelIssueManager.find_issues`, not if - features are provided. Default is 0.1. + features are provided. Default is 0.05. """ description: ClassVar[ @@ -592,7 +592,7 @@

Source code for cleanlab.datalab.internal.issue_manager.regression.label

self, datalab: Datalab, clean_learning_kwargs: Optional[Dict[str, Any]] = None, - threshold: float = 0.1, + threshold: float = 0.05, health_summary_parameters: Optional[Dict[str, Any]] = None, **_, ): diff --git a/master/_modules/cleanlab/internal/outlier.html b/master/_modules/cleanlab/internal/outlier.html index fcabdbf9f..b2c5dbdbb 100644 --- a/master/_modules/cleanlab/internal/outlier.html +++ b/master/_modules/cleanlab/internal/outlier.html @@ -549,7 +549,9 @@

Source code for cleanlab.internal.outlier

 import numpy as np
 
 
-
[docs]def transform_distances_to_scores(distances: np.ndarray, k: int, t: int) -> np.ndarray: +
[docs]def transform_distances_to_scores( + avg_distances: np.ndarray, t: int, scaling_factor: float +) -> np.ndarray: """Returns an outlier score for each example based on its average distance to its k nearest neighbors. The transformation of a distance, :math:`d` , to a score, :math:`o` , is based on the following formula: @@ -561,18 +563,21 @@

Source code for cleanlab.internal.outlier

 
     Parameters
     ----------
-    distances : np.ndarray
-        An array of distances of shape ``(N, num_neighbors)``, where N is the number of examples.
-        Each row contains the distances to each example's `num_neighbors` nearest neighbors.
-        It is assumed that each row is sorted in ascending order.
-
-    k : int
-        Number of neighbors used to compute the average distance to each example.
-        This assumes that the second dimension of distances is k or greater, but it
-        uses slicing to avoid indexing errors.
+    avg_distances : np.ndarray
+        An array of distances of shape ``(N)``, where N is the number of examples.
+        Each entry represents an example's average distance to its k nearest neighbors.
 
     t : int
-        Controls transformation of distances between examples into similarity scores that lie in [0,1].
+        A sensitivity parameter that modulates the strength of the transformation from distances to scores.
+        Higher values of `t` result in more pronounced differentiation between the scores of examples
+        lying in the range [0,1].
+
+    scaling_factor : float
+        A scaling factor used to normalize the distances before they are converted into scores. A valid
+        scaling factor is any positive number. The choice of scaling factor should be based on the
+        distribution of distances between neighboring examples. A good rule of thumb is to set the
+        scaling factor to the median distance between neighboring examples. A lower scaling factor
+        results in more pronounced differentiation between the scores of examples lying in the range [0,1].
 
     Returns
     -------
@@ -585,14 +590,12 @@ 

Source code for cleanlab.internal.outlier

     >>> from cleanlab.outlier import transform_distances_to_scores
     >>> distances = np.array([[0.0, 0.1, 0.25],
     ...                       [0.15, 0.2, 0.3]])
-    >>> transform_distances_to_scores(distances, k=2, t=1)
-    array([0.95122942, 0.83945702])
+    >>> avg_distances = np.mean(distances, axis=1)
+    >>> transform_distances_to_scores(avg_distances, t=1, scaling_factor=1)
+    array([0.88988177, 0.80519832])
     """
-    # Calculate average distance to k-nearest neighbors
-    avg_knn_distances = distances[:, :k].mean(axis=1)
-
     # Map ood_features_scores to range 0-1 with 0 = most concerning
-    ood_features_scores: np.ndarray = np.exp(-1 * avg_knn_distances * t)
+    ood_features_scores: np.ndarray = np.exp(-1 * avg_distances / scaling_factor * t)
     return ood_features_scores
diff --git a/master/_modules/cleanlab/outlier.html b/master/_modules/cleanlab/outlier.html index 87f2ab850..f7b9c173b 100644 --- a/master/_modules/cleanlab/outlier.html +++ b/master/_modules/cleanlab/outlier.html @@ -553,7 +553,7 @@

Source code for cleanlab.outlier

 from cleanlab.count import get_confident_thresholds
 from sklearn.neighbors import NearestNeighbors
 from sklearn.exceptions import NotFittedError
-from typing import Optional, Union, Tuple, Dict, cast
+from typing import Optional, Union, Tuple, Dict
 from cleanlab.internal.label_quality_utils import (
     _subtract_confident_thresholds,
     get_normalized_entropy,
@@ -647,6 +647,9 @@ 

Source code for cleanlab.outlier

                 "To use GEN, we recommend setting: params['adjust_pred_probs'] = False"
             )
 
+        # scaling_factor internally used to rescale distances based on mean distances to k nearest neighbors
+        self.params["scaling_factor"] = None
+
 
[docs] def fit_score( self, *, @@ -794,7 +797,9 @@

Source code for cleanlab.outlier

                 raise ValueError(
                     "OOD estimator needs to be fit on features first. Call `fit()` or `fit_scores()` before this function."
                 )
-            scores, _ = _get_ood_features_scores(features, **self._get_params(self.OUTLIER_PARAMS))
+            scores, _ = self._get_ood_features_scores(
+                features, **self._get_params(self.OUTLIER_PARAMS)
+            )
 
         if pred_probs is not None:
             if self.params["confident_thresholds"] is None and self.params["adjust_pred_probs"]:
@@ -866,7 +871,7 @@ 

Source code for cleanlab.outlier

                 # Get ood features scores
                 if verbose:
                     print("Fitting OOD estimator based on provided features ...")
-                scores, knn = _get_ood_features_scores(
+                scores, knn = self._get_ood_features_scores(
                     features, **self._get_params(self.OUTLIER_PARAMS)
                 )
                 self.params["knn"] = knn
@@ -895,91 +900,105 @@ 

Source code for cleanlab.outlier

                     )
                 else:
                     self.params["confident_thresholds"] = confident_thresholds
-        return scores
+ return scores + def _get_ood_features_scores( + self, + features: Optional[np.ndarray] = None, + knn: Optional[NearestNeighbors] = None, + k: Optional[int] = None, + t: int = 1, + ) -> Tuple[np.ndarray, Optional[NearestNeighbors]]: + """ + Return outlier score based on feature values using `k` nearest neighbors. -def _get_ood_features_scores( - features: Optional[np.ndarray] = None, - knn: Optional[NearestNeighbors] = None, - k: Optional[int] = None, - t: int = 1, -) -> Tuple[np.ndarray, Optional[NearestNeighbors]]: - """ - Return outlier score based on feature values using `k` nearest neighbors. + The outlier score for each example is computed inversely proportional to + the average distance between this example and its K nearest neighbors (in feature space). + + Parameters + ---------- + features : np.ndarray + Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. + For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. - The outlier score for each example is computed inversely proportional to - the average distance between this example and its K nearest neighbors (in feature space). + knn : sklearn.neighbors.NearestNeighbors, default = None + For details, see key `knn` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. - Parameters - ---------- - features : np.ndarray - Feature array of shape ``(N, M)``, where N is the number of examples and M is the number of features used to represent each example. - For details, `features` in the same format expected by the `~cleanlab.outlier.OutOfDistribution.fit` function. + k : int, default=None + Optional number of neighbors to use when calculating outlier score (average distance to neighbors). + For details, see key `k` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + t : int, default=1 + Controls transformation of distances between examples into similarity scores that lie in [0,1]. + For details, see key `t` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + + Returns + ------- + ood_features_scores : Tuple[np.ndarray, Optional[NearestNeighbors]] + Return a tuple whose first element is array of `ood_features_scores` and second is a `knn` Estimator object. + """ + DEFAULT_K = 10 + # fit skip over (if knn is not None) then skipping fit and suggest score else fit. + if knn is None: # setup default KNN estimator + # Make sure both knn and features are not None + if features is None: + raise ValueError( + "Both knn and features arguments cannot be None at the same time. Not enough information to compute outlier scores." + ) + if k is None: + k = DEFAULT_K # use default when knn and k are both None + if k > len(features): # Ensure number of neighbors less than number of examples + raise ValueError( + f"Number of nearest neighbors k={k} cannot exceed the number of examples N={len(features)} passed into the estimator (knn)." + ) - knn : sklearn.neighbors.NearestNeighbors, default = None - For details, see key `knn` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + if features.shape[1] > 3: # use euclidean distance for lower dimensional spaces + metric = "cosine" + else: + metric = "euclidean" - k : int, default=None - Optional number of neighbors to use when calculating outlier score (average distance to neighbors). - For details, see key `k` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + knn = NearestNeighbors(n_neighbors=k, metric=metric).fit(features) + features = None # features should be None in knn.kneighbors(features) to avoid counting duplicate data points - t : int, default=1 - Controls transformation of distances between examples into similarity scores that lie in [0,1]. - For details, see key `t` in the params dict arg of `~cleanlab.outlier.OutOfDistribution`. + elif k is None: + k = knn.n_neighbors - Returns - ------- - ood_features_scores : Tuple[np.ndarray, Optional[NearestNeighbors]] - Return a tuple whose first element is array of `ood_features_scores` and second is a `knn` Estimator object. - """ - DEFAULT_K = 10 - # fit skip over (if knn is not None) then skipping fit and suggest score else fit. - if knn is None: # setup default KNN estimator - # Make sure both knn and features are not None - if features is None: - raise ValueError( - "Both knn and features arguments cannot be None at the same time. Not enough information to compute outlier scores." - ) - if k is None: - k = DEFAULT_K # use default when knn and k are both None - if k > len(features): # Ensure number of neighbors less than number of examples - raise ValueError( - f"Number of nearest neighbors k={k} cannot exceed the number of examples N={len(features)} passed into the estimator (knn)." + max_k = knn.n_neighbors # number of neighbors previously used in NearestNeighbors object + if k > max_k: # if k provided is too high, use max possible number of nearest neighbors + warnings.warn( + f"Chosen k={k} cannot be greater than n_neighbors={max_k} which was used when fitting " + f"NearestNeighbors object! Value of k changed to k={max_k}.", + UserWarning, ) + k = max_k - if features.shape[1] > 3: # use euclidean distance for lower dimensional spaces - metric = "cosine" - else: - metric = "euclidean" + # Fit knn estimator on the features if a non-fitted estimator is passed in + try: + knn.kneighbors(features) + except NotFittedError: + knn.fit(features) - knn = NearestNeighbors(n_neighbors=k, metric=metric).fit(features) - features = None # features should be None in knn.kneighbors(features) to avoid counting duplicate data points + # Get distances to k-nearest neighbors Note that the knn object contains the specification of distance metric + # and n_neighbors (k value) If our query set of features matches the training set used to fit knn, the nearest + # neighbor of each point is the point itself, at a distance of zero. + distances, _ = knn.kneighbors(features) - elif k is None: - k = knn.n_neighbors + # Calculate average distance to k-nearest neighbors + avg_knn_distances = distances[:, :k].mean(axis=1) - max_k = knn.n_neighbors # number of neighbors previously used in NearestNeighbors object - if k > max_k: # if k provided is too high, use max possible number of nearest neighbors - warnings.warn( - f"Chosen k={k} cannot be greater than n_neighbors={max_k} which was used when fitting " - f"NearestNeighbors object! Value of k changed to k={max_k}.", - UserWarning, - ) - k = max_k - - # Fit knn estimator on the features if a non-fitted estimator is passed in - try: - knn.kneighbors(features) - except NotFittedError: - knn.fit(features) + if self.params["scaling_factor"] is None: + self.params["scaling_factor"] = float( + max(np.median(avg_knn_distances), np.finfo(np.float_).eps) + ) + scaling_factor = self.params["scaling_factor"] - # Get distances to k-nearest neighbors Note that the knn object contains the specification of distance metric - # and n_neighbors (k value) If our query set of features matches the training set used to fit knn, the nearest - # neighbor of each point is the point itself, at a distance of zero. - distances, _ = knn.kneighbors(features) + if not isinstance(scaling_factor, float): + raise ValueError(f"Scaling factor must be a float. Got {type(scaling_factor)} instead.") - ood_features_scores = transform_distances_to_scores(distances, cast(int, k), t) - return (ood_features_scores, knn) + ood_features_scores = transform_distances_to_scores( + avg_knn_distances, t, scaling_factor=scaling_factor + ) + return (ood_features_scores, knn)
def _get_ood_predictions_scores( diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index da4542e3a..2eb342976 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index bb260a1e0..bd3697463 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 7fbdb32c2..0c3232f18 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index dbc38e061..989cec61c 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index d762ff0da..ce28950a0 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index b2513a371..bafc9e946 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index b81792575..eee237852 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index b7aca282e..1b283de34 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 242a117c9..6bdea6099 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 83fdf58e6..ef555678c 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 3c063110d..c96e28c2d 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 541d150ac..b3ce7ebb7 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 7efa15b5d..a311334a3 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index f1f1bde5d..43c76fc4f 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index d1a4e7132..6990c53c6 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 6227bed63..5d6122eee 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/cleanlab/datalab/internal/issue_manager/regression/label.html index d4f3a761d..83e97bddf 100644 --- a/master/cleanlab/datalab/internal/issue_manager/regression/label.html +++ b/master/cleanlab/datalab/internal/issue_manager/regression/label.html @@ -561,7 +561,7 @@
-class cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager(datalab, clean_learning_kwargs=None, threshold=0.1, health_summary_parameters=None, **_)[source]#
+class cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager(datalab, clean_learning_kwargs=None, threshold=0.05, health_summary_parameters=None, **_)[source]#

Bases: IssueManager

Manages label issues in a Datalab for regression tasks.

@@ -572,7 +572,7 @@
  • threshold (float) – The threshold to use to determine if an example has a label issue. It is a multiplier of the median label quality score that sets the absolute threshold. Only used if predictions are provided to find_issues, not if -features are provided. Default is 0.1.

  • +features are provided. Default is 0.05.

    diff --git a/master/cleanlab/internal/outlier.html b/master/cleanlab/internal/outlier.html index 587501cff..d1caf8416 100644 --- a/master/cleanlab/internal/outlier.html +++ b/master/cleanlab/internal/outlier.html @@ -541,7 +541,7 @@
    - + @@ -549,7 +549,7 @@
    -cleanlab.internal.outlier.transform_distances_to_scores(distances, k, t)[source]#
    +cleanlab.internal.outlier.transform_distances_to_scores(avg_distances, t, scaling_factor)[source]#

    Returns an outlier score for each example based on its average distance to its k nearest neighbors.

    The transformation of a distance, dd , to a score, oo , is based on the following formula:

    @@ -561,13 +561,16 @@
    Parameters:
      -
    • distances (np.ndarray) – An array of distances of shape (N, num_neighbors), where N is the number of examples. -Each row contains the distances to each example’s num_neighbors nearest neighbors. -It is assumed that each row is sorted in ascending order.

    • -
    • k (int) – Number of neighbors used to compute the average distance to each example. -This assumes that the second dimension of distances is k or greater, but it -uses slicing to avoid indexing errors.

    • -
    • t (int) – Controls transformation of distances between examples into similarity scores that lie in [0,1].

    • +
    • avg_distances (np.ndarray) – An array of distances of shape (N), where N is the number of examples. +Each entry represents an example’s average distance to its k nearest neighbors.

    • +
    • t (int) – A sensitivity parameter that modulates the strength of the transformation from distances to scores. +Higher values of t result in more pronounced differentiation between the scores of examples +lying in the range [0,1].

    • +
    • scaling_factor (float) – A scaling factor used to normalize the distances before they are converted into scores. A valid +scaling factor is any positive number. The choice of scaling factor should be based on the +distribution of distances between neighboring examples. A good rule of thumb is to set the +scaling factor to the median distance between neighboring examples. A lower scaling factor +results in more pronounced differentiation between the scores of examples lying in the range [0,1].

    Return type:
    @@ -582,8 +585,9 @@ >>> from cleanlab.outlier import transform_distances_to_scores >>> distances = np.array([[0.0, 0.1, 0.25], ... [0.15, 0.2, 0.3]]) ->>> transform_distances_to_scores(distances, k=2, t=1) -array([0.95122942, 0.83945702]) +>>> avg_distances = np.mean(distances, axis=1) +>>> transform_distances_to_scores(avg_distances, t=1, scaling_factor=1) +array([0.88988177, 0.80519832])
    diff --git a/master/searchindex.js b/master/searchindex.js index b4a7610ff..074cf863d 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 81, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 81, 86, 89, 90, 93], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89, 90], "02": [69, 74, 75, 82, 86, 89, 90], "03": [69, 79, 81, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90, 93], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92, 93], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86, 90, 93], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90, 93], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90, 93], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90, 93], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91, 93], "78": [77, 79, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 81, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": [77, 93], "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90, 93], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "getting_spare_card": [78, 92], "supported_cards_and_curr": [78, 92], "card_payment_fee_charg": [78, 92], "apple_pay_or_google_pai": [78, 92], "beneficiary_not_allow": [78, 92], "visa_or_mastercard": [78, 92], "change_pin": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90, 93], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 81, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "688": [81, 89], "331": 81, "310": 81, "468": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "74it": [81, 90], "17it": [81, 90], "88it": [81, 90], "64it": [81, 90], "81it": [81, 90], "27it": [81, 90], "25it": [81, 90], "91it": [81, 90], "86it": [81, 90], "58it": [81, 90], "10it": [81, 90], "59it": [81, 90], "03it": [81, 90], "492": 81, "085": 81, "639": 81, "290": [81, 86], "725": 81, "09it": [81, 90], "34it": [81, 90], "43it": [81, 90], "62": [81, 82, 86, 89, 90], "69": [81, 82, 89, 90], "66it": 81, "52it": [81, 90], "11it": [81, 90], "51it": [81, 90], "04it": [81, 90], "71it": [81, 90], "63": [81, 82, 86, 90], "77it": [81, 90], "476": 81, "305": [81, 89], "694": 81, "328": [81, 86], "335": 81, "370": 81, "57it": [81, 90], "87it": 81, "18it": 81, "05it": [81, 90], "85it": 81, "21it": 81, "90it": 81, "99it": [81, 90], "73it": 81, "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86, 93], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": [85, 93], "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": [86, 93], "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "85": [86, 89, 90], "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": [86, 93], "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": [86, 93], "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17227": 90, "172261": 90, "13it": 90, "34703": 90, "173727": 90, "46it": 90, "52282": 90, "174665": 90, "69970": 90, "175535": 90, "12it": 90, "87524": 90, "175529": 90, "105077": 90, "175335": 90, "122611": 90, "174923": 90, "23it": 90, "140205": 90, "175243": 90, "63it": 90, "157878": 90, "175706": 90, "48it": 90, "175449": 90, "175694": 90, "70it": 90, "193036": 90, "175746": 90, "44it": 90, "210795": 90, "176303": 90, "228426": 90, "175557": 90, "75it": 90, "246018": 90, "175663": 90, "84it": 90, "263843": 90, "176438": 90, "281488": 90, "172253": 90, "76it": 90, "299179": 90, "173624": 90, "94it": 90, "316949": 90, "174831": 90, "53it": 90, "334447": 90, "174672": 90, "352070": 90, "175096": 90, "369727": 90, "175534": 90, "32it": 90, "387433": 90, "175988": 90, "24it": 90, "405082": 90, "176134": 90, "422783": 90, "176395": 90, "440425": 90, "176241": 90, "72it": 90, "458051": 90, "175933": 90, "35it": 90, "475646": 90, "175259": 90, "61it": 90, "493283": 90, "175589": 90, "510968": 90, "175964": 90, "15it": 90, "528791": 90, "176639": 90, "546506": 90, "176790": 90, "564262": 90, "177017": 90, "54it": 90, "581997": 90, "177113": 90, "599709": 90, "176690": 90, "617412": 90, "176780": 90, "08it": 90, "635091": 90, "176406": 90, "02it": 90, "652732": 90, "176237": 90, "39it": 90, "670432": 90, "176462": 90, "89it": 90, "688079": 90, "176157": 90, "92it": 90, "705696": 90, "723242": 90, "174539": 90, "740698": 90, "173584": 90, "50it": 90, "758058": 90, "172795": 90, "80it": 90, "775339": 90, "172581": 90, "792598": 90, "172165": 90, "33it": 90, "809815": 90, "167297": 90, "60it": 90, "826573": 90, "167371": 90, "843744": 90, "168646": 90, "95it": 90, "860832": 90, "169304": 90, "877949": 90, "169856": 90, "65it": 90, "895277": 90, "170874": 90, "912949": 90, "172617": 90, "930539": 90, "173597": 90, "948067": 90, "174098": 90, "965686": 90, "174723": 90, "983278": 90, "175080": 90, "1000897": 90, "175408": 90, "1018439": 90, "175241": 90, "1036049": 90, "175496": 90, "1053831": 90, "176189": 90, "1071488": 90, "176301": 90, "1089119": 90, "175824": 90, "1106702": 90, "174838": 90, "49it": 90, "1124188": 90, "174259": 90, "1141616": 90, "173489": 90, "1158967": 90, "172906": 90, "1176259": 90, "172319": 90, "26it": 90, "1193492": 90, "171945": 90, "1210687": 90, "171277": 90, "1227816": 90, "171196": 90, "20it": 90, "1244936": 90, "171105": 90, "1262047": 90, "170697": 90, "29it": 90, "1279117": 90, "170235": 90, "82it": 90, "1296263": 90, "170598": 90, "1313567": 90, "171324": 90, "1330723": 90, "171391": 90, "1347863": 90, "168404": 90, "1365176": 90, "169800": 90, "1382365": 90, "170417": 90, "67it": 90, "1399553": 90, "170850": 90, "68it": 90, "1416796": 90, "171320": 90, "1433996": 90, "171521": 90, "1451152": 90, "171331": 90, "1468432": 90, "171767": 90, "1485688": 90, "172001": 90, "1503044": 90, "172465": 90, "1520292": 90, "171469": 90, "1537441": 90, "170907": 90, "00it": 90, "1554534": 90, "170541": 90, "1571590": 90, "170339": 90, "93it": 90, "1588625": 90, "169900": 90, "1605616": 90, "169307": 90, "1622548": 90, "168907": 90, "07it": 90, "1639440": 90, "168734": 90, "37it": 90, "1656314": 90, "168681": 90, "1673231": 90, "168826": 90, "1690397": 90, "169670": 90, "1707619": 90, "170432": 90, "1724810": 90, "170872": 90, "1741898": 90, "169922": 90, "1759282": 90, "171088": 90, "55it": 90, "1776615": 90, "171754": 90, "1793792": 90, "171733": 90, "69it": 90, "1810967": 90, "171725": 90, "14it": 90, "1828180": 90, "171842": 90, "1845365": 90, "171576": 90, "1862524": 90, "171564": 90, "1879748": 90, "171764": 90, "1896925": 90, "171455": 90, "38it": 90, "1914071": 90, "170925": 90, "1931228": 90, "171116": 90, "1948457": 90, "171464": 90, "1965604": 90, "171453": 90, "1982888": 90, "171865": 90, "2000075": 90, "171498": 90, "2017226": 90, "171401": 90, "2034367": 90, "171212": 90, "2051645": 90, "171672": 90, "83it": 90, "2068813": 90, "2085940": 90, "171194": 90, "2103060": 90, "169427": 90, "2120062": 90, "169600": 90, "2137025": 90, "169395": 90, "2153986": 90, "169450": 90, "28it": 90, "2170933": 90, "169371": 90, "2187950": 90, "169607": 90, "2204912": 90, "169591": 90, "2221872": 90, "167874": 90, "22it": 90, "2238890": 90, "168557": 90, "2256070": 90, "169521": 90, "2273059": 90, "169630": 90, "06it": 90, "2290025": 90, "169632": 90, "41it": 90, "2306990": 90, "169380": 90, "56it": 90, "2323974": 90, "169516": 90, "2341059": 90, "169914": 90, "2358052": 90, "169901": 90, "2375202": 90, "170379": 90, "01it": 90, "2392545": 90, "171290": 90, "2409675": 90, "171147": 90, "2426790": 90, "2444017": 90, "171458": 90, "2461163": 90, "170917": 90, "16it": 90, "2478345": 90, "171185": 90, "2495499": 90, "171288": 90, "78it": 90, "2512640": 90, "171322": 90, "2529773": 90, "170953": 90, "2546869": 90, "170562": 90, "42it": 90, "2563926": 90, "169908": 90, "2580918": 90, "169746": 90, "2597996": 90, "170051": 90, "2615002": 90, "169855": 90, "2632128": 90, "170269": 90, "62it": 90, "2649156": 90, "170088": 90, "47it": 90, "2666166": 90, "169650": 90, "2683173": 90, "169768": 90, "2700185": 90, "169871": 90, "2717178": 90, "169887": 90, "2734208": 90, "170006": 90, "2751209": 90, "169981": 90, "31it": 90, "2768208": 90, "168785": 90, "2785217": 90, "169172": 90, "2802337": 90, "169774": 90, "2819316": 90, "169776": 90, "2836421": 90, "170154": 90, "2853651": 90, "170795": 90, "2870736": 90, "170809": 90, "2887966": 90, "171253": 90, "2905092": 90, "171058": 90, "2922263": 90, "171250": 90, "2939389": 90, "170364": 90, "2956427": 90, "170163": 90, "2973849": 90, "171369": 90, "36it": 90, "2991462": 90, "172790": 90, "3009055": 90, "173726": 90, "3026643": 90, "174369": 90, "3044244": 90, "174858": 90, "3061813": 90, "175106": 90, "3079434": 90, "175436": 90, "3096978": 90, "175341": 90, "3114513": 90, "175339": 90, "3132089": 90, "175462": 90, "3149636": 90, "175116": 90, "3167148": 90, "175088": 90, "40it": 90, "3184657": 90, "174556": 90, "3202114": 90, "167141": 90, "3218894": 90, "166499": 90, "3236163": 90, "168306": 90, "3253662": 90, "170273": 90, "3270719": 90, "166844": 90, "3288092": 90, "168858": 90, "3305515": 90, "170439": 90, "3322809": 90, "171178": 90, "3340252": 90, "172143": 90, "3357797": 90, "173127": 90, "3375264": 90, "173586": 90, "3392782": 90, "174059": 90, "3410247": 90, "174234": 90, "3427795": 90, "174606": 90, "3445258": 90, "174056": 90, "3462712": 90, "174197": 90, "3480251": 90, "174552": 90, "3497817": 90, "174883": 90, "3515418": 90, "175219": 90, "3533145": 90, "175830": 90, "3550906": 90, "176361": 90, "3568701": 90, "176834": 90, "3586425": 90, "176954": 90, "3604121": 90, "176702": 90, "3621792": 90, "171973": 90, "3639150": 90, "172442": 90, "3656834": 90, "173741": 90, "3674292": 90, "173987": 90, "3691779": 90, "174249": 90, "19it": 90, "3709394": 90, "174814": 90, "3726970": 90, "175095": 90, "3744682": 90, "175697": 90, "3762372": 90, "176053": 90, "3780045": 90, "176253": 90, "3797684": 90, "176289": 90, "3815315": 90, "176195": 90, "3832943": 90, "176217": 90, "3850566": 90, "175984": 90, "3868280": 90, "176328": 90, "3886009": 90, "176615": 90, "3903735": 90, "176805": 90, "3921416": 90, "175913": 90, "3939009": 90, "174464": 90, "3956739": 90, "175304": 90, "3974273": 90, "45it": 90, "3991801": 90, "174954": 90, "4009353": 90, "175121": 90, "4026867": 90, "173265": 90, "4044247": 90, "173420": 90, "4061622": 90, "173517": 90, "4079152": 90, "174046": 90, "4096676": 90, "174400": 90, "4114202": 90, "174655": 90, "4131750": 90, "174901": 90, "4149241": 90, "172736": 90, "4166522": 90, "167352": 90, "4183511": 90, "168090": 90, "30it": 90, "4201097": 90, "170371": 90, "4218582": 90, "171693": 90, "4236156": 90, "172891": 90, "4253460": 90, "172756": 90, "4270930": 90, "173335": 90, "4288392": 90, "173716": 90, "4305769": 90, "173286": 90, "4323150": 90, "173442": 90, "4340497": 90, "173133": 90, "4358001": 90, "173700": 90, "4375373": 90, "173619": 90, "4392737": 90, "172930": 90, "4410032": 90, "172793": 90, "4427313": 90, "172447": 90, "4444714": 90, "172910": 90, "97it": 90, "4462212": 90, "173527": 90, "4479712": 90, "173964": 90, "4497109": 90, "172926": 90, "4514404": 90, "168027": 90, "4531883": 90, "170005": 90, "4549078": 90, "170578": 90, "4566538": 90, "4583847": 90, "172156": 90, "4601242": 90, "172687": 90, "4618677": 90, "173181": 90, "4636001": 90, "173057": 90, "4653311": 90, "172889": 90, "4670603": 90, "172892": 90, "4687895": 90, "172059": 90, "4705138": 90, "172168": 90, "4722357": 90, "4739590": 90, "171879": 90, "4756780": 90, "171884": 90, "4773970": 90, "171743": 90, "4791145": 90, "170215": 90, "4808227": 90, "170394": 90, "4825269": 90, "169999": 90, "4842271": 90, "169551": 90, "4859563": 90, "170553": 90, "4876843": 90, "171222": 90, "4894141": 90, "171745": 90, "4911343": 90, "171822": 90, "79it": 90, "4928558": 90, "171916": 90, "4945889": 90, "172332": 90, "4963255": 90, "172726": 90, "4980547": 90, "172781": 90, "172510": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "55mb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "93m": 93, "7mb": 93, "26m": 93, "5mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 42, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 42, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 42, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 42, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 42, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 42, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 42, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 25, 43, 57, 61, 67, 69, 77, 79, 80, 82, 86, 90, 93], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 42, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 42, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 42, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 42, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 42, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 42, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 42, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 42, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 42, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 42, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 42, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 42, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 42, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 42, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8, 42], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25, 42], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 81, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 42, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 81, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87, 90, 93], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 42, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "avg_dist": 42, "scaling_factor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "strength": [42, 57], "pronounc": 42, "differenti": 42, "ly": 42, "rule": [42, 43, 79], "thumb": 42, "ood_features_scor": [42, 58, 87], "88988177": 42, "80519832": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 81, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 90], "03": [69, 77, 79, 81, 82, 86, 90, 93], "04": [69, 77, 81, 86, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90, 93], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90, 93], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90, 93], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "3558": [74, 75], "126": [74, 75, 82, 86], "006636": [74, 75], "130": [74, 75], "012571": [74, 75], "129": [74, 75], "127": [74, 75], "014909": [74, 75], "128": [74, 75, 81], "017443": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 77, 81, 82, 86, 90], "51": [74, 75, 77, 79, 81, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3453": 74, "029542": 74, "031182": 74, "057961": 74, "058244": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "101107": 74, "37": [74, 79, 90], "183382": 74, "109": [74, 79, 86], "209259": 74, "211042": 74, "221316": 74, "average_ood_scor": 74, "34530442089193386": 74, "52": [74, 79, 81, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92, 93], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91, 93], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "355772": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "417707": 75, "664083": 75, "970324": 75, "816965": 75, "375317": 75, "641516": 75, "890575": 75, "530924": 75, "460593": 75, "601188": 75, "752776": 75, "321635": 75, "562539": 75, "948362": 75, "090224": 75, "472909": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 82, 86, 90, 91], "78": [77, 79, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 81, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "3590": 77, "051882e": 77, "683133e": 77, "536582e": 77, "406589e": 77, "324246e": 77, "6165": 77, "582": 77, "185": [77, 79, 86], "187": [77, 79], "27": [77, 79, 81, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 81, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "apple_pay_or_google_pai": [78, 92], "beneficiary_not_allow": [78, 92], "supported_cards_and_curr": [78, 92], "lost_or_stolen_phon": [78, 92], "change_pin": [78, 92], "card_about_to_expir": [78, 92], "card_payment_fee_charg": [78, 92], "getting_spare_card": [78, 92], "visa_or_mastercard": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "3584": 78, "994": 78, "009642": 78, "999": 78, "013067": 78, "013841": 78, "433": 78, "014722": 78, "989": 78, "018224": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 81, 90, 93], "44": [79, 85, 86, 90], "71": [79, 81, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86, 93], "98": [79, 80, 89, 90, 93], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91, 93], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86, 93], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "530": 81, "331": 81, "310": 81, "364": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "45it": [81, 90], "58it": 81, "66it": [81, 90], "03it": [81, 90], "85": [81, 86, 89, 90], "84it": [81, 90], "11it": [81, 90], "86it": [81, 90], "37it": [81, 90], "63": [81, 82, 86, 90], "77it": [81, 90], "50it": [81, 90], "87it": [81, 90], "492": 81, "085": 81, "502": 81, "290": [81, 86], "21it": [81, 90], "29it": [81, 90], "62": [81, 82, 86, 89, 90], "15it": [81, 90], "25it": [81, 90], "06it": [81, 90], "24it": [81, 90], "08it": [81, 90], "35it": [81, 90], "92it": [81, 90], "75it": [81, 90], "476": 81, "305": [81, 89], "840": 81, "328": [81, 86], "335": 81, "363": 81, "33it": [81, 90], "51it": [81, 90], "98it": [81, 90], "69": [81, 82, 89, 90], "74": [81, 86, 89, 90, 91], "76it": [81, 90], "39it": [81, 90], "47it": [81, 90], "09it": [81, 90], "59it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "3691": 81, "40378": 81, "943831e": 81, "54473": 81, "066211e": 81, "06": [81, 82, 86, 90, 93], "29412": 81, "899069e": 81, "25316": 81, "984817e": 81, "52247": 81, "245879e": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "3454": 82, "014051": 82, "020451": 82, "249": [82, 86], "042594": 82, "043859": 82, "045954": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86, 93], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": [85, 93], "227": [85, 86], "262": [85, 86, 93], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86, 93], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "13091885": 89, "48412548": 89, "00695165": 89, "44421119": 89, "43029854": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17020": 90, "170190": 90, "42it": 90, "34278": 90, "171581": 90, "51535": 90, "172027": 90, "72it": 90, "68798": 90, "172261": 90, "86025": 90, "172184": 90, "70it": 90, "103244": 90, "172034": 90, "46it": 90, "120448": 90, "171883": 90, "99it": 90, "137653": 90, "171932": 90, "79it": 90, "154958": 90, "172277": 90, "83it": 90, "172186": 90, "168115": 90, "189570": 90, "169833": 90, "65it": 90, "207153": 90, "171632": 90, "32it": 90, "224665": 90, "172675": 90, "242267": 90, "173678": 90, "259798": 90, "174165": 90, "277327": 90, "174500": 90, "04it": 90, "294883": 90, "174816": 90, "312395": 90, "174906": 90, "22it": 90, "329935": 90, "175050": 90, "91it": 90, "347443": 90, "175054": 90, "81it": 90, "364973": 90, "175126": 90, "382494": 90, "175147": 90, "44it": 90, "400041": 90, "175240": 90, "417566": 90, "173702": 90, "60it": 90, "435051": 90, "174043": 90, "452540": 90, "174293": 90, "470079": 90, "174620": 90, "38it": 90, "487543": 90, "174621": 90, "94it": 90, "505007": 90, "174578": 90, "522466": 90, "167350": 90, "539898": 90, "169376": 90, "69it": 90, "557335": 90, "170838": 90, "31it": 90, "574736": 90, "171773": 90, "592170": 90, "172531": 90, "609571": 90, "172968": 90, "627002": 90, "173366": 90, "644443": 90, "173677": 90, "661854": 90, "173804": 90, "40it": 90, "679240": 90, "173608": 90, "41it": 90, "696605": 90, "173292": 90, "90it": 90, "713937": 90, "173104": 90, "731313": 90, "173297": 90, "748645": 90, "173293": 90, "85it": 90, "765976": 90, "173226": 90, "36it": 90, "783313": 90, "173268": 90, "800713": 90, "173485": 90, "818145": 90, "173734": 90, "835547": 90, "173817": 90, "17it": 90, "853044": 90, "174158": 90, "870461": 90, "169906": 90, "887788": 90, "170896": 90, "905410": 90, "172468": 90, "13it": 90, "922998": 90, "173479": 90, "95it": 90, "940562": 90, "174120": 90, "12it": 90, "958279": 90, "175029": 90, "976026": 90, "175755": 90, "993657": 90, "175917": 90, "1011277": 90, "175998": 90, "1028880": 90, "175962": 90, "1046537": 90, "176142": 90, "71it": 90, "1064153": 90, "176017": 90, "1081783": 90, "176099": 90, "57it": 90, "1099463": 90, "176305": 90, "1117142": 90, "176449": 90, "1134811": 90, "176519": 90, "1152481": 90, "176570": 90, "1170175": 90, "176680": 90, "05it": 90, "1187844": 90, "176223": 90, "1205467": 90, "175743": 90, "1223042": 90, "175407": 90, "48it": 90, "1240584": 90, "169787": 90, "1258080": 90, "171298": 90, "1275621": 90, "172507": 90, "1293239": 90, "173592": 90, "1310879": 90, "174425": 90, "1328499": 90, "174950": 90, "1346196": 90, "175551": 90, "80it": 90, "1363796": 90, "175682": 90, "64it": 90, "1381388": 90, "175751": 90, "1399032": 90, "175954": 90, "67it": 90, "1416697": 90, "176159": 90, "1434315": 90, "175929": 90, "1451910": 90, "175645": 90, "1469558": 90, "175892": 90, "1487190": 90, "176018": 90, "1504883": 90, "176288": 90, "1522513": 90, "176105": 90, "53it": 90, "1540124": 90, "175674": 90, "1557753": 90, "175855": 90, "1575339": 90, "175831": 90, "62it": 90, "1592923": 90, "175647": 90, "1610488": 90, "175441": 90, "73it": 90, "1628033": 90, "175079": 90, "1645542": 90, "174685": 90, "1663139": 90, "175064": 90, "52it": 90, "1680913": 90, "175863": 90, "54it": 90, "1698596": 90, "176151": 90, "1716322": 90, "176479": 90, "89it": 90, "1733971": 90, "176392": 90, "1751611": 90, "176312": 90, "1769243": 90, "176057": 90, "1786849": 90, "175301": 90, "1804380": 90, "174824": 90, "34it": 90, "1821864": 90, "174463": 90, "1839311": 90, "174092": 90, "1856721": 90, "173962": 90, "14it": 90, "1874137": 90, "174019": 90, "1891540": 90, "173957": 90, "1908997": 90, "174137": 90, "1926421": 90, "174167": 90, "1943838": 90, "173918": 90, "1961230": 90, "173664": 90, "1978825": 90, "174345": 90, "1996360": 90, "174644": 90, "2013981": 90, "175111": 90, "2031645": 90, "175566": 90, "2049308": 90, "175884": 90, "2066943": 90, "176020": 90, "2084572": 90, "176098": 90, "2102182": 90, "176041": 90, "28it": 90, "2119787": 90, "176040": 90, "30it": 90, "2137392": 90, "175207": 90, "2154914": 90, "175065": 90, "2172458": 90, "175173": 90, "2189976": 90, "174843": 90, "2207501": 90, "174963": 90, "16it": 90, "2225013": 90, "175007": 90, "2242537": 90, "175074": 90, "2260048": 90, "175080": 90, "2277557": 90, "174537": 90, "2295012": 90, "174060": 90, "07it": 90, "2312486": 90, "174258": 90, "2329913": 90, "174219": 90, "23it": 90, "2347606": 90, "175028": 90, "2365220": 90, "175359": 90, "2382958": 90, "175961": 90, "2400623": 90, "176164": 90, "2418340": 90, "176463": 90, "2436061": 90, "176685": 90, "2453730": 90, "176528": 90, "2471391": 90, "176551": 90, "2489047": 90, "27it": 90, "2506631": 90, "175623": 90, "2524194": 90, "174378": 90, "2541776": 90, "174804": 90, "2559426": 90, "175309": 90, "2577056": 90, "175603": 90, "2594628": 90, "175637": 90, "2612241": 90, "175782": 90, "2629821": 90, "175785": 90, "2647400": 90, "175567": 90, "2664958": 90, "175440": 90, "20it": 90, "2682503": 90, "175115": 90, "2700015": 90, "174961": 90, "2717512": 90, "174953": 90, "93it": 90, "2735094": 90, "175209": 90, "49it": 90, "2752634": 90, "175262": 90, "2770161": 90, "175133": 90, "2787715": 90, "175250": 90, "55it": 90, "2805324": 90, "175498": 90, "2822930": 90, "175664": 90, "2840497": 90, "175377": 90, "2858060": 90, "175448": 90, "2875627": 90, "175512": 90, "2893270": 90, "175784": 90, "43it": 90, "2910938": 90, "176050": 90, "2928544": 90, "175745": 90, "2946119": 90, "175395": 90, "2963659": 90, "174986": 90, "2981241": 90, "175231": 90, "2998784": 90, "175287": 90, "3016313": 90, "175037": 90, "10it": 90, "3033901": 90, "175285": 90, "3051430": 90, "175239": 90, "61it": 90, "3068999": 90, "175372": 90, "3086606": 90, "175578": 90, "3104164": 90, "175481": 90, "3121761": 90, "175625": 90, "3139332": 90, "175646": 90, "68it": 90, "3156897": 90, "175597": 90, "00it": 90, "3174534": 90, "175827": 90, "3192117": 90, "175654": 90, "3209683": 90, "175268": 90, "3227211": 90, "174761": 90, "3244739": 90, "174889": 90, "82it": 90, "3262232": 90, "174898": 90, "3279803": 90, "175137": 90, "3297317": 90, "175131": 90, "3314831": 90, "174741": 90, "3332484": 90, "175247": 90, "3350043": 90, "175345": 90, "3367578": 90, "175259": 90, "3385179": 90, "175480": 90, "3402728": 90, "3420235": 90, "174948": 90, "3437756": 90, "175025": 90, "26it": 90, "3455365": 90, "175341": 90, "3472901": 90, "175344": 90, "96it": 90, "3490485": 90, "175490": 90, "3508035": 90, "174929": 90, "3525555": 90, "175008": 90, "3543162": 90, "175323": 90, "3560695": 90, "175252": 90, "3578221": 90, "174103": 90, "3595932": 90, "174997": 90, "3613434": 90, "174972": 90, "3631126": 90, "3648683": 90, "175405": 90, "3666239": 90, "175447": 90, "3683785": 90, "175433": 90, "3701433": 90, "175744": 90, "3719125": 90, "176094": 90, "3736735": 90, "3754274": 90, "175297": 90, "97it": 90, "3771878": 90, "175516": 90, "3789557": 90, "175893": 90, "3807147": 90, "175691": 90, "3824759": 90, "175817": 90, "3842362": 90, "175878": 90, "63it": 90, "3860020": 90, "176085": 90, "3877713": 90, "176335": 90, "3895398": 90, "176488": 90, "3913047": 90, "176136": 90, "3930661": 90, "175612": 90, "3948223": 90, "175087": 90, "3965733": 90, "174652": 90, "3983199": 90, "174387": 90, "4000638": 90, "174241": 90, "4018063": 90, "173923": 90, "4035456": 90, "173705": 90, "4052836": 90, "173729": 90, "4070210": 90, "173644": 90, "4087575": 90, "173363": 90, "4104912": 90, "172752": 90, "4122188": 90, "172741": 90, "4139532": 90, "172949": 90, "4156828": 90, "172905": 90, "4174119": 90, "172799": 90, "02it": 90, "4191400": 90, "172756": 90, "4208751": 90, "172980": 90, "4226050": 90, "172879": 90, "74it": 90, "4243369": 90, "4260775": 90, "4278105": 90, "173114": 90, "4295470": 90, "173272": 90, "4312798": 90, "172936": 90, "4330092": 90, "171778": 90, "19it": 90, "4347530": 90, "172550": 90, "4364981": 90, "173133": 90, "4382422": 90, "173513": 90, "4399899": 90, "173885": 90, "4417356": 90, "174088": 90, "4434825": 90, "174265": 90, "4452271": 90, "174320": 90, "4469704": 90, "174269": 90, "4487143": 90, "174302": 90, "4504574": 90, "174171": 90, "4522003": 90, "174200": 90, "4539453": 90, "174288": 90, "4556882": 90, "174061": 90, "4574310": 90, "4591723": 90, "173888": 90, "4609129": 90, "173936": 90, "4626523": 90, "173090": 90, "4643868": 90, "173193": 90, "4661301": 90, "173529": 90, "4678655": 90, "173504": 90, "4696024": 90, "173558": 90, "4713640": 90, "174333": 90, "4731300": 90, "175010": 90, "4748802": 90, "174465": 90, "4766250": 90, "174380": 90, "4783689": 90, "174366": 90, "4801216": 90, "174632": 90, "4818707": 90, "174712": 90, "4836331": 90, "175166": 90, "4853935": 90, "175423": 90, "56it": 90, "4871519": 90, "175544": 90, "4889111": 90, "4906765": 90, "175918": 90, "4924420": 90, "4942074": 90, "176233": 90, "4959757": 90, "176408": 90, "4977398": 90, "173769": 90, "4994784": 90, "173724": 90, "174597": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a01": 93, "899": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "53k": 93, "15mb": 93, "51m": 93, "1mb": 93, "07m": 93, "9mb": 93, "26m": 93, "2mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 535fcd2f9..d886ea8f3 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1503,7 +1503,7 @@

    5. Use cleanlab to find label issues -{"state": {"f2771b9bc9a14ee3aa56157b0502327a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca661ab1b9cc4a8db6fdb49de9d2f0c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0da3d4dc1dd649639ab6d431992c8699": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f2771b9bc9a14ee3aa56157b0502327a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ca661ab1b9cc4a8db6fdb49de9d2f0c9", "value": 2041.0}}, "cb75104ef4734fac8938c1cb88c8c4d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0c363be2cbb4cca8bafc15e33588fdb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0a2ba5f5018944be8ed66d1b5c89af1f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cb75104ef4734fac8938c1cb88c8c4d1", "placeholder": "\u200b", "style": "IPY_MODEL_f0c363be2cbb4cca8bafc15e33588fdb", "value": "hyperparams.yaml: 100%"}}, "bd5bfe756d9c4ac2bb7970db7efd158f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "377d0e114663431a88b321ccf5671118": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4a2768a8302843e29697b819b2e21c83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bd5bfe756d9c4ac2bb7970db7efd158f", "placeholder": "\u200b", "style": "IPY_MODEL_377d0e114663431a88b321ccf5671118", "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]"}}, "e40bbd2e388548f3babf5b73b54786ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "909c8ea39710440a9375312bc771a258": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0a2ba5f5018944be8ed66d1b5c89af1f", "IPY_MODEL_0da3d4dc1dd649639ab6d431992c8699", "IPY_MODEL_4a2768a8302843e29697b819b2e21c83"], "layout": "IPY_MODEL_e40bbd2e388548f3babf5b73b54786ba"}}, "42bdae19bfbd46f5906edd9af2a8ca32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e01a67977a604991b8b00fcf581ad547": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4d9e3c2c1204a92982d6de58fe386c7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_42bdae19bfbd46f5906edd9af2a8ca32", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e01a67977a604991b8b00fcf581ad547", "value": 16887676.0}}, "947b044fce4d46cd94d78fac9e154a87": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db4da918ead840ebacc04ce7461a4988": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "de75cd8f0c224d62b9fdf323a5417c96": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_947b044fce4d46cd94d78fac9e154a87", "placeholder": "\u200b", "style": "IPY_MODEL_db4da918ead840ebacc04ce7461a4988", "value": "embedding_model.ckpt: 100%"}}, "76daed84b81e433c905e360952995f85": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "543d0e73290749499fa54afede2bd07f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "cc3d1b8c3f05463e8e6ca0ed6e0b6b87": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_76daed84b81e433c905e360952995f85", "placeholder": "\u200b", "style": "IPY_MODEL_543d0e73290749499fa54afede2bd07f", "value": " 16.9M/16.9M [00:00<00:00, 187MB/s]"}}, "3b1c4b52ad9f42a8bd31850343c868ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bdbe1b999184bb2846ce3cbdd16c6b8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_de75cd8f0c224d62b9fdf323a5417c96", "IPY_MODEL_a4d9e3c2c1204a92982d6de58fe386c7", "IPY_MODEL_cc3d1b8c3f05463e8e6ca0ed6e0b6b87"], "layout": "IPY_MODEL_3b1c4b52ad9f42a8bd31850343c868ca"}}, "b5ba087d11514272a9e9faeb1ff627a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebc1cd16d38b4793bf1112d0927953b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "46f6785b3d2c48b98f54410575394ffa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b5ba087d11514272a9e9faeb1ff627a9", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ebc1cd16d38b4793bf1112d0927953b7", "value": 3201.0}}, "3db09cbbf6c241a6a00d6438d3b146be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe1ddb8e1c9f4597a20eaae2164d6f14": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5f6b1e0a3c8741dba0d9eb4b7f6e7db9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3db09cbbf6c241a6a00d6438d3b146be", "placeholder": "\u200b", "style": "IPY_MODEL_fe1ddb8e1c9f4597a20eaae2164d6f14", "value": "mean_var_norm_emb.ckpt: 100%"}}, "82d96704716d454793313b040ef1f84e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a481a55ede054d3aa8522ed074eb12cb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ce9615a248654a39a822ea42c7a8bb45": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_82d96704716d454793313b040ef1f84e", "placeholder": "\u200b", "style": "IPY_MODEL_a481a55ede054d3aa8522ed074eb12cb", "value": " 3.20k/3.20k [00:00<00:00, 526kB/s]"}}, "3ef5ca1cce374925a0b399b2514eb5c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdacc2cd81a3435f83ae3314ecb44041": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5f6b1e0a3c8741dba0d9eb4b7f6e7db9", "IPY_MODEL_46f6785b3d2c48b98f54410575394ffa", "IPY_MODEL_ce9615a248654a39a822ea42c7a8bb45"], "layout": "IPY_MODEL_3ef5ca1cce374925a0b399b2514eb5c2"}}, "72156103dd1640869663d6b7f50d0f03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43834e35ff2f465b9386c606893763df": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e06edccc93074bdebf00e63fba330bd6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_72156103dd1640869663d6b7f50d0f03", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_43834e35ff2f465b9386c606893763df", "value": 15856877.0}}, "6ccc26a8049e42108a1980a281c22a4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e4afca7fbd94824a33aac1479f05792": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b5f5706e3e7a42a381d9516fce9757ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ccc26a8049e42108a1980a281c22a4d", "placeholder": "\u200b", "style": "IPY_MODEL_5e4afca7fbd94824a33aac1479f05792", "value": "classifier.ckpt: 100%"}}, "a07d0d565d3a472a8e079a1ecf913022": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85ef3c651b874a608bb9ca2cf868035b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d9f2f07b06fe4caba0db1beb29d785dd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a07d0d565d3a472a8e079a1ecf913022", "placeholder": "\u200b", "style": "IPY_MODEL_85ef3c651b874a608bb9ca2cf868035b", "value": " 15.9M/15.9M [00:00<00:00, 135MB/s]"}}, "6bc17f07c1674ca9b444cdcf99e8c308": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f33fb49d865d44168fb5d6baa65c54d5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5f5706e3e7a42a381d9516fce9757ab", "IPY_MODEL_e06edccc93074bdebf00e63fba330bd6", "IPY_MODEL_d9f2f07b06fe4caba0db1beb29d785dd"], "layout": "IPY_MODEL_6bc17f07c1674ca9b444cdcf99e8c308"}}, "43feddf15ba2438eb51c014be162befb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6c29c1a8d9d46cfb56507d2d4955bda": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c977f9ffb7814ff39c752ed264ea6ce0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_43feddf15ba2438eb51c014be162befb", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6c29c1a8d9d46cfb56507d2d4955bda", "value": 128619.0}}, "bffa004404b4462296f6f8103e02601e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86798b98961f4f3bb40902f9a4b53b80": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e12ba550026940d29711487f772c6c67": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bffa004404b4462296f6f8103e02601e", "placeholder": "\u200b", "style": "IPY_MODEL_86798b98961f4f3bb40902f9a4b53b80", "value": "label_encoder.txt: 100%"}}, "4a9672c6f7774b5291013e7b10fe0ec1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4ba9128671b432b820ac648a68895c3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "57e717f107df4db2a84f2b734de5c2a9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4a9672c6f7774b5291013e7b10fe0ec1", "placeholder": "\u200b", "style": "IPY_MODEL_c4ba9128671b432b820ac648a68895c3", "value": " 129k/129k [00:00<00:00, 7.55MB/s]"}}, "ad84d2897f0147aca8181eff243a5288": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "163a2cb346774198bc099216c4e65b17": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e12ba550026940d29711487f772c6c67", "IPY_MODEL_c977f9ffb7814ff39c752ed264ea6ce0", "IPY_MODEL_57e717f107df4db2a84f2b734de5c2a9"], "layout": "IPY_MODEL_ad84d2897f0147aca8181eff243a5288"}}}, "version_major": 2, "version_minor": 0} +{"state": {"b8f94f5f6d9d48e985836cd4e05de68b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "033e01a89ac943ceab57fa1a4f52efcb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "df99da8f96ff423ea4024cf79c5c6c0c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b8f94f5f6d9d48e985836cd4e05de68b", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_033e01a89ac943ceab57fa1a4f52efcb", "value": 2041.0}}, "9df8b7d57ffc4b10a35332e34db31c0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec6bf18d0b6f4b889b872c2367fbf92a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "bed75d44ae61481e82459a68035af3c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9df8b7d57ffc4b10a35332e34db31c0b", "placeholder": "\u200b", "style": "IPY_MODEL_ec6bf18d0b6f4b889b872c2367fbf92a", "value": "hyperparams.yaml: 100%"}}, "e89d06ba50d846a487da348c700a0a7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2148259a1f30469d94ad6e790e5b93fd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "41605a719db444b9a7b57ffa9d3d03f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e89d06ba50d846a487da348c700a0a7f", "placeholder": "\u200b", "style": "IPY_MODEL_2148259a1f30469d94ad6e790e5b93fd", "value": " 2.04k/2.04k [00:00<00:00, 325kB/s]"}}, "ddfc7066dc7046e2a7b358ccbe375515": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0dbde17600f49929743b2d570ae951f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bed75d44ae61481e82459a68035af3c2", "IPY_MODEL_df99da8f96ff423ea4024cf79c5c6c0c", "IPY_MODEL_41605a719db444b9a7b57ffa9d3d03f5"], "layout": "IPY_MODEL_ddfc7066dc7046e2a7b358ccbe375515"}}, "26d1aab6d79c42fb99c1264a3cd973ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a2fdbcd033b4a93ba2d5252dc7f5fae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "556fb5f813714c41b05adaabbe3a96ff": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_26d1aab6d79c42fb99c1264a3cd973ab", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4a2fdbcd033b4a93ba2d5252dc7f5fae", "value": 16887676.0}}, "24195dc95d4145d79d3b11c2411a1607": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0be994ae5a44b0fa8736dca37ac2d35": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a62e150c641f4a7ca85a7b3592d00cca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_24195dc95d4145d79d3b11c2411a1607", "placeholder": "\u200b", "style": "IPY_MODEL_f0be994ae5a44b0fa8736dca37ac2d35", "value": "embedding_model.ckpt: 100%"}}, "9e2b6e27deb4444397d5196935e4bd62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7a92eba64484655ac97269ff6abbbdd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b944b32f46ff40d58646cfbb4ed25597": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9e2b6e27deb4444397d5196935e4bd62", "placeholder": "\u200b", "style": "IPY_MODEL_c7a92eba64484655ac97269ff6abbbdd", "value": " 16.9M/16.9M [00:00<00:00, 39.8MB/s]"}}, "8deee4161483420fa90522b81b099f27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84e7a3c113c44726929580012c3b7a19": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a62e150c641f4a7ca85a7b3592d00cca", "IPY_MODEL_556fb5f813714c41b05adaabbe3a96ff", "IPY_MODEL_b944b32f46ff40d58646cfbb4ed25597"], "layout": "IPY_MODEL_8deee4161483420fa90522b81b099f27"}}, "42c2b63db215400f9509bd6009308cf0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "732c20c4646c4cd59b45fdbb3e8759e3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11dd8f7214c1495f8942d7606f19e55f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_42c2b63db215400f9509bd6009308cf0", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_732c20c4646c4cd59b45fdbb3e8759e3", "value": 3201.0}}, "ff6c319c736649f9b5fd91bf069cbc86": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9fa5db29ed9455c894ff00cd62f8eec": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b4938061210f431d98a5bf349df11369": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff6c319c736649f9b5fd91bf069cbc86", "placeholder": "\u200b", "style": "IPY_MODEL_a9fa5db29ed9455c894ff00cd62f8eec", "value": "mean_var_norm_emb.ckpt: 100%"}}, "a05f4bffcdb840009c9bd506092c82a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f01752874a4843f0a24d63f445cc198f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7edcc39451c1450fad3fd357b026d543": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a05f4bffcdb840009c9bd506092c82a7", "placeholder": "\u200b", "style": "IPY_MODEL_f01752874a4843f0a24d63f445cc198f", "value": " 3.20k/3.20k [00:00<00:00, 568kB/s]"}}, "19c6fa508c724059bd1a9a55fc1cccca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c716483215634ba4867d20fda8db3aba": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b4938061210f431d98a5bf349df11369", "IPY_MODEL_11dd8f7214c1495f8942d7606f19e55f", "IPY_MODEL_7edcc39451c1450fad3fd357b026d543"], "layout": "IPY_MODEL_19c6fa508c724059bd1a9a55fc1cccca"}}, "9a687ff927d5468d9b01aedcade78b01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1885bdd348aa473fa45d0f7040aff37e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "23364e8eaa2c43ef8904b7bf3a94adc8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9a687ff927d5468d9b01aedcade78b01", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1885bdd348aa473fa45d0f7040aff37e", "value": 15856877.0}}, "b07280c8ecc6456cad587a3752cb2d16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e0b5cde430c4f61813e5553d2fc36f1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6e39de55bafc418eb42a575b35063e0f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b07280c8ecc6456cad587a3752cb2d16", "placeholder": "\u200b", "style": "IPY_MODEL_3e0b5cde430c4f61813e5553d2fc36f1", "value": "classifier.ckpt: 100%"}}, "7dafc44b77354f96b68181fc2f694955": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aaf9a4ac25ab432aa31f866253ae9e2d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "91ce7bb076c545c093b975ef94c07985": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7dafc44b77354f96b68181fc2f694955", "placeholder": "\u200b", "style": "IPY_MODEL_aaf9a4ac25ab432aa31f866253ae9e2d", "value": " 15.9M/15.9M [00:00<00:00, 62.4MB/s]"}}, "7cee4d0269ef47308b8319e509277ceb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "928d89df3103412f870ee8942af69ce5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6e39de55bafc418eb42a575b35063e0f", "IPY_MODEL_23364e8eaa2c43ef8904b7bf3a94adc8", "IPY_MODEL_91ce7bb076c545c093b975ef94c07985"], "layout": "IPY_MODEL_7cee4d0269ef47308b8319e509277ceb"}}, "52b4dbafc58b4e8c9ec8a8c66e413a7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5da4ee7e5a74424781dc4b5700bef698": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c0fb3f05454429e9df1ac90056fbcf6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_52b4dbafc58b4e8c9ec8a8c66e413a7b", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5da4ee7e5a74424781dc4b5700bef698", "value": 128619.0}}, "043a7d1958904863b243b004e8a70c95": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c0ac0cdd53242a6a002865e387bd8c4": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d8f0ee2d62d24af3ae6398d396346369": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_043a7d1958904863b243b004e8a70c95", "placeholder": "\u200b", "style": "IPY_MODEL_7c0ac0cdd53242a6a002865e387bd8c4", "value": "label_encoder.txt: 100%"}}, "88c63d79c4f44cb9bcfd62c1dd5ecbea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8e3054079974d77b073afa288255be1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7dd68e4d78284f769acb5eebb84a0d11": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_88c63d79c4f44cb9bcfd62c1dd5ecbea", "placeholder": "\u200b", "style": "IPY_MODEL_b8e3054079974d77b073afa288255be1", "value": " 129k/129k [00:00<00:00, 7.14MB/s]"}}, "d1d5d1e6560446a9b5567eceb2e4f236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "135a53de75034cf3a988d961a93a764c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d8f0ee2d62d24af3ae6398d396346369", "IPY_MODEL_5c0fb3f05454429e9df1ac90056fbcf6", "IPY_MODEL_7dd68e4d78284f769acb5eebb84a0d11"], "layout": "IPY_MODEL_d1d5d1e6560446a9b5567eceb2e4f236"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index deb33cd1f..df15b5d56 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:20.915176Z", - "iopub.status.busy": "2024-01-16T18:14:20.914635Z", - "iopub.status.idle": "2024-01-16T18:14:24.352375Z", - "shell.execute_reply": "2024-01-16T18:14:24.351733Z" + "iopub.execute_input": "2024-01-17T17:45:48.281803Z", + "iopub.status.busy": "2024-01-17T17:45:48.281265Z", + "iopub.status.idle": "2024-01-17T17:45:51.532977Z", + "shell.execute_reply": "2024-01-17T17:45:51.532344Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.355565Z", - "iopub.status.busy": "2024-01-16T18:14:24.355063Z", - "iopub.status.idle": "2024-01-16T18:14:24.358719Z", - "shell.execute_reply": "2024-01-16T18:14:24.358098Z" + "iopub.execute_input": "2024-01-17T17:45:51.536196Z", + "iopub.status.busy": "2024-01-17T17:45:51.535669Z", + "iopub.status.idle": "2024-01-17T17:45:51.539177Z", + "shell.execute_reply": "2024-01-17T17:45:51.538560Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.361182Z", - "iopub.status.busy": "2024-01-16T18:14:24.360808Z", - "iopub.status.idle": "2024-01-16T18:14:24.366113Z", - "shell.execute_reply": "2024-01-16T18:14:24.365612Z" + "iopub.execute_input": "2024-01-17T17:45:51.541699Z", + "iopub.status.busy": "2024-01-17T17:45:51.541317Z", + "iopub.status.idle": "2024-01-17T17:45:51.546258Z", + "shell.execute_reply": "2024-01-17T17:45:51.545660Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:24.368536Z", - "iopub.status.busy": "2024-01-16T18:14:24.368241Z", - "iopub.status.idle": "2024-01-16T18:14:25.927558Z", - "shell.execute_reply": "2024-01-16T18:14:25.926708Z" + "iopub.execute_input": "2024-01-17T17:45:51.548974Z", + "iopub.status.busy": "2024-01-17T17:45:51.548436Z", + "iopub.status.idle": "2024-01-17T17:45:53.511722Z", + "shell.execute_reply": "2024-01-17T17:45:53.511012Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.931098Z", - "iopub.status.busy": "2024-01-16T18:14:25.930650Z", - "iopub.status.idle": "2024-01-16T18:14:25.943296Z", - "shell.execute_reply": "2024-01-16T18:14:25.942596Z" + "iopub.execute_input": "2024-01-17T17:45:53.515083Z", + "iopub.status.busy": "2024-01-17T17:45:53.514556Z", + "iopub.status.idle": "2024-01-17T17:45:53.526750Z", + "shell.execute_reply": "2024-01-17T17:45:53.526120Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.979754Z", - "iopub.status.busy": "2024-01-16T18:14:25.979232Z", - "iopub.status.idle": "2024-01-16T18:14:25.985428Z", - "shell.execute_reply": "2024-01-16T18:14:25.984757Z" + "iopub.execute_input": "2024-01-17T17:45:53.559421Z", + "iopub.status.busy": "2024-01-17T17:45:53.558892Z", + "iopub.status.idle": "2024-01-17T17:45:53.565993Z", + "shell.execute_reply": "2024-01-17T17:45:53.565333Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:25.987972Z", - "iopub.status.busy": "2024-01-16T18:14:25.987598Z", - "iopub.status.idle": "2024-01-16T18:14:26.769043Z", - "shell.execute_reply": "2024-01-16T18:14:26.768365Z" + "iopub.execute_input": "2024-01-17T17:45:53.568501Z", + "iopub.status.busy": "2024-01-17T17:45:53.568032Z", + "iopub.status.idle": "2024-01-17T17:45:54.251679Z", + "shell.execute_reply": "2024-01-17T17:45:54.251003Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:26.771757Z", - "iopub.status.busy": "2024-01-16T18:14:26.771377Z", - "iopub.status.idle": "2024-01-16T18:14:27.516544Z", - "shell.execute_reply": "2024-01-16T18:14:27.515950Z" + "iopub.execute_input": "2024-01-17T17:45:54.254434Z", + "iopub.status.busy": "2024-01-17T17:45:54.254191Z", + "iopub.status.idle": "2024-01-17T17:45:56.394373Z", + "shell.execute_reply": "2024-01-17T17:45:56.393785Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.519604Z", - "iopub.status.busy": "2024-01-16T18:14:27.519261Z", - "iopub.status.idle": "2024-01-16T18:14:27.543790Z", - "shell.execute_reply": "2024-01-16T18:14:27.543172Z" + "iopub.execute_input": "2024-01-17T17:45:56.397301Z", + "iopub.status.busy": "2024-01-17T17:45:56.397065Z", + "iopub.status.idle": "2024-01-17T17:45:56.421258Z", + "shell.execute_reply": "2024-01-17T17:45:56.420692Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.546452Z", - "iopub.status.busy": "2024-01-16T18:14:27.546073Z", - "iopub.status.idle": "2024-01-16T18:14:27.549426Z", - "shell.execute_reply": "2024-01-16T18:14:27.548863Z" + "iopub.execute_input": "2024-01-17T17:45:56.423783Z", + "iopub.status.busy": "2024-01-17T17:45:56.423475Z", + "iopub.status.idle": "2024-01-17T17:45:56.426947Z", + "shell.execute_reply": "2024-01-17T17:45:56.426388Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:27.551820Z", - "iopub.status.busy": "2024-01-16T18:14:27.551439Z", - "iopub.status.idle": "2024-01-16T18:14:47.423185Z", - "shell.execute_reply": "2024-01-16T18:14:47.422549Z" + "iopub.execute_input": "2024-01-17T17:45:56.429235Z", + "iopub.status.busy": "2024-01-17T17:45:56.429021Z", + "iopub.status.idle": "2024-01-17T17:46:15.035396Z", + "shell.execute_reply": "2024-01-17T17:46:15.034680Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.426361Z", - "iopub.status.busy": "2024-01-16T18:14:47.425953Z", - "iopub.status.idle": "2024-01-16T18:14:47.430484Z", - "shell.execute_reply": "2024-01-16T18:14:47.429961Z" + "iopub.execute_input": "2024-01-17T17:46:15.039000Z", + "iopub.status.busy": "2024-01-17T17:46:15.038397Z", + "iopub.status.idle": "2024-01-17T17:46:15.043348Z", + "shell.execute_reply": "2024-01-17T17:46:15.042799Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:47.432783Z", - "iopub.status.busy": "2024-01-16T18:14:47.432571Z", - "iopub.status.idle": "2024-01-16T18:14:52.936048Z", - "shell.execute_reply": "2024-01-16T18:14:52.935345Z" + "iopub.execute_input": "2024-01-17T17:46:15.045907Z", + "iopub.status.busy": "2024-01-17T17:46:15.045507Z", + "iopub.status.idle": "2024-01-17T17:46:20.498119Z", + "shell.execute_reply": "2024-01-17T17:46:20.497438Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.939625Z", - "iopub.status.busy": "2024-01-16T18:14:52.939206Z", - "iopub.status.idle": "2024-01-16T18:14:52.944490Z", - "shell.execute_reply": "2024-01-16T18:14:52.943903Z" + "iopub.execute_input": "2024-01-17T17:46:20.501565Z", + "iopub.status.busy": "2024-01-17T17:46:20.501133Z", + "iopub.status.idle": "2024-01-17T17:46:20.506455Z", + "shell.execute_reply": "2024-01-17T17:46:20.505871Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:52.947481Z", - "iopub.status.busy": "2024-01-16T18:14:52.947081Z", - "iopub.status.idle": "2024-01-16T18:14:53.052663Z", - "shell.execute_reply": "2024-01-16T18:14:53.051903Z" + "iopub.execute_input": "2024-01-17T17:46:20.509424Z", + "iopub.status.busy": "2024-01-17T17:46:20.509004Z", + "iopub.status.idle": "2024-01-17T17:46:20.620924Z", + "shell.execute_reply": "2024-01-17T17:46:20.620197Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.055771Z", - "iopub.status.busy": "2024-01-16T18:14:53.055272Z", - "iopub.status.idle": "2024-01-16T18:14:53.064890Z", - "shell.execute_reply": "2024-01-16T18:14:53.064330Z" + "iopub.execute_input": "2024-01-17T17:46:20.623691Z", + "iopub.status.busy": "2024-01-17T17:46:20.623431Z", + "iopub.status.idle": "2024-01-17T17:46:20.633797Z", + "shell.execute_reply": "2024-01-17T17:46:20.633256Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.067387Z", - "iopub.status.busy": "2024-01-16T18:14:53.066935Z", - "iopub.status.idle": "2024-01-16T18:14:53.075177Z", - "shell.execute_reply": "2024-01-16T18:14:53.074580Z" + "iopub.execute_input": "2024-01-17T17:46:20.636241Z", + "iopub.status.busy": "2024-01-17T17:46:20.635862Z", + "iopub.status.idle": "2024-01-17T17:46:20.643973Z", + "shell.execute_reply": "2024-01-17T17:46:20.643340Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.077704Z", - "iopub.status.busy": "2024-01-16T18:14:53.077211Z", - "iopub.status.idle": "2024-01-16T18:14:53.081922Z", - "shell.execute_reply": "2024-01-16T18:14:53.081326Z" + "iopub.execute_input": "2024-01-17T17:46:20.646449Z", + "iopub.status.busy": "2024-01-17T17:46:20.646021Z", + "iopub.status.idle": "2024-01-17T17:46:20.650715Z", + "shell.execute_reply": "2024-01-17T17:46:20.650105Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.084209Z", - "iopub.status.busy": "2024-01-16T18:14:53.083853Z", - "iopub.status.idle": "2024-01-16T18:14:53.090102Z", - "shell.execute_reply": "2024-01-16T18:14:53.089456Z" + "iopub.execute_input": "2024-01-17T17:46:20.653034Z", + "iopub.status.busy": "2024-01-17T17:46:20.652730Z", + "iopub.status.idle": "2024-01-17T17:46:20.659144Z", + "shell.execute_reply": "2024-01-17T17:46:20.658590Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.092579Z", - "iopub.status.busy": "2024-01-16T18:14:53.092207Z", - "iopub.status.idle": "2024-01-16T18:14:53.205798Z", - "shell.execute_reply": "2024-01-16T18:14:53.205139Z" + "iopub.execute_input": "2024-01-17T17:46:20.661540Z", + "iopub.status.busy": "2024-01-17T17:46:20.661169Z", + "iopub.status.idle": "2024-01-17T17:46:20.774456Z", + "shell.execute_reply": "2024-01-17T17:46:20.773805Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.208272Z", - "iopub.status.busy": "2024-01-16T18:14:53.208068Z", - "iopub.status.idle": "2024-01-16T18:14:53.317424Z", - "shell.execute_reply": "2024-01-16T18:14:53.316763Z" + "iopub.execute_input": "2024-01-17T17:46:20.777081Z", + "iopub.status.busy": "2024-01-17T17:46:20.776686Z", + "iopub.status.idle": "2024-01-17T17:46:20.883619Z", + "shell.execute_reply": "2024-01-17T17:46:20.883017Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.319798Z", - "iopub.status.busy": "2024-01-16T18:14:53.319580Z", - "iopub.status.idle": "2024-01-16T18:14:53.430801Z", - "shell.execute_reply": "2024-01-16T18:14:53.430125Z" + "iopub.execute_input": "2024-01-17T17:46:20.886375Z", + "iopub.status.busy": "2024-01-17T17:46:20.885897Z", + "iopub.status.idle": "2024-01-17T17:46:20.992300Z", + "shell.execute_reply": "2024-01-17T17:46:20.991606Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.433289Z", - "iopub.status.busy": "2024-01-16T18:14:53.433043Z", - "iopub.status.idle": "2024-01-16T18:14:53.542938Z", - "shell.execute_reply": "2024-01-16T18:14:53.542233Z" + "iopub.execute_input": "2024-01-17T17:46:20.994767Z", + "iopub.status.busy": "2024-01-17T17:46:20.994535Z", + "iopub.status.idle": "2024-01-17T17:46:21.104534Z", + "shell.execute_reply": "2024-01-17T17:46:21.103866Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:53.545707Z", - "iopub.status.busy": "2024-01-16T18:14:53.545287Z", - "iopub.status.idle": "2024-01-16T18:14:53.548752Z", - "shell.execute_reply": "2024-01-16T18:14:53.548195Z" + "iopub.execute_input": "2024-01-17T17:46:21.106933Z", + "iopub.status.busy": "2024-01-17T17:46:21.106710Z", + "iopub.status.idle": "2024-01-17T17:46:21.110311Z", + "shell.execute_reply": "2024-01-17T17:46:21.109761Z" }, "nbsphinx": "hidden" }, @@ -1377,28 +1377,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a2ba5f5018944be8ed66d1b5c89af1f": { + "033e01a89ac943ceab57fa1a4f52efcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb75104ef4734fac8938c1cb88c8c4d1", - "placeholder": "​", - "style": "IPY_MODEL_f0c363be2cbb4cca8bafc15e33588fdb", - "value": "hyperparams.yaml: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "043a7d1958904863b243b004e8a70c95": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0da3d4dc1dd649639ab6d431992c8699": { + "11dd8f7214c1495f8942d7606f19e55f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1414,15 +1461,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2771b9bc9a14ee3aa56157b0502327a", - "max": 2041.0, + "layout": "IPY_MODEL_42c2b63db215400f9509bd6009308cf0", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ca661ab1b9cc4a8db6fdb49de9d2f0c9", - "value": 2041.0 + "style": "IPY_MODEL_732c20c4646c4cd59b45fdbb3e8759e3", + "value": 3201.0 } }, - "163a2cb346774198bc099216c4e65b17": { + "135a53de75034cf3a988d961a93a764c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1437,29 +1484,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e12ba550026940d29711487f772c6c67", - "IPY_MODEL_c977f9ffb7814ff39c752ed264ea6ce0", - "IPY_MODEL_57e717f107df4db2a84f2b734de5c2a9" + "IPY_MODEL_d8f0ee2d62d24af3ae6398d396346369", + "IPY_MODEL_5c0fb3f05454429e9df1ac90056fbcf6", + "IPY_MODEL_7dd68e4d78284f769acb5eebb84a0d11" ], - "layout": "IPY_MODEL_ad84d2897f0147aca8181eff243a5288" + "layout": "IPY_MODEL_d1d5d1e6560446a9b5567eceb2e4f236" } }, - "377d0e114663431a88b321ccf5671118": { + "1885bdd348aa473fa45d0f7040aff37e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "3b1c4b52ad9f42a8bd31850343c868ca": { + "19c6fa508c724059bd1a9a55fc1cccca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1511,7 +1559,46 @@ "width": null } }, - "3db09cbbf6c241a6a00d6438d3b146be": { + "2148259a1f30469d94ad6e790e5b93fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23364e8eaa2c43ef8904b7bf3a94adc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a687ff927d5468d9b01aedcade78b01", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1885bdd348aa473fa45d0f7040aff37e", + "value": 15856877.0 + } + }, + "24195dc95d4145d79d3b11c2411a1607": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1563,7 +1650,7 @@ "width": null } }, - "3ef5ca1cce374925a0b399b2514eb5c2": { + "26d1aab6d79c42fb99c1264a3cd973ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1615,7 +1702,43 @@ "width": null } }, - "42bdae19bfbd46f5906edd9af2a8ca32": { + "3e0b5cde430c4f61813e5553d2fc36f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "41605a719db444b9a7b57ffa9d3d03f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e89d06ba50d846a487da348c700a0a7f", + "placeholder": "​", + "style": "IPY_MODEL_2148259a1f30469d94ad6e790e5b93fd", + "value": " 2.04k/2.04k [00:00<00:00, 325kB/s]" + } + }, + "42c2b63db215400f9509bd6009308cf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,7 +1790,7 @@ "width": null } }, - "43834e35ff2f465b9386c606893763df": { + "4a2fdbcd033b4a93ba2d5252dc7f5fae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1683,7 +1806,7 @@ "description_width": "" } }, - "43feddf15ba2438eb51c014be162befb": { + "52b4dbafc58b4e8c9ec8a8c66e413a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1735,7 +1858,7 @@ "width": null } }, - "46f6785b3d2c48b98f54410575394ffa": { + "556fb5f813714c41b05adaabbe3a96ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1751,103 +1874,55 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b5ba087d11514272a9e9faeb1ff627a9", - "max": 3201.0, + "layout": "IPY_MODEL_26d1aab6d79c42fb99c1264a3cd973ab", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ebc1cd16d38b4793bf1112d0927953b7", - "value": 3201.0 + "style": "IPY_MODEL_4a2fdbcd033b4a93ba2d5252dc7f5fae", + "value": 16887676.0 } }, - "4a2768a8302843e29697b819b2e21c83": { + "5c0fb3f05454429e9df1ac90056fbcf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd5bfe756d9c4ac2bb7970db7efd158f", - "placeholder": "​", - "style": "IPY_MODEL_377d0e114663431a88b321ccf5671118", - "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]" - } - }, - "4a9672c6f7774b5291013e7b10fe0ec1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_52b4dbafc58b4e8c9ec8a8c66e413a7b", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5da4ee7e5a74424781dc4b5700bef698", + "value": 128619.0 } }, - "543d0e73290749499fa54afede2bd07f": { + "5da4ee7e5a74424781dc4b5700bef698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "57e717f107df4db2a84f2b734de5c2a9": { + "6e39de55bafc418eb42a575b35063e0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1862,49 +1937,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a9672c6f7774b5291013e7b10fe0ec1", + "layout": "IPY_MODEL_b07280c8ecc6456cad587a3752cb2d16", "placeholder": "​", - "style": "IPY_MODEL_c4ba9128671b432b820ac648a68895c3", - "value": " 129k/129k [00:00<00:00, 7.55MB/s]" + "style": "IPY_MODEL_3e0b5cde430c4f61813e5553d2fc36f1", + "value": "classifier.ckpt: 100%" } }, - "5e4afca7fbd94824a33aac1479f05792": { + "732c20c4646c4cd59b45fdbb3e8759e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5f6b1e0a3c8741dba0d9eb4b7f6e7db9": { + "7c0ac0cdd53242a6a002865e387bd8c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3db09cbbf6c241a6a00d6438d3b146be", - "placeholder": "​", - "style": "IPY_MODEL_fe1ddb8e1c9f4597a20eaae2164d6f14", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6bc17f07c1674ca9b444cdcf99e8c308": { + "7cee4d0269ef47308b8319e509277ceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1956,7 +2026,7 @@ "width": null } }, - "6ccc26a8049e42108a1980a281c22a4d": { + "7dafc44b77354f96b68181fc2f694955": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2008,59 +2078,71 @@ "width": null } }, - "72156103dd1640869663d6b7f50d0f03": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "7dd68e4d78284f769acb5eebb84a0d11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88c63d79c4f44cb9bcfd62c1dd5ecbea", + "placeholder": "​", + "style": "IPY_MODEL_b8e3054079974d77b073afa288255be1", + "value": " 129k/129k [00:00<00:00, 7.14MB/s]" + } + }, + "7edcc39451c1450fad3fd357b026d543": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a05f4bffcdb840009c9bd506092c82a7", + "placeholder": "​", + "style": "IPY_MODEL_f01752874a4843f0a24d63f445cc198f", + "value": " 3.20k/3.20k [00:00<00:00, 568kB/s]" } }, - "76daed84b81e433c905e360952995f85": { + "84e7a3c113c44726929580012c3b7a19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a62e150c641f4a7ca85a7b3592d00cca", + "IPY_MODEL_556fb5f813714c41b05adaabbe3a96ff", + "IPY_MODEL_b944b32f46ff40d58646cfbb4ed25597" + ], + "layout": "IPY_MODEL_8deee4161483420fa90522b81b099f27" + } + }, + "88c63d79c4f44cb9bcfd62c1dd5ecbea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2112,7 +2194,7 @@ "width": null } }, - "82d96704716d454793313b040ef1f84e": { + "8deee4161483420fa90522b81b099f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2164,59 +2246,28 @@ "width": null } }, - "85ef3c651b874a608bb9ca2cf868035b": { + "91ce7bb076c545c093b975ef94c07985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "86798b98961f4f3bb40902f9a4b53b80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8bdbe1b999184bb2846ce3cbdd16c6b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de75cd8f0c224d62b9fdf323a5417c96", - "IPY_MODEL_a4d9e3c2c1204a92982d6de58fe386c7", - "IPY_MODEL_cc3d1b8c3f05463e8e6ca0ed6e0b6b87" - ], - "layout": "IPY_MODEL_3b1c4b52ad9f42a8bd31850343c868ca" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7dafc44b77354f96b68181fc2f694955", + "placeholder": "​", + "style": "IPY_MODEL_aaf9a4ac25ab432aa31f866253ae9e2d", + "value": " 15.9M/15.9M [00:00<00:00, 62.4MB/s]" } }, - "909c8ea39710440a9375312bc771a258": { + "928d89df3103412f870ee8942af69ce5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2231,14 +2282,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a2ba5f5018944be8ed66d1b5c89af1f", - "IPY_MODEL_0da3d4dc1dd649639ab6d431992c8699", - "IPY_MODEL_4a2768a8302843e29697b819b2e21c83" + "IPY_MODEL_6e39de55bafc418eb42a575b35063e0f", + "IPY_MODEL_23364e8eaa2c43ef8904b7bf3a94adc8", + "IPY_MODEL_91ce7bb076c545c093b975ef94c07985" ], - "layout": "IPY_MODEL_e40bbd2e388548f3babf5b73b54786ba" + "layout": "IPY_MODEL_7cee4d0269ef47308b8319e509277ceb" } }, - "947b044fce4d46cd94d78fac9e154a87": { + "9a687ff927d5468d9b01aedcade78b01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2290,7 +2341,7 @@ "width": null } }, - "a07d0d565d3a472a8e079a1ecf913022": { + "9df8b7d57ffc4b10a35332e34db31c0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2342,62 +2393,7 @@ "width": null } }, - "a481a55ede054d3aa8522ed074eb12cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a4d9e3c2c1204a92982d6de58fe386c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_42bdae19bfbd46f5906edd9af2a8ca32", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e01a67977a604991b8b00fcf581ad547", - "value": 16887676.0 - } - }, - "a6c29c1a8d9d46cfb56507d2d4955bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad84d2897f0147aca8181eff243a5288": { + "9e2b6e27deb4444397d5196935e4bd62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2449,7 +2445,7 @@ "width": null } }, - "b5ba087d11514272a9e9faeb1ff627a9": { + "a05f4bffcdb840009c9bd506092c82a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2501,7 +2497,7 @@ "width": null } }, - "b5f5706e3e7a42a381d9516fce9757ab": { + "a62e150c641f4a7ca85a7b3592d00cca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2516,87 +2512,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ccc26a8049e42108a1980a281c22a4d", + "layout": "IPY_MODEL_24195dc95d4145d79d3b11c2411a1607", "placeholder": "​", - "style": "IPY_MODEL_5e4afca7fbd94824a33aac1479f05792", - "value": "classifier.ckpt: 100%" + "style": "IPY_MODEL_f0be994ae5a44b0fa8736dca37ac2d35", + "value": "embedding_model.ckpt: 100%" } }, - "bd5bfe756d9c4ac2bb7970db7efd158f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a9fa5db29ed9455c894ff00cd62f8eec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "bdacc2cd81a3435f83ae3314ecb44041": { + "aaf9a4ac25ab432aa31f866253ae9e2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5f6b1e0a3c8741dba0d9eb4b7f6e7db9", - "IPY_MODEL_46f6785b3d2c48b98f54410575394ffa", - "IPY_MODEL_ce9615a248654a39a822ea42c7a8bb45" - ], - "layout": "IPY_MODEL_3ef5ca1cce374925a0b399b2514eb5c2" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bffa004404b4462296f6f8103e02601e": { + "b07280c8ecc6456cad587a3752cb2d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2648,62 +2600,43 @@ "width": null } }, - "c4ba9128671b432b820ac648a68895c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c977f9ffb7814ff39c752ed264ea6ce0": { + "b4938061210f431d98a5bf349df11369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_43feddf15ba2438eb51c014be162befb", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6c29c1a8d9d46cfb56507d2d4955bda", - "value": 128619.0 + "layout": "IPY_MODEL_ff6c319c736649f9b5fd91bf069cbc86", + "placeholder": "​", + "style": "IPY_MODEL_a9fa5db29ed9455c894ff00cd62f8eec", + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ca661ab1b9cc4a8db6fdb49de9d2f0c9": { + "b8e3054079974d77b073afa288255be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "cb75104ef4734fac8938c1cb88c8c4d1": { + "b8f94f5f6d9d48e985836cd4e05de68b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2755,7 +2688,7 @@ "width": null } }, - "cc3d1b8c3f05463e8e6ca0ed6e0b6b87": { + "b944b32f46ff40d58646cfbb4ed25597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2770,13 +2703,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_76daed84b81e433c905e360952995f85", + "layout": "IPY_MODEL_9e2b6e27deb4444397d5196935e4bd62", "placeholder": "​", - "style": "IPY_MODEL_543d0e73290749499fa54afede2bd07f", - "value": " 16.9M/16.9M [00:00<00:00, 187MB/s]" + "style": "IPY_MODEL_c7a92eba64484655ac97269ff6abbbdd", + "value": " 16.9M/16.9M [00:00<00:00, 39.8MB/s]" } }, - "ce9615a248654a39a822ea42c7a8bb45": { + "bed75d44ae61481e82459a68035af3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2791,34 +2724,57 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_82d96704716d454793313b040ef1f84e", + "layout": "IPY_MODEL_9df8b7d57ffc4b10a35332e34db31c0b", "placeholder": "​", - "style": "IPY_MODEL_a481a55ede054d3aa8522ed074eb12cb", - "value": " 3.20k/3.20k [00:00<00:00, 526kB/s]" + "style": "IPY_MODEL_ec6bf18d0b6f4b889b872c2367fbf92a", + "value": "hyperparams.yaml: 100%" } }, - "d9f2f07b06fe4caba0db1beb29d785dd": { + "c0dbde17600f49929743b2d570ae951f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a07d0d565d3a472a8e079a1ecf913022", - "placeholder": "​", - "style": "IPY_MODEL_85ef3c651b874a608bb9ca2cf868035b", - "value": " 15.9M/15.9M [00:00<00:00, 135MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bed75d44ae61481e82459a68035af3c2", + "IPY_MODEL_df99da8f96ff423ea4024cf79c5c6c0c", + "IPY_MODEL_41605a719db444b9a7b57ffa9d3d03f5" + ], + "layout": "IPY_MODEL_ddfc7066dc7046e2a7b358ccbe375515" + } + }, + "c716483215634ba4867d20fda8db3aba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4938061210f431d98a5bf349df11369", + "IPY_MODEL_11dd8f7214c1495f8942d7606f19e55f", + "IPY_MODEL_7edcc39451c1450fad3fd357b026d543" + ], + "layout": "IPY_MODEL_19c6fa508c724059bd1a9a55fc1cccca" } }, - "db4da918ead840ebacc04ce7461a4988": { + "c7a92eba64484655ac97269ff6abbbdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2833,7 +2789,59 @@ "description_width": "" } }, - "de75cd8f0c224d62b9fdf323a5417c96": { + "d1d5d1e6560446a9b5567eceb2e4f236": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8f0ee2d62d24af3ae6398d396346369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2848,29 +2856,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_947b044fce4d46cd94d78fac9e154a87", + "layout": "IPY_MODEL_043a7d1958904863b243b004e8a70c95", "placeholder": "​", - "style": "IPY_MODEL_db4da918ead840ebacc04ce7461a4988", - "value": "embedding_model.ckpt: 100%" + "style": "IPY_MODEL_7c0ac0cdd53242a6a002865e387bd8c4", + "value": "label_encoder.txt: 100%" } }, - "e01a67977a604991b8b00fcf581ad547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "ddfc7066dc7046e2a7b358ccbe375515": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e06edccc93074bdebf00e63fba330bd6": { + "df99da8f96ff423ea4024cf79c5c6c0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2886,36 +2930,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_72156103dd1640869663d6b7f50d0f03", - "max": 15856877.0, + "layout": "IPY_MODEL_b8f94f5f6d9d48e985836cd4e05de68b", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_43834e35ff2f465b9386c606893763df", - "value": 15856877.0 - } - }, - "e12ba550026940d29711487f772c6c67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bffa004404b4462296f6f8103e02601e", - "placeholder": "​", - "style": "IPY_MODEL_86798b98961f4f3bb40902f9a4b53b80", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_033e01a89ac943ceab57fa1a4f52efcb", + "value": 2041.0 } }, - "e40bbd2e388548f3babf5b73b54786ba": { + "e89d06ba50d846a487da348c700a0a7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2967,23 +2990,37 @@ "width": null } }, - "ebc1cd16d38b4793bf1112d0927953b7": { + "ec6bf18d0b6f4b889b872c2367fbf92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f01752874a4843f0a24d63f445cc198f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f0c363be2cbb4cca8bafc15e33588fdb": { + "f0be994ae5a44b0fa8736dca37ac2d35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2998,7 +3035,7 @@ "description_width": "" } }, - "f2771b9bc9a14ee3aa56157b0502327a": { + "ff6c319c736649f9b5fd91bf069cbc86": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3049,43 +3086,6 @@ "visibility": null, "width": null } - }, - "f33fb49d865d44168fb5d6baa65c54d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5f5706e3e7a42a381d9516fce9757ab", - "IPY_MODEL_e06edccc93074bdebf00e63fba330bd6", - "IPY_MODEL_d9f2f07b06fe4caba0db1beb29d785dd" - ], - "layout": "IPY_MODEL_6bc17f07c1674ca9b444cdcf99e8c308" - } - }, - "fe1ddb8e1c9f4597a20eaae2164d6f14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 4b2cf0569..bb62e7c05 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1190,15 +1190,15 @@

    Functionality 1: Incremental issue searchFunctionality 2: Specifying nondefault arguments
    -
    +
    @@ -1515,15 +1515,15 @@

    Functionality 3: Save and load Datalab objectsFunctionality 4: Adding a custom IssueManager -{"state": {"a6a02b7eb5194f79aa13c36ca6be9adb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0612c3cfd464ff0b5e0d8c32aec21a2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "95b4ac771b364b53832e72f148c7ebbf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a6a02b7eb5194f79aa13c36ca6be9adb", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c0612c3cfd464ff0b5e0d8c32aec21a2", "value": 132.0}}, "ec240dd3f24540b6be00a9f55d52713b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7b2f3b79b094685bf14c3cf8e38b861": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7dd7442d04fd48188ad012ca7a6d254f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec240dd3f24540b6be00a9f55d52713b", "placeholder": "\u200b", "style": "IPY_MODEL_e7b2f3b79b094685bf14c3cf8e38b861", "value": "Saving the dataset (1/1 shards): 100%"}}, "3b52babb106e458eafe99147a0ccbae6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "341f9927e2414cbabcc91e79e1daf284": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a08a482690c74605b8f939333c210bfd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3b52babb106e458eafe99147a0ccbae6", "placeholder": "\u200b", "style": "IPY_MODEL_341f9927e2414cbabcc91e79e1daf284", "value": " 132/132 [00:00<00:00, 10134.69 examples/s]"}}, "3b03c17da7b24f6c965e487602b7a7b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb5604d45e6a43028f6b1ff13d871a34": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7dd7442d04fd48188ad012ca7a6d254f", "IPY_MODEL_95b4ac771b364b53832e72f148c7ebbf", "IPY_MODEL_a08a482690c74605b8f939333c210bfd"], "layout": "IPY_MODEL_3b03c17da7b24f6c965e487602b7a7b3"}}}, "version_major": 2, "version_minor": 0} +{"state": {"37648a1d3ed64712bad1dc62d91bcc20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcd37a9ca1084ab7abb9402dc6f3d464": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "10382a80e39e4fc699a36f0e573519cb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_37648a1d3ed64712bad1dc62d91bcc20", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bcd37a9ca1084ab7abb9402dc6f3d464", "value": 132.0}}, "1da516bda2144843b9fdbd221bba7fbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c6feedc04694baeba539aea8d458dab": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "71a70bdb1c384d38aaaaebe31d994340": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1da516bda2144843b9fdbd221bba7fbf", "placeholder": "\u200b", "style": "IPY_MODEL_2c6feedc04694baeba539aea8d458dab", "value": "Saving the dataset (1/1 shards): 100%"}}, "a2de29b3d3c74030a4badec62f04530e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e486cfe0d5ab48229b33556ab089c589": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b8557e0bb3eb40dab898bc081f85d009": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a2de29b3d3c74030a4badec62f04530e", "placeholder": "\u200b", "style": "IPY_MODEL_e486cfe0d5ab48229b33556ab089c589", "value": " 132/132 [00:00<00:00, 11199.74 examples/s]"}}, "8bd8889a13f547acb9ed70e8759024b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c0c4ef1e9db4712a8f263817cf218c9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_71a70bdb1c384d38aaaaebe31d994340", "IPY_MODEL_10382a80e39e4fc699a36f0e573519cb", "IPY_MODEL_b8557e0bb3eb40dab898bc081f85d009"], "layout": "IPY_MODEL_8bd8889a13f547acb9ed70e8759024b9"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 695d18089..5376434e7 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:14:59.190807Z", - "iopub.status.busy": "2024-01-16T18:14:59.190598Z", - "iopub.status.idle": "2024-01-16T18:15:00.334362Z", - "shell.execute_reply": "2024-01-16T18:15:00.333678Z" + "iopub.execute_input": "2024-01-17T17:46:26.531087Z", + "iopub.status.busy": "2024-01-17T17:46:26.530895Z", + "iopub.status.idle": "2024-01-17T17:46:27.626130Z", + "shell.execute_reply": "2024-01-17T17:46:27.625413Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.337479Z", - "iopub.status.busy": "2024-01-16T18:15:00.336938Z", - "iopub.status.idle": "2024-01-16T18:15:00.340299Z", - "shell.execute_reply": "2024-01-16T18:15:00.339696Z" + "iopub.execute_input": "2024-01-17T17:46:27.629155Z", + "iopub.status.busy": "2024-01-17T17:46:27.628840Z", + "iopub.status.idle": "2024-01-17T17:46:27.632053Z", + "shell.execute_reply": "2024-01-17T17:46:27.631492Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.342974Z", - "iopub.status.busy": "2024-01-16T18:15:00.342580Z", - "iopub.status.idle": "2024-01-16T18:15:00.352513Z", - "shell.execute_reply": "2024-01-16T18:15:00.351788Z" + "iopub.execute_input": "2024-01-17T17:46:27.634434Z", + "iopub.status.busy": "2024-01-17T17:46:27.634232Z", + "iopub.status.idle": "2024-01-17T17:46:27.643719Z", + "shell.execute_reply": "2024-01-17T17:46:27.643067Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.355239Z", - "iopub.status.busy": "2024-01-16T18:15:00.354828Z", - "iopub.status.idle": "2024-01-16T18:15:00.360093Z", - "shell.execute_reply": "2024-01-16T18:15:00.359544Z" + "iopub.execute_input": "2024-01-17T17:46:27.646002Z", + "iopub.status.busy": "2024-01-17T17:46:27.645648Z", + "iopub.status.idle": "2024-01-17T17:46:27.650899Z", + "shell.execute_reply": "2024-01-17T17:46:27.650373Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.362926Z", - "iopub.status.busy": "2024-01-16T18:15:00.362525Z", - "iopub.status.idle": "2024-01-16T18:15:00.669314Z", - "shell.execute_reply": "2024-01-16T18:15:00.668558Z" + "iopub.execute_input": "2024-01-17T17:46:27.653554Z", + "iopub.status.busy": "2024-01-17T17:46:27.653032Z", + "iopub.status.idle": "2024-01-17T17:46:27.924861Z", + "shell.execute_reply": "2024-01-17T17:46:27.924234Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:00.672435Z", - "iopub.status.busy": "2024-01-16T18:15:00.672157Z", - "iopub.status.idle": "2024-01-16T18:15:01.063788Z", - "shell.execute_reply": "2024-01-16T18:15:01.063086Z" + "iopub.execute_input": "2024-01-17T17:46:27.927989Z", + "iopub.status.busy": "2024-01-17T17:46:27.927358Z", + "iopub.status.idle": "2024-01-17T17:46:28.302276Z", + "shell.execute_reply": "2024-01-17T17:46:28.301600Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.066563Z", - "iopub.status.busy": "2024-01-16T18:15:01.066212Z", - "iopub.status.idle": "2024-01-16T18:15:01.091850Z", - "shell.execute_reply": "2024-01-16T18:15:01.091241Z" + "iopub.execute_input": "2024-01-17T17:46:28.305482Z", + "iopub.status.busy": "2024-01-17T17:46:28.304916Z", + "iopub.status.idle": "2024-01-17T17:46:28.330184Z", + "shell.execute_reply": "2024-01-17T17:46:28.329666Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.095118Z", - "iopub.status.busy": "2024-01-16T18:15:01.094621Z", - "iopub.status.idle": "2024-01-16T18:15:01.107088Z", - "shell.execute_reply": "2024-01-16T18:15:01.106526Z" + "iopub.execute_input": "2024-01-17T17:46:28.332877Z", + "iopub.status.busy": "2024-01-17T17:46:28.332372Z", + "iopub.status.idle": "2024-01-17T17:46:28.344293Z", + "shell.execute_reply": "2024-01-17T17:46:28.343665Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:01.110020Z", - "iopub.status.busy": "2024-01-16T18:15:01.109614Z", - "iopub.status.idle": "2024-01-16T18:15:02.507580Z", - "shell.execute_reply": "2024-01-16T18:15:02.506721Z" + "iopub.execute_input": "2024-01-17T17:46:28.346997Z", + "iopub.status.busy": "2024-01-17T17:46:28.346641Z", + "iopub.status.idle": "2024-01-17T17:46:29.636585Z", + "shell.execute_reply": "2024-01-17T17:46:29.635810Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.510601Z", - "iopub.status.busy": "2024-01-16T18:15:02.510056Z", - "iopub.status.idle": "2024-01-16T18:15:02.534510Z", - "shell.execute_reply": "2024-01-16T18:15:02.533834Z" + "iopub.execute_input": "2024-01-17T17:46:29.639229Z", + "iopub.status.busy": "2024-01-17T17:46:29.638907Z", + "iopub.status.idle": "2024-01-17T17:46:29.661603Z", + "shell.execute_reply": "2024-01-17T17:46:29.660982Z" } }, "outputs": [ @@ -761,15 +761,15 @@ " \n", "\n", "Number of examples with this issue: 6\n", - "Overall dataset quality in terms of this issue: 0.5221\n", + "Overall dataset quality in terms of this issue: 0.3558\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.046465\n", - "130 True 0.068695\n", - "129 True 0.068695\n", - "127 True 0.076251\n", - "128 True 0.083941\n", + "126 True 0.006636\n", + "130 True 0.012571\n", + "129 True 0.012571\n", + "127 True 0.014909\n", + "128 True 0.017443\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.537296Z", - "iopub.status.busy": "2024-01-16T18:15:02.536906Z", - "iopub.status.idle": "2024-01-16T18:15:02.559431Z", - "shell.execute_reply": "2024-01-16T18:15:02.558731Z" + "iopub.execute_input": "2024-01-17T17:46:29.663889Z", + "iopub.status.busy": "2024-01-17T17:46:29.663690Z", + "iopub.status.idle": "2024-01-17T17:46:29.683442Z", + "shell.execute_reply": "2024-01-17T17:46:29.682806Z" } }, "outputs": [ @@ -872,15 +872,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.562402Z", - "iopub.status.busy": "2024-01-16T18:15:02.561995Z", - "iopub.status.idle": "2024-01-16T18:15:02.577600Z", - "shell.execute_reply": "2024-01-16T18:15:02.576984Z" + "iopub.execute_input": "2024-01-17T17:46:29.685995Z", + "iopub.status.busy": "2024-01-17T17:46:29.685689Z", + "iopub.status.idle": "2024-01-17T17:46:29.700170Z", + "shell.execute_reply": "2024-01-17T17:46:29.699633Z" } }, "outputs": [ @@ -988,23 +988,23 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", - "125 True 0.090878\n", - "37 True 0.169462\n", - "109 False 0.194566\n", - "35 False 0.196302\n", - "5 False 0.206314\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", + "125 True 0.101107\n", + "37 True 0.183382\n", + "109 False 0.209259\n", + "35 False 0.211042\n", + "5 False 0.221316\n", "\n", "Additional Information: \n", - "average_ood_score: 0.32933380816554325\n", + "average_ood_score: 0.34530442089193386\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.580154Z", - "iopub.status.busy": "2024-01-16T18:15:02.579938Z", - "iopub.status.idle": "2024-01-16T18:15:02.604035Z", - "shell.execute_reply": "2024-01-16T18:15:02.603347Z" + "iopub.execute_input": "2024-01-17T17:46:29.702709Z", + "iopub.status.busy": "2024-01-17T17:46:29.702323Z", + "iopub.status.idle": "2024-01-17T17:46:29.725561Z", + "shell.execute_reply": "2024-01-17T17:46:29.724870Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb5604d45e6a43028f6b1ff13d871a34", + "model_id": "5c0c4ef1e9db4712a8f263817cf218c9", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.607374Z", - "iopub.status.busy": "2024-01-16T18:15:02.607045Z", - "iopub.status.idle": "2024-01-16T18:15:02.623883Z", - "shell.execute_reply": "2024-01-16T18:15:02.623173Z" + "iopub.execute_input": "2024-01-17T17:46:29.727960Z", + "iopub.status.busy": "2024-01-17T17:46:29.727582Z", + "iopub.status.idle": "2024-01-17T17:46:29.743329Z", + "shell.execute_reply": "2024-01-17T17:46:29.742799Z" } }, "outputs": [ @@ -1163,15 +1163,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.626805Z", - "iopub.status.busy": "2024-01-16T18:15:02.626365Z", - "iopub.status.idle": "2024-01-16T18:15:02.633286Z", - "shell.execute_reply": "2024-01-16T18:15:02.632658Z" + "iopub.execute_input": "2024-01-17T17:46:29.745890Z", + "iopub.status.busy": "2024-01-17T17:46:29.745520Z", + "iopub.status.idle": "2024-01-17T17:46:29.751885Z", + "shell.execute_reply": "2024-01-17T17:46:29.751225Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:02.635969Z", - "iopub.status.busy": "2024-01-16T18:15:02.635563Z", - "iopub.status.idle": "2024-01-16T18:15:02.655436Z", - "shell.execute_reply": "2024-01-16T18:15:02.654832Z" + "iopub.execute_input": "2024-01-17T17:46:29.754322Z", + "iopub.status.busy": "2024-01-17T17:46:29.753962Z", + "iopub.status.idle": "2024-01-17T17:46:29.773941Z", + "shell.execute_reply": "2024-01-17T17:46:29.773394Z" } }, "outputs": [ @@ -1364,15 +1364,15 @@ " \n", "\n", "Number of examples with this issue: 7\n", - "Overall dataset quality in terms of this issue: 0.3293\n", + "Overall dataset quality in terms of this issue: 0.3453\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "126 True 0.025076\n", - "130 True 0.026534\n", - "129 True 0.026534\n", - "128 True 0.050766\n", - "127 True 0.051025\n", + "126 True 0.029542\n", + "130 True 0.031182\n", + "129 True 0.031182\n", + "128 True 0.057961\n", + "127 True 0.058244\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -1430,22 +1430,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "341f9927e2414cbabcc91e79e1daf284": { + "10382a80e39e4fc699a36f0e573519cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37648a1d3ed64712bad1dc62d91bcc20", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcd37a9ca1084ab7abb9402dc6f3d464", + "value": 132.0 } }, - "3b03c17da7b24f6c965e487602b7a7b3": { + "1da516bda2144843b9fdbd221bba7fbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1497,7 +1506,22 @@ "width": null } }, - "3b52babb106e458eafe99147a0ccbae6": { + "2c6feedc04694baeba539aea8d458dab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37648a1d3ed64712bad1dc62d91bcc20": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1549,52 +1573,29 @@ "width": null } }, - "7dd7442d04fd48188ad012ca7a6d254f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec240dd3f24540b6be00a9f55d52713b", - "placeholder": "​", - "style": "IPY_MODEL_e7b2f3b79b094685bf14c3cf8e38b861", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "95b4ac771b364b53832e72f148c7ebbf": { + "5c0c4ef1e9db4712a8f263817cf218c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6a02b7eb5194f79aa13c36ca6be9adb", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0612c3cfd464ff0b5e0d8c32aec21a2", - "value": 132.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71a70bdb1c384d38aaaaebe31d994340", + "IPY_MODEL_10382a80e39e4fc699a36f0e573519cb", + "IPY_MODEL_b8557e0bb3eb40dab898bc081f85d009" + ], + "layout": "IPY_MODEL_8bd8889a13f547acb9ed70e8759024b9" } }, - "a08a482690c74605b8f939333c210bfd": { + "71a70bdb1c384d38aaaaebe31d994340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1609,13 +1610,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3b52babb106e458eafe99147a0ccbae6", + "layout": "IPY_MODEL_1da516bda2144843b9fdbd221bba7fbf", "placeholder": "​", - "style": "IPY_MODEL_341f9927e2414cbabcc91e79e1daf284", - "value": " 132/132 [00:00<00:00, 10134.69 examples/s]" + "style": "IPY_MODEL_2c6feedc04694baeba539aea8d458dab", + "value": "Saving the dataset (1/1 shards): 100%" } }, - "a6a02b7eb5194f79aa13c36ca6be9adb": { + "8bd8889a13f547acb9ed70e8759024b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1667,60 +1668,7 @@ "width": null } }, - "bb5604d45e6a43028f6b1ff13d871a34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dd7442d04fd48188ad012ca7a6d254f", - "IPY_MODEL_95b4ac771b364b53832e72f148c7ebbf", - "IPY_MODEL_a08a482690c74605b8f939333c210bfd" - ], - "layout": "IPY_MODEL_3b03c17da7b24f6c965e487602b7a7b3" - } - }, - "c0612c3cfd464ff0b5e0d8c32aec21a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7b2f3b79b094685bf14c3cf8e38b861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec240dd3f24540b6be00a9f55d52713b": { + "a2de29b3d3c74030a4badec62f04530e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,6 +1719,58 @@ "visibility": null, "width": null } + }, + "b8557e0bb3eb40dab898bc081f85d009": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2de29b3d3c74030a4badec62f04530e", + "placeholder": "​", + "style": "IPY_MODEL_e486cfe0d5ab48229b33556ab089c589", + "value": " 132/132 [00:00<00:00, 11199.74 examples/s]" + } + }, + "bcd37a9ca1084ab7abb9402dc6f3d464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e486cfe0d5ab48229b33556ab089c589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index ef629e67a..f4e0d3c29 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -1179,15 +1179,15 @@

    4. Use Datalab to find issues in the dataset\n", "

    \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -956,7 +956,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.856061 17\n", - "2 outlier 0.522080 6\n", + "2 outlier 0.355772 6\n", "3 near_duplicate 0.616034 4\n", "4 non_iid 0.821750 0\n", "5 class_imbalance 0.022727 3" @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.543588Z", - "iopub.status.busy": "2024-01-16T18:15:10.543240Z", - "iopub.status.idle": "2024-01-16T18:15:10.551015Z", - "shell.execute_reply": "2024-01-16T18:15:10.550348Z" + "iopub.execute_input": "2024-01-17T17:46:37.612210Z", + "iopub.status.busy": "2024-01-17T17:46:37.611774Z", + "iopub.status.idle": "2024-01-17T17:46:37.617979Z", + "shell.execute_reply": "2024-01-17T17:46:37.617429Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.553779Z", - "iopub.status.busy": "2024-01-16T18:15:10.553337Z", - "iopub.status.idle": "2024-01-16T18:15:10.565073Z", - "shell.execute_reply": "2024-01-16T18:15:10.564364Z" + "iopub.execute_input": "2024-01-17T17:46:37.620289Z", + "iopub.status.busy": "2024-01-17T17:46:37.619926Z", + "iopub.status.idle": "2024-01-17T17:46:37.630411Z", + "shell.execute_reply": "2024-01-17T17:46:37.629882Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1120,7 +1120,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1135,7 +1135,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1150,7 +1150,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1165,7 +1165,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1186,11 +1186,11 @@ "4 False 1.0 True 0.090224 False \n", "\n", " outlier_score is_near_duplicate_issue near_duplicate_score \\\n", - "0 0.586131 False 0.664083 \n", - "1 0.548979 False 0.641516 \n", - "2 0.622256 False 0.601188 \n", - "3 0.499498 False 0.562539 \n", - "4 0.632385 False 0.746763 \n", + "0 0.417707 False 0.664083 \n", + "1 0.375317 False 0.641516 \n", + "2 0.460593 False 0.601188 \n", + "3 0.321635 False 0.562539 \n", + "4 0.472909 False 0.746763 \n", "\n", " is_non_iid_issue non_iid_score is_class_imbalance_issue \\\n", "0 False 0.970324 False \n", @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.567794Z", - "iopub.status.busy": "2024-01-16T18:15:10.567561Z", - "iopub.status.idle": "2024-01-16T18:15:10.578738Z", - "shell.execute_reply": "2024-01-16T18:15:10.578074Z" + "iopub.execute_input": "2024-01-17T17:46:37.632763Z", + "iopub.status.busy": "2024-01-17T17:46:37.632381Z", + "iopub.status.idle": "2024-01-17T17:46:37.641479Z", + "shell.execute_reply": "2024-01-17T17:46:37.640909Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.581561Z", - "iopub.status.busy": "2024-01-16T18:15:10.581093Z", - "iopub.status.idle": "2024-01-16T18:15:10.589204Z", - "shell.execute_reply": "2024-01-16T18:15:10.588527Z" + "iopub.execute_input": "2024-01-17T17:46:37.643878Z", + "iopub.status.busy": "2024-01-17T17:46:37.643444Z", + "iopub.status.idle": "2024-01-17T17:46:37.650979Z", + "shell.execute_reply": "2024-01-17T17:46:37.650343Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:10.591582Z", - "iopub.status.busy": "2024-01-16T18:15:10.591242Z", - "iopub.status.idle": "2024-01-16T18:15:10.602108Z", - "shell.execute_reply": "2024-01-16T18:15:10.601446Z" + "iopub.execute_input": "2024-01-17T17:46:37.653232Z", + "iopub.status.busy": "2024-01-17T17:46:37.653033Z", + "iopub.status.idle": "2024-01-17T17:46:37.664158Z", + "shell.execute_reply": "2024-01-17T17:46:37.663528Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index be65fd430..6ddac2666 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -1124,15 +1124,15 @@

    5. Use cleanlab to find label issues2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin'}
    +Classes: {'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard'}
     

    Let’s view the i-th example in the dataset:

    @@ -998,43 +998,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1161,15 +1161,15 @@

    4. Use cleanlab to find issues in your datasetCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 06b409dd3..d410d5bda 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:26.509613Z", - "iopub.status.busy": "2024-01-16T18:15:26.508992Z", - "iopub.status.idle": "2024-01-16T18:15:29.583094Z", - "shell.execute_reply": "2024-01-16T18:15:29.582453Z" + "iopub.execute_input": "2024-01-17T17:46:54.794639Z", + "iopub.status.busy": "2024-01-17T17:46:54.794127Z", + "iopub.status.idle": "2024-01-17T17:46:57.201149Z", + "shell.execute_reply": "2024-01-17T17:46:57.200448Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de260d01cdf74722b4e223abf02249b9", + "model_id": "4d6dd824714e47ea8e86861033721abe", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.586111Z", - "iopub.status.busy": "2024-01-16T18:15:29.585750Z", - "iopub.status.idle": "2024-01-16T18:15:29.589598Z", - "shell.execute_reply": "2024-01-16T18:15:29.589069Z" + "iopub.execute_input": "2024-01-17T17:46:57.203915Z", + "iopub.status.busy": "2024-01-17T17:46:57.203597Z", + "iopub.status.idle": "2024-01-17T17:46:57.207148Z", + "shell.execute_reply": "2024-01-17T17:46:57.206641Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.591927Z", - "iopub.status.busy": "2024-01-16T18:15:29.591714Z", - "iopub.status.idle": "2024-01-16T18:15:29.595249Z", - "shell.execute_reply": "2024-01-16T18:15:29.594697Z" + "iopub.execute_input": "2024-01-17T17:46:57.209506Z", + "iopub.status.busy": "2024-01-17T17:46:57.209143Z", + "iopub.status.idle": "2024-01-17T17:46:57.212305Z", + "shell.execute_reply": "2024-01-17T17:46:57.211735Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.597544Z", - "iopub.status.busy": "2024-01-16T18:15:29.597342Z", - "iopub.status.idle": "2024-01-16T18:15:29.651467Z", - "shell.execute_reply": "2024-01-16T18:15:29.650775Z" + "iopub.execute_input": "2024-01-17T17:46:57.214707Z", + "iopub.status.busy": "2024-01-17T17:46:57.214347Z", + "iopub.status.idle": "2024-01-17T17:46:57.395709Z", + "shell.execute_reply": "2024-01-17T17:46:57.395061Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.653996Z", - "iopub.status.busy": "2024-01-16T18:15:29.653769Z", - "iopub.status.idle": "2024-01-16T18:15:29.657897Z", - "shell.execute_reply": "2024-01-16T18:15:29.657229Z" + "iopub.execute_input": "2024-01-17T17:46:57.398252Z", + "iopub.status.busy": "2024-01-17T17:46:57.397904Z", + "iopub.status.idle": "2024-01-17T17:46:57.402203Z", + "shell.execute_reply": "2024-01-17T17:46:57.401577Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.660550Z", - "iopub.status.busy": "2024-01-16T18:15:29.660142Z", - "iopub.status.idle": "2024-01-16T18:15:29.663721Z", - "shell.execute_reply": "2024-01-16T18:15:29.663103Z" + "iopub.execute_input": "2024-01-17T17:46:57.404586Z", + "iopub.status.busy": "2024-01-17T17:46:57.404121Z", + "iopub.status.idle": "2024-01-17T17:46:57.407873Z", + "shell.execute_reply": "2024-01-17T17:46:57.407230Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:29.666330Z", - "iopub.status.busy": "2024-01-16T18:15:29.666118Z", - "iopub.status.idle": "2024-01-16T18:15:38.978494Z", - "shell.execute_reply": "2024-01-16T18:15:38.977700Z" + "iopub.execute_input": "2024-01-17T17:46:57.410288Z", + "iopub.status.busy": "2024-01-17T17:46:57.409861Z", + "iopub.status.idle": "2024-01-17T17:47:08.188805Z", + "shell.execute_reply": "2024-01-17T17:47:08.188077Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2d756e44dfbf485099a71c223ecdab7c", + "model_id": "a1ca6409d41942189022d65764a2e1d3", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5c9a526e6c2b45fda4662662ff0171be", + "model_id": "f9ab6d66a2874b62b0add606d9b5faf0", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d052a42e758d4da29b6a2579a4ed6281", + "model_id": "e02d6b41b3174376a04e2e344f27c124", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24670ac584954e668f7500a5b300bfa9", + "model_id": "486cd83d8c4d41b2b5ed41c9e027bd17", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd2df2a857194f3c84ec7c439c06c633", + "model_id": "fddc599b9d9045e89eca6200bda0fb08", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6fd01a4acf2415a903c408b22c39a23", + "model_id": "923ac1abf41345f8b59ae734d2028678", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c62d0fb18a343ccb8752db0f8f5d7e7", + "model_id": "93cef699b3cb436aabe16091e28e15b2", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:38.982207Z", - "iopub.status.busy": "2024-01-16T18:15:38.981652Z", - "iopub.status.idle": "2024-01-16T18:15:40.151729Z", - "shell.execute_reply": "2024-01-16T18:15:40.151039Z" + "iopub.execute_input": "2024-01-17T17:47:08.191908Z", + "iopub.status.busy": "2024-01-17T17:47:08.191455Z", + "iopub.status.idle": "2024-01-17T17:47:09.358257Z", + "shell.execute_reply": "2024-01-17T17:47:09.357576Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:40.156580Z", - "iopub.status.busy": "2024-01-16T18:15:40.155214Z", - "iopub.status.idle": "2024-01-16T18:15:40.160059Z", - "shell.execute_reply": "2024-01-16T18:15:40.159490Z" + "iopub.execute_input": "2024-01-17T17:47:09.361562Z", + "iopub.status.busy": "2024-01-17T17:47:09.361157Z", + "iopub.status.idle": "2024-01-17T17:47:09.364367Z", + "shell.execute_reply": "2024-01-17T17:47:09.363807Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:40.164401Z", - "iopub.status.busy": "2024-01-16T18:15:40.163271Z", - "iopub.status.idle": "2024-01-16T18:15:41.545769Z", - "shell.execute_reply": "2024-01-16T18:15:41.544995Z" + "iopub.execute_input": "2024-01-17T17:47:09.367089Z", + "iopub.status.busy": "2024-01-17T17:47:09.366658Z", + "iopub.status.idle": "2024-01-17T17:47:10.684064Z", + "shell.execute_reply": "2024-01-17T17:47:10.683341Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.549323Z", - "iopub.status.busy": "2024-01-16T18:15:41.548635Z", - "iopub.status.idle": "2024-01-16T18:15:41.583393Z", - "shell.execute_reply": "2024-01-16T18:15:41.582767Z" + "iopub.execute_input": "2024-01-17T17:47:10.687570Z", + "iopub.status.busy": "2024-01-17T17:47:10.686928Z", + "iopub.status.idle": "2024-01-17T17:47:10.720892Z", + "shell.execute_reply": "2024-01-17T17:47:10.720268Z" }, "scrolled": true }, @@ -692,15 +692,15 @@ " \n", "\n", "Number of examples with this issue: 38\n", - "Overall dataset quality in terms of this issue: 0.9122\n", + "Overall dataset quality in terms of this issue: 0.3584\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "994 True 0.676322\n", - "999 True 0.693868\n", - "81 True 0.697240\n", - "433 True 0.700874\n", - "989 True 0.713590\n", + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.586714Z", - "iopub.status.busy": "2024-01-16T18:15:41.586322Z", - "iopub.status.idle": "2024-01-16T18:15:41.596933Z", - "shell.execute_reply": "2024-01-16T18:15:41.596308Z" + "iopub.execute_input": "2024-01-17T17:47:10.723864Z", + "iopub.status.busy": "2024-01-17T17:47:10.723437Z", + "iopub.status.idle": "2024-01-17T17:47:10.733843Z", + "shell.execute_reply": "2024-01-17T17:47:10.733248Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.600215Z", - "iopub.status.busy": "2024-01-16T18:15:41.599840Z", - "iopub.status.idle": "2024-01-16T18:15:41.604692Z", - "shell.execute_reply": "2024-01-16T18:15:41.604235Z" + "iopub.execute_input": "2024-01-17T17:47:10.736785Z", + "iopub.status.busy": "2024-01-17T17:47:10.736347Z", + "iopub.status.idle": "2024-01-17T17:47:10.741503Z", + "shell.execute_reply": "2024-01-17T17:47:10.740915Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.607014Z", - "iopub.status.busy": "2024-01-16T18:15:41.606716Z", - "iopub.status.idle": "2024-01-16T18:15:41.613217Z", - "shell.execute_reply": "2024-01-16T18:15:41.612550Z" + "iopub.execute_input": "2024-01-17T17:47:10.743853Z", + "iopub.status.busy": "2024-01-17T17:47:10.743531Z", + "iopub.status.idle": "2024-01-17T17:47:10.750194Z", + "shell.execute_reply": "2024-01-17T17:47:10.749572Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.615380Z", - "iopub.status.busy": "2024-01-16T18:15:41.615184Z", - "iopub.status.idle": "2024-01-16T18:15:41.622167Z", - "shell.execute_reply": "2024-01-16T18:15:41.621648Z" + "iopub.execute_input": "2024-01-17T17:47:10.752450Z", + "iopub.status.busy": "2024-01-17T17:47:10.752254Z", + "iopub.status.idle": "2024-01-17T17:47:10.759014Z", + "shell.execute_reply": "2024-01-17T17:47:10.758395Z" } }, "outputs": [ @@ -1118,27 +1118,27 @@ "

    \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "

    transform_distances_to_scores(distances, k, t)

    transform_distances_to_scores(avg_distances, ...)

    Returns an outlier score for each example based on its average distance to its k nearest neighbors.

    2outlier0.5220800.3557726
    False0.859109False0.5861310.417707False0.664083FalseFalse0.816965False0.5489790.375317False0.641516FalseFalse0.530924False0.6222560.460593False0.601188FalseFalse0.752776False0.4994980.321635False0.562539FalseTrue0.090224False0.6323850.472909False0.746763False
    994True0.6763220.009642
    999True0.6938680.013067
    81True0.6972400.013841
    433True0.7008740.014722
    989True0.7135900.018224
    \n", @@ -1146,11 +1146,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "994 True 0.676322\n", - "999 True 0.693868\n", - "81 True 0.697240\n", - "433 True 0.700874\n", - "989 True 0.713590" + "994 True 0.009642\n", + "999 True 0.013067\n", + "81 True 0.013841\n", + "433 True 0.014722\n", + "989 True 0.018224" ] }, "execution_count": 15, @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.624305Z", - "iopub.status.busy": "2024-01-16T18:15:41.624107Z", - "iopub.status.idle": "2024-01-16T18:15:41.630553Z", - "shell.execute_reply": "2024-01-16T18:15:41.630039Z" + "iopub.execute_input": "2024-01-17T17:47:10.761412Z", + "iopub.status.busy": "2024-01-17T17:47:10.760942Z", + "iopub.status.idle": "2024-01-17T17:47:10.767290Z", + "shell.execute_reply": "2024-01-17T17:47:10.766679Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.633149Z", - "iopub.status.busy": "2024-01-16T18:15:41.632699Z", - "iopub.status.idle": "2024-01-16T18:15:41.642212Z", - "shell.execute_reply": "2024-01-16T18:15:41.641706Z" + "iopub.execute_input": "2024-01-17T17:47:10.769715Z", + "iopub.status.busy": "2024-01-17T17:47:10.769271Z", + "iopub.status.idle": "2024-01-17T17:47:10.778482Z", + "shell.execute_reply": "2024-01-17T17:47:10.777865Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.644490Z", - "iopub.status.busy": "2024-01-16T18:15:41.644124Z", - "iopub.status.idle": "2024-01-16T18:15:41.649988Z", - "shell.execute_reply": "2024-01-16T18:15:41.649357Z" + "iopub.execute_input": "2024-01-17T17:47:10.780879Z", + "iopub.status.busy": "2024-01-17T17:47:10.780485Z", + "iopub.status.idle": "2024-01-17T17:47:10.786496Z", + "shell.execute_reply": "2024-01-17T17:47:10.785953Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.652099Z", - "iopub.status.busy": "2024-01-16T18:15:41.651906Z", - "iopub.status.idle": "2024-01-16T18:15:41.849399Z", - "shell.execute_reply": "2024-01-16T18:15:41.848691Z" + "iopub.execute_input": "2024-01-17T17:47:10.788874Z", + "iopub.status.busy": "2024-01-17T17:47:10.788487Z", + "iopub.status.idle": "2024-01-17T17:47:10.964483Z", + "shell.execute_reply": "2024-01-17T17:47:10.963721Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.851970Z", - "iopub.status.busy": "2024-01-16T18:15:41.851583Z", - "iopub.status.idle": "2024-01-16T18:15:41.855616Z", - "shell.execute_reply": "2024-01-16T18:15:41.855099Z" + "iopub.execute_input": "2024-01-17T17:47:10.967554Z", + "iopub.status.busy": "2024-01-17T17:47:10.967080Z", + "iopub.status.idle": "2024-01-17T17:47:10.971956Z", + "shell.execute_reply": "2024-01-17T17:47:10.971261Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:41.857981Z", - "iopub.status.busy": "2024-01-16T18:15:41.857779Z", - "iopub.status.idle": "2024-01-16T18:15:41.863584Z", - "shell.execute_reply": "2024-01-16T18:15:41.863084Z" + "iopub.execute_input": "2024-01-17T17:47:10.974823Z", + "iopub.status.busy": "2024-01-17T17:47:10.974370Z", + "iopub.status.idle": "2024-01-17T17:47:10.981476Z", + "shell.execute_reply": "2024-01-17T17:47:10.980915Z" }, "nbsphinx": "hidden" }, @@ -1650,7 +1650,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0759285a3305483ea269c5bf9e1cbe2e": { + "0067bb0fb19d4d0db5c07f22950a8060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "02a5a9625e224314839f73f9c9a63690": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1702,69 +1718,28 @@ "width": null } }, - "0c62d0fb18a343ccb8752db0f8f5d7e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54895c993f4c4f7f8cf209fafd741e8a", - "IPY_MODEL_bcbd3e96badf4a949942f2923a88ad19", - "IPY_MODEL_27ed2b3393a947f7843f72bd5f321ea7" - ], - "layout": "IPY_MODEL_de4dccc6dcf94826817b4bc10f412c0c" - } - }, - "11fd84d755ed451282932c3b1faddcad": { + "0338da529934419eb729317fb2b1c4cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63942c701b8e416e84b688d94be3db4d", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb0b3002d60a487091cfa4757167b277", - "value": 0.0 - } - }, - "12a066c9f8cd49c9a9581687783f20b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_b09047dce1f3479bab3ec10871168a97", + "placeholder": "​", + "style": "IPY_MODEL_8c475ed55973414aa5bfdb6fcf8a3d25", + "value": "tokenizer_config.json: 100%" } }, - "18edfd08b69444c8aa9231fba2faedfe": { + "03adea5765d145cca17349693a9cae9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1816,7 +1791,7 @@ "width": null } }, - "1cf20ff1f5984802a5cd16b1eaec1394": { + "054c50637ad44fa2be3b1ba75cd08e81": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1868,7 +1843,28 @@ "width": null } }, - "1dca7bf2b7c04ee09624ffbb8f1f627c": { + "0c73f115c24a42258d945adc1b4d6077": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69910eb05079410b81c419e4990a0c88", + "placeholder": "​", + "style": "IPY_MODEL_291a447579914c2cac84a578abe1d905", + "value": " 29.0/29.0 [00:00<00:00, 4.00kB/s]" + } + }, + "0f3fc51a7f7c429e88b4fe08e68d485c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1883,7 +1879,7 @@ "description_width": "" } }, - "2311ec33df4844579fa2e16ac4eabc86": { + "11385ec891b941f7ab74b6309be38545": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1935,29 +1931,7 @@ "width": null } }, - "24670ac584954e668f7500a5b300bfa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6fb829d1c5a4579bc2eb2aa68e79c11", - "IPY_MODEL_e49beb65e9f44f59a51c7b4cf2e5f4a2", - "IPY_MODEL_94910b9574b349018834a2b17db718db" - ], - "layout": "IPY_MODEL_826a7a8da0bc43f1ad485aad4195b624" - } - }, - "24e32a04a58f4a75b4932d1d0459729b": { + "13a65b4496184513bd6e5203847379c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2009,49 +1983,7 @@ "width": null } }, - "25a969a86e874ee0a0e989f4ebafa629": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_18edfd08b69444c8aa9231fba2faedfe", - "placeholder": "​", - "style": "IPY_MODEL_477b5465c7a048508133c29a2ed560a5", - "value": "tokenizer.json: 100%" - } - }, - "27ed2b3393a947f7843f72bd5f321ea7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2311ec33df4844579fa2e16ac4eabc86", - "placeholder": "​", - "style": "IPY_MODEL_ff97dd840c5f447cb8e605fc19d99093", - "value": " 232k/232k [00:00<00:00, 24.7MB/s]" - } - }, - "2cab135dfb3a4627bb402b10d13604c1": { + "1669234d9fdd4410b6e7d5b68b80c4c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2103,29 +2035,7 @@ "width": null } }, - "2d756e44dfbf485099a71c223ecdab7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b7450c692704d618cb02b7edd69b688", - "IPY_MODEL_f2a08afd6b304032ab5a15ce051ad717", - "IPY_MODEL_a20cac4c96204c5aa6d6eb86c061fef8" - ], - "layout": "IPY_MODEL_bce94b677d8f4fb58039ba3377b9734b" - } - }, - "387cbf589c65434699135302c7c597ea": { + "1aa8f4785bf44ef6ba2f2e0b4a5fe9ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2177,28 +2087,7 @@ "width": null } }, - "3b7450c692704d618cb02b7edd69b688": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d3ecb04608c24054b87f2788b0567e59", - "placeholder": "​", - "style": "IPY_MODEL_b46f39a54b4b43ea8a50eda0bd5fd5a4", - "value": ".gitattributes: 100%" - } - }, - "43ecd77a189649a4bece7f7c497a9791": { + "1e95192ae214498f927e6d1d937f9fce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2250,7 +2139,22 @@ "width": null } }, - "477b5465c7a048508133c29a2ed560a5": { + "249d35c098cf41e3874398d7055faefe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "291a447579914c2cac84a578abe1d905": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2265,7 +2169,7 @@ "description_width": "" } }, - "4a064b70d21649b0832c8e78d8ac719a": { + "294be2883cc14148b7e17de02ff8a2ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2317,38 +2221,62 @@ "width": null } }, - "4fc2aff13970436ab2e22b04b1a81610": { + "2a62b2b9eaa046e78f94b1a29015b277": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "52ab5d5dc2354538bf67a45e8b4c8742": { + "2f8c5f8e509f4ba9bc1e9b7a4dabd7e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_64d266dbbf55458f84f8dfcd4b67ebde", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4f7935eee354f0fa142256b49628634", + "value": 0.0 + } + }, + "30c5df65eb524dd8bd7000f315f08ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "54895c993f4c4f7f8cf209fafd741e8a": { + "3209ed10a1e6424dabb46fd6cd0cd3ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2363,50 +2291,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d2a980b8c84d43479fb5662acd529811", + "layout": "IPY_MODEL_73db8f138cdf44c6bf433f5081af18de", "placeholder": "​", - "style": "IPY_MODEL_7ae9173345b446c897e5ed59b464467f", - "value": "vocab.txt: 100%" + "style": "IPY_MODEL_46947765e2b74ba881f97c32ed0bb8ae", + "value": " 665/665 [00:00<00:00, 85.9kB/s]" } }, - "5776482a74ef4b36b277198485d620f5": { + "3a746b2db1cc41368c93dbf4b73ea5e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_647e245b69a94a95862fd1d8a0aa45de", - "placeholder": "​", - "style": "IPY_MODEL_c0186adb5d2940f190ce7f6e1631fcd2", - "value": "" - } - }, - "59e23ba3bc354ef78d44e97773ebd565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_1aa8f4785bf44ef6ba2f2e0b4a5fe9ca", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c335c98cd337466f9e2f612ffc667c3f", + "value": 29.0 } }, - "5bdda1425a294a3687d354f498b8165f": { + "423f214830734939866c81dcb7004f51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2421,102 +2336,119 @@ "description_width": "" } }, - "5c9a526e6c2b45fda4662662ff0171be": { + "429b1c5f5d6f4c89a8836b0ffac6a522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd4ee0e835504f9d906840c87f3af567", - "IPY_MODEL_ed55ce8671e74ae4933b1e8be1ea80fb", - "IPY_MODEL_9b9f7191a50d4ac1968b4b10557648f2" - ], - "layout": "IPY_MODEL_1cf20ff1f5984802a5cd16b1eaec1394" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e95192ae214498f927e6d1d937f9fce", + "placeholder": "​", + "style": "IPY_MODEL_ec422dd4d7cf40e09e692f5cbc381d5c", + "value": " 54.2M/54.2M [00:00<00:00, 76.5MB/s]" } }, - "5d1319569c2c4b3ba8bd8bef6523e4d2": { + "42f1360c968340d69af166afc43a23a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6fa295ea87e4e96bd907e949586cbb8", - "placeholder": "​", - "style": "IPY_MODEL_f91fe6d6fa7641f7ab0fe94cadc9c088", - "value": "config.json: 100%" + "layout": "IPY_MODEL_294be2883cc14148b7e17de02ff8a2ec", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bbcc5aadcba475581ea7963c33ce08b", + "value": 54245363.0 } }, - "63942c701b8e416e84b688d94be3db4d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "468f7d902d62428b932de8243be2cb54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "description_width": "" + } + }, + "46947765e2b74ba881f97c32ed0bb8ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "483b23ab5e5247aba7fc443cb9f62133": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "647e245b69a94a95862fd1d8a0aa45de": { + "486cd83d8c4d41b2b5ed41c9e027bd17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9a1b92d91d3946ee8c9ec73472837040", + "IPY_MODEL_42f1360c968340d69af166afc43a23a7", + "IPY_MODEL_429b1c5f5d6f4c89a8836b0ffac6a522" + ], + "layout": "IPY_MODEL_710b2f9bfe0f46da843033c3563968b6" + } + }, + "48d6311d566148349ecbd5b73cca9584": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2568,7 +2500,7 @@ "width": null } }, - "65253723f099411fb25f091ca732f04a": { + "48dff4f1e99643c283ddf4c4d590112d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2620,7 +2552,7 @@ "width": null } }, - "6a66f605c8a547ad9f9b932645d16171": { + "4ce415f4cce24a47b14587233966d96a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2672,73 +2604,50 @@ "width": null } }, - "6b3a869420cf4e399a40a5edd99f61e1": { + "4d6dd824714e47ea8e86861033721abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eabdcefb16c0418a837d5b1c7a9a2e84", - "placeholder": "​", - "style": "IPY_MODEL_4fc2aff13970436ab2e22b04b1a81610", - "value": " 466k/466k [00:00<00:00, 10.1MB/s]" - } - }, - "6d408f76954c4a7488399a15c8757daf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "786c830378aa4260831d7b81ed545420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9f5f644405fc4eb18efeeb0e13c92b6c", + "IPY_MODEL_2f8c5f8e509f4ba9bc1e9b7a4dabd7e1", + "IPY_MODEL_9412e50af8bd44279b016cc9e65ec9aa" + ], + "layout": "IPY_MODEL_7ca7bff39f7646ff80b0050a21dc2c9a" } }, - "7ae9173345b446c897e5ed59b464467f": { + "55b7e2b7864446078a13d21540ea77c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_787bd39d5efa47fba7695728d2fb5211", + "placeholder": "​", + "style": "IPY_MODEL_468f7d902d62428b932de8243be2cb54", + "value": ".gitattributes: 100%" } }, - "7ea85a51f5a749d585089639d8e15c8a": { + "5983ffde83ad40d4ac9c66ac6c11e258": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2754,7 +2663,7 @@ "description_width": "" } }, - "826a7a8da0bc43f1ad485aad4195b624": { + "5c614e105e6c408fbccea6644029883b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2806,38 +2715,31 @@ "width": null } }, - "88e85f5ae8f3426383890b02660b14af": { + "5ebe7e2ced2648baa64fc110ca56d5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8e6a4060f72c4cdbb1c101ebbea804bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c614e105e6c408fbccea6644029883b", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db51c4f27ffe4d5aac5189f38eb8ee23", + "value": 665.0 } }, - "91536bbb047647948c01ff8c70fc1292": { + "606d2cf7f7344cabb17bec474e84972b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2889,28 +2791,7 @@ "width": null } }, - "94910b9574b349018834a2b17db718db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dee4ca8ffc86463a9496610806db5123", - "placeholder": "​", - "style": "IPY_MODEL_c1bdd22ec39244fc803edc22f327714a", - "value": " 54.2M/54.2M [00:00<00:00, 262MB/s]" - } - }, - "981d4672c7964429b79724616f686f79": { + "64d266dbbf55458f84f8dfcd4b67ebde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2959,211 +2840,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "9b9f7191a50d4ac1968b4b10557648f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d228257b1fb844559daa0c990cecf863", - "placeholder": "​", - "style": "IPY_MODEL_5bdda1425a294a3687d354f498b8165f", - "value": " 2.21k/2.21k [00:00<00:00, 270kB/s]" - } - }, - "a06939c59aea4e8e84fb8d8f8c3c21dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7a76476648546ed8dfd09ac41efb2a6", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b14ce78e8fe54c19bc28269231c849b5", - "value": 466062.0 - } - }, - "a20cac4c96204c5aa6d6eb86c061fef8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa42cfff79a04e139a608e50e722509b", - "placeholder": "​", - "style": "IPY_MODEL_8e6a4060f72c4cdbb1c101ebbea804bd", - "value": " 391/391 [00:00<00:00, 46.4kB/s]" - } - }, - "a6fb829d1c5a4579bc2eb2aa68e79c11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_91536bbb047647948c01ff8c70fc1292", - "placeholder": "​", - "style": "IPY_MODEL_6d408f76954c4a7488399a15c8757daf", - "value": "pytorch_model.bin: 100%" - } - }, - "a8cd347dfd22417eb1f6ecd29a8cd6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0759285a3305483ea269c5bf9e1cbe2e", - "placeholder": "​", - "style": "IPY_MODEL_786c830378aa4260831d7b81ed545420", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "b14ce78e8fe54c19bc28269231c849b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b46f39a54b4b43ea8a50eda0bd5fd5a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b6fd01a4acf2415a903c408b22c39a23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d711812544a646f09ee951e96c4f18c2", - "IPY_MODEL_d32a1e72d6c54c6cb9dd30ed3925efb4", - "IPY_MODEL_d2f3e01c676c4dd19c48b467a7c4ade5" - ], - "layout": "IPY_MODEL_2cab135dfb3a4627bb402b10d13604c1" - } - }, - "bb0b3002d60a487091cfa4757167b277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bcbd3e96badf4a949942f2923a88ad19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6a66f605c8a547ad9f9b932645d16171", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_52ab5d5dc2354538bf67a45e8b4c8742", - "value": 231508.0 + "width": "20px" } }, - "bce94b677d8f4fb58039ba3377b9734b": { + "69910eb05079410b81c419e4990a0c88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3215,61 +2895,44 @@ "width": null } }, - "c0186adb5d2940f190ce7f6e1631fcd2": { + "6bbcc5aadcba475581ea7963c33ce08b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c1bdd22ec39244fc803edc22f327714a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "c2a05ee035844ad78a62df83fb1d8845": { + "70609e92fedd40868d71ad86e80e8604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a064b70d21649b0832c8e78d8ac719a", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_59e23ba3bc354ef78d44e97773ebd565", - "value": 665.0 + "layout": "IPY_MODEL_d493f1c28852403ba4c72f6e081c1c4e", + "placeholder": "​", + "style": "IPY_MODEL_0f3fc51a7f7c429e88b4fe08e68d485c", + "value": "README.md: 100%" } }, - "c5e1115d835d4fffa9f47c8247010624": { + "710b2f9bfe0f46da843033c3563968b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3321,7 +2984,28 @@ "width": null } }, - "c6fa295ea87e4e96bd907e949586cbb8": { + "72cbeb249fe5498388bf07fc7348ebd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_783a531b94474919b90dcaa1fa105fab", + "placeholder": "​", + "style": "IPY_MODEL_c3a2397e9e404f0f817d70cb720a9030", + "value": " 391/391 [00:00<00:00, 50.4kB/s]" + } + }, + "73db8f138cdf44c6bf433f5081af18de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3373,7 +3057,7 @@ "width": null } }, - "cc2b7ef567474499a646b190cb8eb39b": { + "783a531b94474919b90dcaa1fa105fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3425,50 +3109,7 @@ "width": null } }, - "cd4ee0e835504f9d906840c87f3af567": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed0f27baadac442eb8563f748bd6ea55", - "placeholder": "​", - "style": "IPY_MODEL_1dca7bf2b7c04ee09624ffbb8f1f627c", - "value": "README.md: 100%" - } - }, - "d052a42e758d4da29b6a2579a4ed6281": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d1319569c2c4b3ba8bd8bef6523e4d2", - "IPY_MODEL_c2a05ee035844ad78a62df83fb1d8845", - "IPY_MODEL_dae96f655ae740a09964e807b5179949" - ], - "layout": "IPY_MODEL_dd05de202f964dbdb860c50271e47a6c" - } - }, - "d228257b1fb844559daa0c990cecf863": { + "787bd39d5efa47fba7695728d2fb5211": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3520,7 +3161,7 @@ "width": null } }, - "d2a980b8c84d43479fb5662acd529811": { + "7ca7bff39f7646ff80b0050a21dc2c9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3572,7 +3213,7 @@ "width": null } }, - "d2f3e01c676c4dd19c48b467a7c4ade5": { + "7d2cd7f3a1a847b5b0ff52027693c3b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3587,13 +3228,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_387cbf589c65434699135302c7c597ea", + "layout": "IPY_MODEL_9f263277ef4640ad8c3eec125eac8d8d", "placeholder": "​", - "style": "IPY_MODEL_d360b41309bb4fbaaebde90402c9d655", - "value": " 29.0/29.0 [00:00<00:00, 3.60kB/s]" + "style": "IPY_MODEL_483b23ab5e5247aba7fc443cb9f62133", + "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" } }, - "d32a1e72d6c54c6cb9dd30ed3925efb4": { + "7d8b8c6928d0439ab67e2d6e11ad0638": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3609,15 +3250,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc2b7ef567474499a646b190cb8eb39b", - "max": 29.0, + "layout": "IPY_MODEL_ae02f5fe67704914b34f943c58412e4a", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_12a066c9f8cd49c9a9581687783f20b8", - "value": 29.0 + "style": "IPY_MODEL_93509f98d59a4d46b4aefb5e63c53ba9", + "value": 231508.0 + } + }, + "7ed09c053d1e48b282f75b70848057b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d360b41309bb4fbaaebde90402c9d655": { + "8c475ed55973414aa5bfdb6fcf8a3d25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3632,7 +3288,109 @@ "description_width": "" } }, - "d3ecb04608c24054b87f2788b0567e59": { + "923ac1abf41345f8b59ae734d2028678": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0338da529934419eb729317fb2b1c4cf", + "IPY_MODEL_3a746b2db1cc41368c93dbf4b73ea5e0", + "IPY_MODEL_0c73f115c24a42258d945adc1b4d6077" + ], + "layout": "IPY_MODEL_9a1cbe12ecb54f87b65b1373fffb822b" + } + }, + "93509f98d59a4d46b4aefb5e63c53ba9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "93cef699b3cb436aabe16091e28e15b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b09391fcf9c149bc9b2ffdc9c692d04f", + "IPY_MODEL_7d8b8c6928d0439ab67e2d6e11ad0638", + "IPY_MODEL_becb652d53c442b0af79c779f6558196" + ], + "layout": "IPY_MODEL_af24768a744e4fc9b5046d759443df43" + } + }, + "9412e50af8bd44279b016cc9e65ec9aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48d6311d566148349ecbd5b73cca9584", + "placeholder": "​", + "style": "IPY_MODEL_249d35c098cf41e3874398d7055faefe", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "9a1b92d91d3946ee8c9ec73472837040": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1669234d9fdd4410b6e7d5b68b80c4c4", + "placeholder": "​", + "style": "IPY_MODEL_d43649e3991441c9869ff4641c4ced26", + "value": "pytorch_model.bin: 100%" + } + }, + "9a1cbe12ecb54f87b65b1373fffb822b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3684,49 +3442,7 @@ "width": null } }, - "d711812544a646f09ee951e96c4f18c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_981d4672c7964429b79724616f686f79", - "placeholder": "​", - "style": "IPY_MODEL_f78cb0b5fcf2491eb3c5d86c12bb736f", - "value": "tokenizer_config.json: 100%" - } - }, - "dae96f655ae740a09964e807b5179949": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fea9d00fd52f4bb2a610ba8f4872f747", - "placeholder": "​", - "style": "IPY_MODEL_e73dd064354640f8912763f902297c2b", - "value": " 665/665 [00:00<00:00, 79.1kB/s]" - } - }, - "dd05de202f964dbdb860c50271e47a6c": { + "9f263277ef4640ad8c3eec125eac8d8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3778,29 +3494,28 @@ "width": null } }, - "dd2df2a857194f3c84ec7c439c06c633": { + "9f5f644405fc4eb18efeeb0e13c92b6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25a969a86e874ee0a0e989f4ebafa629", - "IPY_MODEL_a06939c59aea4e8e84fb8d8f8c3c21dc", - "IPY_MODEL_6b3a869420cf4e399a40a5edd99f61e1" - ], - "layout": "IPY_MODEL_24e32a04a58f4a75b4932d1d0459729b" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ce415f4cce24a47b14587233966d96a", + "placeholder": "​", + "style": "IPY_MODEL_7ed09c053d1e48b282f75b70848057b2", + "value": "" } }, - "de260d01cdf74722b4e223abf02249b9": { + "a1ca6409d41942189022d65764a2e1d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3815,14 +3530,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5776482a74ef4b36b277198485d620f5", - "IPY_MODEL_11fd84d755ed451282932c3b1faddcad", - "IPY_MODEL_a8cd347dfd22417eb1f6ecd29a8cd6fd" + "IPY_MODEL_55b7e2b7864446078a13d21540ea77c2", + "IPY_MODEL_dfb865d26120426d8d6e0b8b8fb569e7", + "IPY_MODEL_72cbeb249fe5498388bf07fc7348ebd2" ], - "layout": "IPY_MODEL_eede8854926c4fdd8d320611201e5e8e" + "layout": "IPY_MODEL_48dff4f1e99643c283ddf4c4d590112d" } }, - "de4dccc6dcf94826817b4bc10f412c0c": { + "ae02f5fe67704914b34f943c58412e4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3874,7 +3589,7 @@ "width": null } }, - "dee4ca8ffc86463a9496610806db5123": { + "af24768a744e4fc9b5046d759443df43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3926,62 +3641,80 @@ "width": null } }, - "e49beb65e9f44f59a51c7b4cf2e5f4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_65253723f099411fb25f091ca732f04a", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e934f5a6577a4c4fb0bf6af9553d25bf", - "value": 54245363.0 - } - }, - "e73dd064354640f8912763f902297c2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "b09047dce1f3479bab3ec10871168a97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e934f5a6577a4c4fb0bf6af9553d25bf": { + "b09391fcf9c149bc9b2ffdc9c692d04f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c36fbadf89c347e89116c0fd54da89ac", + "placeholder": "​", + "style": "IPY_MODEL_30c5df65eb524dd8bd7000f315f08ee1", + "value": "vocab.txt: 100%" } }, - "eabdcefb16c0418a837d5b1c7a9a2e84": { + "b64ebfd797cf4bfc867a1dccc2569a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4033,7 +3766,7 @@ "width": null } }, - "ed0f27baadac442eb8563f748bd6ea55": { + "b77a7caa73f048949f0eeed0ac5b1930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4085,7 +3818,64 @@ "width": null } }, - "ed55ce8671e74ae4933b1e8be1ea80fb": { + "bae04348c10e4715b8ed0d1ed7c375a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdbf849896ef43d7b1bca246a4fbaaff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03adea5765d145cca17349693a9cae9e", + "placeholder": "​", + "style": "IPY_MODEL_bae04348c10e4715b8ed0d1ed7c375a9", + "value": "tokenizer.json: 100%" + } + }, + "becb652d53c442b0af79c779f6558196": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13a65b4496184513bd6e5203847379c8", + "placeholder": "​", + "style": "IPY_MODEL_e10f33de2615427d81424162f43ba331", + "value": " 232k/232k [00:00<00:00, 27.0MB/s]" + } + }, + "bf90567275904b34a7d6ec97da8644b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4101,15 +3891,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_43ecd77a189649a4bece7f7c497a9791", + "layout": "IPY_MODEL_606d2cf7f7344cabb17bec474e84972b", "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ea85a51f5a749d585089639d8e15c8a", + "style": "IPY_MODEL_2a62b2b9eaa046e78f94b1a29015b277", "value": 2211.0 } }, - "eede8854926c4fdd8d320611201e5e8e": { + "c335c98cd337466f9e2f612ffc667c3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c36fbadf89c347e89116c0fd54da89ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4161,7 +3967,22 @@ "width": null } }, - "f2a08afd6b304032ab5a15ce051ad717": { + "c3a2397e9e404f0f817d70cb720a9030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cb98ae6f34574525947ed5158c6eda6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4177,15 +3998,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5e1115d835d4fffa9f47c8247010624", - "max": 391.0, + "layout": "IPY_MODEL_b77a7caa73f048949f0eeed0ac5b1930", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_88e85f5ae8f3426383890b02660b14af", - "value": 391.0 + "style": "IPY_MODEL_0067bb0fb19d4d0db5c07f22950a8060", + "value": 466062.0 + } + }, + "cd82f44e20044634baaef3fb42d786c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd7ccc9afe4d490d9ad67b89bc252b21", + "placeholder": "​", + "style": "IPY_MODEL_423f214830734939866c81dcb7004f51", + "value": " 466k/466k [00:00<00:00, 10.7MB/s]" } }, - "f78cb0b5fcf2491eb3c5d86c12bb736f": { + "d43649e3991441c9869ff4641c4ced26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4200,7 +4042,7 @@ "description_width": "" } }, - "f7a76476648546ed8dfd09ac41efb2a6": { + "d493f1c28852403ba4c72f6e081c1c4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4252,7 +4094,23 @@ "width": null } }, - "f91fe6d6fa7641f7ab0fe94cadc9c088": { + "db51c4f27ffe4d5aac5189f38eb8ee23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dd0eb1d6c24246e59a3504ce7a5fcf21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4267,7 +4125,7 @@ "description_width": "" } }, - "fa42cfff79a04e139a608e50e722509b": { + "dd7ccc9afe4d490d9ad67b89bc252b21": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4319,7 +4177,68 @@ "width": null } }, - "fea9d00fd52f4bb2a610ba8f4872f747": { + "dfb865d26120426d8d6e0b8b8fb569e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02a5a9625e224314839f73f9c9a63690", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5983ffde83ad40d4ac9c66ac6c11e258", + "value": 391.0 + } + }, + "e02d6b41b3174376a04e2e344f27c124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff1bfe711cbe4c399088c04424f8f747", + "IPY_MODEL_5ebe7e2ced2648baa64fc110ca56d5d2", + "IPY_MODEL_3209ed10a1e6424dabb46fd6cd0cd3ed" + ], + "layout": "IPY_MODEL_b64ebfd797cf4bfc867a1dccc2569a0b" + } + }, + "e10f33de2615427d81424162f43ba331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e805e10f3a0b4cb795c85508c3b87539": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4371,7 +4290,7 @@ "width": null } }, - "ff97dd840c5f447cb8e605fc19d99093": { + "ec422dd4d7cf40e09e692f5cbc381d5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4385,6 +4304,87 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f4f7935eee354f0fa142256b49628634": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f9ab6d66a2874b62b0add606d9b5faf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_70609e92fedd40868d71ad86e80e8604", + "IPY_MODEL_bf90567275904b34a7d6ec97da8644b2", + "IPY_MODEL_7d2cd7f3a1a847b5b0ff52027693c3b4" + ], + "layout": "IPY_MODEL_e805e10f3a0b4cb795c85508c3b87539" + } + }, + "fddc599b9d9045e89eca6200bda0fb08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bdbf849896ef43d7b1bca246a4fbaaff", + "IPY_MODEL_cb98ae6f34574525947ed5158c6eda6c", + "IPY_MODEL_cd82f44e20044634baaef3fb42d786c8" + ], + "layout": "IPY_MODEL_054c50637ad44fa2be3b1ba75cd08e81" + } + }, + "ff1bfe711cbe4c399088c04424f8f747": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11385ec891b941f7ab74b6309be38545", + "placeholder": "​", + "style": "IPY_MODEL_dd0eb1d6c24246e59a3504ce7a5fcf21", + "value": "config.json: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 00dcabcd6..1c1fc6471 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:46.655952Z", - "iopub.status.busy": "2024-01-16T18:15:46.655756Z", - "iopub.status.idle": "2024-01-16T18:15:47.727799Z", - "shell.execute_reply": "2024-01-16T18:15:47.727095Z" + "iopub.execute_input": "2024-01-17T17:47:15.853697Z", + "iopub.status.busy": "2024-01-17T17:47:15.853497Z", + "iopub.status.idle": "2024-01-17T17:47:16.875342Z", + "shell.execute_reply": "2024-01-17T17:47:16.874735Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.730957Z", - "iopub.status.busy": "2024-01-16T18:15:47.730515Z", - "iopub.status.idle": "2024-01-16T18:15:47.733559Z", - "shell.execute_reply": "2024-01-16T18:15:47.733012Z" + "iopub.execute_input": "2024-01-17T17:47:16.878056Z", + "iopub.status.busy": "2024-01-17T17:47:16.877749Z", + "iopub.status.idle": "2024-01-17T17:47:16.880815Z", + "shell.execute_reply": "2024-01-17T17:47:16.880281Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.736056Z", - "iopub.status.busy": "2024-01-16T18:15:47.735868Z", - "iopub.status.idle": "2024-01-16T18:15:47.749472Z", - "shell.execute_reply": "2024-01-16T18:15:47.748930Z" + "iopub.execute_input": "2024-01-17T17:47:16.883231Z", + "iopub.status.busy": "2024-01-17T17:47:16.882975Z", + "iopub.status.idle": "2024-01-17T17:47:16.895523Z", + "shell.execute_reply": "2024-01-17T17:47:16.894973Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:47.752187Z", - "iopub.status.busy": "2024-01-16T18:15:47.751804Z", - "iopub.status.idle": "2024-01-16T18:15:52.848159Z", - "shell.execute_reply": "2024-01-16T18:15:52.847593Z" + "iopub.execute_input": "2024-01-17T17:47:16.897933Z", + "iopub.status.busy": "2024-01-17T17:47:16.897567Z", + "iopub.status.idle": "2024-01-17T17:47:22.561075Z", + "shell.execute_reply": "2024-01-17T17:47:22.560373Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index af97a1a4a..bac32f7fe 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -945,13 +945,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +
    -
    +
    @@ -1452,7 +1452,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 75e655dca..197f0cc47 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:57.418817Z", - "iopub.status.busy": "2024-01-16T18:15:57.418221Z", - "iopub.status.idle": "2024-01-16T18:15:58.476986Z", - "shell.execute_reply": "2024-01-16T18:15:58.476369Z" + "iopub.execute_input": "2024-01-17T17:47:27.636950Z", + "iopub.status.busy": "2024-01-17T17:47:27.636331Z", + "iopub.status.idle": "2024-01-17T17:47:28.673494Z", + "shell.execute_reply": "2024-01-17T17:47:28.672886Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:58.480056Z", - "iopub.status.busy": "2024-01-16T18:15:58.479609Z", - "iopub.status.idle": "2024-01-16T18:15:58.483407Z", - "shell.execute_reply": "2024-01-16T18:15:58.482875Z" + "iopub.execute_input": "2024-01-17T17:47:28.676967Z", + "iopub.status.busy": "2024-01-17T17:47:28.676319Z", + "iopub.status.idle": "2024-01-17T17:47:28.680081Z", + "shell.execute_reply": "2024-01-17T17:47:28.679568Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:15:58.485825Z", - "iopub.status.busy": "2024-01-16T18:15:58.485453Z", - "iopub.status.idle": "2024-01-16T18:16:00.548527Z", - "shell.execute_reply": "2024-01-16T18:16:00.547841Z" + "iopub.execute_input": "2024-01-17T17:47:28.682651Z", + "iopub.status.busy": "2024-01-17T17:47:28.682199Z", + "iopub.status.idle": "2024-01-17T17:47:30.662113Z", + "shell.execute_reply": "2024-01-17T17:47:30.661305Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.551920Z", - "iopub.status.busy": "2024-01-16T18:16:00.551273Z", - "iopub.status.idle": "2024-01-16T18:16:00.586863Z", - "shell.execute_reply": "2024-01-16T18:16:00.586069Z" + "iopub.execute_input": "2024-01-17T17:47:30.665838Z", + "iopub.status.busy": "2024-01-17T17:47:30.664985Z", + "iopub.status.idle": "2024-01-17T17:47:30.702802Z", + "shell.execute_reply": "2024-01-17T17:47:30.702035Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.590183Z", - "iopub.status.busy": "2024-01-16T18:16:00.589693Z", - "iopub.status.idle": "2024-01-16T18:16:00.628675Z", - "shell.execute_reply": "2024-01-16T18:16:00.627875Z" + "iopub.execute_input": "2024-01-17T17:47:30.705974Z", + "iopub.status.busy": "2024-01-17T17:47:30.705483Z", + "iopub.status.idle": "2024-01-17T17:47:30.740910Z", + "shell.execute_reply": "2024-01-17T17:47:30.740189Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.632522Z", - "iopub.status.busy": "2024-01-16T18:16:00.632252Z", - "iopub.status.idle": "2024-01-16T18:16:00.635413Z", - "shell.execute_reply": "2024-01-16T18:16:00.634891Z" + "iopub.execute_input": "2024-01-17T17:47:30.743971Z", + "iopub.status.busy": "2024-01-17T17:47:30.743470Z", + "iopub.status.idle": "2024-01-17T17:47:30.746772Z", + "shell.execute_reply": "2024-01-17T17:47:30.746178Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.638191Z", - "iopub.status.busy": "2024-01-16T18:16:00.637827Z", - "iopub.status.idle": "2024-01-16T18:16:00.640620Z", - "shell.execute_reply": "2024-01-16T18:16:00.640097Z" + "iopub.execute_input": "2024-01-17T17:47:30.749236Z", + "iopub.status.busy": "2024-01-17T17:47:30.748768Z", + "iopub.status.idle": "2024-01-17T17:47:30.751621Z", + "shell.execute_reply": "2024-01-17T17:47:30.751123Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.643155Z", - "iopub.status.busy": "2024-01-16T18:16:00.642713Z", - "iopub.status.idle": "2024-01-16T18:16:00.670851Z", - "shell.execute_reply": "2024-01-16T18:16:00.670234Z" + "iopub.execute_input": "2024-01-17T17:47:30.754142Z", + "iopub.status.busy": "2024-01-17T17:47:30.753710Z", + "iopub.status.idle": "2024-01-17T17:47:30.781205Z", + "shell.execute_reply": "2024-01-17T17:47:30.780598Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be6b89c05bf54e629d5214f135ecc2d9", + "model_id": "6118415ae7394ffd96f150429a30c90e", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55e901a991824e3fbda53e2d393455d9", + "model_id": "74b94b74c8204c518111c5334e52842b", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.678225Z", - "iopub.status.busy": "2024-01-16T18:16:00.677825Z", - "iopub.status.idle": "2024-01-16T18:16:00.684491Z", - "shell.execute_reply": "2024-01-16T18:16:00.683970Z" + "iopub.execute_input": "2024-01-17T17:47:30.788205Z", + "iopub.status.busy": "2024-01-17T17:47:30.787789Z", + "iopub.status.idle": "2024-01-17T17:47:30.794524Z", + "shell.execute_reply": "2024-01-17T17:47:30.794019Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.686812Z", - "iopub.status.busy": "2024-01-16T18:16:00.686368Z", - "iopub.status.idle": "2024-01-16T18:16:00.690083Z", - "shell.execute_reply": "2024-01-16T18:16:00.689559Z" + "iopub.execute_input": "2024-01-17T17:47:30.796854Z", + "iopub.status.busy": "2024-01-17T17:47:30.796459Z", + "iopub.status.idle": "2024-01-17T17:47:30.800312Z", + "shell.execute_reply": "2024-01-17T17:47:30.799775Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.692161Z", - "iopub.status.busy": "2024-01-16T18:16:00.691959Z", - "iopub.status.idle": "2024-01-16T18:16:00.699054Z", - "shell.execute_reply": "2024-01-16T18:16:00.698536Z" + "iopub.execute_input": "2024-01-17T17:47:30.802703Z", + "iopub.status.busy": "2024-01-17T17:47:30.802357Z", + "iopub.status.idle": "2024-01-17T17:47:30.809258Z", + "shell.execute_reply": "2024-01-17T17:47:30.808727Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.701373Z", - "iopub.status.busy": "2024-01-16T18:16:00.700937Z", - "iopub.status.idle": "2024-01-16T18:16:00.739221Z", - "shell.execute_reply": "2024-01-16T18:16:00.738543Z" + "iopub.execute_input": "2024-01-17T17:47:30.811612Z", + "iopub.status.busy": "2024-01-17T17:47:30.811247Z", + "iopub.status.idle": "2024-01-17T17:47:30.848892Z", + "shell.execute_reply": "2024-01-17T17:47:30.848075Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.742109Z", - "iopub.status.busy": "2024-01-16T18:16:00.741846Z", - "iopub.status.idle": "2024-01-16T18:16:00.780149Z", - "shell.execute_reply": "2024-01-16T18:16:00.779344Z" + "iopub.execute_input": "2024-01-17T17:47:30.852080Z", + "iopub.status.busy": "2024-01-17T17:47:30.851683Z", + "iopub.status.idle": "2024-01-17T17:47:30.890113Z", + "shell.execute_reply": "2024-01-17T17:47:30.889434Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.783325Z", - "iopub.status.busy": "2024-01-16T18:16:00.783062Z", - "iopub.status.idle": "2024-01-16T18:16:00.902882Z", - "shell.execute_reply": "2024-01-16T18:16:00.902217Z" + "iopub.execute_input": "2024-01-17T17:47:30.893308Z", + "iopub.status.busy": "2024-01-17T17:47:30.892889Z", + "iopub.status.idle": "2024-01-17T17:47:31.012408Z", + "shell.execute_reply": "2024-01-17T17:47:31.011727Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:00.905753Z", - "iopub.status.busy": "2024-01-16T18:16:00.905355Z", - "iopub.status.idle": "2024-01-16T18:16:03.441187Z", - "shell.execute_reply": "2024-01-16T18:16:03.440427Z" + "iopub.execute_input": "2024-01-17T17:47:31.015249Z", + "iopub.status.busy": "2024-01-17T17:47:31.014843Z", + "iopub.status.idle": "2024-01-17T17:47:33.505335Z", + "shell.execute_reply": "2024-01-17T17:47:33.504572Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.444116Z", - "iopub.status.busy": "2024-01-16T18:16:03.443692Z", - "iopub.status.idle": "2024-01-16T18:16:03.502832Z", - "shell.execute_reply": "2024-01-16T18:16:03.502159Z" + "iopub.execute_input": "2024-01-17T17:47:33.508187Z", + "iopub.status.busy": "2024-01-17T17:47:33.507786Z", + "iopub.status.idle": "2024-01-17T17:47:33.565362Z", + "shell.execute_reply": "2024-01-17T17:47:33.564757Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "a63586b5", + "id": "2e2ede4c", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "2b31716f", + "id": "b85b170d", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "4887263e", + "id": "f888ecd3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.505582Z", - "iopub.status.busy": "2024-01-16T18:16:03.505191Z", - "iopub.status.idle": "2024-01-16T18:16:03.613248Z", - "shell.execute_reply": "2024-01-16T18:16:03.612541Z" + "iopub.execute_input": "2024-01-17T17:47:33.567937Z", + "iopub.status.busy": "2024-01-17T17:47:33.567572Z", + "iopub.status.idle": "2024-01-17T17:47:33.681531Z", + "shell.execute_reply": "2024-01-17T17:47:33.680872Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "699098e7", + "id": "035f5521", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "f8a445ea", + "id": "4eca8e3f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.616923Z", - "iopub.status.busy": "2024-01-16T18:16:03.616277Z", - "iopub.status.idle": "2024-01-16T18:16:03.693439Z", - "shell.execute_reply": "2024-01-16T18:16:03.692848Z" + "iopub.execute_input": "2024-01-17T17:47:33.684745Z", + "iopub.status.busy": "2024-01-17T17:47:33.684425Z", + "iopub.status.idle": "2024-01-17T17:47:33.755644Z", + "shell.execute_reply": "2024-01-17T17:47:33.754828Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "6af9e5a8", + "id": "02bcd7ad", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "326f5f2c", + "id": "8d96a258", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.696323Z", - "iopub.status.busy": "2024-01-16T18:16:03.695897Z", - "iopub.status.idle": "2024-01-16T18:16:03.704431Z", - "shell.execute_reply": "2024-01-16T18:16:03.703903Z" + "iopub.execute_input": "2024-01-17T17:47:33.758921Z", + "iopub.status.busy": "2024-01-17T17:47:33.758478Z", + "iopub.status.idle": "2024-01-17T17:47:33.766911Z", + "shell.execute_reply": "2024-01-17T17:47:33.766290Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "ac16d60c", + "id": "226cb25c", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "38316429", + "id": "7d3ac0da", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.706739Z", - "iopub.status.busy": "2024-01-16T18:16:03.706553Z", - "iopub.status.idle": "2024-01-16T18:16:03.725715Z", - "shell.execute_reply": "2024-01-16T18:16:03.725160Z" + "iopub.execute_input": "2024-01-17T17:47:33.769300Z", + "iopub.status.busy": "2024-01-17T17:47:33.768858Z", + "iopub.status.idle": "2024-01-17T17:47:33.788533Z", + "shell.execute_reply": "2024-01-17T17:47:33.787972Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "4475f99d", + "id": "5f110e92", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:03.727911Z", - "iopub.status.busy": "2024-01-16T18:16:03.727702Z", - "iopub.status.idle": "2024-01-16T18:16:03.731529Z", - "shell.execute_reply": "2024-01-16T18:16:03.730928Z" + "iopub.execute_input": "2024-01-17T17:47:33.791079Z", + "iopub.status.busy": "2024-01-17T17:47:33.790637Z", + "iopub.status.idle": "2024-01-17T17:47:33.794932Z", + "shell.execute_reply": "2024-01-17T17:47:33.794293Z" } }, "outputs": [ @@ -1205,23 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c5ddfa9e5af4c71a2d795d08917ce30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "30c07688294b4590a6c7af60e7ff150e": { + "0680087d65da4687af801f9791a73ee3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1273,49 +1257,46 @@ "width": null } }, - "3bbb2ac2044944728ad50b54dcae679f": { + "273eb8d115c6410abc0262fbfa22e139": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_30c07688294b4590a6c7af60e7ff150e", - "placeholder": "​", - "style": "IPY_MODEL_bbe01bd7cc39481792b9eeaf75e59865", - "value": "number of examples processed for checking labels: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "3d1ea18088b44578a82494404b4b6526": { + "37cd3deaba0843e58ae650a5f2b9eba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f73e12450e9b44ffbfa3ae849f007f15", - "placeholder": "​", - "style": "IPY_MODEL_ad9470941b23485fa612c05bb92d68db", - "value": "number of examples processed for estimating thresholds: " + "layout": "IPY_MODEL_b336bc30a3f1468fb0ac077e66155b8f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cb4c9a997a9144b0bca590e9c5a87fcf", + "value": 50.0 } }, - "3dda280f8336451eb0557e975ff2d908": { + "4bb19eea1d494d8eb5233dc1bd64954e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1367,31 +1348,7 @@ "width": null } }, - "46495bfb8ba446f182bc0b5984620664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3dda280f8336451eb0557e975ff2d908", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c5ddfa9e5af4c71a2d795d08917ce30", - "value": 50.0 - } - }, - "4aa8b4daf9104ecdad120225e68f5540": { + "55ddbe71f01946b59b3b52ff188200fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1406,13 +1363,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_843c6dffeed048149fd41953b533bc03", + "layout": "IPY_MODEL_7555045e76474233b6507a2227ce4f0a", "placeholder": "​", - "style": "IPY_MODEL_ab88fab8f4b94597aaf043f3a536c65d", - "value": " 10000/? [00:00<00:00, 1147458.21it/s]" + "style": "IPY_MODEL_83622b18675745048d9ab04083fdc590", + "value": "number of examples processed for checking labels: " } }, - "55e901a991824e3fbda53e2d393455d9": { + "6118415ae7394ffd96f150429a30c90e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1427,14 +1384,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3bbb2ac2044944728ad50b54dcae679f", - "IPY_MODEL_adaf23d194974baeafd98c18646daaa2", - "IPY_MODEL_4aa8b4daf9104ecdad120225e68f5540" + "IPY_MODEL_86a78a185e1b4ae2b0c6a4639821badf", + "IPY_MODEL_b2c68c2109c44faf921e9a02ec6da38d", + "IPY_MODEL_edb94b7bb6da4cd1b553c2a09d077afa" ], - "layout": "IPY_MODEL_cb711b84f8214d82b8fb35645767879f" + "layout": "IPY_MODEL_4bb19eea1d494d8eb5233dc1bd64954e" } }, - "5659f0502a6a46cf960fcebc58d41908": { + "6a88e2b5655941a7acb9e31b017db356": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1486,59 +1443,44 @@ "width": null } }, - "6cd09bf4c6054f069102d38e86fbf3a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "706fe2da65784a29b025e5c5a8b19f2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "74b94b74c8204c518111c5334e52842b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55ddbe71f01946b59b3b52ff188200fe", + "IPY_MODEL_37cd3deaba0843e58ae650a5f2b9eba2", + "IPY_MODEL_bddc566f81704fa6ae3a1a5f075e30e6" + ], + "layout": "IPY_MODEL_0680087d65da4687af801f9791a73ee3" } }, - "843c6dffeed048149fd41953b533bc03": { + "7555045e76474233b6507a2227ce4f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1590,7 +1532,7 @@ "width": null } }, - "8d80ffdedeb54d11a72f70399337228a": { + "83622b18675745048d9ab04083fdc590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1605,7 +1547,7 @@ "description_width": "" } }, - "9e1c0c8f682f4016b92735695db0fb3e": { + "86a78a185e1b4ae2b0c6a4639821badf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1620,43 +1562,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec10984034094ee694d8330b9a1dbeb4", + "layout": "IPY_MODEL_b936e9c3b0db4d879a8fe2972783d51b", "placeholder": "​", - "style": "IPY_MODEL_8d80ffdedeb54d11a72f70399337228a", - "value": " 10000/? [00:00<00:00, 931467.28it/s]" - } - }, - "ab88fab8f4b94597aaf043f3a536c65d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ad9470941b23485fa612c05bb92d68db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_706fe2da65784a29b025e5c5a8b19f2e", + "value": "number of examples processed for estimating thresholds: " } }, - "adaf23d194974baeafd98c18646daaa2": { + "b2c68c2109c44faf921e9a02ec6da38d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1672,68 +1584,67 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd09bf4c6054f069102d38e86fbf3a5", + "layout": "IPY_MODEL_f58ef3392b4f4c98b9bd4e3ef1be0755", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b6792e9f834946c19abe2c49ce1d8f8f", + "style": "IPY_MODEL_e31e202e50d7490f927466e3e3160fdf", "value": 50.0 } }, - "b6792e9f834946c19abe2c49ce1d8f8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bbe01bd7cc39481792b9eeaf75e59865": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "b336bc30a3f1468fb0ac077e66155b8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "be6b89c05bf54e629d5214f135ecc2d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d1ea18088b44578a82494404b4b6526", - "IPY_MODEL_46495bfb8ba446f182bc0b5984620664", - "IPY_MODEL_9e1c0c8f682f4016b92735695db0fb3e" - ], - "layout": "IPY_MODEL_5659f0502a6a46cf960fcebc58d41908" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cb711b84f8214d82b8fb35645767879f": { + "b936e9c3b0db4d879a8fe2972783d51b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1785,7 +1696,28 @@ "width": null } }, - "ec10984034094ee694d8330b9a1dbeb4": { + "bddc566f81704fa6ae3a1a5f075e30e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c7a5cae349064d418fda512643b08663", + "placeholder": "​", + "style": "IPY_MODEL_273eb8d115c6410abc0262fbfa22e139", + "value": " 10000/? [00:00<00:00, 1185903.64it/s]" + } + }, + "c7a5cae349064d418fda512643b08663": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1837,7 +1769,75 @@ "width": null } }, - "f73e12450e9b44ffbfa3ae849f007f15": { + "cb4c9a997a9144b0bca590e9c5a87fcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e162ce4d2c78466287cde1b641c033ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e31e202e50d7490f927466e3e3160fdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "edb94b7bb6da4cd1b553c2a09d077afa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6a88e2b5655941a7acb9e31b017db356", + "placeholder": "​", + "style": "IPY_MODEL_e162ce4d2c78466287cde1b641c033ca", + "value": " 10000/? [00:00<00:00, 964429.52it/s]" + } + }, + "f58ef3392b4f4c98b9bd4e3ef1be0755": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 39733fb1f..6e01469cf 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -887,25 +887,25 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1216,7 +1216,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.688
    +epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530
     

    @@ -1224,7 +1224,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.468
    +epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.364
     Computing feature embeddings ...
     

    @@ -1268,16 +1268,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.74it/s]
    +
    8%|▊ | 3/40 [00:00&lt;00:01, 26.45it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 9.74it/s]
    +
    8%|▊ | 3/40 [00:00<00:01, 26.45it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 9.74it/s]

    +

    8%|▊ | 3/40 [00:00<00:01, 26.45it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 42.17it/s]
    +
    28%|██▊ | 11/40 [00:00&lt;00:00, 51.58it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 42.17it/s]
    +
    28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 42.17it/s]

    +

    28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]

    -
    40%|████ | 16/40 [00:00&lt;00:00, 55.88it/s]
    +
    45%|████▌ | 18/40 [00:00&lt;00:00, 57.66it/s]

    </pre>

    -
    40%|████ | 16/40 [00:00<00:00, 55.88it/s]
    +
    45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 16/40 [00:00<00:00, 55.88it/s]

    +

    45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]

    -
    57%|█████▊ | 23/40 [00:00&lt;00:00, 60.64it/s]
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 64.03it/s]

    </pre>

    -
    57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]
    +
    65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]

    end{sphinxVerbatim}

    -

    57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]

    +

    65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]

    -
    75%|███████▌ | 30/40 [00:00&lt;00:00, 60.81it/s]
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 68.84it/s]

    </pre>

    -
    75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]
    +
    85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]

    - - -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    98%|█████████▊| 39/40 [00:00&lt;00:00, 68.27it/s]
    -

    </pre>

    -
    -
    -
    98%|█████████▊| 39/40 [00:00<00:00, 68.27it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    98%|█████████▊| 39/40 [00:00<00:00, 68.27it/s]

    +

    85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 59.25it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 64.11it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 59.25it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 64.11it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 59.25it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 64.11it/s]

    -
    2%|▎ | 1/40 [00:00&lt;00:03, 9.91it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:03, 9.86it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:03, 9.91it/s]
    +
    2%|▎ | 1/40 [00:00<00:03, 9.86it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:03, 9.91it/s]

    +

    2%|▎ | 1/40 [00:00<00:03, 9.86it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 47.86it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 42.86it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 42.86it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 42.86it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 60.58it/s]
    +
    40%|████ | 16/40 [00:00&lt;00:00, 58.37it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]
    +
    40%|████ | 16/40 [00:00<00:00, 58.37it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]

    +

    40%|████ | 16/40 [00:00<00:00, 58.37it/s]

    -
    60%|██████ | 24/40 [00:00&lt;00:00, 64.10it/s]
    +
    60%|██████ | 24/40 [00:00&lt;00:00, 63.77it/s]

    </pre>

    -
    60%|██████ | 24/40 [00:00<00:00, 64.10it/s]
    +
    60%|██████ | 24/40 [00:00<00:00, 63.77it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 24/40 [00:00<00:00, 64.10it/s]

    +

    60%|██████ | 24/40 [00:00<00:00, 63.77it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 68.59it/s]
    +
    80%|████████ | 32/40 [00:00&lt;00:00, 68.50it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 68.59it/s]
    +
    80%|████████ | 32/40 [00:00<00:00, 68.50it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 68.59it/s]

    +

    80%|████████ | 32/40 [00:00<00:00, 68.50it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 64.03it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 63.87it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 64.03it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 63.87it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 64.03it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 63.87it/s]

    @@ -1690,16 +1664,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    5%|▌ | 2/40 [00:00&lt;00:01, 19.09it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:01, 19.21it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:01, 19.09it/s]
    +
    5%|▌ | 2/40 [00:00<00:01, 19.21it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:01, 19.09it/s]

    +

    5%|▌ | 2/40 [00:00<00:01, 19.21it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 48.34it/s]
    +
    25%|██▌ | 10/40 [00:00&lt;00:00, 52.29it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]
    +
    25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]

    +

    25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 60.43it/s]
    +
    45%|████▌ | 18/40 [00:00&lt;00:00, 62.77it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]
    +
    45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]

    +

    45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 65.74it/s]
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 68.15it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]
    +
    65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]

    +

    65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 69.66it/s]
    +
    88%|████████▊ | 35/40 [00:00&lt;00:00, 73.25it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]
    +
    88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]

    +

    88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 64.52it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 67.06it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 64.52it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 67.06it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 64.52it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 67.06it/s]

    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.11it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.24it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 9.11it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 18.24it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 9.11it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 18.24it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 46.51it/s]
    +
    25%|██▌ | 10/40 [00:00&lt;00:00, 51.08it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]
    +
    25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]

    +

    25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 59.04it/s]
    +
    45%|████▌ | 18/40 [00:00&lt;00:00, 62.35it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]
    +
    45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]

    +

    45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 65.43it/s]
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 68.11it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]
    +
    65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]

    +

    65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 69.71it/s]
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 70.92it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]
    +
    85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]

    +

    85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 63.77it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 65.75it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 63.77it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 65.75it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 63.77it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 65.75it/s]

    @@ -2086,16 +2060,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.57it/s]
    +
    8%|▊ | 3/40 [00:00&lt;00:01, 27.33it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 9.57it/s]
    +
    8%|▊ | 3/40 [00:00<00:01, 27.33it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 9.57it/s]

    +

    8%|▊ | 3/40 [00:00<00:01, 27.33it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 46.87it/s]
    +
    28%|██▊ | 11/40 [00:00&lt;00:00, 55.51it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]
    +
    28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]

    +

    28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 58.81it/s]
    +
    48%|████▊ | 19/40 [00:00&lt;00:00, 64.98it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]
    +
    48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]

    +

    48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 63.18it/s]
    +
    68%|██████▊ | 27/40 [00:00&lt;00:00, 69.24it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]
    +
    68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]

    +

    68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 67.05it/s]
    +
    90%|█████████ | 36/40 [00:00&lt;00:00, 74.76it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]
    +
    90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]

    +

    90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 61.57it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 66.39it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 61.57it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 66.39it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 61.57it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 66.39it/s]

    -
    2%|▎ | 1/40 [00:00&lt;00:04, 8.85it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 8.47it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 8.85it/s]
    +
    2%|▎ | 1/40 [00:00<00:04, 8.47it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 8.85it/s]

    +

    2%|▎ | 1/40 [00:00<00:04, 8.47it/s]

    -
    22%|██▎ | 9/40 [00:00&lt;00:00, 46.21it/s]
    +
    22%|██▎ | 9/40 [00:00&lt;00:00, 46.45it/s]

    </pre>

    -
    22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]
    +
    22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]

    end{sphinxVerbatim}

    -

    22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]

    +

    22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]

    -
    42%|████▎ | 17/40 [00:00&lt;00:00, 58.90it/s]
    +
    42%|████▎ | 17/40 [00:00&lt;00:00, 59.09it/s]

    </pre>

    -
    42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]
    +
    42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]

    end{sphinxVerbatim}

    -

    42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]

    +

    42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]

    -
    62%|██████▎ | 25/40 [00:00&lt;00:00, 63.99it/s]
    +
    62%|██████▎ | 25/40 [00:00&lt;00:00, 65.86it/s]

    </pre>

    -
    62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]
    +
    62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]

    end{sphinxVerbatim}

    -

    62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]

    +

    62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 68.03it/s]
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 71.59it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]
    +
    85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]

    +

    85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 62.73it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 64.51it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 62.73it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 64.51it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 62.73it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 64.51it/s]

    @@ -2552,15 +2526,15 @@

    View reportCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 2c70dd994..e3e8b3076 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:08.867021Z", - "iopub.status.busy": "2024-01-16T18:16:08.866639Z", - "iopub.status.idle": "2024-01-16T18:16:11.032583Z", - "shell.execute_reply": "2024-01-16T18:16:11.031965Z" + "iopub.execute_input": "2024-01-17T17:47:38.828995Z", + "iopub.status.busy": "2024-01-17T17:47:38.828514Z", + "iopub.status.idle": "2024-01-17T17:47:40.959203Z", + "shell.execute_reply": "2024-01-17T17:47:40.958571Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:11.035412Z", - "iopub.status.busy": "2024-01-16T18:16:11.035037Z", - "iopub.status.idle": "2024-01-16T18:16:11.038833Z", - "shell.execute_reply": "2024-01-16T18:16:11.038285Z" + "iopub.execute_input": "2024-01-17T17:47:40.962263Z", + "iopub.status.busy": "2024-01-17T17:47:40.961696Z", + "iopub.status.idle": "2024-01-17T17:47:40.965442Z", + "shell.execute_reply": "2024-01-17T17:47:40.964854Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:11.041170Z", - "iopub.status.busy": "2024-01-16T18:16:11.040806Z", - "iopub.status.idle": "2024-01-16T18:16:12.760017Z", - "shell.execute_reply": "2024-01-16T18:16:12.759487Z" + "iopub.execute_input": "2024-01-17T17:47:40.967927Z", + "iopub.status.busy": "2024-01-17T17:47:40.967416Z", + "iopub.status.idle": "2024-01-17T17:47:46.436567Z", + "shell.execute_reply": "2024-01-17T17:47:46.435874Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0defe72ac3f54ed59165d32126c59303", + "model_id": "2cd6991966a149ad8c8253c8a436fcb6", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8b4d683ee6dc42839093764c05d01557", + "model_id": "867c9e6e93ab4f0aa2763d003f7e9037", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88011db5921c4bf99f950c37e4ef4adc", + "model_id": "138e8569d73c4286b12b8b4a8491a5eb", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e78a910f7b04430ba9e6ad8321f0123e", + "model_id": "212e8f8dbed64e4090645ba650c4c40d", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:12.762489Z", - "iopub.status.busy": "2024-01-16T18:16:12.762174Z", - "iopub.status.idle": "2024-01-16T18:16:12.766324Z", - "shell.execute_reply": "2024-01-16T18:16:12.765829Z" + "iopub.execute_input": "2024-01-17T17:47:46.438945Z", + "iopub.status.busy": "2024-01-17T17:47:46.438730Z", + "iopub.status.idle": "2024-01-17T17:47:46.442968Z", + "shell.execute_reply": "2024-01-17T17:47:46.442443Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:12.768599Z", - "iopub.status.busy": "2024-01-16T18:16:12.768246Z", - "iopub.status.idle": "2024-01-16T18:16:24.994428Z", - "shell.execute_reply": "2024-01-16T18:16:24.993816Z" + "iopub.execute_input": "2024-01-17T17:47:46.445291Z", + "iopub.status.busy": "2024-01-17T17:47:46.445084Z", + "iopub.status.idle": "2024-01-17T17:47:58.483080Z", + "shell.execute_reply": "2024-01-17T17:47:58.482363Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03707ead2a3046f595e77370955c0e67", + "model_id": "63f8d37ac2ee41b8b8a094f0ac086ed0", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:24.997442Z", - "iopub.status.busy": "2024-01-16T18:16:24.997127Z", - "iopub.status.idle": "2024-01-16T18:16:46.005009Z", - "shell.execute_reply": "2024-01-16T18:16:46.004343Z" + "iopub.execute_input": "2024-01-17T17:47:58.486265Z", + "iopub.status.busy": "2024-01-17T17:47:58.485782Z", + "iopub.status.idle": "2024-01-17T17:48:19.372732Z", + "shell.execute_reply": "2024-01-17T17:48:19.372080Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.007998Z", - "iopub.status.busy": "2024-01-16T18:16:46.007630Z", - "iopub.status.idle": "2024-01-16T18:16:46.012922Z", - "shell.execute_reply": "2024-01-16T18:16:46.012307Z" + "iopub.execute_input": "2024-01-17T17:48:19.375687Z", + "iopub.status.busy": "2024-01-17T17:48:19.375485Z", + "iopub.status.idle": "2024-01-17T17:48:19.380679Z", + "shell.execute_reply": "2024-01-17T17:48:19.380140Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.015281Z", - "iopub.status.busy": "2024-01-16T18:16:46.014938Z", - "iopub.status.idle": "2024-01-16T18:16:46.019198Z", - "shell.execute_reply": "2024-01-16T18:16:46.018616Z" + "iopub.execute_input": "2024-01-17T17:48:19.382762Z", + "iopub.status.busy": "2024-01-17T17:48:19.382567Z", + "iopub.status.idle": "2024-01-17T17:48:19.386591Z", + "shell.execute_reply": "2024-01-17T17:48:19.386119Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.021498Z", - "iopub.status.busy": "2024-01-16T18:16:46.021173Z", - "iopub.status.idle": "2024-01-16T18:16:46.030847Z", - "shell.execute_reply": "2024-01-16T18:16:46.030242Z" + "iopub.execute_input": "2024-01-17T17:48:19.388870Z", + "iopub.status.busy": "2024-01-17T17:48:19.388670Z", + "iopub.status.idle": "2024-01-17T17:48:19.398149Z", + "shell.execute_reply": "2024-01-17T17:48:19.397655Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.033321Z", - "iopub.status.busy": "2024-01-16T18:16:46.032957Z", - "iopub.status.idle": "2024-01-16T18:16:46.063139Z", - "shell.execute_reply": "2024-01-16T18:16:46.062409Z" + "iopub.execute_input": "2024-01-17T17:48:19.400312Z", + "iopub.status.busy": "2024-01-17T17:48:19.400110Z", + "iopub.status.idle": "2024-01-17T17:48:19.430137Z", + "shell.execute_reply": "2024-01-17T17:48:19.429642Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:16:46.066459Z", - "iopub.status.busy": "2024-01-16T18:16:46.066043Z", - "iopub.status.idle": "2024-01-16T18:17:17.528059Z", - "shell.execute_reply": "2024-01-16T18:17:17.527325Z" + "iopub.execute_input": "2024-01-17T17:48:19.432421Z", + "iopub.status.busy": "2024-01-17T17:48:19.432225Z", + "iopub.status.idle": "2024-01-17T17:48:50.080270Z", + "shell.execute_reply": "2024-01-17T17:48:50.079429Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.688\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.468\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.364\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.74it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.45it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.17it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 51.58it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 55.88it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 57.66it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.64it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.03it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 60.81it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 68.84it/s]" ] }, { @@ -790,15 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 68.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.25it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.11it/s]" ] }, { @@ -828,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.91it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.86it/s]" ] }, { @@ -836,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.86it/s]" + " 20%|██ | 8/40 [00:00<00:00, 42.86it/s]" ] }, { @@ -844,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.58it/s]" + " 40%|████ | 16/40 [00:00<00:00, 58.37it/s]" ] }, { @@ -852,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.10it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 63.77it/s]" ] }, { @@ -860,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.59it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 68.50it/s]" ] }, { @@ -868,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.03it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.87it/s]" ] }, { @@ -890,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.639\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.502\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.725\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331\n", "Computing feature embeddings ...\n" ] }, @@ -914,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.09it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.21it/s]" ] }, { @@ -922,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 48.34it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.29it/s]" ] }, { @@ -930,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.43it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.77it/s]" ] }, { @@ -938,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.15it/s]" ] }, { @@ -946,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.66it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.25it/s]" ] }, { @@ -954,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.06it/s]" ] }, { @@ -984,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.11it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.24it/s]" ] }, { @@ -992,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.51it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.08it/s]" ] }, { @@ -1000,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.04it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.35it/s]" ] }, { @@ -1008,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.43it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.11it/s]" ] }, { @@ -1016,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.71it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.92it/s]" ] }, { @@ -1024,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.77it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.75it/s]" ] }, { @@ -1046,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.694\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.840\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.370\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.363\n", "Computing feature embeddings ...\n" ] }, @@ -1070,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.57it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 27.33it/s]" ] }, { @@ -1078,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.87it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.51it/s]" ] }, { @@ -1086,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.81it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.98it/s]" ] }, { @@ -1094,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.18it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.24it/s]" ] }, { @@ -1102,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.05it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 74.76it/s]" ] }, { @@ -1110,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.39it/s]" ] }, { @@ -1140,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.47it/s]" ] }, { @@ -1148,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.21it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.45it/s]" ] }, { @@ -1156,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.90it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.09it/s]" ] }, { @@ -1164,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.99it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]" ] }, { @@ -1172,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.03it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]" ] }, { @@ -1180,21 +1172,21 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.73it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.51it/s]" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\n" + "Finished Training\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Finished Training\n" + "\n" ] } ], @@ -1257,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:17.531136Z", - "iopub.status.busy": "2024-01-16T18:17:17.530850Z", - "iopub.status.idle": "2024-01-16T18:17:17.547518Z", - "shell.execute_reply": "2024-01-16T18:17:17.546961Z" + "iopub.execute_input": "2024-01-17T17:48:50.083639Z", + "iopub.status.busy": "2024-01-17T17:48:50.083073Z", + "iopub.status.idle": "2024-01-17T17:48:50.098729Z", + "shell.execute_reply": "2024-01-17T17:48:50.098220Z" } }, "outputs": [], @@ -1285,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:17.550500Z", - "iopub.status.busy": "2024-01-16T18:17:17.550024Z", - "iopub.status.idle": "2024-01-16T18:17:18.021632Z", - "shell.execute_reply": "2024-01-16T18:17:18.020999Z" + "iopub.execute_input": "2024-01-17T17:48:50.101328Z", + "iopub.status.busy": "2024-01-17T17:48:50.100950Z", + "iopub.status.idle": "2024-01-17T17:48:50.540668Z", + "shell.execute_reply": "2024-01-17T17:48:50.540011Z" } }, "outputs": [], @@ -1308,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:17:18.024339Z", - "iopub.status.busy": "2024-01-16T18:17:18.024122Z", - "iopub.status.idle": "2024-01-16T18:20:38.928427Z", - "shell.execute_reply": "2024-01-16T18:20:38.927718Z" + "iopub.execute_input": "2024-01-17T17:48:50.543375Z", + "iopub.status.busy": "2024-01-17T17:48:50.543164Z", + "iopub.status.idle": "2024-01-17T17:52:10.610301Z", + "shell.execute_reply": "2024-01-17T17:52:10.609609Z" } }, "outputs": [ @@ -1350,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a98216727a8343779027d9b0dca33af1", + "model_id": "598da123a65b4ee48e0631a58c583c22", "version_major": 2, "version_minor": 0 }, @@ -1389,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:38.931159Z", - "iopub.status.busy": "2024-01-16T18:20:38.930750Z", - "iopub.status.idle": "2024-01-16T18:20:39.442668Z", - "shell.execute_reply": "2024-01-16T18:20:39.442032Z" + "iopub.execute_input": "2024-01-17T17:52:10.613299Z", + "iopub.status.busy": "2024-01-17T17:52:10.612696Z", + "iopub.status.idle": "2024-01-17T17:52:11.129890Z", + "shell.execute_reply": "2024-01-17T17:52:11.129081Z" } }, "outputs": [ @@ -1427,15 +1419,15 @@ " \n", "\n", "Number of examples with this issue: 3692\n", - "Overall dataset quality in terms of this issue: 0.9661\n", + "Overall dataset quality in terms of this issue: 0.3691\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", - "40378 True 0.687452\n", - "54473 True 0.705050\n", - "29412 True 0.715470\n", - "25316 True 0.716273\n", - "52247 True 0.725283\n", + "40378 True 3.943831e-07\n", + "54473 True 1.066211e-06\n", + "29412 True 1.899069e-06\n", + "25316 True 1.984817e-06\n", + "52247 True 3.245879e-06\n", "\n", "\n", "----------------------- label issues -----------------------\n", @@ -1604,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.446030Z", - "iopub.status.busy": "2024-01-16T18:20:39.445449Z", - "iopub.status.idle": "2024-01-16T18:20:39.508450Z", - "shell.execute_reply": "2024-01-16T18:20:39.507912Z" + "iopub.execute_input": "2024-01-17T17:52:11.133342Z", + "iopub.status.busy": "2024-01-17T17:52:11.132766Z", + "iopub.status.idle": "2024-01-17T17:52:11.195843Z", + "shell.execute_reply": "2024-01-17T17:52:11.195277Z" } }, "outputs": [ @@ -1711,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.510936Z", - "iopub.status.busy": "2024-01-16T18:20:39.510555Z", - "iopub.status.idle": "2024-01-16T18:20:39.519287Z", - "shell.execute_reply": "2024-01-16T18:20:39.518801Z" + "iopub.execute_input": "2024-01-17T17:52:11.198394Z", + "iopub.status.busy": "2024-01-17T17:52:11.198010Z", + "iopub.status.idle": "2024-01-17T17:52:11.206787Z", + "shell.execute_reply": "2024-01-17T17:52:11.206277Z" } }, "outputs": [ @@ -1844,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.521787Z", - "iopub.status.busy": "2024-01-16T18:20:39.521427Z", - "iopub.status.idle": "2024-01-16T18:20:39.526319Z", - "shell.execute_reply": "2024-01-16T18:20:39.525827Z" + "iopub.execute_input": "2024-01-17T17:52:11.209113Z", + "iopub.status.busy": "2024-01-17T17:52:11.208750Z", + "iopub.status.idle": "2024-01-17T17:52:11.213923Z", + "shell.execute_reply": "2024-01-17T17:52:11.213397Z" }, "nbsphinx": "hidden" }, @@ -1893,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:39.528614Z", - "iopub.status.busy": "2024-01-16T18:20:39.528190Z", - "iopub.status.idle": "2024-01-16T18:20:40.025362Z", - "shell.execute_reply": "2024-01-16T18:20:40.024668Z" + "iopub.execute_input": "2024-01-17T17:52:11.216190Z", + "iopub.status.busy": "2024-01-17T17:52:11.215986Z", + "iopub.status.idle": "2024-01-17T17:52:11.704310Z", + "shell.execute_reply": "2024-01-17T17:52:11.703667Z" } }, "outputs": [ @@ -1931,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.027883Z", - "iopub.status.busy": "2024-01-16T18:20:40.027673Z", - "iopub.status.idle": "2024-01-16T18:20:40.037084Z", - "shell.execute_reply": "2024-01-16T18:20:40.036465Z" + "iopub.execute_input": "2024-01-17T17:52:11.706846Z", + "iopub.status.busy": "2024-01-17T17:52:11.706616Z", + "iopub.status.idle": "2024-01-17T17:52:11.715817Z", + "shell.execute_reply": "2024-01-17T17:52:11.715186Z" } }, "outputs": [ @@ -1967,27 +1959,27 @@ " \n", " 40378\n", " True\n", - " 0.687452\n", + " 3.943831e-07\n", " \n", " \n", " 54473\n", " True\n", - " 0.705050\n", + " 1.066211e-06\n", " \n", " \n", " 29412\n", " True\n", - " 0.715470\n", + " 1.899069e-06\n", " \n", " \n", " 25316\n", " True\n", - " 0.716273\n", + " 1.984817e-06\n", " \n", " \n", " 52247\n", " True\n", - " 0.725283\n", + " 3.245879e-06\n", " \n", " \n", "\n", @@ -1995,11 +1987,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "40378 True 0.687452\n", - "54473 True 0.705050\n", - "29412 True 0.715470\n", - "25316 True 0.716273\n", - "52247 True 0.725283" + "40378 True 3.943831e-07\n", + "54473 True 1.066211e-06\n", + "29412 True 1.899069e-06\n", + "25316 True 1.984817e-06\n", + "52247 True 3.245879e-06" ] }, "execution_count": 20, @@ -2101,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.039499Z", - "iopub.status.busy": "2024-01-16T18:20:40.039059Z", - "iopub.status.idle": "2024-01-16T18:20:40.046811Z", - "shell.execute_reply": "2024-01-16T18:20:40.046333Z" + "iopub.execute_input": "2024-01-17T17:52:11.718087Z", + "iopub.status.busy": "2024-01-17T17:52:11.717888Z", + "iopub.status.idle": "2024-01-17T17:52:11.725871Z", + "shell.execute_reply": "2024-01-17T17:52:11.725260Z" }, "nbsphinx": "hidden" }, @@ -2180,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.049159Z", - "iopub.status.busy": "2024-01-16T18:20:40.048701Z", - "iopub.status.idle": "2024-01-16T18:20:40.513575Z", - "shell.execute_reply": "2024-01-16T18:20:40.512900Z" + "iopub.execute_input": "2024-01-17T17:52:11.728438Z", + "iopub.status.busy": "2024-01-17T17:52:11.727929Z", + "iopub.status.idle": "2024-01-17T17:52:12.193127Z", + "shell.execute_reply": "2024-01-17T17:52:12.192411Z" } }, "outputs": [ @@ -2220,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.516343Z", - "iopub.status.busy": "2024-01-16T18:20:40.515879Z", - "iopub.status.idle": "2024-01-16T18:20:40.532269Z", - "shell.execute_reply": "2024-01-16T18:20:40.531651Z" + "iopub.execute_input": "2024-01-17T17:52:12.195794Z", + "iopub.status.busy": "2024-01-17T17:52:12.195442Z", + "iopub.status.idle": "2024-01-17T17:52:12.211743Z", + "shell.execute_reply": "2024-01-17T17:52:12.211096Z" } }, "outputs": [ @@ -2380,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.534935Z", - "iopub.status.busy": "2024-01-16T18:20:40.534584Z", - "iopub.status.idle": "2024-01-16T18:20:40.540529Z", - "shell.execute_reply": "2024-01-16T18:20:40.539984Z" + "iopub.execute_input": "2024-01-17T17:52:12.214299Z", + "iopub.status.busy": "2024-01-17T17:52:12.213915Z", + "iopub.status.idle": "2024-01-17T17:52:12.219994Z", + "shell.execute_reply": "2024-01-17T17:52:12.219452Z" }, "nbsphinx": "hidden" }, @@ -2428,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:40.542833Z", - "iopub.status.busy": "2024-01-16T18:20:40.542497Z", - "iopub.status.idle": "2024-01-16T18:20:41.211741Z", - "shell.execute_reply": "2024-01-16T18:20:41.211144Z" + "iopub.execute_input": "2024-01-17T17:52:12.222248Z", + "iopub.status.busy": "2024-01-17T17:52:12.221885Z", + "iopub.status.idle": "2024-01-17T17:52:12.894014Z", + "shell.execute_reply": "2024-01-17T17:52:12.893111Z" } }, "outputs": [ @@ -2513,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.214924Z", - "iopub.status.busy": "2024-01-16T18:20:41.214349Z", - "iopub.status.idle": "2024-01-16T18:20:41.224615Z", - "shell.execute_reply": "2024-01-16T18:20:41.223941Z" + "iopub.execute_input": "2024-01-17T17:52:12.897441Z", + "iopub.status.busy": "2024-01-17T17:52:12.896919Z", + "iopub.status.idle": "2024-01-17T17:52:12.907357Z", + "shell.execute_reply": "2024-01-17T17:52:12.906686Z" } }, "outputs": [ @@ -2644,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.227838Z", - "iopub.status.busy": "2024-01-16T18:20:41.227598Z", - "iopub.status.idle": "2024-01-16T18:20:41.235427Z", - "shell.execute_reply": "2024-01-16T18:20:41.234708Z" + "iopub.execute_input": "2024-01-17T17:52:12.910215Z", + "iopub.status.busy": "2024-01-17T17:52:12.909978Z", + "iopub.status.idle": "2024-01-17T17:52:12.916505Z", + "shell.execute_reply": "2024-01-17T17:52:12.915851Z" }, "nbsphinx": "hidden" }, @@ -2684,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.238223Z", - "iopub.status.busy": "2024-01-16T18:20:41.237815Z", - "iopub.status.idle": "2024-01-16T18:20:41.435305Z", - "shell.execute_reply": "2024-01-16T18:20:41.434818Z" + "iopub.execute_input": "2024-01-17T17:52:12.919378Z", + "iopub.status.busy": "2024-01-17T17:52:12.919145Z", + "iopub.status.idle": "2024-01-17T17:52:13.117373Z", + "shell.execute_reply": "2024-01-17T17:52:13.116789Z" } }, "outputs": [ @@ -2729,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.437816Z", - "iopub.status.busy": "2024-01-16T18:20:41.437350Z", - "iopub.status.idle": "2024-01-16T18:20:41.445096Z", - "shell.execute_reply": "2024-01-16T18:20:41.444650Z" + "iopub.execute_input": "2024-01-17T17:52:13.119885Z", + "iopub.status.busy": "2024-01-17T17:52:13.119681Z", + "iopub.status.idle": "2024-01-17T17:52:13.127900Z", + "shell.execute_reply": "2024-01-17T17:52:13.127383Z" } }, "outputs": [ @@ -2818,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.447274Z", - "iopub.status.busy": "2024-01-16T18:20:41.446816Z", - "iopub.status.idle": "2024-01-16T18:20:41.634820Z", - "shell.execute_reply": "2024-01-16T18:20:41.634364Z" + "iopub.execute_input": "2024-01-17T17:52:13.130018Z", + "iopub.status.busy": "2024-01-17T17:52:13.129834Z", + "iopub.status.idle": "2024-01-17T17:52:13.323481Z", + "shell.execute_reply": "2024-01-17T17:52:13.322819Z" } }, "outputs": [ @@ -2861,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:20:41.637243Z", - "iopub.status.busy": "2024-01-16T18:20:41.636801Z", - "iopub.status.idle": "2024-01-16T18:20:41.641327Z", - "shell.execute_reply": "2024-01-16T18:20:41.640829Z" + "iopub.execute_input": "2024-01-17T17:52:13.325960Z", + "iopub.status.busy": "2024-01-17T17:52:13.325754Z", + "iopub.status.idle": "2024-01-17T17:52:13.330514Z", + "shell.execute_reply": "2024-01-17T17:52:13.329899Z" }, "nbsphinx": "hidden" }, @@ -2901,86 +2893,106 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ec1914538341238b162e9865cb6c84": { + "00484bc43f3842418c8c184e2abe97bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_60cc83feeaf44c12a719dd3508ebc70d", - "placeholder": "​", - "style": "IPY_MODEL_4346d7cc8d4241458d55a20e2a3d0b7e", - "value": "Map (num_proc=4): 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "0325d2955b93490791fb6f6a6651f083": { + "012ce53e9ae1456484a26ed1f4cea9cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02f3844c20314b10980479813fca0c8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2939a97c7cf45a1b447ce953b794405", - "placeholder": "​", - "style": "IPY_MODEL_8dae2e69fc9f40519bf92e500df3f6d5", - "value": "100%" + "layout": "IPY_MODEL_48a3fab7236e44bc8914cfbe1ddffe31", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f6ed1fc5be74f059e67d03dc53e7279", + "value": 60000.0 } }, - "03707ead2a3046f595e77370955c0e67": { + "047740b6c804409495749f4c8350c122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_00ec1914538341238b162e9865cb6c84", - "IPY_MODEL_37bbc3a4a224472fa26566ef88b7037b", - "IPY_MODEL_bd55b58158bc4300a6249b7734c542d2" - ], - "layout": "IPY_MODEL_d5ff25bf1b664f7ba30a3ef36085b3d1" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_721389c714804214a8bad33c219e610c", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4154f5a2f2fc44f8aabbc435cf3ae132", + "value": 1.0 } }, - "0440fce6015546c9afec1289df03d34b": { + "088b801a3ad44b83aeadc8684c712ee3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d7549e257bc4e968cb5eaa91f3bdf51", + "placeholder": "​", + "style": "IPY_MODEL_d0ff8e31e8544df784c1da094fcdee49", + "value": " 2/2 [00:00<00:00, 300.04it/s]" } }, - "0729958302a74152bd92f48834ebe27c": { + "0fafa6342fdd42968dd30882c6ee4c19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3032,60 +3044,7 @@ "width": null } }, - "0dd0f772d6044aa387e2e1f8175c54ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0defe72ac3f54ed59165d32126c59303": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_272c8bebd0dd4881bcd693562e0f41e2", - "IPY_MODEL_9103ef3d70b147019a21b23de4a9f5f0", - "IPY_MODEL_5b137d643e1d43ffb4a42bdf6a3d11f0" - ], - "layout": "IPY_MODEL_a0c23618196b43f499832226ad663de2" - } - }, - "0e05ae2f485547259b107e4f3bd66066": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0febc3768c044db4806712166d22bf5e": { + "10e100a0644e40188295f9538270376a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3137,7 +3096,7 @@ "width": null } }, - "106055570b234d78b9eb202c3b87afee": { + "11338e9520944ab0b6088713cdbdbeb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3189,7 +3148,44 @@ "width": null } }, - "177e49590d954279b13cf032c7fba79e": { + "138e8569d73c4286b12b8b4a8491a5eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55f19c97d03d4dc988684a1f948c11d3", + "IPY_MODEL_047740b6c804409495749f4c8350c122", + "IPY_MODEL_e620c04c5e9c438dbb19e8a0e7f1cced" + ], + "layout": "IPY_MODEL_7f9c53436f43411598a1141836d72fcc" + } + }, + "170c4abcb1d641c2b9264b3885807a5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "192cc2fb9ec9434c88d85a3e7e47ee32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3238,10 +3234,25 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "19dba4b33de0448c881018407726475e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "186de098e4fe42cba02198058794a103": { + "1e2664d26dec493caeb01285db805670": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3293,7 +3304,45 @@ "width": null } }, - "24b25b2277454d01bf17a696e31b9309": { + "20c0511ac79d40b1ba77fc180f7de46a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "212e8f8dbed64e4090645ba650c4c40d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b41509348714dbbb42d2e55ed4a35fd", + "IPY_MODEL_9d4fdbdcbadd4ab387f294a6f19cdd33", + "IPY_MODEL_82aa21bbbeb94afbb37bfd471a242368" + ], + "layout": "IPY_MODEL_2204458deea048748a121c56aaf56059" + } + }, + "2204458deea048748a121c56aaf56059": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3345,7 +3394,7 @@ "width": null } }, - "272c8bebd0dd4881bcd693562e0f41e2": { + "235693a9bd704ba5a114c1d746c464aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3360,28 +3409,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ce701a2fe5b54d5db9d0c80b333ec6c0", + "layout": "IPY_MODEL_8fceea0f9fe645bba1b05e30cfc3fe3d", "placeholder": "​", - "style": "IPY_MODEL_3be7226bc4cd4c0c997e76b59ccef963", + "style": "IPY_MODEL_6f788c275b5b41c78b6dbdf549c88509", "value": "Downloading data: 100%" } }, - "29d83a407bb74be4aa86e11e876ca5a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2b131449546f44908690da4f963613bb": { + "2c75da38e3c241c0ba009dee5ee35b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3397,123 +3431,36 @@ "description_width": "" } }, - "2b15bc453a344195b98818321d66bdd5": { + "2cd6991966a149ad8c8253c8a436fcb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_96e30dc3b4bc4ff2bd7509aba94f4ea0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7b93eb95a052411283d96001daa87620", - "value": 60000.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aafd769665844ac390a612faf9e8d648", + "IPY_MODEL_97a64fd255f449e9bcc4a9408c8928fb", + "IPY_MODEL_8141ae3891d448edb8c921ed480fe9ef" + ], + "layout": "IPY_MODEL_0fafa6342fdd42968dd30882c6ee4c19" } }, - "2d5b6dcb06e94114b23dc106d69b9616": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "33f22d7dee1f44a1bcb18d3fc3dfef85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35ed5152390740f5a3450599997c7ca4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa820ace104e4c988fdd079f432c1cc0", - "placeholder": "​", - "style": "IPY_MODEL_6515e9ee86dc450790fc9b67073a7b0a", - "value": "Computing checksums: 100%" - } - }, - "3758cba0a2e7421aaafa0983f21ec9a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d67d6436c5104eb4b30412a9900668bf", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e05ae2f485547259b107e4f3bd66066", - "value": 1.0 - } - }, - "37bbc3a4a224472fa26566ef88b7037b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3bb459d1c23d45729ecfa4c483326ce4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d5b6dcb06e94114b23dc106d69b9616", - "value": 60000.0 - } - }, - "3b4787d6b66e4fceb0698f6618c8d93a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -3558,59 +3505,38 @@ "width": null } }, - "3b97d4f99f984e49a827168e0b594422": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4154f5a2f2fc44f8aabbc435cf3ae132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3bb459d1c23d45729ecfa4c483326ce4": { + "4784dddc37b64d8faafce69faa22c5f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48a3fab7236e44bc8914cfbe1ddffe31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3662,83 +3588,28 @@ "width": null } }, - "3be7226bc4cd4c0c997e76b59ccef963": { + "53549762976447c4be4bdb4a7c045d9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4039d97f5e8c46ccb8fb9904399c3dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df208a463d7a4f43b7ecf89e6c3827c4", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_61b04e22b015441d954e585126bcc9cc", - "value": 1.0 - } - }, - "4346d7cc8d4241458d55a20e2a3d0b7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "483fbb8e47af4cf39d4e17cc29673fd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_35ed5152390740f5a3450599997c7ca4", - "IPY_MODEL_558c281446904f0cb415dc94fa8dc27a", - "IPY_MODEL_5d1fa10a86b94da4bd34a932e96b031b" - ], - "layout": "IPY_MODEL_e19f1b6415534e41958b05129284f139" + "layout": "IPY_MODEL_1e2664d26dec493caeb01285db805670", + "placeholder": "​", + "style": "IPY_MODEL_c394d286fe594da2bafc29756b113367", + "value": " 60000/60000 [00:11<00:00, 6162.51 examples/s]" } }, - "50dc3ef321e24ab7ad8d390e5cbde40b": { + "554a8ef753234925ba5770314b084d56": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3790,46 +3661,7 @@ "width": null } }, - "53ca8a7df1d941b4b9213df932aa7567": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "558c281446904f0cb415dc94fa8dc27a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_819dfd25a64043e69af05bb77fb3b99b", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7cc1412d2f544df28d3680e03c0a9045", - "value": 2.0 - } - }, - "5b137d643e1d43ffb4a42bdf6a3d11f0": { + "55f19c97d03d4dc988684a1f948c11d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3844,34 +3676,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a6b1fb58cac048ddb6d1e51647a3c6ca", + "layout": "IPY_MODEL_a53af80455b84a7287ce21d2a8f1d621", "placeholder": "​", - "style": "IPY_MODEL_0dd0f772d6044aa387e2e1f8175c54ab", - "value": " 30.9M/30.9M [00:00<00:00, 91.8MB/s]" + "style": "IPY_MODEL_19dba4b33de0448c881018407726475e", + "value": "Generating train split: " } }, - "5d1fa10a86b94da4bd34a932e96b031b": { + "598da123a65b4ee48e0631a58c583c22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_50dc3ef321e24ab7ad8d390e5cbde40b", - "placeholder": "​", - "style": "IPY_MODEL_0440fce6015546c9afec1289df03d34b", - "value": " 2/2 [00:00<00:00, 346.69it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b70c3b20c02f447796fbf1a9a2e134cc", + "IPY_MODEL_02f3844c20314b10980479813fca0c8f", + "IPY_MODEL_f7a547a1cc4746738ddd6d8ad82ddf95" + ], + "layout": "IPY_MODEL_c63d98948d25442e80e7fdfa492eb0de" } }, - "60cc83feeaf44c12a719dd3508ebc70d": { + "62a1cb85b32c4f698880ff1180fe2707": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3923,53 +3756,29 @@ "width": null } }, - "617473bdcf7a4e9cb5efab229bb49c4e": { + "63f8d37ac2ee41b8b8a094f0ac086ed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "61b04e22b015441d954e585126bcc9cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6515e9ee86dc450790fc9b67073a7b0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dada9a8c29694cbdaef3690eab4f1f34", + "IPY_MODEL_a37d761ffa944640ad974508a4b3011c", + "IPY_MODEL_53549762976447c4be4bdb4a7c045d9a" + ], + "layout": "IPY_MODEL_554a8ef753234925ba5770314b084d56" } }, - "659ba8dff624402e8011ef915c770182": { + "675e239fe91e46f88302492afd1ed474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3985,7 +3794,7 @@ "description_width": "" } }, - "721074f8da064ec3a0351d0bc70ca7e8": { + "6d06f56153a84a64b540a069e52ad2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4037,69 +3846,7 @@ "width": null } }, - "7288ae4291bf4170949e6bf435d33f01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "76e19d94cc9c4c3182d766ab0c7a6dc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b93eb95a052411283d96001daa87620": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7cc1412d2f544df28d3680e03c0a9045": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "819dfd25a64043e69af05bb77fb3b99b": { + "6d7549e257bc4e968cb5eaa91f3bdf51": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4151,111 +3898,7 @@ "width": null } }, - "88011db5921c4bf99f950c37e4ef4adc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a5320019fd944931844543c042742d96", - "IPY_MODEL_4039d97f5e8c46ccb8fb9904399c3dff", - "IPY_MODEL_b2ff003386fa47c58e37c006d268ae77" - ], - "layout": "IPY_MODEL_d417c024ea9c41e6af120caeaa9392b4" - } - }, - "8b4d683ee6dc42839093764c05d01557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98eb77f85fdc4618964fe50a07d0b40f", - "IPY_MODEL_aad7e5b2feb74ab5aad8b81263862d92", - "IPY_MODEL_8b74a19dc2264bfca5b7710313274bfe" - ], - "layout": "IPY_MODEL_3b97d4f99f984e49a827168e0b594422" - } - }, - "8b74a19dc2264bfca5b7710313274bfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d5e212f8859e4d679e2d13c477cb82a3", - "placeholder": "​", - "style": "IPY_MODEL_94f0f9710132489ea6c9da1a851844ce", - "value": " 5.18M/5.18M [00:00<00:00, 54.6MB/s]" - } - }, - "8dae2e69fc9f40519bf92e500df3f6d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9103ef3d70b147019a21b23de4a9f5f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d21967875ab140e598f26e4f48247e40", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_659ba8dff624402e8011ef915c770182", - "value": 30931277.0 - } - }, - "94f0f9710132489ea6c9da1a851844ce": { + "6f788c275b5b41c78b6dbdf549c88509": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4270,7 +3913,7 @@ "description_width": "" } }, - "96e30dc3b4bc4ff2bd7509aba94f4ea0": { + "721389c714804214a8bad33c219e610c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4319,31 +3962,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "98eb77f85fdc4618964fe50a07d0b40f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db121d8d66704795b9581beb380cd2ad", - "placeholder": "​", - "style": "IPY_MODEL_76e19d94cc9c4c3182d766ab0c7a6dc0", - "value": "Downloading data: 100%" + "width": "20px" } }, - "a0c23618196b43f499832226ad663de2": { + "744def1450374b2980598b6ada095c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4395,7 +4017,58 @@ "width": null } }, - "a2939a97c7cf45a1b447ce953b794405": { + "78864596e2c446808c02ea689298c872": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b41509348714dbbb42d2e55ed4a35fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b419c60979de402db8cca25a7a7ea3d2", + "placeholder": "​", + "style": "IPY_MODEL_4784dddc37b64d8faafce69faa22c5f1", + "value": "Generating test split: " + } + }, + "7d525a804306436ea7215c1fa6c47ab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7f9c53436f43411598a1141836d72fcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4447,7 +4120,7 @@ "width": null } }, - "a5320019fd944931844543c042742d96": { + "8141ae3891d448edb8c921ed480fe9ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4462,13 +4135,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0febc3768c044db4806712166d22bf5e", + "layout": "IPY_MODEL_8dca1f8ed8314bc9ae2554fbcd40fdde", "placeholder": "​", - "style": "IPY_MODEL_617473bdcf7a4e9cb5efab229bb49c4e", - "value": "Generating train split: " + "style": "IPY_MODEL_00484bc43f3842418c8c184e2abe97bf", + "value": " 30.9M/30.9M [00:01<00:00, 25.0MB/s]" + } + }, + "82aa21bbbeb94afbb37bfd471a242368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f16dec36b6c455cb6e2933dbd5d2bef", + "placeholder": "​", + "style": "IPY_MODEL_170c4abcb1d641c2b9264b3885807a5c", + "value": " 10000/0 [00:00<00:00, 464675.89 examples/s]" } }, - "a6b1fb58cac048ddb6d1e51647a3c6ca": { + "84c587358e7a45549493cd0e2fd0171d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4520,110 +4214,7 @@ "width": null } }, - "a98216727a8343779027d9b0dca33af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0325d2955b93490791fb6f6a6651f083", - "IPY_MODEL_2b15bc453a344195b98818321d66bdd5", - "IPY_MODEL_f45369238740438089a6fd0fcef6c732" - ], - "layout": "IPY_MODEL_721074f8da064ec3a0351d0bc70ca7e8" - } - }, - "aad7e5b2feb74ab5aad8b81263862d92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_106055570b234d78b9eb202c3b87afee", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b131449546f44908690da4f963613bb", - "value": 5175617.0 - } - }, - "b06b547c9dce4b1492b8f403f94f2cee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b1f61e53d24d4416bbf9d627ebb74608": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0729958302a74152bd92f48834ebe27c", - "placeholder": "​", - "style": "IPY_MODEL_29d83a407bb74be4aa86e11e876ca5a6", - "value": " 10000/0 [00:00<00:00, 483348.39 examples/s]" - } - }, - "b2ff003386fa47c58e37c006d268ae77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_186de098e4fe42cba02198058794a103", - "placeholder": "​", - "style": "IPY_MODEL_b06b547c9dce4b1492b8f403f94f2cee", - "value": " 60000/0 [00:00<00:00, 920361.92 examples/s]" - } - }, - "bc6a62bbf5344c9e9ce02f0c0da45680": { + "85aef2353eb44d09925ba1eddd664674": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4638,28 +4229,29 @@ "description_width": "" } }, - "bd55b58158bc4300a6249b7734c542d2": { + "867c9e6e93ab4f0aa2763d003f7e9037": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0cabfa5e2b042f09532c8c3df947ff7", - "placeholder": "​", - "style": "IPY_MODEL_bc6a62bbf5344c9e9ce02f0c0da45680", - "value": " 60000/60000 [00:12<00:00, 6622.64 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_235693a9bd704ba5a114c1d746c464aa", + "IPY_MODEL_a236404bf6854af28abc405f2a9af647", + "IPY_MODEL_b27bed368ff84315b56e382bdd305156" + ], + "layout": "IPY_MODEL_f18822a273ed458298737745e5b0d3a9" } }, - "c0cabfa5e2b042f09532c8c3df947ff7": { + "8dca1f8ed8314bc9ae2554fbcd40fdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4711,7 +4303,7 @@ "width": null } }, - "ce701a2fe5b54d5db9d0c80b333ec6c0": { + "8fceea0f9fe645bba1b05e30cfc3fe3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4763,7 +4355,7 @@ "width": null } }, - "d21967875ab140e598f26e4f48247e40": { + "91ac4df283bf4489a47ffb5d65753374": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4815,7 +4407,7 @@ "width": null } }, - "d417c024ea9c41e6af120caeaa9392b4": { + "937d8b75258e4158b70cebcf36354940": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4867,7 +4459,55 @@ "width": null } }, - "d5e212f8859e4d679e2d13c477cb82a3": { + "97a64fd255f449e9bcc4a9408c8928fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_abc91fdefd104f3aa9e086fbec0e8dc2", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d859c6c8684d4879abc354c3da7b4a68", + "value": 30931277.0 + } + }, + "9d4fdbdcbadd4ab387f294a6f19cdd33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_192cc2fb9ec9434c88d85a3e7e47ee32", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c75da38e3c241c0ba009dee5ee35b4f", + "value": 1.0 + } + }, + "9f16dec36b6c455cb6e2933dbd5d2bef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4919,7 +4559,86 @@ "width": null } }, - "d5ff25bf1b664f7ba30a3ef36085b3d1": { + "9f6ed1fc5be74f059e67d03dc53e7279": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1663391dc224171b781d2df0286325b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a236404bf6854af28abc405f2a9af647": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33f22d7dee1f44a1bcb18d3fc3dfef85", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbb05af406a24d9ba3449095554be419", + "value": 5175617.0 + } + }, + "a37d761ffa944640ad974508a4b3011c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f494cda750f04862a69d0c9b6ebc3e63", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_675e239fe91e46f88302492afd1ed474", + "value": 60000.0 + } + }, + "a53af80455b84a7287ce21d2a8f1d621": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4971,7 +4690,28 @@ "width": null } }, - "d67d6436c5104eb4b30412a9900668bf": { + "aafd769665844ac390a612faf9e8d648": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62a1cb85b32c4f698880ff1180fe2707", + "placeholder": "​", + "style": "IPY_MODEL_d7adeccb09754028b7741cc2d7610321", + "value": "Downloading data: 100%" + } + }, + "abc91fdefd104f3aa9e086fbec0e8dc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5020,10 +4760,31 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "b27bed368ff84315b56e382bdd305156": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10e100a0644e40188295f9538270376a", + "placeholder": "​", + "style": "IPY_MODEL_7d525a804306436ea7215c1fa6c47ab2", + "value": " 5.18M/5.18M [00:01<00:00, 3.89MB/s]" } }, - "db121d8d66704795b9581beb380cd2ad": { + "b419c60979de402db8cca25a7a7ea3d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5075,7 +4836,81 @@ "width": null } }, - "df208a463d7a4f43b7ecf89e6c3827c4": { + "b70c3b20c02f447796fbf1a9a2e134cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91ac4df283bf4489a47ffb5d65753374", + "placeholder": "​", + "style": "IPY_MODEL_78864596e2c446808c02ea689298c872", + "value": "100%" + } + }, + "bbb05af406a24d9ba3449095554be419": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be8914c9cb0a4ac2b3bb62ed13e92f6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e169aec8c4ac4ad7b19d1373b34d0c17", + "IPY_MODEL_d48126eab93e4281b2b9019a193a81d9", + "IPY_MODEL_088b801a3ad44b83aeadc8684c712ee3" + ], + "layout": "IPY_MODEL_6d06f56153a84a64b540a069e52ad2ee" + } + }, + "c394d286fe594da2bafc29756b113367": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c63d98948d25442e80e7fdfa492eb0de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5124,10 +4959,40 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "c79a769381a94cedb1c10b4d9d579438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0ff8e31e8544df784c1da094fcdee49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e19f1b6415534e41958b05129284f139": { + "d11f98d661db4eb39ac17b58f0dbc0c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5179,29 +5044,62 @@ "width": null } }, - "e78a910f7b04430ba9e6ad8321f0123e": { + "d48126eab93e4281b2b9019a193a81d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f132d516a53d4855840bab07ebe90d3e", - "IPY_MODEL_3758cba0a2e7421aaafa0983f21ec9a5", - "IPY_MODEL_b1f61e53d24d4416bbf9d627ebb74608" - ], - "layout": "IPY_MODEL_3b4787d6b66e4fceb0698f6618c8d93a" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_744def1450374b2980598b6ada095c0a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_20c0511ac79d40b1ba77fc180f7de46a", + "value": 2.0 + } + }, + "d7adeccb09754028b7741cc2d7610321": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d859c6c8684d4879abc354c3da7b4a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f132d516a53d4855840bab07ebe90d3e": { + "dada9a8c29694cbdaef3690eab4f1f34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5216,13 +5114,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_24b25b2277454d01bf17a696e31b9309", + "layout": "IPY_MODEL_11338e9520944ab0b6088713cdbdbeb5", "placeholder": "​", - "style": "IPY_MODEL_53ca8a7df1d941b4b9213df932aa7567", - "value": "Generating test split: " + "style": "IPY_MODEL_85aef2353eb44d09925ba1eddd664674", + "value": "Map (num_proc=4): 100%" + } + }, + "e169aec8c4ac4ad7b19d1373b34d0c17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_937d8b75258e4158b70cebcf36354940", + "placeholder": "​", + "style": "IPY_MODEL_012ce53e9ae1456484a26ed1f4cea9cc", + "value": "Computing checksums: 100%" } }, - "f45369238740438089a6fd0fcef6c732": { + "e620c04c5e9c438dbb19e8a0e7f1cced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5237,13 +5156,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_177e49590d954279b13cf032c7fba79e", + "layout": "IPY_MODEL_84c587358e7a45549493cd0e2fd0171d", "placeholder": "​", - "style": "IPY_MODEL_7288ae4291bf4170949e6bf435d33f01", - "value": " 60000/60000 [00:34<00:00, 1795.17it/s]" + "style": "IPY_MODEL_c79a769381a94cedb1c10b4d9d579438", + "value": " 60000/0 [00:00<00:00, 957610.94 examples/s]" + } + }, + "f18822a273ed458298737745e5b0d3a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fa820ace104e4c988fdd079f432c1cc0": { + "f494cda750f04862a69d0c9b6ebc3e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5294,6 +5265,27 @@ "visibility": null, "width": null } + }, + "f7a547a1cc4746738ddd6d8ad82ddf95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d11f98d661db4eb39ac17b58f0dbc0c5", + "placeholder": "​", + "style": "IPY_MODEL_a1663391dc224171b781d2df0286325b", + "value": " 60000/60000 [00:34<00:00, 1794.67it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 88c921412..4bf2cd0b0 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -1079,15 +1079,15 @@

    Workflow 1: Use Datalab to detect many types of issues2. Pre-process the Cifar10 dataset

    -
    +
    @@ -1305,7 +1305,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index d81779d14..6db038120 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:30.239559Z", - "iopub.status.busy": "2024-01-16T18:21:30.239368Z", - "iopub.status.idle": "2024-01-16T18:21:32.172500Z", - "shell.execute_reply": "2024-01-16T18:21:32.171815Z" + "iopub.execute_input": "2024-01-17T17:53:02.831057Z", + "iopub.status.busy": "2024-01-17T17:53:02.830876Z", + "iopub.status.idle": "2024-01-17T17:53:04.788066Z", + "shell.execute_reply": "2024-01-17T17:53:04.787447Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.175606Z", - "iopub.status.busy": "2024-01-16T18:21:32.175233Z", - "iopub.status.idle": "2024-01-16T18:21:32.487679Z", - "shell.execute_reply": "2024-01-16T18:21:32.487070Z" + "iopub.execute_input": "2024-01-17T17:53:04.790886Z", + "iopub.status.busy": "2024-01-17T17:53:04.790554Z", + "iopub.status.idle": "2024-01-17T17:53:05.107342Z", + "shell.execute_reply": "2024-01-17T17:53:05.106722Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.490779Z", - "iopub.status.busy": "2024-01-16T18:21:32.490294Z", - "iopub.status.idle": "2024-01-16T18:21:32.494238Z", - "shell.execute_reply": "2024-01-16T18:21:32.493770Z" + "iopub.execute_input": "2024-01-17T17:53:05.110384Z", + "iopub.status.busy": "2024-01-17T17:53:05.109991Z", + "iopub.status.idle": "2024-01-17T17:53:05.114143Z", + "shell.execute_reply": "2024-01-17T17:53:05.113656Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:32.496632Z", - "iopub.status.busy": "2024-01-16T18:21:32.496174Z", - "iopub.status.idle": "2024-01-16T18:21:37.049215Z", - "shell.execute_reply": "2024-01-16T18:21:37.048493Z" + "iopub.execute_input": "2024-01-17T17:53:05.116476Z", + "iopub.status.busy": "2024-01-17T17:53:05.116169Z", + "iopub.status.idle": "2024-01-17T17:53:12.546219Z", + "shell.execute_reply": "2024-01-17T17:53:12.545609Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8b0c31123da41349ede0eeec606e480", + "model_id": "a6c7e398577b486e8fc9b649d6a83f90", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.051909Z", - "iopub.status.busy": "2024-01-16T18:21:37.051560Z", - "iopub.status.idle": "2024-01-16T18:21:37.056784Z", - "shell.execute_reply": "2024-01-16T18:21:37.056139Z" + "iopub.execute_input": "2024-01-17T17:53:12.548820Z", + "iopub.status.busy": "2024-01-17T17:53:12.548417Z", + "iopub.status.idle": "2024-01-17T17:53:12.553634Z", + "shell.execute_reply": "2024-01-17T17:53:12.553093Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.059263Z", - "iopub.status.busy": "2024-01-16T18:21:37.058922Z", - "iopub.status.idle": "2024-01-16T18:21:37.602002Z", - "shell.execute_reply": "2024-01-16T18:21:37.601378Z" + "iopub.execute_input": "2024-01-17T17:53:12.556059Z", + "iopub.status.busy": "2024-01-17T17:53:12.555593Z", + "iopub.status.idle": "2024-01-17T17:53:13.101729Z", + "shell.execute_reply": "2024-01-17T17:53:13.101188Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:37.604483Z", - "iopub.status.busy": "2024-01-16T18:21:37.604100Z", - "iopub.status.idle": "2024-01-16T18:21:38.233923Z", - "shell.execute_reply": "2024-01-16T18:21:38.233266Z" + "iopub.execute_input": "2024-01-17T17:53:13.104313Z", + "iopub.status.busy": "2024-01-17T17:53:13.103944Z", + "iopub.status.idle": "2024-01-17T17:53:13.746180Z", + "shell.execute_reply": "2024-01-17T17:53:13.745490Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:38.236501Z", - "iopub.status.busy": "2024-01-16T18:21:38.236126Z", - "iopub.status.idle": "2024-01-16T18:21:38.239843Z", - "shell.execute_reply": "2024-01-16T18:21:38.239237Z" + "iopub.execute_input": "2024-01-17T17:53:13.748783Z", + "iopub.status.busy": "2024-01-17T17:53:13.748393Z", + "iopub.status.idle": "2024-01-17T17:53:13.752019Z", + "shell.execute_reply": "2024-01-17T17:53:13.751493Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:38.241920Z", - "iopub.status.busy": "2024-01-16T18:21:38.241724Z", - "iopub.status.idle": "2024-01-16T18:21:50.205073Z", - "shell.execute_reply": "2024-01-16T18:21:50.204295Z" + "iopub.execute_input": "2024-01-17T17:53:13.754386Z", + "iopub.status.busy": "2024-01-17T17:53:13.754025Z", + "iopub.status.idle": "2024-01-17T17:53:27.572252Z", + "shell.execute_reply": "2024-01-17T17:53:27.571646Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:50.208098Z", - "iopub.status.busy": "2024-01-16T18:21:50.207873Z", - "iopub.status.idle": "2024-01-16T18:21:51.758169Z", - "shell.execute_reply": "2024-01-16T18:21:51.757556Z" + "iopub.execute_input": "2024-01-17T17:53:27.575001Z", + "iopub.status.busy": "2024-01-17T17:53:27.574747Z", + "iopub.status.idle": "2024-01-17T17:53:29.200876Z", + "shell.execute_reply": "2024-01-17T17:53:29.200177Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:51.761296Z", - "iopub.status.busy": "2024-01-16T18:21:51.760686Z", - "iopub.status.idle": "2024-01-16T18:21:51.995656Z", - "shell.execute_reply": "2024-01-16T18:21:51.994863Z" + "iopub.execute_input": "2024-01-17T17:53:29.203905Z", + "iopub.status.busy": "2024-01-17T17:53:29.203659Z", + "iopub.status.idle": "2024-01-17T17:53:29.468779Z", + "shell.execute_reply": "2024-01-17T17:53:29.468083Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:51.998600Z", - "iopub.status.busy": "2024-01-16T18:21:51.998375Z", - "iopub.status.idle": "2024-01-16T18:21:52.647778Z", - "shell.execute_reply": "2024-01-16T18:21:52.647094Z" + "iopub.execute_input": "2024-01-17T17:53:29.471893Z", + "iopub.status.busy": "2024-01-17T17:53:29.471649Z", + "iopub.status.idle": "2024-01-17T17:53:30.153982Z", + "shell.execute_reply": "2024-01-17T17:53:30.153298Z" } }, "outputs": [ @@ -719,16 +719,16 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:52.650972Z", - "iopub.status.busy": "2024-01-16T18:21:52.650384Z", - "iopub.status.idle": "2024-01-16T18:21:53.105237Z", - "shell.execute_reply": "2024-01-16T18:21:53.104537Z" + "iopub.execute_input": "2024-01-17T17:53:30.157322Z", + "iopub.status.busy": "2024-01-17T17:53:30.157080Z", + "iopub.status.idle": "2024-01-17T17:53:30.651123Z", + "shell.execute_reply": "2024-01-17T17:53:30.650433Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHDCAYAAABRfvt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3dd3xUVf7/8XcSkklIJZAqLSDSwTVKiCIgIAGyCBJXUVRAFFcDCtjAVSmiYbGAheLuYsBdEcVVXFF6c5WiIKwCGqmCQgKrkEAwCSTn98f+Ml+GFFKm3JDX8/GYB8y9Z858Tqac85lz7z1exhgjAAAAAABgOd6eDgAAAAAAAJSOpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdNUbTpk01bNgwT4dRbevXr5eXl5fWr19v3zZs2DA1bdrUYzHVZhe+r0p7fVxl0qRJ8vLyctjm5eWlUaNGufy5JWn+/Pny8vLSwYMH3fJ8AHAp82R/Akel9a/uGkcePHhQXl5emj9/vn3bsGHDFBQU5PLnLubl5aVJkya57fngeiTtcJqNGzdq0qRJOnnypKdDsYTZs2c7fGHj0vb8889ryZIlng6jVFaODUDN5a5+30rfYYx1apdPP/3UssmvlWOD85G0w2k2btyoyZMnu6wjy8jI0F//+leX1O0KlUna//rXvyojI8O1AaFCunbtqt9++01du3at1OOqMqh86qmn9Ntvv1XqMVVRVmx33XWXfvvtNzVp0sTlMQC49Li63y9mtaS9om2uan8C16jKOPLTTz/V5MmTK/WYJk2a6LffftNdd91VqcdVVnmx/fbbb3rqqadc+vxwL5J2eERRUZHy8vIq9RibzSZfX18XReRZvr6+stlsTqnLGOOWRNBZcnNzPR2CA29vb/n7+8vb23Vfj8VtrlOnjvz9/V32PBfj4+Mjf3//EocQAgCqz9n9idX6y/Lk5eWpqKjI02E4cPU48ty5cyooKJCXl5f8/f3l4+Pjsue6GH9/f9WpU8djzw/nI2mHU0yaNEmPPfaYJCkuLk5eXl4O58oWn6f79ttvq23btrLZbFq+fLkk6cUXX9S1116r+vXrKyAgQPHx8Xr//fdLPMeF5yIVn4/7xRdfaNy4cYqIiFBgYKBuvvlmHT9+vNJt2L59u/r27auQkBAFBQWpZ8+e2rx5c4l2lpbgXHhucNOmTbVr1y5t2LDB/rfo3r17mc9d2jntRUVFmjlzptq2bSt/f39FRUXp/vvv14kTJxzKNW3aVL///e+1YsUKXX311QoICNAbb7xRoTZnZmZq+PDhatiwoWw2m2JiYjRgwIAS5zgvW7ZM3bp1U3BwsEJCQnTNNddo4cKFDmUWL16s+Ph4BQQEqEGDBrrzzjv1888/l2hnUFCQ9u3bp379+ik4OFhDhgypVHu3bt2qpKQkNWjQQAEBAYqLi9M999xz0bYaYzR16lQ1bNhQdevW1Q033KBdu3aVKFfaOYh79uxRSkqKoqOj5e/vr4YNG2rw4MHKzs6W9L/3d25urhYsWGB/vYvfq8Xvmd27d+uOO+5QvXr11KVLF4d9pXn77bfVsmVL+fv7Kz4+Xp999lmJv2Vp10G4sM7yYivrnPbZs2fbP6exsbFKTU0tMavUvXt3tWvXTrt379YNN9ygunXr6rLLLtP06dNLbQ+AS8vF+n1J+sc//mHvF8LDwzV48GAdPnzYoZ7qfL9WRG5urh555BE1atRINptNLVu21IsvvihjjL1MaecgFzv/3OCKtPl8ZZ3TvmXLFvXp00ehoaGqW7euunXrpi+++MKhTHl9R0W89tpratu2rerWrat69erp6quvLtFv//zzzxoxYoRiY2Nls9kUFxenBx54QAUFBfYy+/fv1x/+8AeFh4erbt266ty5sz755JNS27lo0SI99dRTuuyyy1S3bl3l5ORUuL2nTp3SmDFj1LRpU9lsNkVGRurGG2/U119/fdG2fv7557rmmmvk7++v5s2blzkGunAcefbsWU2ePFktWrSQv7+/6tevry5dumjVqlWS/tfPzpo1S5Lsr3Vx/1r8nnnxxRc1c+ZMNW/eXDabTbt37y73/bR//34lJSUpMDBQsbGxmjJlisN7saz3zIV1lhdb8bYLD52vyDjX2WNrOA8/wcApBg0apB9++EHvvPOOZsyYoQYNGkiSIiIi7GXWrl2r9957T6NGjVKDBg3sCccrr7yim266SUOGDFFBQYEWLVqkP/zhD1q6dKmSk5Mv+tyjR49WvXr1NHHiRB08eFAzZ87UqFGj9O6771Y4/l27dun6669XSEiIHn/8cfn6+uqNN95Q9+7dtWHDBiUkJFTq7zFz5kyNHj1aQUFB+tOf/iRJioqKqlQd999/v+bPn6/hw4froYce0oEDB/T6669r+/bt+uKLLxx+Lc7IyNDtt9+u+++/X/fdd59atmxZoedISUnRrl27NHr0aDVt2lTHjh3TqlWrdOjQIfvrM3/+fN1zzz1q27atJkyYoLCwMG3fvl3Lly/XHXfcYS8zfPhwXXPNNUpLS1NWVpZeeeUVffHFF9q+fbvCwsLsz3nu3DklJSWpS5cuevHFF1W3bt0Kt/fYsWPq3bu3IiIiNH78eIWFhengwYP64IMPLtrWZ555RlOnTlW/fv3Ur18/ff311+rdu7fD4KQ0BQUFSkpKUn5+vkaPHq3o6Gj9/PPPWrp0qU6ePKnQ0FD9/e9/17333qtOnTpp5MiRkqTmzZs71POHP/xBLVq00PPPP+/QQZdmw4YNevfdd/XQQw/JZrNp9uzZ6tOnj7788ku1a9fuom09X0ViO9+kSZM0efJk9erVSw888IAyMjI0Z84cffXVVyXedydOnFCfPn00aNAg3XrrrXr//ff1xBNPqH379urbt2+l4gRQs1ys33/uuef09NNP69Zbb9W9996r48eP67XXXlPXrl3t/YKzvl/LYozRTTfdpHXr1mnEiBG68sortWLFCj322GP6+eefNWPGDKe2uSLWrl2rvn37Kj4+XhMnTpS3t7fS09PVo0cP/fvf/1anTp0cylem7yj217/+VQ899JBuueUWPfzww8rLy9M333yjLVu22PvtI0eOqFOnTjp58qRGjhypVq1a6eeff9b777+vM2fOyM/PT1lZWbr22mt15swZPfTQQ6pfv74WLFigm266Se+//75uvvlmh+d99tln5efnp0cffVT5+fny8/OrcHv/+Mc/6v3339eoUaPUpk0b/fLLL/r888/13Xff6aqrriqzrd9++619XDBp0iSdO3dOEydOrNCYa9KkSUpLS7O/v3JycrR161Z9/fXXuvHGG3X//ffryJEjWrVqlf7+97+XWkd6erry8vI0cuRI2Ww2hYeHl3mEQWFhofr06aPOnTtr+vTpWr58uSZOnKhz585pypQpF433fBWJ7XyVHec6Y2wNJzOAk7zwwgtGkjlw4ECJfZKMt7e32bVrV4l9Z86ccbhfUFBg2rVrZ3r06OGwvUmTJmbo0KH2++np6UaS6dWrlykqKrJvHzt2rPHx8TEnT56scOwDBw40fn5+Zt++ffZtR44cMcHBwaZr1672bRMnTjSlfWyKYzm/7W3btjXdunUrUXbdunVGklm3bp1929ChQ02TJk3s9//9738bSebtt992eOzy5ctLbG/SpImRZJYvX17h9hpjzIkTJ4wk88ILL5RZ5uTJkyY4ONgkJCSY3377zWFf8d+8oKDAREZGmnbt2jmUWbp0qZFknnnmGYd2SjLjx493qKui7f3www+NJPPVV19Vqq3Hjh0zfn5+Jjk52eG98uSTTxpJDu+rC1+f7du3G0lm8eLF5T5HYGCgQz3Fit8zt99+e5n7zifJSDJbt261b/vxxx+Nv7+/ufnmm+3bLnzPlFdnWbFd+L4t/jv17t3bFBYW2su9/vrrRpJ588037du6detmJJm33nrLvi0/P99ER0eblJSUEs8F4NJTVr9/8OBB4+PjY5577jmH7d9++62pU6eOfXt1v18vZsmSJUaSmTp1qsP2W265xXh5eZm9e/caY4w5cOCAkWTS09NL1CHJTJw40X6/vLHOheOUC/uToqIi06JFC5OUlOTQF505c8bExcWZG2+80b6tvL7jYgYMGGDatm1bbpm7777beHt7l9qfFsc2ZswYI8n8+9//tu87deqUiYuLM02bNrX3E8XtbNasmcOYrjLtDQ0NNampqZVu68CBA42/v7/58ccf7dt2795tfHx8SvSFF74+HTt2NMnJyeXWn5qaWuq4r/g9ExISYo4dO1bqvvPfT8Xjn9GjR9u3FRUVmeTkZOPn52eOHz9ujCl9jFhWnWXFZkzJ921Fx7nOHFvDuTg8Hm7TrVs3tWnTpsT2gIAA+/9PnDih7OxsXX/99RU6JEqSRo4c6XBI0PXXX6/CwkL9+OOPFXp8YWGhVq5cqYEDB6pZs2b27TExMbrjjjv0+eef2w/xcpfFixcrNDRUN954o/773//ab/Hx8QoKCtK6descysfFxSkpKalSzxEQECA/Pz+tX7++xCHoxVatWqVTp05p/PjxJc69Lv6bb926VceOHdODDz7oUCY5OVmtWrUqcRidJD3wwANVam/xjP3SpUt19uzZCrd19erVKigo0OjRox3eK2PGjLnoY0NDQyVJK1as0JkzZyr8nBf64x//WOGyiYmJio+Pt99v3LixBgwYoBUrVqiwsLDKMVxM8d9pzJgxDudg3nfffQoJCSnxWgYFBenOO++03/fz81OnTp20f/9+l8UIwPo++OADFRUV6dZbb3X4To+OjlaLFi3s3+nO+n4ty6effiofHx899NBDDtsfeeQRGWO0bNkypz9neXbs2KE9e/bojjvu0C+//GL/u+Tm5qpnz5767LPPSszSVqbvKBYWFqaffvpJX331Van7i4qKtGTJEvXv319XX311if3F/eSnn36qTp06ORyWHxQUpJEjR+rgwYPavXu3w+OGDh3qMKarTHvDwsK0ZcsWHTlypMLtLCws1IoVKzRw4EA1btzYvr1169YVGhOFhYVp165d2rNnT4Wf80IpKSmVOtLi/CVdi08dLSgo0OrVq6scw8VUZZxb3bE1nI+kHW4TFxdX6valS5eqc+fO8vf3V3h4uCIiIjRnzhz7+WwXc/4XtSTVq1dPkspMRC90/PhxnTlzptRDylu3bq2ioqIS5+C52p49e5Sdna3IyEhFREQ43E6fPq1jx445lC/rb1sem82mP//5z1q2bJmioqLUtWtXTZ8+XZmZmfYy+/btk6RyD8ku/gIv7e/XqlWrEl/wderUUcOGDR22VbS93bp1U0pKiiZPnqwGDRpowIABSk9PV35+frltLY6hRYsWDtsjIiLs75eyxMXFady4cfrb3/6mBg0aKCkpSbNmzarw+/P8eirqwjgl6YorrtCZM2dcek5ZWa+ln5+fmjVrVuK1bNiwYYlz8uvVq1fhzx6AS9OePXtkjFGLFi1KfKd/99139u90Z32/luXHH39UbGysgoODHba3bt3avt+dipPDoUOHlvi7/O1vf1N+fn6Jtlelf3/iiScUFBSkTp06qUWLFkpNTXU4h/z48ePKycm56OlWP/74Y5ljo+L95cVamfZOnz5dO3fuVKNGjdSpUydNmjTpoj8AHz9+XL/99lupfWZFThOcMmWKTp48qSuuuELt27fXY489pm+++eaijztfZV4fb29vh6RZ+l/fLqnM6yI4Q1XGudUdW8P5OKcdbnP+r6/F/v3vf+umm25S165dNXv2bMXExMjX11fp6eklLphSlrKuzmkqeO5XZZR10TBnz34WFRUpMjJSb7/9dqn7L/xVt7S/bUWMGTNG/fv315IlS7RixQo9/fTTSktL09q1a/W73/2uSnVejM1mK3El3Yq218vLS++//742b96sjz/+WCtWrNA999yjl156SZs3b1ZQUJBLYn7ppZc0bNgwffTRR1q5cqUeeughpaWlafPmzSV+gChLVV+jsrjrvVged372ANQcRUVF8vLy0rJly0r9njj/u9oZ36/V5c6+XZJeeOEFXXnllaWWubAfq0rf0bp1a2VkZGjp0qVavny5/vnPf2r27Nl65plnKr18WWVcGGtl2nvrrbfq+uuv14cffqiVK1fqhRde0J///Gd98MEHLrtGSteuXbVv3z77e+9vf/ubZsyYoblz5+ree++tUB2XYt8u0b9bEUk7nKYqy0b985//lL+/v1asWOGw5Fl6erozQytXRESE6tatW+o66d9//728vb3VqFEjSf/3S+PJkycdLq5W2q/11VlGq3nz5lq9erWuu+46p3cIpT3XI488okceeUR79uzRlVdeqZdeekn/+Mc/7Bf72blzpy6//PJSH1+8xndGRoZ69OjhsC8jI6NCa4BXtr2dO3dW586d9dxzz2nhwoUaMmSIFi1aVGYnWxzDnj17HH7lPn78eIV/NW7fvr3at2+vp556Shs3btR1112nuXPnaurUqZKq93pfqLRD9X744QfVrVvX/gNGvXr1Sl0nuDrvxfNfy/P/TgUFBTpw4IB69epVoXoA1A5lfbc0b95cxhjFxcXZZxLL46rv1yZNmmj16tU6deqUw2z7999/b98vOfbt53NF3y5JISEhLv8+DQwM1G233abbbrtNBQUFGjRokJ577jlNmDBBERERCgkJ0c6dO8uto0mTJmWOjYr3l6ey7Y2JidGDDz6oBx98UMeOHdNVV12l5557rsykPSIiQgEBAaX2maXFXZrw8HANHz5cw4cP1+nTp9W1a1dNmjTJPp5wZt9eVFSk/fv3O3wmfvjhB0myX/zXFe/FyoxzYV0cHg+nCQwMlFTyi6Y8Pj4+8vLycvgF8eDBg1qyZImToys/ht69e+ujjz5yODwpKytLCxcuVJcuXRQSEiLp/zqg85ffKl6K5kKBgYGV+luc79Zbb1VhYaGeffbZEvvOnTtX5XrPd+bMGeXl5Tlsa968uYKDg+2Hm/fu3VvBwcFKS0srUbb419arr75akZGRmjt3rsNh6suWLdN3331XoRUAKtreEydOlPiVt/jX+/IOke/Vq5d8fX312muvOTx+5syZF40tJydH586dc9jWvn17eXt7OzxndV7vC23atMnhmg6HDx/WRx99pN69e9t//W7evLmys7MdDuU7evSoPvzwwxL1VTS2Xr16yc/PT6+++qrD32nevHnKzs6u0GsJoPYoq98fNGiQfHx8NHny5BLf2cYY/fLLL5Jc//3ar18/FRYW6vXXX3fYPmPGDHl5edmTwZCQEDVo0KDE0pqzZ88uUWdVxjrF4uPj1bx5c7344os6ffp0if3OOv2p+O9bzM/PT23atJExRmfPnpW3t7cGDhyojz/+WFu3bi3x+OLXrF+/fvryyy+1adMm+77c3Fz95S9/UdOmTUu9TtH5KtrewsLCEqcFREZGKjY2tty+3cfHR0lJSVqyZIkOHTpk3/7dd99pxYoV5cYmlfw7BQUF6fLLLy/x3pOq9nqX5vz3ojFGr7/+unx9fdWzZ09J//shxMfHx6nvxcqMc2FdzLTDaYovnPWnP/1JgwcPlq+vr/r372//UilNcnKyXn75ZfXp00d33HGHjh07plmzZunyyy+v9HlF1TF16lStWrVKXbp00YMPPqg6derojTfeUH5+vsO6071791bjxo01YsQIPfbYY/Lx8dGbb76piIgIhw5D+t/fY86cOZo6daouv/xyRUZGlpiJLku3bt10//33Ky0tTTt27FDv3r3l6+urPXv2aPHixXrllVd0yy23VKvNP/zwg3r27Klbb71Vbdq0UZ06dfThhx8qKytLgwcPlvS/gcyMGTN077336pprrrGvFfuf//xHZ86c0YIFC+Tr66s///nPGj58uLp166bbb7/dvuRb06ZNNXbsWKe1d8GCBZo9e7ZuvvlmNW/eXKdOndJf//pXhYSEqF+/fmXWHxERoUcffVRpaWn6/e9/r379+mn79u1atmyZfcmesqxdu1ajRo3SH/7wB11xxRU6d+6c/v73v8vHx0cpKSn2cvHx8Vq9erVefvllxcbGKi4urtJLBRZr166dkpKSHJZ8k+RwWOPgwYP1xBNP6Oabb9ZDDz2kM2fOaM6cObriiitKXMSxorFFRERowoQJmjx5svr06aObbrpJGRkZmj17tq655hqHi84BQFn9fvPmzTV16lRNmDBBBw8e1MCBAxUcHKwDBw7oww8/1MiRI/Xoo4+6/Pu1f//+uuGGG/SnP/1JBw8eVMeOHbVy5Up99NFHGjNmjMPScffee6+mTZume++9V1dffbU+++wz+yxoRdpc3linmLe3t/72t7+pb9++atu2rYYPH67LLrtMP//8s9atW6eQkBB9/PHHF63nYnr37q3o6Ghdd911ioqK0nfffafXX39dycnJ9iMOnn/+ea1cuVLdunXTyJEj1bp1ax09elSLFy/W559/rrCwMI0fP17vvPOO+vbtq4ceekjh4eFasGCBDhw4oH/+858lTnWrantPnTqlhg0b6pZbblHHjh0VFBSk1atX66uvvtJLL71U7nNMnjxZy5cv1/XXX68HH3xQ586ds69Rf7FxZJs2bdS9e3fFx8crPDxcW7dutS87V6z49X7ooYeUlJQkHx8f+xipsvz9/bV8+XINHTpUCQkJWrZsmT755BM9+eST9qPoQkND9Yc//EGvvfaavLy81Lx5cy1durTEtYwqG1tFx7mwMA9csR6XsGeffdZcdtllxtvb22FJFEllLuUxb94806JFC2Oz2UyrVq1Menp6qctWlbXk24XLlZS1XMbFfP311yYpKckEBQWZunXrmhtuuMFs3LixRLlt27aZhIQE4+fnZxo3bmxefvnlUpd8y8zMNMnJySY4ONhIsi//VpEl34r95S9/MfHx8SYgIMAEBweb9u3bm8cff9wcOXLE4e9ysSVLSvPf//7XpKammlatWpnAwEATGhpqEhISzHvvvVei7L/+9S9z7bXXmoCAABMSEmI6depk3nnnHYcy7777rvnd735nbDabCQ8PN0OGDDE//fSTQ5mhQ4eawMDAMmO6WHu//vprc/vtt5vGjRsbm81mIiMjze9//3uH5dHKUlhYaCZPnmxiYmJMQECA6d69u9m5c+dFl+jZv3+/ueeee0zz5s2Nv7+/CQ8PNzfccINZvXq1Q/3ff/+96dq1qwkICHBYRq74vVy8nMv5ylryLTU11fzjH/+wfy5+97vflfp+XrlypWnXrp3x8/MzLVu2NP/4xz9KrbOs2Ep73xrzvyXeWrVqZXx9fU1UVJR54IEHzIkTJxzKdOvWrdQlhcp6LwO4NJXV7xtjzD//+U/TpUsXExgYaAIDA02rVq1MamqqycjIMMZU//u1Ik6dOmXGjh1rYmNjja+vr2nRooV54YUXHJazMuZ/y5CNGDHChIaGmuDgYHPrrbeaY8eOlVg6q7w2X6w/KbZ9+3YzaNAgU79+fWOz2UyTJk3MrbfeatasWWMvU17fcTFvvPGG6dq1q73+5s2bm8cee8xkZ2c7lPvxxx/N3XffbSIiIozNZjPNmjUzqampJj8/315m37595pZbbjFhYWHG39/fdOrUySxdutShnuJ2lrV038Xam5+fbx577DHTsWNHExwcbAIDA03Hjh3N7NmzK9TeDRs2mPj4eOPn52eaNWtm5s6dW6Fx5NSpU02nTp1MWFiYCQgIMK1atTLPPfecKSgosJc5d+6cGT16tImIiDBeXl72OouXYCtt2dyylnwLDAw0+/btM7179zZ169Y1UVFRZuLEiQ5LrBpjzPHjx01KSoqpW7euqVevnrn//vvNzp07S9RZVmzGlFzyzZiKjXOdPbaG83gZwxUFAAAAAACwIs5pBwAAAADAojinHZe006dPl3rxk/NFRESUubRFTZWdna3ffvut3DLR0dFuigYAAOcpLCy86EXbgoKCXLYMqKcUFBTo119/LbdMaGioy1edAeB+JO24pL344osXXZP0wIED9qU2LhUPP/xwqVe0Px9nxgAAaqLDhw8rLi6u3DITJ07UpEmT3BOQm2zcuFE33HBDuWXS09M1bNgw9wQEwG04px2XtP3792v//v3llunSpYv8/f3dFJF77N69W0eOHCm3DGtuAwBqory8PH3++efllmnWrJmaNWvmpojc48SJE9q2bVu5Zdq2bauYmBg3RQTAXUjaAQAAAACwKC5EBwAAAACARXFOu6SioiIdOXJEwcHB8vLy8nQ4AIBazhijU6dOKTY2Vt7e/L7uDPT1AACrqWh/T9Iu6ciRI2rUqJGnwwAAwMHhw4fVsGFDT4dxSaCvBwBY1cX6e5J2ScHBwZL+98cKCQnxcDRwi1atpKNHpZgY6fvvPR0NADjIyclRo0aN7P0Tqo++vhairwdgcRXt70naJfthciEhIXTktUXx4Sfe3hKvOQCL4jBu56Gvr4Xo6wHUEBfr7zlRDgAAAAAAi/Jo0j5nzhx16NDB/qt3YmKili1bZt+fl5en1NRU1a9fX0FBQUpJSVFWVpZDHYcOHVJycrLq1q2ryMhIPfbYYzp37py7mwIAAAAAgNN5NGlv2LChpk2bpm3btmnr1q3q0aOHBgwYoF27dkmSxo4dq48//liLFy/Whg0bdOTIEQ0aNMj++MLCQiUnJ6ugoEAbN27UggULNH/+fD3zzDOeahIAAAAAAE7jZYwxng7ifOHh4XrhhRd0yy23KCIiQgsXLtQtt9wiSfr+++/VunVrbdq0SZ07d9ayZcv0+9//XkeOHFFUVJQkae7cuXriiSd0/Phx+fn5Veg5c3JyFBoaquzsbM5zqy0aNpR+/lm67DLpp588HQ0AOKBfcj7+prUQfT0Ai6to32SZc9oLCwu1aNEi5ebmKjExUdu2bdPZs2fVq1cve5lWrVqpcePG2rRpkyRp06ZNat++vT1hl6SkpCTl5OTYZ+sBAAAAAKipPH71+G+//VaJiYnKy8tTUFCQPvzwQ7Vp00Y7duyQn5+fwsLCHMpHRUUpMzNTkpSZmemQsBfvL95Xlvz8fOXn59vv5+TkOKk1AAAAAAA4j8dn2lu2bKkdO3Zoy5YteuCBBzR06FDt3r3bpc+Zlpam0NBQ+61Ro0YufT4AAAAAAKrC40m7n5+fLr/8csXHxystLU0dO3bUK6+8oujoaBUUFOjkyZMO5bOyshQdHS1Jio6OLnE1+eL7xWVKM2HCBGVnZ9tvhw8fdm6jAAAAAABwAo8n7RcqKipSfn6+4uPj5evrqzVr1tj3ZWRk6NChQ0pMTJQkJSYm6ttvv9WxY8fsZVatWqWQkBC1adOmzOew2Wz2ZeaKbwAAAAAAWI1Hz2mfMGGC+vbtq8aNG+vUqVNauHCh1q9frxUrVig0NFQjRozQuHHjFB4erpCQEI0ePVqJiYnq3LmzJKl3795q06aN7rrrLk2fPl2ZmZl66qmnlJqaKpvN5smmAQAAAABQbR5N2o8dO6a7775bR48eVWhoqDp06KAVK1boxhtvlCTNmDFD3t7eSklJUX5+vpKSkjR79mz74318fLR06VI98MADSkxMVGBgoIYOHaopU6Z4qkkAAAAAADiN5dZp9wTWbq2FWLsVgIXRLzkff9NaiL4egMXVuHXaAQAAAACAI5J2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiPHr1eADW1HT8J2XuOzgt2Y2RAACAstBfA7UDM+0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRXjwcAAAAsqLyrwwOoPZhpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACL4kJ0QC3EhW0AAACAmoGZdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALCoOp4OAAAAAAAkqen4T8rdf3BaspsiAayDmXYAAAAAACyKmXYAblXeL+j8eg4AAAA4YqYdAAAAAACLImkHAAAAAMCiSNoBAAAAALAozmkHUClc1RUAAOe4WJ/qyeemPwesg5l2AAAAAAAsiqQdAAB41KRJk+Tl5eVwa9WqlX1/Xl6eUlNTVb9+fQUFBSklJUVZWVkejBgAAPchaQcAAB7Xtm1bHT161H77/PPP7fvGjh2rjz/+WIsXL9aGDRt05MgRDRo0yIPRAgDgPpzTDgAAPK5OnTqKjo4usT07O1vz5s3TwoUL1aNHD0lSenq6Wrdurc2bN6tz587uDhUAALdiph0AAHjcnj17FBsbq2bNmmnIkCE6dOiQJGnbtm06e/asevXqZS/bqlUrNW7cWJs2bfJUuAAAuA0z7QAAwKMSEhI0f/58tWzZUkePHtXkyZN1/fXXa+fOncrMzJSfn5/CwsIcHhMVFaXMzMwy68zPz1d+fr79fk5OjqvCBwDApUjaAQCAR/Xt29f+/w4dOighIUFNmjTRe++9p4CAgCrVmZaWpsmTJzsrRAAAPIbD4wEAgKWEhYXpiiuu0N69exUdHa2CggKdPHnSoUxWVlap58AXmzBhgrKzs+23w4cPuzhqAABcg6QdAABYyunTp7Vv3z7FxMQoPj5evr6+WrNmjX1/RkaGDh06pMTExDLrsNlsCgkJcbgBAFATcXg8AADwqEcffVT9+/dXkyZNdOTIEU2cOFE+Pj66/fbbFRoaqhEjRmjcuHEKDw9XSEiIRo8ercTERK4cDwCoFUjaAQCAR/3000+6/fbb9csvvygiIkJdunTR5s2bFRERIUmaMWOGvL29lZKSovz8fCUlJWn27NkejhoAAPcgaQcAAB61aNGicvf7+/tr1qxZmjVrlpsiAgDAOjinHQAAAAAAi2KmHQAAAICDpuM/KXPfwWnJbowEADPtAAAAAABYFDPtwCWovF/HAQAAANQczLQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABbFOe0AAADAJYbr2wCXDmbaAQAAAACwKI8m7WlpabrmmmsUHBysyMhIDRw4UBkZGQ5lunfvLi8vL4fbH//4R4cyhw4dUnJysurWravIyEg99thjOnfunDubAgAAAACA03n08PgNGzYoNTVV11xzjc6dO6cnn3xSvXv31u7duxUYGGgvd99992nKlCn2+3Xr1rX/v7CwUMnJyYqOjtbGjRt19OhR3X333fL19dXzzz/v1vYA4HA8AAAAwJk8mrQvX77c4f78+fMVGRmpbdu2qWvXrvbtdevWVXR0dKl1rFy5Urt379bq1asVFRWlK6+8Us8++6yeeOIJTZo0SX5+fi5tAwAAAAAArmKpc9qzs7MlSeHh4Q7b3377bTVo0EDt2rXThAkTdObMGfu+TZs2qX379oqKirJvS0pKUk5Ojnbt2lXq8+Tn5ysnJ8fhBgAAAACA1Vjm6vFFRUUaM2aMrrvuOrVr186+/Y477lCTJk0UGxurb775Rk888YQyMjL0wQcfSJIyMzMdEnZJ9vuZmZmlPldaWpomT57sopYAAAAAAOAclknaU1NTtXPnTn3++ecO20eOHGn/f/v27RUTE6OePXtq3759at68eZWea8KECRo3bpz9fk5Ojho1alS1wAEAAAAAcBFLHB4/atQoLV26VOvWrVPDhg3LLZuQkCBJ2rt3ryQpOjpaWVlZDmWK75d1HrzNZlNISIjDDQAAAAAAq/Fo0m6M0ahRo/Thhx9q7dq1iouLu+hjduzYIUmKiYmRJCUmJurbb7/VsWPH7GVWrVqlkJAQtWnTxiVxAwAAAADgDh49PD41NVULFy7URx99pODgYPs56KGhoQoICNC+ffu0cOFC9evXT/Xr19c333yjsWPHqmvXrurQoYMkqXfv3mrTpo3uuusuTZ8+XZmZmXrqqaeUmpoqm83myeYBAAAAAFAtHp1pnzNnjrKzs9W9e3fFxMTYb++++64kyc/PT6tXr1bv3r3VqlUrPfLII0pJSdHHH39sr8PHx0dLly6Vj4+PEhMTdeedd+ruu+92WNcdAAAAAICayKMz7caYcvc3atRIGzZsuGg9TZo00aeffuqssAAAAAAAsARLXIgOAAAAAACUZJkl3wAAAADUfE3Hf+LpEIBLCkk7gBrjYoOAg9OS3RQJAAAA4B4cHg8AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBTntAMWxfnbAAAAAEjaAQAAAFQYV4cH3IukHYBlMAgAAAAAHHFOOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFhUHU8HAKBqmo7/xNMhAAAAAHAxZtoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAWMa0adPk5eWlMWPG2Lfl5eUpNTVV9evXV1BQkFJSUpSVleW5IAEAcCOSdgAAYAlfffWV3njjDXXo0MFh+9ixY/Xxxx9r8eLF2rBhg44cOaJBgwZ5KEoAANyLpB0AAHjc6dOnNWTIEP31r39VvXr17Nuzs7M1b948vfzyy+rRo4fi4+OVnp6ujRs3avPmzR6MGAAA9yBpBwAAHpeamqrk5GT16tXLYfu2bdt09uxZh+2tWrVS48aNtWnTJneHCQCA29XxdAAAAKB2W7Rokb7++mt99dVXJfZlZmbKz89PYWFhDtujoqKUmZlZZp35+fnKz8+338/JyXFavAAAuBMz7QAAwGMOHz6shx9+WG+//bb8/f2dVm9aWppCQ0Ptt0aNGjmtbgAA3ImkHQAAeMy2bdt07NgxXXXVVapTp47q1KmjDRs26NVXX1WdOnUUFRWlgoICnTx50uFxWVlZio6OLrPeCRMmKDs72347fPiwi1sCAIBrcHg8AADwmJ49e+rbb7912DZ8+HC1atVKTzzxhBo1aiRfX1+tWbNGKSkpkqSMjAwdOnRIiYmJZdZrs9lks9lcGjsAAO5A0g4AADwmODhY7dq1c9gWGBio+vXr27ePGDFC48aNU3h4uEJCQjR69GglJiaqc+fOnggZAAC3ImkHAACWNmPGDHl7eyslJUX5+flKSkrS7NmzPR0WAABuQdIOAAAsZf369Q73/f39NWvWLM2aNcszAQEA4EFciA4AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIoL0QEe0nT8J54OAQAAAIDFeXSmPS0tTddcc42Cg4MVGRmpgQMHKiMjw6FMXl6eUlNTVb9+fQUFBSklJUVZWVkOZQ4dOqTk5GTVrVtXkZGReuyxx3Tu3Dl3NgUAAAAAAKfzaNK+YcMGpaamavPmzVq1apXOnj2r3r17Kzc3115m7Nix+vjjj7V48WJt2LBBR44c0aBBg+z7CwsLlZycrIKCAm3cuFELFizQ/Pnz9cwzz3iiSQAAAAAAOI1HD49fvny5w/358+crMjJS27ZtU9euXZWdna158+Zp4cKF6tGjhyQpPT1drVu31ubNm9W5c2etXLlSu3fv1urVqxUVFaUrr7xSzz77rJ544glNmjRJfn5+nmgaAAAAADcr7/TDg9OS3RgJ4DyWuhBddna2JCk8PFyStG3bNp09e1a9evWyl2nVqpUaN26sTZs2SZI2bdqk9u3bKyoqyl4mKSlJOTk52rVrV6nPk5+fr5ycHIcbAAAAAABWY5mkvaioSGPGjNF1112ndu3aSZIyMzPl5+ensLAwh7JRUVHKzMy0lzk/YS/eX7yvNGlpaQoNDbXfGjVq5OTWAAAAAABQfZZJ2lNTU7Vz504tWrTI5c81YcIEZWdn22+HDx92+XMCAAAAAFBZlljybdSoUVq6dKk+++wzNWzY0L49OjpaBQUFOnnypMNse1ZWlqKjo+1lvvzyS4f6iq8uX1zmQjabTTabzcmtAAAAAADAuTw6026M0ahRo/Thhx9q7dq1iouLc9gfHx8vX19frVmzxr4tIyNDhw4dUmJioiQpMTFR3377rY4dO2Yvs2rVKoWEhKhNmzbuaQgAAAAAAC7g0Zn21NRULVy4UB999JGCg4Pt56CHhoYqICBAoaGhGjFihMaNG6fw8HCFhIRo9OjRSkxMVOfOnSVJvXv3Vps2bXTXXXdp+vTpyszM1FNPPaXU1FRm0wHYlXc1WYkrygIAAMCaPJq0z5kzR5LUvXt3h+3p6ekaNmyYJGnGjBny9vZWSkqK8vPzlZSUpNmzZ9vL+vj4aOnSpXrggQeUmJiowMBADR06VFOmTHFXMwAAAFBLXexHYQCoLo8m7caYi5bx9/fXrFmzNGvWrDLLNGnSRJ9++qkzQwMAAAAAwOMsc/V4AAAAAADgiKQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIuq4+kAAAAAAKAimo7/xNMhAG5XpZn2/fv3OzsOAABQwzAeAADA9ao003755ZerW7duGjFihG655Rb5+/s7Oy7gksCvwQAuZYwHAABwvSrNtH/99dfq0KGDxo0bp+joaN1///368ssvnR0bAACwMMYDAAC4XpWS9iuvvFKvvPKKjhw5ojfffFNHjx5Vly5d1K5dO7388ss6fvy4s+MEAAAWw3gAAADXq9bV4+vUqaNBgwZp8eLF+vOf/6y9e/fq0UcfVaNGjXT33Xfr6NGjzooTAABYFOMBAABcp1pJ+9atW/Xggw8qJiZGL7/8sh599FHt27dPq1at0pEjRzRgwABnxQkAACyK8QAAAK5TpQvRvfzyy0pPT1dGRob69eunt956S/369ZO39/9+A4iLi9P8+fPVtGlTZ8YKAAAshPEAAACuV6Wkfc6cObrnnns0bNgwxcTElFomMjJS8+bNq1ZwAFAZXK0fcC/GAwAAuF6VkvY9e/ZctIyfn5+GDh1aleoBAEANwHgAAADXq9I57enp6Vq8eHGJ7YsXL9aCBQuqHRQAALA+xgMAALhelZL2tLQ0NWjQoMT2yMhIPf/889UOCgAAWB/jAQAAXK9KSfuhQ4cUFxdXYnuTJk106NChagcFAACsj/EAAACuV6Vz2iMjI/XNN9+UuBrsf/7zH9WvX98ZcQEAAItjPICaorwLlR6cluzGSACg8qo003777bfroYce0rp161RYWKjCwkKtXbtWDz/8sAYPHuzsGAEAgAUxHgAAwPWqNNP+7LPP6uDBg+rZs6fq1PlfFUVFRbr77rs5hw1AjXSx5eKYiQFKYjwAAIDrVSlp9/Pz07vvvqtnn31W//nPfxQQEKD27durSZMmzo4PAABYFOMBAABcr0pJe7ErrrhCV1xxhbNiAQAANRDjAQAAXKdKSXthYaHmz5+vNWvW6NixYyoqKnLYv3btWqcEBwAArIvxAAAArlelpP3hhx/W/PnzlZycrHbt2snLy8vZcQEAAItjPAAAgOtVKWlftGiR3nvvPfXr18/Z8QAAgBqC8QCAmuRiF529GC5KC0+p0pJvfn5+uvzyy50dCwAAqEEYDwAA4HpVStofeeQRvfLKKzLGODseAABQQzhrPDBnzhx16NBBISEhCgkJUWJiopYtW2bfn5eXp9TUVNWvX19BQUFKSUlRVlZWdcMHAKBGqNLh8Z9//rnWrVunZcuWqW3btvL19XXY/8EHHzglOAAAYF3OGg80bNhQ06ZNU4sWLWSM0YIFCzRgwABt375dbdu21dixY/XJJ59o8eLFCg0N1ahRozRo0CB98cUXrmgWAACWUqWkPSwsTDfffLOzYwEAADWIs8YD/fv3d7j/3HPPac6cOdq8ebMaNmyoefPmaeHCherRo4ckKT09Xa1bt9bmzZvVuXPnaj8/AABWVqWkPT093dlxAACAGsYV44HCwkItXrxYubm5SkxM1LZt23T27Fn16tXLXqZVq1Zq3LixNm3aVGbSnp+fr/z8fPv9nJwcp8cKAIA7VClpl6Rz585p/fr12rdvn+644w4FBwfryJEjCgkJUVBQkDNjBAAAFuWs8cC3336rxMRE5eXlKSgoSB9++KHatGmjHTt2yM/PT2FhYQ7lo6KilJmZWWZ9aWlpmjx5clWbhVrkYlcU54rhADytSkn7jz/+qD59+ujQoUPKz8/XjTfeqODgYP35z39Wfn6+5s6d6+w4AQCAxThzPNCyZUvt2LFD2dnZev/99zV06FBt2LChyrFNmDBB48aNs9/PyclRo0aNqlwfAACeUqWrxz/88MO6+uqrdeLECQUEBNi333zzzVqzZo3TggMAANblzPFA8fJx8fHxSktLU8eOHfXKK68oOjpaBQUFOnnypEP5rKwsRUdHl1mfzWazX42++AYAQE1UpZn2f//739q4caP8/Pwctjdt2lQ///yzUwIDAADW5srxQFFRkfLz8xUfHy9fX1+tWbNGKSkpkqSMjAwdOnRIiYmJ1XoOAABqgiol7UVFRSosLCyx/aefflJwcHC1gwIAANbnrPHAhAkT1LdvXzVu3FinTp3SwoULtX79eq1YsUKhoaEaMWKExo0bp/DwcIWEhGj06NFKTEzkyvEAgFqhSofH9+7dWzNnzrTf9/Ly0unTpzVx4kT169fPWbEBAAALc9Z44NixY7r77rvVsmVL9ezZU1999ZVWrFihG2+8UZI0Y8YM/f73v1dKSoq6du2q6OjoCq8BDwBATVelmfaXXnpJSUlJatOmjfLy8nTHHXdoz549atCggd555x1nxwgAACzIWeOBefPmlbvf399fs2bN0qxZs6obMgAANU6VZtobNmyo//znP3ryySc1duxY/e53v9O0adO0fft2RUZGVriezz77TP3791dsbKy8vLy0ZMkSh/3Dhg2Tl5eXw61Pnz4OZX799VcNGTJEISEhCgsL04gRI3T69OmqNAsAAFSCs8YDAACgbFVep71OnTq68847q/Xkubm56tixo+655x4NGjSo1DJ9+vRRenq6/b7NZnPYP2TIEB09elSrVq3S2bNnNXz4cI0cOVILFy6sVmwAcD7W8QVK54zxAAAAKFuVkva33nqr3P133313herp27ev+vbtW24Zm81W5pIu3333nZYvX66vvvpKV199tSTptddeU79+/fTiiy8qNja2QnEAAIDKc9Z4AAAAlK1KSfvDDz/scP/s2bM6c+aM/Pz8VLduXad20uvXr1dkZKTq1aunHj16aOrUqapfv74kadOmTQoLC7Mn7JLUq1cveXt7a8uWLbr55pudFgcAAHDkzvEAAAC1VZWS9hMnTpTYtmfPHj3wwAN67LHHqh1UsT59+mjQoEGKi4vTvn379OSTT6pv377atGmTfHx8lJmZWeKcuTp16ig8PFyZmZll1pufn6/8/Hz7/ZycHKfFDABAbeGu8QAAALVZlc9pv1CLFi00bdo03Xnnnfr++++dUufgwYPt/2/fvr06dOig5s2ba/369erZs2eV601LS9PkyZOdESIAADiPK8YDAADUZlW6enxZ6tSpoyNHjjizSgfNmjVTgwYNtHfvXklSdHS0jh075lDm3Llz+vXXX8s8D16SJkyYoOzsbPvt8OHDLosZAIDaxtXjAQAAapMqzbT/61//crhvjNHRo0f1+uuv67rrrnNKYKX56aef9MsvvygmJkaSlJiYqJMnT2rbtm2Kj4+XJK1du1ZFRUVKSEgosx6bzVbiKvQAAKByPDUeAACgNqlS0j5w4ECH+15eXoqIiFCPHj300ksvVbie06dP22fNJenAgQPasWOHwsPDFR4ersmTJyslJUXR0dHat2+fHn/8cV1++eVKSkqSJLVu3Vp9+vTRfffdp7lz5+rs2bMaNWqUBg8ezJXjAQBwMWeNBwAAQNmqlLQXFRU55cm3bt2qG264wX5/3LhxkqShQ4dqzpw5+uabb7RgwQKdPHlSsbGx6t27t5599lmHWfK3335bo0aNUs+ePeXt7a2UlBS9+uqrTokPAACUzVnjAQAAUDanXYiuKrp37y5jTJn7V6xYcdE6wsPDtXDhQmeGBQAAAACAJVQpaS+eEa+Il19+uSpPAQAALI7xAAAArlelpH379u3avn27zp49q5YtW0qSfvjhB/n4+Oiqq66yl/Py8nJOlAAAwHIYDwAA4HpVStr79++v4OBgLViwQPXq1ZMknThxQsOHD9f111+vRx55xKlBAgAA62E8AACA61VpnfaXXnpJaWlp9g5akurVq6epU6dytVgAAGoJxgMAALhelZL2nJwcHT9+vMT248eP69SpU9UOCgAAWB/jAQAAXK9KSfvNN9+s4cOH64MPPtBPP/2kn376Sf/85z81YsQIDRo0yNkxAgAAC2I8AACA61XpnPa5c+fq0Ucf1R133KGzZ8/+r6I6dTRixAi98MILTg0QAABYE+MBAABcr0pJe926dTV79my98MIL2rdvnySpefPmCgwMdGpwAADAuhgPAADgelU6PL7Y0aNHdfToUbVo0UKBgYEyxjgrLgAAUEMwHgAAwHWqNNP+yy+/6NZbb9W6devk5eWlPXv2qFmzZhoxYoTq1avHFWMBAKgFGA/AKpqO/6TEtk3ZeYqRdDQ7z+l1A4A7VWmmfezYsfL19dWhQ4dUt25d+/bbbrtNy5cvd1pwAADAuhgPAADgelWaaV+5cqVWrFihhg0bOmxv0aKFfvzxR6cEBgAArI3xAAAArlelmfbc3FyHX9SL/frrr7LZbNUOCgAAWB/jAQAAXK9KSfv111+vt956y37fy8tLRUVFmj59um644QanBQcAAKyL8QAAAK5XpcPjp0+frp49e2rr1q0qKCjQ448/rl27dunXX3/VF1984ewYAQCABTEeAADA9ao0096uXTv98MMP6tKliwYMGKDc3FwNGjRI27dvV/PmzZ0dIwAAsCDGAwAAuF6lZ9rPnj2rPn36aO7cufrTn/7kipgAAIDFMR4AAMA9Kj3T7uvrq2+++cYVsQAAgBqC8QAAAO5RpcPj77zzTs2bN8/ZsQAAgBqE8QAAAK5XpQvRnTt3Tm+++aZWr16t+Ph4BQYGOux/+eWXnRIcANQUTcd/Uua+g9OS3RgJ4D6MBwAAcL1KJe379+9X06ZNtXPnTl111VWSpB9++MGhjJeXl/OiAwAAlsN4AAAA96lU0t6iRQsdPXpU69atkyTddtttevXVVxUVFeWS4AAAgPUwHgAAwH0qdU67Mcbh/rJly5Sbm+vUgAAAgLUxHgAAwH2qdCG6Yhd22gAAoPZhPAAAgOtUKmn38vIqcY4a56wBAFC7MB4AAMB9KnVOuzFGw4YNk81mkyTl5eXpj3/8Y4mrxX7wwQfOixAAAFgK4wEAANynUkn70KFDHe7feeedTg0GAABYH+MBAADcp1JJe3p6uqviAAAANQTjAQAA3KdaF6IDAAAAAACuQ9IOAAAAAIBFVerweKC2aTr+k3L3H5yW7KZIAAAAANRGzLQDAAAAAGBRzLQD1XCxmXgAAAAAqA5m2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAi+KcdgAAAAC4iPKuZcSKQnAlZtoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQCAR6Wlpemaa65RcHCwIiMjNXDgQGVkZDiUycvLU2pqqurXr6+goCClpKQoKyvLQxEDAOA+JO0AAMCjNmzYoNTUVG3evFmrVq3S2bNn1bt3b+Xm5trLjB07Vh9//LEWL16sDRs26MiRIxo0aJAHowYAwD3qeDoAAABQuy1fvtzh/vz58xUZGalt27apa9euys7O1rx587Rw4UL16NFDkpSenq7WrVtr8+bN6ty5syfCBgDALZhpBwAAlpKdnS1JCg8PlyRt27ZNZ8+eVa9evexlWrVqpcaNG2vTpk2l1pGfn6+cnByHGwAANREz7QAAwDKKioo0ZswYXXfddWrXrp0kKTMzU35+fgoLC3MoGxUVpczMzFLrSUtL0+TJk10dLgBUSNPxn5S7/+C0ZDdFgpqImXYAAGAZqamp2rlzpxYtWlSteiZMmKDs7Gz77fDhw06KEAAA92KmHQAAWMKoUaO0dOlSffbZZ2rYsKF9e3R0tAoKCnTy5EmH2fasrCxFR0eXWpfNZpPNZnN1yAAAuJxHZ9o/++wz9e/fX7GxsfLy8tKSJUsc9htj9MwzzygmJkYBAQHq1auX9uzZ41Dm119/1ZAhQxQSEqKwsDCNGDFCp0+fdmMrAABAdRhjNGrUKH344Ydau3at4uLiHPbHx8fL19dXa9assW/LyMjQoUOHlJiY6O5wAQBwK48m7bm5uerYsaNmzZpV6v7p06fr1Vdf1dy5c7VlyxYFBgYqKSlJeXl59jJDhgzRrl27tGrVKvuv8yNHjnRXEwAAQDWlpqbqH//4hxYuXKjg4GBlZmYqMzNTv/32myQpNDRUI0aM0Lhx47Ru3Tpt27ZNw4cPV2JiIleOBwBc8jx6eHzfvn3Vt2/fUvcZYzRz5kw99dRTGjBggCTprbfeUlRUlJYsWaLBgwfru+++0/Lly/XVV1/p6quvliS99tpr6tevn1588UXFxsa6rS0AAKBq5syZI0nq3r27w/b09HQNGzZMkjRjxgx5e3srJSVF+fn5SkpK0uzZs90cKQAA7mfZC9EdOHBAmZmZDsu7hIaGKiEhwb68y6ZNmxQWFmZP2CWpV69e8vb21pYtW9weMwAAqDxjTKm34oRdkvz9/TVr1iz9+uuvys3N1QcffFDm+ewAAFxKLHshuuIlXKKiohy2n7+8S2ZmpiIjIx3216lTR+Hh4WUuASP9b+3W/Px8+33WbgUAALCuiy2XBQCXMssm7a7E2q0odjQ7T4kMBOBirM0KAACAqrLs4fHFh7xlZWU5bD9/eZfo6GgdO3bMYf+5c+f066+/lnvIHGu3AgAAAABqAssm7XFxcYqOjnZY3iUnJ0dbtmyxL++SmJiokydPatu2bfYya9euVVFRkRISEsqs22azKSQkxOEGAAAAAIDVePTw+NOnT2vv3r32+wcOHNCOHTsUHh6uxo0ba8yYMZo6dapatGihuLg4Pf3004qNjdXAgQMlSa1bt1afPn103333ae7cuTp79qxGjRqlwYMHc+V4AAAAAECN59GkfevWrbrhhhvs98eNGydJGjp0qObPn6/HH39cubm5GjlypE6ePKkuXbpo+fLl8vf3tz/m7bff1qhRo9SzZ0/7UjCvvvqq29sCAAAAAICzeTRp7969u4wxZe738vLSlClTNGXKlDLLhIeHa+HCha4IDwAAAAAAj7LsOe0AAAAAANR2JO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYVB1PBwC4WtPxn5TYtik7TzEeiAUAAAAAKoOZdgAAAAAALIqkHQAAAAAAi+LweADwsNJO4TjfwWnJbooEAABUxcX6cqA6SNoBwOLKGwiQ0AMAAFzaODweAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsCiSdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwqDqeDgAAAABoOv4TT4cAAJbETDsAAAAAABZF0g4AAAAAgEWRtAMAAAAAYFEk7QAAAAAAWBRJOwAAAAAAFkXSDgAAAACARbHkGwAAAAB4UHWWPDw4LdmJkcCKmGkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIviQnQAUINd7MI1XJwGAACgZmOmHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiWPINAC5hLAkHAABQszHTDgAAAACARZG0AwAAAABgUSTtAADAoz777DP1799fsbGx8vLy0pIlSxz2G2P0zDPPKCYmRgEBAerVq5f27NnjmWABAHAzknYAAOBRubm56tixo2bNmlXq/unTp+vVV1/V3LlztWXLFgUGBiopKUl5eXlujhQAAPfjQnQAAMCj+vbtq759+5a6zxijmTNn6qmnntKAAQMkSW+99ZaioqK0ZMkSDR482J2hAgDgdsy0AwAAyzpw4IAyMzPVq1cv+7bQ0FAlJCRo06ZNHowMAAD3sHTSPmnSJHl5eTncWrVqZd+fl5en1NRU1a9fX0FBQUpJSVFWVpYHIwYAAM6UmZkpSYqKinLYHhUVZd9Xmvz8fOXk5DjcAACoiSydtEtS27ZtdfToUfvt888/t+8bO3asPv74Yy1evFgbNmzQkSNHNGjQIA9GCwAArCAtLU2hoaH2W6NGjTwdEgAAVWL5c9rr1Kmj6OjoEtuzs7M1b948LVy4UD169JAkpaenq3Xr1tq8ebM6d+7s7lAB4JLSdPwn5e4/OC3ZTZGgNiseA2RlZSkmJsa+PSsrS1deeWWZj5swYYLGjRtnv5+Tk0PiDgCokSw/075nzx7FxsaqWbNmGjJkiA4dOiRJ2rZtm86ePetwjlurVq3UuHHji57jxiFzAADUDHFxcYqOjtaaNWvs23JycrRlyxYlJiaW+TibzaaQkBCHGwAANZGlk/aEhATNnz9fy5cv15w5c3TgwAFdf/31OnXqlDIzM+Xn56ewsDCHx1zsHDeJQ+YAALCS06dPa8eOHdqxY4ek/118bseOHTp06JC8vLw0ZswYTZ06Vf/617/07bff6u6771ZsbKwGDhzo0bgBAHAHSx8ef/7yLx06dFBCQoKaNGmi9957TwEBAVWul0PmAACwjq1bt+qGG26w3y/uo4cOHar58+fr8ccfV25urkaOHKmTJ0+qS5cuWr58ufz9/T0VMgAAbmPppP1CYWFhuuKKK7R3717deOONKigo0MmTJx1m27Oysko9B/58NptNNpvNxdECAICK6N69u4wxZe738vLSlClTNGXKFDdGBQCANVj68PgLnT59Wvv27VNMTIzi4+Pl6+vrcI5bRkaGDh06VO45bgAAAAAA1BSWnml/9NFH1b9/fzVp0kRHjhzRxIkT5ePjo9tvv12hoaEaMWKExo0bp/DwcIWEhGj06NFKTEzkyvEAAAAAgEuCpZP2n376Sbfffrt++eUXRUREqEuXLtq8ebMiIiIkSTNmzJC3t7dSUlKUn5+vpKQkzZ4928NRAwAAAADgHJZO2hctWlTufn9/f82aNUuzZs1yU0QAcGm52FrsAAAA8CxLJ+2AdPGk4uC0ZDdFAgAAAADuRdKOGo+ZQgAAAACXqhp19XgAAAAAAGoTZtoBAAAAoIbiVNJLHzPtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFcU47AKBKOIcOAADA9ZhpBwAAAADAokjaAQAAAACwKA6PhyVc7DBbAADgetU57YW+HKiZyvvscqqbNTDTDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFcfV4AAAAALhEsbJDzcdMOwAAAAAAFkXSDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRJO0AAAAAAFgUSTsAAAAAABZVx9MBAABqn6bjPyl3/8FpyW6KBAAAwNqYaQcAAAAAwKJI2gEAAAAAsCgOj4dbXOxQWAAAAABASSTtcAqScgAArKG8Prm614ugvwcA9+PweAAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqvHAwBcojpXmb7YY6t7BWygtuLq7wBQ8zDTDgAAAACARZG0AwAAAABgUSTtAAAAAABYFEk7AAAAAAAWRdIOAAAAAIBFkbQDAAAAAGBRLPkGAABgISx5CMAqqvt9VN7j+S6rOGbaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACL4px2AECNwzlyAACgtmCmHQAAAAAAi2KmHRV2satHAgAAAACci6T9ElOdQ0ZJygEAqJjq9pnVOY2D/hqAVVTn+4jlLSuOpB0AcElhEAAAAC4ll8w57bNmzVLTpk3l7++vhIQEffnll54OCQAAOBF9PQCgNrokZtrfffddjRs3TnPnzlVCQoJmzpyppKQkZWRkKDIy0tPhAQAshJn4mom+HgBQW10SSfvLL7+s++67T8OHD5ckzZ07V5988onefPNNjR8/3sPRlVSdcz84Bw4AUBvVtL4eAABnqfFJe0FBgbZt26YJEybYt3l7e6tXr17atGlTqY/Jz89Xfn6+/X52drYkKScnx7XB/n9F+Weq/NjGYxc7MZLa65QpUuD//7c6rweAS095fUG7iSvKfezOyUlOjcEY45T6ajor9vXV7TvKi4N+yTno64GazV25mSdVtL+v8Un7f//7XxUWFioqKsphe1RUlL7//vtSH5OWlqbJkyeX2N6oUSOXxAjraVn8n9wT0sxbPRkKAIsJnemZx5bm1KlTCg0NdW6lNdCl2Nc7+72CkujrgZqtNn1PXqy/r/FJe1VMmDBB48aNs98vKirSr7/+qvr168vLy8slz5mTk6NGjRrp8OHDCgkJcclzWEVtaWttaadEWy9FtaWdUs1sqzFGp06dUmxsrKdDqbHo612Ltl56aks7Jdp6Kaqp7axof1/jk/YGDRrIx8dHWVlZDtuzsrIUHR1d6mNsNptsNpvDtrCwMFeF6CAkJKRGvZGqo7a0tba0U6Ktl6La0k6p5rWVGfb/Q19vXbT10lNb2inR1ktRTWxnRfr7Gr/km5+fn+Lj47VmzRr7tqKiIq1Zs0aJiYkejAwAADgDfT0AoDar8TPtkjRu3DgNHTpUV199tTp16qSZM2cqNzfXfoVZAABQs9HXAwBqq0siab/tttt0/PhxPfPMM8rMzNSVV16p5cuXl7hgjSfZbDZNnDixxKF6l6La0tba0k6Jtl6Kaks7pdrV1ksZfb210NZLT21pp0RbL0WXeju9DOvJAAAAAABgSTX+nHYAAAAAAC5VJO0AAAAAAFgUSTsAAAAAABZF0g4AAAAAgEWRtFfDrFmz1LRpU/n7+yshIUFffvllmWXnz58vLy8vh5u/v79DmWHDhpUo06dPH1c346Iq005JOnnypFJTUxUTEyObzaYrrrhCn376abXqdBdnt3XSpEklXtNWrVq5uhkVUpm2du/evUQ7vLy8lJycbC9jjNEzzzyjmJgYBQQEqFevXtqzZ487mlIuZ7fTqp9TqfLv35kzZ6ply5YKCAhQo0aNNHbsWOXl5VWrTndwdjut/DmF59HXl46+nr6evt4zaktfL9HfOzCokkWLFhk/Pz/z5ptvml27dpn77rvPhIWFmaysrFLLp6enm5CQEHP06FH7LTMz06HM0KFDTZ8+fRzK/Prrr+5oTpkq2878/Hxz9dVXm379+pnPP//cHDhwwKxfv97s2LGjynW6iyvaOnHiRNO2bVuH1/T48ePualKZKtvWX375xaENO3fuND4+PiY9Pd1eZtq0aSY0NNQsWbLE/Oc//zE33XSTiYuLM7/99pubWlWSK9ppxc+pMZVv69tvv21sNpt5++23zYEDB8yKFStMTEyMGTt2bJXrdAdXtNOqn1N4Hn09fT19PX29VT6nxtSevr4qcV3q/T1JexV16tTJpKam2u8XFhaa2NhYk5aWVmr59PR0ExoaWm6dQ4cONQMGDHBilNVX2XbOmTPHNGvWzBQUFDitTndxRVsnTpxoOnbs6OxQq626r8GMGTNMcHCwOX36tDHGmKKiIhMdHW1eeOEFe5mTJ08am81m3nnnHecGXwnObqcx1vycGlP5tqamppoePXo4bBs3bpy57rrrqlynO7iinVb9nMLz6Ovp6+nr6eutpLb09cbQ31+Iw+OroKCgQNu2bVOvXr3s27y9vdWrVy9t2rSpzMedPn1aTZo0UaNGjTRgwADt2rWrRJn169crMjJSLVu21AMPPKBffvnFJW2oiKq081//+pcSExOVmpqqqKgotWvXTs8//7wKCwurXKc7uKKtxfbs2aPY2Fg1a9ZMQ4YM0aFDh1zalotxxmswb948DR48WIGBgZKkAwcOKDMz06HO0NBQJSQkeOx1dUU7i1npcypVra3XXnuttm3bZj/UbP/+/fr000/Vr1+/Ktfpaq5oZzGrfU7hefT19PUSfT19vTU+p1Lt6eurGtel3t/X8XQANdF///tfFRYWKioqymF7VFSUvv/++1If07JlS7355pvq0KGDsrOz9eKLL+raa6/Vrl271LBhQ0lSnz59NGjQIMXFxWnfvn168skn1bdvX23atEk+Pj4ub9eFqtLO/fv3a+3atRoyZIg+/fRT7d27Vw8++KDOnj2riRMnVqlOd3BFWyUpISFB8+fPV8uWLXX06FFNnjxZ119/vXbu3Kng4GCXt6s01X0NvvzyS+3cuVPz5s2zb8vMzLTXcWGdxfvczRXtlKz3OZWq1tY77rhD//3vf9WlSxcZY3Tu3Dn98Y9/1JNPPlnlOl3NFe2UrPk5hefR19PXS/T19PXW+JxKtaevl+jvS0PS7iaJiYlKTEy037/22mvVunVrvfHGG3r22WclSYMHD7bvb9++vTp06KDmzZtr/fr16tmzp9tjroqioiJFRkbqL3/5i3x8fBQfH6+ff/5ZL7zwgr1zu1RUpK19+/a1l+/QoYMSEhLUpEkTvffeexoxYoSnQq+WefPmqX379urUqZOnQ3Gpstp5KXxOpf/NIDz//POaPXu2EhIStHfvXj388MN69tln9fTTT3s6PKepSDsvxc8pPIO+nr7+UvkOoa+v+Z9Tqfb09dKl39+TtFdBgwYN5OPjo6ysLIftWVlZio6OrlAdvr6++t3vfqe9e/eWWaZZs2Zq0KCB9u7d65EviKq0MyYmRr6+vg6/QrZu3VqZmZkqKChwyt/OFVzRVj8/vxKPCQsL0xVXXFHu6+5q1XkNcnNztWjRIk2ZMsVhe/HjsrKyFBMT41DnlVde6ZzAK8kV7SyNpz+nUtXa+vTTT+uuu+7SvffeK+l/g5Lc3FyNHDlSf/rTnyz5WXVFO729S54lZoXPKTyPvp6+XqKvPx99PX29u9Dfl8Q57VXg5+en+Ph4rVmzxr6tqKhIa9ascfiFvTyFhYX69ttvHb70LvTTTz/pl19+KbeMK1Wlndddd5327t2roqIi+7YffvhBMTEx8vPzc8rfzhVc0dbSnD59Wvv27fPYaypV7/27ePFi5efn684773TYHhcXp+joaIc6c3JytGXLFo+9rq5oZ2k8/TmVqtbWM2fOlOjAigelxhhLflZd0c7SWOFzCs+jr6evl+jrz0dfT1/vLvT3pfDcNfBqtkWLFhmbzWbmz59vdu/ebUaOHGnCwsLsS7vcddddZvz48fbykydPNitWrDD79u0z27ZtM4MHDzb+/v5m165dxhhjTp06ZR599FGzadMmc+DAAbN69Wpz1VVXmRYtWpi8vDyPtNGYyrfz0KFDJjg42IwaNcpkZGSYpUuXmsjISDN16tQK1+kprmjrI488YtavX28OHDhgvvjiC9OrVy/ToEEDc+zYMbe373yVbWuxLl26mNtuu63UOqdNm2bCwsLMRx99ZL755hszYMAASywD48x2WvVzakzl2zpx4kQTHBxs3nnnHbN//36zcuVK07x5c3PrrbdWuE5PcEU7rfo5hefR19PX09c7oq+nr3cX+ntHJO3V8Nprr5nGjRsbPz8/06lTJ7N582b7vm7dupmhQ4fa748ZM8ZeNioqyvTr1898/fXX9v1nzpwxvXv3NhEREcbX19c0adLE3HfffR7/wBhTuXYaY8zGjRtNQkKCsdlsplmzZua5554z586dq3CdnuTstt52220mJibG+Pn5mcsuu8zcdtttZu/eve5qTrkq29bvv//eSDIrV64stb6ioiLz9NNPm6ioKGOz2UzPnj1NRkaGK5tQIc5sp5U/p8ZUrq1nz541kyZNMs2bNzf+/v6mUaNG5sEHHzQnTpyocJ2e4ux2WvlzCs+jr6evp6//P/T1nldb+npj6O/P52VMGccLAAAAAAAAj+KcdgAAAAAALIqkHQAAAAAAiyJpBwAAAADAokjaAQAAAACwKJJ2AAAAAAAsiqQdAAAAAACLImkHAAAAAMCiSNoBAAAAALAoknYAAAAAACyKpB0AAAAAAIsiaQcAAAAAwKJI2gEAAAAAsKj/B97ASdK/R4ndAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHDCAYAAABRfvt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABam0lEQVR4nO3deVyU5f7/8TcgDMgqKiC5oZm72cGNXFMTl0yTMstKzbIMNaXVTuVamFnaglodQzvlsWNH7WSJu3bMJSU9pRa5hqagpwRcclC4f3/0Y76OLDI4zNzo6/l4zKPmvq+553PdjHNdn7nv67o8DMMwBAAAAAAATMfT3QEAAAAAAICikbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0o8KoW7euhg4d6u4wrtqGDRvk4eGhDRs22LYNHTpUdevWdVtM17PLP1dF/X3Ky8SJE+Xh4WG3zcPDQ6NGjSr395ak+fPny8PDQ4cPH3bJ+wHAtcyd7QnsFdW+uqofefjwYXl4eGj+/Pm2bUOHDlVAQEC5v3cBDw8PTZw40WXvh/JH0g6n2bx5syZOnKisrCx3h2IKs2fPtvvCxrXt1Vdf1bJly9wdRpHMHBuAistV7b6ZvsPo61xfvvrqK9Mmv2aODc5H0g6n2bx5syZNmlRuDVlaWpo++OCDcjl2eXAkaf/ggw+UlpZWvgGhVDp16qQ//vhDnTp1cuh1ZelUvvjii/rjjz8cek1ZFBfbgw8+qD/++EN16tQp9xgAXHvKu90vYLakvbR1Lmt7gvJRln7kV199pUmTJjn0mjp16uiPP/7Qgw8+6NDrHFVSbH/88YdefPHFcn1/uBZJO9wiPz9f58+fd+g1FotF3t7e5RSRe3l7e8tisTjlWIZhuCQRdJazZ8+6OwQ7np6e8vX1ladn+X09FtS5UqVK8vX1Lbf3uRIvLy/5+voWuoUQAHD1nN2emK29LMn58+eVn5/v7jDslHc/8uLFi8rNzZWHh4d8fX3l5eVVbu91Jb6+vqpUqZLb3h/OR9IOp5g4caKeeeYZSVJUVJQ8PDzsxsoWjNP95JNP1LRpU1ksFqWkpEiSZsyYoVtvvVVVq1aVn5+foqOj9dlnnxV6j8vHIhWMx/3mm2+UkJCg6tWry9/fX3fddZdOnjzpcB127typXr16KSgoSAEBAerWrZu2bt1aqJ5FJTiXjw2uW7eu9uzZo40bN9rORZcuXYp976LGtOfn52vWrFlq2rSpfH19FR4erscee0ynTp2yK1e3bl3dcccdWrlypVq1aiU/Pz+99957papzRkaGhg0bppo1a8pisahGjRrq169foTHOK1asUOfOnRUYGKigoCC1bt1aCxcutCuzePFiRUdHy8/PT9WqVdMDDzygX3/9tVA9AwICdODAAfXu3VuBgYEaPHiwQ/XdsWOHYmNjVa1aNfn5+SkqKkoPP/zwFetqGIamTp2qmjVrqnLlyrrtttu0Z8+eQuWKGoO4b98+xcXFKSIiQr6+vqpZs6YGDRqk7OxsSX9+vs+ePasFCxbY/t4Fn9WCz8zevXt1//33q0qVKurQoYPdvqJ88sknatiwoXx9fRUdHa2vv/660Lksah6Ey49ZUmzFjWmfPXu27d9pZGSk4uPjC11V6tKli5o1a6a9e/fqtttuU+XKlXXDDTdo+vTpRdYHwLXlSu2+JH388ce2diE0NFSDBg3SkSNH7I5zNd+vpXH27Fk99dRTqlWrliwWixo2bKgZM2bIMAxbmaLGIBe4dGxwaep8qeLGtG/btk09e/ZUcHCwKleurM6dO+ubb76xK1NS21Ea77zzjpo2barKlSurSpUqatWqVaF2+9dff9Xw4cMVGRkpi8WiqKgojRw5Urm5ubYyBw8e1D333KPQ0FBVrlxZ7dq105dffllkPRctWqQXX3xRN9xwgypXrqycnJxS1/f06dMaO3as6tatK4vForCwMN1+++367rvvrljXTZs2qXXr1vL19VX9+vWL7QNd3o+8cOGCJk2apAYNGsjX11dVq1ZVhw4dtHr1akl/trNJSUmSZPtbF7SvBZ+ZGTNmaNasWapfv74sFov27t1b4ufp4MGDio2Nlb+/vyIjIzV58mS7z2Jxn5nLj1lSbAXbLr91vjT9XGf3reE8/AQDpxgwYIB+/vln/eMf/9DMmTNVrVo1SVL16tVtZdatW6d//vOfGjVqlKpVq2ZLON566y3deeedGjx4sHJzc7Vo0SLdc889Wr58ufr06XPF9x49erSqVKmiCRMm6PDhw5o1a5ZGjRqlTz/9tNTx79mzRx07dlRQUJCeffZZeXt767333lOXLl20ceNGtW3b1qHzMWvWLI0ePVoBAQH661//KkkKDw936BiPPfaY5s+fr2HDhmnMmDE6dOiQ3n33Xe3cuVPffPON3a/FaWlpuu+++/TYY4/p0UcfVcOGDUv1HnFxcdqzZ49Gjx6tunXr6sSJE1q9erXS09Ntf5/58+fr4YcfVtOmTTV+/HiFhIRo586dSklJ0f33328rM2zYMLVu3VqJiYnKzMzUW2+9pW+++UY7d+5USEiI7T0vXryo2NhYdejQQTNmzFDlypVLXd8TJ06oR48eql69up5//nmFhITo8OHDWrJkyRXr+vLLL2vq1Knq3bu3evfure+++049evSw65wUJTc3V7GxsbJarRo9erQiIiL066+/avny5crKylJwcLD+/ve/65FHHlGbNm00YsQISVL9+vXtjnPPPfeoQYMGevXVV+0a6KJs3LhRn376qcaMGSOLxaLZs2erZ8+e+vbbb9WsWbMr1vVSpYntUhMnTtSkSZPUvXt3jRw5UmlpaZozZ462b99e6HN36tQp9ezZUwMGDNDAgQP12Wef6bnnnlPz5s3Vq1cvh+IEULFcqd1/5ZVX9NJLL2ngwIF65JFHdPLkSb3zzjvq1KmTrV1w1vdrcQzD0J133qn169dr+PDhatmypVauXKlnnnlGv/76q2bOnOnUOpfGunXr1KtXL0VHR2vChAny9PRUcnKyunbtqv/85z9q06aNXXlH2o4CH3zwgcaMGaO7775bTz75pM6fP6/vv/9e27Zts7Xbx44dU5s2bZSVlaURI0aoUaNG+vXXX/XZZ5/p3Llz8vHxUWZmpm699VadO3dOY8aMUdWqVbVgwQLdeeed+uyzz3TXXXfZve+UKVPk4+Ojp59+WlarVT4+PqWu7+OPP67PPvtMo0aNUpMmTfTbb79p06ZN+vHHH/WXv/yl2Lr+8MMPtn7BxIkTdfHiRU2YMKFUfa6JEycqMTHR9vnKycnRjh079N133+n222/XY489pmPHjmn16tX6+9//XuQxkpOTdf78eY0YMUIWi0WhoaHF3mGQl5ennj17ql27dpo+fbpSUlI0YcIEXbx4UZMnT75ivJcqTWyXcrSf64y+NZzMAJzk9ddfNyQZhw4dKrRPkuHp6Wns2bOn0L5z587ZPc/NzTWaNWtmdO3a1W57nTp1jCFDhtieJycnG5KM7t27G/n5+bbt48aNM7y8vIysrKxSx96/f3/Dx8fHOHDggG3bsWPHjMDAQKNTp062bRMmTDCK+mdTEMuldW/atKnRuXPnQmXXr19vSDLWr19v2zZkyBCjTp06tuf/+c9/DEnGJ598YvfalJSUQtvr1KljSDJSUlJKXV/DMIxTp04ZkozXX3+92DJZWVlGYGCg0bZtW+OPP/6w21dwznNzc42wsDCjWbNmdmWWL19uSDJefvllu3pKMp5//nm7Y5W2vkuXLjUkGdu3b3eoridOnDB8fHyMPn362H1WXnjhBUOS3efq8r/Pzp07DUnG4sWLS3wPf39/u+MUKPjM3HfffcXuu5QkQ5KxY8cO27ZffvnF8PX1Ne666y7btss/MyUds7jYLv/cFpynHj16GHl5ebZy7777riHJ+PDDD23bOnfubEgyPvroI9s2q9VqREREGHFxcYXeC8C1p7h2//Dhw4aXl5fxyiuv2G3/4YcfjEqVKtm2X+3365UsW7bMkGRMnTrVbvvdd99teHh4GPv37zcMwzAOHTpkSDKSk5MLHUOSMWHCBNvzkvo6l/dTLm9P8vPzjQYNGhixsbF2bdG5c+eMqKgo4/bbb7dtK6ntuJJ+/foZTZs2LbHMQw89ZHh6ehbZnhbENnbsWEOS8Z///Me27/Tp00ZUVJRRt25dWztRUM969erZ9ekcqW9wcLARHx/vcF379+9v+Pr6Gr/88ott2969ew0vL69CbeHlf5+bb77Z6NOnT4nHj4+PL7LfV/CZCQoKMk6cOFHkvks/TwX9n9GjR9u25efnG3369DF8fHyMkydPGoZRdB+xuGMWF5thFP7clraf68y+NZyL2+PhMp07d1aTJk0Kbffz87P9/6lTp5Sdna2OHTuW6pYoSRoxYoTdLUEdO3ZUXl6efvnll1K9Pi8vT6tWrVL//v1Vr1492/YaNWro/vvv16ZNm2y3eLnK4sWLFRwcrNtvv13/+9//bI/o6GgFBARo/fr1duWjoqIUGxvr0Hv4+fnJx8dHGzZsKHQLeoHVq1fr9OnTev755wuNvS445zt27NCJEyf0xBNP2JXp06ePGjVqVOg2OkkaOXJkmepbcMV++fLlunDhQqnrumbNGuXm5mr06NF2n5WxY8de8bXBwcGSpJUrV+rcuXOlfs/LPf7446UuGxMTo+joaNvz2rVrq1+/flq5cqXy8vLKHMOVFJynsWPH2o3BfPTRRxUUFFTobxkQEKAHHnjA9tzHx0dt2rTRwYMHyy1GAOa3ZMkS5efna+DAgXbf6REREWrQoIHtO91Z36/F+eqrr+Tl5aUxY8bYbX/qqadkGIZWrFjh9Pcsya5du7Rv3z7df//9+u2332zn5ezZs+rWrZu+/vrrQldpHWk7CoSEhOjo0aPavn17kfvz8/O1bNky9e3bV61atSq0v6Cd/Oqrr9SmTRu72/IDAgI0YsQIHT58WHv37rV73ZAhQ+z6dI7UNyQkRNu2bdOxY8dKXc+8vDytXLlS/fv3V+3atW3bGzduXKo+UUhIiPbs2aN9+/aV+j0vFxcX59CdFpcu6VowdDQ3N1dr1qwpcwxXUpZ+7tX2reF8JO1wmaioqCK3L1++XO3atZOvr69CQ0NVvXp1zZkzxzae7Uou/aKWpCpVqkhSsYno5U6ePKlz584VeUt548aNlZ+fX2gMXnnbt2+fsrOzFRYWpurVq9s9zpw5oxMnTtiVL+7clsRisei1117TihUrFB4erk6dOmn69OnKyMiwlTlw4IAklXhLdsEXeFHnr1GjRoW+4CtVqqSaNWvabSttfTt37qy4uDhNmjRJ1apVU79+/ZScnCyr1VpiXQtiaNCggd326tWr2z4vxYmKilJCQoL+9re/qVq1aoqNjVVSUlKpP5+XHqe0Lo9Tkm666SadO3euXMeUFfe39PHxUb169Qr9LWvWrFloTH6VKlVK/W8PwLVp3759MgxDDRo0KPSd/uOPP9q+0531/VqcX375RZGRkQoMDLTb3rhxY9t+VypIDocMGVLovPztb3+T1WotVPeytO/PPfecAgIC1KZNGzVo0EDx8fF2Y8hPnjypnJycKw63+uWXX4rtGxXsLylWR+o7ffp07d69W7Vq1VKbNm00ceLEK/4AfPLkSf3xxx9FtpmlGSY4efJkZWVl6aabblLz5s31zDPP6Pvvv7/i6y7lyN/H09PTLmmW/mzbJRU7L4IzlKWfe7V9azgfY9rhMpf++lrgP//5j+6880516tRJs2fPVo0aNeTt7a3k5ORCE6YUp7jZOY1Sjv1yRHGThjn76md+fr7CwsL0ySefFLn/8l91izq3pTF27Fj17dtXy5Yt08qVK/XSSy8pMTFR69at0y233FKmY16JxWIpNJNuaevr4eGhzz77TFu3btUXX3yhlStX6uGHH9Ybb7yhrVu3KiAgoFxifuONNzR06FB9/vnnWrVqlcaMGaPExERt3bq10A8QxSnr36g4rvoslsSV//YAVBz5+fny8PDQihUrivyeuPS72hnfr1fLlW27JL3++utq2bJlkWUub8fK0nY0btxYaWlpWr58uVJSUvSvf/1Ls2fP1ssvv+zw8mWOuDxWR+o7cOBAdezYUUuXLtWqVav0+uuv67XXXtOSJUvKbY6UTp066cCBA7bP3t/+9jfNnDlTc+fO1SOPPFKqY1yLbbtE+25GJO1wmrIsG/Wvf/1Lvr6+Wrlypd2SZ8nJyc4MrUTVq1dX5cqVi1wn/aeffpKnp6dq1aol6f9+aczKyrKbXK2oX+uvZhmt+vXra82aNWrfvr3TG4Si3uupp57SU089pX379qlly5Z644039PHHH9sm+9m9e7duvPHGIl9fsMZ3WlqaunbtarcvLS2tVGuAO1rfdu3aqV27dnrllVe0cOFCDR48WIsWLSq2kS2IYd++fXa/cp88ebLUvxo3b95czZs314svvqjNmzerffv2mjt3rqZOnSrp6v7elyvqVr2ff/5ZlStXtv2AUaVKlSLXCb6az+Klf8tLz1Nubq4OHTqk7t27l+o4AK4PxX231K9fX4ZhKCoqynYlsSTl9f1ap04drVmzRqdPn7a72v7TTz/Z9kv2bfulyqNtl6SgoKBy/z719/fXvffeq3vvvVe5ubkaMGCAXnnlFY0fP17Vq1dXUFCQdu/eXeIx6tSpU2zfqGB/SRytb40aNfTEE0/oiSee0IkTJ/SXv/xFr7zySrFJe/Xq1eXn51dkm1lU3EUJDQ3VsGHDNGzYMJ05c0adOnXSxIkTbf0JZ7bt+fn5OnjwoN2/iZ9//lmSbJP/lsdn0ZF+LsyL2+PhNP7+/pIKf9GUxMvLSx4eHna/IB4+fFjLli1zcnQlx9CjRw99/vnndrcnZWZmauHCherQoYOCgoIk/V8DdOnyWwVL0VzO39/foXNxqYEDByovL09TpkwptO/ixYtlPu6lzp07p/Pnz9ttq1+/vgIDA223m/fo0UOBgYFKTEwsVLbg19ZWrVopLCxMc+fOtbtNfcWKFfrxxx9LtQJAaet76tSpQr/yFvx6X9It8t27d5e3t7feeecdu9fPmjXrirHl5OTo4sWLdtuaN28uT09Pu/e8mr/35bZs2WI3p8ORI0f0+eefq0ePHrZfv+vXr6/s7Gy7W/mOHz+upUuXFjpeaWPr3r27fHx89Pbbb9udp3nz5ik7O7tUf0sA14/i2v0BAwbIy8tLkyZNKvSdbRiGfvvtN0nl//3au3dv5eXl6d1337XbPnPmTHl4eNiSwaCgIFWrVq3Q0pqzZ88udMyy9HUKREdHq379+poxY4bOnDlTaL+zhj8VnN8CPj4+atKkiQzD0IULF+Tp6an+/fvriy++0I4dOwq9vuBv1rt3b3377bfasmWLbd/Zs2f1/vvvq27dukXOU3Sp0tY3Ly+v0LCAsLAwRUZGlti2e3l5KTY2VsuWLVN6erpt+48//qiVK1eWGJtU+DwFBAToxhtvLPTZk8r29y7KpZ9FwzD07rvvytvbW926dZP05w8hXl5eTv0sOtLPhXlxpR1OUzBx1l//+lcNGjRI3t7e6tu3r+1LpSh9+vTRm2++qZ49e+r+++/XiRMnlJSUpBtvvNHhcUVXY+rUqVq9erU6dOigJ554QpUqVdJ7770nq9Vqt+50jx49VLt2bQ0fPlzPPPOMvLy89OGHH6p69ep2DYb05/mYM2eOpk6dqhtvvFFhYWGFrkQXp3PnznrssceUmJioXbt2qUePHvL29ta+ffu0ePFivfXWW7r77ruvqs4///yzunXrpoEDB6pJkyaqVKmSli5dqszMTA0aNEjSnx2ZmTNn6pFHHlHr1q1ta8X+97//1blz57RgwQJ5e3vrtdde07Bhw9S5c2fdd999tiXf6tatq3HjxjmtvgsWLNDs2bN11113qX79+jp9+rQ++OADBQUFqXfv3sUev3r16nr66aeVmJioO+64Q71799bOnTu1YsUK25I9xVm3bp1GjRqle+65RzfddJMuXryov//97/Ly8lJcXJytXHR0tNasWaM333xTkZGRioqKcnipwALNmjVTbGys3ZJvkuxuaxw0aJCee+453XXXXRozZozOnTunOXPm6Kabbio0iWNpY6tevbrGjx+vSZMmqWfPnrrzzjuVlpam2bNnq3Xr1naTzgFAce1+/fr1NXXqVI0fP16HDx9W//79FRgYqEOHDmnp0qUaMWKEnn766XL/fu3bt69uu+02/fWvf9Xhw4d18803a9WqVfr88881duxYu6XjHnnkEU2bNk2PPPKIWrVqpa+//tp2FbQ0dS6pr1PA09NTf/vb39SrVy81bdpUw4YN0w033KBff/1V69evV1BQkL744osrHudKevTooYiICLVv317h4eH68ccf9e6776pPnz62Ow5effVVrVq1Sp07d9aIESPUuHFjHT9+XIsXL9amTZsUEhKi559/Xv/4xz/Uq1cvjRkzRqGhoVqwYIEOHTqkf/3rX4WGupW1vqdPn1bNmjV199136+abb1ZAQIDWrFmj7du364033ijxPSZNmqSUlBR17NhRTzzxhC5evGhbo/5K/cgmTZqoS5cuio6OVmhoqHbs2GFbdq5Awd97zJgxio2NlZeXl62P5ChfX1+lpKRoyJAhatu2rVasWKEvv/xSL7zwgu0uuuDgYN1zzz1655135OHhofr162v58uWF5jJyNLbS9nNhYm6YsR7XsClTphg33HCD4enpabckiqRil/KYN2+e0aBBA8NisRiNGjUykpOTi1y2qrgl3y5frqS45TKu5LvvvjNiY2ONgIAAo3LlysZtt91mbN68uVC51NRUo23btoaPj49Ru3Zt48033yxyybeMjAyjT58+RmBgoCHJtvxbaZZ8K/D+++8b0dHRhp+fnxEYGGg0b97cePbZZ41jx47ZnZcrLVlSlP/9739GfHy80ahRI8Pf398IDg422rZta/zzn/8sVPbf//63ceuttxp+fn5GUFCQ0aZNG+Mf//iHXZlPP/3UuOWWWwyLxWKEhoYagwcPNo4ePWpXZsiQIYa/v3+xMV2pvt99951x3333GbVr1zYsFosRFhZm3HHHHXbLoxUnLy/PmDRpklGjRg3Dz8/P6NKli7F79+4rLtFz8OBB4+GHHzbq169v+Pr6GqGhocZtt91mrFmzxu74P/30k9GpUyfDz8/Pbhm5gs9ywXIulypuybf4+Hjj448/tv27uOWWW4r8PK9atcpo1qyZ4ePjYzRs2ND4+OOPizxmcbEV9bk1jD+XeGvUqJHh7e1thIeHGyNHjjROnTplV6Zz585FLilU3GcZwLWpuHbfMAzjX//6l9GhQwfD39/f8Pf3Nxo1amTEx8cbaWlphmFc/fdraZw+fdoYN26cERkZaXh7exsNGjQwXn/9dbvlrAzjz2XIhg8fbgQHBxuBgYHGwIEDjRMnThRaOqukOl+pPSmwc+dOY8CAAUbVqlUNi8Vi1KlTxxg4cKCxdu1aW5mS2o4ree+994xOnTrZjl+/fn3jmWeeMbKzs+3K/fLLL8ZDDz1kVK9e3bBYLEa9evWM+Ph4w2q12socOHDAuPvuu42QkBDD19fXaNOmjbF8+XK74xTUs7il+65UX6vVajzzzDPGzTffbAQGBhr+/v7GzTffbMyePbtU9d24caMRHR1t+Pj4GPXq1TPmzp1bqn7k1KlTjTZt2hghISGGn5+f0ahRI+OVV14xcnNzbWUuXrxojB492qhevbrh4eFhO2bBEmxFLZtb3JJv/v7+xoEDB4wePXoYlStXNsLDw40JEybYLbFqGIZx8uRJIy4uzqhcubJRpUoV47HHHjN2795d6JjFxWYYhZd8M4zS9XOd3beG83gYBjMKAAAAAABgRoxpBwAAAADApBjTjmvamTNnipz85FLVq1cvdmmLiio7O1t//PFHiWUiIiJcFA0AAM6Tl5d3xUnbAgICym0ZUHfJzc3V77//XmKZ4ODgcl91BoDrkbTjmjZjxowrrkl66NAh21Ib14onn3yyyBntL8XIGABARXTkyBFFRUWVWGbChAmaOHGiawJykc2bN+u2224rsUxycrKGDh3qmoAAuAxj2nFNO3jwoA4ePFhimQ4dOsjX19dFEbnG3r17dezYsRLLsOY2AKAiOn/+vDZt2lRimXr16qlevXouisg1Tp06pdTU1BLLNG3aVDVq1HBRRABchaQdAAAAAACTYiI6AADgVnXr1pWHh0ehR3x8vKQ/r6zGx8eratWqCggIUFxcnDIzM90cNQAArsGVdkn5+fk6duyYAgMD5eHh4e5wAADXOcMwdPr0aUVGRsrT89r/ff3kyZPKy8uzPd+9e7duv/12rV+/Xl26dNHIkSP15Zdfav78+QoODtaoUaPk6empb775ptTvQVsPADCb0rb3JO2Sjh49qlq1ark7DAAA7Bw5ckQ1a9Z0dxguN3bsWC1fvlz79u1TTk6OqlevroULF+ruu++WJP30009q3LixtmzZonbt2pXqmLT1AACzulJ7z+zxkgIDAyX9ebKCgoLcHM11olEj6fhxqUYN6aef3B0NAJhKTk6OatWqZWufrie5ubn6+OOPlZCQIA8PD6WmpurChQt2k2c2atRItWvXLjFpt1qtslqttucF1yho612Ith4ASlTa9p6kXbLdJhcUFERD7ioFt394ekqccwAo0vV4G/eyZcuUlZVlW7YqIyNDPj4+CgkJsSsXHh6ujIyMYo+TmJhY5JKftPUuRFsPAKVypfb+2h8oBwAAKox58+apV69eioyMvKrjjB8/XtnZ2bbHkSNHnBQhAACuxZV2AABgCr/88ovWrFmjJUuW2LZFREQoNzdXWVlZdlfbMzMzFRERUeyxLBaLLBZLeYYLAIBLcKUdAACYQnJyssLCwtSnTx/btujoaHl7e2vt2rW2bWlpaUpPT1dMTIw7wgQAwKW40g4AANwuPz9fycnJGjJkiCpV+r/uSXBwsIYPH66EhASFhoYqKChIo0ePVkxMTKlnjgcAoCIjaQcAAG63Zs0apaen6+GHHy60b+bMmfL09FRcXJysVqtiY2M1e/ZsN0QJAIDrkbQDAAC369Gjh21Ztsv5+voqKSlJSUlJLo4KAAD3Y0w7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASVVydwDA9aru81+WuP/wtD4uigQAgOsX7TEAs+NKOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASbk1aZ8zZ45atGihoKAgBQUFKSYmRitWrLDtP3/+vOLj41W1alUFBAQoLi5OmZmZdsdIT09Xnz59VLlyZYWFhemZZ57RxYsXXV0VAAAAAACczq1Je82aNTVt2jSlpqZqx44d6tq1q/r166c9e/ZIksaNG6cvvvhCixcv1saNG3Xs2DENGDDA9vq8vDz16dNHubm52rx5sxYsWKD58+fr5ZdfdleVAAAAAABwmkrufPO+ffvaPX/llVc0Z84cbd26VTVr1tS8efO0cOFCde3aVZKUnJysxo0ba+vWrWrXrp1WrVqlvXv3as2aNQoPD1fLli01ZcoUPffcc5o4caJ8fHzcUS0AAAAAAJzCNGPa8/LytGjRIp09e1YxMTFKTU3VhQsX1L17d1uZRo0aqXbt2tqyZYskacuWLWrevLnCw8NtZWJjY5WTk2O7Wl8Uq9WqnJwcuwcAAAAAAGbj9qT9hx9+UEBAgCwWix5//HEtXbpUTZo0UUZGhnx8fBQSEmJXPjw8XBkZGZKkjIwMu4S9YH/BvuIkJiYqODjY9qhVq5ZzKwUAAAAAgBO4PWlv2LChdu3apW3btmnkyJEaMmSI9u7dW67vOX78eGVnZ9seR44cKdf3AwAAAACgLNw6pl2SfHx8dOONN0qSoqOjtX37dr311lu69957lZubq6ysLLur7ZmZmYqIiJAkRURE6Ntvv7U7XsHs8gVlimKxWGSxWJxcEwAAAAAAnMvtV9ovl5+fL6vVqujoaHl7e2vt2rW2fWlpaUpPT1dMTIwkKSYmRj/88INOnDhhK7N69WoFBQWpSZMmLo8dAAAAAABncuuV9vHjx6tXr16qXbu2Tp8+rYULF2rDhg1auXKlgoODNXz4cCUkJCg0NFRBQUEaPXq0YmJi1K5dO0lSjx491KRJEz344IOaPn26MjIy9OKLLyo+Pp4r6QAAAACACs+tSfuJEyf00EMP6fjx4woODlaLFi20cuVK3X777ZKkmTNnytPTU3FxcbJarYqNjdXs2bNtr/fy8tLy5cs1cuRIxcTEyN/fX0OGDNHkyZPdVSXATt3nv3R3CAAAAAAqMLcm7fPmzStxv6+vr5KSkpSUlFRsmTp16uirr75ydmgAAAAAALid6ca0AwAAAACAP5G0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAHC7X3/9VQ888ICqVq0qPz8/NW/eXDt27LDtNwxDL7/8smrUqCE/Pz91795d+/btc2PEAAC4Bkk7AABwq1OnTql9+/by9vbWihUrtHfvXr3xxhuqUqWKrcz06dP19ttva+7cudq2bZv8/f0VGxur8+fPuzFyAADKXyV3BwAAAK5vr732mmrVqqXk5GTbtqioKNv/G4ahWbNm6cUXX1S/fv0kSR999JHCw8O1bNkyDRo0yOUxAwDgKlxpBwAAbvXvf/9brVq10j333KOwsDDdcsst+uCDD2z7Dx06pIyMDHXv3t22LTg4WG3bttWWLVvcETIAAC7DlXbgKtR9/kt3hwAAFd7Bgwc1Z84cJSQk6IUXXtD27ds1ZswY+fj4aMiQIcrIyJAkhYeH270uPDzctu9yVqtVVqvV9jwnJ6f8KgAAQDkiaQcAAG6Vn5+vVq1a6dVXX5Uk3XLLLdq9e7fmzp2rIUOGlOmYiYmJmjRpkjPDBADALbg9HgAAuFWNGjXUpEkTu22NGzdWenq6JCkiIkKSlJmZaVcmMzPTtu9y48ePV3Z2tu1x5MiRcogcAIDyR9IOAADcqn379kpLS7Pb9vPPP6tOnTqS/pyULiIiQmvXrrXtz8nJ0bZt2xQTE1PkMS0Wi4KCguweAABURNweDwAA3GrcuHG69dZb9eqrr2rgwIH69ttv9f777+v999+XJHl4eGjs2LGaOnWqGjRooKioKL300kuKjIxU//793Rs8AADljKQdAAC4VevWrbV06VKNHz9ekydPVlRUlGbNmqXBgwfbyjz77LM6e/asRowYoaysLHXo0EEpKSny9fV1Y+QAAJQ/knYAAOB2d9xxh+64445i93t4eGjy5MmaPHmyC6MCAMD9GNMOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJVXJ3AIA71X3+yxL3H57Wx0WRAAAAAEBhXGkHAAAAAMCkSNoBAAAAADApbo8HAAAA3IBhegBKgyvtAAAAAACYFFfagQqqpF/n+WUeAAAAuDaQtAPXIG63AwAAAK4N3B4PAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIs+QaY1JWWbQMAAABw7eNKOwAAAAAAJkXSDgAAAACASbk1aU9MTFTr1q0VGBiosLAw9e/fX2lpaXZlunTpIg8PD7vH448/blcmPT1dffr0UeXKlRUWFqZnnnlGFy9edGVVAAAAAABwOreOad+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/f31bu0Ucf1eTJk23PK1eubPv/vLw89enTRxEREdq8ebOOHz+uhx56SN7e3nr11VddWh8AAAAAAJzJrUl7SkqK3fP58+crLCxMqamp6tSpk2175cqVFRERUeQxVq1apb1792rNmjUKDw9Xy5YtNWXKFD333HOaOHGifHx8yrUOAAAAAACUF1PNHp+dnS1JCg0Ntdv+ySef6OOPP1ZERIT69u2rl156yXa1fcuWLWrevLnCw8Nt5WNjYzVy5Ejt2bNHt9xyS6H3sVqtslqttuc5OTnlUR0AAACYgLtWZGElGADOYJqkPT8/X2PHjlX79u3VrFkz2/b7779fderUUWRkpL7//ns999xzSktL05IlSyRJGRkZdgm7JNvzjIyMIt8rMTFRkyZNKqea4FpCYwsAAADAnUyTtMfHx2v37t3atGmT3fYRI0bY/r958+aqUaOGunXrpgMHDqh+/fpleq/x48crISHB9jwnJ0e1atUqW+AAAAAAAJQTUyz5NmrUKC1fvlzr169XzZo1Syzbtm1bSdL+/fslSREREcrMzLQrU/C8uHHwFotFQUFBdg8AAAAAAMzGrUm7YRgaNWqUli5dqnXr1ikqKuqKr9m1a5ckqUaNGpKkmJgY/fDDDzpx4oStzOrVqxUUFKQmTZqUS9wAAAAAALiCW2+Pj4+P18KFC/X5558rMDDQNgY9ODhYfn5+OnDggBYuXKjevXuratWq+v777zVu3Dh16tRJLVq0kCT16NFDTZo00YMPPqjp06crIyNDL774ouLj42WxWNxZPQAAAAAAropbr7TPmTNH2dnZ6tKli2rUqGF7fPrpp5IkHx8frVmzRj169FCjRo301FNPKS4uTl988YXtGF5eXlq+fLm8vLwUExOjBx54QA899JDduu4AAAAAAFREbr3SbhhGiftr1aqljRs3XvE4derU0VdffeWssAAAAAAAMAVTTEQHAAAAAAAKI2kHAAAAAMCkSNoBAAAAADApt45pBwAAAMys7vNflrj/8LQ+LooEwPWKK+0AAMCtJk6cKA8PD7tHo0aNbPvPnz+v+Ph4Va1aVQEBAYqLi1NmZqYbIwYAwHVI2gEAgNs1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAADX4fZ4AADgdpUqVVJERESh7dnZ2Zo3b54WLlyorl27SpKSk5PVuHFjbd26Ve3atXN1qAAAuBRX2gEAgNvt27dPkZGRqlevngYPHqz09HRJUmpqqi5cuKDu3bvbyjZq1Ei1a9fWli1b3BUuAAAuw5V2AADgVm3bttX8+fPVsGFDHT9+XJMmTVLHjh21e/duZWRkyMfHRyEhIXavCQ8PV0ZGRrHHtFqtslqttuc5OTnlFT4AAOWKpB0AALhVr169bP/fokULtW3bVnXq1NE///lP+fn5lemYiYmJmjRpkrNCBIp1pdnlAeBqcXs8AAAwlZCQEN10003av3+/IiIilJubq6ysLLsymZmZRY6BLzB+/HhlZ2fbHkeOHCnnqAEAKB8k7QAAwFTOnDmjAwcOqEaNGoqOjpa3t7fWrl1r25+Wlqb09HTFxMQUewyLxaKgoCC7BwAAFRG3xwMAALd6+umn1bdvX9WpU0fHjh3ThAkT5OXlpfvuu0/BwcEaPny4EhISFBoaqqCgII0ePVoxMTHMHA8AuC6QtOOax1gzADC3o0eP6r777tNvv/2m6tWrq0OHDtq6dauqV68uSZo5c6Y8PT0VFxcnq9Wq2NhYzZ49281RAwDgGiTtAADArRYtWlTifl9fXyUlJSkpKclFEQEAYB6MaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJg9HgAAAKiASlrW9vC0Pi6MBEB54ko7AAAAAAAmxZV24DpU0i/zEr/OAwAAAGbBlXYAAAAAAEyKpB0AAAAAAJPi9ngAAADgOsNQOaDi4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACbF7PEAAAAwNWY6d9yVzhmAioMr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJuXWpD0xMVGtW7dWYGCgwsLC1L9/f6WlpdmVOX/+vOLj41W1alUFBAQoLi5OmZmZdmXS09PVp08fVa5cWWFhYXrmmWd08eJFV1YFAAAAAACnq+TON9+4caPi4+PVunVrXbx4US+88IJ69OihvXv3yt/fX5I0btw4ffnll1q8eLGCg4M1atQoDRgwQN98840kKS8vT3369FFERIQ2b96s48eP66GHHpK3t7deffVVd1YPqLDqPv9lsfsOT+vjwkgAAACA65tbk/aUlBS75/Pnz1dYWJhSU1PVqVMnZWdna968eVq4cKG6du0qSUpOTlbjxo21detWtWvXTqtWrdLevXu1Zs0ahYeHq2XLlpoyZYqee+45TZw4UT4+Pu6oGgAAAAAAV81UY9qzs7MlSaGhoZKk1NRUXbhwQd27d7eVadSokWrXrq0tW7ZIkrZs2aLmzZsrPDzcViY2NlY5OTnas2ePC6MHAAAAAMC53Hql/VL5+fkaO3as2rdvr2bNmkmSMjIy5OPjo5CQELuy4eHhysjIsJW5NGEv2F+wryhWq1VWq9X2PCcnx1nVAAAAAADAaUxzpT0+Pl67d+/WokWLyv29EhMTFRwcbHvUqlWr3N8TAAAAAABHmSJpHzVqlJYvX67169erZs2atu0RERHKzc1VVlaWXfnMzExFRETYylw+m3zB84Iylxs/fryys7NtjyNHjjixNgAAAAAAOIdbk3bDMDRq1CgtXbpU69atU1RUlN3+6OhoeXt7a+3atbZtaWlpSk9PV0xMjCQpJiZGP/zwg06cOGErs3r1agUFBalJkyZFvq/FYlFQUJDdAwAAAAAAs3HrmPb4+HgtXLhQn3/+uQIDA21j0IODg+Xn56fg4GANHz5cCQkJCg0NVVBQkEaPHq2YmBi1a9dOktSjRw81adJEDz74oKZPn66MjAy9+OKLio+Pl8VicWf1AAAAAAC4Km5N2ufMmSNJ6tKli9325ORkDR06VJI0c+ZMeXp6Ki4uTlarVbGxsZo9e7atrJeXl5YvX66RI0cqJiZG/v7+GjJkiCZPnuyqagAAAAAAUC7cmrQbhnHFMr6+vkpKSlJSUlKxZerUqaOvvvrKmaEBAAAAAOB2ZRrTfvDgQWfHAQAAKhj6AwAAlL8yXWm/8cYb1blzZw0fPlx33323fH19nR0XAAAwOfoDMIu6z3/p7hAAoNyU6Ur7d999pxYtWighIUERERF67LHH9O233zo7NgAAYGLl0R+YNm2aPDw8NHbsWNu28+fPKz4+XlWrVlVAQIDi4uIKLfcKAMC1qkxJe8uWLfXWW2/p2LFj+vDDD3X8+HF16NBBzZo105tvvqmTJ086O04AAGAyzu4PbN++Xe+9955atGhht33cuHH64osvtHjxYm3cuFHHjh3TgAEDnFkVAABM66rWaa9UqZIGDBigxYsX67XXXtP+/fv19NNPq1atWnrooYd0/PhxZ8UJAABMyhn9gTNnzmjw4MH64IMPVKVKFdv27OxszZs3T2+++aa6du2q6OhoJScna/Pmzdq6dWt5VgsAAFO4qqR9x44deuKJJ1SjRg29+eabevrpp3XgwAGtXr1ax44dU79+/ZwVJwAAMCln9Afi4+PVp08fde/e3W57amqqLly4YLe9UaNGql27trZs2VLs8axWq3JycuweAABURGWaiO7NN99UcnKy0tLS1Lt3b3300Ufq3bu3PD3//A0gKipK8+fPV926dZ0ZKwAAMBFn9QcWLVqk7777Ttu3by+0LyMjQz4+PgoJCbHbHh4eroyMjGKPmZiYqEmTJjlcJ5SfK00Wd3haHxdFAgAVS5mS9jlz5ujhhx/W0KFDVaNGjSLLhIWFad68eVcVHAAAMC9n9AeOHDmiJ598UqtXr3bq7PPjx49XQkKC7XlOTo5q1arltOMDAOAqZUra9+3bd8UyPj4+GjJkSFkODwAAKgBn9AdSU1N14sQJ/eUvf7Fty8vL09dff613331XK1euVG5urrKysuyutmdmZioiIqLY41osFlksltJVBAAAEyvTmPbk5GQtXry40PbFixdrwYIFVx0UAAAwP2f0B7p166YffvhBu3btsj1atWqlwYMH2/7f29tba9eutb0mLS1N6enpiomJcVpdAAAwqzIl7YmJiapWrVqh7WFhYXr11VevOigAAGB+zugPBAYGqlmzZnYPf39/Va1aVc2aNVNwcLCGDx+uhIQErV+/XqmpqRo2bJhiYmLUrl07Z1cJAADTKdPt8enp6YqKiiq0vU6dOkpPT7/qoAAAgPm5qj8wc+ZMeXp6Ki4uTlarVbGxsZo9e7bTjg8AgJmVKWkPCwvT999/X2g22P/+97+qWrWqM+ICUEExOzBw/Siv/sCGDRvsnvv6+iopKUlJSUllPiYAABVVmW6Pv++++zRmzBitX79eeXl5ysvL07p16/Tkk09q0KBBzo4RAACYEP0BAADKX5mutE+ZMkWHDx9Wt27dVKnSn4fIz8/XQw89xJh2AACuE/QHAAAof2VK2n18fPTpp59qypQp+u9//ys/Pz81b95cderUcXZ8AADApOgPAABQ/sqUtBe46aabdNNNNzkrFgAAUAHRHwAAoPyUKWnPy8vT/PnztXbtWp04cUL5+fl2+9etW+eU4AAAgHnRHwAAoPyVKWl/8sknNX/+fPXp00fNmjWTh4eHs+MCAAAmR38AAIDyV6akfdGiRfrnP/+p3r17OzseAABQQdAfAACg/JVpyTcfHx/deOONzo4FAABUIPQHAAAof2VK2p966im99dZbMgzD2fEAAIAKgv4AAADlr0y3x2/atEnr16/XihUr1LRpU3l7e9vtX7JkiVOCA0qj7vNfujsEALgu0R8AAKD8lSlpDwkJ0V133eXsWAAAQAVCfwAAgPJXpqQ9OTnZ2XEAAIAKhv4AAADlr0xJuyRdvHhRGzZs0IEDB3T//fcrMDBQx44dU1BQkAICApwZIwATYTgCgEvRHwAAoHyVKWn/5Zdf1LNnT6Wnp8tqter2229XYGCgXnvtNVmtVs2dO9fZcQIAAJOhPwAAQPkr0+zxTz75pFq1aqVTp07Jz8/Ptv2uu+7S2rVrnRYcAAAwL/oDAACUvzJdaf/Pf/6jzZs3y8fHx2573bp19euvvzolMAAAYG70B4DyxZA0AFIZr7Tn5+crLy+v0PajR48qMDDwqoMCAADmR38AAIDyV6akvUePHpo1a5btuYeHh86cOaMJEyaod+/ezooNAACYGP0BAADKX5luj3/jjTcUGxurJk2a6Pz587r//vu1b98+VatWTf/4xz+cHSMAADAh+gMAAJS/MiXtNWvW1H//+18tWrRI33//vc6cOaPhw4dr8ODBdhPRAACAaxf9AQAAyl+Z12mvVKmSHnjgAWfGAgAAKhj6AwAAlK8yJe0fffRRifsfeuihMgUDAAAqDvoDwPXpSrPaH57Wx0WRANeHMiXtTz75pN3zCxcu6Ny5c/Lx8VHlypVppAEAuA7QHwAAoPyVafb4U6dO2T3OnDmjtLQ0dejQgYlnAAC4TtAfAACg/JUpaS9KgwYNNG3atEK/ugMAgOsH/QEAAJzLaUm79OdkNMeOHXPmIQEAQAVDfwAAAOcp05j2f//733bPDcPQ8ePH9e6776p9+/ZOCQwAAJgb/QEAAMpfmZL2/v372z338PBQ9erV1bVrV73xxhvOiAsAAJgc/QEAAMpfmZL2/Px8Z8cBFOtKy4oAANyD/gAAAOXPqWPaAQAAAACA85TpSntCQkKpy7755ptleQsAAGBy9AcAACh/ZUrad+7cqZ07d+rChQtq2LChJOnnn3+Wl5eX/vKXv9jKeXh4OCdKAABgOvQHAAAof2VK2vv27avAwEAtWLBAVapUkSSdOnVKw4YNU8eOHfXUU085NUgAAGA+9AdwqcvnoNmSfV41JB3PPq8Y5qcBgDIr05j2N954Q4mJibYGWpKqVKmiqVOnMlssAADXCfoDAACUvzIl7Tk5OTp58mSh7SdPntTp06dLfZyvv/5affv2VWRkpDw8PLRs2TK7/UOHDpWHh4fdo2fPnnZlfv/9dw0ePFhBQUEKCQnR8OHDdebMmbJUCwAAOMBZ/QEAAFC8MiXtd911l4YNG6YlS5bo6NGjOnr0qP71r39p+PDhGjBgQKmPc/bsWd18881KSkoqtkzPnj11/Phx2+Mf//iH3f7Bgwdrz549Wr16tZYvX66vv/5aI0aMKEu1AACAA5zVHwAAAMUr05j2uXPn6umnn9b999+vCxcu/HmgSpU0fPhwvf7666U+Tq9evdSrV68Sy1gsFkVERBS578cff1RKSoq2b9+uVq1aSZLeeecd9e7dWzNmzFBkZGSpYwEAAI5xVn8AAAAUr0xX2itXrqzZs2frt99+s80c+/vvv2v27Nny9/d3aoAbNmxQWFiYGjZsqJEjR+q3336z7duyZYtCQkJsCbskde/eXZ6entq2bZtT4wAAAPZc2R8AAOB6VaYr7QUKblnv1KmT/Pz8ZBiGU5d16dmzpwYMGKCoqCgdOHBAL7zwgnr16qUtW7bIy8tLGRkZCgsLs3tNpUqVFBoaqoyMjGKPa7VaZbVabc9zcnKcFjMAANeb8u4PAABwPStT0v7bb79p4MCBWr9+vTw8PLRv3z7Vq1dPw4cPV5UqVZw2Y+ygQYNs/9+8eXO1aNFC9evX14YNG9StW7cyHzcxMVGTJk1yRogAAFy3XNUfAADgelam2+PHjRsnb29vpaenq3Llyrbt9957r1JSUpwW3OXq1aunatWqaf/+/ZKkiIgInThxwq7MxYsX9fvvvxc7Dl6Sxo8fr+zsbNvjyJEj5RYzAADXKnf1BwAAuJ6U6Ur7qlWrtHLlStWsWdNue4MGDfTLL784JbCiHD16VL/99ptq1KghSYqJiVFWVpZSU1MVHR0tSVq3bp3y8/PVtm3bYo9jsVhksVjKLU4AAK4H7uoPAABwPSlT0n727Fm7X9QL/P777w4lw2fOnLFdNZekQ4cOadeuXQoNDVVoaKgmTZqkuLg4RURE6MCBA3r22Wd14403KjY2VpLUuHFj9ezZU48++qjmzp2rCxcuaNSoURo0aBAzxwMAUM6c1R8AAADFK1PS3rFjR3300UeaMmWKJMnDw0P5+fmaPn26brvttlIfZ8eOHXblExISJElDhgzRnDlz9P3332vBggXKyspSZGSkevTooSlTpth1BD755BONGjVK3bp1k6enp+Li4vT222+XpVoAAMABzuoPADCfus9/6e4QAPx/ZUrap0+frm7dumnHjh3Kzc3Vs88+qz179uj333/XN998U+rjdOnSRYZhFLt/5cqVVzxGaGioFi5cWOr3BAAAzuGs/sCcOXM0Z84cHT58WJLUtGlTvfzyy+rVq5ck6fz583rqqae0aNEiWa1WxcbGavbs2QoPDy+PagEAYCplStqbNWumn3/+We+++64CAwN15swZDRgwQPHx8bbx5gBQlJJ+uT88rY8LIwFwtZzVH6hZs6amTZumBg0ayDAMLViwQP369dPOnTvVtGlTjRs3Tl9++aUWL16s4OBgjRo1SgMGDHDohwEAACoqh5P2CxcuqGfPnpo7d67++te/lkdMAADA5JzZH+jbt6/d81deeUVz5szR1q1bVbNmTc2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2l3VewMAYHYOL/nm7e2t77//vjxiAQAAFUR59Qfy8vK0aNEinT17VjExMUpNTdWFCxfUvXt3W5lGjRqpdu3a2rJlS7HHsVqtysnJsXsAAFARlWmd9gceeEDz5s1zdiwAAKACcWZ/4IcfflBAQIAsFosef/xxLV26VE2aNFFGRoZ8fHwUEhJiVz48PFwZGRnFHi8xMVHBwcG2R61atZwSJwAArlamMe0XL17Uhx9+qDVr1ig6Olr+/v52+998802nBAcAAMzLmf2Bhg0bateuXcrOztZnn32mIUOGaOPGjWWObfz48bZVaSQpJyeHxB0AUCE5lLQfPHhQdevW1e7du/WXv/xFkvTzzz/blfHw8HBedAAAwHTKoz/g4+OjG2+8UZIUHR2t7du366233tK9996r3NxcZWVl2V1tz8zMVERERLHHs1gsrBUPALgmOJS0N2jQQMePH9f69eslSffee6/efvttllwBAOA64or+QH5+vqxWq6Kjo+Xt7a21a9cqLi5OkpSWlqb09HTFxMQ47f0AADArh5L2y9dUX7Fihc6ePevUgAAAgLk5uz8wfvx49erVS7Vr19bp06e1cOFCbdiwQStXrlRwcLCGDx+uhIQEhYaGKigoSKNHj1ZMTAwzxwMArgtlGtNe4PJGGwAAXH+utj9w4sQJPfTQQzp+/LiCg4PVokULrVy5UrfffrskaebMmfL09FRcXJysVqtiY2M1e/ZsZ4QOAIDpOZS0e3h4FBqjxhh2AACuL87uD1xpBnpfX18lJSUpKSmpzO8BAEBF5fDt8UOHDrVN7HL+/Hk9/vjjhWaLXbJkifMiBAAApkJ/AAAA13EoaR8yZIjd8wceeMCpwQC4vtV9/ssS9x+e1sdFkQAoCf0BAABcx6GkPTk5ubziAAAAFQT9AQAAXMfT3QEAAAAAAICiXdXs8QAAAIAzXGmIFK4dJf2tGQoHFMaVdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMitnjYQrMGAsAAHBtoF8HOBdX2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApJiIDkCFcaWJbQ5P6+OiSAAAAADX4Eo7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSldwdAAAAACqGus9/6e4QAOC6w5V2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkGNMOl7h8DNyW7POqIel49nnFMD4OAAAAAIrElXYAAAAAAEzKrUn7119/rb59+yoyMlIeHh5atmyZ3X7DMPTyyy+rRo0a8vPzU/fu3bVv3z67Mr///rsGDx6soKAghYSEaPjw4Tpz5owLawEAAAAAQPlwa9J+9uxZ3XzzzUpKSipy//Tp0/X2229r7ty52rZtm/z9/RUbG6vz58/bygwePFh79uzR6tWrtXz5cn399dcaMWKEq6oAAAAAAEC5ceuY9l69eqlXr15F7jMMQ7NmzdKLL76ofv36SZI++ugjhYeHa9myZRo0aJB+/PFHpaSkaPv27WrVqpUk6Z133lHv3r01Y8YMRUZGuqwuAAAAAAA4m2nHtB86dEgZGRnq3r27bVtwcLDatm2rLVu2SJK2bNmikJAQW8IuSd27d5enp6e2bdvm8pgBAAAAAHAm084en5GRIUkKDw+32x4eHm7bl5GRobCwMLv9lSpVUmhoqK1MUaxWq6xWq+15Tk6Os8IGAAAAAMBpTHulvTwlJiYqODjY9qhVq5a7QwIAAAAAoBDTJu0RERGSpMzMTLvtmZmZtn0RERE6ceKE3f6LFy/q999/t5Upyvjx45WdnW17HDlyxMnRAwCA0kpMTFTr1q0VGBiosLAw9e/fX2lpaXZlzp8/r/j4eFWtWlUBAQGKi4sr1EcAAOBaZNqkPSoqShEREVq7dq1tW05OjrZt26aYmBhJUkxMjLKyspSammors27dOuXn56tt27bFHttisSgoKMjuAQAA3GPjxo2Kj4/X1q1btXr1al24cEE9evTQ2bNnbWXGjRunL774QosXL9bGjRt17NgxDRgwwI1RAwDgGm4d037mzBnt37/f9vzQoUPatWuXQkNDVbt2bY0dO1ZTp05VgwYNFBUVpZdeekmRkZHq37+/JKlx48bq2bOnHn30Uc2dO1cXLlzQqFGjNGjQIGaOBwCggkhJSbF7Pn/+fIWFhSk1NVWdOnVSdna25s2bp4ULF6pr166SpOTkZDVu3Fhbt25Vu3bt3BE2AAAu4dakfceOHbrttttszxMSEiRJQ4YM0fz58/Xss8/q7NmzGjFihLKystShQwelpKTI19fX9ppPPvlEo0aNUrdu3eTp6am4uDi9/fbbLq8LAABwjuzsbElSaGioJCk1NVUXLlywW1GmUaNGql27trZs2ULSDgC4prk1ae/SpYsMwyh2v4eHhyZPnqzJkycXWyY0NFQLFy4sj/AAAICL5efna+zYsWrfvr2aNWsm6c/VYnx8fBQSEmJX9tIVZS7HSjEAgGuFaZd8AwAA15/4+Hjt3r1bmzZtuqrjJCYmatKkSU6KCoCr1H3+yxL3H57Wx0WRAOZh2onoAADA9WXUqFFavny51q9fr5o1a9q2R0REKDc3V1lZWXblL11R5nKsFAMAuFaQtAMAALcyDEOjRo3S0qVLtW7dOkVFRdntj46Olre3t92KMmlpaUpPT7etKHM5VooBAFwruD0eAAC4VXx8vBYuXKjPP/9cgYGBtnHqwcHB8vPzU3BwsIYPH66EhASFhoYqKChIo0ePVkxMDJPQAQCueSTtAK4ZJY2DYwwcYF5z5syR9OcEtZdKTk7W0KFDJUkzZ860rRJjtVoVGxur2bNnuzhSAABcj6QdAAC4VUkryRTw9fVVUlKSkpKSXBARAADmwZh2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkSNoBAAAAADApknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCmSdgAAAAAATIqkHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkKrk7AABwhbrPf1ni/sPT+rgoEgAAAKD0SNoBAAAAVAj8CI/rEbfHAwAAAABgUiTtAAAAAACYFEk7AAAAAAAmRdIOAAAAAIBJMREdAAAAgGsek9ihoiJpB4BSoKEHAACAO3B7PAAAAAAAJkXSDgAAAACASXF7PADoyre/AwAAAO7AlXYAAAAAAEyKK+0AAAAArgncOYdrEVfaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTImkHAAAAAMCkmIgOAAAAkpjEC9e3K33+D0/r46JIAHtcaQcAAAAAwKS40o5SK+nXR355BAAAAADn40o7AAAAAAAmRdIOAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUE9HBKVgiBtc7JmoEAABAeeBKOwAAAAAAJmXqpH3ixIny8PCwezRq1Mi2//z584qPj1fVqlUVEBCguLg4ZWZmujFiAAAAAACcx9RJuyQ1bdpUx48ftz02bdpk2zdu3Dh98cUXWrx4sTZu3Khjx45pwIABbowWAAAAAADnMf2Y9kqVKikiIqLQ9uzsbM2bN08LFy5U165dJUnJyclq3Lixtm7dqnbt2rk6VAAAAFNjDhoAqHhMn7Tv27dPkZGR8vX1VUxMjBITE1W7dm2lpqbqwoUL6t69u61so0aNVLt2bW3ZsqXEpN1qtcpqtdqe5+TklGsdAFzfrtRJZqI6XO++/vprvf7660pNTdXx48e1dOlS9e/f37bfMAxNmDBBH3zwgbKystS+fXvNmTNHDRo0cF/QAAC4iKlvj2/btq3mz5+vlJQUzZkzR4cOHVLHjh11+vRpZWRkyMfHRyEhIXavCQ8PV0ZGRonHTUxMVHBwsO1Rq1atcqwFAAAoydmzZ3XzzTcrKSmpyP3Tp0/X22+/rblz52rbtm3y9/dXbGyszp8/7+JIAQBwPVNfae/Vq5ft/1u0aKG2bduqTp06+uc//yk/P78yH3f8+PFKSEiwPc/JySFxBwDATXr16mXX5l/KMAzNmjVLL774ovr16ydJ+uijjxQeHq5ly5Zp0KBBrgwVAACXM/WV9suFhITopptu0v79+xUREaHc3FxlZWXZlcnMzCxyDPylLBaLgoKC7B4AAMB8Dh06pIyMDLvhcMHBwWrbtq22bNnixsgAAHANU19pv9yZM2d04MABPfjgg4qOjpa3t7fWrl2ruLg4SVJaWprS09MVExPj5kgBwHlKGhPPeHhc6wqGvIWHh9ttv9JwOOavAQBcK0x9pf3pp5/Wxo0bdfjwYW3evFl33XWXvLy8dN999yk4OFjDhw9XQkKC1q9fr9TUVA0bNkwxMTHMHA8AwHWO+WsAANcKUyftR48e1X333aeGDRtq4MCBqlq1qrZu3arq1atLkmbOnKk77rhDcXFx6tSpkyIiIrRkyRI3Rw0AAJylYMhbZmam3fYrDYcbP368srOzbY8jR46Ua5wAAJQXU98ev2jRohL3+/r6KikpqdjZZgEAQMUWFRWliIgIrV27Vi1btpT0563u27Zt08iRI4t9ncVikcVicVGUAACUH1Mn7QAA4Np35swZ7d+/3/b80KFD2rVrl0JDQ1W7dm2NHTtWU6dOVYMGDRQVFaWXXnpJkZGRdmu5AwBwrSJpBwAAbrVjxw7ddttttucFy7IOGTJE8+fP17PPPquzZ89qxIgRysrKUocOHZSSkiJfX193hQwAgMuQtAMAALfq0qWLDMModr+Hh4cmT56syZMnuzAqALDHai5wF1NPRAcAAAAAwPWMpB0AAAAAAJMiaQcAAAAAwKRI2gEAAAAAMCkmogMAAACAq1DSJHUSE9Xh6nClHQAAAAAAkyJpBwAAAADApEjaAQAAAAAwKZJ2AAAAAABMiqQdAAAAAACTYvZ4ALiGMZstUPFc7b/bK70eAFCxkLTDhkYeAAAAAMyFpB0A3IwfzAAAAFAcxrQDAAAAAGBSJO0AAAAAAJgUt8cDAAAAgBsxcSxKQtIOABUY4+EBAACubdweDwAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxUR0AAAAFQgTUAIVD/9ucTVI2q8jfFkAAAAAQMXC7fEAAAAAAJgUSTsAAAAAACbF7fEAgCJdaUjN4Wl9XBQJAADA9Ysr7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAmxZJvAIAyYUk4AACA8kfSDgAoFyUl9ST0AAAApcPt8QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASTGmHQCuY1eaTA5A0a52Ikb+7QFwxNV8Z1zNPDJMOmsOJO3XGDoBAAAAAHDt4PZ4AAAAAABMiqQdAAAAAACT4vZ4k2HcCAAAAACgAEk7AMDl+IESAACgdEjaAQAAAOAaxUTVFd81k7QnJSXp9ddfV0ZGhm6++Wa98847atOmjbvDAgCUAVfiURTaegDA9eiaSNo//fRTJSQkaO7cuWrbtq1mzZql2NhYpaWlKSwszN3hFcKvXQBwdUr6HiWhvzZVtLYeAABnuSaS9jfffFOPPvqohg0bJkmaO3euvvzyS3344Yd6/vnn3Rydc5HwAwCuR9dTWw8AwKUqfNKem5ur1NRUjR8/3rbN09NT3bt315YtW4p8jdVqldVqtT3Pzs6WJOXk5DglpmYTVjrlONey00a+/P//f/Ot59wdDoBrSO1xi0vcv3tSbJmPfaXv96s59qUK2iPDMJxyvIrOjG39ldquK73P9dD20dYD1z5nfader0rb3lf4pP1///uf8vLyFB4ebrc9PDxcP/30U5GvSUxM1KRJkwptr1WrVrnEiMIaFvzP2VPSrIHuDAXAdSZ4VsU59unTpxUcHOzcg1ZAFbGtL8/PWUVBWw9c+/iuc44rtfcVPmkvi/HjxyshIcH2PD8/X7///ruqVq0qDw8PN0ZWWE5OjmrVqqUjR44oKCjI3eFUCJwzx3C+HMc5cxznzDGGYej06dOKjIx0dygVFm39tY1z5jjOmWM4X47jnDmutO19hU/aq1WrJi8vL2VmZtptz8zMVERERJGvsVgsslgsdttCQkLKK0SnCAoK4sPvIM6ZYzhfjuOcOY5zVnpcYf8/tPUoDufMcZwzx3C+HMc5c0xp2ntPF8RRrnx8fBQdHa21a9fatuXn52vt2rWKiYlxY2QAAMAZaOsBANezCn+lXZISEhI0ZMgQtWrVSm3atNGsWbN09uxZ2wyzAACgYqOtBwBcr66JpP3ee+/VyZMn9fLLLysjI0MtW7ZUSkpKoQlrKiKLxaIJEyYUusUPxeOcOYbz5TjOmeM4Z7hatPW4FOfMcZwzx3C+HMc5Kz8eBuvJAAAAAABgShV+TDsAAAAAANcqknYAAAAAAEyKpB0AAAAAAJMiaQcAAAAAwKRI2k0gKSlJdevWla+vr9q2batvv/222LIffPCBOnbsqCpVqqhKlSrq3r17ieWvVY6csyVLlqhVq1YKCQmRv7+/WrZsqb///e8ujNb9HDlfl1q0aJE8PDzUv3//8g3QhBw5Z/Pnz5eHh4fdw9fX14XRmoOjn7OsrCzFx8erRo0aslgsuummm/TVV1+5KFrAtWjrHUdb7zjae8fQ1juOtt5NDLjVokWLDB8fH+PDDz809uzZYzz66KNGSEiIkZmZWWT5+++/30hKSjJ27txp/Pjjj8bQoUON4OBg4+jRoy6O3H0cPWfr1683lixZYuzdu9fYv3+/MWvWLMPLy8tISUlxceTu4ej5KnDo0CHjhhtuMDp27Gj069fPNcGahKPnLDk52QgKCjKOHz9ue2RkZLg4avdy9JxZrVajVatWRu/evY1NmzYZhw4dMjZs2GDs2rXLxZED5Y+23nG09Y6jvXcMbb3jaOvdh6Tdzdq0aWPEx8fbnufl5RmRkZFGYmJiqV5/8eJFIzAw0FiwYEF5hWg6V3vODMMwbrnlFuPFF18sj/BMpyzn6+LFi8att95q/O1vfzOGDBlyXTXihuH4OUtOTjaCg4NdFJ05OXrO5syZY9SrV8/Izc11VYiA29DWO4623nG0946hrXccbb37cHu8G+Xm5io1NVXdu3e3bfP09FT37t21ZcuWUh3j3LlzunDhgkJDQ8srTFO52nNmGIbWrl2rtLQ0derUqTxDNYWynq/JkycrLCxMw4cPd0WYplLWc3bmzBnVqVNHtWrVUr9+/bRnzx5XhGsKZTln//73vxUTE6P4+HiFh4erWbNmevXVV5WXl+eqsAGXoK13HG2942jvHUNb7zjaeveq5O4Armf/+9//lJeXp/DwcLvt4eHh+umnn0p1jOeee06RkZF2/4CuZWU9Z9nZ2brhhhtktVrl5eWl2bNn6/bbby/vcN2uLOdr06ZNmjdvnnbt2uWCCM2nLOesYcOG+vDDD9WiRQtlZ2drxowZuvXWW7Vnzx7VrFnTFWG7VVnO2cGDB7Vu3ToNHjxYX331lfbv368nnnhCFy5c0IQJE1wRNuAStPWOo613HO29Y2jrHUdb714k7RXYtGnTtGjRIm3YsOG6nAjDEYGBgdq1a5fOnDmjtWvXKiEhQfXq1VOXLl3cHZqpnD59Wg8++KA++OADVatWzd3hVBgxMTGKiYmxPb/11lvVuHFjvffee5oyZYobIzOv/Px8hYWF6f3335eXl5eio6P166+/6vXXX6chBy5BW196tPWlR3vvONp6x9HWOw9JuxtVq1ZNXl5eyszMtNuemZmpiIiIEl87Y8YMTZs2TWvWrFGLFi3KM0xTKes58/T01I033ihJatmypX788UclJiZe8w25o+frwIEDOnz4sPr27Wvblp+fL0mqVKmS0tLSVL9+/fIN2s2u5t9lAW9vb91yyy3av39/eYRoOmU5ZzVq1JC3t7e8vLxs2xo3bqyMjAzl5ubKx8enXGMGXIW23nG09Y6jvXcMbb3jaOvdizHtbuTj46Po6GitXbvWti0/P19r1661+yXvctOnT9eUKVOUkpKiVq1auSJU0yjrObtcfn6+rFZreYRoKo6er0aNGumHH37Qrl27bI8777xTt912m3bt2qVatWq5Mny3cMZnLC8vTz/88INq1KhRXmGaSlnOWfv27bV//35bJ1GSfv75Z9WoUYNGHNcU2nrH0dY7jvbeMbT1jqOtdzN3z4R3vVu0aJFhsViM+fPnG3v37jVGjBhhhISE2JaQePDBB43nn3/eVn7atGmGj4+P8dlnn9ktOXH69Gl3VcHlHD1nr776qrFq1SrjwIEDxt69e40ZM2YYlSpVMj744AN3VcGlHD1fl7veZpM1DMfP2aRJk4yVK1caBw4cMFJTU41BgwYZvr6+xp49e9xVBZdz9Jylp6cbgYGBxqhRo4y0tDRj+fLlRlhYmDF16lR3VQEoN7T1jqOtdxztvWNo6x1HW+8+3B7vZvfee69Onjypl19+WRkZGWrZsqVSUlJskzykp6fL0/P/boiYM2eOcnNzdffdd9sdZ8KECZo4caIrQ3cbR8/Z2bNn9cQTT+jo0aPy8/NTo0aN9PHHH+vee+91VxVcytHzBcfP2alTp/Too48qIyNDVapUUXR0tDZv3qwmTZq4qwou5+g5q1WrllauXKlx48apRYsWuuGGG/Tkk0/queeec1cVgHJDW+842nrH0d47hrbecbT17uNhGIbh7iAAAAAAAEBh/NwGAAAAAIBJkbQDAAAAAGBSJO0AAAAAAJgUSTsAAAAAACZF0g4AAAAAgEmRtAMAAAAAYFIk7QAAAAAAmBRJOwAAAAAAJkXSDgAAAACASZG0AwAAAABgUiTtAAAAAACYFEk7AAAAAAAm9f8AHVFEjxwb1a0AAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.108160Z", - "iopub.status.busy": "2024-01-16T18:21:53.107642Z", - "iopub.status.idle": "2024-01-16T18:21:53.357816Z", - "shell.execute_reply": "2024-01-16T18:21:53.357029Z" + "iopub.execute_input": "2024-01-17T17:53:30.653860Z", + "iopub.status.busy": "2024-01-17T17:53:30.653384Z", + "iopub.status.idle": "2024-01-17T17:53:30.901213Z", + "shell.execute_reply": "2024-01-17T17:53:30.900483Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.361296Z", - "iopub.status.busy": "2024-01-16T18:21:53.360688Z", - "iopub.status.idle": "2024-01-16T18:21:53.449258Z", - "shell.execute_reply": "2024-01-16T18:21:53.448644Z" + "iopub.execute_input": "2024-01-17T17:53:30.904115Z", + "iopub.status.busy": "2024-01-17T17:53:30.903860Z", + "iopub.status.idle": "2024-01-17T17:53:30.994942Z", + "shell.execute_reply": "2024-01-17T17:53:30.994369Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:21:53.452061Z", - "iopub.status.busy": "2024-01-16T18:21:53.451687Z", - "iopub.status.idle": "2024-01-16T18:22:31.925538Z", - "shell.execute_reply": "2024-01-16T18:22:31.924793Z" + "iopub.execute_input": "2024-01-17T17:53:30.997740Z", + "iopub.status.busy": "2024-01-17T17:53:30.997365Z", + "iopub.status.idle": "2024-01-17T17:54:08.746481Z", + "shell.execute_reply": "2024-01-17T17:54:08.745736Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:31.928416Z", - "iopub.status.busy": "2024-01-16T18:22:31.927895Z", - "iopub.status.idle": "2024-01-16T18:22:33.100671Z", - "shell.execute_reply": "2024-01-16T18:22:33.100057Z" + "iopub.execute_input": "2024-01-17T17:54:08.749204Z", + "iopub.status.busy": "2024-01-17T17:54:08.748937Z", + "iopub.status.idle": "2024-01-17T17:54:09.920727Z", + "shell.execute_reply": "2024-01-17T17:54:09.920079Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.104171Z", - "iopub.status.busy": "2024-01-16T18:22:33.103308Z", - "iopub.status.idle": "2024-01-16T18:22:33.294042Z", - "shell.execute_reply": "2024-01-16T18:22:33.293442Z" + "iopub.execute_input": "2024-01-17T17:54:09.923916Z", + "iopub.status.busy": "2024-01-17T17:54:09.923285Z", + "iopub.status.idle": "2024-01-17T17:54:10.113786Z", + "shell.execute_reply": "2024-01-17T17:54:10.113099Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.297068Z", - "iopub.status.busy": "2024-01-16T18:22:33.296516Z", - "iopub.status.idle": "2024-01-16T18:22:33.300095Z", - "shell.execute_reply": "2024-01-16T18:22:33.299579Z" + "iopub.execute_input": "2024-01-17T17:54:10.116877Z", + "iopub.status.busy": "2024-01-17T17:54:10.116428Z", + "iopub.status.idle": "2024-01-17T17:54:10.119883Z", + "shell.execute_reply": "2024-01-17T17:54:10.119298Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:33.302656Z", - "iopub.status.busy": "2024-01-16T18:22:33.302209Z", - "iopub.status.idle": "2024-01-16T18:22:33.311187Z", - "shell.execute_reply": "2024-01-16T18:22:33.310714Z" + "iopub.execute_input": "2024-01-17T17:54:10.122302Z", + "iopub.status.busy": "2024-01-17T17:54:10.122095Z", + "iopub.status.idle": "2024-01-17T17:54:10.131101Z", + "shell.execute_reply": "2024-01-17T17:54:10.130622Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c08e2bd2b5f49d4b5b9c83ac5beb6a4": { + "00e1ae1937e04da1bd04f23c7c978453": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1032,7 +1032,7 @@ "description_width": "" } }, - "2f42a3128348471d9470f2c584143851": { + "014ace8565024b6bbdd739ec4c5dd284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1047,28 +1047,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_92ee4c36ef0b4e50832f04461acd76a4", + "layout": "IPY_MODEL_2623229e037b45a8a4337e0ca0c2b930", "placeholder": "​", - "style": "IPY_MODEL_320c5da3808e48cfbbef957df8c0a14b", - "value": " 170498071/170498071 [00:01<00:00, 100609555.84it/s]" + "style": "IPY_MODEL_00e1ae1937e04da1bd04f23c7c978453", + "value": " 170498071/170498071 [00:04<00:00, 43872310.41it/s]" } }, - "320c5da3808e48cfbbef957df8c0a14b": { + "1ab06b7c02b04fb396f30e2d22ab0e00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1e5d86ae4bb4b98a5cee834d6f74b7e", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93158de2cfc642c9884b6567c7fee0b0", + "value": 170498071.0 } }, - "382cf35f4ca9446abc8af4296ec1c7c1": { + "2623229e037b45a8a4337e0ca0c2b930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1120,7 +1129,7 @@ "width": null } }, - "640172acf8b940b8a0eca4c729dde802": { + "6ae893cb859f423698479e56f9924482": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1172,7 +1181,7 @@ "width": null } }, - "92ee4c36ef0b4e50832f04461acd76a4": { + "7b1bd7606cae425ea8f36da307ac2fc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1224,31 +1233,7 @@ "width": null } }, - "a0923dbb5ad64d32a0126c5351cc8bae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_febd7a9a32d5410d972167d6f41f6f49", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e6e4d39fdef74d1bb53a8f94ea767259", - "value": 170498071.0 - } - }, - "e6e4d39fdef74d1bb53a8f94ea767259": { + "93158de2cfc642c9884b6567c7fee0b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1264,50 +1249,7 @@ "description_width": "" } }, - "e8b0c31123da41349ede0eeec606e480": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ed028054a05a46d899f7f3c95a8bdc5b", - "IPY_MODEL_a0923dbb5ad64d32a0126c5351cc8bae", - "IPY_MODEL_2f42a3128348471d9470f2c584143851" - ], - "layout": "IPY_MODEL_640172acf8b940b8a0eca4c729dde802" - } - }, - "ed028054a05a46d899f7f3c95a8bdc5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_382cf35f4ca9446abc8af4296ec1c7c1", - "placeholder": "​", - "style": "IPY_MODEL_1c08e2bd2b5f49d4b5b9c83ac5beb6a4", - "value": "100%" - } - }, - "febd7a9a32d5410d972167d6f41f6f49": { + "a1e5d86ae4bb4b98a5cee834d6f74b7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1300,64 @@ "visibility": null, "width": null } + }, + "a6c7e398577b486e8fc9b649d6a83f90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9f08a81ccaa424db1749645e22af391", + "IPY_MODEL_1ab06b7c02b04fb396f30e2d22ab0e00", + "IPY_MODEL_014ace8565024b6bbdd739ec4c5dd284" + ], + "layout": "IPY_MODEL_7b1bd7606cae425ea8f36da307ac2fc3" + } + }, + "c9f08a81ccaa424db1749645e22af391": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ae893cb859f423698479e56f9924482", + "placeholder": "​", + "style": "IPY_MODEL_edac7d1176b048e0ae7dec29cb1d30af", + "value": "100%" + } + }, + "edac7d1176b048e0ae7dec29cb1d30af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.html b/master/tutorials/regression.html index ac7bfed99..12e77b1f4 100644 --- a/master/tutorials/regression.html +++ b/master/tutorials/regression.html @@ -1363,8 +1363,7 @@

    5. Other ways to find noisy labels in regression datasets
    -array([3.64404888e-02, 3.06755306e-01, 3.05302732e-04, 2.66635743e-01,
    -       2.53166364e-01])
    +array([0.13091885, 0.48412548, 0.00695165, 0.44421119, 0.43029854])
     

    As before, these label quality scores are continuous values in the range [0,1] where 1 represents a clean label (given label appears correct) and 0 a represents dirty label (given label appears corrupted). You can sort examples by their label quality scores to inspect the most-likely corrupted datapoints.

    diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 6625c8123..29c95d1fd 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:38.116838Z", - "iopub.status.busy": "2024-01-16T18:22:38.116637Z", - "iopub.status.idle": "2024-01-16T18:22:39.187452Z", - "shell.execute_reply": "2024-01-16T18:22:39.186824Z" + "iopub.execute_input": "2024-01-17T17:54:15.007278Z", + "iopub.status.busy": "2024-01-17T17:54:15.007085Z", + "iopub.status.idle": "2024-01-17T17:54:16.086532Z", + "shell.execute_reply": "2024-01-17T17:54:16.085857Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.190525Z", - "iopub.status.busy": "2024-01-16T18:22:39.190058Z", - "iopub.status.idle": "2024-01-16T18:22:39.205860Z", - "shell.execute_reply": "2024-01-16T18:22:39.205379Z" + "iopub.execute_input": "2024-01-17T17:54:16.089484Z", + "iopub.status.busy": "2024-01-17T17:54:16.089186Z", + "iopub.status.idle": "2024-01-17T17:54:16.105268Z", + "shell.execute_reply": "2024-01-17T17:54:16.104669Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.208336Z", - "iopub.status.busy": "2024-01-16T18:22:39.207956Z", - "iopub.status.idle": "2024-01-16T18:22:39.211011Z", - "shell.execute_reply": "2024-01-16T18:22:39.210464Z" + "iopub.execute_input": "2024-01-17T17:54:16.107803Z", + "iopub.status.busy": "2024-01-17T17:54:16.107440Z", + "iopub.status.idle": "2024-01-17T17:54:16.110701Z", + "shell.execute_reply": "2024-01-17T17:54:16.110172Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.213387Z", - "iopub.status.busy": "2024-01-16T18:22:39.213031Z", - "iopub.status.idle": "2024-01-16T18:22:39.320048Z", - "shell.execute_reply": "2024-01-16T18:22:39.319407Z" + "iopub.execute_input": "2024-01-17T17:54:16.112895Z", + "iopub.status.busy": "2024-01-17T17:54:16.112701Z", + "iopub.status.idle": "2024-01-17T17:54:16.421711Z", + "shell.execute_reply": "2024-01-17T17:54:16.421116Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.322833Z", - "iopub.status.busy": "2024-01-16T18:22:39.322456Z", - "iopub.status.idle": "2024-01-16T18:22:39.591964Z", - "shell.execute_reply": "2024-01-16T18:22:39.591358Z" + "iopub.execute_input": "2024-01-17T17:54:16.424402Z", + "iopub.status.busy": "2024-01-17T17:54:16.423998Z", + "iopub.status.idle": "2024-01-17T17:54:16.692752Z", + "shell.execute_reply": "2024-01-17T17:54:16.692024Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.594806Z", - "iopub.status.busy": "2024-01-16T18:22:39.594399Z", - "iopub.status.idle": "2024-01-16T18:22:39.848239Z", - "shell.execute_reply": "2024-01-16T18:22:39.847546Z" + "iopub.execute_input": "2024-01-17T17:54:16.695418Z", + "iopub.status.busy": "2024-01-17T17:54:16.695200Z", + "iopub.status.idle": "2024-01-17T17:54:16.949304Z", + "shell.execute_reply": "2024-01-17T17:54:16.948645Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.851127Z", - "iopub.status.busy": "2024-01-16T18:22:39.850474Z", - "iopub.status.idle": "2024-01-16T18:22:39.855174Z", - "shell.execute_reply": "2024-01-16T18:22:39.854672Z" + "iopub.execute_input": "2024-01-17T17:54:16.951844Z", + "iopub.status.busy": "2024-01-17T17:54:16.951634Z", + "iopub.status.idle": "2024-01-17T17:54:16.956470Z", + "shell.execute_reply": "2024-01-17T17:54:16.955953Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.857546Z", - "iopub.status.busy": "2024-01-16T18:22:39.857120Z", - "iopub.status.idle": "2024-01-16T18:22:39.863760Z", - "shell.execute_reply": "2024-01-16T18:22:39.863275Z" + "iopub.execute_input": "2024-01-17T17:54:16.958787Z", + "iopub.status.busy": "2024-01-17T17:54:16.958432Z", + "iopub.status.idle": "2024-01-17T17:54:16.964248Z", + "shell.execute_reply": "2024-01-17T17:54:16.963768Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.866099Z", - "iopub.status.busy": "2024-01-16T18:22:39.865901Z", - "iopub.status.idle": "2024-01-16T18:22:39.868607Z", - "shell.execute_reply": "2024-01-16T18:22:39.868059Z" + "iopub.execute_input": "2024-01-17T17:54:16.966530Z", + "iopub.status.busy": "2024-01-17T17:54:16.966188Z", + "iopub.status.idle": "2024-01-17T17:54:16.969045Z", + "shell.execute_reply": "2024-01-17T17:54:16.968434Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:39.870939Z", - "iopub.status.busy": "2024-01-16T18:22:39.870573Z", - "iopub.status.idle": "2024-01-16T18:22:50.023137Z", - "shell.execute_reply": "2024-01-16T18:22:50.022407Z" + "iopub.execute_input": "2024-01-17T17:54:16.971259Z", + "iopub.status.busy": "2024-01-17T17:54:16.970905Z", + "iopub.status.idle": "2024-01-17T17:54:27.352992Z", + "shell.execute_reply": "2024-01-17T17:54:27.352338Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.026675Z", - "iopub.status.busy": "2024-01-16T18:22:50.026017Z", - "iopub.status.idle": "2024-01-16T18:22:50.033605Z", - "shell.execute_reply": "2024-01-16T18:22:50.032991Z" + "iopub.execute_input": "2024-01-17T17:54:27.356637Z", + "iopub.status.busy": "2024-01-17T17:54:27.355930Z", + "iopub.status.idle": "2024-01-17T17:54:27.363535Z", + "shell.execute_reply": "2024-01-17T17:54:27.362912Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.036105Z", - "iopub.status.busy": "2024-01-16T18:22:50.035725Z", - "iopub.status.idle": "2024-01-16T18:22:50.039438Z", - "shell.execute_reply": "2024-01-16T18:22:50.038945Z" + "iopub.execute_input": "2024-01-17T17:54:27.366166Z", + "iopub.status.busy": "2024-01-17T17:54:27.365789Z", + "iopub.status.idle": "2024-01-17T17:54:27.369511Z", + "shell.execute_reply": "2024-01-17T17:54:27.369017Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.041787Z", - "iopub.status.busy": "2024-01-16T18:22:50.041427Z", - "iopub.status.idle": "2024-01-16T18:22:50.044834Z", - "shell.execute_reply": "2024-01-16T18:22:50.044228Z" + "iopub.execute_input": "2024-01-17T17:54:27.371734Z", + "iopub.status.busy": "2024-01-17T17:54:27.371389Z", + "iopub.status.idle": "2024-01-17T17:54:27.375010Z", + "shell.execute_reply": "2024-01-17T17:54:27.374392Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.047247Z", - "iopub.status.busy": "2024-01-16T18:22:50.046886Z", - "iopub.status.idle": "2024-01-16T18:22:50.050075Z", - "shell.execute_reply": "2024-01-16T18:22:50.049525Z" + "iopub.execute_input": "2024-01-17T17:54:27.377324Z", + "iopub.status.busy": "2024-01-17T17:54:27.376975Z", + "iopub.status.idle": "2024-01-17T17:54:27.380277Z", + "shell.execute_reply": "2024-01-17T17:54:27.379739Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.052062Z", - "iopub.status.busy": "2024-01-16T18:22:50.051866Z", - "iopub.status.idle": "2024-01-16T18:22:50.060351Z", - "shell.execute_reply": "2024-01-16T18:22:50.059773Z" + "iopub.execute_input": "2024-01-17T17:54:27.382482Z", + "iopub.status.busy": "2024-01-17T17:54:27.382140Z", + "iopub.status.idle": "2024-01-17T17:54:27.390755Z", + "shell.execute_reply": "2024-01-17T17:54:27.390135Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.062749Z", - "iopub.status.busy": "2024-01-16T18:22:50.062398Z", - "iopub.status.idle": "2024-01-16T18:22:50.212912Z", - "shell.execute_reply": "2024-01-16T18:22:50.212206Z" + "iopub.execute_input": "2024-01-17T17:54:27.393335Z", + "iopub.status.busy": "2024-01-17T17:54:27.392969Z", + "iopub.status.idle": "2024-01-17T17:54:27.544941Z", + "shell.execute_reply": "2024-01-17T17:54:27.544218Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.215869Z", - "iopub.status.busy": "2024-01-16T18:22:50.215393Z", - "iopub.status.idle": "2024-01-16T18:22:50.346105Z", - "shell.execute_reply": "2024-01-16T18:22:50.345444Z" + "iopub.execute_input": "2024-01-17T17:54:27.547742Z", + "iopub.status.busy": "2024-01-17T17:54:27.547287Z", + "iopub.status.idle": "2024-01-17T17:54:27.685665Z", + "shell.execute_reply": "2024-01-17T17:54:27.684978Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.349000Z", - "iopub.status.busy": "2024-01-16T18:22:50.348453Z", - "iopub.status.idle": "2024-01-16T18:22:50.940108Z", - "shell.execute_reply": "2024-01-16T18:22:50.939407Z" + "iopub.execute_input": "2024-01-17T17:54:27.688405Z", + "iopub.status.busy": "2024-01-17T17:54:27.688185Z", + "iopub.status.idle": "2024-01-17T17:54:28.292871Z", + "shell.execute_reply": "2024-01-17T17:54:28.292194Z" } }, "outputs": [], @@ -1014,18 +1014,17 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:50.943064Z", - "iopub.status.busy": "2024-01-16T18:22:50.942855Z", - "iopub.status.idle": "2024-01-16T18:22:51.025749Z", - "shell.execute_reply": "2024-01-16T18:22:51.025173Z" + "iopub.execute_input": "2024-01-17T17:54:28.295755Z", + "iopub.status.busy": "2024-01-17T17:54:28.295369Z", + "iopub.status.idle": "2024-01-17T17:54:28.378022Z", + "shell.execute_reply": "2024-01-17T17:54:28.377409Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([3.64404888e-02, 3.06755306e-01, 3.05302732e-04, 2.66635743e-01,\n", - " 2.53166364e-01])" + "array([0.13091885, 0.48412548, 0.00695165, 0.44421119, 0.43029854])" ] }, "execution_count": 19, @@ -1056,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:51.028522Z", - "iopub.status.busy": "2024-01-16T18:22:51.028130Z", - "iopub.status.idle": "2024-01-16T18:22:51.037939Z", - "shell.execute_reply": "2024-01-16T18:22:51.037446Z" + "iopub.execute_input": "2024-01-17T17:54:28.380846Z", + "iopub.status.busy": "2024-01-17T17:54:28.380394Z", + "iopub.status.idle": "2024-01-17T17:54:28.390383Z", + "shell.execute_reply": "2024-01-17T17:54:28.389874Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5ce1d67f9..91b124a0a 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -968,13 +968,13 @@

    3. Use cleanlab to find label issues
    -
    +
    -
    +
    -
    0%| | 17227/4997817 [00:00&lt;00:28, 172261.13it/s]
    +
    0%| | 17020/4997817 [00:00&lt;00:29, 170190.42it/s]

    </pre>

    -
    0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]
    +
    0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]

    end{sphinxVerbatim}

    -

    0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]

    +

    0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]

    -
    1%| | 34703/4997817 [00:00&lt;00:28, 173727.46it/s]
    +
    1%| | 34278/4997817 [00:00&lt;00:28, 171581.92it/s]

    </pre>

    -
    1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]
    +
    1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]

    end{sphinxVerbatim}

    -

    1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]

    +

    1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]

    -
    1%| | 52282/4997817 [00:00&lt;00:28, 174665.13it/s]
    +
    1%| | 51535/4997817 [00:00&lt;00:28, 172027.72it/s]

    </pre>

    -
    1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]
    +
    1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]

    end{sphinxVerbatim}

    -

    1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]

    +

    1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]

    -
    1%|▏ | 69970/4997817 [00:00&lt;00:28, 175535.12it/s]
    +
    1%|▏ | 68798/4997817 [00:00&lt;00:28, 172261.98it/s]

    </pre>

    -
    1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]
    +
    1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]

    end{sphinxVerbatim}

    -

    1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]

    +

    1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]

    -
    2%|▏ | 87524/4997817 [00:00&lt;00:27, 175529.09it/s]
    +
    2%|▏ | 86025/4997817 [00:00&lt;00:28, 172184.70it/s]

    </pre>

    -
    2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]
    +
    2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]

    +

    2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]

    -
    2%|▏ | 105077/4997817 [00:00&lt;00:27, 175335.03it/s]
    +
    2%|▏ | 103244/4997817 [00:00&lt;00:28, 172034.46it/s]

    </pre>

    -
    2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]
    +
    2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]

    +

    2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]

    -
    2%|▏ | 122611/4997817 [00:00&lt;00:27, 174923.23it/s]
    +
    2%|▏ | 120448/4997817 [00:00&lt;00:28, 171883.99it/s]

    </pre>

    -
    2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]
    +
    2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]

    +

    2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]

    -
    3%|▎ | 140205/4997817 [00:00&lt;00:27, 175243.63it/s]
    +
    3%|▎ | 137653/4997817 [00:00&lt;00:28, 171932.79it/s]

    </pre>

    -
    3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]
    +
    3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]

    +

    3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]

    -
    3%|▎ | 157878/4997817 [00:00&lt;00:27, 175706.48it/s]
    +
    3%|▎ | 154958/4997817 [00:00&lt;00:28, 172277.83it/s]

    </pre>

    -
    3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]
    +
    3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]

    +

    3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]

    -
    4%|▎ | 175449/4997817 [00:01&lt;00:27, 175694.70it/s]
    +
    3%|▎ | 172186/4997817 [00:01&lt;00:28, 168115.24it/s]

    </pre>

    -
    4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]
    +
    3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]

    end{sphinxVerbatim}

    -

    4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]

    +

    3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]

    -
    4%|▍ | 193036/4997817 [00:01&lt;00:27, 175746.44it/s]
    +
    4%|▍ | 189570/4997817 [00:01&lt;00:28, 169833.65it/s]

    </pre>

    -
    4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]
    +
    4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]

    +

    4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]

    -
    4%|▍ | 210795/4997817 [00:01&lt;00:27, 176303.57it/s]
    +
    4%|▍ | 207153/4997817 [00:01&lt;00:27, 171632.32it/s]

    </pre>

    -
    4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]
    +
    4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]

    +

    4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]

    -
    5%|▍ | 228426/4997817 [00:01&lt;00:27, 175557.75it/s]
    +
    4%|▍ | 224665/4997817 [00:01&lt;00:27, 172675.99it/s]

    </pre>

    -
    5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]
    +
    4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]

    end{sphinxVerbatim}

    -

    5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]

    +

    4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]

    -
    5%|▍ | 246018/4997817 [00:01&lt;00:27, 175663.84it/s]
    +
    5%|▍ | 242267/4997817 [00:01&lt;00:27, 173678.83it/s]

    </pre>

    -
    5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]
    +
    5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]

    end{sphinxVerbatim}

    -

    5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]

    +

    5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]

    -
    5%|▌ | 263843/4997817 [00:01&lt;00:26, 176438.25it/s]
    +
    5%|▌ | 259798/4997817 [00:01&lt;00:27, 174165.15it/s]

    </pre>

    -
    5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]
    +
    5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]

    +

    5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]

    -
    6%|▌ | 281488/4997817 [00:01&lt;00:27, 172253.76it/s]
    +
    6%|▌ | 277327/4997817 [00:01&lt;00:27, 174500.04it/s]

    </pre>

    -
    6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]
    +
    6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]

    +

    6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]

    -
    6%|▌ | 299179/4997817 [00:01&lt;00:27, 173624.94it/s]
    +
    6%|▌ | 294883/4997817 [00:01&lt;00:26, 174816.29it/s]

    </pre>

    -
    6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]
    +
    6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]

    +

    6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]

    -
    6%|▋ | 316949/4997817 [00:01&lt;00:26, 174831.53it/s]
    +
    6%|▋ | 312395/4997817 [00:01&lt;00:26, 174906.22it/s]

    </pre>

    -
    6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]
    +
    6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]

    end{sphinxVerbatim}

    -

    6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]

    +

    6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]

    -
    7%|▋ | 334447/4997817 [00:01&lt;00:26, 174672.59it/s]
    +
    7%|▋ | 329935/4997817 [00:01&lt;00:26, 175050.91it/s]

    </pre>

    -
    7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]
    +
    7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]

    +

    7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]

    -
    7%|▋ | 352070/4997817 [00:02&lt;00:26, 175096.63it/s]
    +
    7%|▋ | 347443/4997817 [00:02&lt;00:26, 175054.81it/s]

    </pre>

    -
    7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]
    +
    7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]

    +

    7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]

    -
    7%|▋ | 369727/4997817 [00:02&lt;00:26, 175534.32it/s]
    +
    7%|▋ | 364973/4997817 [00:02&lt;00:26, 175126.29it/s]

    </pre>

    -
    7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]
    +
    7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]

    +

    7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]

    -
    8%|▊ | 387433/4997817 [00:02&lt;00:26, 175988.24it/s]
    +
    8%|▊ | 382494/4997817 [00:02&lt;00:26, 175147.44it/s]

    </pre>

    -
    8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]
    +
    8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]

    +

    8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]

    -
    8%|▊ | 405082/4997817 [00:02&lt;00:26, 176134.84it/s]
    +
    8%|▊ | 400041/4997817 [00:02&lt;00:26, 175240.87it/s]

    </pre>

    -
    8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]
    +
    8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]

    +

    8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]

    -
    8%|▊ | 422783/4997817 [00:02&lt;00:25, 176395.51it/s]
    +
    8%|▊ | 417566/4997817 [00:02&lt;00:26, 173702.60it/s]

    </pre>

    -
    8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]
    +
    8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]

    +

    8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]

    -
    9%|▉ | 440425/4997817 [00:02&lt;00:25, 176241.72it/s]
    +
    9%|▊ | 435051/4997817 [00:02&lt;00:26, 174043.25it/s]

    </pre>

    -
    9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]
    +
    9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]

    +

    9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]

    -
    9%|▉ | 458051/4997817 [00:02&lt;00:25, 175933.35it/s]
    +
    9%|▉ | 452540/4997817 [00:02&lt;00:26, 174293.87it/s]

    </pre>

    -
    9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]
    +
    9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]

    +

    9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]

    -
    10%|▉ | 475646/4997817 [00:02&lt;00:25, 175259.61it/s]
    +
    9%|▉ | 470079/4997817 [00:02&lt;00:25, 174620.38it/s]

    </pre>

    -
    10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]
    +
    9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]

    end{sphinxVerbatim}

    -

    10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]

    +

    9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]

    -
    10%|▉ | 493283/4997817 [00:02&lt;00:25, 175589.10it/s]
    +
    10%|▉ | 487543/4997817 [00:02&lt;00:25, 174621.94it/s]

    </pre>

    -
    10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]
    +
    10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]

    end{sphinxVerbatim}

    -

    10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]

    +

    10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]

    -
    10%|█ | 510968/4997817 [00:02&lt;00:25, 175964.15it/s]
    +
    10%|█ | 505007/4997817 [00:02&lt;00:25, 174578.03it/s]

    </pre>

    -
    10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]
    +
    10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]

    end{sphinxVerbatim}

    -

    10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]

    +

    10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]

    -
    11%|█ | 528791/4997817 [00:03&lt;00:25, 176639.75it/s]
    +
    10%|█ | 522466/4997817 [00:03&lt;00:26, 167350.37it/s]

    </pre>

    -
    11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]
    +
    10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]

    +

    10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]

    -
    11%|█ | 546506/4997817 [00:03&lt;00:25, 176790.75it/s]
    +
    11%|█ | 539898/4997817 [00:03&lt;00:26, 169376.69it/s]

    </pre>

    -
    11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]
    +
    11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]

    +

    11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]

    -
    11%|█▏ | 564262/4997817 [00:03&lt;00:25, 177017.54it/s]
    +
    11%|█ | 557335/4997817 [00:03&lt;00:25, 170838.31it/s]

    </pre>

    -
    11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]
    +
    11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]

    end{sphinxVerbatim}

    -

    11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]

    +

    11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]

    -
    12%|█▏ | 581997/4997817 [00:03&lt;00:24, 177113.84it/s]
    +
    11%|█▏ | 574736/4997817 [00:03&lt;00:25, 171773.60it/s]

    </pre>

    -
    12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]
    +
    11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]

    +

    11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]

    -
    12%|█▏ | 599709/4997817 [00:03&lt;00:24, 176690.32it/s]
    +
    12%|█▏ | 592170/4997817 [00:03&lt;00:25, 172531.38it/s]

    </pre>

    -
    12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]
    +
    12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]

    +

    12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]

    -
    12%|█▏ | 617412/4997817 [00:03&lt;00:24, 176780.08it/s]
    +
    12%|█▏ | 609571/4997817 [00:03&lt;00:25, 172968.76it/s]

    </pre>

    -
    12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]
    +
    12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]

    +

    12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]

    -
    13%|█▎ | 635091/4997817 [00:03&lt;00:24, 176406.02it/s]
    +
    13%|█▎ | 627002/4997817 [00:03&lt;00:25, 173366.60it/s]

    </pre>

    -
    13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]
    +
    13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]

    +

    13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]

    -
    13%|█▎ | 652732/4997817 [00:03&lt;00:24, 176237.39it/s]
    +
    13%|█▎ | 644443/4997817 [00:03&lt;00:25, 173677.03it/s]

    </pre>

    -
    13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]
    +
    13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]

    +

    13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]

    -
    13%|█▎ | 670432/4997817 [00:03&lt;00:24, 176462.89it/s]
    +
    13%|█▎ | 661854/4997817 [00:03&lt;00:24, 173804.40it/s]

    </pre>

    -
    13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]
    +
    13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]

    +

    13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]

    -
    14%|█▍ | 688079/4997817 [00:03&lt;00:24, 176157.92it/s]
    +
    14%|█▎ | 679240/4997817 [00:03&lt;00:24, 173608.41it/s]

    </pre>

    -
    14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]
    +
    14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]

    +

    14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]

    -
    14%|█▍ | 705696/4997817 [00:04&lt;00:24, 175449.15it/s]
    +
    14%|█▍ | 696605/4997817 [00:04&lt;00:24, 173292.90it/s]

    </pre>

    -
    14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]
    +
    14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]

    +

    14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]

    -
    14%|█▍ | 723242/4997817 [00:04&lt;00:24, 174539.39it/s]
    +
    14%|█▍ | 713937/4997817 [00:04&lt;00:24, 173104.99it/s]

    </pre>

    -
    14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]
    +
    14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]

    +

    14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]

    -
    15%|█▍ | 740698/4997817 [00:04&lt;00:24, 173584.50it/s]
    +
    15%|█▍ | 731313/4997817 [00:04&lt;00:24, 173297.79it/s]

    </pre>

    -
    15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]
    +
    15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]

    end{sphinxVerbatim}

    -

    15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]

    +

    15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]

    -
    15%|█▌ | 758058/4997817 [00:04&lt;00:24, 172795.80it/s]
    +
    15%|█▍ | 748645/4997817 [00:04&lt;00:24, 173293.85it/s]

    </pre>

    -
    15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]
    +
    15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]

    end{sphinxVerbatim}

    -

    15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]

    +

    15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]

    -
    16%|█▌ | 775339/4997817 [00:04&lt;00:24, 172581.89it/s]
    +
    15%|█▌ | 765976/4997817 [00:04&lt;00:24, 173226.36it/s]

    </pre>

    -
    16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]
    +
    15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]

    +

    15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]

    -
    16%|█▌ | 792598/4997817 [00:04&lt;00:24, 172165.33it/s]
    +
    16%|█▌ | 783313/4997817 [00:04&lt;00:24, 173268.21it/s]

    </pre>

    -
    16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]
    +
    16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]

    +

    16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]

    -
    16%|█▌ | 809815/4997817 [00:04&lt;00:25, 167297.60it/s]
    +
    16%|█▌ | 800713/4997817 [00:04&lt;00:24, 173485.98it/s]

    </pre>

    -
    16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]
    +
    16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]

    +

    16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]

    -
    17%|█▋ | 826573/4997817 [00:04&lt;00:24, 167371.05it/s]
    +
    16%|█▋ | 818145/4997817 [00:04&lt;00:24, 173734.84it/s]

    </pre>

    -
    17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]
    +
    16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]

    +

    16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]

    -
    17%|█▋ | 843744/4997817 [00:04&lt;00:24, 168646.95it/s]
    +
    17%|█▋ | 835547/4997817 [00:04&lt;00:23, 173817.17it/s]

    </pre>

    -
    17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]
    +
    17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]

    +

    17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]

    -
    17%|█▋ | 860832/4997817 [00:04&lt;00:24, 169304.60it/s]
    +
    17%|█▋ | 853044/4997817 [00:04&lt;00:23, 174158.84it/s]

    </pre>

    -
    17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]
    +
    17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]

    +

    17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]

    -
    18%|█▊ | 877949/4997817 [00:05&lt;00:24, 169856.65it/s]
    +
    17%|█▋ | 870461/4997817 [00:05&lt;00:24, 169906.69it/s]

    </pre>

    -
    18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]
    +
    17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]

    +

    17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]

    -
    18%|█▊ | 895277/4997817 [00:05&lt;00:24, 170874.65it/s]
    +
    18%|█▊ | 887788/4997817 [00:05&lt;00:24, 170896.25it/s]

    </pre>

    -
    18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]
    +
    18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]

    +

    18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]

    -
    18%|█▊ | 912949/4997817 [00:05&lt;00:23, 172617.35it/s]
    +
    18%|█▊ | 905410/4997817 [00:05&lt;00:23, 172468.13it/s]

    </pre>

    -
    18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]
    +
    18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]

    +

    18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]

    -
    19%|█▊ | 930539/4997817 [00:05&lt;00:23, 173597.86it/s]
    +
    18%|█▊ | 922998/4997817 [00:05&lt;00:23, 173479.95it/s]

    </pre>

    -
    19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]
    +
    18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]

    end{sphinxVerbatim}

    -

    19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]

    +

    18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]

    -
    19%|█▉ | 948067/4997817 [00:05&lt;00:23, 174098.75it/s]
    +
    19%|█▉ | 940562/4997817 [00:05&lt;00:23, 174120.12it/s]

    </pre>

    -
    19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]
    +
    19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]

    +

    19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]

    -
    19%|█▉ | 965686/4997817 [00:05&lt;00:23, 174723.74it/s]
    +
    19%|█▉ | 958279/4997817 [00:05&lt;00:23, 175029.36it/s]

    </pre>

    -
    19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]
    +
    19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]

    +

    19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]

    -
    20%|█▉ | 983278/4997817 [00:05&lt;00:22, 175080.04it/s]
    +
    20%|█▉ | 976026/4997817 [00:05&lt;00:22, 175755.39it/s]

    </pre>

    -
    20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]
    +
    20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]

    end{sphinxVerbatim}

    -

    20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]

    +

    20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]

    -
    20%|██ | 1000897/4997817 [00:05&lt;00:22, 175408.44it/s]
    +
    20%|█▉ | 993657/4997817 [00:05&lt;00:22, 175917.83it/s]

    </pre>

    -
    20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]
    +
    20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]

    +

    20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]

    -
    20%|██ | 1018439/4997817 [00:05&lt;00:22, 175241.58it/s]
    +
    20%|██ | 1011277/4997817 [00:05&lt;00:22, 175998.51it/s]

    </pre>

    -
    20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]
    +
    20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]

    +

    20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]

    -
    21%|██ | 1036049/4997817 [00:05&lt;00:22, 175496.75it/s]
    +
    21%|██ | 1028880/4997817 [00:05&lt;00:22, 175962.99it/s]

    </pre>

    -
    21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]
    +
    21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]

    +

    21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]

    -
    21%|██ | 1053831/4997817 [00:06&lt;00:22, 176189.86it/s]
    +
    21%|██ | 1046537/4997817 [00:06&lt;00:22, 176142.71it/s]

    </pre>

    -
    21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]
    +
    21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]

    +

    21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]

    -
    21%|██▏ | 1071488/4997817 [00:06&lt;00:22, 176301.12it/s]
    +
    21%|██▏ | 1064153/4997817 [00:06&lt;00:22, 176017.85it/s]

    </pre>

    -
    21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]
    +
    21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]

    end{sphinxVerbatim}

    -

    21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]

    +

    21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]

    -
    22%|██▏ | 1089119/4997817 [00:06&lt;00:22, 175824.24it/s]
    +
    22%|██▏ | 1081783/4997817 [00:06&lt;00:22, 176099.57it/s]

    </pre>

    -
    22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]
    +
    22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]

    +

    22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]

    -
    22%|██▏ | 1106702/4997817 [00:06&lt;00:22, 174838.49it/s]
    +
    22%|██▏ | 1099463/4997817 [00:06&lt;00:22, 176305.95it/s]

    </pre>

    -
    22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]
    +
    22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]

    +

    22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]

    -
    22%|██▏ | 1124188/4997817 [00:06&lt;00:22, 174259.50it/s]
    +
    22%|██▏ | 1117142/4997817 [00:06&lt;00:21, 176449.50it/s]

    </pre>

    -
    22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]
    +
    22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]

    +

    22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]

    -
    23%|██▎ | 1141616/4997817 [00:06&lt;00:22, 173489.58it/s]
    +
    23%|██▎ | 1134811/4997817 [00:06&lt;00:21, 176519.40it/s]

    </pre>

    -
    23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]
    +
    23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]

    +

    23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]

    -
    23%|██▎ | 1158967/4997817 [00:06&lt;00:22, 172906.99it/s]
    +
    23%|██▎ | 1152481/4997817 [00:06&lt;00:21, 176570.59it/s]

    </pre>

    -
    23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]
    +
    23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]

    +

    23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]

    -
    24%|██▎ | 1176259/4997817 [00:06&lt;00:22, 172319.26it/s]
    +
    23%|██▎ | 1170175/4997817 [00:06&lt;00:21, 176680.05it/s]

    </pre>

    -
    24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]
    +
    23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]

    end{sphinxVerbatim}

    -

    24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]

    +

    23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]

    -
    24%|██▍ | 1193492/4997817 [00:06&lt;00:22, 171945.54it/s]
    +
    24%|██▍ | 1187844/4997817 [00:06&lt;00:21, 176223.47it/s]

    </pre>

    -
    24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]
    +
    24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]

    +

    24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]

    -
    24%|██▍ | 1210687/4997817 [00:06&lt;00:22, 171277.32it/s]
    +
    24%|██▍ | 1205467/4997817 [00:06&lt;00:21, 175743.33it/s]

    </pre>

    -
    24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]
    +
    24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]

    +

    24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]

    -
    25%|██▍ | 1227816/4997817 [00:07&lt;00:22, 171196.20it/s]
    +
    24%|██▍ | 1223042/4997817 [00:07&lt;00:21, 175407.48it/s]

    </pre>

    -
    25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]
    +
    24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]

    +

    24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]

    -
    25%|██▍ | 1244936/4997817 [00:07&lt;00:21, 171105.75it/s]
    +
    25%|██▍ | 1240584/4997817 [00:07&lt;00:22, 169787.87it/s]

    </pre>

    -
    25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]
    +
    25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]

    +

    25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]

    -
    25%|██▌ | 1262047/4997817 [00:07&lt;00:21, 170697.29it/s]
    +
    25%|██▌ | 1258080/4997817 [00:07&lt;00:21, 171298.95it/s]

    </pre>

    -
    25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]
    +
    25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]

    +

    25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]

    -
    26%|██▌ | 1279117/4997817 [00:07&lt;00:21, 170235.82it/s]
    +
    26%|██▌ | 1275621/4997817 [00:07&lt;00:21, 172507.87it/s]

    </pre>

    -
    26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]
    +
    26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]

    +

    26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]

    -
    26%|██▌ | 1296263/4997817 [00:07&lt;00:21, 170598.29it/s]
    +
    26%|██▌ | 1293239/4997817 [00:07&lt;00:21, 173592.71it/s]

    </pre>

    -
    26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]
    +
    26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]

    +

    26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]

    -
    26%|██▋ | 1313567/4997817 [00:07&lt;00:21, 171324.63it/s]
    +
    26%|██▌ | 1310879/4997817 [00:07&lt;00:21, 174425.31it/s]

    </pre>

    -
    26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]
    +
    26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]

    end{sphinxVerbatim}

    -

    26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]

    +

    26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]

    -
    27%|██▋ | 1330723/4997817 [00:07&lt;00:21, 171391.44it/s]
    +
    27%|██▋ | 1328499/4997817 [00:07&lt;00:20, 174950.37it/s]

    </pre>

    -
    27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]
    +
    27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]

    +

    27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]

    -
    27%|██▋ | 1347863/4997817 [00:07&lt;00:21, 168404.23it/s]
    +
    27%|██▋ | 1346196/4997817 [00:07&lt;00:20, 175551.80it/s]

    </pre>

    -
    27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]
    +
    27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]

    +

    27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]

    -
    27%|██▋ | 1365176/4997817 [00:07&lt;00:21, 169800.65it/s]
    +
    27%|██▋ | 1363796/4997817 [00:07&lt;00:20, 175682.64it/s]

    </pre>

    -
    27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]
    +
    27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]

    +

    27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]

    -
    28%|██▊ | 1382365/4997817 [00:07&lt;00:21, 170417.67it/s]
    +
    28%|██▊ | 1381388/4997817 [00:07&lt;00:20, 175751.36it/s]

    </pre>

    -
    28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]
    +
    28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]

    +

    28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]

    -
    28%|██▊ | 1399553/4997817 [00:08&lt;00:21, 170850.68it/s]
    +
    28%|██▊ | 1399032/4997817 [00:08&lt;00:20, 175954.67it/s]

    </pre>

    -
    28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]
    +
    28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]

    +

    28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]

    -
    28%|██▊ | 1416796/4997817 [00:08&lt;00:20, 171320.10it/s]
    +
    28%|██▊ | 1416697/4997817 [00:08&lt;00:20, 176159.57it/s]

    </pre>

    -
    28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]
    +
    28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]

    +

    28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]

    -
    29%|██▊ | 1433996/4997817 [00:08&lt;00:20, 171521.49it/s]
    +
    29%|██▊ | 1434315/4997817 [00:08&lt;00:20, 175929.86it/s]

    </pre>

    -
    29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]
    +
    29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]

    end{sphinxVerbatim}

    -

    29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]

    +

    29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]

    -
    29%|██▉ | 1451152/4997817 [00:08&lt;00:20, 171331.46it/s]
    +
    29%|██▉ | 1451910/4997817 [00:08&lt;00:20, 175645.91it/s]

    </pre>

    -
    29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]
    +
    29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]

    +

    29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]

    -
    29%|██▉ | 1468432/4997817 [00:08&lt;00:20, 171767.80it/s]
    +
    29%|██▉ | 1469558/4997817 [00:08&lt;00:20, 175892.38it/s]

    </pre>

    -
    29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]
    +
    29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]

    +

    29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]

    -
    30%|██▉ | 1485688/4997817 [00:08&lt;00:20, 172001.17it/s]
    +
    30%|██▉ | 1487190/4997817 [00:08&lt;00:19, 176018.51it/s]

    </pre>

    -
    30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]
    +
    30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]

    end{sphinxVerbatim}

    -

    30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]

    +

    30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]

    -
    30%|███ | 1503044/4997817 [00:08&lt;00:20, 172465.46it/s]
    +
    30%|███ | 1504883/4997817 [00:08&lt;00:19, 176288.05it/s]

    </pre>

    -
    30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]
    +
    30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]

    end{sphinxVerbatim}

    -

    30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]

    +

    30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]

    -
    30%|███ | 1520292/4997817 [00:08&lt;00:20, 171469.35it/s]
    +
    30%|███ | 1522513/4997817 [00:08&lt;00:19, 176105.53it/s]

    </pre>

    -
    30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]
    +
    30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]

    end{sphinxVerbatim}

    -

    30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]

    +

    30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]

    -
    31%|███ | 1537441/4997817 [00:08&lt;00:20, 170907.00it/s]
    +
    31%|███ | 1540124/4997817 [00:08&lt;00:19, 175674.86it/s]

    </pre>

    -
    31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]
    +
    31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]

    +

    31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]

    -
    31%|███ | 1554534/4997817 [00:08&lt;00:20, 170541.76it/s]
    +
    31%|███ | 1557753/4997817 [00:08&lt;00:19, 175855.08it/s]

    </pre>

    -
    31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]
    +
    31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]

    +

    31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]

    -
    31%|███▏ | 1571590/4997817 [00:09&lt;00:20, 170339.93it/s]
    +
    32%|███▏ | 1575339/4997817 [00:09&lt;00:19, 175831.62it/s]

    </pre>

    -
    31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]
    +
    32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]

    end{sphinxVerbatim}

    -

    31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]

    +

    32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]

    -
    32%|███▏ | 1588625/4997817 [00:09&lt;00:20, 169900.29it/s]
    +
    32%|███▏ | 1592923/4997817 [00:09&lt;00:19, 175647.50it/s]

    </pre>

    -
    32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]
    +
    32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]

    +

    32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]

    -
    32%|███▏ | 1605616/4997817 [00:09&lt;00:20, 169307.33it/s]
    +
    32%|███▏ | 1610488/4997817 [00:09&lt;00:19, 175441.73it/s]

    </pre>

    -
    32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]
    +
    32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]

    +

    32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]

    -
    32%|███▏ | 1622548/4997817 [00:09&lt;00:19, 168907.07it/s]
    +
    33%|███▎ | 1628033/4997817 [00:09&lt;00:19, 175079.33it/s]

    </pre>

    -
    32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]
    +
    33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]

    +

    33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]

    -
    33%|███▎ | 1639440/4997817 [00:09&lt;00:19, 168734.37it/s]
    +
    33%|███▎ | 1645542/4997817 [00:09&lt;00:19, 174685.15it/s]

    </pre>

    -
    33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]
    +
    33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]

    +

    33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]

    -
    33%|███▎ | 1656314/4997817 [00:09&lt;00:19, 168681.23it/s]
    +
    33%|███▎ | 1663139/4997817 [00:09&lt;00:19, 175064.52it/s]

    </pre>

    -
    33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]
    +
    33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]

    +

    33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]

    -
    33%|███▎ | 1673231/4997817 [00:09&lt;00:19, 168826.29it/s]
    +
    34%|███▎ | 1680913/4997817 [00:09&lt;00:18, 175863.54it/s]

    </pre>

    -
    33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]
    +
    34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]

    +

    34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]

    -
    34%|███▍ | 1690397/4997817 [00:09&lt;00:19, 169670.29it/s]
    +
    34%|███▍ | 1698596/4997817 [00:09&lt;00:18, 176151.13it/s]

    </pre>

    -
    34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]
    +
    34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]

    +

    34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]

    -
    34%|███▍ | 1707619/4997817 [00:09&lt;00:19, 170432.29it/s]
    +
    34%|███▍ | 1716322/4997817 [00:09&lt;00:18, 176479.89it/s]

    </pre>

    -
    34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]
    +
    34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]

    +

    34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]

    -
    35%|███▍ | 1724810/4997817 [00:09&lt;00:19, 170872.53it/s]
    +
    35%|███▍ | 1733971/4997817 [00:09&lt;00:18, 176392.59it/s]

    </pre>

    -
    35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]
    +
    35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]

    end{sphinxVerbatim}

    -

    35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]

    +

    35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]

    -
    35%|███▍ | 1741898/4997817 [00:10&lt;00:19, 169922.81it/s]
    +
    35%|███▌ | 1751611/4997817 [00:10&lt;00:18, 176312.85it/s]

    </pre>

    -
    35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]
    +
    35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]

    end{sphinxVerbatim}

    -

    35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]

    +

    35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]

    -
    35%|███▌ | 1759282/4997817 [00:10&lt;00:18, 171088.55it/s]
    +
    35%|███▌ | 1769243/4997817 [00:10&lt;00:18, 176057.66it/s]

    </pre>

    -
    35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]
    +
    35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]

    +

    35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]

    -
    36%|███▌ | 1776615/4997817 [00:10&lt;00:18, 171754.84it/s]
    +
    36%|███▌ | 1786849/4997817 [00:10&lt;00:18, 175301.52it/s]

    </pre>

    -
    36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]
    +
    36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]

    +

    36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]

    -
    36%|███▌ | 1793792/4997817 [00:10&lt;00:18, 171733.69it/s]
    +
    36%|███▌ | 1804380/4997817 [00:10&lt;00:18, 174824.34it/s]

    </pre>

    -
    36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]
    +
    36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]

    +

    36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]

    -
    36%|███▌ | 1810967/4997817 [00:10&lt;00:18, 171725.14it/s]
    +
    36%|███▋ | 1821864/4997817 [00:10&lt;00:18, 174463.24it/s]

    </pre>

    -
    36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]
    +
    36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]

    +

    36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]

    -
    37%|███▋ | 1828180/4997817 [00:10&lt;00:18, 171842.93it/s]
    +
    37%|███▋ | 1839311/4997817 [00:10&lt;00:18, 174092.08it/s]

    </pre>

    -
    37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]
    +
    37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]

    +

    37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]

    -
    37%|███▋ | 1845365/4997817 [00:10&lt;00:18, 171576.58it/s]
    +
    37%|███▋ | 1856721/4997817 [00:10&lt;00:18, 173962.14it/s]

    </pre>

    -
    37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]
    +
    37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]

    +

    37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]

    -
    37%|███▋ | 1862524/4997817 [00:10&lt;00:18, 171564.72it/s]
    +
    37%|███▋ | 1874137/4997817 [00:10&lt;00:17, 174019.45it/s]

    </pre>

    -
    37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]
    +
    37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]

    +

    37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]

    -
    38%|███▊ | 1879748/4997817 [00:10&lt;00:18, 171764.89it/s]
    +
    38%|███▊ | 1891540/4997817 [00:10&lt;00:17, 173957.64it/s]

    </pre>

    -
    38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]
    +
    38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]

    +

    38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]

    -
    38%|███▊ | 1896925/4997817 [00:10&lt;00:18, 171455.38it/s]
    +
    38%|███▊ | 1908997/4997817 [00:10&lt;00:17, 174137.51it/s]

    </pre>

    -
    38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]
    +
    38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]

    +

    38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]

    -
    38%|███▊ | 1914071/4997817 [00:11&lt;00:18, 170925.15it/s]
    +
    39%|███▊ | 1926421/4997817 [00:11&lt;00:17, 174167.14it/s]

    </pre>

    -
    38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]
    +
    39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]

    +

    39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]

    -
    39%|███▊ | 1931228/4997817 [00:11&lt;00:17, 171116.52it/s]
    +
    39%|███▉ | 1943838/4997817 [00:11&lt;00:17, 173918.04it/s]

    </pre>

    -
    39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]
    +
    39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]

    end{sphinxVerbatim}

    -

    39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]

    +

    39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]

    -
    39%|███▉ | 1948457/4997817 [00:11&lt;00:17, 171464.69it/s]
    +
    39%|███▉ | 1961230/4997817 [00:11&lt;00:17, 173664.98it/s]

    </pre>

    -
    39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]
    +
    39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]

    +

    39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]

    -
    39%|███▉ | 1965604/4997817 [00:11&lt;00:17, 171453.11it/s]
    +
    40%|███▉ | 1978825/4997817 [00:11&lt;00:17, 174345.13it/s]

    </pre>

    -
    39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]
    +
    40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]

    +

    40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]

    -
    40%|███▉ | 1982888/4997817 [00:11&lt;00:17, 171865.63it/s]
    +
    40%|███▉ | 1996360/4997817 [00:11&lt;00:17, 174644.54it/s]

    </pre>

    -
    40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]
    +
    40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]

    end{sphinxVerbatim}

    -

    40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]

    +

    40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]

    -
    40%|████ | 2000075/4997817 [00:11&lt;00:17, 171498.59it/s]
    +
    40%|████ | 2013981/4997817 [00:11&lt;00:17, 175111.69it/s]

    </pre>

    -
    40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]
    +
    40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]

    +

    40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]

    -
    40%|████ | 2017226/4997817 [00:11&lt;00:17, 171401.49it/s]
    +
    41%|████ | 2031645/4997817 [00:11&lt;00:16, 175566.48it/s]

    </pre>

    -
    40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]
    +
    41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]

    +

    41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]

    -
    41%|████ | 2034367/4997817 [00:11&lt;00:17, 171212.80it/s]
    +
    41%|████ | 2049308/4997817 [00:11&lt;00:16, 175884.15it/s]

    </pre>

    -
    41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]
    +
    41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]

    +

    41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]

    -
    41%|████ | 2051645/4997817 [00:11&lt;00:17, 171672.83it/s]
    +
    41%|████▏ | 2066943/4997817 [00:11&lt;00:16, 176020.37it/s]

    </pre>

    -
    41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]
    +
    41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]

    +

    41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]

    -
    41%|████▏ | 2068813/4997817 [00:11&lt;00:17, 171196.61it/s]
    +
    42%|████▏ | 2084572/4997817 [00:11&lt;00:16, 176098.77it/s]

    </pre>

    -
    41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]
    +
    42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]

    end{sphinxVerbatim}

    -

    41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]

    +

    42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]

    -
    42%|████▏ | 2085940/4997817 [00:12&lt;00:17, 171194.68it/s]
    +
    42%|████▏ | 2102182/4997817 [00:12&lt;00:16, 176041.28it/s]

    </pre>

    -
    42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]
    +
    42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]

    +

    42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]

    -
    42%|████▏ | 2103060/4997817 [00:12&lt;00:17, 169427.08it/s]
    +
    42%|████▏ | 2119787/4997817 [00:12&lt;00:16, 176040.30it/s]

    </pre>

    -
    42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]
    +
    42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]

    +

    42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]

    -
    42%|████▏ | 2120062/4997817 [00:12&lt;00:16, 169600.43it/s]
    +
    43%|████▎ | 2137392/4997817 [00:12&lt;00:16, 175207.25it/s]

    </pre>

    -
    42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]
    +
    43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]

    +

    43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]

    -
    43%|████▎ | 2137025/4997817 [00:12&lt;00:16, 169395.32it/s]
    +
    43%|████▎ | 2154914/4997817 [00:12&lt;00:16, 175065.50it/s]

    </pre>

    -
    43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]
    +
    43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]

    +

    43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]

    -
    43%|████▎ | 2153986/4997817 [00:12&lt;00:16, 169450.28it/s]
    +
    43%|████▎ | 2172458/4997817 [00:12&lt;00:16, 175173.06it/s]

    </pre>

    -
    43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]
    +
    43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]

    +

    43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]

    -
    43%|████▎ | 2170933/4997817 [00:12&lt;00:16, 169371.37it/s]
    +
    44%|████▍ | 2189976/4997817 [00:12&lt;00:16, 174843.50it/s]

    </pre>

    -
    43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]
    +
    44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]

    +

    44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]

    -
    44%|████▍ | 2187950/4997817 [00:12&lt;00:16, 169607.04it/s]
    +
    44%|████▍ | 2207501/4997817 [00:12&lt;00:15, 174963.16it/s]

    </pre>

    -
    44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]
    +
    44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]

    +

    44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]

    -
    44%|████▍ | 2204912/4997817 [00:12&lt;00:16, 169591.24it/s]
    +
    45%|████▍ | 2225013/4997817 [00:12&lt;00:15, 175007.79it/s]

    </pre>

    -
    44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]
    +
    45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]

    +

    45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]

    -
    44%|████▍ | 2221872/4997817 [00:12&lt;00:16, 167874.22it/s]
    +
    45%|████▍ | 2242537/4997817 [00:12&lt;00:15, 175074.53it/s]

    </pre>

    -
    44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]
    +
    45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]

    +

    45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]

    -
    45%|████▍ | 2238890/4997817 [00:12&lt;00:16, 168557.59it/s]
    +
    45%|████▌ | 2260048/4997817 [00:12&lt;00:15, 175080.21it/s]

    </pre>

    -
    45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]
    +
    45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]

    end{sphinxVerbatim}

    -

    45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]

    +

    45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]

    -
    45%|████▌ | 2256070/4997817 [00:13&lt;00:16, 169521.99it/s]
    +
    46%|████▌ | 2277557/4997817 [00:13&lt;00:15, 174537.91it/s]

    </pre>

    -
    45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]
    +
    46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]

    +

    46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]

    -
    45%|████▌ | 2273059/4997817 [00:13&lt;00:16, 169630.06it/s]
    +
    46%|████▌ | 2295012/4997817 [00:13&lt;00:15, 174060.07it/s]

    </pre>

    -
    45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]
    +
    46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]

    +

    46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]

    -
    46%|████▌ | 2290025/4997817 [00:13&lt;00:15, 169632.41it/s]
    +
    46%|████▋ | 2312486/4997817 [00:13&lt;00:15, 174258.48it/s]

    </pre>

    -
    46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]
    +
    46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]

    +

    46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]

    -
    46%|████▌ | 2306990/4997817 [00:13&lt;00:15, 169380.56it/s]
    +
    47%|████▋ | 2329913/4997817 [00:13&lt;00:15, 174219.23it/s]

    </pre>

    -
    46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]
    +
    47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]

    +

    47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]

    -
    46%|████▋ | 2323974/4997817 [00:13&lt;00:15, 169516.77it/s]
    +
    47%|████▋ | 2347606/4997817 [00:13&lt;00:15, 175028.34it/s]

    </pre>

    -
    46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]
    +
    47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]

    end{sphinxVerbatim}

    -

    46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]

    +

    47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]

    -
    47%|████▋ | 2341059/4997817 [00:13&lt;00:15, 169914.63it/s]
    +
    47%|████▋ | 2365220/4997817 [00:13&lt;00:15, 175359.52it/s]

    </pre>

    -
    47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]
    +
    47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]

    +

    47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]

    -
    47%|████▋ | 2358052/4997817 [00:13&lt;00:15, 169901.93it/s]
    +
    48%|████▊ | 2382958/4997817 [00:13&lt;00:14, 175961.70it/s]

    </pre>

    -
    47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]
    +
    48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]

    +

    48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]

    -
    48%|████▊ | 2375202/4997817 [00:13&lt;00:15, 170379.01it/s]
    +
    48%|████▊ | 2400623/4997817 [00:13&lt;00:14, 176164.69it/s]

    </pre>

    -
    48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]
    +
    48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]

    +

    48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]

    -
    48%|████▊ | 2392545/4997817 [00:13&lt;00:15, 171290.94it/s]
    +
    48%|████▊ | 2418340/4997817 [00:13&lt;00:14, 176463.91it/s]

    </pre>

    -
    48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]
    +
    48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]

    +

    48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]

    -
    48%|████▊ | 2409675/4997817 [00:13&lt;00:15, 171147.12it/s]
    +
    49%|████▊ | 2436061/4997817 [00:13&lt;00:14, 176685.81it/s]

    </pre>

    -
    48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]
    +
    49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]

    +

    49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]

    -
    49%|████▊ | 2426790/4997817 [00:14&lt;00:15, 171116.48it/s]
    +
    49%|████▉ | 2453730/4997817 [00:14&lt;00:14, 176528.32it/s]

    </pre>

    -
    49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]
    +
    49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]

    end{sphinxVerbatim}

    -

    49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]

    +

    49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]

    -
    49%|████▉ | 2444017/4997817 [00:14&lt;00:14, 171458.03it/s]
    +
    49%|████▉ | 2471391/4997817 [00:14&lt;00:14, 176551.72it/s]

    </pre>

    -
    49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]
    +
    49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]

    +

    49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]

    -
    49%|████▉ | 2461163/4997817 [00:14&lt;00:14, 170917.16it/s]
    +
    50%|████▉ | 2489047/4997817 [00:14&lt;00:14, 175831.27it/s]

    </pre>

    -
    49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]
    +
    50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]

    +

    50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]

    -
    50%|████▉ | 2478345/4997817 [00:14&lt;00:14, 171185.16it/s]
    +
    50%|█████ | 2506631/4997817 [00:14&lt;00:14, 175623.84it/s]

    </pre>

    -
    50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]
    +
    50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]

    end{sphinxVerbatim}

    -

    50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]

    +

    50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]

    -
    50%|████▉ | 2495499/4997817 [00:14&lt;00:14, 171288.78it/s]
    +
    51%|█████ | 2524194/4997817 [00:14&lt;00:14, 174378.28it/s]

    </pre>

    -
    50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]
    +
    51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]

    end{sphinxVerbatim}

    -

    50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]

    +

    51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]

    -
    50%|█████ | 2512640/4997817 [00:14&lt;00:14, 171322.82it/s]
    +
    51%|█████ | 2541776/4997817 [00:14&lt;00:14, 174804.77it/s]

    </pre>

    -
    50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]
    +
    51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]

    +

    51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]

    -
    51%|█████ | 2529773/4997817 [00:14&lt;00:14, 170953.16it/s]
    +
    51%|█████ | 2559426/4997817 [00:14&lt;00:13, 175309.70it/s]

    </pre>

    -
    51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]
    +
    51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]

    +

    51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]

    -
    51%|█████ | 2546869/4997817 [00:14&lt;00:14, 170562.42it/s]
    +
    52%|█████▏ | 2577056/4997817 [00:14&lt;00:13, 175603.54it/s]

    </pre>

    -
    51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]
    +
    52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]

    +

    52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]

    -
    51%|█████▏ | 2563926/4997817 [00:14&lt;00:14, 169908.11it/s]
    +
    52%|█████▏ | 2594628/4997817 [00:14&lt;00:13, 175637.31it/s]

    </pre>

    -
    51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]
    +
    52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]

    end{sphinxVerbatim}

    -

    51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]

    +

    52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]

    -
    52%|█████▏ | 2580918/4997817 [00:14&lt;00:14, 169746.07it/s]
    +
    52%|█████▏ | 2612241/4997817 [00:14&lt;00:13, 175782.65it/s]

    </pre>

    -
    52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]
    +
    52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]

    +

    52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]

    -
    52%|█████▏ | 2597996/4997817 [00:15&lt;00:14, 170051.27it/s]
    +
    53%|█████▎ | 2629821/4997817 [00:15&lt;00:13, 175785.64it/s]

    </pre>

    -
    52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]
    +
    53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]

    +

    53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]

    -
    52%|█████▏ | 2615002/4997817 [00:15&lt;00:14, 169855.14it/s]
    +
    53%|█████▎ | 2647400/4997817 [00:15&lt;00:13, 175567.81it/s]

    </pre>

    -
    52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]
    +
    53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]

    +

    53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]

    -
    53%|█████▎ | 2632128/4997817 [00:15&lt;00:13, 170269.62it/s]
    +
    53%|█████▎ | 2664958/4997817 [00:15&lt;00:13, 175440.20it/s]

    </pre>

    -
    53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]
    +
    53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]

    +

    53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]

    -
    53%|█████▎ | 2649156/4997817 [00:15&lt;00:13, 170088.47it/s]
    +
    54%|█████▎ | 2682503/4997817 [00:15&lt;00:13, 175115.16it/s]

    </pre>

    -
    53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]
    +
    54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]

    +

    54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]

    -
    53%|█████▎ | 2666166/4997817 [00:15&lt;00:13, 169650.88it/s]
    +
    54%|█████▍ | 2700015/4997817 [00:15&lt;00:13, 174961.60it/s]

    </pre>

    -
    53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]
    +
    54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]

    +

    54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]

    -
    54%|█████▎ | 2683173/4997817 [00:15&lt;00:13, 169768.86it/s]
    +
    54%|█████▍ | 2717512/4997817 [00:15&lt;00:13, 174953.93it/s]

    </pre>

    -
    54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]
    +
    54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]

    end{sphinxVerbatim}

    -

    54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]

    +

    54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]

    -
    54%|█████▍ | 2700185/4997817 [00:15&lt;00:13, 169871.46it/s]
    +
    55%|█████▍ | 2735094/4997817 [00:15&lt;00:12, 175209.49it/s]

    </pre>

    -
    54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]
    +
    55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]

    +

    55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]

    -
    54%|█████▍ | 2717178/4997817 [00:15&lt;00:13, 169887.22it/s]
    +
    55%|█████▌ | 2752634/4997817 [00:15&lt;00:12, 175262.25it/s]

    </pre>

    -
    54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]
    +
    55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]

    +

    55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]

    -
    55%|█████▍ | 2734208/4997817 [00:15&lt;00:13, 170006.95it/s]
    +
    55%|█████▌ | 2770161/4997817 [00:15&lt;00:12, 175133.95it/s]

    </pre>

    -
    55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]
    +
    55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]

    end{sphinxVerbatim}

    -

    55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]

    +

    55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]

    -
    55%|█████▌ | 2751209/4997817 [00:15&lt;00:13, 169981.31it/s]
    +
    56%|█████▌ | 2787715/4997817 [00:15&lt;00:12, 175250.55it/s]

    </pre>

    -
    55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]
    +
    56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]

    +

    56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]

    -
    55%|█████▌ | 2768208/4997817 [00:16&lt;00:13, 168785.64it/s]
    +
    56%|█████▌ | 2805324/4997817 [00:16&lt;00:12, 175498.35it/s]

    </pre>

    -
    55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]
    +
    56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]

    +

    56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]

    -
    56%|█████▌ | 2785217/4997817 [00:16&lt;00:13, 169172.70it/s]
    +
    56%|█████▋ | 2822930/4997817 [00:16&lt;00:12, 175664.91it/s]

    </pre>

    -
    56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]
    +
    56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]

    +

    56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]

    -
    56%|█████▌ | 2802337/4997817 [00:16&lt;00:12, 169774.26it/s]
    +
    57%|█████▋ | 2840497/4997817 [00:16&lt;00:12, 175377.47it/s]

    </pre>

    -
    56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]
    +
    57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]

    +

    57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]

    -
    56%|█████▋ | 2819316/4997817 [00:16&lt;00:12, 169776.48it/s]
    +
    57%|█████▋ | 2858060/4997817 [00:16&lt;00:12, 175448.03it/s]

    </pre>

    -
    56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]
    +
    57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]

    end{sphinxVerbatim}

    -

    56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]

    +

    57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]

    -
    57%|█████▋ | 2836421/4997817 [00:16&lt;00:12, 170154.82it/s]
    +
    58%|█████▊ | 2875627/4997817 [00:16&lt;00:12, 175512.09it/s]

    </pre>

    -
    57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]
    +
    58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]

    +

    58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]

    -
    57%|█████▋ | 2853651/4997817 [00:16&lt;00:12, 170795.24it/s]
    +
    58%|█████▊ | 2893270/4997817 [00:16&lt;00:11, 175784.43it/s]

    </pre>

    -
    57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]
    +
    58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]

    +

    58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]

    -
    57%|█████▋ | 2870736/4997817 [00:16&lt;00:12, 170809.02it/s]
    +
    58%|█████▊ | 2910938/4997817 [00:16&lt;00:11, 176050.24it/s]

    </pre>

    -
    57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]
    +
    58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]

    +

    58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]

    -
    58%|█████▊ | 2887966/4997817 [00:16&lt;00:12, 171253.61it/s]
    +
    59%|█████▊ | 2928544/4997817 [00:16&lt;00:11, 175745.11it/s]

    </pre>

    -
    58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]
    +
    59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]

    +

    59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]

    -
    58%|█████▊ | 2905092/4997817 [00:16&lt;00:12, 171058.81it/s]
    +
    59%|█████▉ | 2946119/4997817 [00:16&lt;00:11, 175395.25it/s]

    </pre>

    -
    58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]
    +
    59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]

    +

    59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]

    -
    58%|█████▊ | 2922263/4997817 [00:16&lt;00:12, 171250.69it/s]
    +
    59%|█████▉ | 2963659/4997817 [00:16&lt;00:11, 174986.83it/s]

    </pre>

    -
    58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]
    +
    59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]

    +

    59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]

    -
    59%|█████▉ | 2939389/4997817 [00:17&lt;00:12, 170364.59it/s]
    +
    60%|█████▉ | 2981241/4997817 [00:17&lt;00:11, 175231.62it/s]

    </pre>

    -
    59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]
    +
    60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]

    +

    60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]

    -
    59%|█████▉ | 2956427/4997817 [00:17&lt;00:11, 170163.09it/s]
    +
    60%|██████ | 2998784/4997817 [00:17&lt;00:11, 175287.54it/s]

    </pre>

    -
    59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]
    +
    60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]

    +

    60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]

    -
    60%|█████▉ | 2973849/4997817 [00:17&lt;00:11, 171369.36it/s]
    +
    60%|██████ | 3016313/4997817 [00:17&lt;00:11, 175037.10it/s]

    </pre>

    -
    60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]
    +
    60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]

    end{sphinxVerbatim}

    -

    60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]

    +

    60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]

    -
    60%|█████▉ | 2991462/4997817 [00:17&lt;00:11, 172790.20it/s]
    +
    61%|██████ | 3033901/4997817 [00:17&lt;00:11, 175285.34it/s]

    </pre>

    -
    60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]
    +
    61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]

    end{sphinxVerbatim}

    -

    60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]

    +

    61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]

    -
    60%|██████ | 3009055/4997817 [00:17&lt;00:11, 173726.43it/s]
    +
    61%|██████ | 3051430/4997817 [00:17&lt;00:11, 175239.61it/s]

    </pre>

    -
    60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]
    +
    61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]

    +

    61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]

    -
    61%|██████ | 3026643/4997817 [00:17&lt;00:11, 174369.07it/s]
    +
    61%|██████▏ | 3068999/4997817 [00:17&lt;00:10, 175372.10it/s]

    </pre>

    -
    61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]
    +
    61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]

    +

    61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]

    -
    61%|██████ | 3044244/4997817 [00:17&lt;00:11, 174858.81it/s]
    +
    62%|██████▏ | 3086606/4997817 [00:17&lt;00:10, 175578.20it/s]

    </pre>

    -
    61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]
    +
    62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]

    +

    62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]

    -
    61%|██████▏ | 3061813/4997817 [00:17&lt;00:11, 175106.80it/s]
    +
    62%|██████▏ | 3104164/4997817 [00:17&lt;00:10, 175481.95it/s]

    </pre>

    -
    61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]
    +
    62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]

    end{sphinxVerbatim}

    -

    61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]

    +

    62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]

    -
    62%|██████▏ | 3079434/4997817 [00:17&lt;00:10, 175436.02it/s]
    +
    62%|██████▏ | 3121761/4997817 [00:17&lt;00:10, 175625.41it/s]

    </pre>

    -
    62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]
    +
    62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]

    +

    62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]

    -
    62%|██████▏ | 3096978/4997817 [00:17&lt;00:10, 175341.60it/s]
    +
    63%|██████▎ | 3139332/4997817 [00:17&lt;00:10, 175646.68it/s]

    </pre>

    -
    62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]
    +
    63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]

    +

    63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]

    -
    62%|██████▏ | 3114513/4997817 [00:18&lt;00:10, 175339.41it/s]
    +
    63%|██████▎ | 3156897/4997817 [00:18&lt;00:10, 175597.00it/s]

    </pre>

    -
    62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]
    +
    63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]

    +

    63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]

    -
    63%|██████▎ | 3132089/4997817 [00:18&lt;00:10, 175462.44it/s]
    +
    64%|██████▎ | 3174534/4997817 [00:18&lt;00:10, 175827.20it/s]

    </pre>

    -
    63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]
    +
    64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]

    +

    64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]

    -
    63%|██████▎ | 3149636/4997817 [00:18&lt;00:10, 175116.05it/s]
    +
    64%|██████▍ | 3192117/4997817 [00:18&lt;00:10, 175654.90it/s]

    </pre>

    -
    63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]
    +
    64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]

    +

    64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]

    -
    63%|██████▎ | 3167148/4997817 [00:18&lt;00:10, 175088.40it/s]
    +
    64%|██████▍ | 3209683/4997817 [00:18&lt;00:10, 175268.22it/s]

    </pre>

    -
    63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]
    +
    64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]

    +

    64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]

    -
    64%|██████▎ | 3184657/4997817 [00:18&lt;00:10, 174556.72it/s]
    +
    65%|██████▍ | 3227211/4997817 [00:18&lt;00:10, 174761.43it/s]

    </pre>

    -
    64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]
    +
    65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]

    end{sphinxVerbatim}

    -

    64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]

    +

    65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]

    -
    64%|██████▍ | 3202114/4997817 [00:18&lt;00:10, 167141.20it/s]
    +
    65%|██████▍ | 3244739/4997817 [00:18&lt;00:10, 174889.82it/s]

    </pre>

    -
    64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]
    +
    65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]

    +

    65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]

    -
    64%|██████▍ | 3218894/4997817 [00:18&lt;00:10, 166499.92it/s]
    +
    65%|██████▌ | 3262232/4997817 [00:18&lt;00:09, 174898.40it/s]

    </pre>

    -
    64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]
    +
    65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]

    +

    65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]

    -
    65%|██████▍ | 3236163/4997817 [00:18&lt;00:10, 168306.33it/s]
    +
    66%|██████▌ | 3279803/4997817 [00:18&lt;00:09, 175137.60it/s]

    </pre>

    -
    65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]
    +
    66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]

    end{sphinxVerbatim}

    -

    65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]

    +

    66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]

    -
    65%|██████▌ | 3253662/4997817 [00:18&lt;00:10, 170273.08it/s]
    +
    66%|██████▌ | 3297317/4997817 [00:18&lt;00:09, 175131.24it/s]

    </pre>

    -
    65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]
    +
    66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]

    +

    66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]

    -
    65%|██████▌ | 3270719/4997817 [00:19&lt;00:10, 166844.88it/s]
    +
    66%|██████▋ | 3314831/4997817 [00:18&lt;00:09, 174741.46it/s]

    </pre>

    -
    65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]
    +
    66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]

    +

    66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]

    -
    66%|██████▌ | 3288092/4997817 [00:19&lt;00:10, 168858.27it/s]
    +
    67%|██████▋ | 3332484/4997817 [00:19&lt;00:09, 175247.36it/s]

    </pre>

    -
    66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]
    +
    67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]

    +

    67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]

    -
    66%|██████▌ | 3305515/4997817 [00:19&lt;00:09, 170439.51it/s]
    +
    67%|██████▋ | 3350043/4997817 [00:19&lt;00:09, 175345.90it/s]

    </pre>

    -
    66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]
    +
    67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]

    +

    67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]

    -
    66%|██████▋ | 3322809/4997817 [00:19&lt;00:09, 171178.48it/s]
    +
    67%|██████▋ | 3367578/4997817 [00:19&lt;00:09, 175259.53it/s]

    </pre>

    -
    66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]
    +
    67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]

    end{sphinxVerbatim}

    -

    66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]

    +

    67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]

    -
    67%|██████▋ | 3340252/4997817 [00:19&lt;00:09, 172143.13it/s]
    +
    68%|██████▊ | 3385179/4997817 [00:19&lt;00:09, 175480.82it/s]

    </pre>

    -
    67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]
    +
    68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]

    +

    68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]

    -
    67%|██████▋ | 3357797/4997817 [00:19&lt;00:09, 173127.02it/s]
    +
    68%|██████▊ | 3402728/4997817 [00:19&lt;00:09, 175065.50it/s]

    </pre>

    -
    67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]
    +
    68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]

    +

    68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]

    -
    68%|██████▊ | 3375264/4997817 [00:19&lt;00:09, 173586.47it/s]
    +
    68%|██████▊ | 3420235/4997817 [00:19&lt;00:09, 174948.91it/s]

    </pre>

    -
    68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]
    +
    68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]

    +

    68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]

    -
    68%|██████▊ | 3392782/4997817 [00:19&lt;00:09, 174059.23it/s]
    +
    69%|██████▉ | 3437756/4997817 [00:19&lt;00:08, 175025.26it/s]

    </pre>

    -
    68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]
    +
    69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]

    +

    69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]

    -
    68%|██████▊ | 3410247/4997817 [00:19&lt;00:09, 174234.29it/s]
    +
    69%|██████▉ | 3455365/4997817 [00:19&lt;00:08, 175341.14it/s]

    </pre>

    -
    68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]
    +
    69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]

    +

    69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]

    -
    69%|██████▊ | 3427795/4997817 [00:19&lt;00:08, 174606.02it/s]
    +
    69%|██████▉ | 3472901/4997817 [00:19&lt;00:08, 175344.96it/s]

    </pre>

    -
    69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]
    +
    69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]

    end{sphinxVerbatim}

    -

    69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]

    +

    69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]

    -
    69%|██████▉ | 3445258/4997817 [00:20&lt;00:08, 174056.58it/s]
    +
    70%|██████▉ | 3490485/4997817 [00:19&lt;00:08, 175490.40it/s]

    </pre>

    -
    69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]
    +
    70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]

    +

    70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]

    -
    69%|██████▉ | 3462712/4997817 [00:20&lt;00:08, 174197.50it/s]
    +
    70%|███████ | 3508035/4997817 [00:20&lt;00:08, 174929.21it/s]

    </pre>

    -
    69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]
    +
    70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]

    +

    70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]

    -
    70%|██████▉ | 3480251/4997817 [00:20&lt;00:08, 174552.82it/s]
    +
    71%|███████ | 3525555/4997817 [00:20&lt;00:08, 175008.41it/s]

    </pre>

    -
    70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]
    +
    71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]

    end{sphinxVerbatim}

    -

    70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]

    +

    71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]

    -
    70%|██████▉ | 3497817/4997817 [00:20&lt;00:08, 174883.16it/s]
    +
    71%|███████ | 3543162/4997817 [00:20&lt;00:08, 175323.35it/s]

    </pre>

    -
    70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]
    +
    71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]

    end{sphinxVerbatim}

    -

    70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]

    +

    71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]

    -
    70%|███████ | 3515418/4997817 [00:20&lt;00:08, 175219.16it/s]
    +
    71%|███████ | 3560695/4997817 [00:20&lt;00:08, 175252.66it/s]

    </pre>

    -
    70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]
    +
    71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]

    end{sphinxVerbatim}

    -

    70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]

    +

    71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]

    -
    71%|███████ | 3533145/4997817 [00:20&lt;00:08, 175830.00it/s]
    +
    72%|███████▏ | 3578221/4997817 [00:20&lt;00:08, 174103.16it/s]

    </pre>

    -
    71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]
    +
    72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]

    +

    72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]

    -
    71%|███████ | 3550906/4997817 [00:20&lt;00:08, 176361.88it/s]
    +
    72%|███████▏ | 3595932/4997817 [00:20&lt;00:08, 174997.61it/s]

    </pre>

    -
    71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]
    +
    72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]

    +

    72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]

    -
    71%|███████▏ | 3568701/4997817 [00:20&lt;00:08, 176834.01it/s]
    +
    72%|███████▏ | 3613434/4997817 [00:20&lt;00:07, 174972.06it/s]

    </pre>

    -
    71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]
    +
    72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]

    end{sphinxVerbatim}

    -

    71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]

    +

    72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]

    -
    72%|███████▏ | 3586425/4997817 [00:20&lt;00:07, 176954.31it/s]
    +
    73%|███████▎ | 3631126/4997817 [00:20&lt;00:07, 175551.47it/s]

    </pre>

    -
    72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]
    +
    73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]

    +

    73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]

    -
    72%|███████▏ | 3604121/4997817 [00:20&lt;00:07, 176702.58it/s]
    +
    73%|███████▎ | 3648683/4997817 [00:20&lt;00:07, 175405.31it/s]

    </pre>

    -
    72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]
    +
    73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]

    +

    73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]

    -
    72%|███████▏ | 3621792/4997817 [00:21&lt;00:08, 171973.11it/s]
    +
    73%|███████▎ | 3666239/4997817 [00:20&lt;00:07, 175447.92it/s]

    </pre>

    -
    72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]
    +
    73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]

    +

    73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]

    -
    73%|███████▎ | 3639150/4997817 [00:21&lt;00:07, 172442.71it/s]
    +
    74%|███████▎ | 3683785/4997817 [00:21&lt;00:07, 175433.67it/s]

    </pre>

    -
    73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]
    +
    74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]

    +

    74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]

    -
    73%|███████▎ | 3656834/4997817 [00:21&lt;00:07, 173741.68it/s]
    +
    74%|███████▍ | 3701433/4997817 [00:21&lt;00:07, 175744.27it/s]

    </pre>

    -
    73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]
    +
    74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]

    +

    74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]

    -
    74%|███████▎ | 3674292/4997817 [00:21&lt;00:07, 173987.08it/s]
    +
    74%|███████▍ | 3719125/4997817 [00:21&lt;00:07, 176094.38it/s]

    </pre>

    -
    74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]
    +
    74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]

    end{sphinxVerbatim}

    -

    74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]

    +

    74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]

    -
    74%|███████▍ | 3691779/4997817 [00:21&lt;00:07, 174249.19it/s]
    +
    75%|███████▍ | 3736735/4997817 [00:21&lt;00:07, 175377.73it/s]

    </pre>

    -
    74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]
    +
    75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]

    +

    75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]

    -
    74%|███████▍ | 3709394/4997817 [00:21&lt;00:07, 174814.50it/s]
    +
    75%|███████▌ | 3754274/4997817 [00:21&lt;00:07, 175297.97it/s]

    </pre>

    -
    74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]
    +
    75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]

    +

    75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]

    -
    75%|███████▍ | 3726970/4997817 [00:21&lt;00:07, 175095.49it/s]
    +
    75%|███████▌ | 3771878/4997817 [00:21&lt;00:06, 175516.29it/s]

    </pre>

    -
    75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]
    +
    75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]

    end{sphinxVerbatim}

    -

    75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]

    +

    75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]

    -
    75%|███████▍ | 3744682/4997817 [00:21&lt;00:07, 175697.81it/s]
    +
    76%|███████▌ | 3789557/4997817 [00:21&lt;00:06, 175893.36it/s]

    </pre>

    -
    75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]
    +
    76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]

    end{sphinxVerbatim}

    -

    75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]

    +

    76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]

    -
    75%|███████▌ | 3762372/4997817 [00:21&lt;00:07, 176053.89it/s]
    +
    76%|███████▌ | 3807147/4997817 [00:21&lt;00:06, 175691.21it/s]

    </pre>

    -
    75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]
    +
    76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]

    +

    76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]

    -
    76%|███████▌ | 3780045/4997817 [00:21&lt;00:06, 176253.13it/s]
    +
    77%|███████▋ | 3824759/4997817 [00:21&lt;00:06, 175817.92it/s]

    </pre>

    -
    76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]
    +
    77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]

    +

    77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]

    -
    76%|███████▌ | 3797684/4997817 [00:22&lt;00:06, 176289.80it/s]
    +
    77%|███████▋ | 3842362/4997817 [00:21&lt;00:06, 175878.63it/s]

    </pre>

    -
    76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]
    +
    77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]

    +

    77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]

    -
    76%|███████▋ | 3815315/4997817 [00:22&lt;00:06, 176195.40it/s]
    +
    77%|███████▋ | 3860020/4997817 [00:22&lt;00:06, 176085.76it/s]

    </pre>

    -
    76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]
    +
    77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]

    end{sphinxVerbatim}

    -

    76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]

    +

    77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]

    -
    77%|███████▋ | 3832943/4997817 [00:22&lt;00:06, 176217.91it/s]
    +
    78%|███████▊ | 3877713/4997817 [00:22&lt;00:06, 176335.90it/s]

    </pre>

    -
    77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]
    +
    78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]

    +

    78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]

    -
    77%|███████▋ | 3850566/4997817 [00:22&lt;00:06, 175984.71it/s]
    +
    78%|███████▊ | 3895398/4997817 [00:22&lt;00:06, 176488.73it/s]

    </pre>

    -
    77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]
    +
    78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]

    +

    78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]

    -
    77%|███████▋ | 3868280/4997817 [00:22&lt;00:06, 176328.23it/s]
    +
    78%|███████▊ | 3913047/4997817 [00:22&lt;00:06, 176136.64it/s]

    </pre>

    -
    77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]
    +
    78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]

    +

    78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]

    -
    78%|███████▊ | 3886009/4997817 [00:22&lt;00:06, 176615.53it/s]
    +
    79%|███████▊ | 3930661/4997817 [00:22&lt;00:06, 175612.13it/s]

    </pre>

    -
    78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]
    +
    79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]

    +

    79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]

    -
    78%|███████▊ | 3903735/4997817 [00:22&lt;00:06, 176805.25it/s]
    +
    79%|███████▉ | 3948223/4997817 [00:22&lt;00:05, 175087.13it/s]

    </pre>

    -
    78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]
    +
    79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]

    +

    79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]

    -
    78%|███████▊ | 3921416/4997817 [00:22&lt;00:06, 175913.44it/s]
    +
    79%|███████▉ | 3965733/4997817 [00:22&lt;00:05, 174652.10it/s]

    </pre>

    -
    78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]
    +
    79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]

    +

    79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]

    -
    79%|███████▉ | 3939009/4997817 [00:22&lt;00:06, 174464.47it/s]
    +
    80%|███████▉ | 3983199/4997817 [00:22&lt;00:05, 174387.13it/s]

    </pre>

    -
    79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]
    +
    80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]

    +

    80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]

    -
    79%|███████▉ | 3956739/4997817 [00:22&lt;00:05, 175304.34it/s]
    +
    80%|████████ | 4000638/4997817 [00:22&lt;00:05, 174241.75it/s]

    </pre>

    -
    79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]
    +
    80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]

    +

    80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]

    -
    80%|███████▉ | 3974273/4997817 [00:23&lt;00:05, 175259.45it/s]
    +
    80%|████████ | 4018063/4997817 [00:22&lt;00:05, 173923.39it/s]

    </pre>

    -
    80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]
    +
    80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]

    +

    80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]

    -
    80%|███████▉ | 3991801/4997817 [00:23&lt;00:05, 174954.67it/s]
    +
    81%|████████ | 4035456/4997817 [00:23&lt;00:05, 173705.37it/s]

    </pre>

    -
    80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]
    +
    81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]

    +

    81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]

    -
    80%|████████ | 4009353/4997817 [00:23&lt;00:05, 175121.09it/s]
    +
    81%|████████ | 4052836/4997817 [00:23&lt;00:05, 173729.99it/s]

    </pre>

    -
    80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]
    +
    81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]

    +

    81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]

    -
    81%|████████ | 4026867/4997817 [00:23&lt;00:05, 173265.86it/s]
    +
    81%|████████▏ | 4070210/4997817 [00:23&lt;00:05, 173644.46it/s]

    </pre>

    -
    81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]
    +
    81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]

    +

    81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]

    -
    81%|████████ | 4044247/4997817 [00:23&lt;00:05, 173420.69it/s]
    +
    82%|████████▏ | 4087575/4997817 [00:23&lt;00:05, 173363.43it/s]

    </pre>

    -
    81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]
    +
    82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]

    +

    82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]

    -
    81%|████████▏ | 4061622/4997817 [00:23&lt;00:05, 173517.75it/s]
    +
    82%|████████▏ | 4104912/4997817 [00:23&lt;00:05, 172752.22it/s]

    </pre>

    -
    81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]
    +
    82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]

    end{sphinxVerbatim}

    -

    81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]

    +

    82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]

    -
    82%|████████▏ | 4079152/4997817 [00:23&lt;00:05, 174046.72it/s]
    +
    82%|████████▏ | 4122188/4997817 [00:23&lt;00:05, 172741.68it/s]

    </pre>

    -
    82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]
    +
    82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]

    +

    82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]

    -
    82%|████████▏ | 4096676/4997817 [00:23&lt;00:05, 174400.95it/s]
    +
    83%|████████▎ | 4139532/4997817 [00:23&lt;00:04, 172949.34it/s]

    </pre>

    -
    82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]
    +
    83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]

    +

    83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]

    -
    82%|████████▏ | 4114202/4997817 [00:23&lt;00:05, 174655.12it/s]
    +
    83%|████████▎ | 4156828/4997817 [00:23&lt;00:04, 172905.44it/s]

    </pre>

    -
    82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]
    +
    83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]

    +

    83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]

    -
    83%|████████▎ | 4131750/4997817 [00:23&lt;00:04, 174901.35it/s]
    +
    84%|████████▎ | 4174119/4997817 [00:23&lt;00:04, 172799.02it/s]

    </pre>

    -
    83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]
    +
    84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]

    +

    84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]

    -
    83%|████████▎ | 4149241/4997817 [00:24&lt;00:04, 172736.10it/s]
    +
    84%|████████▍ | 4191400/4997817 [00:23&lt;00:04, 172756.10it/s]

    </pre>

    -
    83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]
    +
    84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]

    +

    84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]

    -
    83%|████████▎ | 4166522/4997817 [00:24&lt;00:04, 167352.81it/s]
    +
    84%|████████▍ | 4208751/4997817 [00:24&lt;00:04, 172980.66it/s]

    </pre>

    -
    83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]
    +
    84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]

    +

    84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]

    -
    84%|████████▎ | 4183511/4997817 [00:24&lt;00:04, 168090.30it/s]
    +
    85%|████████▍ | 4226050/4997817 [00:24&lt;00:04, 172879.74it/s]

    </pre>

    -
    84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]
    +
    85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]

    end{sphinxVerbatim}

    -

    84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]

    +

    85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]

    -
    84%|████████▍ | 4201097/4997817 [00:24&lt;00:04, 170371.01it/s]
    +
    85%|████████▍ | 4243369/4997817 [00:24&lt;00:04, 172968.69it/s]

    </pre>

    -
    84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]
    +
    85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]

    +

    85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]

    -
    84%|████████▍ | 4218582/4997817 [00:24&lt;00:04, 171693.25it/s]
    +
    85%|████████▌ | 4260775/4997817 [00:24&lt;00:04, 173293.15it/s]

    </pre>

    -
    84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]
    +
    85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]

    +

    85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]

    -
    85%|████████▍ | 4236156/4997817 [00:24&lt;00:04, 172891.32it/s]
    +
    86%|████████▌ | 4278105/4997817 [00:24&lt;00:04, 173114.95it/s]

    </pre>

    -
    85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]
    +
    86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]

    end{sphinxVerbatim}

    -

    85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]

    +

    86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]

    -
    85%|████████▌ | 4253460/4997817 [00:24&lt;00:04, 172756.53it/s]
    +
    86%|████████▌ | 4295470/4997817 [00:24&lt;00:04, 173272.36it/s]

    </pre>

    -
    85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]
    +
    86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]

    end{sphinxVerbatim}

    -

    85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]

    +

    86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]

    -
    85%|████████▌ | 4270930/4997817 [00:24&lt;00:04, 173335.32it/s]
    +
    86%|████████▋ | 4312798/4997817 [00:24&lt;00:03, 172936.05it/s]

    </pre>

    -
    85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]
    +
    86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]

    end{sphinxVerbatim}

    -

    85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]

    +

    86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]

    -
    86%|████████▌ | 4288392/4997817 [00:24&lt;00:04, 173716.02it/s]
    +
    87%|████████▋ | 4330092/4997817 [00:24&lt;00:03, 171778.19it/s]

    </pre>

    -
    86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]
    +
    87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]

    +

    87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]

    -
    86%|████████▌ | 4305769/4997817 [00:24&lt;00:03, 173286.65it/s]
    +
    87%|████████▋ | 4347530/4997817 [00:24&lt;00:03, 172550.63it/s]

    </pre>

    -
    86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]
    +
    87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]

    +

    87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]

    -
    87%|████████▋ | 4323150/4997817 [00:25&lt;00:03, 173442.37it/s]
    +
    87%|████████▋ | 4364981/4997817 [00:24&lt;00:03, 173133.77it/s]

    </pre>

    -
    87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]
    +
    87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]

    +

    87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]

    -
    87%|████████▋ | 4340497/4997817 [00:25&lt;00:03, 173133.52it/s]
    +
    88%|████████▊ | 4382422/4997817 [00:25&lt;00:03, 173513.94it/s]

    </pre>

    -
    87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]
    +
    88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]

    +

    88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]

    -
    87%|████████▋ | 4358001/4997817 [00:25&lt;00:03, 173700.88it/s]
    +
    88%|████████▊ | 4399899/4997817 [00:25&lt;00:03, 173885.79it/s]

    </pre>

    -
    87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]
    +
    88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]

    +

    88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]

    -
    88%|████████▊ | 4375373/4997817 [00:25&lt;00:03, 173619.54it/s]
    +
    88%|████████▊ | 4417356/4997817 [00:25&lt;00:03, 174088.31it/s]

    </pre>

    -
    88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]
    +
    88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]

    +

    88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]

    -
    88%|████████▊ | 4392737/4997817 [00:25&lt;00:03, 172930.17it/s]
    +
    89%|████████▊ | 4434825/4997817 [00:25&lt;00:03, 174265.44it/s]

    </pre>

    -
    88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]
    +
    89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]

    +

    89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]

    -
    88%|████████▊ | 4410032/4997817 [00:25&lt;00:03, 172793.37it/s]
    +
    89%|████████▉ | 4452271/4997817 [00:25&lt;00:03, 174320.20it/s]

    </pre>

    -
    88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]
    +
    89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]

    +

    89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]

    -
    89%|████████▊ | 4427313/4997817 [00:25&lt;00:03, 172447.22it/s]
    +
    89%|████████▉ | 4469704/4997817 [00:25&lt;00:03, 174269.50it/s]

    </pre>

    -
    89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]
    +
    89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]

    end{sphinxVerbatim}

    -

    89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]

    +

    89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]

    -
    89%|████████▉ | 4444714/4997817 [00:25&lt;00:03, 172910.97it/s]
    +
    90%|████████▉ | 4487143/4997817 [00:25&lt;00:02, 174302.93it/s]

    </pre>

    -
    89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]
    +
    90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]

    +

    90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]

    -
    89%|████████▉ | 4462212/4997817 [00:25&lt;00:03, 173527.82it/s]
    +
    90%|█████████ | 4504574/4997817 [00:25&lt;00:02, 174171.12it/s]

    </pre>

    -
    89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]
    +
    90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]

    +

    90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]

    -
    90%|████████▉ | 4479712/4997817 [00:25&lt;00:02, 173964.83it/s]
    +
    90%|█████████ | 4522003/4997817 [00:25&lt;00:02, 174200.70it/s]

    </pre>

    -
    90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]
    +
    90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]

    end{sphinxVerbatim}

    -

    90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]

    +

    90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]

    -
    90%|████████▉ | 4497109/4997817 [00:26&lt;00:02, 172926.76it/s]
    +
    91%|█████████ | 4539453/4997817 [00:25&lt;00:02, 174288.74it/s]

    </pre>

    -
    90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]
    +
    91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]

    end{sphinxVerbatim}

    -

    90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]

    +

    91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]

    -
    90%|█████████ | 4514404/4997817 [00:26&lt;00:02, 168027.62it/s]
    +
    91%|█████████ | 4556882/4997817 [00:26&lt;00:02, 174061.93it/s]

    </pre>

    -
    90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]
    +
    91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]

    end{sphinxVerbatim}

    -

    90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]

    +

    91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]

    -
    91%|█████████ | 4531883/4997817 [00:26&lt;00:02, 170005.20it/s]
    +
    92%|█████████▏| 4574310/4997817 [00:26&lt;00:02, 174120.98it/s]

    </pre>

    -
    91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]
    +
    92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]

    +

    92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]

    -
    91%|█████████ | 4549078/4997817 [00:26&lt;00:02, 170578.14it/s]
    +
    92%|█████████▏| 4591723/4997817 [00:26&lt;00:02, 173888.62it/s]

    </pre>

    -
    91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]
    +
    92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]

    +

    92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]

    -
    91%|█████████▏| 4566538/4997817 [00:26&lt;00:02, 171767.70it/s]
    +
    92%|█████████▏| 4609129/4997817 [00:26&lt;00:02, 173936.28it/s]

    </pre>

    -
    91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]
    +
    92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]

    end{sphinxVerbatim}

    -

    91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]

    +

    92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]

    -
    92%|█████████▏| 4583847/4997817 [00:26&lt;00:02, 172156.16it/s]
    +
    93%|█████████▎| 4626523/4997817 [00:26&lt;00:02, 173090.57it/s]

    </pre>

    -
    92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]
    +
    93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]

    +

    93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]

    -
    92%|█████████▏| 4601242/4997817 [00:26&lt;00:02, 172687.80it/s]
    +
    93%|█████████▎| 4643868/4997817 [00:26&lt;00:02, 173193.80it/s]

    </pre>

    -
    92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]
    +
    93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]

    +

    93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]

    -
    92%|█████████▏| 4618677/4997817 [00:26&lt;00:02, 173181.15it/s]
    +
    93%|█████████▎| 4661301/4997817 [00:26&lt;00:01, 173529.75it/s]

    </pre>

    -
    92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]
    +
    93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]

    +

    93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]

    -
    93%|█████████▎| 4636001/4997817 [00:26&lt;00:02, 173057.48it/s]
    +
    94%|█████████▎| 4678655/4997817 [00:26&lt;00:01, 173504.63it/s]

    </pre>

    -
    93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]
    +
    94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]

    +

    94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]

    -
    93%|█████████▎| 4653311/4997817 [00:26&lt;00:01, 172889.93it/s]
    +
    94%|█████████▍| 4696024/4997817 [00:26&lt;00:01, 173558.59it/s]

    </pre>

    -
    93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]
    +
    94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]

    +

    94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]

    -
    93%|█████████▎| 4670603/4997817 [00:27&lt;00:01, 172892.56it/s]
    +
    94%|█████████▍| 4713640/4997817 [00:26&lt;00:01, 174333.96it/s]

    </pre>

    -
    93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]
    +
    94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]

    +

    94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]

    -
    94%|█████████▍| 4687895/4997817 [00:27&lt;00:01, 172059.59it/s]
    +
    95%|█████████▍| 4731300/4997817 [00:27&lt;00:01, 175010.66it/s]

    </pre>

    -
    94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]
    +
    95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]

    +

    95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]

    -
    94%|█████████▍| 4705138/4997817 [00:27&lt;00:01, 172168.89it/s]
    +
    95%|█████████▌| 4748802/4997817 [00:27&lt;00:01, 174465.13it/s]

    </pre>

    -
    94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]
    +
    95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]

    +

    95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]

    -
    94%|█████████▍| 4722357/4997817 [00:27&lt;00:01, 171693.60it/s]
    +
    95%|█████████▌| 4766250/4997817 [00:27&lt;00:01, 174380.68it/s]

    </pre>

    -
    94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]
    +
    95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]

    +

    95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]

    -
    95%|█████████▍| 4739590/4997817 [00:27&lt;00:01, 171879.60it/s]
    +
    96%|█████████▌| 4783689/4997817 [00:27&lt;00:01, 174366.97it/s]

    </pre>

    -
    95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]
    +
    96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]

    +

    96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]

    -
    95%|█████████▌| 4756780/4997817 [00:27&lt;00:01, 171884.52it/s]
    +
    96%|█████████▌| 4801216/4997817 [00:27&lt;00:01, 174632.76it/s]

    </pre>

    -
    95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]
    +
    96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]

    +

    96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]

    -
    96%|█████████▌| 4773970/4997817 [00:27&lt;00:01, 171743.70it/s]
    +
    96%|█████████▋| 4818707/4997817 [00:27&lt;00:01, 174712.64it/s]

    </pre>

    -
    96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]
    +
    96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]

    +

    96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]

    -
    96%|█████████▌| 4791145/4997817 [00:27&lt;00:01, 170215.03it/s]
    +
    97%|█████████▋| 4836331/4997817 [00:27&lt;00:00, 175166.15it/s]

    </pre>

    -
    96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]
    +
    97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]

    +

    97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]

    -
    96%|█████████▌| 4808227/4997817 [00:27&lt;00:01, 170394.09it/s]
    +
    97%|█████████▋| 4853935/4997817 [00:27&lt;00:00, 175423.56it/s]

    </pre>

    -
    96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]
    +
    97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]

    +

    97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]

    -
    97%|█████████▋| 4825269/4997817 [00:27&lt;00:01, 169999.39it/s]
    +
    97%|█████████▋| 4871519/4997817 [00:27&lt;00:00, 175544.48it/s]

    </pre>

    -
    97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]
    +
    97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]

    +

    97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]

    -
    97%|█████████▋| 4842271/4997817 [00:28&lt;00:00, 169551.60it/s]
    +
    98%|█████████▊| 4889111/4997817 [00:28&lt;00:00, 175654.76it/s]

    </pre>

    -
    97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]
    +
    98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]

    +

    98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]

    -
    97%|█████████▋| 4859563/4997817 [00:28&lt;00:00, 170553.03it/s]
    +
    98%|█████████▊| 4906765/4997817 [00:28&lt;00:00, 175918.44it/s]

    </pre>

    -
    97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]
    +
    98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]

    +

    98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]

    -
    98%|█████████▊| 4876843/4997817 [00:28&lt;00:00, 171222.53it/s]
    +
    99%|█████████▊| 4924420/4997817 [00:28&lt;00:00, 176105.53it/s]

    </pre>

    -
    98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]
    +
    99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]

    +

    99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]

    -
    98%|█████████▊| 4894141/4997817 [00:28&lt;00:00, 171745.27it/s]
    +
    99%|█████████▉| 4942074/4997817 [00:28&lt;00:00, 176233.51it/s]

    </pre>

    -
    98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]
    +
    99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]

    +

    99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]

    -
    98%|█████████▊| 4911343/4997817 [00:28&lt;00:00, 171822.79it/s]
    +
    99%|█████████▉| 4959757/4997817 [00:28&lt;00:00, 176408.33it/s]

    </pre>

    -
    98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]
    +
    99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]

    +

    99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]

    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    99%|█████████▊| 4928558/4997817 [00:28&lt;00:00, 171916.69it/s]
    -

    </pre>

    -
    -
    -
    99%|█████████▊| 4928558/4997817 [00:28<00:00, 171916.69it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    99%|█████████▊| 4928558/4997817 [00:28<00:00, 171916.69it/s]

    -
    -
    -
    -
    100%|█████████▉| 4980547/4997817 [00:28&lt;00:00, 172781.54it/s]
    +
    100%|█████████▉| 4994784/4997817 [00:28&lt;00:00, 173724.98it/s]

    </pre>

    -
    100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]
    +
    100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]

    end{sphinxVerbatim}

    -

    100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]

    +

    100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]

    -
    100%|██████████| 4997817/4997817 [00:28&lt;00:00, 172510.48it/s]
    +
    100%|██████████| 4997817/4997817 [00:28&lt;00:00, 174597.11it/s]

    </pre>

    -
    100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]
    +
    100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]

    +

    100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]

    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -8862,7 +8801,7 @@

    Get label quality scores -{"state": {"4ebe86acc4994f7cb4822d338d391923": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5d2f696eac43179cb082c3b2c23a25": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3262fc457043473380cdd7edfa92baf2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ebe86acc4994f7cb4822d338d391923", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0c5d2f696eac43179cb082c3b2c23a25", "value": 30.0}}, "f7d59e715bba46e19c88c67c00ac18b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcbb24f60f1c4a36bfa772c6fef8afaa": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c9b1d060a9e14488b26b6ee37b2549fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f7d59e715bba46e19c88c67c00ac18b2", "placeholder": "\u200b", "style": "IPY_MODEL_bcbb24f60f1c4a36bfa772c6fef8afaa", "value": "number of examples processed for estimating thresholds: 100%"}}, "df6a7efa0c0f486d86388910b18ab9dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8dab04e2e468429995d2bf045d872d7b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "492afedc485a402cbcf0858a87fc33ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_df6a7efa0c0f486d86388910b18ab9dc", "placeholder": "\u200b", "style": "IPY_MODEL_8dab04e2e468429995d2bf045d872d7b", "value": " 30/30 [00:00<00:00, 396.58it/s]"}}, "67823768b24b4699aeed9aeb6a7c6b59": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7265cd8663c14e55866a0fb07ede6714": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9b1d060a9e14488b26b6ee37b2549fe", "IPY_MODEL_3262fc457043473380cdd7edfa92baf2", "IPY_MODEL_492afedc485a402cbcf0858a87fc33ff"], "layout": "IPY_MODEL_67823768b24b4699aeed9aeb6a7c6b59"}}, "abca464ea3ea4cc88ec14c37a595aebe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "335db8ee290c40a1a47243010e5125e5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f9de84b5a8d3400e8eab16b99fc7fa0d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_abca464ea3ea4cc88ec14c37a595aebe", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_335db8ee290c40a1a47243010e5125e5", "value": 30.0}}, "85748b16da5b474cbb0984f052b2c201": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc656dc9686f4736b5efe32ddf953db0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e40e27fedf3d4ddb82c6a6d619455317": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_85748b16da5b474cbb0984f052b2c201", "placeholder": "\u200b", "style": "IPY_MODEL_cc656dc9686f4736b5efe32ddf953db0", "value": "number of examples processed for checking labels: 100%"}}, "ec17cd81455243cc9fbd17bc7a3730f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e691b0e199074668b59fd99554cbfa66": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d74d38913ea5425e994d5da2889d784f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec17cd81455243cc9fbd17bc7a3730f5", "placeholder": "\u200b", "style": "IPY_MODEL_e691b0e199074668b59fd99554cbfa66", "value": " 30/30 [00:37<00:00, 1.45s/it]"}}, "0287b7c393564ba4826d89c2f9d6cf8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2537f39483ed4657adc21de78f6206fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e40e27fedf3d4ddb82c6a6d619455317", "IPY_MODEL_f9de84b5a8d3400e8eab16b99fc7fa0d", "IPY_MODEL_d74d38913ea5425e994d5da2889d784f"], "layout": "IPY_MODEL_0287b7c393564ba4826d89c2f9d6cf8f"}}, "7553ca4a0e6a42e38ac424ba3dc7525f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "442c4b1d852547b7804a91ac84aa2cb8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1075b11ff74949078c4e22ce2fc5f8b9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7553ca4a0e6a42e38ac424ba3dc7525f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_442c4b1d852547b7804a91ac84aa2cb8", "value": 30.0}}, "93aa13676ddc411aab09198732f3580d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcbc5d4f461c444eac1c2bca47b8a255": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9ca6e877d0564cf7abbfb313556da941": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_93aa13676ddc411aab09198732f3580d", "placeholder": "\u200b", "style": "IPY_MODEL_fcbc5d4f461c444eac1c2bca47b8a255", "value": "images processed using softmin: 100%"}}, "bfbe24bbbc654c8db82f9b0c37b1e5c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4c605d920f74c41af16a33749531610": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "825bfaf10d3d40d7ba9f49f4be9b3cb7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bfbe24bbbc654c8db82f9b0c37b1e5c8", "placeholder": "\u200b", "style": "IPY_MODEL_b4c605d920f74c41af16a33749531610", "value": " 30/30 [00:01<00:00, 22.81it/s]"}}, "1cb0f026b87d4ae6993a4fa7249a8069": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc3298253471476bb2be84059397839b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9ca6e877d0564cf7abbfb313556da941", "IPY_MODEL_1075b11ff74949078c4e22ce2fc5f8b9", "IPY_MODEL_825bfaf10d3d40d7ba9f49f4be9b3cb7"], "layout": "IPY_MODEL_1cb0f026b87d4ae6993a4fa7249a8069"}}}, "version_major": 2, "version_minor": 0} +{"state": {"ddc75898d65c41a5992515a897c16f0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bd3806bac11434da5468ebbe4748d63": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e4bd3681b88942b28c2c68163379c318": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ddc75898d65c41a5992515a897c16f0c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6bd3806bac11434da5468ebbe4748d63", "value": 30.0}}, "f3ecd9ff4d53434f9506d98cabc5e062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b42822349fcf4807ace9a36a8655d3ca": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4e0225defcb1446e83ce75a866b1b560": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3ecd9ff4d53434f9506d98cabc5e062", "placeholder": "\u200b", "style": "IPY_MODEL_b42822349fcf4807ace9a36a8655d3ca", "value": "number of examples processed for estimating thresholds: 100%"}}, "ca51262bf9524231a23378a92429938a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1af59dab6f546bfbc0469e346baaf68": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "00c3e59d7d244af597f16fb343e03d1e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca51262bf9524231a23378a92429938a", "placeholder": "\u200b", "style": "IPY_MODEL_f1af59dab6f546bfbc0469e346baaf68", "value": " 30/30 [00:00<00:00, 400.84it/s]"}}, "337fd27a78fc413cbb9410907415daa7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af52c292e7f247839109788208ff5922": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4e0225defcb1446e83ce75a866b1b560", "IPY_MODEL_e4bd3681b88942b28c2c68163379c318", "IPY_MODEL_00c3e59d7d244af597f16fb343e03d1e"], "layout": "IPY_MODEL_337fd27a78fc413cbb9410907415daa7"}}, "8abe14247b17472d87bed8e579ddc8a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0c5dabccd80447884aacc6543b0a29c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5bb8c700a31b48d0813206acf7f94d28": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8abe14247b17472d87bed8e579ddc8a3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e0c5dabccd80447884aacc6543b0a29c", "value": 30.0}}, "1881eb9735324b5caffc9b4beed76776": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43b11210cae243aa8c3783e0e3622624": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1031ae860a8d40f78ad75a6d85cef9f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1881eb9735324b5caffc9b4beed76776", "placeholder": "\u200b", "style": "IPY_MODEL_43b11210cae243aa8c3783e0e3622624", "value": "number of examples processed for checking labels: 100%"}}, "cb471f4d9435473ab2ddb6a7f16f45c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c932ad2aaf7a4c13aaf72c98bc031b4c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2b2a221859674f0193bc880ff585ccbd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cb471f4d9435473ab2ddb6a7f16f45c7", "placeholder": "\u200b", "style": "IPY_MODEL_c932ad2aaf7a4c13aaf72c98bc031b4c", "value": " 30/30 [00:37<00:00, 1.25s/it]"}}, "ed847fe8426546678db9da2b0e59827f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4eb1b29351274d4aa33affc14e71ae2a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1031ae860a8d40f78ad75a6d85cef9f7", "IPY_MODEL_5bb8c700a31b48d0813206acf7f94d28", "IPY_MODEL_2b2a221859674f0193bc880ff585ccbd"], "layout": "IPY_MODEL_ed847fe8426546678db9da2b0e59827f"}}, "7a3ae5f1f2d2401983a8b0cd8d4302ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2292c86728984723b8c80e0432d9d577": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aaeb62906b67472181fb6d9eff73caf2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a3ae5f1f2d2401983a8b0cd8d4302ef", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2292c86728984723b8c80e0432d9d577", "value": 30.0}}, "1313c53e832b4cde81ccb98806fa4ca9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b8f40d6cd83494abbd50a1ffbd0c140": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7de801ef20ea442baa968adb14b633ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1313c53e832b4cde81ccb98806fa4ca9", "placeholder": "\u200b", "style": "IPY_MODEL_6b8f40d6cd83494abbd50a1ffbd0c140", "value": "images processed using softmin: 100%"}}, "52296e0e51f04d038b9f74610367ee7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85cb114ea843432ab3f307100326ed78": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "739e1c48b55047b898dbae54b46400c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_52296e0e51f04d038b9f74610367ee7f", "placeholder": "\u200b", "style": "IPY_MODEL_85cb114ea843432ab3f307100326ed78", "value": " 30/30 [00:01<00:00, 23.47it/s]"}}, "7014ddfdc5ca4502ae5e8f8a16c8e83e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f1e27caa1a14ef9b3b8dbd40ae65a86": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7de801ef20ea442baa968adb14b633ca", "IPY_MODEL_aaeb62906b67472181fb6d9eff73caf2", "IPY_MODEL_739e1c48b55047b898dbae54b46400c4"], "layout": "IPY_MODEL_7014ddfdc5ca4502ae5e8f8a16c8e83e"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 406700e9f..e4b958875 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:56.197660Z", - "iopub.status.busy": "2024-01-16T18:22:56.197207Z", - "iopub.status.idle": "2024-01-16T18:22:58.044089Z", - "shell.execute_reply": "2024-01-16T18:22:58.043294Z" + "iopub.execute_input": "2024-01-17T17:54:33.185833Z", + "iopub.status.busy": "2024-01-17T17:54:33.185289Z", + "iopub.status.idle": "2024-01-17T17:54:38.730471Z", + "shell.execute_reply": "2024-01-17T17:54:38.729755Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:22:58.047230Z", - "iopub.status.busy": "2024-01-16T18:22:58.046784Z", - "iopub.status.idle": "2024-01-16T18:23:54.667377Z", - "shell.execute_reply": "2024-01-16T18:23:54.666670Z" + "iopub.execute_input": "2024-01-17T17:54:38.733553Z", + "iopub.status.busy": "2024-01-17T17:54:38.733149Z", + "iopub.status.idle": "2024-01-17T17:55:34.410031Z", + "shell.execute_reply": "2024-01-17T17:55:34.409280Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:54.670403Z", - "iopub.status.busy": "2024-01-16T18:23:54.669960Z", - "iopub.status.idle": "2024-01-16T18:23:55.686798Z", - "shell.execute_reply": "2024-01-16T18:23:55.686208Z" + "iopub.execute_input": "2024-01-17T17:55:34.412998Z", + "iopub.status.busy": "2024-01-17T17:55:34.412589Z", + "iopub.status.idle": "2024-01-17T17:55:35.451606Z", + "shell.execute_reply": "2024-01-17T17:55:35.450996Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.689787Z", - "iopub.status.busy": "2024-01-16T18:23:55.689213Z", - "iopub.status.idle": "2024-01-16T18:23:55.692592Z", - "shell.execute_reply": "2024-01-16T18:23:55.692093Z" + "iopub.execute_input": "2024-01-17T17:55:35.454593Z", + "iopub.status.busy": "2024-01-17T17:55:35.454072Z", + "iopub.status.idle": "2024-01-17T17:55:35.457610Z", + "shell.execute_reply": "2024-01-17T17:55:35.457092Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.694838Z", - "iopub.status.busy": "2024-01-16T18:23:55.694643Z", - "iopub.status.idle": "2024-01-16T18:23:55.698784Z", - "shell.execute_reply": "2024-01-16T18:23:55.698263Z" + "iopub.execute_input": "2024-01-17T17:55:35.459980Z", + "iopub.status.busy": "2024-01-17T17:55:35.459606Z", + "iopub.status.idle": "2024-01-17T17:55:35.463618Z", + "shell.execute_reply": "2024-01-17T17:55:35.463103Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.701075Z", - "iopub.status.busy": "2024-01-16T18:23:55.700688Z", - "iopub.status.idle": "2024-01-16T18:23:55.704328Z", - "shell.execute_reply": "2024-01-16T18:23:55.703833Z" + "iopub.execute_input": "2024-01-17T17:55:35.466124Z", + "iopub.status.busy": "2024-01-17T17:55:35.465756Z", + "iopub.status.idle": "2024-01-17T17:55:35.469740Z", + "shell.execute_reply": "2024-01-17T17:55:35.469205Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.706531Z", - "iopub.status.busy": "2024-01-16T18:23:55.706238Z", - "iopub.status.idle": "2024-01-16T18:23:55.709224Z", - "shell.execute_reply": "2024-01-16T18:23:55.708724Z" + "iopub.execute_input": "2024-01-17T17:55:35.472056Z", + "iopub.status.busy": "2024-01-17T17:55:35.471688Z", + "iopub.status.idle": "2024-01-17T17:55:35.474693Z", + "shell.execute_reply": "2024-01-17T17:55:35.474146Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:23:55.711504Z", - "iopub.status.busy": "2024-01-16T18:23:55.711215Z", - "iopub.status.idle": "2024-01-16T18:25:22.950562Z", - "shell.execute_reply": "2024-01-16T18:25:22.949772Z" + "iopub.execute_input": "2024-01-17T17:55:35.477343Z", + "iopub.status.busy": "2024-01-17T17:55:35.477068Z", + "iopub.status.idle": "2024-01-17T17:57:02.162514Z", + "shell.execute_reply": "2024-01-17T17:57:02.161814Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7265cd8663c14e55866a0fb07ede6714", + "model_id": "af52c292e7f247839109788208ff5922", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2537f39483ed4657adc21de78f6206fc", + "model_id": "4eb1b29351274d4aa33affc14e71ae2a", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:22.953734Z", - "iopub.status.busy": "2024-01-16T18:25:22.953257Z", - "iopub.status.idle": "2024-01-16T18:25:23.718514Z", - "shell.execute_reply": "2024-01-16T18:25:23.717840Z" + "iopub.execute_input": "2024-01-17T17:57:02.165671Z", + "iopub.status.busy": "2024-01-17T17:57:02.165235Z", + "iopub.status.idle": "2024-01-17T17:57:02.924551Z", + "shell.execute_reply": "2024-01-17T17:57:02.923895Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:23.721388Z", - "iopub.status.busy": "2024-01-16T18:25:23.720795Z", - "iopub.status.idle": "2024-01-16T18:25:25.857600Z", - "shell.execute_reply": "2024-01-16T18:25:25.856944Z" + "iopub.execute_input": "2024-01-17T17:57:02.927428Z", + "iopub.status.busy": "2024-01-17T17:57:02.926914Z", + "iopub.status.idle": "2024-01-17T17:57:05.032765Z", + "shell.execute_reply": "2024-01-17T17:57:05.032080Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:25.860249Z", - "iopub.status.busy": "2024-01-16T18:25:25.859989Z", - "iopub.status.idle": "2024-01-16T18:25:55.087025Z", - "shell.execute_reply": "2024-01-16T18:25:55.086359Z" + "iopub.execute_input": "2024-01-17T17:57:05.035349Z", + "iopub.status.busy": "2024-01-17T17:57:05.034956Z", + "iopub.status.idle": "2024-01-17T17:57:33.893233Z", + "shell.execute_reply": "2024-01-17T17:57:33.892612Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17227/4997817 [00:00<00:28, 172261.13it/s]" + " 0%| | 17020/4997817 [00:00<00:29, 170190.42it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34703/4997817 [00:00<00:28, 173727.46it/s]" + " 1%| | 34278/4997817 [00:00<00:28, 171581.92it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52282/4997817 [00:00<00:28, 174665.13it/s]" + " 1%| | 51535/4997817 [00:00<00:28, 172027.72it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69970/4997817 [00:00<00:28, 175535.12it/s]" + " 1%|▏ | 68798/4997817 [00:00<00:28, 172261.98it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87524/4997817 [00:00<00:27, 175529.09it/s]" + " 2%|▏ | 86025/4997817 [00:00<00:28, 172184.70it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105077/4997817 [00:00<00:27, 175335.03it/s]" + " 2%|▏ | 103244/4997817 [00:00<00:28, 172034.46it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122611/4997817 [00:00<00:27, 174923.23it/s]" + " 2%|▏ | 120448/4997817 [00:00<00:28, 171883.99it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140205/4997817 [00:00<00:27, 175243.63it/s]" + " 3%|▎ | 137653/4997817 [00:00<00:28, 171932.79it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157878/4997817 [00:00<00:27, 175706.48it/s]" + " 3%|▎ | 154958/4997817 [00:00<00:28, 172277.83it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 175449/4997817 [00:01<00:27, 175694.70it/s]" + " 3%|▎ | 172186/4997817 [00:01<00:28, 168115.24it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 193036/4997817 [00:01<00:27, 175746.44it/s]" + " 4%|▍ | 189570/4997817 [00:01<00:28, 169833.65it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210795/4997817 [00:01<00:27, 176303.57it/s]" + " 4%|▍ | 207153/4997817 [00:01<00:27, 171632.32it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 228426/4997817 [00:01<00:27, 175557.75it/s]" + " 4%|▍ | 224665/4997817 [00:01<00:27, 172675.99it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246018/4997817 [00:01<00:27, 175663.84it/s]" + " 5%|▍ | 242267/4997817 [00:01<00:27, 173678.83it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263843/4997817 [00:01<00:26, 176438.25it/s]" + " 5%|▌ | 259798/4997817 [00:01<00:27, 174165.15it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 281488/4997817 [00:01<00:27, 172253.76it/s]" + " 6%|▌ | 277327/4997817 [00:01<00:27, 174500.04it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 299179/4997817 [00:01<00:27, 173624.94it/s]" + " 6%|▌ | 294883/4997817 [00:01<00:26, 174816.29it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 316949/4997817 [00:01<00:26, 174831.53it/s]" + " 6%|▋ | 312395/4997817 [00:01<00:26, 174906.22it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 334447/4997817 [00:01<00:26, 174672.59it/s]" + " 7%|▋ | 329935/4997817 [00:01<00:26, 175050.91it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 352070/4997817 [00:02<00:26, 175096.63it/s]" + " 7%|▋ | 347443/4997817 [00:02<00:26, 175054.81it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369727/4997817 [00:02<00:26, 175534.32it/s]" + " 7%|▋ | 364973/4997817 [00:02<00:26, 175126.29it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 387433/4997817 [00:02<00:26, 175988.24it/s]" + " 8%|▊ | 382494/4997817 [00:02<00:26, 175147.44it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405082/4997817 [00:02<00:26, 176134.84it/s]" + " 8%|▊ | 400041/4997817 [00:02<00:26, 175240.87it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 422783/4997817 [00:02<00:25, 176395.51it/s]" + " 8%|▊ | 417566/4997817 [00:02<00:26, 173702.60it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 440425/4997817 [00:02<00:25, 176241.72it/s]" + " 9%|▊ | 435051/4997817 [00:02<00:26, 174043.25it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 458051/4997817 [00:02<00:25, 175933.35it/s]" + " 9%|▉ | 452540/4997817 [00:02<00:26, 174293.87it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 475646/4997817 [00:02<00:25, 175259.61it/s]" + " 9%|▉ | 470079/4997817 [00:02<00:25, 174620.38it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493283/4997817 [00:02<00:25, 175589.10it/s]" + " 10%|▉ | 487543/4997817 [00:02<00:25, 174621.94it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 510968/4997817 [00:02<00:25, 175964.15it/s]" + " 10%|█ | 505007/4997817 [00:02<00:25, 174578.03it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 528791/4997817 [00:03<00:25, 176639.75it/s]" + " 10%|█ | 522466/4997817 [00:03<00:26, 167350.37it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 546506/4997817 [00:03<00:25, 176790.75it/s]" + " 11%|█ | 539898/4997817 [00:03<00:26, 169376.69it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 564262/4997817 [00:03<00:25, 177017.54it/s]" + " 11%|█ | 557335/4997817 [00:03<00:25, 170838.31it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 581997/4997817 [00:03<00:24, 177113.84it/s]" + " 11%|█▏ | 574736/4997817 [00:03<00:25, 171773.60it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 599709/4997817 [00:03<00:24, 176690.32it/s]" + " 12%|█▏ | 592170/4997817 [00:03<00:25, 172531.38it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 617412/4997817 [00:03<00:24, 176780.08it/s]" + " 12%|█▏ | 609571/4997817 [00:03<00:25, 172968.76it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635091/4997817 [00:03<00:24, 176406.02it/s]" + " 13%|█▎ | 627002/4997817 [00:03<00:25, 173366.60it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 652732/4997817 [00:03<00:24, 176237.39it/s]" + " 13%|█▎ | 644443/4997817 [00:03<00:25, 173677.03it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670432/4997817 [00:03<00:24, 176462.89it/s]" + " 13%|█▎ | 661854/4997817 [00:03<00:24, 173804.40it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 688079/4997817 [00:03<00:24, 176157.92it/s]" + " 14%|█▎ | 679240/4997817 [00:03<00:24, 173608.41it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705696/4997817 [00:04<00:24, 175449.15it/s]" + " 14%|█▍ | 696605/4997817 [00:04<00:24, 173292.90it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723242/4997817 [00:04<00:24, 174539.39it/s]" + " 14%|█▍ | 713937/4997817 [00:04<00:24, 173104.99it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 740698/4997817 [00:04<00:24, 173584.50it/s]" + " 15%|█▍ | 731313/4997817 [00:04<00:24, 173297.79it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 758058/4997817 [00:04<00:24, 172795.80it/s]" + " 15%|█▍ | 748645/4997817 [00:04<00:24, 173293.85it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 775339/4997817 [00:04<00:24, 172581.89it/s]" + " 15%|█▌ | 765976/4997817 [00:04<00:24, 173226.36it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 792598/4997817 [00:04<00:24, 172165.33it/s]" + " 16%|█▌ | 783313/4997817 [00:04<00:24, 173268.21it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809815/4997817 [00:04<00:25, 167297.60it/s]" + " 16%|█▌ | 800713/4997817 [00:04<00:24, 173485.98it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826573/4997817 [00:04<00:24, 167371.05it/s]" + " 16%|█▋ | 818145/4997817 [00:04<00:24, 173734.84it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843744/4997817 [00:04<00:24, 168646.95it/s]" + " 17%|█▋ | 835547/4997817 [00:04<00:23, 173817.17it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 860832/4997817 [00:04<00:24, 169304.60it/s]" + " 17%|█▋ | 853044/4997817 [00:04<00:23, 174158.84it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 877949/4997817 [00:05<00:24, 169856.65it/s]" + " 17%|█▋ | 870461/4997817 [00:05<00:24, 169906.69it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 895277/4997817 [00:05<00:24, 170874.65it/s]" + " 18%|█▊ | 887788/4997817 [00:05<00:24, 170896.25it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912949/4997817 [00:05<00:23, 172617.35it/s]" + " 18%|█▊ | 905410/4997817 [00:05<00:23, 172468.13it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 930539/4997817 [00:05<00:23, 173597.86it/s]" + " 18%|█▊ | 922998/4997817 [00:05<00:23, 173479.95it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 948067/4997817 [00:05<00:23, 174098.75it/s]" + " 19%|█▉ | 940562/4997817 [00:05<00:23, 174120.12it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 965686/4997817 [00:05<00:23, 174723.74it/s]" + " 19%|█▉ | 958279/4997817 [00:05<00:23, 175029.36it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 983278/4997817 [00:05<00:22, 175080.04it/s]" + " 20%|█▉ | 976026/4997817 [00:05<00:22, 175755.39it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1000897/4997817 [00:05<00:22, 175408.44it/s]" + " 20%|█▉ | 993657/4997817 [00:05<00:22, 175917.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018439/4997817 [00:05<00:22, 175241.58it/s]" + " 20%|██ | 1011277/4997817 [00:05<00:22, 175998.51it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1036049/4997817 [00:05<00:22, 175496.75it/s]" + " 21%|██ | 1028880/4997817 [00:05<00:22, 175962.99it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1053831/4997817 [00:06<00:22, 176189.86it/s]" + " 21%|██ | 1046537/4997817 [00:06<00:22, 176142.71it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1071488/4997817 [00:06<00:22, 176301.12it/s]" + " 21%|██▏ | 1064153/4997817 [00:06<00:22, 176017.85it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1089119/4997817 [00:06<00:22, 175824.24it/s]" + " 22%|██▏ | 1081783/4997817 [00:06<00:22, 176099.57it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1106702/4997817 [00:06<00:22, 174838.49it/s]" + " 22%|██▏ | 1099463/4997817 [00:06<00:22, 176305.95it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1124188/4997817 [00:06<00:22, 174259.50it/s]" + " 22%|██▏ | 1117142/4997817 [00:06<00:21, 176449.50it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1141616/4997817 [00:06<00:22, 173489.58it/s]" + " 23%|██▎ | 1134811/4997817 [00:06<00:21, 176519.40it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158967/4997817 [00:06<00:22, 172906.99it/s]" + " 23%|██▎ | 1152481/4997817 [00:06<00:21, 176570.59it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1176259/4997817 [00:06<00:22, 172319.26it/s]" + " 23%|██▎ | 1170175/4997817 [00:06<00:21, 176680.05it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1193492/4997817 [00:06<00:22, 171945.54it/s]" + " 24%|██▍ | 1187844/4997817 [00:06<00:21, 176223.47it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1210687/4997817 [00:06<00:22, 171277.32it/s]" + " 24%|██▍ | 1205467/4997817 [00:06<00:21, 175743.33it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227816/4997817 [00:07<00:22, 171196.20it/s]" + " 24%|██▍ | 1223042/4997817 [00:07<00:21, 175407.48it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244936/4997817 [00:07<00:21, 171105.75it/s]" + " 25%|██▍ | 1240584/4997817 [00:07<00:22, 169787.87it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262047/4997817 [00:07<00:21, 170697.29it/s]" + " 25%|██▌ | 1258080/4997817 [00:07<00:21, 171298.95it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1279117/4997817 [00:07<00:21, 170235.82it/s]" + " 26%|██▌ | 1275621/4997817 [00:07<00:21, 172507.87it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1296263/4997817 [00:07<00:21, 170598.29it/s]" + " 26%|██▌ | 1293239/4997817 [00:07<00:21, 173592.71it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313567/4997817 [00:07<00:21, 171324.63it/s]" + " 26%|██▌ | 1310879/4997817 [00:07<00:21, 174425.31it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1330723/4997817 [00:07<00:21, 171391.44it/s]" + " 27%|██▋ | 1328499/4997817 [00:07<00:20, 174950.37it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1347863/4997817 [00:07<00:21, 168404.23it/s]" + " 27%|██▋ | 1346196/4997817 [00:07<00:20, 175551.80it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365176/4997817 [00:07<00:21, 169800.65it/s]" + " 27%|██▋ | 1363796/4997817 [00:07<00:20, 175682.64it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382365/4997817 [00:07<00:21, 170417.67it/s]" + " 28%|██▊ | 1381388/4997817 [00:07<00:20, 175751.36it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1399553/4997817 [00:08<00:21, 170850.68it/s]" + " 28%|██▊ | 1399032/4997817 [00:08<00:20, 175954.67it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1416796/4997817 [00:08<00:20, 171320.10it/s]" + " 28%|██▊ | 1416697/4997817 [00:08<00:20, 176159.57it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1433996/4997817 [00:08<00:20, 171521.49it/s]" + " 29%|██▊ | 1434315/4997817 [00:08<00:20, 175929.86it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1451152/4997817 [00:08<00:20, 171331.46it/s]" + " 29%|██▉ | 1451910/4997817 [00:08<00:20, 175645.91it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1468432/4997817 [00:08<00:20, 171767.80it/s]" + " 29%|██▉ | 1469558/4997817 [00:08<00:20, 175892.38it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485688/4997817 [00:08<00:20, 172001.17it/s]" + " 30%|██▉ | 1487190/4997817 [00:08<00:19, 176018.51it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1503044/4997817 [00:08<00:20, 172465.46it/s]" + " 30%|███ | 1504883/4997817 [00:08<00:19, 176288.05it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1520292/4997817 [00:08<00:20, 171469.35it/s]" + " 30%|███ | 1522513/4997817 [00:08<00:19, 176105.53it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1537441/4997817 [00:08<00:20, 170907.00it/s]" + " 31%|███ | 1540124/4997817 [00:08<00:19, 175674.86it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1554534/4997817 [00:08<00:20, 170541.76it/s]" + " 31%|███ | 1557753/4997817 [00:08<00:19, 175855.08it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1571590/4997817 [00:09<00:20, 170339.93it/s]" + " 32%|███▏ | 1575339/4997817 [00:09<00:19, 175831.62it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588625/4997817 [00:09<00:20, 169900.29it/s]" + " 32%|███▏ | 1592923/4997817 [00:09<00:19, 175647.50it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1605616/4997817 [00:09<00:20, 169307.33it/s]" + " 32%|███▏ | 1610488/4997817 [00:09<00:19, 175441.73it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622548/4997817 [00:09<00:19, 168907.07it/s]" + " 33%|███▎ | 1628033/4997817 [00:09<00:19, 175079.33it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1639440/4997817 [00:09<00:19, 168734.37it/s]" + " 33%|███▎ | 1645542/4997817 [00:09<00:19, 174685.15it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656314/4997817 [00:09<00:19, 168681.23it/s]" + " 33%|███▎ | 1663139/4997817 [00:09<00:19, 175064.52it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1673231/4997817 [00:09<00:19, 168826.29it/s]" + " 34%|███▎ | 1680913/4997817 [00:09<00:18, 175863.54it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1690397/4997817 [00:09<00:19, 169670.29it/s]" + " 34%|███▍ | 1698596/4997817 [00:09<00:18, 176151.13it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1707619/4997817 [00:09<00:19, 170432.29it/s]" + " 34%|███▍ | 1716322/4997817 [00:09<00:18, 176479.89it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1724810/4997817 [00:09<00:19, 170872.53it/s]" + " 35%|███▍ | 1733971/4997817 [00:09<00:18, 176392.59it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1741898/4997817 [00:10<00:19, 169922.81it/s]" + " 35%|███▌ | 1751611/4997817 [00:10<00:18, 176312.85it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1759282/4997817 [00:10<00:18, 171088.55it/s]" + " 35%|███▌ | 1769243/4997817 [00:10<00:18, 176057.66it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1776615/4997817 [00:10<00:18, 171754.84it/s]" + " 36%|███▌ | 1786849/4997817 [00:10<00:18, 175301.52it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1793792/4997817 [00:10<00:18, 171733.69it/s]" + " 36%|███▌ | 1804380/4997817 [00:10<00:18, 174824.34it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810967/4997817 [00:10<00:18, 171725.14it/s]" + " 36%|███▋ | 1821864/4997817 [00:10<00:18, 174463.24it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1828180/4997817 [00:10<00:18, 171842.93it/s]" + " 37%|███▋ | 1839311/4997817 [00:10<00:18, 174092.08it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1845365/4997817 [00:10<00:18, 171576.58it/s]" + " 37%|███▋ | 1856721/4997817 [00:10<00:18, 173962.14it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1862524/4997817 [00:10<00:18, 171564.72it/s]" + " 37%|███▋ | 1874137/4997817 [00:10<00:17, 174019.45it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1879748/4997817 [00:10<00:18, 171764.89it/s]" + " 38%|███▊ | 1891540/4997817 [00:10<00:17, 173957.64it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896925/4997817 [00:10<00:18, 171455.38it/s]" + " 38%|███▊ | 1908997/4997817 [00:10<00:17, 174137.51it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1914071/4997817 [00:11<00:18, 170925.15it/s]" + " 39%|███▊ | 1926421/4997817 [00:11<00:17, 174167.14it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1931228/4997817 [00:11<00:17, 171116.52it/s]" + " 39%|███▉ | 1943838/4997817 [00:11<00:17, 173918.04it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1948457/4997817 [00:11<00:17, 171464.69it/s]" + " 39%|███▉ | 1961230/4997817 [00:11<00:17, 173664.98it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965604/4997817 [00:11<00:17, 171453.11it/s]" + " 40%|███▉ | 1978825/4997817 [00:11<00:17, 174345.13it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1982888/4997817 [00:11<00:17, 171865.63it/s]" + " 40%|███▉ | 1996360/4997817 [00:11<00:17, 174644.54it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000075/4997817 [00:11<00:17, 171498.59it/s]" + " 40%|████ | 2013981/4997817 [00:11<00:17, 175111.69it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2017226/4997817 [00:11<00:17, 171401.49it/s]" + " 41%|████ | 2031645/4997817 [00:11<00:16, 175566.48it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034367/4997817 [00:11<00:17, 171212.80it/s]" + " 41%|████ | 2049308/4997817 [00:11<00:16, 175884.15it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2051645/4997817 [00:11<00:17, 171672.83it/s]" + " 41%|████▏ | 2066943/4997817 [00:11<00:16, 176020.37it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068813/4997817 [00:11<00:17, 171196.61it/s]" + " 42%|████▏ | 2084572/4997817 [00:11<00:16, 176098.77it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2085940/4997817 [00:12<00:17, 171194.68it/s]" + " 42%|████▏ | 2102182/4997817 [00:12<00:16, 176041.28it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2103060/4997817 [00:12<00:17, 169427.08it/s]" + " 42%|████▏ | 2119787/4997817 [00:12<00:16, 176040.30it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2120062/4997817 [00:12<00:16, 169600.43it/s]" + " 43%|████▎ | 2137392/4997817 [00:12<00:16, 175207.25it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2137025/4997817 [00:12<00:16, 169395.32it/s]" + " 43%|████▎ | 2154914/4997817 [00:12<00:16, 175065.50it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2153986/4997817 [00:12<00:16, 169450.28it/s]" + " 43%|████▎ | 2172458/4997817 [00:12<00:16, 175173.06it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2170933/4997817 [00:12<00:16, 169371.37it/s]" + " 44%|████▍ | 2189976/4997817 [00:12<00:16, 174843.50it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187950/4997817 [00:12<00:16, 169607.04it/s]" + " 44%|████▍ | 2207501/4997817 [00:12<00:15, 174963.16it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2204912/4997817 [00:12<00:16, 169591.24it/s]" + " 45%|████▍ | 2225013/4997817 [00:12<00:15, 175007.79it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2221872/4997817 [00:12<00:16, 167874.22it/s]" + " 45%|████▍ | 2242537/4997817 [00:12<00:15, 175074.53it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2238890/4997817 [00:12<00:16, 168557.59it/s]" + " 45%|████▌ | 2260048/4997817 [00:12<00:15, 175080.21it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2256070/4997817 [00:13<00:16, 169521.99it/s]" + " 46%|████▌ | 2277557/4997817 [00:13<00:15, 174537.91it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273059/4997817 [00:13<00:16, 169630.06it/s]" + " 46%|████▌ | 2295012/4997817 [00:13<00:15, 174060.07it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290025/4997817 [00:13<00:15, 169632.41it/s]" + " 46%|████▋ | 2312486/4997817 [00:13<00:15, 174258.48it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306990/4997817 [00:13<00:15, 169380.56it/s]" + " 47%|████▋ | 2329913/4997817 [00:13<00:15, 174219.23it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2323974/4997817 [00:13<00:15, 169516.77it/s]" + " 47%|████▋ | 2347606/4997817 [00:13<00:15, 175028.34it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2341059/4997817 [00:13<00:15, 169914.63it/s]" + " 47%|████▋ | 2365220/4997817 [00:13<00:15, 175359.52it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2358052/4997817 [00:13<00:15, 169901.93it/s]" + " 48%|████▊ | 2382958/4997817 [00:13<00:14, 175961.70it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2375202/4997817 [00:13<00:15, 170379.01it/s]" + " 48%|████▊ | 2400623/4997817 [00:13<00:14, 176164.69it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2392545/4997817 [00:13<00:15, 171290.94it/s]" + " 48%|████▊ | 2418340/4997817 [00:13<00:14, 176463.91it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2409675/4997817 [00:13<00:15, 171147.12it/s]" + " 49%|████▊ | 2436061/4997817 [00:13<00:14, 176685.81it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426790/4997817 [00:14<00:15, 171116.48it/s]" + " 49%|████▉ | 2453730/4997817 [00:14<00:14, 176528.32it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2444017/4997817 [00:14<00:14, 171458.03it/s]" + " 49%|████▉ | 2471391/4997817 [00:14<00:14, 176551.72it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2461163/4997817 [00:14<00:14, 170917.16it/s]" + " 50%|████▉ | 2489047/4997817 [00:14<00:14, 175831.27it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2478345/4997817 [00:14<00:14, 171185.16it/s]" + " 50%|█████ | 2506631/4997817 [00:14<00:14, 175623.84it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495499/4997817 [00:14<00:14, 171288.78it/s]" + " 51%|█████ | 2524194/4997817 [00:14<00:14, 174378.28it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2512640/4997817 [00:14<00:14, 171322.82it/s]" + " 51%|█████ | 2541776/4997817 [00:14<00:14, 174804.77it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2529773/4997817 [00:14<00:14, 170953.16it/s]" + " 51%|█████ | 2559426/4997817 [00:14<00:13, 175309.70it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546869/4997817 [00:14<00:14, 170562.42it/s]" + " 52%|█████▏ | 2577056/4997817 [00:14<00:13, 175603.54it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2563926/4997817 [00:14<00:14, 169908.11it/s]" + " 52%|█████▏ | 2594628/4997817 [00:14<00:13, 175637.31it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2580918/4997817 [00:14<00:14, 169746.07it/s]" + " 52%|█████▏ | 2612241/4997817 [00:14<00:13, 175782.65it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2597996/4997817 [00:15<00:14, 170051.27it/s]" + " 53%|█████▎ | 2629821/4997817 [00:15<00:13, 175785.64it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2615002/4997817 [00:15<00:14, 169855.14it/s]" + " 53%|█████▎ | 2647400/4997817 [00:15<00:13, 175567.81it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632128/4997817 [00:15<00:13, 170269.62it/s]" + " 53%|█████▎ | 2664958/4997817 [00:15<00:13, 175440.20it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2649156/4997817 [00:15<00:13, 170088.47it/s]" + " 54%|█████▎ | 2682503/4997817 [00:15<00:13, 175115.16it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2666166/4997817 [00:15<00:13, 169650.88it/s]" + " 54%|█████▍ | 2700015/4997817 [00:15<00:13, 174961.60it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2683173/4997817 [00:15<00:13, 169768.86it/s]" + " 54%|█████▍ | 2717512/4997817 [00:15<00:13, 174953.93it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2700185/4997817 [00:15<00:13, 169871.46it/s]" + " 55%|█████▍ | 2735094/4997817 [00:15<00:12, 175209.49it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717178/4997817 [00:15<00:13, 169887.22it/s]" + " 55%|█████▌ | 2752634/4997817 [00:15<00:12, 175262.25it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2734208/4997817 [00:15<00:13, 170006.95it/s]" + " 55%|█████▌ | 2770161/4997817 [00:15<00:12, 175133.95it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751209/4997817 [00:15<00:13, 169981.31it/s]" + " 56%|█████▌ | 2787715/4997817 [00:15<00:12, 175250.55it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2768208/4997817 [00:16<00:13, 168785.64it/s]" + " 56%|█████▌ | 2805324/4997817 [00:16<00:12, 175498.35it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785217/4997817 [00:16<00:13, 169172.70it/s]" + " 56%|█████▋ | 2822930/4997817 [00:16<00:12, 175664.91it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2802337/4997817 [00:16<00:12, 169774.26it/s]" + " 57%|█████▋ | 2840497/4997817 [00:16<00:12, 175377.47it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2819316/4997817 [00:16<00:12, 169776.48it/s]" + " 57%|█████▋ | 2858060/4997817 [00:16<00:12, 175448.03it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2836421/4997817 [00:16<00:12, 170154.82it/s]" + " 58%|█████▊ | 2875627/4997817 [00:16<00:12, 175512.09it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2853651/4997817 [00:16<00:12, 170795.24it/s]" + " 58%|█████▊ | 2893270/4997817 [00:16<00:11, 175784.43it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870736/4997817 [00:16<00:12, 170809.02it/s]" + " 58%|█████▊ | 2910938/4997817 [00:16<00:11, 176050.24it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2887966/4997817 [00:16<00:12, 171253.61it/s]" + " 59%|█████▊ | 2928544/4997817 [00:16<00:11, 175745.11it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905092/4997817 [00:16<00:12, 171058.81it/s]" + " 59%|█████▉ | 2946119/4997817 [00:16<00:11, 175395.25it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2922263/4997817 [00:16<00:12, 171250.69it/s]" + " 59%|█████▉ | 2963659/4997817 [00:16<00:11, 174986.83it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2939389/4997817 [00:17<00:12, 170364.59it/s]" + " 60%|█████▉ | 2981241/4997817 [00:17<00:11, 175231.62it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2956427/4997817 [00:17<00:11, 170163.09it/s]" + " 60%|██████ | 2998784/4997817 [00:17<00:11, 175287.54it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2973849/4997817 [00:17<00:11, 171369.36it/s]" + " 60%|██████ | 3016313/4997817 [00:17<00:11, 175037.10it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2991462/4997817 [00:17<00:11, 172790.20it/s]" + " 61%|██████ | 3033901/4997817 [00:17<00:11, 175285.34it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009055/4997817 [00:17<00:11, 173726.43it/s]" + " 61%|██████ | 3051430/4997817 [00:17<00:11, 175239.61it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3026643/4997817 [00:17<00:11, 174369.07it/s]" + " 61%|██████▏ | 3068999/4997817 [00:17<00:10, 175372.10it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3044244/4997817 [00:17<00:11, 174858.81it/s]" + " 62%|██████▏ | 3086606/4997817 [00:17<00:10, 175578.20it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3061813/4997817 [00:17<00:11, 175106.80it/s]" + " 62%|██████▏ | 3104164/4997817 [00:17<00:10, 175481.95it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3079434/4997817 [00:17<00:10, 175436.02it/s]" + " 62%|██████▏ | 3121761/4997817 [00:17<00:10, 175625.41it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096978/4997817 [00:17<00:10, 175341.60it/s]" + " 63%|██████▎ | 3139332/4997817 [00:17<00:10, 175646.68it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3114513/4997817 [00:18<00:10, 175339.41it/s]" + " 63%|██████▎ | 3156897/4997817 [00:18<00:10, 175597.00it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3132089/4997817 [00:18<00:10, 175462.44it/s]" + " 64%|██████▎ | 3174534/4997817 [00:18<00:10, 175827.20it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3149636/4997817 [00:18<00:10, 175116.05it/s]" + " 64%|██████▍ | 3192117/4997817 [00:18<00:10, 175654.90it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3167148/4997817 [00:18<00:10, 175088.40it/s]" + " 64%|██████▍ | 3209683/4997817 [00:18<00:10, 175268.22it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3184657/4997817 [00:18<00:10, 174556.72it/s]" + " 65%|██████▍ | 3227211/4997817 [00:18<00:10, 174761.43it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3202114/4997817 [00:18<00:10, 167141.20it/s]" + " 65%|██████▍ | 3244739/4997817 [00:18<00:10, 174889.82it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3218894/4997817 [00:18<00:10, 166499.92it/s]" + " 65%|██████▌ | 3262232/4997817 [00:18<00:09, 174898.40it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3236163/4997817 [00:18<00:10, 168306.33it/s]" + " 66%|██████▌ | 3279803/4997817 [00:18<00:09, 175137.60it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3253662/4997817 [00:18<00:10, 170273.08it/s]" + " 66%|██████▌ | 3297317/4997817 [00:18<00:09, 175131.24it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3270719/4997817 [00:19<00:10, 166844.88it/s]" + " 66%|██████▋ | 3314831/4997817 [00:18<00:09, 174741.46it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3288092/4997817 [00:19<00:10, 168858.27it/s]" + " 67%|██████▋ | 3332484/4997817 [00:19<00:09, 175247.36it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3305515/4997817 [00:19<00:09, 170439.51it/s]" + " 67%|██████▋ | 3350043/4997817 [00:19<00:09, 175345.90it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322809/4997817 [00:19<00:09, 171178.48it/s]" + " 67%|██████▋ | 3367578/4997817 [00:19<00:09, 175259.53it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3340252/4997817 [00:19<00:09, 172143.13it/s]" + " 68%|██████▊ | 3385179/4997817 [00:19<00:09, 175480.82it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3357797/4997817 [00:19<00:09, 173127.02it/s]" + " 68%|██████▊ | 3402728/4997817 [00:19<00:09, 175065.50it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3375264/4997817 [00:19<00:09, 173586.47it/s]" + " 68%|██████▊ | 3420235/4997817 [00:19<00:09, 174948.91it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3392782/4997817 [00:19<00:09, 174059.23it/s]" + " 69%|██████▉ | 3437756/4997817 [00:19<00:08, 175025.26it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3410247/4997817 [00:19<00:09, 174234.29it/s]" + " 69%|██████▉ | 3455365/4997817 [00:19<00:08, 175341.14it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3427795/4997817 [00:19<00:08, 174606.02it/s]" + " 69%|██████▉ | 3472901/4997817 [00:19<00:08, 175344.96it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445258/4997817 [00:20<00:08, 174056.58it/s]" + " 70%|██████▉ | 3490485/4997817 [00:19<00:08, 175490.40it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3462712/4997817 [00:20<00:08, 174197.50it/s]" + " 70%|███████ | 3508035/4997817 [00:20<00:08, 174929.21it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3480251/4997817 [00:20<00:08, 174552.82it/s]" + " 71%|███████ | 3525555/4997817 [00:20<00:08, 175008.41it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3497817/4997817 [00:20<00:08, 174883.16it/s]" + " 71%|███████ | 3543162/4997817 [00:20<00:08, 175323.35it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3515418/4997817 [00:20<00:08, 175219.16it/s]" + " 71%|███████ | 3560695/4997817 [00:20<00:08, 175252.66it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3533145/4997817 [00:20<00:08, 175830.00it/s]" + " 72%|███████▏ | 3578221/4997817 [00:20<00:08, 174103.16it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3550906/4997817 [00:20<00:08, 176361.88it/s]" + " 72%|███████▏ | 3595932/4997817 [00:20<00:08, 174997.61it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3568701/4997817 [00:20<00:08, 176834.01it/s]" + " 72%|███████▏ | 3613434/4997817 [00:20<00:07, 174972.06it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3586425/4997817 [00:20<00:07, 176954.31it/s]" + " 73%|███████▎ | 3631126/4997817 [00:20<00:07, 175551.47it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3604121/4997817 [00:20<00:07, 176702.58it/s]" + " 73%|███████▎ | 3648683/4997817 [00:20<00:07, 175405.31it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3621792/4997817 [00:21<00:08, 171973.11it/s]" + " 73%|███████▎ | 3666239/4997817 [00:20<00:07, 175447.92it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3639150/4997817 [00:21<00:07, 172442.71it/s]" + " 74%|███████▎ | 3683785/4997817 [00:21<00:07, 175433.67it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3656834/4997817 [00:21<00:07, 173741.68it/s]" + " 74%|███████▍ | 3701433/4997817 [00:21<00:07, 175744.27it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3674292/4997817 [00:21<00:07, 173987.08it/s]" + " 74%|███████▍ | 3719125/4997817 [00:21<00:07, 176094.38it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3691779/4997817 [00:21<00:07, 174249.19it/s]" + " 75%|███████▍ | 3736735/4997817 [00:21<00:07, 175377.73it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709394/4997817 [00:21<00:07, 174814.50it/s]" + " 75%|███████▌ | 3754274/4997817 [00:21<00:07, 175297.97it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3726970/4997817 [00:21<00:07, 175095.49it/s]" + " 75%|███████▌ | 3771878/4997817 [00:21<00:06, 175516.29it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744682/4997817 [00:21<00:07, 175697.81it/s]" + " 76%|███████▌ | 3789557/4997817 [00:21<00:06, 175893.36it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3762372/4997817 [00:21<00:07, 176053.89it/s]" + " 76%|███████▌ | 3807147/4997817 [00:21<00:06, 175691.21it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3780045/4997817 [00:21<00:06, 176253.13it/s]" + " 77%|███████▋ | 3824759/4997817 [00:21<00:06, 175817.92it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3797684/4997817 [00:22<00:06, 176289.80it/s]" + " 77%|███████▋ | 3842362/4997817 [00:21<00:06, 175878.63it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3815315/4997817 [00:22<00:06, 176195.40it/s]" + " 77%|███████▋ | 3860020/4997817 [00:22<00:06, 176085.76it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832943/4997817 [00:22<00:06, 176217.91it/s]" + " 78%|███████▊ | 3877713/4997817 [00:22<00:06, 176335.90it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3850566/4997817 [00:22<00:06, 175984.71it/s]" + " 78%|███████▊ | 3895398/4997817 [00:22<00:06, 176488.73it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3868280/4997817 [00:22<00:06, 176328.23it/s]" + " 78%|███████▊ | 3913047/4997817 [00:22<00:06, 176136.64it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3886009/4997817 [00:22<00:06, 176615.53it/s]" + " 79%|███████▊ | 3930661/4997817 [00:22<00:06, 175612.13it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3903735/4997817 [00:22<00:06, 176805.25it/s]" + " 79%|███████▉ | 3948223/4997817 [00:22<00:05, 175087.13it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3921416/4997817 [00:22<00:06, 175913.44it/s]" + " 79%|███████▉ | 3965733/4997817 [00:22<00:05, 174652.10it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3939009/4997817 [00:22<00:06, 174464.47it/s]" + " 80%|███████▉ | 3983199/4997817 [00:22<00:05, 174387.13it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3956739/4997817 [00:22<00:05, 175304.34it/s]" + " 80%|████████ | 4000638/4997817 [00:22<00:05, 174241.75it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974273/4997817 [00:23<00:05, 175259.45it/s]" + " 80%|████████ | 4018063/4997817 [00:22<00:05, 173923.39it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3991801/4997817 [00:23<00:05, 174954.67it/s]" + " 81%|████████ | 4035456/4997817 [00:23<00:05, 173705.37it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4009353/4997817 [00:23<00:05, 175121.09it/s]" + " 81%|████████ | 4052836/4997817 [00:23<00:05, 173729.99it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4026867/4997817 [00:23<00:05, 173265.86it/s]" + " 81%|████████▏ | 4070210/4997817 [00:23<00:05, 173644.46it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4044247/4997817 [00:23<00:05, 173420.69it/s]" + " 82%|████████▏ | 4087575/4997817 [00:23<00:05, 173363.43it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4061622/4997817 [00:23<00:05, 173517.75it/s]" + " 82%|████████▏ | 4104912/4997817 [00:23<00:05, 172752.22it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4079152/4997817 [00:23<00:05, 174046.72it/s]" + " 82%|████████▏ | 4122188/4997817 [00:23<00:05, 172741.68it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4096676/4997817 [00:23<00:05, 174400.95it/s]" + " 83%|████████▎ | 4139532/4997817 [00:23<00:04, 172949.34it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4114202/4997817 [00:23<00:05, 174655.12it/s]" + " 83%|████████▎ | 4156828/4997817 [00:23<00:04, 172905.44it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131750/4997817 [00:23<00:04, 174901.35it/s]" + " 84%|████████▎ | 4174119/4997817 [00:23<00:04, 172799.02it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149241/4997817 [00:24<00:04, 172736.10it/s]" + " 84%|████████▍ | 4191400/4997817 [00:23<00:04, 172756.10it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4166522/4997817 [00:24<00:04, 167352.81it/s]" + " 84%|████████▍ | 4208751/4997817 [00:24<00:04, 172980.66it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4183511/4997817 [00:24<00:04, 168090.30it/s]" + " 85%|████████▍ | 4226050/4997817 [00:24<00:04, 172879.74it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4201097/4997817 [00:24<00:04, 170371.01it/s]" + " 85%|████████▍ | 4243369/4997817 [00:24<00:04, 172968.69it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4218582/4997817 [00:24<00:04, 171693.25it/s]" + " 85%|████████▌ | 4260775/4997817 [00:24<00:04, 173293.15it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236156/4997817 [00:24<00:04, 172891.32it/s]" + " 86%|████████▌ | 4278105/4997817 [00:24<00:04, 173114.95it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4253460/4997817 [00:24<00:04, 172756.53it/s]" + " 86%|████████▌ | 4295470/4997817 [00:24<00:04, 173272.36it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4270930/4997817 [00:24<00:04, 173335.32it/s]" + " 86%|████████▋ | 4312798/4997817 [00:24<00:03, 172936.05it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4288392/4997817 [00:24<00:04, 173716.02it/s]" + " 87%|████████▋ | 4330092/4997817 [00:24<00:03, 171778.19it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4305769/4997817 [00:24<00:03, 173286.65it/s]" + " 87%|████████▋ | 4347530/4997817 [00:24<00:03, 172550.63it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4323150/4997817 [00:25<00:03, 173442.37it/s]" + " 87%|████████▋ | 4364981/4997817 [00:24<00:03, 173133.77it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4340497/4997817 [00:25<00:03, 173133.52it/s]" + " 88%|████████▊ | 4382422/4997817 [00:25<00:03, 173513.94it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4358001/4997817 [00:25<00:03, 173700.88it/s]" + " 88%|████████▊ | 4399899/4997817 [00:25<00:03, 173885.79it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4375373/4997817 [00:25<00:03, 173619.54it/s]" + " 88%|████████▊ | 4417356/4997817 [00:25<00:03, 174088.31it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4392737/4997817 [00:25<00:03, 172930.17it/s]" + " 89%|████████▊ | 4434825/4997817 [00:25<00:03, 174265.44it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4410032/4997817 [00:25<00:03, 172793.37it/s]" + " 89%|████████▉ | 4452271/4997817 [00:25<00:03, 174320.20it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4427313/4997817 [00:25<00:03, 172447.22it/s]" + " 89%|████████▉ | 4469704/4997817 [00:25<00:03, 174269.50it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4444714/4997817 [00:25<00:03, 172910.97it/s]" + " 90%|████████▉ | 4487143/4997817 [00:25<00:02, 174302.93it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4462212/4997817 [00:25<00:03, 173527.82it/s]" + " 90%|█████████ | 4504574/4997817 [00:25<00:02, 174171.12it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4479712/4997817 [00:25<00:02, 173964.83it/s]" + " 90%|█████████ | 4522003/4997817 [00:25<00:02, 174200.70it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4497109/4997817 [00:26<00:02, 172926.76it/s]" + " 91%|█████████ | 4539453/4997817 [00:25<00:02, 174288.74it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4514404/4997817 [00:26<00:02, 168027.62it/s]" + " 91%|█████████ | 4556882/4997817 [00:26<00:02, 174061.93it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531883/4997817 [00:26<00:02, 170005.20it/s]" + " 92%|█████████▏| 4574310/4997817 [00:26<00:02, 174120.98it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4549078/4997817 [00:26<00:02, 170578.14it/s]" + " 92%|█████████▏| 4591723/4997817 [00:26<00:02, 173888.62it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4566538/4997817 [00:26<00:02, 171767.70it/s]" + " 92%|█████████▏| 4609129/4997817 [00:26<00:02, 173936.28it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4583847/4997817 [00:26<00:02, 172156.16it/s]" + " 93%|█████████▎| 4626523/4997817 [00:26<00:02, 173090.57it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4601242/4997817 [00:26<00:02, 172687.80it/s]" + " 93%|█████████▎| 4643868/4997817 [00:26<00:02, 173193.80it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4618677/4997817 [00:26<00:02, 173181.15it/s]" + " 93%|█████████▎| 4661301/4997817 [00:26<00:01, 173529.75it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4636001/4997817 [00:26<00:02, 173057.48it/s]" + " 94%|█████████▎| 4678655/4997817 [00:26<00:01, 173504.63it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4653311/4997817 [00:26<00:01, 172889.93it/s]" + " 94%|█████████▍| 4696024/4997817 [00:26<00:01, 173558.59it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4670603/4997817 [00:27<00:01, 172892.56it/s]" + " 94%|█████████▍| 4713640/4997817 [00:26<00:01, 174333.96it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4687895/4997817 [00:27<00:01, 172059.59it/s]" + " 95%|█████████▍| 4731300/4997817 [00:27<00:01, 175010.66it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4705138/4997817 [00:27<00:01, 172168.89it/s]" + " 95%|█████████▌| 4748802/4997817 [00:27<00:01, 174465.13it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4722357/4997817 [00:27<00:01, 171693.60it/s]" + " 95%|█████████▌| 4766250/4997817 [00:27<00:01, 174380.68it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4739590/4997817 [00:27<00:01, 171879.60it/s]" + " 96%|█████████▌| 4783689/4997817 [00:27<00:01, 174366.97it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4756780/4997817 [00:27<00:01, 171884.52it/s]" + " 96%|█████████▌| 4801216/4997817 [00:27<00:01, 174632.76it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4773970/4997817 [00:27<00:01, 171743.70it/s]" + " 96%|█████████▋| 4818707/4997817 [00:27<00:01, 174712.64it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791145/4997817 [00:27<00:01, 170215.03it/s]" + " 97%|█████████▋| 4836331/4997817 [00:27<00:00, 175166.15it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4808227/4997817 [00:27<00:01, 170394.09it/s]" + " 97%|█████████▋| 4853935/4997817 [00:27<00:00, 175423.56it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825269/4997817 [00:27<00:01, 169999.39it/s]" + " 97%|█████████▋| 4871519/4997817 [00:27<00:00, 175544.48it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842271/4997817 [00:28<00:00, 169551.60it/s]" + " 98%|█████████▊| 4889111/4997817 [00:28<00:00, 175654.76it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4859563/4997817 [00:28<00:00, 170553.03it/s]" + " 98%|█████████▊| 4906765/4997817 [00:28<00:00, 175918.44it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4876843/4997817 [00:28<00:00, 171222.53it/s]" + " 99%|█████████▊| 4924420/4997817 [00:28<00:00, 176105.53it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4894141/4997817 [00:28<00:00, 171745.27it/s]" + " 99%|█████████▉| 4942074/4997817 [00:28<00:00, 176233.51it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4911343/4997817 [00:28<00:00, 171822.79it/s]" + " 99%|█████████▉| 4959757/4997817 [00:28<00:00, 176408.33it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928558/4997817 [00:28<00:00, 171916.69it/s]" + "100%|█████████▉| 4977398/4997817 [00:28<00:00, 173769.32it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4945889/4997817 [00:28<00:00, 172332.10it/s]" + "100%|█████████▉| 4994784/4997817 [00:28<00:00, 173724.98it/s]" ] }, { @@ -2826,23 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963255/4997817 [00:28<00:00, 172726.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4980547/4997817 [00:28<00:00, 172781.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 172510.48it/s]" + "100%|██████████| 4997817/4997817 [00:28<00:00, 174597.11it/s]" ] }, { @@ -3081,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:25:55.089485Z", - "iopub.status.busy": "2024-01-16T18:25:55.089232Z", - "iopub.status.idle": "2024-01-16T18:26:02.152549Z", - "shell.execute_reply": "2024-01-16T18:26:02.151780Z" + "iopub.execute_input": "2024-01-17T17:57:33.895705Z", + "iopub.status.busy": "2024-01-17T17:57:33.895349Z", + "iopub.status.idle": "2024-01-17T17:57:40.866713Z", + "shell.execute_reply": "2024-01-17T17:57:40.866094Z" } }, "outputs": [], @@ -3098,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:02.155949Z", - "iopub.status.busy": "2024-01-16T18:26:02.155488Z", - "iopub.status.idle": "2024-01-16T18:26:05.337062Z", - "shell.execute_reply": "2024-01-16T18:26:05.336475Z" + "iopub.execute_input": "2024-01-17T17:57:40.869711Z", + "iopub.status.busy": "2024-01-17T17:57:40.869250Z", + "iopub.status.idle": "2024-01-17T17:57:43.914104Z", + "shell.execute_reply": "2024-01-17T17:57:43.913524Z" } }, "outputs": [ @@ -3170,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:05.339629Z", - "iopub.status.busy": "2024-01-16T18:26:05.339398Z", - "iopub.status.idle": "2024-01-16T18:26:06.669675Z", - "shell.execute_reply": "2024-01-16T18:26:06.669040Z" + "iopub.execute_input": "2024-01-17T17:57:43.916459Z", + "iopub.status.busy": "2024-01-17T17:57:43.916254Z", + "iopub.status.idle": "2024-01-17T17:57:45.221752Z", + "shell.execute_reply": "2024-01-17T17:57:45.221119Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cc3298253471476bb2be84059397839b", + "model_id": "0f1e27caa1a14ef9b3b8dbd40ae65a86", "version_major": 2, "version_minor": 0 }, @@ -3210,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:06.672538Z", - "iopub.status.busy": "2024-01-16T18:26:06.672149Z", - "iopub.status.idle": "2024-01-16T18:26:06.890171Z", - "shell.execute_reply": "2024-01-16T18:26:06.889587Z" + "iopub.execute_input": "2024-01-17T17:57:45.224571Z", + "iopub.status.busy": "2024-01-17T17:57:45.224354Z", + "iopub.status.idle": "2024-01-17T17:57:45.440634Z", + "shell.execute_reply": "2024-01-17T17:57:45.439928Z" } }, "outputs": [], @@ -3227,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:06.892996Z", - "iopub.status.busy": "2024-01-16T18:26:06.892573Z", - "iopub.status.idle": "2024-01-16T18:26:11.664578Z", - "shell.execute_reply": "2024-01-16T18:26:11.663909Z" + "iopub.execute_input": "2024-01-17T17:57:45.443316Z", + "iopub.status.busy": "2024-01-17T17:57:45.443109Z", + "iopub.status.idle": "2024-01-17T17:57:49.972217Z", + "shell.execute_reply": "2024-01-17T17:57:49.971522Z" } }, "outputs": [ @@ -3303,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:11.667468Z", - "iopub.status.busy": "2024-01-16T18:26:11.666925Z", - "iopub.status.idle": "2024-01-16T18:26:11.724592Z", - "shell.execute_reply": "2024-01-16T18:26:11.723902Z" + "iopub.execute_input": "2024-01-17T17:57:49.974835Z", + "iopub.status.busy": "2024-01-17T17:57:49.974626Z", + "iopub.status.idle": "2024-01-17T17:57:50.030104Z", + "shell.execute_reply": "2024-01-17T17:57:50.029486Z" }, "nbsphinx": "hidden" }, @@ -3350,151 +3334,28 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0287b7c393564ba4826d89c2f9d6cf8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0c5d2f696eac43179cb082c3b2c23a25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1075b11ff74949078c4e22ce2fc5f8b9": { + "00c3e59d7d244af597f16fb343e03d1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7553ca4a0e6a42e38ac424ba3dc7525f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_442c4b1d852547b7804a91ac84aa2cb8", - "value": 30.0 - } - }, - "1cb0f026b87d4ae6993a4fa7249a8069": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_ca51262bf9524231a23378a92429938a", + "placeholder": "​", + "style": "IPY_MODEL_f1af59dab6f546bfbc0469e346baaf68", + "value": " 30/30 [00:00<00:00, 400.84it/s]" } }, - "2537f39483ed4657adc21de78f6206fc": { + "0f1e27caa1a14ef9b3b8dbd40ae65a86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3509,70 +3370,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e40e27fedf3d4ddb82c6a6d619455317", - "IPY_MODEL_f9de84b5a8d3400e8eab16b99fc7fa0d", - "IPY_MODEL_d74d38913ea5425e994d5da2889d784f" + "IPY_MODEL_7de801ef20ea442baa968adb14b633ca", + "IPY_MODEL_aaeb62906b67472181fb6d9eff73caf2", + "IPY_MODEL_739e1c48b55047b898dbae54b46400c4" ], - "layout": "IPY_MODEL_0287b7c393564ba4826d89c2f9d6cf8f" + "layout": "IPY_MODEL_7014ddfdc5ca4502ae5e8f8a16c8e83e" } }, - "3262fc457043473380cdd7edfa92baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4ebe86acc4994f7cb4822d338d391923", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0c5d2f696eac43179cb082c3b2c23a25", - "value": 30.0 - } - }, - "335db8ee290c40a1a47243010e5125e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "442c4b1d852547b7804a91ac84aa2cb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "492afedc485a402cbcf0858a87fc33ff": { + "1031ae860a8d40f78ad75a6d85cef9f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3587,13 +3392,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df6a7efa0c0f486d86388910b18ab9dc", + "layout": "IPY_MODEL_1881eb9735324b5caffc9b4beed76776", "placeholder": "​", - "style": "IPY_MODEL_8dab04e2e468429995d2bf045d872d7b", - "value": " 30/30 [00:00<00:00, 396.58it/s]" + "style": "IPY_MODEL_43b11210cae243aa8c3783e0e3622624", + "value": "number of examples processed for checking labels: 100%" } }, - "4ebe86acc4994f7cb4822d338d391923": { + "1313c53e832b4cde81ccb98806fa4ca9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3645,7 +3450,7 @@ "width": null } }, - "67823768b24b4699aeed9aeb6a7c6b59": { + "1881eb9735324b5caffc9b4beed76776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3697,29 +3502,44 @@ "width": null } }, - "7265cd8663c14e55866a0fb07ede6714": { + "2292c86728984723b8c80e0432d9d577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b2a221859674f0193bc880ff585ccbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c9b1d060a9e14488b26b6ee37b2549fe", - "IPY_MODEL_3262fc457043473380cdd7edfa92baf2", - "IPY_MODEL_492afedc485a402cbcf0858a87fc33ff" - ], - "layout": "IPY_MODEL_67823768b24b4699aeed9aeb6a7c6b59" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb471f4d9435473ab2ddb6a7f16f45c7", + "placeholder": "​", + "style": "IPY_MODEL_c932ad2aaf7a4c13aaf72c98bc031b4c", + "value": " 30/30 [00:37<00:00, 1.25s/it]" } }, - "7553ca4a0e6a42e38ac424ba3dc7525f": { + "337fd27a78fc413cbb9410907415daa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3771,7 +3591,22 @@ "width": null } }, - "825bfaf10d3d40d7ba9f49f4be9b3cb7": { + "43b11210cae243aa8c3783e0e3622624": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e0225defcb1446e83ce75a866b1b560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3786,13 +3621,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bfbe24bbbc654c8db82f9b0c37b1e5c8", + "layout": "IPY_MODEL_f3ecd9ff4d53434f9506d98cabc5e062", "placeholder": "​", - "style": "IPY_MODEL_b4c605d920f74c41af16a33749531610", - "value": " 30/30 [00:01<00:00, 22.81it/s]" + "style": "IPY_MODEL_b42822349fcf4807ace9a36a8655d3ca", + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "4eb1b29351274d4aa33affc14e71ae2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1031ae860a8d40f78ad75a6d85cef9f7", + "IPY_MODEL_5bb8c700a31b48d0813206acf7f94d28", + "IPY_MODEL_2b2a221859674f0193bc880ff585ccbd" + ], + "layout": "IPY_MODEL_ed847fe8426546678db9da2b0e59827f" } }, - "85748b16da5b474cbb0984f052b2c201": { + "52296e0e51f04d038b9f74610367ee7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3844,7 +3701,31 @@ "width": null } }, - "8dab04e2e468429995d2bf045d872d7b": { + "5bb8c700a31b48d0813206acf7f94d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8abe14247b17472d87bed8e579ddc8a3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0c5dabccd80447884aacc6543b0a29c", + "value": 30.0 + } + }, + "6b8f40d6cd83494abbd50a1ffbd0c140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3859,7 +3740,23 @@ "description_width": "" } }, - "93aa13676ddc411aab09198732f3580d": { + "6bd3806bac11434da5468ebbe4748d63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7014ddfdc5ca4502ae5e8f8a16c8e83e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3911,7 +3808,7 @@ "width": null } }, - "9ca6e877d0564cf7abbfb313556da941": { + "739e1c48b55047b898dbae54b46400c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3926,13 +3823,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_93aa13676ddc411aab09198732f3580d", + "layout": "IPY_MODEL_52296e0e51f04d038b9f74610367ee7f", "placeholder": "​", - "style": "IPY_MODEL_fcbc5d4f461c444eac1c2bca47b8a255", - "value": "images processed using softmin: 100%" + "style": "IPY_MODEL_85cb114ea843432ab3f307100326ed78", + "value": " 30/30 [00:01<00:00, 23.47it/s]" } }, - "abca464ea3ea4cc88ec14c37a595aebe": { + "7a3ae5f1f2d2401983a8b0cd8d4302ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3984,22 +3881,28 @@ "width": null } }, - "b4c605d920f74c41af16a33749531610": { + "7de801ef20ea442baa968adb14b633ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1313c53e832b4cde81ccb98806fa4ca9", + "placeholder": "​", + "style": "IPY_MODEL_6b8f40d6cd83494abbd50a1ffbd0c140", + "value": "images processed using softmin: 100%" } }, - "bcbb24f60f1c4a36bfa772c6fef8afaa": { + "85cb114ea843432ab3f307100326ed78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4014,7 +3917,7 @@ "description_width": "" } }, - "bfbe24bbbc654c8db82f9b0c37b1e5c8": { + "8abe14247b17472d87bed8e579ddc8a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4066,28 +3969,31 @@ "width": null } }, - "c9b1d060a9e14488b26b6ee37b2549fe": { + "aaeb62906b67472181fb6d9eff73caf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f7d59e715bba46e19c88c67c00ac18b2", - "placeholder": "​", - "style": "IPY_MODEL_bcbb24f60f1c4a36bfa772c6fef8afaa", - "value": "number of examples processed for estimating thresholds: 100%" + "layout": "IPY_MODEL_7a3ae5f1f2d2401983a8b0cd8d4302ef", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2292c86728984723b8c80e0432d9d577", + "value": 30.0 } }, - "cc3298253471476bb2be84059397839b": { + "af52c292e7f247839109788208ff5922": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4102,14 +4008,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9ca6e877d0564cf7abbfb313556da941", - "IPY_MODEL_1075b11ff74949078c4e22ce2fc5f8b9", - "IPY_MODEL_825bfaf10d3d40d7ba9f49f4be9b3cb7" + "IPY_MODEL_4e0225defcb1446e83ce75a866b1b560", + "IPY_MODEL_e4bd3681b88942b28c2c68163379c318", + "IPY_MODEL_00c3e59d7d244af597f16fb343e03d1e" ], - "layout": "IPY_MODEL_1cb0f026b87d4ae6993a4fa7249a8069" + "layout": "IPY_MODEL_337fd27a78fc413cbb9410907415daa7" } }, - "cc656dc9686f4736b5efe32ddf953db0": { + "b42822349fcf4807ace9a36a8655d3ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4124,28 +4030,22 @@ "description_width": "" } }, - "d74d38913ea5425e994d5da2889d784f": { + "c932ad2aaf7a4c13aaf72c98bc031b4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec17cd81455243cc9fbd17bc7a3730f5", - "placeholder": "​", - "style": "IPY_MODEL_e691b0e199074668b59fd99554cbfa66", - "value": " 30/30 [00:37<00:00, 1.45s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "df6a7efa0c0f486d86388910b18ab9dc": { + "ca51262bf9524231a23378a92429938a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4197,43 +4097,7 @@ "width": null } }, - "e40e27fedf3d4ddb82c6a6d619455317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85748b16da5b474cbb0984f052b2c201", - "placeholder": "​", - "style": "IPY_MODEL_cc656dc9686f4736b5efe32ddf953db0", - "value": "number of examples processed for checking labels: 100%" - } - }, - "e691b0e199074668b59fd99554cbfa66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ec17cd81455243cc9fbd17bc7a3730f5": { + "cb471f4d9435473ab2ddb6a7f16f45c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4285,7 +4149,7 @@ "width": null } }, - "f7d59e715bba46e19c88c67c00ac18b2": { + "ddc75898d65c41a5992515a897c16f0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4337,7 +4201,23 @@ "width": null } }, - "f9de84b5a8d3400e8eab16b99fc7fa0d": { + "e0c5dabccd80447884aacc6543b0a29c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4bd3681b88942b28c2c68163379c318": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4353,15 +4233,67 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_abca464ea3ea4cc88ec14c37a595aebe", + "layout": "IPY_MODEL_ddc75898d65c41a5992515a897c16f0c", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_335db8ee290c40a1a47243010e5125e5", + "style": "IPY_MODEL_6bd3806bac11434da5468ebbe4748d63", "value": 30.0 } }, - "fcbc5d4f461c444eac1c2bca47b8a255": { + "ed847fe8426546678db9da2b0e59827f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1af59dab6f546bfbc0469e346baaf68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4375,6 +4307,58 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f3ecd9ff4d53434f9506d98cabc5e062": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 4e4f526cc..ac1bb7cd8 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:16.599093Z", - "iopub.status.busy": "2024-01-16T18:26:16.598896Z", - "iopub.status.idle": "2024-01-16T18:26:17.642982Z", - "shell.execute_reply": "2024-01-16T18:26:17.642384Z" + "iopub.execute_input": "2024-01-17T17:57:54.461991Z", + "iopub.status.busy": "2024-01-17T17:57:54.461802Z", + "iopub.status.idle": "2024-01-17T17:57:55.470180Z", + "shell.execute_reply": "2024-01-17T17:57:55.469570Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.645926Z", - "iopub.status.busy": "2024-01-16T18:26:17.645448Z", - "iopub.status.idle": "2024-01-16T18:26:17.661761Z", - "shell.execute_reply": "2024-01-16T18:26:17.661269Z" + "iopub.execute_input": "2024-01-17T17:57:55.473210Z", + "iopub.status.busy": "2024-01-17T17:57:55.472696Z", + "iopub.status.idle": "2024-01-17T17:57:55.489373Z", + "shell.execute_reply": "2024-01-17T17:57:55.488869Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.664056Z", - "iopub.status.busy": "2024-01-16T18:26:17.663856Z", - "iopub.status.idle": "2024-01-16T18:26:17.711971Z", - "shell.execute_reply": "2024-01-16T18:26:17.711413Z" + "iopub.execute_input": "2024-01-17T17:57:55.491740Z", + "iopub.status.busy": "2024-01-17T17:57:55.491432Z", + "iopub.status.idle": "2024-01-17T17:57:55.650860Z", + "shell.execute_reply": "2024-01-17T17:57:55.650179Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.714359Z", - "iopub.status.busy": "2024-01-16T18:26:17.713997Z", - "iopub.status.idle": "2024-01-16T18:26:17.717608Z", - "shell.execute_reply": "2024-01-16T18:26:17.717089Z" + "iopub.execute_input": "2024-01-17T17:57:55.653531Z", + "iopub.status.busy": "2024-01-17T17:57:55.653131Z", + "iopub.status.idle": "2024-01-17T17:57:55.656773Z", + "shell.execute_reply": "2024-01-17T17:57:55.656204Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.719855Z", - "iopub.status.busy": "2024-01-16T18:26:17.719505Z", - "iopub.status.idle": "2024-01-16T18:26:17.728102Z", - "shell.execute_reply": "2024-01-16T18:26:17.727606Z" + "iopub.execute_input": "2024-01-17T17:57:55.659246Z", + "iopub.status.busy": "2024-01-17T17:57:55.658888Z", + "iopub.status.idle": "2024-01-17T17:57:55.667300Z", + "shell.execute_reply": "2024-01-17T17:57:55.666830Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.730574Z", - "iopub.status.busy": "2024-01-16T18:26:17.730216Z", - "iopub.status.idle": "2024-01-16T18:26:17.732904Z", - "shell.execute_reply": "2024-01-16T18:26:17.732349Z" + "iopub.execute_input": "2024-01-17T17:57:55.669806Z", + "iopub.status.busy": "2024-01-17T17:57:55.669444Z", + "iopub.status.idle": "2024-01-17T17:57:55.672097Z", + "shell.execute_reply": "2024-01-17T17:57:55.671567Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:17.735156Z", - "iopub.status.busy": "2024-01-16T18:26:17.734795Z", - "iopub.status.idle": "2024-01-16T18:26:18.317193Z", - "shell.execute_reply": "2024-01-16T18:26:18.316555Z" + "iopub.execute_input": "2024-01-17T17:57:55.674513Z", + "iopub.status.busy": "2024-01-17T17:57:55.674156Z", + "iopub.status.idle": "2024-01-17T17:57:56.255254Z", + "shell.execute_reply": "2024-01-17T17:57:56.254627Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:18.320008Z", - "iopub.status.busy": "2024-01-16T18:26:18.319615Z", - "iopub.status.idle": "2024-01-16T18:26:19.527880Z", - "shell.execute_reply": "2024-01-16T18:26:19.527198Z" + "iopub.execute_input": "2024-01-17T17:57:56.258189Z", + "iopub.status.busy": "2024-01-17T17:57:56.257764Z", + "iopub.status.idle": "2024-01-17T17:57:57.492191Z", + "shell.execute_reply": "2024-01-17T17:57:57.491408Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.530861Z", - "iopub.status.busy": "2024-01-16T18:26:19.530165Z", - "iopub.status.idle": "2024-01-16T18:26:19.540810Z", - "shell.execute_reply": "2024-01-16T18:26:19.540255Z" + "iopub.execute_input": "2024-01-17T17:57:57.495068Z", + "iopub.status.busy": "2024-01-17T17:57:57.494502Z", + "iopub.status.idle": "2024-01-17T17:57:57.505626Z", + "shell.execute_reply": "2024-01-17T17:57:57.505006Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.543423Z", - "iopub.status.busy": "2024-01-16T18:26:19.542976Z", - "iopub.status.idle": "2024-01-16T18:26:19.547228Z", - "shell.execute_reply": "2024-01-16T18:26:19.546741Z" + "iopub.execute_input": "2024-01-17T17:57:57.508172Z", + "iopub.status.busy": "2024-01-17T17:57:57.507694Z", + "iopub.status.idle": "2024-01-17T17:57:57.512156Z", + "shell.execute_reply": "2024-01-17T17:57:57.511524Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.549639Z", - "iopub.status.busy": "2024-01-16T18:26:19.549206Z", - "iopub.status.idle": "2024-01-16T18:26:19.556613Z", - "shell.execute_reply": "2024-01-16T18:26:19.555975Z" + "iopub.execute_input": "2024-01-17T17:57:57.514670Z", + "iopub.status.busy": "2024-01-17T17:57:57.514186Z", + "iopub.status.idle": "2024-01-17T17:57:57.523107Z", + "shell.execute_reply": "2024-01-17T17:57:57.522498Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.559061Z", - "iopub.status.busy": "2024-01-16T18:26:19.558614Z", - "iopub.status.idle": "2024-01-16T18:26:19.681492Z", - "shell.execute_reply": "2024-01-16T18:26:19.680871Z" + "iopub.execute_input": "2024-01-17T17:57:57.525365Z", + "iopub.status.busy": "2024-01-17T17:57:57.525164Z", + "iopub.status.idle": "2024-01-17T17:57:57.647630Z", + "shell.execute_reply": "2024-01-17T17:57:57.646966Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.684012Z", - "iopub.status.busy": "2024-01-16T18:26:19.683652Z", - "iopub.status.idle": "2024-01-16T18:26:19.686760Z", - "shell.execute_reply": "2024-01-16T18:26:19.686124Z" + "iopub.execute_input": "2024-01-17T17:57:57.650170Z", + "iopub.status.busy": "2024-01-17T17:57:57.649728Z", + "iopub.status.idle": "2024-01-17T17:57:57.652837Z", + "shell.execute_reply": "2024-01-17T17:57:57.652183Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:19.689173Z", - "iopub.status.busy": "2024-01-16T18:26:19.688795Z", - "iopub.status.idle": "2024-01-16T18:26:21.120195Z", - "shell.execute_reply": "2024-01-16T18:26:21.119380Z" + "iopub.execute_input": "2024-01-17T17:57:57.655095Z", + "iopub.status.busy": "2024-01-17T17:57:57.654741Z", + "iopub.status.idle": "2024-01-17T17:57:59.080773Z", + "shell.execute_reply": "2024-01-17T17:57:59.080056Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:21.123317Z", - "iopub.status.busy": "2024-01-16T18:26:21.122849Z", - "iopub.status.idle": "2024-01-16T18:26:21.136614Z", - "shell.execute_reply": "2024-01-16T18:26:21.136083Z" + "iopub.execute_input": "2024-01-17T17:57:59.083888Z", + "iopub.status.busy": "2024-01-17T17:57:59.083463Z", + "iopub.status.idle": "2024-01-17T17:57:59.097212Z", + "shell.execute_reply": "2024-01-17T17:57:59.096569Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:21.139041Z", - "iopub.status.busy": "2024-01-16T18:26:21.138687Z", - "iopub.status.idle": "2024-01-16T18:26:21.185016Z", - "shell.execute_reply": "2024-01-16T18:26:21.184381Z" + "iopub.execute_input": "2024-01-17T17:57:59.099908Z", + "iopub.status.busy": "2024-01-17T17:57:59.099541Z", + "iopub.status.idle": "2024-01-17T17:57:59.231394Z", + "shell.execute_reply": "2024-01-17T17:57:59.230808Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 21dc17608..d4f1edafb 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -977,7 +977,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}
    +Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}
     

    Let’s print the first example in the train set.

    diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index f324d2241..30e708f03 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:26.445820Z", - "iopub.status.busy": "2024-01-16T18:26:26.445377Z", - "iopub.status.idle": "2024-01-16T18:26:28.495593Z", - "shell.execute_reply": "2024-01-16T18:26:28.494982Z" + "iopub.execute_input": "2024-01-17T17:58:04.452112Z", + "iopub.status.busy": "2024-01-17T17:58:04.451920Z", + "iopub.status.idle": "2024-01-17T17:58:06.513490Z", + "shell.execute_reply": "2024-01-17T17:58:06.512794Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.498491Z", - "iopub.status.busy": "2024-01-16T18:26:28.498003Z", - "iopub.status.idle": "2024-01-16T18:26:28.501599Z", - "shell.execute_reply": "2024-01-16T18:26:28.501090Z" + "iopub.execute_input": "2024-01-17T17:58:06.516595Z", + "iopub.status.busy": "2024-01-17T17:58:06.516197Z", + "iopub.status.idle": "2024-01-17T17:58:06.519890Z", + "shell.execute_reply": "2024-01-17T17:58:06.519295Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.503791Z", - "iopub.status.busy": "2024-01-16T18:26:28.503503Z", - "iopub.status.idle": "2024-01-16T18:26:28.506652Z", - "shell.execute_reply": "2024-01-16T18:26:28.506135Z" + "iopub.execute_input": "2024-01-17T17:58:06.522149Z", + "iopub.status.busy": "2024-01-17T17:58:06.521812Z", + "iopub.status.idle": "2024-01-17T17:58:06.525082Z", + "shell.execute_reply": "2024-01-17T17:58:06.524478Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.508928Z", - "iopub.status.busy": "2024-01-16T18:26:28.508626Z", - "iopub.status.idle": "2024-01-16T18:26:28.557457Z", - "shell.execute_reply": "2024-01-16T18:26:28.556849Z" + "iopub.execute_input": "2024-01-17T17:58:06.527397Z", + "iopub.status.busy": "2024-01-17T17:58:06.527051Z", + "iopub.status.idle": "2024-01-17T17:58:06.696915Z", + "shell.execute_reply": "2024-01-17T17:58:06.696267Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.559740Z", - "iopub.status.busy": "2024-01-16T18:26:28.559386Z", - "iopub.status.idle": "2024-01-16T18:26:28.563106Z", - "shell.execute_reply": "2024-01-16T18:26:28.562607Z" + "iopub.execute_input": "2024-01-17T17:58:06.699410Z", + "iopub.status.busy": "2024-01-17T17:58:06.698895Z", + "iopub.status.idle": "2024-01-17T17:58:06.702802Z", + "shell.execute_reply": "2024-01-17T17:58:06.702205Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.565464Z", - "iopub.status.busy": "2024-01-16T18:26:28.565115Z", - "iopub.status.idle": "2024-01-16T18:26:28.568664Z", - "shell.execute_reply": "2024-01-16T18:26:28.568087Z" + "iopub.execute_input": "2024-01-17T17:58:06.705199Z", + "iopub.status.busy": "2024-01-17T17:58:06.704700Z", + "iopub.status.idle": "2024-01-17T17:58:06.708685Z", + "shell.execute_reply": "2024-01-17T17:58:06.708051Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.571005Z", - "iopub.status.busy": "2024-01-16T18:26:28.570638Z", - "iopub.status.idle": "2024-01-16T18:26:28.574416Z", - "shell.execute_reply": "2024-01-16T18:26:28.573895Z" + "iopub.execute_input": "2024-01-17T17:58:06.711074Z", + "iopub.status.busy": "2024-01-17T17:58:06.710625Z", + "iopub.status.idle": "2024-01-17T17:58:06.714277Z", + "shell.execute_reply": "2024-01-17T17:58:06.713674Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.576801Z", - "iopub.status.busy": "2024-01-16T18:26:28.576438Z", - "iopub.status.idle": "2024-01-16T18:26:28.580004Z", - "shell.execute_reply": "2024-01-16T18:26:28.579461Z" + "iopub.execute_input": "2024-01-17T17:58:06.716551Z", + "iopub.status.busy": "2024-01-17T17:58:06.716194Z", + "iopub.status.idle": "2024-01-17T17:58:06.719743Z", + "shell.execute_reply": "2024-01-17T17:58:06.719140Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:28.582254Z", - "iopub.status.busy": "2024-01-16T18:26:28.581918Z", - "iopub.status.idle": "2024-01-16T18:26:37.142048Z", - "shell.execute_reply": "2024-01-16T18:26:37.141403Z" + "iopub.execute_input": "2024-01-17T17:58:06.722197Z", + "iopub.status.busy": "2024-01-17T17:58:06.721848Z", + "iopub.status.idle": "2024-01-17T17:58:15.903407Z", + "shell.execute_reply": "2024-01-17T17:58:15.902766Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.145360Z", - "iopub.status.busy": "2024-01-16T18:26:37.144923Z", - "iopub.status.idle": "2024-01-16T18:26:37.148171Z", - "shell.execute_reply": "2024-01-16T18:26:37.147656Z" + "iopub.execute_input": "2024-01-17T17:58:15.906850Z", + "iopub.status.busy": "2024-01-17T17:58:15.906363Z", + "iopub.status.idle": "2024-01-17T17:58:15.909663Z", + "shell.execute_reply": "2024-01-17T17:58:15.909117Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.150527Z", - "iopub.status.busy": "2024-01-16T18:26:37.150155Z", - "iopub.status.idle": "2024-01-16T18:26:37.153089Z", - "shell.execute_reply": "2024-01-16T18:26:37.152539Z" + "iopub.execute_input": "2024-01-17T17:58:15.911984Z", + "iopub.status.busy": "2024-01-17T17:58:15.911780Z", + "iopub.status.idle": "2024-01-17T17:58:15.914788Z", + "shell.execute_reply": "2024-01-17T17:58:15.914152Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:37.155247Z", - "iopub.status.busy": "2024-01-16T18:26:37.154870Z", - "iopub.status.idle": "2024-01-16T18:26:39.352948Z", - "shell.execute_reply": "2024-01-16T18:26:39.352038Z" + "iopub.execute_input": "2024-01-17T17:58:15.917364Z", + "iopub.status.busy": "2024-01-17T17:58:15.916868Z", + "iopub.status.idle": "2024-01-17T17:58:18.153348Z", + "shell.execute_reply": "2024-01-17T17:58:18.152612Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.356461Z", - "iopub.status.busy": "2024-01-16T18:26:39.355758Z", - "iopub.status.idle": "2024-01-16T18:26:39.363742Z", - "shell.execute_reply": "2024-01-16T18:26:39.363219Z" + "iopub.execute_input": "2024-01-17T17:58:18.157203Z", + "iopub.status.busy": "2024-01-17T17:58:18.156132Z", + "iopub.status.idle": "2024-01-17T17:58:18.164623Z", + "shell.execute_reply": "2024-01-17T17:58:18.164085Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.366319Z", - "iopub.status.busy": "2024-01-16T18:26:39.365936Z", - "iopub.status.idle": "2024-01-16T18:26:39.370077Z", - "shell.execute_reply": "2024-01-16T18:26:39.369561Z" + "iopub.execute_input": "2024-01-17T17:58:18.167048Z", + "iopub.status.busy": "2024-01-17T17:58:18.166666Z", + "iopub.status.idle": "2024-01-17T17:58:18.171012Z", + "shell.execute_reply": "2024-01-17T17:58:18.170356Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.372290Z", - "iopub.status.busy": "2024-01-16T18:26:39.371921Z", - "iopub.status.idle": "2024-01-16T18:26:39.375337Z", - "shell.execute_reply": "2024-01-16T18:26:39.374711Z" + "iopub.execute_input": "2024-01-17T17:58:18.173331Z", + "iopub.status.busy": "2024-01-17T17:58:18.172904Z", + "iopub.status.idle": "2024-01-17T17:58:18.176499Z", + "shell.execute_reply": "2024-01-17T17:58:18.175881Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.377705Z", - "iopub.status.busy": "2024-01-16T18:26:39.377329Z", - "iopub.status.idle": "2024-01-16T18:26:39.380543Z", - "shell.execute_reply": "2024-01-16T18:26:39.380000Z" + "iopub.execute_input": "2024-01-17T17:58:18.178843Z", + "iopub.status.busy": "2024-01-17T17:58:18.178637Z", + "iopub.status.idle": "2024-01-17T17:58:18.181882Z", + "shell.execute_reply": "2024-01-17T17:58:18.181359Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.382924Z", - "iopub.status.busy": "2024-01-16T18:26:39.382422Z", - "iopub.status.idle": "2024-01-16T18:26:39.390013Z", - "shell.execute_reply": "2024-01-16T18:26:39.389515Z" + "iopub.execute_input": "2024-01-17T17:58:18.184292Z", + "iopub.status.busy": "2024-01-17T17:58:18.183941Z", + "iopub.status.idle": "2024-01-17T17:58:18.191627Z", + "shell.execute_reply": "2024-01-17T17:58:18.191112Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.392353Z", - "iopub.status.busy": "2024-01-16T18:26:39.392147Z", - "iopub.status.idle": "2024-01-16T18:26:39.634627Z", - "shell.execute_reply": "2024-01-16T18:26:39.633997Z" + "iopub.execute_input": "2024-01-17T17:58:18.194271Z", + "iopub.status.busy": "2024-01-17T17:58:18.193907Z", + "iopub.status.idle": "2024-01-17T17:58:18.459352Z", + "shell.execute_reply": "2024-01-17T17:58:18.458616Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.637681Z", - "iopub.status.busy": "2024-01-16T18:26:39.637242Z", - "iopub.status.idle": "2024-01-16T18:26:39.914774Z", - "shell.execute_reply": "2024-01-16T18:26:39.914171Z" + "iopub.execute_input": "2024-01-17T17:58:18.463589Z", + "iopub.status.busy": "2024-01-17T17:58:18.462420Z", + "iopub.status.idle": "2024-01-17T17:58:18.740920Z", + "shell.execute_reply": "2024-01-17T17:58:18.740191Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-16T18:26:39.917765Z", - "iopub.status.busy": "2024-01-16T18:26:39.917338Z", - "iopub.status.idle": "2024-01-16T18:26:39.921453Z", - "shell.execute_reply": "2024-01-16T18:26:39.920861Z" + "iopub.execute_input": "2024-01-17T17:58:18.745764Z", + "iopub.status.busy": "2024-01-17T17:58:18.744581Z", + "iopub.status.idle": "2024-01-17T17:58:18.750295Z", + "shell.execute_reply": "2024-01-17T17:58:18.749695Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 52e392f6a..871ae8560 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -870,7 +870,7 @@

    1. Install required dependencies and download data
    ---2024-01-16 18:26:44--  https://data.deepai.org/conll2003.zip
    +--2024-01-17 17:58:23--  https://data.deepai.org/conll2003.zip
     Resolving data.deepai.org (data.deepai.org)...
     
    @@ -879,24 +879,9 @@

    1. Install required dependencies and download data
    -185.93.1.247, 2400:52e0:1a00::941:1
    -Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.
    -
    - -
    -
    -
    -
    -
    -HTTP request sent, awaiting response...
    -
    -
    -
    -
    -
    -
    -
    -200 OK
    +143.244.50.91, 2400:52e0:1a01::899:1
    +Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.
    +HTTP request sent, awaiting response... 200 OK
     Length: 982975 (960K) [application/zip]
     Saving to: ‘conll2003.zip’
    @@ -917,25 +902,25 @@

    1. Install required dependencies and download data
    -

    conll2003.zip 100%[===================&gt;] 959.94K 5.55MB/s in 0.2s

    +

    conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.05s

    -

    2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists </pre>

    -

    conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s

    +

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s

    -

    2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

    -

    conll2003.zip 100%[===================>] 959.94K 5.55MB/s in 0.2s

    +

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s

    -

    2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists

    +
    +
    +
    +
    +
    +connected.
     
    @@ -996,39 +988,59 @@

    1. Install required dependencies and download data
    
     
     
    -
    pred_probs.npz 67%[============&gt; ] 10.93M 54.7MB/s
    +
    pred_probs.npz 1%[ ] 262.53K 1.15MB/s
    +

    </pre>

    +
    +
    +
    pred_probs.npz 1%[ ] 262.53K 1.15MB/s
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    pred_probs.npz 1%[ ] 262.53K 1.15MB/s

    +
    +
    +
    +
    +
    +
    +
    +
    pred_probs.npz 27%[====&gt; ] 4.51M 10.1MB/s

    </pre>

    -
    pred_probs.npz 67%[============> ] 10.93M 54.7MB/s
    +
    pred_probs.npz 27%[====> ] 4.51M 10.1MB/s

    end{sphinxVerbatim}

    -

    pred_probs.npz 67%[============> ] 10.93M 54.7MB/s

    +

    pred_probs.npz 27%[====> ] 4.51M 10.1MB/s

    -

    pred_probs.npz 100%[===================&gt;] 16.26M 61.5MB/s in 0.3s

    +

    pred_probs.npz 98%[==================&gt; ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 24.2MB/s in 0.7s

    -

    2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    </pre>

    -

    pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s

    +

    pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s

    -

    2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    end{sphinxVerbatim}

    -

    pred_probs.npz 100%[===================>] 16.26M 61.5MB/s in 0.3s

    +

    pred_probs.npz 98%[==================> ] 16.07M 23.9MB/s +pred_probs.npz 100%[===================>] 16.26M 24.2MB/s in 0.7s

    -

    2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    [3]:
    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
    index d03f7c050..9243d7ad9 100644
    --- a/master/tutorials/token_classification.ipynb
    +++ b/master/tutorials/token_classification.ipynb
    @@ -75,10 +75,10 @@
        "id": "ae8a08e0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:44.432822Z",
    -     "iopub.status.busy": "2024-01-16T18:26:44.432609Z",
    -     "iopub.status.idle": "2024-01-16T18:26:46.060279Z",
    -     "shell.execute_reply": "2024-01-16T18:26:46.059587Z"
    +     "iopub.execute_input": "2024-01-17T17:58:23.424165Z",
    +     "iopub.status.busy": "2024-01-17T17:58:23.423975Z",
    +     "iopub.status.idle": "2024-01-17T17:58:25.202201Z",
    +     "shell.execute_reply": "2024-01-17T17:58:25.201433Z"
         }
        },
        "outputs": [
    @@ -86,7 +86,7 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-01-16 18:26:44--  https://data.deepai.org/conll2003.zip\r\n",
    +      "--2024-01-17 17:58:23--  https://data.deepai.org/conll2003.zip\r\n",
           "Resolving data.deepai.org (data.deepai.org)... "
          ]
         },
    @@ -94,22 +94,9 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "185.93.1.247, 2400:52e0:1a00::941:1\r\n",
    -      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n"
    -     ]
    -    },
    -    {
    -     "name": "stdout",
    -     "output_type": "stream",
    -     "text": [
    -      "HTTP request sent, awaiting response... "
    -     ]
    -    },
    -    {
    -     "name": "stdout",
    -     "output_type": "stream",
    -     "text": [
    -      "200 OK\r\n",
    +      "143.244.50.91, 2400:52e0:1a01::899:1\r\n",
    +      "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.\r\n",
    +      "HTTP request sent, awaiting response... 200 OK\r\n",
           "Length: 982975 (960K) [application/zip]\r\n",
           "Saving to: ‘conll2003.zip’\r\n",
           "\r\n",
    @@ -122,9 +109,9 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "conll2003.zip       100%[===================>] 959.94K  5.55MB/s    in 0.2s    \r\n",
    +      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.05s   \r\n",
           "\r\n",
    -      "2024-01-16 18:26:45 (5.55 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
    +      "2024-01-17 17:58:23 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
           "\r\n",
           "mkdir: cannot create directory ‘data’: File exists\r\n"
          ]
    @@ -136,24 +123,30 @@
           "Archive:  conll2003.zip\r\n",
           "  inflating: data/metadata           \r\n",
           "  inflating: data/test.txt           \r\n",
    -      "  inflating: data/train.txt          "
    +      "  inflating: data/train.txt          \r\n",
    +      "  inflating: data/valid.txt          \r\n"
          ]
         },
         {
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "\r\n",
    -      "  inflating: data/valid.txt          \r\n"
    +      "--2024-01-17 17:58:24--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    +      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.40.201, 52.217.104.68, 52.217.165.25, ...\r\n",
    +      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.40.201|:443... "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "connected.\r\n"
          ]
         },
         {
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-01-16 18:26:45--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    -      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.171.89, 52.216.37.153, 54.231.192.249, ...\r\n",
    -      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.171.89|:443... connected.\r\n",
           "HTTP request sent, awaiting response... "
          ]
         },
    @@ -174,7 +167,15 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "pred_probs.npz       67%[============>       ]  10.93M  54.7MB/s               "
    +      "pred_probs.npz        1%[                    ] 262.53K  1.15MB/s               "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "\r",
    +      "pred_probs.npz       27%[====>               ]   4.51M  10.1MB/s               "
          ]
         },
         {
    @@ -182,9 +183,10 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "pred_probs.npz      100%[===================>]  16.26M  61.5MB/s    in 0.3s    \r\n",
    +      "pred_probs.npz       98%[==================> ]  16.07M  23.9MB/s               \r",
    +      "pred_probs.npz      100%[===================>]  16.26M  24.2MB/s    in 0.7s    \r\n",
           "\r\n",
    -      "2024-01-16 18:26:45 (61.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
    +      "2024-01-17 17:58:25 (24.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
           "\r\n"
          ]
         }
    @@ -201,10 +203,10 @@
        "id": "439b0305",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:46.062757Z",
    -     "iopub.status.busy": "2024-01-16T18:26:46.062552Z",
    -     "iopub.status.idle": "2024-01-16T18:26:47.073438Z",
    -     "shell.execute_reply": "2024-01-16T18:26:47.072752Z"
    +     "iopub.execute_input": "2024-01-17T17:58:25.205535Z",
    +     "iopub.status.busy": "2024-01-17T17:58:25.205105Z",
    +     "iopub.status.idle": "2024-01-17T17:58:26.262369Z",
    +     "shell.execute_reply": "2024-01-17T17:58:26.261719Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -215,7 +217,7 @@
         "dependencies = [\"cleanlab\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@a8d2170f0db89b804931917dd930161c971bea94\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@15bec56103a268b4cbc829af93459cd8a66649de\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -241,10 +243,10 @@
        "id": "a1349304",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:47.076275Z",
    -     "iopub.status.busy": "2024-01-16T18:26:47.075796Z",
    -     "iopub.status.idle": "2024-01-16T18:26:47.079464Z",
    -     "shell.execute_reply": "2024-01-16T18:26:47.078949Z"
    +     "iopub.execute_input": "2024-01-17T17:58:26.265615Z",
    +     "iopub.status.busy": "2024-01-17T17:58:26.265000Z",
    +     "iopub.status.idle": "2024-01-17T17:58:26.268761Z",
    +     "shell.execute_reply": "2024-01-17T17:58:26.268164Z"
         }
        },
        "outputs": [],
    @@ -294,10 +296,10 @@
        "id": "ab9d59a0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:47.081729Z",
    -     "iopub.status.busy": "2024-01-16T18:26:47.081527Z",
    -     "iopub.status.idle": "2024-01-16T18:26:47.084579Z",
    -     "shell.execute_reply": "2024-01-16T18:26:47.084042Z"
    +     "iopub.execute_input": "2024-01-17T17:58:26.271286Z",
    +     "iopub.status.busy": "2024-01-17T17:58:26.270877Z",
    +     "iopub.status.idle": "2024-01-17T17:58:26.274169Z",
    +     "shell.execute_reply": "2024-01-17T17:58:26.273608Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -315,10 +317,10 @@
        "id": "519cb80c",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:47.086724Z",
    -     "iopub.status.busy": "2024-01-16T18:26:47.086524Z",
    -     "iopub.status.idle": "2024-01-16T18:26:54.928199Z",
    -     "shell.execute_reply": "2024-01-16T18:26:54.927577Z"
    +     "iopub.execute_input": "2024-01-17T17:58:26.276506Z",
    +     "iopub.status.busy": "2024-01-17T17:58:26.276193Z",
    +     "iopub.status.idle": "2024-01-17T17:58:34.303876Z",
    +     "shell.execute_reply": "2024-01-17T17:58:34.303255Z"
         }
        },
        "outputs": [],
    @@ -392,10 +394,10 @@
        "id": "202f1526",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:54.931044Z",
    -     "iopub.status.busy": "2024-01-16T18:26:54.930670Z",
    -     "iopub.status.idle": "2024-01-16T18:26:54.936757Z",
    -     "shell.execute_reply": "2024-01-16T18:26:54.936221Z"
    +     "iopub.execute_input": "2024-01-17T17:58:34.306724Z",
    +     "iopub.status.busy": "2024-01-17T17:58:34.306333Z",
    +     "iopub.status.idle": "2024-01-17T17:58:34.312260Z",
    +     "shell.execute_reply": "2024-01-17T17:58:34.311721Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -435,10 +437,10 @@
        "id": "a4381f03",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:54.938947Z",
    -     "iopub.status.busy": "2024-01-16T18:26:54.938584Z",
    -     "iopub.status.idle": "2024-01-16T18:26:55.375633Z",
    -     "shell.execute_reply": "2024-01-16T18:26:55.374948Z"
    +     "iopub.execute_input": "2024-01-17T17:58:34.314518Z",
    +     "iopub.status.busy": "2024-01-17T17:58:34.314319Z",
    +     "iopub.status.idle": "2024-01-17T17:58:34.744940Z",
    +     "shell.execute_reply": "2024-01-17T17:58:34.744292Z"
         }
        },
        "outputs": [],
    @@ -475,10 +477,10 @@
        "id": "7842e4a3",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:55.378776Z",
    -     "iopub.status.busy": "2024-01-16T18:26:55.378226Z",
    -     "iopub.status.idle": "2024-01-16T18:26:55.384946Z",
    -     "shell.execute_reply": "2024-01-16T18:26:55.384227Z"
    +     "iopub.execute_input": "2024-01-17T17:58:34.747755Z",
    +     "iopub.status.busy": "2024-01-17T17:58:34.747534Z",
    +     "iopub.status.idle": "2024-01-17T17:58:34.753183Z",
    +     "shell.execute_reply": "2024-01-17T17:58:34.752676Z"
         }
        },
        "outputs": [
    @@ -550,10 +552,10 @@
        "id": "2c2ad9ad",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:55.387617Z",
    -     "iopub.status.busy": "2024-01-16T18:26:55.387265Z",
    -     "iopub.status.idle": "2024-01-16T18:26:57.330447Z",
    -     "shell.execute_reply": "2024-01-16T18:26:57.329532Z"
    +     "iopub.execute_input": "2024-01-17T17:58:34.755736Z",
    +     "iopub.status.busy": "2024-01-17T17:58:34.755375Z",
    +     "iopub.status.idle": "2024-01-17T17:58:36.724878Z",
    +     "shell.execute_reply": "2024-01-17T17:58:36.723947Z"
         }
        },
        "outputs": [],
    @@ -575,10 +577,10 @@
        "id": "95dc7268",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:57.334192Z",
    -     "iopub.status.busy": "2024-01-16T18:26:57.333377Z",
    -     "iopub.status.idle": "2024-01-16T18:26:57.340257Z",
    -     "shell.execute_reply": "2024-01-16T18:26:57.339626Z"
    +     "iopub.execute_input": "2024-01-17T17:58:36.730399Z",
    +     "iopub.status.busy": "2024-01-17T17:58:36.727865Z",
    +     "iopub.status.idle": "2024-01-17T17:58:36.735089Z",
    +     "shell.execute_reply": "2024-01-17T17:58:36.734419Z"
         }
        },
        "outputs": [
    @@ -614,10 +616,10 @@
        "id": "e13de188",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:57.342851Z",
    -     "iopub.status.busy": "2024-01-16T18:26:57.342436Z",
    -     "iopub.status.idle": "2024-01-16T18:26:57.360032Z",
    -     "shell.execute_reply": "2024-01-16T18:26:57.359548Z"
    +     "iopub.execute_input": "2024-01-17T17:58:36.737747Z",
    +     "iopub.status.busy": "2024-01-17T17:58:36.737272Z",
    +     "iopub.status.idle": "2024-01-17T17:58:36.761752Z",
    +     "shell.execute_reply": "2024-01-17T17:58:36.761145Z"
         }
        },
        "outputs": [
    @@ -795,10 +797,10 @@
        "id": "e4a006bd",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:57.362505Z",
    -     "iopub.status.busy": "2024-01-16T18:26:57.362141Z",
    -     "iopub.status.idle": "2024-01-16T18:26:57.393875Z",
    -     "shell.execute_reply": "2024-01-16T18:26:57.393317Z"
    +     "iopub.execute_input": "2024-01-17T17:58:36.764355Z",
    +     "iopub.status.busy": "2024-01-17T17:58:36.764016Z",
    +     "iopub.status.idle": "2024-01-17T17:58:36.799290Z",
    +     "shell.execute_reply": "2024-01-17T17:58:36.798797Z"
         }
        },
        "outputs": [
    @@ -900,10 +902,10 @@
        "id": "c8f4e163",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:57.396419Z",
    -     "iopub.status.busy": "2024-01-16T18:26:57.396040Z",
    -     "iopub.status.idle": "2024-01-16T18:26:57.404752Z",
    -     "shell.execute_reply": "2024-01-16T18:26:57.404255Z"
    +     "iopub.execute_input": "2024-01-17T17:58:36.801809Z",
    +     "iopub.status.busy": "2024-01-17T17:58:36.801371Z",
    +     "iopub.status.idle": "2024-01-17T17:58:36.809794Z",
    +     "shell.execute_reply": "2024-01-17T17:58:36.809297Z"
         }
        },
        "outputs": [
    @@ -977,10 +979,10 @@
        "id": "db0b5179",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:57.406914Z",
    -     "iopub.status.busy": "2024-01-16T18:26:57.406703Z",
    -     "iopub.status.idle": "2024-01-16T18:26:59.250819Z",
    -     "shell.execute_reply": "2024-01-16T18:26:59.250197Z"
    +     "iopub.execute_input": "2024-01-17T17:58:36.812236Z",
    +     "iopub.status.busy": "2024-01-17T17:58:36.811808Z",
    +     "iopub.status.idle": "2024-01-17T17:58:38.694852Z",
    +     "shell.execute_reply": "2024-01-17T17:58:38.694278Z"
         }
        },
        "outputs": [
    @@ -1152,10 +1154,10 @@
        "id": "a18795eb",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-01-16T18:26:59.253304Z",
    -     "iopub.status.busy": "2024-01-16T18:26:59.253057Z",
    -     "iopub.status.idle": "2024-01-16T18:26:59.257459Z",
    -     "shell.execute_reply": "2024-01-16T18:26:59.256934Z"
    +     "iopub.execute_input": "2024-01-17T17:58:38.697532Z",
    +     "iopub.status.busy": "2024-01-17T17:58:38.697105Z",
    +     "iopub.status.idle": "2024-01-17T17:58:38.701595Z",
    +     "shell.execute_reply": "2024-01-17T17:58:38.701051Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/versioning.js b/versioning.js
    index 11eac3d19..c37486deb 100644
    --- a/versioning.js
    +++ b/versioning.js
    @@ -1,4 +1,4 @@
     var Version = {
       version_number: "v2.5.0",
    -  commit_hash: "a8d2170f0db89b804931917dd930161c971bea94",
    +  commit_hash: "15bec56103a268b4cbc829af93459cd8a66649de",
     };
    \ No newline at end of file