From a31444086338e1053557ad02d474f25977b4f8bd Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 11 Jul 2024 23:36:20 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@a8cb2839f0be3d312ddab7c799760a9c4939025f --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16791605 -> 16792046 bytes master/.doctrees/index.doctree | Bin 42710 -> 42710 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1676 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1260 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 396 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3928 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1128 +++-- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 660 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 434 +- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1034 ++--- .../tutorials/token_classification.ipynb | 179 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 230169 -> 230171 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 142186 -> 142186 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 514366 -> 514366 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 120657 -> 120657 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 149929 -> 149929 bytes .../tutorials/datalab/workflows.doctree | Bin 405645 -> 405645 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372315 -> 372315 bytes .../tutorials/indepth_overview.doctree | Bin 220325 -> 220325 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104195 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176709 -> 176643 bytes .../cleanlab/object_detection/summary.html | 15 +- .../cleanlab/segmentation/summary.html | 40 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1676 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1260 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 396 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 58 +- master/tutorials/datalab/image.ipynb | 3928 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 416 +- master/tutorials/datalab/workflows.ipynb | 1128 +++-- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 660 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 434 +- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1034 ++--- master/tutorials/token_classification.html | 18 +- master/tutorials/token_classification.ipynb | 179 +- versioning.js | 2 +- 182 files changed, 12751 insertions(+), 12794 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 21ce20434..dfab0c3eb 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 4f48f09f8b47f3891cc4f07acfa7ce26 +config: ab68a9e18573ecdd609e56b3df281521 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 0f7529d6283b77da910d7ffa24e5f772ac90fa29..d9305b3ddc4927f6d46c8f43ec48c14673961f04 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRF?L3(*newu;4sj+E_agv#tsX?kiin&E>&pL delta 117 zcmdlWxj}M6IHO^arAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRz0U<}|SLmMaeaz+6E?IIBX diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index b7a478586eefe368270dc29a583cc8a215cfd859..f577c6d848c9e481b30f3fe924d4057b4fad9a2e 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhUNw7NP zZfufhVQyxYymBrh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8Brh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8XCrqn1% zFj`{@iUNsl0<|ID`~$p`>MGJC7b=88A@ZWoi_R!wUhcC4bNM{K=RNbD_sq=1V(!FZ z?qmydc%og`V!apaHdnPPT;1VzyX+Br*yD{voG!1YGwgInyy9|ts-5j#kK5g;kFbw` zEPiXgR$D(Ko8tRT+4?dc3nY);_F%z&NZz2Y23I&HjjskR50(^tpoOPF4$ZGSzE~k; zP>&3>VT<0T2X7>l@J#`o~AJcCLhRPVVLaCX18H-NM(;; z@~D~3!DMb>&tYZi#jqyQ_z3dxIo-AQkVDfY+I|7p* zm$4Txd9H%Bf^(pWrtR!|0XFEHsJNaD`T+6&2epl&cUWi$a1mX0k^L(3pOq9k9gr%)!`g_Ul5ja@0%OppZs}(RDn1;O`tmVx z;NeYX)@GNaJPO^D$dZc7`xPmjUOkgWk76#3T0&vDB*Mhde%N#nL58x>48Ao<)fWFs z3!niBgSJdSytO9_w3-0tma~p(#yG!MGJC7b=88A@ZWoi_R!wUhcCO=kj@e&wJ)Q@64I;h3xT# z?1?7kj8?ijJiQmMJG5}bv)Aczdm~=W+g=&gG*6^W+ZXXfB2Jgr6>*Ez<_@7 zG}`-GuuX3uuQ? z@xiW>i5Ddr=uP4(eKMc58#AA~Q!#C)G57U>gld(=VxVEo%$>&ckK-_RVrd@Mmi)?s zGrwCgU~a*mbFg;j>JV~F%zY+5W24CNSQp>m>>iq$o~1AaCht#UZ7|uN$?m}9kjfsz zdwW) zfk(HPRi9auawv3PB3m*p@0X=idi7iyK7zT_>v4r;lL!+<`(eXD1R2OcGx$~|RbTik z&4UIc3|i6w@#dM#)2nuI8DrZAjQ0L&n8sDF=FmuD3-$ojlPF*^ hsls(pxP=A_NP zZfufhVQyxYyt#^TCmGtNA2ejK-Mo-_wJ_;cg7r?`C0;_h*2#>nL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nKnL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nKNP zZfufhVQyxYJh_MQ1{t~<1syhDW!k|+p4Q3#SR2UF8Mukvm4!T=lh}nf-{S6LCQEn7 c=C}OGWQ6YKM!}L0vTSq!h7tef(zIAc0BM?xUjP6A delta 477 zcmca~p7GLo#tqSohDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt-M1{t~<1syhDW!k|+p4Q3#SR2UF8Mukvm4!T=lh}nf-{S6LCQEn7 c=C}OGWQ6YKM!}L0vTSq!h7tef(zIAc0MZ7KhX4Qo diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 0c9b4031fff19844a879838710b1cf8a90261f0d..102e2583126b77d0914f5df25c410c1d9dcd4c65 100644 GIT binary patch delta 4228 zcmbuC-Aj{E9LG6lZMiLN*^7A*S%cngTKL`Um7dv1xZ3O zWDnzkV7LsEup)Md6NKFq)yT}XD`{PIqc_rh5uGRh0>3`@pWo;A`<>r;dDOB=Et_8Y z$#HkGCpB<2W@~iXoe_K3<#O7hwuoDbMjcMc-5qhbqLTO=Zo5O4+%8u)yGeckm?DRo z*`n^WVdF*(RTgy?C2L9obSd4*6tigygoc^TBIyBC4z;qC-N&jS^gPR2KOhOqp-#4X zq{R(cX8=kxS7{rqVbgLil5Z&;X1Q1gGEW+MuQy7eq{HlX-viY8sJ{=jP9-JO8XxeZ z)^o!?)Os|P0<5f*{)-yJBObu0Xyf3zbyo+B11UsU+vqZKGLga+_HO(qQmclZnz)YC zs-c0&7-|h<(x|m3JBM1IsgF_X>O&ohj^+AMbRyq^)|!}pk6IUIkV{$7MuN@0MXlz! zuP8e7;xe%57%7aP#=2KQ6g9j)10*ZD+s?kcX~)K)o#p2bnxS*a%bJQ^nANK^6|32y z&kM-og%rFjQIb(}qEy2!m48=(H7`{@nlMyZs#utHrNS{>ZGBG6d@N7=+pqv!1PEF| zwxL8Wf*n@{Yvg~vkpj5dS^&Lj`7X*ou}p%SNJGy>l=)h)2WQvF1yIiS{vyR4m{;9@ zm>PME(kbK-D|X9zfbp&LPCcH%9-ccu4d4oLQNpKPxLmI`cxV+*o}`VN=z*S#D1$qp zG<@6=q($sx_o;&2#|JxTEw*)inWuHUK1#D#@&EDWI9)StymT%P(MjO(sR}N@uic;}+8$Bcw?o<%X^{GDzInkJFquhPuW|`hg@N z8M4DT5Qt`&gch-vc!RK;q8gdGypq;cH+m!87twq2FYxQdx%@nz=Xu`e{c*Hqi?(ce z=_QW7MrX{G>Q2|$!;0&q!&xsWl3j{6hV6Ej60tWZE=6%TC8ts^zDRvoX1B->08`~) zGg~yAHErIgqw1o;rsgb3fG%b_nQFCcgU}GO+ax1^%E30ay7xpmgkEI1+7C#=aqJsQt?@oD zYQ2#1pw{E*G+<@L%wNIFNjVwGXWzClkqcvv(suky>^1%;*iI zRvq<^DX7(-&7jt6xmnaYr#(TfYmW>lIy~NsqN9^7XswB<_o#JY8o88JeI(e-ThwZu z{feRkFRlWcj*9^4s{K)U*(hTjQ{{ShX39$eG diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 8a8c95bc0a0d2df9ce2100285f848c8916c8b082..e9e69232308e34889de67abd6dff045bed4c0d0e 100644 GIT binary patch delta 62 zcmZotYEs(Z#$sq*kX~MtpJt$MYHXTfoMdKZYLIG>Vs4R|YGP_(o}6N0mTCb6Cg#Q_ Pi5BK&X33k&S-N=uKn)SR delta 62 zcmZotYEs(Z#$s4xX_8@Hnpv)Ikep_2WN2b)k!E3Fk!qQ2U|^n>VqlhLo|a~4VqubI P3dAX<$%&iGS-N=uKSUBi diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 2b0f44ee6f1a96bdaabf1448dffa3df07b5f0cc2..9dca56733bd3b094c3a6f22703925823e33cd100 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChUNw7NP SZfufhVQyxYyt$Dvx)K1@g%o1| delta 64 zcmccfmGRD3#ti|ChDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i SCTXTXoMM`sxVe!rx)K1?ycFmF diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index a3b94ba57d0c8689a17e85b86a03c251b2dfbfeb..0064526793042d8e6cb05eb91e1490763c7dbc8e 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlv|=L3(*newu;4sj+E_agv#tsX?kiin&E@q{G^3$;L3(*newu;4sj+E_agv#tsX?kiin&E@q{G^1gWrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRz0VO*^X0C`svhyVZp diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 1acab3ff22b53d8fab91ee890d3e26b49c229eee..d6a85bf2ecd32af83c076ea17f0e1a1843df7cd9 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&M&NP hZfufhVQyxYtUozcK)HDrWBV>f5N6uGi;=nQ5&$bK8J++D delta 81 zcmX@Gg8#q@{tc;&Mn#q;8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i hCTXTXoMM`ss6RPYK)HDrWBV>f5N6uGi;=nQ5&$ze8Y2Jz diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 05da79122ad215638d20fa469923e012309a4698..e9d8507a51de2ea7983220ba1ddf290635e28bc3 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp S+}I@1!raU(dGjCElurQk$`$1R delta 64 zcmaFxf%(A)<_)J=4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 SOwvq&IK?zMaq}P6lurQk0TyZi diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index c6c5dfaa536cab6f2ef64dbe0d164de8edd5b58d..7c956d3791d21e949c96c051766748a7b2e90df7 100644 GIT binary patch delta 117 zcmX@AbyRDEFQcJ(L3(*newu;4sj+E_agv#tsX?kiin&Ey5{v(LOOj^8l*2dKdqcH;V`=sCEB+DiS{95T-2Lr6pYIy1X2QmvOs$4`^Pgm+_Xu zJ$bNtIX~^~#?{Mtt?y+}o!zBk8D#trH~JZaj`M{l4`B6<^VL8rR_i!_xON|^Ivd=N zs$QK|6(aw@2I<7-WCjZ6Ix;xH?C{ zFC~1~>>aqf<8`ciHhcjty__#5GuYH^VN-vV&)P zPN6CI!RO%{1ARL1kB0Kl1la1Ehc{@bi|O$d;?d!6z%D8SIfnDe9ei^vf+j-IoIB>? zw~l7eK-fkCQ}*lN8S&?oU#xC!7UARFcv&2nng{#JGbg{!2bE_|8vOga%g{h5xX6BI z^6BX-;4Jv&du<`iJfFV%sUL$1$9NJ%dmnhL&zfirfA#%eXo4Pdl!!}J1|Rvc5PqpU zUL2lhf9?V2AiNJuu6Xzcc2{%?bJ66;AG^UIvAH;fMYvt`R2bHq8)=Y_{#(8R8mPlj zmQUDilY`553TVvKkXQH;%PON*4UYCT6tJ>Q^oxAOPhD6ton|Pepd496No=4?NQPI_ zJ`E>QIe7xx4QDP3K^o90Lg9<7$qw2g*HzJdjgZO{AsW*bXM#n6B~w&RgUI_Rkajp(liY;t;x z4&uwOgvq{$Xt+rlWL`PZLwl!LyJMIrY*IXy45=CTB|nJ zvFX@ww)5NghMU+2Uj}aLIOzAFGGTif3?fX%HrNImY=~WlQW(?8zMCtf&%X;dkH0_X zoZq=Q+}UfMS^aFM*hqcdU}E&(u}HMvN^FeP#gkStnjEO_k46*Lf#@bHVOg=dWSte) zzXS39J~2*n0IIZh7yni;g9vJwjQ>_b&&!uwIx zD>V&3o4B<0BP`DuZiue%Kr_vV^T{Hf-{i;IWW)aig;Vw33$Lyf4Vyp53B<+p4$f`a z3-(PkH5T&irg3c08IfuYh;K60;z{$DSPh(Ny<H zXbOG_`1rcj?*{(yPyw0%TYby$vo6%d)YvldXdpCPw z+|*TY7JT!)_6TO4&wX_xh(U#8JPo4#_k8kJGp*+De*Ond&{K{wak<9e#|DMTJ_g}~EiY{R;m>hq&8w?Vg3zJxcJ4A1lA>XK{K|b+sUE9v1B^U&`e=U>*rO^dm zzPODRz=Udf8(t*8eSx}MaLn$YkkTpdL}Ota(IjD&+l~j^Zl)%gLbLt9iMe(nmzDVB zqcE*gS5uTg1NPL8PaW^1^+hhGQ`JtUJRhMN)z?i)H+J$&Cu6itjqIm3JhX;t9H15# zc&YKrW#AC~1^2~pINlv5?B?hYxoSgxF+!y(dzc3Byf`HG^^(6B)bvp|E3k-7O^wnk z_%bYFvM(a_$+(-X$g>6Hiad!&&7Gwod?6eXsYyzt{ugLe S8{eX^4@%@NrN77ixb#08z@j+- diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 3802dc4279aa57ed24ec27d0171a7fe9db7179ac..813e9b22fbb4fc6f51a6508f18b5626681582953 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhUNw7NP zZfufhVQyxYyt$2$i41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=;o=#I delta 2705 zcmex*o8{|mmJOkdhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVepyi41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=o|G_U diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 3c08fef854e9e60c90762f813b92f75341a81202..c677cfdaddac47dc7bb35afc2cc47922c98d2e01 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hUNw7NP zZfufhVQyxYyt$6Cg^6@+lOGxuOkN-^uz53!j}Y0~o5|E^B`du7y2K%7^0aTZlC@B1t0WnKKsm2m<+9u9M8Xb-LGm!00(B1t0WnKKsm2m<+9u9M8Xb-LGm!0M9;T*8l(j diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 675b4fea72e91278aeebff9292229fb0a7cefe6c..f66c2fdf28f3aaea0e4061cafb83f105853d2286 100644 GIT binary patch delta 122 zcmcbsd{=pcKck^}L3(*newu;4sj+E_agv#tsX?kiin&ExacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`BrRd0L8rS( zNt!7TrxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`BrNP zZfufhVQyxYJh_MQE*ZKMjp{Z_Fz1nDAyDgN31*?m?yPxaS-g7lL^gI-vb3(>T){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb+Bq!{b~ delta 2628 zcmccdp5?}SmJQL2hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt-ME*ZKMjp{Z_Fz1nDAyDgN31*?m?yPxaS-g7lL^gI-vb3(>T){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb-FNP zZfufhVQyxYte=vfT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rgT)&1 delta 2632 zcmaERn&s_jmJNZ7wndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rQ${d9 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index cd6e306bfe2a1fc47fe087fb193b2c03d58ed440..78823c85f26fddb5aba4c329d5a24a4499a3ac99 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7w&n%tNP zZfufhVQyxYte=vfT&!Q5Us{x$I=OL|@#ce!a~TauHU_9QXL17**JM_fI`VXHR$%?h zLY~&i3an0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZC0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZCNP zZfufhVQyxYyt#|<1sU2VJFcjiEYH$Fx`jZUos-u(iEYkjtzsctyYOUz6qe1qxI|dV zGh%axzy@|QwSJP&Auq%_H{XzAQzOsT$uk_I$q3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~305Ej;ApigX delta 2506 zcmbRCjb++5mJN}NhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVek*1sU2VJFcjiEYH$Fx`jZUos-u(iEYkjtzsctyYOUz6qe1qxI|dV zGh%axzy@|QwSJP&Auq%_H{XzAQzOsT$uk_I$q3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~30E09P_y7O^ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 556566c0f3ffcc46a5f36db3bf38f94c99408703..ec8940cdff9a04f3ea7d7b964b726f235ffee2e0 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhUNw7NP zZfufhVQyxYyt#_;0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mm>_nA89O delta 3034 zcmZ3sg>~5$)(xJFhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeh)0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mn+PvPl2{ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 98bfd5b96930627651e6834567bd70475d331416..8ce6c586e425f2a4a0eae7ef7dde41a4427d8ba8 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%S)L3(*newu;4sj+E_agv#tsX?kiin&ENP zZfufhVQyxYyt#_;BN^HzAB=CBe!!TKf3hx1A?daPwa=U^U?jY`n)M(H+1kZ7%W{jc zlBa$1Ux6+T^0ZFwQR3JfDaAxyu+0Q&7v5|k(?zDkf!d?VbT=r#k0}2qKfon6FV$=y z*V_U{5}Vm|E;5nrc!|xs^n1v(eY1cOFEa%;|2JJhrp>@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2mlg8IiUam delta 2706 zcmbRBnq}5&mJObahDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeh)BN^HzAB=CBe!!TKf3hx1A?daPwa=U^U?jY`n)M(H+1kZ7%W{jc zlBa$1Ux6+T^0ZFwQR3JfDaAxyu+0Q&7v5|k(?zDkf!d?VbT=r#k0}2qKfon6FV$=y z*V_U{5}Vm|E;5nrc!|xs^n1v(eY1cOFEa%;|2JJhrp>@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2mnErP<;RZ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 8f1f4955e350b01a8c4b353c1301ecc60ccc6419..a226a92b5886281b099afdf037fab7d3c134e38d 100644 GIT binary patch delta 3021 zcmdmUn03!#)(zf_hUNw7NP zZfufhVQyxYyt#()IvLs~3(m`%ej}cde=;LWA?db)v`=2ZCA?XM^)3r}+BYxYn#D|( z*8Ir<>`I&e@U5Xh`{X}-!jm6NW8K^&tj$WMD;|icY%Y{^W~V@Vg`%YjS=t*nC%YvH zkg2sioQu39(>VEfiO}SXeZrd~BKJy>XFJe{Xfk!yHw#bZ=jYx0rSt@OiLP;SeY3>o zw(16Qy${lUp>{bF*&dMC?AX{trtO>Sn;%nRvrhX8GHnJ2+q}-Bl-RD@+d+x#_5ID1 z*nVb`KY67EB*{FT7D|bBmf3g6aQtS$c?RT_O$)$9oA{D)@PKfZA*CAJ4`Z6L3J>fJnH7dLqoO4DS8dalh8hg>+wDx8`o zJG2RIPB^`pTJ5amvTOLj_gHEBI zZSsV#+?$!d7n0|JjOl(Xj2c@_85_teW-_(|^{?e6%lTltrMIsaV$A2Ez<}vM1Gu-} zm1o?hL6#{^)Bn3OvTgVAWV}sY-f5bAVG7&!2Y!r?$kabQKa7!Mdu<5g9xk$ckhdM! Ipnk##08g5l3IG5A delta 3021 zcmdmUn03!#)(zf_hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeV$IvLs~3(m`%ej}cde=;LWA?db)v`=2ZCA?XM^)3r}+BYxYn#D|( z*8Ir<>`I&e@U5Xh`{X}-!jm6NW8K^&tj$WMD;|icY%Y{^W~V@Vg`%YjS=t*nC%YvH zkg2sioQu39(>VEfiO}SXeZrd~BKJy>XFJe{Xfk!yHw#bZ=jYx0rSt@OiLP;SeY3>o zw(16Qy${lUp>{bF*&dMC?AX{trtO>Sn;%nRvrhX8GHnJ2+q}-Bl-RD@+d+x#_5ID1 z*nVb`KY67EB*{FT7D|bBmf3g6aQtS$c?RT_O$)$9oA{D)@PKfZA*CAJ4`Z6L3J>fJnH7dLqoO4DS8dalh8hg>+wDx8`o zJG2RIPB^`pTJ5amvTOLj_gHEBI zZSsV#+?$!d7n0|JjOl(Xj2c@_85_teW-_(|^{?e6%lTltrMIsaV$A2Ez<}vM1Gu-} zm1o?hL6#{^)Bn3OvTgVAWV}sY-f5bAVG7&!2Y!r?$kabQKa7!Mdu<5g9xk$ckhdM! Ipnk##0D2g*`Tzg` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 1ced38ffc6b8ee38567488a1ac2235a7f3dc5cff..19633bd8cc78a65354eead68aeabb20438de4b25 100644 GIT binary patch delta 2688 zcmbuA&nts*9LF1b=CRB~av+{UbJ520Ym_01mEwXVY;1%BF;SBrNjYemFFDX~K{?ob zBu-K;E>0*SIdfS!$&Wqx3%vK-U%lS%@8|pZJ~u1+n-zVyPFJc9_l=JX_1dhmD0{?i zMUib@n@6>Ky^?HKdpwfjwZ}e56(zS_Rg@kpt4@^ImW883T^m>OZ=OAu53sf5bUI0@ z)xr1-LAn4*VJMmy#ltgfF`2^@`PI(f*f;XDoJ7GS64rz+tG51zq<#!6OUNrtiq zh%3584}7_J2CK~I*1Dbm1!g3Ri>P&8K0~d1*&bk}=kkU`uxHe<02pK2%c!Dy9PK$# zTZ0Cku6Ls7V#5Ox_&hSn9L>2THgzI*IEIs>Ie?tq280d0}i zJLFo5$NbeDiKq8euLT?!3-z0*Yj7WV?zEu^J`-Jx9UFnA)bJ-IjnrAI8N|)2DU=s{ zMP7T&uHhGJAINV?!?!k5$+ta++BN)e_b3VKK2JGeA8_O7JaU;087EnI)W8DQMyk7d tLFOHNT&9n^LEufJ;G@9=h8Ch6IbR~^j9qU$9lU25KzsO`C;#Vt>MsT)J^=s# delta 2688 zcmbuA%PT}-7{(jsjAJr0B3YO?g~mp6W}M^9D1#`b6dNSDjN#<65hH5klBO&)8XsAZ z%LZj(#w)Rsvazv35y_g3u#(H1`~{v_oaL|I^L+33e&>2gf4!uS*6N(YZmCZh?H{v? zepPWgB-y39L|3odFN%uVBbKU)syZZ>q{{KHNA~;dtSVVzn>LOPbgi7@-#mLN8(=G` z8FZXdql58jhz!$>F-;GljJ7RStZtB13LK4Od3ngJ;XDoH7GS3pq)Ooj51z?{h6+}0 zONFwBi7UE54}7tB8mr9c#=e>a1!g3d%%j$je2Q9m_byZUJ%2 zavJ4DUXa&bvupVI$_MhB((ug>Q>*-9u!J27nt!XR(VM$T-2GBL)_} yGE(j3GcxbU!yk@q=<&baH1r~UVA189$a^A!BNGyekA##G$^ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 5e0c85f7433089d198db174318301d4f13c5e4e4..526ae73ac16d0bbcd097a4dafea7f3dbf398ee81 100644 GIT binary patch delta 2967 zcmaF)oaNNP zZfufhVQyxYyt$6?8X4NAHySe5PiA2$B;Cfzf?U%#+p;cZAzkZcL9REfq-&eZsMNW6 zyMUx1=~_24Dor9Icz`zcOb$@lMY@Gho!pZzgxFi1)i22{0AZ4&6%@#m--PmQ{-DM~ zPKXI|&E9-Mr;!}5gS3k3uVW&^?;x%HM!n?P`oiQAxwf`htR&ag-&Xg?wRNeTExER? zb2vk;t!^%zsp6p~KQc#3VaAccYV8F6DuF8*tOe6fw1U45nOLLN`y`fulb3`vY7kSz@ zi_UmLX3%Y3KUa^ON(K~c0&4^|FJ8Qz%uwGfuqJ_w;M%-!YcY9|G;QX2p-$nxtz3 u2N%C5>vnf(MsianFh{a(f2P3rn#@!^Sw4V$d!HKPAu=-5c3|^3g9!kBw0&*> delta 2967 zcmaF)oaNsp6p~KQc#3VaAccYV8F6DuF8*tOe6fw1U45nOLLN`y`fulb3`vY7kSz@ zi_UmLX3%Y3KUa^ON(K~c0&4^|FJ8Qz%uwGfuqJ_w;M%-!YcY9|G;QX2p-$nxtz3 u2N%C5>vnf(MsianFh{a(f2P3rn#@!^Sw4V$d!HKPAu=-5c3|^3g9!j30G8tb diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index c6a43dbace018e4299b19c2bd439227b8b77c00e..ad7434127026d8dd3008ed4038518f38537cf01d 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%S)L3(*newu;4sj+E_agv#tsX?kiin&EzCNU4Q~ zv4?7`Rv{E@_2CXg-~a!8=NxWj-B?*S zX1m!D*X6OR;qg(m(`k45?IW7zR0FEtv-1 zb(*&uqSXsZa?xZZzw+IH(XUMNTLH2he92QiX1dWhgb0^|IeNQu3du^Mdt3f&ftt>d z(soY)P^PBoLdTe;dX$*@0`bYzXFSwxqPs_x=IT}T#gO??L~H~56kD#Acwm|OXuTi5|ddLR0{{!bs7J~o) delta 3483 zcmbuCPe_wt9LITT@3iJ7w$h0uNDvW~?_~cx6rKhO`PzlDkBgMI-3YB{qUO6r=a?lGlBAc#ogo_xJt&e$VspRyT~* z4P&mK*~7h#pgS^gty}eL?jF0t>Crr@=R&VvRoz-Zb!l!*vpYNv&8dF@r~f=%XB7bB zOr7SPhFI-_l3X-dDWH5eVDxL#{C0q>1Yhy=fSGPKk0HX9V4mLYoE1p+n}cN zq;%X@0F{*J7tnO?hKoS6 z`sSy2-^nIE7`N(Il!g4!G}8S4GB)~k!;2)owM6&S@A}NxsC{~@jxK00Zb2ro)r4>M zXdNBs6S2|cogek)Ftm^b2TBD_4ZxKsGbn_NH2N^p2;%25R{H#`isGu*Od=cJ0jf(} zS(!J1_`X|aUS3z|>ifsYvmoQsOHg@z7&V}$&-*@_>A)v}MHr@7=^eKJVIC_TChNDH z8H!Kh9f=|{(cI6)CcMOQk(CcZcuG7t#EzhoD})+EO2zrrD~;lbi=8k+z0dG$%U-d1 zjD5up?k1nqc|}CM>_rRSM6xoe(ZUk?*kK>%5IOq5NM;g!5*20JEFsCJwMvEU!aiuk z=7CNh4x=EHNVXp0+^s>5qMHd3l#GHPgNh^wx*MHMZ@Tn<&i(KGJZCLo$i3Beon#R>=XsJ+b7*;KL9H3 zjY|ETg$|bc5a~P~hQt~As$0)N=oGPP8AG2*`|KPISjTE0a}hT@Z!%(G6=|#FX)+SG zp+^rFa10_dG|JCnp=If^7{*%8(yy(BGN|Azeepz5tAEGZa?m>1I*wW!_Us0%6!!{f zMCp!Rz$nGNSz34C6x!$2Ln~2h^ym%LYCJxJ#x!&C2~aSld>1OfDXQ=O3>BN7lww1x zq*2~PWj!Z!h`qFgjXL|ULrE{--!E+kB9r0^_{M=@&`zbi0W8w{TSW5$2Nx4UJ(37m<(=C-W z{&dcO9oCUuX1ewwu>_-~#61ZHz&Sctc8hKl=dPEh_6d!Z;Jsy*DJQ-W77Y yj~NtG7kdb0_}?m5`q=Vjq!x823J;i02_;wuHo(Pej#DNcv%?^-e41dtYySb=&X)NA delta 3812 zcmbuBT}V@57{__lv#qIXZlq>e(ZUk?I48Dtj2wMnBr}OViHefVgM);c+A0;c3;UoE zn+H05I0}PMBH4O~bGHULif$%EP%;XF3@VZ!=x%g2z3I~bxj2`<_xC*i_j%v<qqegIV5 z8Wl+Ic`r?VAR{x&$<)C$_Z34A69M}(7DeiTn z5v4mX07g0P&C-S==g>Z{9$SrCqbF~mR`cmuG^W|JPk@3c<-1q`PEmc}GgNGTN{$V$ zk;eoJmGz!6AokJ{4(jT^4kf*af4{UFh)j+z;+qFYKs&{TyY-m=M*8sN9dv$VuO55y zW)Il6w(kyVi1K>u9kHMuduFswkNx8vL65!a-f}(m#>5-wu$Bh4l5*qo(37m;Gp&_0 z@pRsV9oEr(R=V~gu?(Z-#`apO&oqNLt$RC!)t#nW@7@C_#q(`uu-EE28@>Lv3*F`- z{^#cwD`Zc~GvOMt7eweEDqq6Y)(ZB@wsgHJ)UhBior=ayt9RG3+gQ(2%FC_HqS^(P zs#<#0#kXK#fs}_0fCH)>E`wq{$js`BcE+GZydgDxn0rK9td5!VgO1T!p}m;DspOcyhqsd3-{+)ZnXIP%0yS-S$MNTU z5j%4=_ZJL<>TI-FK~*wZRJ@}|r38ZMchr#fP#9HA9b=o-iI|rul-zo76ghwlAB4T@ z=W@>NNG$9d9<8d86+<<&>;}0o z9`;_vDfGO45V|8}2YQZqjPxu?aJD=(0b9-kL(>3EQanL7{7NeJPXJr8h~_WDmB^L^ z;3ZGONwmaM;>!o10g1sg8YATJo3U+3OGqx5CsasF_#HONo71#@4daTbS!4u@4BcPf zAWQ#OUr85ddVu-;L!hQ#-?DHL{xrJ`RX!?GFA09SOXM_-c z-y+n2HUfBquT3F96(Ws8Cb+yz0KYhFKFL8QQU{CTYbm~Iw{J!xM1dsIR%ksPI^hEx zrvqV{ZG?0R7n(lK(zb-pjL!nhjnA^-WL L^;H^$RUv->tm67E delta 4920 zcmb_gT}V@580Of_xz$!3e->sDBG{ihhVCpWLkNtdRHTcRLHTpc($J4XI-4j=jZ*-^FH6q+J> z1u`~s6?Yf*f$A(d%0N|;90p!jWY7b_3^;4ayf2c&?MDXC;E!SN zBE37bKC{bOTU8x;{`sn;fb%4oWfK{{H}Ha*GeBlJ;Os*38gRC7?!ni9qH4O9s#~II z(xo<9)=PeHn8KjpNmm~F?lcz`jyZNJ3!tFai)=qJzEPmfnaS zNeI64X%xwh6iR({4>X`Mc>5O#x%_ru719!_3+DF*q$L7Qh4Lp%ZC@j~d^m_4!8F62 zuWym1pV8OT>G4kB{Qe>^(ywnDaS|R0E=LxA+5?RQMas{KCLsFvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 LW^QC?Vrr3QVPKJJnQUNSo|a-@mS&!oW@utz zl4c6TDW=JZn`;>FvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 L}CYr7+wh>*w%$XAiL_Wp!1IQ2b^!`{_}pGAK&-9rzPiU$+arl&EA%DOEE~IjX72l&qMV^~q{PHZ)aHlALpVbK1v95027F zV;&>`|h}h6(_{WuoM!>2EAM#6IPaA}eQBUC9KFNCUYmXRMn-70S$Lm+UNPG>gcnKX3AwhJ(e*}<(qDzjE~hE zArFmp1m9nL4-_rzytF)vO*u|W%PqXPa?JL^vN?g;1%7=igS~eWm3KS%>KhZW z>p_XjyC=xLEz~l%a-aZBy^g!~lSowl;Z!I#Q|Dn9`4?R5Igr2^)EX%ieJY=LuM!2evFrQ>&Pe*qLEn0){M delta 3077 zcmbuA-%C?r7{^)Dp_8Ugb`vxRlno4g&pPv*8I{4vOjM4HQ7Oi0^DQxiMY16zf^?A) zM9-xJBO(cfDG%aq>}Ckw7+wh>)YgST5WDKGpz})p0q5Jrx%|AJ=g0Rw?@`5jRPk;M zc(lg}{h={8o$nDDX~Z-=Zc0;_Q;CcahRljyX-KK*rY_^omyKs^E_l9r-D6}$N9eGz zh>`ru7sjPQdgq@7#I`B?! zb^pda)Veo#5w*S=f~_w`ZXqG8rRS&^3-I%?NQ3)CaV=d3dS%a@FUWLj>3LqB*aVEE z(BsJo)cVuz08rMl9oSOlx&Gi1+UNdsKTzz+h{}&{A~Dc%_kHfu;}}y^P56m&AvOwx zJT%S`Ji4$B6s_#MxHOARIYo<0ExhpTLI~{pYBI>ZE0d^Q;oWa?*n20ax_X|^y`Mtt zR#b3x^$^*&gF5Cmj+CIOpW?pF3=)-pIF-uH)Vb3|;io6sxHxE2Tj0Vc@IRMgaj@3@7cphB`~Uy| diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 31245665c452b4d5f583e4fcf91d2d08af6bbcf7..cc2632abaa6d9deb04598c921917d5d424c4d36c 100644 GIT binary patch delta 62 zcmew@^;>E~3zMOFL3(*newu;4sj+E_agv#tsX?kiin&EE~3zK1yrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRy*%5;ni0E6-q)Bpeg diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 56adf7313bc5a079e1a73c4cfa976154d2f4fa34..913190a4ccc85496db72c1b725e11ffdc6a34f08 100644 GIT binary patch delta 1253 zcmdlng>ANP zZfufhVQyxYJh_hXFzLFc2gouSZC=9kkc~{elV5N)kf+sn@&^Hf&40Kiu#%~N^9O-o zCNlL--XLbW`HpY_x%xM65Zg^gB!Pn47;HC-WIefdgZ0bE?4rp2d^uN&?DtiC&O&b3 ze-Mz}yj4w5m=gW&RtK%f)IWW_HlyU`)>3;BiVSeA3;BiVSelYc`Z%R~T zM8veP^sH$M!WLvLoIfqYn%C!5>tQN?t;H@>g5^mA-HJ|4-LQs&t9 zBxN8iW|!`r)El7MDCH7LT$nZzAX@FgPM$ghr4GtCfJ#@+9D_<1%zlC9YMM6zrK&k` zDD}_zaIRGg6H)5-izlPGmgi=p((}vnQR%}E63|@hJ{*ct%U4ZAsU`VwD0RoWrzo}W z`T;1_urVB^Ufz_7QhzBNj8czmjX|jepFT#ZfjiPsYPZi#sPyOE%TVd9y|d6<@9$fL zQt4m-Dz$wDQ!5U`)c20SJ7?6l4QPe0^B}ZL$Bx0XsrdL#lv;msGb(Lgeg>81R=_9S zoU`jts`cDubX^UVa1VF7a0R6nUfhD_T2cKBrKVoqfl|fQJ1Dj5^;sx2sBQ#G_4@rF zN=>{8pLF53x1-d|yU}Q_aretm>aM@Xpwxnfb13!6WB3{IkAJICYSMGKn+7*M0jXR? zG!85=SE%$4%1vxVzNl97ptY#Br;$QY?L!mYL$xdXC<3i>LI72w+~e&i4Y@s%FYR2? znbx4(npbE8ny;Z7<)Pf*9<&YBCWp{^suidk!2p-@ zqUa3DtQ$bH0jB*DiR%Z_7bv%93=KoMrdYC|+#5qF7UiCPi^ihbuZPnnRC|3Sp|1p7 zHHy&ZDZVm>vVr|42ERjDEH80`05MB3@}a;EeU~?-LQto8(o`}65j(}k>GTFDPUh-a z6b*~_%q7*mIl&WaX1d7;CiY zT=x-qBIR?$AZ-@4Mq`+6rJq18e^W@i+k#@zc!Z21u1xb5?;Di}4mm`lf$w^bWn}4< z1NXpPrt4r5JfehB{QH^@VL zSxdhH6>xN}G>A8XVqtzn?#&vg;{z&0dw``^FSz@zHqs$<^9m_8u-^+h57!~rPif6r zMr9qGfOHs+i0xf0OljoFUBFjX=lHLTR7}lUsK}!1fdi3V z^>7LLM=KkU6>#jLVQ(sNs92nzsc53}DA__?-d1wqHn!WawD|;?hK^w(9sEUY5B>l1 zU}d^;4vmJT*ERS=bW|jMiQ>gE3zfBK435IGv{@2>4md|mM-(W+r5J>C@Zv>Q<#cy6 zkW(iVL$httszixG`;DbnFf5*VMmc~MgEya5%wAv#IQEhfjh>UN)+%fU$)dnl^$<4` z)gY1SqwWP=Sh~aj{|4iHNEqE+ZI8}HA;sR@7^EKR1jcT6a1(uE)!VKZ@MlBSquwq# zTuW5FT`7Z`kPaTaVuD)R#+5+C$Jwe;JZ1_KZL`#Su2`|On%D(%NO6WB3e=L88?c=D z1XrPJnPy?Hm8eZEFT=}VSh{5PaK%B? zhG_2MgL+lt<#p;!bXqxcdg;}8N8N65HLd_ryI%9=*g(w>`0v4HRg!US3w0@)m=vw8 z=(1n+77x~IDZDyKGo!B!j#9BSd=}jho#qTv?tj+TK9#!K#GlA9HZy<1{**W&DASGEjP~7Hx5U|t&i!s zXwife8`08kOz-w;lA#mgOy{F#?c04CM(VrqYOI;FQ ze5NaVB7+-O^a@%Eh>>H8qN13hC~#9;a0yLZic(PvQ7`(K zqorm#YL4Wsj<`EIWMh$zfjMqSi@RC4Bs$o0?`=lD^1mPW`2YXTInQ~{^S;l^JyhHL zP;K+l6zV&>chAW&c~j;^Su^c1(cOF6V(qck*zDe!R%?ts%i7BxW4Cwj8QartlYd#Z z%!yH1xtVjK=H%wh&dhccbbHmYk4|=Pw2M>@bJi+8IwloYBYez`6~41DxpRSGkBUhh z3k<=InHie%sPU2lS)@3kS~hV!2niN+kQ}Y>f_tMtb;D0Tn(c$8ZF>0^`{wkZpxw*TCWN`KzE5S8BCJ_XJ7{*JjQ zm3D`sQs-ANwR|5;eQ!U!bB2Cfi&pp=_e0Bc@E|;!N)K;Fske`Ns-|T~|W|+{3NUT|%iP=hvaRmRCJPspBthLaE~N9hBPc+7y%;UNab_nttDn zQd4ihCtZ(Q8&PV`-8eMYr29uu>XyHUqtxQsGbr`RWB3{IkAJIBYT9$Sn-c1ufK;v| z8VQz|%T@XZ<)${FAXKaQ(F#=C$w*yM?L#x&L$!;8sTW%3lu)Wbxrdum26B5OU)s5> z4J}8xS6`u3XugK_RDg0LI?@JIJ1&xnkc&E3t(JAAktlbbl@6fVAA8Uaw9e*UlmKwK zAeK&{%$hzl6=1q9k@$9B`U2&4il>1n*PKW;lzV*uC8FFDZ_)@<`}H7NgKDo0A@r4i zD~A&LJjIuW(@bFhiG;T)m*pjHI3Q*zMm`j{pzrdU@etG_9y^JQK*S!g(N3>};&EIx zh2miGw&|q$HvXpE6?Q6jo=dL*$B`<qv1u3n^4Q&!I`?^C*#dlJ^^E_D7{%P6h4$E#ZEzsc z>o#11-f_w*WCh&2Xy6-45-JvFCo7t0GgP)v+qaZ_xQ$&lENwnPrlEV7NQV$n-BJJl zJXn&YoI#^u>2(D@5#1F@p0AiVK2KSJ#^5e2OPl$j=zw$Aba1gEyoy0c2NTbAC?`6g zfgC@o7#eJoCS^)2+HWkqB4F|4Q_3#17`*nhVl{y!;KU0`9C}W&TCK1ZB#Yu8)lb|= zRl`M2pt>D&Vd)YN{2PqtAz@etwFNpCg%n%3E?nK)8jRiL;3K*vs<*r`;LirA2P|GW zTuD_e-ju;dNC!V&JX)=8>P;ZxJJrj;eT3)acR2{@5X4J%t5?ynAlx>K4ygw5s7$SId>LK_!_pgNyv~qh8*qCrbU9m zvFz@f=yB_+O$6^dq5aSb#EZXbWHIFR$V9XlEFB)B4;!Av&Ap{9_ND{|AstM-^qy7^ zzooc_3>!)B3?Dx3F(n;BxJuEF8NdbMrbfLTycXXD>g(W_gZj=gcKLF!8OBS85_lx; zh}8odJOJm|^h4;$!_w;(+LLUF(}UnHkYXd3#_RcAzy=U|rt1};mg{Eds|TTC|ATry zS~MZWMh-r%pFto0c)~fo5S{{3?8mbz_4Vig;N>^!;)=7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i!nDFsLX delta 1676 zcmeDE&D8swX+tohZIPu(hIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrZjx<7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i$?^b=12 diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 54fb9276bf685e9d84ce87f939471049712de86e..2cd1bdb652f99044b1109536b045fd55d52e6e12 100644 GIT binary patch delta 117 zcmeyW`Big6IHRF?L3(*newu;4sj+E_agv#tsX?kiin&EuK}S`BXB}7geGOWn9yu5hIe&V}_wdWBNow)r^>UR9#WWV!EbH@H@~+z^vg) zk`Fa)?{J>Dj#lMD6AiWILjkKNEc1cDNHbXxR$85NcHxKCQpkfdMaU3NsD|MCP3WQu@XKwu zK!w-qchA5sSAxI;xZ+BXF2N>Of>X2b+LfR-2XVsn*4V<9=TIgLc|&lI!(YkGS9k`& zB+gwCZ4<_P3ceEL_;z4HzL9IAl;<-TcOaR2%?7;6$L@jBpVf_MQMb9Gz~-$ zBw808wV+7Qf-R^WVGvAPe}aOj^isU`APAlm5*0i++Z=M~KH4<9Hh#E#96bl()`6R;ell%^?1u%24 zZ191mEgkj~SJ8@^Z^BS>*5@(1{VET7hMHl8mj}FrH}LY6jUh0d&-&)D=046g>o{rgPg?#0{R{NY)_@TMrbBL(|rGXQwF8F?vI#Gf6a+@xq z@M`_8DcatU!1I8vG$a@;()xx3$EWFaLxSoI>A>|?-@=yXR04*)F1W|(uhPg@cvesf zoV$X!QKC=4rDN4EFbO-vwlcK>KS!1!!?dsDVl!28vqvR5B@Qo<2DZrv>G}vMl JPbj}S{sUWu`lbK? diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index c21429163b2c3dd505fbbefdd051e39bc0692d92..e891748557394fca418888e30529530d76d09878 100644 GIT binary patch delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e39a#N^9b%41;adAjSZi6h$J4sK@{TMTFGQVia9Q zOw_WBv-G5B%OX}#TAx$1lWL_#TSLHNLZTQN#7b3)R?!k8CDJo@YP0g^e8d0W_uG4) zea_jOnW^oGsO^b3n#LyCR_B%!7v@+dTBlg;QjzZTp{dS5*v1+wRIXLV>7AahiQu5*~yD9&lar(*fK<&h&7U^%{t+R^<}G(v;uYtFxFUq^mfr?ab}M}x zl<<2m)asmMNWI26Fz3D*l9oF6E=@)nJ2tP>S(#aaG_^~5%02<5I&#(lRA+47d6ei} z0c~Dap2t@m1cG(Aq-wDpm4>VtKy$4x$wR3vrL$4$x!2)bTgp;UYRkqVG}pUtzyUwr z@=KIDbK5*L*Xh4_8KutH0S!j39**0Yic)9qdW7csPd*o=UaOpfQtS7wMyX#^#iG=| zRL@7LXMgh*O10O%hEg}z1)|a!hbmC%&yMDyxo$uHCQ7Y85rRs~-iN8jPr}sV)9}v8 zJM#douy!s9Et7N}KAY5rBPexQQ#mSqyZI6-HMhVwo%!>!_KPa{0#$l9tv#T4R@`z<@t#keDQWU%I?py$?kEWG9r%)>Eg|E6hU;PfH z&gz?i=K4&3GfF)$kPcGmFk@eWSc+B{IwsO&jom`Ie>O6-qiRnLV#w=^m@z5W#1^1s z&M`9s$_)u+X0%kFhOs@UHf#ioK((FWYyj0(jAGGfoeRgX4wTzBjxEDpb4p2hnpL9Q zL<_4x^W8L=IZ*ByE8C80zm8#5Xg|-K#^O<~^*Q!2s;!G-H9(zdHG&2t44gwiF@Nhk^XEA!(rl_b!xjNu<6Zz^vl(9g zZ!Rz+|5X!f1CtuDp2ccdYjFJxxQKU|^5lA>Z54T{VNji&eW7-)kwflRX zIEf-Y03%*XVuf8Y+(&9PN zV;C>C(%H!@N={m6m5pdyq!e#pT&jC2-V{5N|^ErO>@X z1!dA@`dIDiK4kbWNG`R3$32c;ZNoSFE#OeuxRYos3mfsnAVjs@_p zcA?)kOK&5cqW78*`_jjsOEIVeZE2J0ft=lYyz#0uJpfI-;$Kn%e5DC-Fs*(lWm!Nx zPaQ8`0k!mAq&$BxATC-ZFCxc}<)O&2ri*RUvHu`$y za8Wj-TR{gBF)Y+Tv8$ZnR2OSVdD;sHBUKa{8jySb$$}WUa0sRTpBhRhdJ~At#-E!` z8GLBienXSjA^p#5Yn@?Sq!)4d(u~gxz37do_dFL4;ndM;XdDg(LY7`b8C($|4yO1% z!##8;aA#3BU@)Gzs5rcdnseuL5j|1Y2)BWuHy@!lOH!XcE8+;1@Rg3k;uQq3@> z0zC=ngE5K~ULGM1qVh;(Jus!a$F8@gD<@GrHN+|JqGK1`o2!g~`$32Y)4NGZ2i%uw z{gNM<7b^ITqB|T(RVpWVzBP9pQ&V{JW~Bv_()cY(Z6c=S`K`(zE}m^oRP?FxDo{XI z@FZNW0P~xkc=sK}*B!y%yOd2p6X+2LmtDX~aN?M{1L$~xOru6ceF*RL7fdSt@6onk z)eoJXX!vN=4y?2L{X~cZ$Q-E#0B?0P&#G=fo=!gLRTtBeXVsWc&zqd<;?c<}bjs`E z)&*+MN|4NjIEd$csK#RkrH+9)0hE7MZA6w#gkMJgXi#m)4X2Bn8r7A^q_2x_{Z);F z$!!-^Cja`5dL1sLjNLt|vipLn&=QmO5t#P3CZ~h7OK2oCYLq4e3#O+*&e2*G zLXJ(>?EI!hy9QhxE-htD*8UAl;&@vP8dPF zDM=gZ{P2x#%Q{x^A53%qNj2(BHOe(KB&_G@cyh svx{;rYVp7W;J0C9+|X>3ya|EV>_`TSD2|O>9$k`GI@ywAi=Gk@X^pYPSYnpO=2$Gzwp>e;E!t*_ zh>VG}S;b$jH7DD?g$)3zn&5PYzicsJQeMB*%in%UE5hXVYX1O7m)A0oF66@;J-$Ci zs^!eP+W(9M2Oi>(0}5pK<&K)*Za`+Q30`YAl_-v>BV)0AUGnhJ^RS#>a-am45W2elPbcElQTb|hNNYVJ&RM3#*WV`b5v!QB2Dd-p3I$uQth_20M!wncMc^w zRzREAndh-p2Y_JhPN`a)i%Nq^2GLv_O7l=^YuQYcdiGT~*Vghhl-jzX2+j4*YjD7i zHva~tPTx8Q&2`$ZUqq>K+o8e8*~1At(oyQnoe$Am|HWsc)T>oLL8%RUR-@D}s^d}W zUu))~)HA>R3Z>@Oy@FCV)%&B;xPz6b^p{8S&|J42dmW`V91lXJzS(jSm6}`Oo6h|C9+aBVb{SpQFTa3$*woRE zQg?OMp}F3?_Ft4*dHoPdz0utRPgwQAeN#OhK`9eMPoNn?q7@y?WnqwLm2WpBW6rmW@7Wu zGTY3|fO3O^nHeqBry*=Nstp;%!cc8jC>unzm19^GTIa%XtP|z-Phd;1*PJp^o@7-h zH`&4}(R?>fVRn>z+RC<}+OK0+HQLY9r?NzpYkh`&jB4u>SS?Uz+VCtpk1`)7vUGsy zy!>b&nIR8Qx^~Bn%wGKrw&g9P{P2G-)Q)pJoeyu5m4Zu-ODJ z|2OBEk-y!{+QB497`ze)h@Fkg|6CweF!&lvfg7l&n+*p}OIPm;u`lhq#j25=r?=oA z``Aq&`Nvu#KhBw%Pur}d(OVDLy&_rZu4)3|Uc0}<X;xMO7N~f2yrQJxQ>f(x}QWbF2kq~c0_NCA* zr-E|n5^}%k5ue{G9YoXRLhMIFw@beYa({F3-UE`26K5vAHd{)gidyNXKp-S+tm6T^ zvt8(SEz+Avr|7*V#NPDr=TZ#nK%3j81|VnG9&frLP4hz&ul%=^1Yc=F97wAlNI4b| z&(kN$mq9JP7cS2o3W$qV$qUH-GkG|2tm)$Dsq)cLAerCJlzsTR1#%Z?K*Hdd2@~g1 zWPv;c$eTpotB~ncuUCGBJRX2@T|DA-IW-hWSKpe;_shO~uofz|elQ4wM&wY_=|^G> z-qdhPz6Xz;xJG=zRt=FZj&xJk^d+ zD$$dGJ{YH1;pGwH0ICRA)&WzxYwUVsnsNfgQ)7biE;@G6-Py`0xF3XgD7~Aabi#d^ zF(CPndA@?*D7wSpbfs#N`&)D8Q8kUXY*Jb=DNWq0)FoqDp5LYn;o{lWL`9z}F9QX1 z22aA}GBCgCiTB)Ayj>Ceqg&YsG=Uz0aM=l*1jmo6+kuW3$P8*y)CcfRf6k=h{~m1( zRDICtiAIi9bAfesy`KoNADP2dKj5v7=2+GB$kWLuedpv*ov%a8KUs7=U{iSWzmpN(oXa>ME3<|cI|GU@B$n}1Ui zU~>Bf75V0}bG^&yTC3UsljmMk7s5F&x~wL{OgLDcXO4iCp}A(8`bGYGM4&Gg>&Yr#0|*sxB82E<1qyzZXUT zZ%)yMyFM;1dqI02Sd8!ck?@;gbicABD(ekQeNH-wqOP6bKJ#(pN%Z$^TGVvhAcLod sc#f$7u)rVXi#hUNw7NP zZfufhVQyxYym=ZU9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6^fB_mA$ delta 976 zcmX>#f$7u)rVXi#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOo~Q9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6{Cm@AzC diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index fe97f15c73fe765ff3b42e17921f34b218e2e488..c32b9dc3dd8fda15e18a2d2040c6cf7152f2ae4b 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp?N`ic~O3vfxfA+X^L@@nVG3UszHjmMQW;vsfBrRiiugO1rV5+ z8=E9rn46g;Pp)A+K!&c3>IR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83D%fQHcNm delta 1139 zcmeBrz}oeIb%QsfVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrIR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO838D-TH^o! diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 2c6bb535a5f864e45cbb3852c461ac49b3029f2b..65c6f58639882d86fa7fe3236fedc811740aa900 100644 GIT binary patch delta 117 zcmdm@yhV9~Kck^}L3(*newu;4sj+E_agv#tsX?kiin&ENP zZfufhVQyxYym=ZU6B*hjGfKp4R%KpBrq;NP zZfufhVQyxYJh_MQGa0%batCc@VqVQop4Q0*+zq7b-29Ncha3w(%6D#77jb7I-Nwlv zts3ID$OyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0S)E(asU7T delta 1690 zcmaDdi}lGY)(z2&hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt-MGa0%batCc@VqVQop4Q0*+zq7b-29Ncha3w(%6D#77jb7I-Nwlv zts3ID$OyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0XD%14FCWD diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 6b3dd3273a29476e4f53ab64de97f07b82c04c13..645907640658e3e5894c0d2af95943dafc82d814 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghUNw7NP zZfufhVQyxYymGh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0HaVr1ONa4 delta 1932 zcmbRDmTBHwrVZ(ghDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOoO6D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0Ep93qyPW_ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 3424157cca9bf53e1be57aa12d581daeb02e933d..171d4604815333bd0312efdf64658d9fa777e079 100644 GIT binary patch delta 5860 zcmb`LTS!z<7=_te$0kQ-8ciKDFe{0Qa%^t)kVYUqbO9~R>@tixg=6KYsMXlzSlOKz zc61mbDWZoiV70+*RHXG%MnyzKq=-^Ml+{D^5M}K%hEi{{rt|)-wf=wq`@(q{GQ12K zu6oEKmw$6}eeEV|j>G1tvQ;>p4y)H%<;wGV?T$QGWtH9O&6A(qWwU$oTux_YPE~DX zLrz0&V|}HU1>M=~9(kA>v5F+icv{RCf}!f^UTR|Jb#)ld&%|BPVJPc2r}1|QjbQLF zK4L7Tm^<$`597`jUNiXw=q!U<`02E{u~6_9W-T%C)~N@vt}FcJ^zB&P3V$=R469k; zpJpvbU596Pfv)G*%mYb2(Yg^u(`~2FQaz4@7-%XKp1H6Tn}}*|DyT6-uGP#`pyTO9 z=~%sCoXuNpWCO(=cmSzT3ehdxT5<^6g$nnTw_;T*ynX#$V77SBZ2&NNJt%x-#R!Uy zcyA#i=?NT@2bGZ@@TDPR=?Mh+Mt?ujVGaFRzXz#TL-U(LsB37u3b=AlUybMgKiXyCv>8|vym+<>}XIJOMf<~%F7F9A4MJOLjsXrBh6EYmxcr(VuA zV9sn;mw^p;e#L0Mt84ls3}ybudcNd=A6s5u7%zGFJ~eW8UN>|PajhFF=HhkigvcFP z-B2OV{jd{rE#z4r&mf1Q=4$@}by!2Ed|L|af^e-bzHdWoz4_x8;Hvh-kS6uDO0z{9 zCGmi{kP1hvz}g1gYgv2t1kq0GRwLsc+pWq79fw2u`;AUGW%?nZLKAJ$ZhgRDMJ_=$cZSTWT;YL zG)j3h=>c|#eAk87CPQ?$5Sc{+6D Qg=iu65-Jn&?{Gf-4Z3pVApigX delta 5860 zcmb`LOGs2v9L70E$0kQ-8Z8|&Fe`})^G=Pai!=gh(F3$Jv&S%wGvrwLLaoLg*UH|+ zaH7i~Nf9l2fYkwyQIXcB2Ne<#Q6fqOQC5p;5oMh_hEluvro~NYkxp3?3|$v!};l$%LWW({nljuF0K&_ z9>Pb=r4)1L{nlaJ*~Y6Up8%a@a2sz=o)--TZ(&M_g||*Sh;?1%H)d?d>Q?!iS!Gzw zD*rTl1?oCHryF!Vw>A?b`9x(Cil!_)g_i2dj*Eh(Lgi_BrPxGNaZ5q96>_a&mI4D$ zDN4cW4dE#ED>f|9|12qtH}c7F)~($6i8&Bt+K5(Qlfvq>Lpm*3NuD>MJsEm*c zH4B`v&?=k6;X(3rE;eI6&0?h!yW(jZuvbUhpbMOerv{OgNQ+X#k0Io^_JIvJD)Q~L zcqU-lyM|W8hRpt$S$_P;H2fZ>8x|!uQofZ)8grWr#tI<^ks8 S0*`{U5PJ!g3Hf(8pZ*4#(iH{( diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 5819565933f7793c4c54e397e1439f28cab12c64..5811aeb5a9372b647f1b4fe82933c0e89bfd42cc 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tp?N`ic~O3vfxfA+X^L@@nVG3UszHjmMQW;vsfBrRiiugO1rV5+ z8=E9rn46g;PoBW|lMG#jJYky!nAeeGAyDh&f@c27A*_XDSzNWbfb9Y+=~_1z^1LR` zz4e=U_~$c`ZsX*MQuUjog__B+6{NLK#GhPSd&Mu4p>^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)t<8 delta 1199 zcmey>$@Hs}X+u1tVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7Tr^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)NP zZfufhVQyxYte=vfT&!Q5Us{x$I{Blk+U6~cwTy-&8w1oDHF*zn19>_(A7@EoAy4b% z<1E6Pk8`?`r#*VIf(7T~1a;xfTln^|k>vuI5fYo_#deSvatI?@BrY>i=n58@%M`mp z?kJ_M_@+3UQdiii^itr8%?aw4D0RVo&E?D##)h%p8%kYq#^4zR;Q&nB5}V^qB3a4y z2=``xt1eEmwC8Rvckv{{|C>L$O6rns<8((}#@NZ{isUwLD>fs;T7>=?rAB(>*&j1m zPEl&|)?)R|GnV*~=?1VFn|qhVJCo;z^vN4uuy5{ur9?)ggTer!-{->-8Pe_F4%GjX wopgO5dlzr#6Ju15BTsY9_D3a*p=5@5&Gsi{j4U>!+YGJu__sH0W}L|g07Rib6aWAK delta 1928 zcmbRJif#5Qwhe)dwndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$I{Blk+U6~cwTy-&8w1oDHF*zn19>_(A7@EoAy4b% z<1E6Pk8`?`r#*VIf(7T~1a;xfTln^|k>vuI5fYo_#deSvatI?@BrY>i=n58@%M`mp z?kJ_M_@+3UQdiii^itr8%?aw4D0RVo&E?D##)h%p8%kYq#^4zR;Q&nB5}V^qB3a4y z2=``xt1eEmwC8Rvckv{{|C>L$O6rns<8((}#@NZ{isUwLD>fs;T7>=?rAB(>*&j1m zPEl&|)?)R|GnV*~=?1VFn|qhVJCo;z^vN4uuy5{ur9?)ggTer!-{->-8Pe_F4%GjX wopgO5dlzr#6Ju15BTsY9_D3a*p=5@5&Gsi{j4U>!+YGJu__sH0W}L|g0EwwissI20 diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index df0fd8122e719186b966db1572d2c5d0af65c7fb..e125ed8fa74a1b9d46f6763f4678de9f042809af 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTp?N`ic~O3vfxfA+X^L@@nVG3UszHjmMQW;vsfBrRiiugO1rV5+ z8=E9rn46g;Z?0inMuxV@7eqoPS54ucyp6e#bW1_HH?Lv&$wHpi$!l1IH`{VmGEt!2 zk5_`30`30<7LuWT^97M=^88%8`KRP6^5Us>bD+!=@`9>%^JIAzR&f59|szuXC|hCf&x#5A0$l+vf^z?#$36CvJh-H{0iK PQzOG>P%f&P(!~e>{Yo&3 delta 1023 zcmZo!!_=~dX@fVTVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrbD+!=@`9>%^JIAzR&f59|szuXC|hCf&x#5A0$l+vf^z?#$36CvJh-H{0iK PQzOG>P%f&P(!~e>i@rHu diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index cc407c552112aba487916db95ca6e60eabb23b69..799af66ddfc63a21fd7e4896cff79c610c991dff 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hUNw7NP zZfufhVQyxYyt#&P0~y*T$1-0b-LlEHoTZzuvzW4wu6465r!*_++JH7DZGO#H!A_>u iZ(@GpWNA&_d_!+G6Pa4sjqE+h&>G8}y!lquJ7xfkC7A~R delta 527 zcmX@{m+{13#tq(#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeUL0~y*T$1-0b-LlEHoTZzuvzW4wu6465r!*_++JH7DZGO#H!A_>u iZ(@GpWNA&_d_!+G6Pa4sjqE+h&>G8}y!lquJ7xga>YcOz diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 6b445bf17aa3c0bba975f15f2a68f20f7c8bf667..bb7eb51158211f5e7b3faabb95abe2ee471c5bc1 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhUNw7NP zZfufhVQyxYJh_hX9vQmgMO`*uWST>cg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n01_wH8vpcg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n07;$QR{#J2 diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 5242e6236293148e92237de0bedcc1a02dbf16eb..db61151566157fb649cd88149fdb4e9bed9bd4e3 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>w&n%tNP zZfufhVQyxYte=vfT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0DnlwndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0DnlMI80G05cj%0}oJs5^N=#-X5ON1Xa0t3WikVSN zH^+oe^qyZ(r{b7j(0t=w(rC2|XKpYmsg10Fw$=|3Y?&Qfus(N~f54Ob{rP;nzPw+r z_j{ikT`-O=7_aBCwXVI@Z#Okm+16y+vwim6PG`2wZ}Yiw{C-Dvj;qq=aQbu9pTlK$ zROGmv&Pt`3jRUGFYpxvPI*v(2(5W#g9&IBeuaRC|o&}QDOIzYrq)JoPdYO{E70Wju z^=Ut0)PQVTxf!KaWfY^-*H`ZVsB+3W2*{KvYe25g973fZJ>P{&hixsW^k@4;RQim| zk4m50(1!Ljf1?1X(&CN)WZ|CPddZ7Q&u!j^<~gusJ4!vD-wIG=p?4Z3ep_G%h~es9 z*xrOvZx%s!MQBb>?m$jaIN)z~ZUb_ag(Z_{o@1ru05KfwXn6%n9o^lDQWt%@Q0jbj zJ4#KjT?bI*p}PAh@nOIN5W|i6uCWlM-rlzcrFOoxAEjPsu0g3+-swlF^Q|2y)q3bt zfGRC*11QngUJVe{<4`NB4(Ds3w_rdPbi9I6*B*PY0;FE)?#8GAIVsxF3Tsc!qtu?B zQj~i9>@Ac!cdizt&i7tIshj#>s`qjqO6|J39?iA(`d_H@U)hLCjRc=z&tMrsEi7q} zxkD!+prI?4<-_mmF{x5Mtd;d6@v)HHt-LWAEw$4%*tS@b&;2%T2I;m{2I&dvp2Fpd zC#a=6jFrY?9^#Cb8R<+S`xWb*J8U3S11)JX*cU686NY;e>seM9szEX}d0Cte4CB}x zzCua2o5}DhTZionxA@;g?3v)PG+xBaCMX<__`HI}(VLYl4ZA}h8${Kxcd--d5!;$s zDkZeA0c=7Z8|*yDvanA=Zjtseiy?g{yNE^LCeM?nVBBkV?9PJ6%n!`)k+_?3s=+ixp};^z;YgG2j-Y zhDiP_cvgj~O`sGrKMxux*Zd}WF`gHI%Qvi#OykYyum6V68z4XQinEBC2_8c&cX>V7|F8?~ zxzAgHFhs>PFQ&Q){uNLIQpIBcRQ+nR^nw+C&hZ$b(k=A$@B9-WgeO*{TGfHEC_Vk^ z<(SXoY332XhF&eI2_-G^Rp=u$)1pZhw@n)Gok6PpG#I;BNYf-OjbcTjCJQVhsV+wo Op(U0}>i@yt>;D6KPD>;J delta 7878 zcmbuE?N6Ik7{+r>*A{7|E${DJaMpyND^Lb3lh$R5q#0W!BNGRREgeND!lp8m%!!gM zS;*iKPxgW{+gQk6*xX^chrwu^EOQA2b!dW90Tbf~5fbMti4dQbxj*3ILqA^E?|wP= zeNLW^FB!*|j8}?Tc1xkXF8_7^n;UE%Uw%%uJ+Hu5U@NFC^w@0qKCf+~FW=|Owinoa zdFs!b=c!Rz*(9Kvu@=b@uH%?g1UG6-ic{MR$^Fu$E4Dz=MrljjhE!?B+9*?!w_*7P zq(1E@j2e&~Yqz3QUq(4feQEtpfGTIK!+=bgu?A#e<_IeN;K?3TI%;b}r9bDML#2=9 z*P_xVHg%vqE!ivpsiQksy0>p52 z&+ceJsn^P&yCO8FCw3yIC>-!NyS4+lN_WLHn&(7iH9!mpJ6>IbQpaEEMybo*-6(Z& zPbW%Eug?Lf@?gUqlz1=T1c>3reAnzosW_e$%Tm2~Y;#-3#b+Nq*rCJYu z3Q(n`V+bXBJNE!Y^*Gc^-=PvM^cD=r(yr%GYWC5)Ye4G7-d>Cvkkg_Qt+4jQB1-M+ zt3;{CKE94p7f#os)W!buD0RyKOm$rtK&d^K3ejBaul$8d|CP{qOJj+pitVi| zl@i+65H=wX40au0S=c8bhe-R7#gM+6ox>t05!m&j1`;d!X?&>)qh2QQnCSb zI_LjpIx+tPixyGy%uIK0vpyr1iU?VeYNd}`g@N*m+eoc*%!JNHD2kAY*d0`lcKSRs zV2j@o$|qH{%`vO^@jm+p&ncCvf~if06DY;Z&wvKX+N6is~|u0in9p+6px{{Tf7nMf7pfU z?(lXX3{f-7%c)_Ce+ATlRPh7=RlnM-ykNzj3p_@sbPIj`JO2a-;h`0&Rt;b*O5dP* zIhOEvn!C?0qgRV+LP^Vf9r_5(v}lsW4U-0ZXOOD@2#j4UrD>8@MzJPQlLeNMRF@-( O&=M;m_5a}S_5T4X7mXhP diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 05836fd60b74e7f8a9ab433757bff194d79ad54d..4077181f5793bde18354870b3d20eb2eb069e79d 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2w&n%tNP zZfufhVQyxYte=vfT&!Q5Us{x$I@vH)cJf-reTF2P0@j%zth@OcQyU}s+9&T{z(4sL zOCi}Ngly(y3t=N$d&FjD-fK)0Xs;KTOs4kD3BrfS)mk8So=mNi6NDo-Ka*43u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) D@Wu(B delta 1783 zcmcb6gz4@PrVYW2wndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$I@vH)cJf-reTF2P0@j%zth@OcQyU}s+9&T{z(4sL zOCi}Ngly(y3t=N$d&FjD-fK)0Xs;KTOs4kD3BrfS)mk8So=mNi6NDo-Ka*43u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) D5Hc7m diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 46cfd488c7382ee65e7d0cf59b31aa5997f1348a..cb57d21aa817393ba5c265b99b211953c845daef 100644 GIT binary patch delta 117 zcmaE(_C{@kH>06>L3(*newu;4sj+E_agv#tsX?kiin&E8EybD-yxI$ delta 117 zcmaE(_C{@kH=|*ZrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRyLVO-2chPD6>8Eybe;3A#? diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 0998f3deb0662c74bddbfad77e4534999264ca3b..2a879d83780df3a2f1330534246492e6dfdeb42c 100644 GIT binary patch delta 4131 zcmbuCT}YEr7{__ak9}q4rYtI*)M%LIyY}@O6THxJpj)trE(&RG(=st@R@flLybvpd z6C4ZC5lC0r;6Ud}%1Q_dh)H4<^UR8M=@>5i!4b9x-k3#!NMZfE^)Ge373 znQQj4w!*b4oRkJ0!EQ2tEQXT%NxZ?x790=r&~h{TqYmtpkeAed-+_~}c!NokyOhl} z|J3F#6BiX^YOoYnYmj|7^L#(2(8Qe`nT;@L+ZCPV0~emgQYE9*1+R?@KjuF*3{Y5H3diWO7wY zj;wq|!V5Kf@NK3LCHK)&<)9{~j84_;(X-_O?A(dZTflTpb$v(hO}# zkE9K3MAx^6f7}bxxQF1Q!lZ_mSAZ3_3$q4m78t^9!mNSm5FnE&Yml_|q>R6> zhjmPPqu&om#CSgrsu-tGAn+a delta 4131 zcmbuCT}YEr7{__ak9}q47mG?KH5#V*PB-^1CU~K>7jz32(M2ISebY?B+A3_2VqS<9 z!U>Lr=m?~%Y;eGHC1oW97FZE^Awo9`?V>>!7AbU`t9zew@m~J_=l4A4JkOtZb2evl zHYcHh^P1Py>4|pTtX9Ihr^e}WtGcSF9p12_c=UFqPWR}#)1|s}xA@xK;ft&fZe{OW zM&|rJ)|$Ikfs@kUW7tdPYa%FlfW#UK*+T83EVSIp{;2)CCFBM5-*@5UEY?tD*twL= z`F|RBE)y3OVrr-uS8IrUI6HF?cPcSQ+EB^>NsO6^(pSh#(Q)h*3k#<7bs#1}bnG92 zm3d+j&&A;AJ|C`eS;e@mKZycgOie#cpmXnJ6Zf(NS;q7a4u{mUWo)?!%tJV$O^Du z&w7e*z(kqLr`4TsgI#{zfY{&ZwIV#2_uUy262Z2-hsI)Xo<+Y@A{QgGEf3;iBtRxs zjpSJJD-vF)*~4$sxhT0tPnUv;q&BkI!jDB<`~Q0w*wNojxY^tGV5yD919Ej3=u0cK zB0Ulga1c{;AOE-?rf?5Iqr#+$mzIGYw+k}{Yc?3fZNiK}(GfrUA$OK6J^Qpf=k%cO+A zuZMM9j))eNLosQh4tl#0-XbB=9;@+7+Bi^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2Rd0L8rS( zNt!7Tri^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z26;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6oRd0L8rS( zNt!7Tr6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6oH4<=lg=$h0FV#Y5&!@I delta 751 zcmeBL#@e-vb%QsfVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrH4<=lg=$h02!*?P5=M^ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 75a181ff5d9bf5618cae5eadf731f3cbde80ba8f..642cdb29a2a720d77413017f055c9fc15c37be02 100644 GIT binary patch delta 139 zcmdm@wnc42A)}pnL3(*newu;4sj+E_agv#tsX?kiin&ENP zZfufhVQyxYyt#srgB)!enSL>oZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1toZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1tNP zZfufhVQyxYJh_H(BN@6Jc!DNxU|K|;&dpbujhM*O3ba&c@*K82vUHbk-ozfuLb}$? a4m>@qq-&e(z>~5$Q7DF&Oszo*b|nBq@qq-&e(z>~5$Q7DF&Oszo*b|nCw&5Oyg_K&uC~~kX~MtpJt$MYHXTfoMdKZYLIG>Vs4R|YGP_(o}6N0mTCb6Cg#Q_ Vi5BK&X33i;F!qw8&5wB>Hvro!A#4Bu delta 117 zcmeB?>yg_K&uCa=X_8@Hnpv)Ikep_2WN2b)k!E3Fk!qQ2U|^n>VqlhLo|a~4VqubI V3dAX<$%&gMF!qw8&5wB>Hvsl5B6a`( diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 234674ff67bc8930917b030573b2f01257ff72c2..f9c4676ccc7f76efe7aa0f1a447d8cb4085b00cf 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hUNw7NP zZfufhVQyxYJh_7LEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQa-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQlMeua diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 379c9b9a05e597ae27a931a80e098bc6607ea4c1..f9578b32dd6563feb4c34eb7a42f25b9cb6c9bc3 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQA`XobMMWBFia8)TxF&CxG0L0X5*{OLJ8@rt1K)= zW~J1NQ?iqiovnpw#8UZKSSd&Tf_d)#_dM@;Pp7+iVB0*foei;8bzwTXI6viT@w&Yc zcSupZF2fa3HN)_DH8mXZD266JkLvaWHC0i<<|-pVrF>&%GP}gQllCx8PZ`S+Mn&;D zB-f}Y_d5@w8+28&i>x>0+n^u&Eq2rxMa$l?))>hZCtzzl>HsAO~2n}O0CB?qN9+8aPA<@0Ai&n-reUDrUPnexSGuy-&EYMmqZ zK-31(z}VpkM0J`;#0xQM&LnE-{9?2PJ ziPH3)C0v*n?6aj%`dBp4*iG delta 2429 zcmbW&%_~Gv7zXgpWqb@GW+AT0R}>R>n2$Rqgkh3c;3_MP8MhHDrP=tZnS~P4RaaS9 zjLb@@7pG(=B|BRS(}<<=v9MB(`~~wY?(+9M?|DzByLn*UJg}aPGUt-d74YOjEC|*6HcyzC>J6)Aw=VJRlbX?H{*}fkL?yaYJy^w?^tVsdFlt0o4Rn4n(T;K2etjvzsImQ8L$=SIR*aitGLw10&StQy z(*6Sm8`*RvIKfen)tf;(E8|n$><0TSXk4V^R)G`rE-=~HN|kYKmPHD%5H3POw(Ko` zSZAq2J}<=O19c%GW!=xQ?4OtP3m-D3Cs-|Pe2{a+FnNxTo6gv$Zx3tYP? MY%RYSl_q+A0rV;GT>t<8 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 00c445f97157123f19ee82b8bfc107750d333af8..2e27f2a98336b3d75fac377c4292e595ca683097 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+XkL(BUX-6^pl@nynqr(}W@c)TYLH@Xk(z2^YGIz7Vq%tR0R$%I z#wLjt=4NKelj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RA)7z+3+u+M+SY&CEVP2Y9u5XZ>W^QC?Vrr3QVPKJJnQUNSo|a-@mS&!oW@utz zl4c6TDW=JZlj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RANP zZfufhVQyxYJh_5#7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~)1 C4@~R; delta 2066 zcmZ4ggKhl}whiu#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJtsx7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~&{ C7F~=0 diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 54b35b8d4e2433a3016670f7607bb97d7aa58d34..11857513f77cbc6f530efcc095e31882f56f1725 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr%S)L3(*newu;4sj+E_agv#tsX?kiin&EJ>&OrH;23lZ^w=Se(&S*8vXrp$a2Sx0` z47854i;1bA3uMt{rwam$LXm_d=B1m#^j3t?dj;(o=<<4g&-?fPYwfl6T4yiJ6Z$kfzo6ah>q({2Z&Zz9mbB^Z(Qtk z8pBmKv1g~2ZQh+93$R`MX^C1WZ2qO2%?rqKrDJG^$RmRH=}RCqDk6hp3`FT%2Z~M) zw_ufuis|!hsO#(~q3D`R6DZmf4+E%hBz^*zY^12Td)W3M_mI` zqo}JflSExDv)!ocs#le$>yJ5jY*!}pvEAGt=HE;>p=Hq^w6Ed<|*-9!ZU~lmt zG`dpA{2CZU=a|M_+gTQklrt5(Q?-T^At`bVxL70`bsI22((M_bxkeTPdYk0G?stp% z6HEUi_mH)Xg@Kx<;buPB!!%mm#hk#v%_xvm2-|?zpXaGN=xQGu2Ua*w!(764dOyIL zasm54&x?)p@dE32EkdD~tW#{T+PnhEEc(Ih>*=La4I-2HZ{l1gZl_Oc)c|^aB%fym QTg)de$5jQ%*LWi9H;!1i-~a#s delta 4106 zcmbuCTS!z<6oxtbj80AJI8zaae5fo8tUME=Gg3aKffiV!qg_Zxw4)}DH9B4BK@oc} z1Fa+NVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bs>hx7RT|5|&kz1G z*$)~OPo&h_=8LwUDAJn^-&T*e*l+lC|KZYRUH2I+dWqpP43F3EHHzieQrz4mMwD*= zX1e0#yt+Ykn#D-}a4M79gw=UW1yVbM7_#z2(Lb)o3= za1&Oku$Vq?psur{graLMO`vEr)&Zcx75@ofvXR2#?sW%>25)=-P|W3LtR5t zqo}JnlR#ZyJ5jY*!?5vE5uJ=HE=Xp=D7gw6Cq5)=_%6Pe~vPS#piE zJfuW&tebMBj@9zMP9>9ayOiU=X8ljWby7*LvmS%Iyg^=_ujKN$ovol)ObIv_qjJc} z>~wZa={*Rk)R_8B8{gw(E=!aIr`>>ULm)q}nq?bM-6&^ft+V-S0N* zCzkq0j*{JA9YD=fa3i0LGL2SuGdD1B(+VUNIvhak&vVqBbhVF-11p@TU@l=Ny&qr= z*?|3@=fy_)c!Blni%=*e`xG0jvaUcfi+(WsAiZ>}EyyJPn>d$=JL%I}HH4lY$>&+# Q7VC-2aaB(8H6G9S4Vd=ZuK)l5 diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 44f302adb9bfbb6ad5cfe882dc5af11d704ccae4..1bad6bbc848721aca0c6fba11b08c50b68233900 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhUNw7NP zZfufhVQyxYJh_kYHW|7eh&ye*!}N@cJgt*|d-G3r;VUFdcl6|Y!or(F`2R7Jr+xE1 h;frKw-TXj&8#&?oKs;`NP zZfufhVQyxYJh_H(r4h-x^d|>$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|jdq#FcIHRF?L3(*newu;4sj+E_agv#tsX?kiin&Ejdq#FcIHO^arAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; dDG;ZaCMRz0V60^{B3YaMb diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 2374b41196ef90e4e8ef3b180e47af1e5e3211b1..e52d8b8f08193fe2dbb0c9e8a3b188e51409c1e1 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhUNw7NP zZfufhVQyxYJh_7LAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe=e delta 707 zcmX>!f%(t`<_+$QhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJtuHAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe=<8jnNP zZfufhVQyxYJh_hX73sRBU*u-=-~58fk%>IL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNoIL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNoNP zZfufhVQyxYJh_JPKN-62vd3=bWM0fdmeyNj>57`1z^A%7oimR-OQSX?@a57`1z^A%7oimR-OQSX?@aRd0L8rS( zNt!7TrNP zZfufhVQyxYyt$5%i5zVknbt6oZrkLIO!3qGO&NJ6|70yBOMA>@{j2(d#%tEz{ E0EM+J4gdfE delta 1014 zcmX@}mgUS_mJPm)hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeszi5zVknbt6oZrkLIO!3qGO&NJ6|70yBOMA>@{j2(d#%tEz{ E02DnnUH||9 diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index c9ad566d0c6b1fa56bc48112cb701c02c17cbe9b..03b1bc8adf24fc38c5d7b9c0fc94a8a303da776a 100644 GIT binary patch delta 380683 zcmb@vcUV+M`#=1g?F;O(g=KqV7o@0w*ell9#oh}l)~MLKpoyI*dX%wuV^|%); zD;Dg%E7)T+YVs-SH|_@#1Z&B7IG4x#XV12My>E z6I~{*O!v61Wy_X{Ns8%Su6$Bb=`!WZb?aWbY*KmjuXMS%(uw8El`Y$C)|Kvx!cJMW zxU+UeQmO8xlFJS1n`L$O6SaV!*`39XWsLGuhVn(Chy%<$Vlx6|klaV&Q zMwDJA?cKk7(g;4LTO=P>(#_cbce=Afr|$M+Qeyuf6T3!t8!)v0kU42lV0j~*5d?PB z8ANGDu=T#mh|ro24T%JqyF)en=A=l@%^zIhCTyU#HhxlM6woNVQvOx@VtjmLG0qBN zyOaqA2coJKc`1z#x|!C9W?-LgRVxz1|E*z5-QgR`dI1F`^Oq6*t}r`>g)vC#NHN=UhrJXzm5vy??$@$%7lNLB+=#T+}dMExkIGR{tPFhKzZC$J+!ghmmL2cap zz^;~zJ=25H0S8!~V{&mOFtEJV!j<8d&nm;;4KKzO2j?C|l;k|%;LYk-0}imYM=1xY znEC2GgLqB2oF5z!$q()tgItd&wO=tCcBBaKDl$xijOc!r;^3?Gv~e!r?p(#iXGTYg zVq>#zL`$NC;rR4$haf%ACprqp{H7u7J{&bDX90KDzOWz$>_EF^yq#a(HI(ytsGu6^ zK-lRy!AMmjBQTGAW>PrcwS%5d??Z{W2(qp=P7JME&utjPIRk)Ue8JxB@Rw{$N-q9#02JG+D& z@sv2}KoC-X5YP;CoA_50|F zq0J|Du<{w*E#CzYwKWdX!hpqg=i|HDkit!ZcahLV=VM#Iu)_4fQ6B_NBIjFhq@%n+ zJr_wz(*)@AD8(fzbj@$>#W_IWgcOGkdAQGnGI0$vQ@byr@(H!% zZZe^k5-L1rAfaXv%9}ibP!9<8_hd?)Ak-g6DYcSN)h`5#Z39Z(C)CEXlgT+iD08`KggQp36DQLMwT4i0Us7rJp)rETYt9 zLaoSINY3q${3itsf4A=vLe3>8y*-x`>Q6#-`LdQ!w+WRVw2n~c36&qVkx=Uh^;7dL zggQ&8&lk56Y8#<`*td;P?+7(@{tiNIK~%~#d7ZVC+(%9pb3=0SB%!+OJxr(#gsSuS z2%(-3s+Hn5Lh*!p={ioRKL|B@(+xu95^B)&n}m8qs8efi6Y3(SQsi?_Q}Pfwxvj(< za`GIZ<{i9CsH23+vfd}uOG3Rn^N3Kd38g>xm{5NaO7@0QX9)GI^fPkqCZYaNmAE<&Yk`%KQ=A=LWT z|Iy*t+DfSN(>X#xLa9>%#e~ctWa(H+Eh7|fkdSlx302}Ar9Kg=>}N`CB9zLYAT6H} zYIak9LLDGfbDfG%zY?ldTp*zi6AHFUq2zl)M()y+lb;Dyy>SqsP7x}AGZ1Pv?P#Xd z4MP2=WH325k5E5eFcNA7p`JA`5h{~V^?Fk3cS2QbYfd32R}r#{%1Wq3go+{#1%x`>W~&~ndo`h+k4`jT>L8(HamNYumQXFP#ssI}lUE4o zdQjDksSAVxl4^w7PN-Cp~9}M48bku5UN932QQ`;5-O|5O+vjORQ7@-!i@G({w$o)RixYKLN&x=tuO*#qqfULiPX2T^3Uh33ahi<#L>z4;x&UTh9*|T#8%F-(D2K zpBx;=eIT{aC1$=1D8rXtujLaq`GaNUn*^eD-|}I7_@v<$t|$L`NJD1;9^gei=nK>sMEw_Y4xl~j4El8AW7EnspHFXYrh|eD0Ap) zEuT5gi1!Oh{>U^PpF6=rxJ{fNb?bu+Spo{yd@=hu#@i8O6S zY@X!%fnNObxy88+sMd^cm|-9Z;mdXv=u*9k3VYfUf{2drQ!>>2pDQEz!qm|nWrB&b zv913gIFfl?zsnmJK@8txUN-U%yiCAcznWi`|80bZUpC)Bjn;gT4iRoXY(X^l$d{E` z?6C00DOQ|2xbG}{_Sag(A5i*0n0R@CG4JfKfT@-2{#ZMBje(C7Gx z9{Co(bZ~K8BDcWn5!5BEIG?!KgjVK3{NWL?NFQhT#Y-bVZlg9z{`1m~CL{E*e9QP#kLhu1ZjOJ8J&z7IQW6r8JL)>%O2(j-6r$6uq7{E&>b zc}-a*UiskerE#e8i+2R@zfCK{EhD3DSsTqComPs(Esk_#Su`MC5B+06mz*(50O5tyasZv5l?sjM)hM!Z_XY7FDgWZ6LA z{?UGXo9tSAkL@iH;0iwWS0n#rdl-*{?Z^nNFD7xsXYvDgRFvaI90EXIUyTo45TnGa zI1E?@`#Nwb+S&QS_-&VsJq0hqaD$29ZiD^Z`7XN@AfW$C1&D9|Qio3CRT(}#`5&ik zDDdzC4UaT%_YgjR*I0hY&aq&L-y9|1ch3<1>fT9w(%#{G=e?u&Ub|EIfxAZWxA&xi z{T*J)_!ql}WNhY@2puohF#0%(p1WViC+;5)95E}E{PP1N_&fW?gQfOmNyO!^NC>6ZAvt7v#Ka|RkIGBPobv^6jAv34MOEX{Vq}eAl{H!CX zyym1*L;;fc)DsqN4922oe@FBB(NzD^r8~!#Ozz)vj?fJC1d9@1D)|M!4d=DTQ^B3C zh_DC&=Hu_^+~X zVdcBpDMJJABn{^Br!IBkPV-Tht8(kJ`dl8&{rl_9fSY0o1`VbZ1Osbx=$}>lYC{er zKWr(aaf`vh-b3p04IgCvdlbSIe|@k61lMlZ9i%t5>%d74 zt*zfbO#1g|h^I)P=`1P@(ti@kvR*&>OHxD-CqJ)X89PQ95YYL)0aOd&g0tQ}za;}( z^6gsw-X9nL7m$vuk$)Z)QOJb9y8dq~Nzpoml;vP`RfJ@6U+?^_Pvv1aQz-c<} zcPU{2bT@HD@ZIl0)6Co|fz#@CZrlGvUohLj4HAq{!ObNW6%-=pP8O7$(|d5eBvfQoU+$o+C_40^0)#3D@#i|rKQmoGG^a-EwZxW%QL+;chA#Kni)FG^Y+^pbld z9PRy{D_=(#k933VW9TS3}u~hV0U?;&}v`;wdP>J687e$w;(+f(#T(ijHM|Jtt zBU&adDj-0BGT1d-)KHM)K(t6LNOvnvR9~o8C@=adh*YntXrK2JaLW9sH zXh?eW%2LsL;pm+ez6NhsiEbC84ep;3We8x?u8Wj%dUVx2(NO_m^aIf;q1xt=NG+xf zhCdZeVX!nPlxhKkc2VEPAad1^V36Cgx*6_#A=*f}0Yl%2CKdtE0l`~QCc_dQi_;jK zJu*ZA&wLWiuz*vCVhv#U-zXm9^F(|t;JR$V#c-=cMy&~>nPqR z#KxK=@fa!XR=TgajR3Z|zxb;VCYzGQhlT3+LE;-iwf_+DW1-q(n7Dy}duWunr+`p# zocNj0piHXxj8F}lAkGmQJe(*VFK{+|ig>EPgLa1R=*o2QIic;uIpPH@wk>pM;w@S* z^SP)Ku+A6T87zaKdI3#DlOXtTzL=-V15=lae__K)hH!=Wxe!e|R*QSG!tDE1+?{F( zlv*#I#R}7XgLsp`O~__;ZX&mc4FWd_+r)sCn<-i1tpZGa$j(i(o#HyJ3w_FgyWB%^UI5$OOHyAL&Cpj;LZ~+HCqbKO!h?H&WE8`71n`fAT{MiZ8!%7= zua1!XD&VG%l3Wm$cSEL1(glGGGbOu(rPXcp$b!J{(1nuMGRn^I6+S&QT_p(4 zVi#D?-Yh8)s##klE}{A$OHx^=#%4?Y6nH4VQ*u%`8nj1}M2!ol?U!hUqZ@N14q@Qy zMn&caSgltMNBtVAhvYj<99PLQJV6^U6m+T*%pn*bJZOL9>-s=g=rDDYr@AgQ9H zvh{o}`BOmX|5j2sRYty(3>Ug>`ykomN82WgrFR8{u2ShMq1sI@-6FL0_)8B7NB<0v zCJX!y*GfG?gAGB_!oBCvU}>Jvw!KL@S7^)Gr4ty}pe>-nE&W-r-r{g+l>o|herahN z8?ClzD*anfOxG6D-3(VWaPn#b;G;Bupd}*YV8l&10X^Em>so-C$ zq)P-ltX=Ele8PHZHNg(&H%q$-oY&bdog+A3{vPQap}~zD=^I8pHiZetq;pMFmXEik zEg0w8rZD%OG*#dy@v(HO5CNZ_O1B6{_q>pv7V_f!zokF;(`b3EkfjPSG{GQyAsij= zmi4i+Eg70*L=V+~{Y^$HKvh$e9;7deWVxFn!>ht+t7P}aviT9YJQoFWXN-_RlSf`S|I7)KKNTWpM!5XF zkp@vlygXT8+E_=vnKaPB%Rk5q*On>uon3hNoaWqVmw&qU0wpTj)+Kx~3wXNAreq3m4>*H&Cy|1tB&;5LD>kN=D6WYEX>T8=l+}F1A zNMBp`X!%B=?XB^?wu^uAwXHMJ*H$rEo+-5b{TE-`DKmX-V`ur=zMbvU!`}J6wxbvN z+IkoJ+CEw$-zMO$TkUJxYmKk1cAc;7h4u0rq3x=zzP8=6d~E}E_}ZSymfsX6slEH< z@}fjZC=HM<-A43;M~=v|8IwUQL=h)kqJ!5?$`=T3HSwI>EmYwp`E*83iBngFpKi!a zx}t~0ftS9psPxts7G>VaKL}w_Ri%g%n4X|h(6G?L>OqP^SAS+u6o$n{qoTE7iXf*V zj^QR0o`>k|9(cK!qO6I_2jefRegG}w6)e{_=%Y$}ff7ubnv@7vRaeYlncBE?MM>}? zQ{{x2H5IQoE*~zht#C_Lh?Ea5@M|1exJ z439rxl!E0NJHePXTH$4he$u&eief%y;L>ZX4#f&qJ|dxFG_$Y9?N%(n!E$CVd$7FOr+nka+7@ly(Y#!H0-&bX%d#HeKgu7>hk zikC=4`2Mcq81}&f_Z4@M+Tij>iY|Ea66Gu0_`LUpA_0Xy9Qsyq8MkZnPSFJ)-~2&w zQiaMfx0i zlsn}J327pQVLpHe=@Xg@VU;e*4;oaK9jGLde;K4ClHVDsjFzF}nlZ|w{;0e>S=nBJ z%D8l;*v#Nb%jX4@hfCKfE8z(kn-9LsQtDVH5{v{8k_zUVULvUu|m&3S6*Uy%m67g z1|;bH9MnD)|5o-2EEE+6_?2hzevAnb=3~rod81zy>{G*Re#BB$9e%`8F1H^Mv`(lW z5!4y(w-2|wS;9|(IDq#m`%T9R=wHomAh!6OdVYQ=hG2e6zh_u+mpb`f#J;?ti(f7- z$8`1Ehs%oH{kGz=AjxkNEAv<(!BErBuO%L-$56jrr5Jq&B+MyL!1T3#{Rgy z<3B#juavSVxB%hG;M2W+W3b|S9P;DTsO**N*AR!sjyrxQv1g2bLKW5OnO`1OOz{H0 z{kY73?iYzYEBK9HKb8$Wap)Aae+;yJ^qcN;n!QT@b}ZK+NTeaSzp&Gc)cHTa#_r_w zcj0hO3H2vV(k9&hD9d_3c7*B&_;)$gG7&6W!v9w+{>_s9ud%w$R`D-`{Y~1)pZMFX zCjR-@>SNpZ6aQ+~&Y!3)yn{bc+vAS3{I#=xd93!^-Tloh8w4b81@LuFLCD;%0cN;3 z*?$Dez%<1~PWErckQ~AHkTR(L#b3+t;H(eD1=r2@uY*JI)k1$VZ5&_hpNex%y*2*l zunMi~{Qa~}+ zJU$w9$yFIa@_~RsFt&U^Hn!W73IR8801{30+Xt9&GB@)zVyAIq1Il81?3fThqHEgE0VKM*ObQ^;<(xvxTT^MdczQrP-2Ov) zzz7EWK@<{CwS{I|x;~&Li@XS=9oVAwm%+hX0zTvXl$=Gab7c4b!a5LHCmaXb{Dagm z!%qY_u=X;}Q7s<4Lbd33hiWnNK|lxW?W(5%8?bhEy$HC?Jd^AXRt1Ak^8)lR@~?n} zz9e)lP&Jxm{zS?u4-w{Xn6aO2s)sm3^zo>E`d@jmJzPb+_+o^Lc=5JUsv>!D9jwV( zl~u%l%QjG*#0-m?smMyWe`^)-U)V`S{I_E_70EN2UMk|h4|}VK|L*Cl3c~{5OIA5p z{1k<&7+IX=|9UAZKbDOF0%-y-j8~P$5-6sq$a*Vxs*0?)wxy}adh1HMicFUVn0HP}@ zrd{?Fiv?5z1!`cf-7pcL$If*i;d+z=1YT45gXULNEg9BOv7o@5vA|&mxi?iB=)9(? z&*Yxpp{yz*7k=Q?eN{1V$7u_KuG^}uVs0roe^0fksIU;hmSUN#zE=@pP77B(RSjcW zetoAW0cugcYNHB?NcL16|58m{7|{ctbU4VU{z01 zpwi`4U%>Pqq3U!IDkp}ko8WeNrPS|m|C8m_Xx3N?!>X$L>5Hhq2;ga^o&hdCY+DyB zjf^M`LYu1@-Pi$K^9oe(eRH*(CA?qvRo4K1i?vRe-b#IzB{qEsp#KSVC(xv`n&tUt zgi;?I=&lZ?&Z_OAP7{M=9olKZ=5A`1>!TPDB0!EoCWtzl)u8x=b_VDirS2o5oGcil z{*l4(2&@^LI#wOQ5-_+kXnjI$1TQaWOyH|q+z}r9Nqt;GSb__tsL}f-SWj^HH1#T> zT0Bj?NT^=@#aEp)Q*8~VZMUsfUq_z_!rhi^Rd_ljtwwEHOQ7D<#357qqyZiYQ6k`FrI@~3JK ztC3)}0-v{RexaUPB%yL&s#~$7i*uC&n}Sz*nEd(u%DP2TvR+kA}&vJDI$fGKhx)Y#>e8JIaChUtISh+dfH-ad(%0v!z| zm!b(bnhwDMK)toN1?DCNzVrvRjO`8Z;=n+r8^PZY`=^AdK-sZ@YVc($db@t{VY^WT zZNmc-RdgXcFZ#UA&!9-ap3oMzSIjkm9g9@EAdUVB9ZGmx}HB4_X`LN-rL`{sq{+=XF zw6J{t)K{}tkotH(4SKYaNL_BQCPQd&YozA3P(72XSu0d0Pu6S|!0M%Gda+!xz?@}V z(aS;kmgC}J&vXq-#1Y3MD8~k)FWYy~IwRrlvo#6Kp>XGkS`Ak&(Bv^k0Y(7Vr-WOe zZL#JL16z)605YGeB``fpbDEhEi~taV49FL23?QdbNEmcvYZe5vvh+$5s03#(Xq5DM z^yJu3IqY&;GeJy4^nI?TIZF~FE{d@s!ahi+B)I&tCR6asu2(ht{it8YKF}4L-L4vdB>_m1ad6N(jXxC!g#S?(dj~#f(uyLO4qTfXt%8p}X>>yP zC`H=BsJkTAmK2T}{Ir{e0K6Ee-NSOtyHJ->s4;3+3x+vi(dILI5mJ>DATWPWvRpA4 z{K2kmEAY5A#3#f!uhu9W{WU_1-dQ49Bsof(EmX^u(3ThSMQW^e2;(lLVTLDA0xBOw zpDR;~?0%rp5xIuG7IC?(Ru69dpj88#MLQPo<+UYf1|=s*1{GD%zG2kDKgX2=r@}6S zppte7U9mu0Rc(Y&Z58hm-&I44-U=g{SX)~g#VRvQXrM*k4a2h_$gYpXB+}e&sGTXS z-ck~@j4Q#00AV|+IJ25+mkKgeZ{d@{zm-o0zOD8O%c?4|r?xeS42ji4S!eBd3C$IY zx@qSyOd1e@1qgmLuCI2lP;HQ`Ef8X;?r?2K#^m1+hNNiG3`jIRWn7`A5B;pY#OgQD zFj<=>UgN@s)P27?rtiwPM5>y!b(@!0m2+ z)K#}qH>#Bw*$B9rPICUP}wd>*BZCqX4bv1ax3BTGCDbn-LN41vW_zNcUj#z z6cLNZXyNS&x?fO!!_~3XbU44^>JQa*UVm;cHcDNvy`gRkquS7D=+XAo1q$-jOK^Ko zFAcoWNH^b)+Y5)a(G8KHGQWfFgNwULA6btYr`ydq7Kqtc;KKK>{9)%5-O6C@Dimkv zYKT!;XTEL~F7p@Zs)|qdIrf2dAf+7wfNMdbUh| z7oQ*Erze_w8lZ2FkJk>=qo*pb!i*sO8O&T#upT`Ld=153j7#0P2?*ApL@P*P8PV1EqdL>;FmHd<3g-wcmHUUyTM z)7QgbZOZEp;L=o4kM4^jLsrr^E^Gu)BNePxMPD1UF|nGSxJJuN!#gK>xm0qYpW-&F})+jyVRNDRqsmMiMs3e zWBh|X^hCj3`sj&*=l@8>dfHzrDk$hIc9>6wpli6iWDG)& zbzOyP%|T;vzp!FK{ zHK1}u-Jqv_s7z}fM7(}b%b-$$h+f@2Xb6rYORt~`N>sKO7(^U5XmHSP80XrMpd>7R z{AkJ_H#TS-Zl9VORDj#}n-&y@%jJAfNo@bzg+asc`5%@BWoc0PX$$SQcWaOg$K~Pd zpz|0vV<+Xa&F&!dM8s9-+8fjb_aA>GXl4K^wdaD+vOC ze|Qo!7LPNmAZQ65$M838clk@uAbh;O$ndv6D(k8ZFR&iUX$^;P|BpID8m1>33~w+! z%4k@O@k};@79Wpv7~bOJ4ws?05tR+f849r8%GWSVM(5Y$)H2{^2kRILaI?*I4cGAL zsm%>Nv6^1DH4yQ8bu^$y;!qTKH^k%iC3_n7;P%gY8S*iEmwq(-g2nAV)bIypv+a0; z5+CpOv!Of|e^I)DsM$Kla0aXQ*SXT#5!pEF+#=z(Cw zha&hU?g#vWcVT@r)di2n@|?B?AIIl2yupKUd%y7D?fCeC*x*yReOg>_U5uMoCO94Q z-=k)5JjP$sD0nz7oo#}N`4_hjhPYqLq+nvco;`!#k?hq!_%Ag&-g<0s3g-9n_~4(g zJGGw`+#2`KS{UrX?s$1w@ZT6eZ*y=0#tGXQTn&d~kCVZ_VZMr=4VK{cu~&niV16z4 zg7??r^2p*7WHy_EzCu~dC}G*27Ot((?<7iL{}RSs5-tyhmolQcClB^5V?=XL9@JDY zqPZszHmPJpb59BgZ;bF{?SQvocBGAXp+f;Yx~l1-u9#83`(Z$;s()iZVoo0^#>Ynm=Uc% z^5BwDMzsFOgXXcuXjIZUvtx>JG(LEByb-NG^5CtB#wC~@JH?3BA9--dbR$}Sw3x_)u52Spt9eki(})%mv>8Or#0qq<=0R%JNk^zvqmEOn_BlbV`s*pm z)1POk)@PnGHp3uzMFA{VjVfR*r#FK}SB!R$;D^4~dpkJD3;JC!o=4#E7mX-k=Vf0q zqJ>5tgqMwIp&=*%^=*c^>vx^Hh4VHwSD(8^w8qGTdH1QgG9FTQ82W^|L$d;^jAJjT zn^kyC+kJdP&41_}HUHqhDBk{06ffcnZTIY}aX-diCo&P`*Oi%w^2aMo#C^~CnR?04 z`HET-T4Q{#)Wrsq9R98|p@l{sj53(eLIZiJ(S#Nn-!+5bW)oU%pcZZuiI@If6Nwjn zxTz}c(JazL;$=p0I^eC6CK4|Ru_h8P+Bg%5m#bw=BwnUhFp+qt(=fK(jSEEohF-|EH-}1)&>`+eII6$tje^?=`wcg( z7opNL%G8A6It-kbVk*IL_v!AdT6}C6h#Sw!WE4n0T_6F<38se(Qr;bJX#pPBD-#4K z|73EoT$Mx!{Xl@t(g~DPS@f0C0P{}~gS)?)8iUL}fffWZ#oM{>>LR{RQWm?LjU>}f`Hx;m4Kq%CT1Fo8Dnub}4o>xRx`p!2sXYgBW zpds|3j^Rs9U&M%&VJl5Mn^wla>{X_Z3<`mWivp~MGwVz&-%v!|$H2f1rl$;JV-1Xf zt2dcaF#}}YBDogrW5F2?SUT{pfgLsE{(Y)7<%0FoKZNWW&?D_G}*m_$V^#s24pKn~4`yk(n9u zQFDOt0m4@R$0L+d+RM$YnWgl_71rycwd{$qN2#70-08GAkI^jz!{tQ18ayN)d)~HS%GzSvmWeqo1IYXG;3KM z4$ccRkCYc?toNY^lVq&sCCxQ)#sV>BmOEcKBSH{s?#pb!p7YF3kRvy1;Ep)6i`9&< zZ3S~D6iRSs74uWHuYfD6nLpxkadk7guz4T$u4&$eOIvL-y6tx#o~mO;7ew#FC3Vev zaoN5;J+E#^&+l(!MpwS>!^us|=RBxvJJ^g~3cC+W4mEFL&8V>R2y+e0_q-S+g8g%Q4?k7KZbqgN5Ooc*0x@hx4ze%q*Yb`^O+En0?w@lTmoe zD@45Bl_F11%rhrr&p&_Fyabm6Z<)t3dj2;pIOwMP)qOL|t4>7L=;vk`dZH`eAKg(b zjE0z27Ci^AKQ#BmnymT6yo$}0n}C0yJ7C6B^L=J@{ufqwff-%Yx)0{RFt08$dk_i# z6SFxAIYUo0{5nu<52(d6l&ws(>crEDO!F^Dvm}Py@nVKJN8Nd=a zg-q!oiW#OSV|@rX>LdU~NhBpTq?#+HrPgd3Z(22NX;+suM~rT5?ehze3w zTYx&N!GjhShFvg30D3e7f*oyHgJLvD%@Ql1u03-+2ng#s(opbrVGRWVXhI@$6ePjP zJuH_QEs+GsDz9d5X18w#W(>Bdz_?153UJvF3)94fEGob}uVP7nVZ$xc82lWfy9j?v zI6&`+wA&tA8nl~iVYqDr(JkQ!7KLi{)(#L(wFHSWn!B{{#&pXt38{5Ux0qNK;}{TB z;cQN@_z}7}Vp)!Fj;v00r5ridSXi!xBdCe6-&#vcMkV(I;~rTQU~OHC9+Z4&?E`Obv22uplU-c~xNN&+ zII$-PhZdIC<`HuQUkxknw5(+GD}vxex9Kc3K{D`1Z$<5~bR#;0WA|IarNqs$4_p4= zNNvw=mM=NUR``@zw zksudYO#l}LTl1*`fZ4kB-;WN68oyYqZy6OZ4lc7>ms6K)=CmHCE*a&uvTRogGm}EC zeOWT~z(v+xAa!TH6wZvY4x=Usj<&Ldh7SrLC^MZvhQwI+7mcmlveq49nywdAwC2&g zm|E4ki)ycayj2KoZ4GM~mfZ$nI~V2$fai;>r9c-Wx*{blY1P8GAFM1t;|IP09(#oJ z;8<-f1-I0*=BOAPtx%^*P{tHx`|i!LZEdVUf?BS(xAtHOg>Tq$UO6g>u%leN9LQ_1FU0Zq;_Gb^)1WA_QE0c;Kr12<$u2or%AC|1)1U}SWgv2 zCOx=5H#z_wnP^qhW!n9z*1c4o%<0xpD#fE&)*w2&`U7hj1~-LBp2I9D0QE}+b&tpm zp#661B$&F?dV!-p-fOw_wVdd<&pNA(VX2JWFBvS&wpzf0skJN+4S>FtfR{UGHI4_J>-MfX2qoyed{%C>XLgCMx}gmn&e190j0 zLXO9su@0i1$(^^BW*h+hdhHFX32dx1O!#@D`d6&yscuY{3rFg7)oNzcO)rS>_fs}+ z-?r9fT(WiqT?(vLc>0l5C+I=`sE|ANGwW6sk3*A0M~GniQG4BbZJkB!mHMZ32Mvrm zAFSJGP5IHfhLQIU5bbF~Iqn#Uosv`+Y!KO&Go(GVODl#xb64OGw}@?Pn5TPoYFkhg9$41Y z0}=o5gwuw8ybrSurg>~EKS64jpAX zDO8)L*nm*|>nGbRp}KI2ZKOZN4V`0aC>)(I&o)S?N*DWZn=Q9Z5RN`vZEGlWtFhJg zgK%`g4qrF>ZeO=P`+eR1K4i;eT4~g^4TMcj+Ez(XDk2ZEDbCp*Gun3`Ku8+6{DKXA z;(!<>=d$e!N2_PA+F}J$X>Z!l8^@%<%DXo7E8wL1`vY5LDXj)S^K}a?u*C^&d%v<7 zga$L;*$%UO$pjgDAUJ!iKnfDB6$HaTksZBmO9cmyMRq;NEoryF6si3tvkH9Z0HMnu zdMSOBkSf>v*-Hx5rvdgIf?l?$?Slmk#Odrq8Pg7t%7TY9!?7m29!UjfS?#SUGWg43 zXSr@us4fC5qi>{_aM?|QL0WlzQrN=mW98I%>r2>Mv&@QUFgg{1gQe{oxi$16=B^!$ zOM?4l>TwzRUh7ML=&wNDa`ZtiGjx}Jjh1BgE@c+|zt@@rQJpc8zRXfH(>0dYO-ET5>v zFaW`X&~5j)p7u#BS(CtIE`6Ya%LdpN$iafm#SE~?aQg^B{Z~dZh1)mSJEQDuKTL_` z!;ArhpaMrT?P~aPoLv+^jVhXMcL|n^n`y5kR8x5Sq9SSG+hE|QdFDhsEV@X4fc+vp zRm4`i3G`oY7Zy|Q#rCd(@#ieJulV=g4gP`ZfS*>_nLdK}Uoers+HVMEH?Fg@Tqg7Z zLL}`lAt}7uWbe%~7Zie-!OLv71-iD|xd70iO}GJ;&9Tp7%q_^LwxWq;z+ro|LP!rM z?JJeE+AYtHzR*Q7S+&b{xj(J8zGv?vr`7XM(R50yIr;XcQd$jpZU0?HtDoQ7j|vSg z{AFJuR40A1qwmxZ+(v)fw+o}`cDzcmLq91Ka_=LahAat)HIK;vk~GTRqwn!*5; z$nK9neS@~l#YY7KD|EMnWA%?~lVr*w z%E1m^$Dioa7qt~y*e%R4PQo3*$m2n`C4`n+**#}0-tb1!v{1J`b<)G()n zgXw7t9|GtS<6yWy4iLaR^!vXK;nBp~u@02>Uj5ck3p8aN57=ZPfDU-QoTC*>vLq~R z`X$5)4e^dR75Kcbp#gSmZ96(xX83P5BYWp#og7jrRn5(Aj+`Rd?B^thiY4GG@2~O?xD!dXIAaRwQl=V;p5z z)k5WoO>x{6xbaMI94!(zxj#9UuuLmRH}gT04Gw=0|0~Ko#Ebh)b^In|o|-dQz4#ld z1O7SF5zMHn?_s{qcH9y4^=hu;Ae+9v2V4alOgH)dp)?1aw!m>-;H%%_{{>&}rH(y} zS@C=E&MtSL3uwgKGgmqG6h&VUdB;eW{V`G1fh=@CA$^l$Ipqe{$aL)H2xCyS%~6%* zIdy`o+2zoH0er+%xOtBwNC3aE&j-HbfTI}8U6w*{^xNKbqr5;fFKh@band(Jv(vs2 z>}MU-m`6}|3ws7N*L}EUZaR(#YVo`6fI{{B9p7k+@A-}_0B`nTUf*1PP zoo59DK65zxGb%b6cN4R zM4K&AtL+JYX4lF&l#iYpUKVNw zn?Jdx!kN>YYQg%O)0~CjJ8XuJ$13U0rL2QxEOaX1<_stL{5z4i*L>#`1}unTqJbd$ z*cHy*{$Oh}bzP9M+4(Dj)yQ^kS)j`V0-qE};esvB0G4S!@w{^gXt2%6aw`q>odI6m za?(u`copK7!V6i>$6}Bi9;gK;(XU`J2v&&dfD?8(-?D@RLdbxX4>~<6;5SNb0Bv$m z#)&V6lEm^e&PyW7-IQ}qhV2tX*zZ^p73#ML_+55tf$Uk32INLZM1X#I&RjMH5h#{@ zZlQ98)n>{S=OYQ#$FQ4DmQ@M{gvbZ(F)D>PkOOYH>)b9FX2=8QZZ@q5SpJWkCyK_+ zwkJ-ss3cB2H{Z#!l`Pb=1D1O3WZJ5HL#Xx2d0OBm<_kdOFCzMbiNQA zWy@D)M*#>%xRBnQbA4bo(l?mW64wJkHxY8zURJ*$fC>KX(5K54t}p)szOwyY=$o^| zgXXD=$QOC!Z*Z*R<3IdYZYqdPUGIH$xZ{HoyHXSwxjEc1RNL`Xn=RRy4o== zH)a3=n|#(1x1ULv?`qDnpFunlm@;t45*OOL5rLmAccJ|ZsqXyM zh4wR~x_Z6qN5;g^m+WT%+Rs#h`faXNESnm_DcTlA!wH97Xj4OY5+8S=O%16I&2^zo z4XO6K;zFAmQZ0AQg*G*$`sKO{ZE8rh)O{D))R5}7$1b#~A=Tsp7uwX2>eAOPw5cK0 zDeqiAF#B!lUoIKAy)4uM(WV9nuGQ*GVKDD-xC^;^$hp&*he^2mKmpQQg;>CirOtlv zu)^&T#(MAPW{%#K^$=Pbyo*fdxki{bhn%3zC|I*Ao?N~+BUrqgM>J*7Q75| zUuRgt6atQdYs205Sc0w)p#x}K#jQZU%;BsImhA}kgY#nCp$cH~dJUjnDYqWDcB5Ow zU(37EE{bscsFIsu7lmG^rHbqT(RjUC)>}RV%&{6|FG7E83*5Gh5OD|SAMZxL*nt^@ zd`&mH`%9_|>bm=|B)$Kyq3$$tk1K+u2GNWCX!{i_f+L%{p`gy{E!-??*g_6R!RsyE zOg}I64Pk5>cecPyt@dt~E#Wt;n;qOtJF#yF6Fa*v3f%PR>ONQmm5+kT?rx@?*f(x$ zJ>6#oZa(*Rv+N5o7DO3j6HD?YjA&Ba9_ZdcT^pnfWA_^bI0=T1aR131h6F)6 z+I>~f&C9XweTfnczMlFw$fqJ0r=H+|`T5$ik`a;{qc?(%g_yBY+5H znBi{0oY)aUuZ&D@Ke%G9`vA*+s?hN|g3PvPj?aW%8HlbB-V@GW>fX+>9Q6TabaQL* z7RmzRkCp5O7j1A)DiR*(^5#JRL=Q44#bnlks@?7mMKL3KWdtDt^dJ*@IPM@~_SpQkYxNB_}Kiu91dhvTRU%LSvY4 zkkiyDgCWKcv{fP8t+a-qtqQ3cydh|-LaM6bA!w^Ys+UWIpv?fOE{P67TNP40Up547 zRYQUYPH%SXsbf1;q^l57tLwo&(NDNKf={bLOjgMMEQwi7AY9; zDY_s0)G8#hXjn51ZYAD{^nqp=+2uNf<8w%DZ~Qr@*(JV6LLV6jF7RcY@$KbZ~_P!&$5gvWYY;Y zXNPED!TgX9C5yla%gsE(!s1SjNPu=F2jR_=A?SlaIpFo#kVA}|z<%dKm~IPwGkdX% zAuF(9PFxCMS^Iwj>UJfBX(#dxL3%x84`$`y&5)yv3IW8GJKqjD&g>%u;p^Ry9L!42 zgOFoIW93oEGL{(tX=NISk$Bv6Bl5B!WEJ+6Ij>oLg`h>iif=>yW>k%UVEr@X2v*IV z4z|oZ{c%7=0R>ym0 zu-pJbgG>i6pM^W<(=T7^d(?P1bt4LUsj=rM9&T}hhw0lT2!1ABi`nRv+@`HP9t=OU zt)~TZx)|puM%HA))nR=Xidn9!r#QP`y$K1xZ>{*DAAMG!Ulw}jC=EyS_LL}`;^FT8 zo?0xsKWs!0gVD*xujMe0mdwn6+@?wy)HH)h~S5AP9H23q#=GF>4c47Bd+-GLcU_4hKYZ6U(w&X{Hv!BT^~cA4hsw9yKI77(d#39Anf^@v__`BN*pXy(}*d!Q~UZt5Ix&AEq;f0P4Ps zzRrF-&3m3D34KGDHq(0%o1^n=?@>nA^4y zp=hs$tPvIZmD#tFn-e)RgrZ&FW7xA{DBATshAk38JFo~#knxL8bjP>3b?6k9`*4LY(eUqHp=g7LR>b{6 z(FX4^yfZWuZSWq$D`P{^2JbOkkrGN)&b`Nn{y)~fIy}mwd;5wfgoG#(AiuW{nfL-_qy87 zyLsk*?jv)?&qF78_hHebKsv#@54EQU(h1&uxHdbGPVnwSB@##{c=zG21%c6M->Xv? z)*o`020lU~v|SnK49`{tw!kQt`)1z_fnpo2=cd4VnD|YV+Y{)-Fx-ap+mWA1mhBE) zjTj|JNsulF)|fN1qXQh;6WGk&<}&yl3|wVzb45B6$S1(+qk-rNu-@%yJ@TfZdpnYJ zEmTd)PXv0x(PM$bFukwoao{-e;zS^3ABNVQPxL7Yk%?mT$-paiq|RSmJW1!Xfp-zg zGXwfVWNF}ej5AP#rF=F_lwE0an{_(SlXUGG7R^i0<4RzE2Qt*Ii!XU_C6FdWv!zQs z0oMbs+e)(i&1WkR?!OJ(C)jL%ABdUP zR$w*%7>JtORv=XV9QeD$X70Nn%pA7@>L=SE)I_%e;gCbnuR=8|or4e)UQ&T&suYCU z{4*nX!t2UG^rjqlo847{Fl$g|EPrU`8FX6&mptDf%v87n>v`3n2LkJXUl3+WT!A&U zRuE=hOkT=@_DV}d@_Ioh>?JMP$bt}!3nA~Ln8}#mnIhQh^9fFn1MF~XA@PZ)4{AfsNFe; zUMl09Uv&whm&$l?PdCfUCiJlUn%67nC1y{N3so^O4Idgrvv#s>9a@eIibuM@0%@wt z=cFUX1TB@?B!rC*qIcD}5ML%(isvT=Z56-%Fga+Qu$OUK&?Qk#Gdt)WW<1PAGtY}= z!1#F`>4$%#6tl6ArN#g6Mfg&S}r(AbMVr7Zo>x=y^q6Y;Zq_ zo>%0>XAgqtc|~5_@hFI%SLDTqFN5fLMPBUoHi({AWD0B7Van^$(Wcm+)EpU%7#0DATENMW^*3agPg+p` zLfSg!xq$Mf4E0ePj=-}(9KJ0pv1K|U{qM;(;{pMZ8sMw@GSnoUlPPIA$OWc9lI@qs zw0J7Rq>`wR>*g~VYLZ@oaPOszetL~*X7g(qCJC)1SAKyDXy3|CU^=-9GH3smjg!c< z{U}>&m6?A3Bs;;|(cG=U>#agk+6JGIqJ^tt@CGCl6gdU2#0+n3x(1IUC4b69uFLX( zTHfI17Q9{R)-HGkqng&&p#IRtJJ=r8Xa5^US2b9;l1q)?tr$i98;|$}qrS#sQ5ooK z2Vao7v(hF3(a#` zgYOc<>+s;AsGfsi8Aslw$>ruL`ayAQa97NvkZa0)UELX=OA8)^MtHVU9t6{k!KF^T z!zZL5*qfA?WPY%?X>cvHulGKnr~%)#2)-xvx1-tzH$==PfC~AKtuzAj?h!mv>h4Q= z2cs@3Qm|s8jFvf)^r6A-Fs5(t0q$FnKOneN8X+hL1;0i62es+f+oBCe1)o5f<#$=v zuV(w9lY`??;ZVS6AZkW%CrNW_X9w?>hMz-=ga43z>$D&km0pSVMP0wjqOxOY@HFJ8 zlf#6A%eLUY61gc5+|HSg(>@&xzVF0KuTKPvk==ol!Su6{Y~(!QbZ~v?ue&b<_mS$x zUJ2eHmEK(o_Ls(ZK{tbclZ35uH&}u2L&6#xJbM(}5$znCzfiyH`!T#H40#p&9?O9g zOuXw%!tGQ&p!j{T3>ALZM2$`#>4)CtN*kLe?c@tFeGvQ5Tb+7xFS5D8Q+slBPhd@W zW-otE?|yz?%@dwE%NtVVwDN496<6r$Xk<4d$~{CQT#VQDBK7b zT}6J`j%+5?yhvwn`Ei7%7z}y#PasW|?IS;laUqUy?s8yF(zjOgN-(RIe2)V)A3rSL zrk?yWy>(4>PI?E*F_Sb2y|95hlm*FAw+k%@B(a0slc*lc#UyRET%IZ%;+{f&8#9Ie z7xuSSn=}7u;80tL)X3)xrCpDfW5%kS7B_06SUGBIv;yH)ynLQuGc`$$8H870+34k{ zSyu(ZT!WnDXJHQ2GEI&do>pM}mM%w4yDAW_WXZP(HuH1km@#|>mQTJMwKrOUu+k`} zpHAbtQ8$#Yv?>@ZZ6rTPKfmHkSG@W+m9Mf2>vl8wQK_AgU9IG6tilRyBggHH4v;UB z_D0url#ir|0hkBHbi=l;6|lFv9F@V7nrj72?j@(Y*qlRtU-?FyMpnRue)4CCo(L$1 zWMPn$A=s$A0uB$Azel{Da23oNAzv?4kT)8yg7ahK*D(VY%3-3kH~Qu~Io%s&wgA7$ za=JIli+88U&tk48wF?Uw1#Rb;WrNzq7RU!gz8A3s$J8|vjLXa&DYRKZL%PH=YL%RB z;c&vAR$E?lVy)%Znd{|SvF{|teRAoTu9W|BA;?eJn>+Rq`{XIe5!6Ttm|rb)I!b%w z=?~=|{AwXNcSIgW+O`ZW!42lhb)I%Z2&l8F@=vGyTe? za{A#g4nOCD95rKOW|81|Hq6$S)JQ%pnU zY9%zfAxAA+aH3|c6mYsFuWuQj>F&#QGS z45NX^HA7eq9VUCbfDo2LhZVycgiwv>ld5|`?cfk^gmr-ii3kC_Toqz&!962FSV|lA zj>xDG)Ky~^eMm{OusYJs8L{OE2Pq`svtHAjwEu;vwaKI;IAx~?N zEBSrf5fA%XDpE2qgzgHMLi%Dlk;C7G^d-86A(%s^v@SiF5m3tqb~Oswg>e#!unba~ zhg8P20$O>zw3!vqK4hCOqW9+reCKNJ(2x#D^^J!O!$X3xl?kmJKw38pq2CAH8RA3A z8irsx8g2@HHq>r($Xkqua#NfcAA*_Y0IlqTw*R83A*k65XB;;pWGZIH$t%zMJ_I#$ z;gw6~h7k0dD=i2)iFBD|uySF@1oWFfmxQ3^M_lIlKZT^A-@Iv6$P~1bRNfFW3thR- z))3Tehsr#jEM9lFa>b|B$ma4c_V5WpCL$YI1)x8)KM;c2YWf#1e@HtVQi8O~*KCd+ z`#)i`>X(pF{|9XB&W50dY5${}MWrEw{twu^ycmK@Tq8V)ei(U&zZ01m9^46m9>!w^3eU(s0IO!3(9*yvHr(8zpCfR&=R6TS)vJW0ldL2;skzZw@p5)B% z5NSFFU+RbM#bmVPlJz|j;zo+j$ZG;og{Gj5#9@q=s$x=U2A^i!(z@ zk&L?WDF)E*qD?}E^=@En7P`+1=X2e@+SaPvD|8lSTZ@{9!-PYp(V@}NI3nZ8(?`Jr z;ONfK57-Wc8pTn{d3kSts13RSjG|v!l+s;#91B$-0~DW21i+`Wp?)?tH>AC%)}^7C z9Se4fa*oIB8gt4zIKarVP0w1B&)7#+7L0#a~?+ z%y=9+mg)E8^Uz~BDjdxpM!XDlMXFUG40s*-#+Fj)_Ac~@RaC0K4>e$Bnp`!OY(DJ% z;w-piqeyq7r1<_^cojt@X16#m1?Dc58Q&dBy%nf=Xaz!*s){p|3j9$+F~EWT*BGFn znR_nK4r?|nW95E_>vx>^ZLIr9%T0teDv0^o&a`zj> zS*xflX{LC}8u9d2ic+h9vf3zKF`$GFiZZK!-gi`>=B-pYOGusX8fai)cf}4C#S8mj z+t3oCiVKoMKtIJrr1uJh#{(4Cn4L}xR{V<73I_^-;-QNB)=?QeLh(DJVj67~6{?jY z1!|JY4aD_&ah!rC?YKbJPry2zQ18HricZM*y@a&g*x>79k9B7%9%2T7RICz0ckLQT zrzcJG6-O}B1E!sdBs=|9C=O#$zDki3yhU-(i7J})*Ti?T!kZkLsPF^hZbdxn2B+;) zc%hxDB4f_P1B!9(SnoDpZIUv@>^!HS>BPkVqi>mF9;4}UNrB1|!yV3yUm2V(D`;BJ z3vlT-1x*!m0k;3H$V3i|N-P^uzLM25Z!6p}^Gizc>l={$o-5j7W`<@M4Xk;sps8Xm zK$X80G*!$6xc*5&Q^j1^aVl&UvZ3_mH^uH*ILsFYIsR zbVI<&28CT_O8q=EY&=u;x1++|u>TGl7j~Q(Lq8>~7G_D2Dx1HdFD^dty8ci&Gi*0& zx|P2VTY=g0GPCd`B?n$R!|2svwoIt8o5C(yqc#bSP&j9hZwoue6!`bfFq)J20(`eO zES=Ek}C*HC1cvvGVR44?$aw6;;)8oohVRNeD;Ksp|n_=x;ZPrMO5XDc!Fd0wy zZPBv0r!sQ!S=ep_li5?1)5zynVFA$fMc7qLCuT;#tYFZ(8%TMwQmkNqKifmN}9TdyHRJ25;L!>zzUC6qV|_75Z=Tp{}yaMCnzy102Nqgla#2r zH$wp0&Z2}92c{`8ivSfwKBOzZpq-c!@rO5A%2>fhm!~YZ%4KR6D4$x##=cPbmoSoZ zW90>_*j#R+M6F6xXm>#~CC!Az9k@$NM}bwntMU{Q z3l4Qt9>k2!se($S^TTucC_6by3UV2&JdY!C1#S&dqB5OQB3Iz^aHXek;5ws~n1w6` zv$II)g&8_=3Vz=zy#D-Yd}U2c?tX zFqU8&?iFY;A05xGK>LNtXQH{bTY~2hzf^eutp}Us$|vStW~K5B))p65D@P-yWpoCh z%)zX)P#4-r4n-=z{-S5Sy-FX<8UV-A$16QZ+hugen|{snIvS?!Rb_SXxuo2MM$mtF z8~~@vmCw*>@pz;Z8JhP$QTn<_BhmYBlmn6RVk6;*{LJ^|f5Z@ypZVVTK}kO&%KDof z+2N?HK3w;0KR)(>w~pbnY$dKgx`Z!4bLC*cZsC4X>xPCN;WS?t;|PIXmf}0_@D1YE z9lqgjF^5Pv^#X@`Ua+t}}zls1!>;WeTS`n7GzI6ozjX#ei9}$lF&=$A$=EgMQR3y8uGd{ctGH49>>g0U!tnh)zF%pN-*bcr( zbUTzXvbmi{Yv^4Z{-=<;)%I8Erri|J(+|M0kA@sBGP!)Zb{{($SXaGKDK7pL9` zrwQG7G3!n^P3XppLm!6IjBdQx?rHcy%y|cH`J$KM4&+8jU@r)I9gf;R;V`uOa{&6O zv#Ut`(+;$&(i!Nb@AFkj)zZ*RlIf?y+-Kv9Nkv&tJxQCIs&|O?ZPQcL7Vg(l*u-jnjT!Mr+Q#-Q%a7?RKMWF;AsAkAy+-ZL>ceXl2rpt)^n0qMWKM#WT6v$S z!lmM1zLIEEIg{0ye%_=?lDaqermMcUqonwGoPAlU;f!H)u4)w4ZWP}g+T^K{v33KB zpmVS(g;9-FCov-tu5k(yKn}fCwI*$wt58`0%?%4wEmXCcit<~l)?>9oTZBLCXrn@% zOP~Txlr9VfbW)9ER2FtsZN^cV36;C6FsqC}S-7xwyY^9S!oGWWU)3^9r$gV}4-O1g zO{d-oxx-ZUh%gIdN2zi#PD$&HAjZLJ2hwI&q6f?$13#;rq0cte zPDUyStddSbBW=2<{bB7cR7@gfO?{0Ow^ucV`RK9zDzHLlUqfadRGmY%@(RVdkPp4o z?I7s5s;6~Ws-4sb`ZFq-HJjx4ryCfR4H`Lfe?%R0K0ysPL3o%6ksv?L_r3h$~llvkoQymg+YoW;=4o z?nyN$eW(g!!)|^`%H<)|q{jl4A0$0f(a*n?k|!^);ZnjU6yK4A4+?XH>{qIrNKO8K zSmm!(e*Z^UgkpKJ@zw}jlcRUC@2h+X?GCFF8a;o3Lw`%HIOn5kkF}6=OZ<~+2Mt+s zi`1x8sXbK^KcM{fA%-3-PPHS(%IYY~FwVvX20E)}GVic=Rbxd2is^zG)0hb*fUJso z24k_)Q;j)AQ2~_bt-gee5?nX_^f@fpr9RL2qb5)x(At2 zPklu+X&7E#orNYn7K~~DuudvR{Q508H-O094^<^`$#R~OObm*eaQ?)oo z?FdgJ)l*p@9Hv!YMxwPR$#wuxQ^pMdE?G8QC)saYl zuV5HJ%F@*yq%2%6CqHJX%Wx*Cz(cOvNB~fftM15#Q`-yF=)oda5Cy7A^aoWgbnRNb znL*xcq(%=LEs$VrqQ+$%X0wU%9<)u<5o4$gl(ytvMq0G7LQo1P4H<8=Rb!^H(vXp{ zl3@CDQ1j8^hfZqrXpzfE$FWb4A%bhE7SQ40Sv*2RwKsXuM(sjq_=_ZK2CDzE!mTAJ zpm9)d8F`fqQR7E})SJ9XspAtDm^DgW4>{=I4Mu_?6oxKuUr}`?r^l!-iEv2fj;62S zL$8}f>h9=J_F{s%I?y5FG!_)UouV$n9H*l_BVW}GfNkHa4K_AgrQ?o?Kd8|k$0%Q{ zc7lYt>NR$xOxNEN-p*6g3_H9S@}nB}$&BObLb7j>8gq)nhSr5@OVs(Oh%8K5SsllqvX4030sdKJdyDGZ@7Ri(`Qn$>DMq1~)?>iekncwF5IJvKqx{tC_kxAagdxTs#LvL_|@(6YWl?TG-I*XDny zD+}EXxuI?$e!YELyK zw&a(}1AXDGbA%_deRI*AV1a7{{l*b@p>L{0ED~6=#e zBvTwC2t4tNpt%gWn8#{G91vdmL%oP4f@G>Jf^HLY>gv#lTdw4APx^hMO?}*h$k^xz z?6rB~(fFw|d=nGV%GTx$?1+nS!zlRX<%oQ8)esRt+9pO|#x4v1ijyLaV$5KEJ7(-l z>oz0@Gb6;=_qwSO-R*4NkZBnan2iO71{AFn)7^6_`v*oigP$>?xi@9O7tkknh!{+5 zQ`|XX45B5PLEXW#OGFCBPt6Dc@UClw0duIrj9{I8_z`!9!4cK$sb*>qk64M-2DOhr zbQ%${1g#B@uyRyHM`{=1S`@L&Dk=qIBZxIr0$}pD5giznrxUECqMm3S6@TbHIbtHC z@@i@XW{S;R1p=l=+^|L={!lVAVgO^|^L@k$t8CL^PQ-5OsO+38Q3;u6C6#{jBN||a zfK;W8NS&<_4Wv^Ug-asn$L-&cpMQ$LjQ!1M3h-GGVTfe9ZHY`Yy%>_CTW*$*Qw)3ywCpGEvb{|EuEB1U7j zjQMM3eu=0CvHwJz$9fDpe)` z$-*k+N?a8s*j9^NgVaX_R#O;QBl5g88u1{}=L_TDMV-iH*0Gs;v9JIN>qoxE>>O1n zX#Um0Sa=Z}xzsu~6vnmqkHTcg4~?`#M~5QUCsp9CDiZCugd=1}M*1`F?G_XH4$Vd1 z?VdaQl@xgasTdkBC<0kjx2+SjNsg?}2n|h-jCLhAL;UGt!D0Fpidm;TFO!uGBWsb( zO>F2!XW!}(#JgeS8$^7jXHES{oo4Pb7~Lpxs-w+*qMp=g02$RH5;>prBTJe;bs>`` zcWOgo3i^5x22E2KD_QatqQ7fHXA!_-7- z4vd_PB*Mgthm=8)-qx{sGbHjS!Dh|y$f;Jbxi}&+!#Xy*M@J44Y;Eof* zxX5OhNNz@`O`b1}bSC9KoxP!Oa%8#>X;G%|g$;`$4`Y@-EU-Xf$M{H%W6aLTeWJS~Fj zAv%hF1AsU7O0iMP1@nXHQA;aJzxHbw)xMHcywfU*I7-E79i!HZYFVA5K8XjK^ow#9 z)%uKz>gXb>eHXP#R9iSbO6Dy6dTDOd3``zUF3*?Yku}MUD>W;Tyt{>-@M(2axG<}J zf7B7Qn#{2DLdBrYjxgg$)NEggt?IX^wo=rArPreZ5dH|1c<&nAmgMc7C~s0UDAEs> z{u6~7?NG2RQvT7y5l(%HdQ(#(SyoeXQYdDRCj&9Ry|FXVwcfDBC6?6f&8 zZD94!(5ys&(QdCQw8_-iAbM$-ouzq=&^V#>nvlvS4Ptd4&YLu2>`0wCZ9Pf5#v06I znId$Sc9oVl(V(`_``y!+id#K(B9q!`#A@k3Ei}Cat&wds-y$qw1_cV5g3+n~aDgUW zG_UPQ&bRG+p-m6XNldGwSdCyqU(Mdi63(bm8rq9-t*eVP<8k6OA{5aX3}ZD@5#B}^ zCkdhXx0)7`vf=o5nhB!Va*E~$QM8$%87qo&W@{EZke)tN8RWG;IWjCa3VW zn0#7u2{SNcw%A#!=_Du&K96_F)fY6Vl$zWf{C~BmVa64_8V>)axrKIz^lO@4LJvo; z2^nuLs``8r14D7hvcoO*g^e)n{z~ z(|?Cddk$@idA3@kpzz*aiw>1?N9}2}DTs@RG|zQJ~h`G}D8% z=nyqXuKfkAhjN9bT_lHV5mA~AYWqVUl@=c+|Bld_hvw@wc%Qtd)!r0t^;@jA57w<7 z#c3U+k#}*D7CpX=&}s1(OvhZQQ9)WVOEj$CoG4{W36z;jgiZj{UK|; z#VQXs;`_~do3%C3o>9J4J5iW)=nlMRY~887C16(U)(*rv`My2c55hA}9MB?G%q2hl zd{8?_uvvCQi`n?&#y$Eoiyns#(avnoaV>h??%4?~>b{`F;gq%!?NF22dy$Z{TFm|~ zhiP(7dl%hS{w$-T5@{mX<)Rk7hPvRA7PWWJ1?Y7}+f;D4d=)<_cf6)Og4RQi>&zB> zLR@wOKMDI%u3au*w%^wF!nT#8ceIxU%)0yd>Dbi=R!qm*Ki1M6cCL{JPw_3J)^lw( z=I9Oej7FsN2aPjX@?I@7Kjis>Tk?MfQ1kV6)5Uuf%V-#*x*>f&>w#Jtflwn zxW2~OMkC|f*MNuZqUQ?0E>6+NrujACGUw>uv3qFD6fRK7Jz8VS_n=la@`y%uOq`Mn zxvxxdgXdn+W%gWYP*yD(b%KqXG_2@e6=+&J8uf`qQ)ILeTGo$_!9)*Mnb6ABAuKTZ zH0F#VMQBg_b5cfwOL%lOgn@t}(0x+ode9^~T7|jKK_N_JacXoWvU-7sl75da`VU0# zVkkgSes`4EOwNg3DTwI{qTe}4zh*X$-r$BqHmhotkk)H z%i`!igp_ZWMB6$cq~ywUJ(1!@GNXf)Wc#Y<=T@LhgUxHGM@WjlzbX2?@Zgu*qJI{g zkL`@Ei)g5X6AeE?kA6}@xBZcHU_P{{L<*kME)XS5{x_* zZNiEM6y|`CrS`?>(e79)+;|x6PNpiO=@};f8YY-=D|)qP?iu&3P!Waw2BRY0ik{h0 zPD?yeJAmR<^g9d;w|>z-(UoEIhv))q16oB9BpvUV9dk&uoc6Xc^iwFj2k7AtQ$yHb zu5-*4p|??PF=gnMUsfZ=3(Bj;^uclliqJ?f(fG$)$2u4(2#s-rlKL@@qAP*m7j&BjQb)q?oRl?}u^U+B7V+TCroM)N07u zhB4k`WapRwc+)86pyU$dSkoBH4BiZ18?H2q`A2ZQ+cu^Z+NZwsj`1axXU7ZuHSQiG zN9&Jb(H!mE`{M@1w6BT{I|sI;`m&Lj;IwHPo)e*1HDTcFn0YlNVzoEKB%lpD^HfY_ z@^F}AN67v;W}#?E?@n0Z`xG$>?fYL|rOtsX7h>|U79$kF6}DW7*(xH{z-uu#(7i>S zYH8KTpRQ?Z;D^UCgIu`2iQk(T%-$b&bP8CTocus_o>eU^mel?j6Gk>wOA984-^QGm z%=y#17@ER@yIdiCP!#)ois>XIy89*OxcGISZLCXW>DkNfv0p^UzUL8Jy|(mg6=m!> z@$0kj*h^@w-q6Onfl(9dj-AK=MQANTYkoqkd0ZBs6zf~%zc(rvn-{wULxtAsz{bVv zp}#TqkWgJptJo7lNj2NVE)&IbZDaR~;==Z^QC9Y^Xk|Czza?!2Jee80yVieK65$*a z8)8u(*y9{%We;-Tw^(1$ZHk@XCaL7teHNWSOj z%9Y{IDseqUTW(P+uDXbm;{)P`i4M)ZLEL5Wz#CQEH1WXqQE{Wi19fBLhG7OAltXjk z(JB2f+%v?r!z_=O5xmL9#c_`CI6sc2D&md$hB0o9n6J-o8n>>J^lRe|ar@k*V!i%x z=Y=TtgX5lyKEZxiT!EMLK*yo`&abrY#uD?I-su0%gaNHLmZ0)0Q>s%#a zua?F&MGD)69Qu&%NM5{WUsU>(J^`9vjr$R^v`j^;z^V*OZp4KP3*NXFXYOO*LEJh) zf5787bE|LnG%iBgvVj%P<2DIhbb1-*D>{Lx@8YTnwQO^UzbJG;T;l%`U@I!eKNIb7 zxmSE&q%MYVOG9bR__~M|4O9b11&Oz^czSS~o$7!tA@PrdMC}#vW{D<6#4CkFC-m{x zghbm?B`O?hvYGoZD83oLQ+Qdcd-3S0I>oCEeeTDP7g5LlQT$zu`}1McjOv*~;nrXA z<}JySZ{soh?q)0>xc)A_D*a3p-S`HFkMVCYhGAekMkX}J42fCYxg!%i$RDn0zA(}@ zVR?wuIjO@Eo?&O9P?C^P70ZUu%FdumO86|8B{kAx`El%JF*V9o-V0lnxK?GxzN0{MV*=k0|1m?10&D|(aQN-F)8ItjMCNI);& z0EO8vRG9xhVLi6ZkUrsA8z9&vktXnDvXSfViI`NalAgk|JjruymLt5VlK4S5+()lO zm2kKOzeH35Wxn{|)-l=zcGgL3jR~UWTf#M9yF5|uOKz|8tWCz))(Rzoy2RB8M`L%L z3BBv=PG)tb8DJIq#3u+8N~<~ph$BhaiH>AQt4JTRxx9-#>`qR!Mao$Lh&lRaX4F=? zV>&k{vA}_hIpFC@-WU@%S|MUrXjGVZ789M#l)A!&Mv1#^B{mDcNyHojufV$7G|>sO zmr{YSs72y>!KQiZ#JN`Krld_`sdc)k(>`&BU~{iyBIcGrg=Ar!6aBEd0qV|ll)_zR zNRPzttWwLyo{6Z7W?zZYCvga8<3)D%OPpjCo9F!#XJMuYW;WU2H7xOnv&}jw-Ppsi ziKnfxc{Z6RPjZLG;}d(@aec#uiHU!U;g^?d_!pzWE{XpeV}bC!VyCezo~A zksfkj7K1+)Cax64Ig1lFieh0&;(N>p(JXj8l&(meYmKb&gd)@?zaLBV1;5paX)Z#E zBx6+~O$Yy1BF(a~C9#rKB#C|(g~{5PIKV2VKw*A#G#mNFfkdr!tPUPatVy1%NL0dK zKPP5dM~z~wv``yzFh}JW%9nd7!yl(naw=Qk5ig(|F^NWNsSUy^@BDYPxDkgApr1EQ1N}v*XF8zKPDH z(XPar(9%CC)WNLEh4qt$Sz{uSQ-NHI?CcR8qK&%>xL~Ce3%WnL}=l8<|Opm#n3qiJG6}M#AeQJCTJ; z*485FiAjU4;_H!=0{X+g4oUqmo=*|Fkbpi(8tFR#?%k70CE=d+N}7)ot_x5+JIplPOeO%X z4o(t+ab)6#CINYJ*-lWf7q~wRzUNG=n(#tBm%?&i>- zUL{qp#7lMlN!sQp{nbv_QYx7$>4F^iZV`6d49Tu(sOBb zbZ*YPMu%Ws3#7}9C4H5;Q8@P+OO}M|_95$nn_3r#jBaD$eS{A6r3LB{f^ zuPfK;PW*R?f!3{w6m}dukI~sVaYNhbb=6!YUsL4hYDpf^EMIrchW|OusM{}D zMX8Z4NO~^&8{HS_x8}`sccfB53*AYnByXi#FZCDq+UT}PrM2yK>!ecWPPzk9Nz+vq zCi&!mp1O7t^4&hV&(dFC_t*U+;n@z-g-gE~hUf-J&mAAG`&%lNj@E6G{yKB4Zi-Y2 z8L#t|{%V|PX4-bLnQ7yxy3-P}db;kBR6{XKcTy@j&e1)PN?+#cew9jh=jnDzrS(7R zYDmbJ7wdXTrH0FN@1(!BSYhUOW3?_o`fHW-x|h=1JU5!P`_Cp_jP%#^Z8{sNZqpsQ zv(j@~(4oH8xwNr<5IJ~F=M4J}=yrSZKm}9EbR+o-NVSW)p8wt7h#A!#qA%%kc!VKy ze%E1UwhRg=K~)3hW83w|r08?mLH~yo&3^XK50ie&tE!(TMYFfH^j#!f^{%6jll*0O z1AV6Sn^&;@B4!j}k%~;cr1NCM63nt6MOiMb6uF1%zvm5$Y|-j>;?%qzQe*TRxm?69 zK|c+P(lb#XE1~Sv>(^sZbOtk*&uRMcSd=yy`V@)Fwru@oEQ&r?e^5g4FzTmbQHGi% zy?BwI8|gRvcNC!JUdJ7fv}&$LHh}eTsD=J}38h0@J?4v~l*W2^-%g*3S)}5X{W|II zNtS&>y*p++M=Q@DJ#Xl1lJ))czVKr|J>B4Cqbkr1(pQmG(`Fdf z|2ecXY#pxmRV(+^kAmr7d~=pRc_Z{rgE1kBis>U%i+xkCSqjilx5Rr*?zmWQmv zwx;2P0#+qAx^{Pjlk4@a64$$%^d?Ew89Vgruw2RJhWg6nK*2C)l2koZoF(_&r@toA zci69QD$(zK7~2YmTi)RgyN~E2-1wm9Q>lKBB*=-2dN)asyT8$H3fDpglP|aRHGz8i zEa5m+Z9#&W5@PCotfx!(tR*?a%?J8O$x8yC>i0_Hh?mdwd6EzXuk}kXYctey z1{3{zy$^Y@G|~w+f7DlXl8kW8HhGK0f00u%G9p(%yTJ?RrZ7Y52)n>OS&Y}6=hDYRgdK9IC2%J{_s=Jlf*`o+T&m^PrTXPOO&n0&jdI&q8 zj7e6?VFq1DM&-BWm7iQr9w0dMy^6QR-rti^`K>tz{hyXdeX1PqlRmeSQ3K>Pn8&J8eIfq=Gp`$Rv z;ba3kKs%)v@WF9$ngIld&Y5^`+?8cuxviN;t<5!H?jUiEoXRt>6d?@ewb6hc+$I$o zFcUN|H8KQ=*H8Kew$SA4)&|U1lR3<-HU?B)YhL+dd&3sN zVSgvQ9^ASZCZWS*dUpdoxyxOlaxcR&Y>aBt+ki@L&Gj&;9~D62Pa4jsnggT#(;hBN3nXT$`(ToW7~%rIb%3UZj#SqA)w`r`MNVbm{k4T$YZ$)rKV3ZL9O-@uYO zF`wMM(16(}N`3Uc7}cCJES9BAvX?f( z;uR?#$cYr^E2R<3O`T5O z=~Dhiv{y4gbwZO{j{#Rh%1F%deGZdvOz{GmTydQ}k_b?Q<&yV+U89s#S0oNulu8ru z@-){DZBuSpfifKKwM!X7GygP{dqJPBDJulKz@8~A*EMx>2Izokl>Re&L?!33tw>upHKm-Lvy4EQd8K9=Vhfk8O&CCYyEzn!`Fo z1iD|YqusL+1M?(TZl<`C+{dX+;A(jaDoq{NU_~P9(g!JB(DG3jFF5-&Wxdebl$R;< zFj+1*Cz^Kp>ulCFY*G&hwLNf1#kT53gu?p3Jm=KT72nSG35LZUsT0smiDk1U zG@ErtsP30)gKbKL!g#^vTB*;3Z*B@mWqDbcn-JAJ@BI< z^(LA>%WO?(X6ueHM4MU{&7ZXtz@=>hnP_Jn!OB%-vSgUpFI81sXPV8SPuVL}PR3}Mc zWarRS%tW4n0tNM>Sz{Qv--}X*puOvVa$I+vlBz>%jbhb=jG3ubL{RTCH+5uHWaq$= zQ%i}ifhI3sgXIJiW*bd!&GaGsR?mN_~&+Iap?EpqZ^{k{<>}6jjqOn||D>Db^$rQ+HQSW67%- zy{m@@iUKb)kM5O$Eq)yd9p#a#yqBU+OfLyP6ei6{NA; z)vWl@nDzkcON8aFCNy`olKj*p?H<;#DarsC+ceEac+#9!Y36}hQJXY5CO;onp0ZC` z7sU9N@EAoadjm~pJ&qvYp|FXnFfBCXBmgkz$AHO`U1}0B|Sy_%O zUv)fm*pyb^I{GZ_HPE!zlWJrAiJH!l(9G3I(5Eyl+&VUv1lWWoz$S3_e44#*h!1~S zGWX362m(DU^v!cn6&N5)L;O*+ef&3=8>B7F{KIKmZGrBixr<^OJf!lj^}=e z&TCd|em|Y%yk^C!f2H?F%Q)snoFCA1*IKj(Q-nI;W0%2_Tr)b2DrK0vA4TPi?Y1_r z;ih}WQz7FGj|`gOnm<_2J7cr>^|nt2%LmP>yVT5J8LnATEze*Xu36DHEQ4jZX2trd zjJxKpLYpzg8p++s<~s4tWL7=;FP_?*CcN$smvkAZOM%>vsWvK5-61DEBSVn=DJMf5 z9tH3GjK@OqDn^UsnkE@66E>4^V8;xW37Zw$cFka!uvu|*j|}sqW@taW~Nu+-PAIOAN#M+C4G zITvq?DAQ3+^)9hYRvol%3YeucboJ^MRniX5m&14C$ zS+N7jWC^cXab8I#OL)zSi&tc_gx9P%dShk~W-)>?YeMQQPM86^k7i!Nbhu^&cc^zJ zlV!bTbl#lHWLd9SQE@qQ8Kx0a+{R?%gUrg%_IBnkm{7zJR#61uh6f*Knpaq7J5oJv`hFe>A%uOi=duWDHx zF?ut@ctV$2S?2A426eKIV;6ORCcSPgjitz+nk-D>8_tQsc&?)Pt|im$jLTw)u9*>& zld~K#zANpn-OO}^@{Ft+n7Fy6es)WmRV2$9W*D==YD&B6Wj(T1N)3Tb?44DFn17gI z-CKGlLh(jPcWI3-+0}%@53Q1oxs^q+CcsgT?4wBIPk@mU%&-vmx z_*Kg;Lvtvpk=3vqW}JS=2jEnSV;D2G>7`iZ1ZvAE2?bF)ep`gEFv3qB9B*I5tThlxI%h#Hs%Hn zhnX9b{ZR@?WNAV+<`^4?d6k&G3$4z!$=T)`1BTS>6IFg+)&+y#0!%AO;of*`vaW_y#ibq#)y(li^Dh?*f1is%f>n`eJ3`ka{7 z<`@RQw9RJU>16#=bm#19m9(rht|M zvlj@GPQ$b7iel`T?0uNEUe34Wglrd>_HDKSOA;u;X&0%dOqiKnfHZe2(z<@OGr2*s z9mr6*T1greXTQO@z61pn>W%2kA1|ZgBo=ZwA8{y-D z?1y4n_~uadbTJp4b1d6lIN|CO*|jkW;O<6^>_m*q?>muzYVG}C#M$hdl8wmfGv+3~ z_+mC{ZHUXDnv|0ZIajlP(O~UO5engSm7E?TNMv~Dm=%)jn{%U@6eQGPIhmsUO^L{% z`Qv%$$coCDCyK8$Ia@?=dvwlbvDP~%$?|NJ-tz4AWXrQlQgSwmXIp1mo~@m0dG>go z<=IIEIa|fEIZZ6jR%&W_c3U&cvx8dXToGg6RvmJVVhm`}FQNMNCLd4btc6+KbK)?2 zf!tZCrp0M!_&n93@~mdJ z<=H>?Se`A}mvciXW7g3eY#tyDVa~>t0aO`>uzFxHg=COTt|uv*nc)HD&z)Rs$l}L2 zwMp6MA>EydT(jTKs%d$)uy*c6p(br$?gY&74{B$g87%-hgym*cwJ9TGuefE9*D1Ms z5bd)f{aaCU8jr^;d+I=HrsclJK;`9jBqd)W9AQ&>?kmhXhK)dQCWmCsj^y{d)P9X~ za}moAK%sg#5MyJFCmB_kdju!WG*WUw;{pzia(yv90Oc@^@Jk9en&fV#8HyO2l4iM> zydxZo=b`)DJa>|vghg8C&c#Z`dA)3tOJg$U)vH79GOMsIbfeEhEG&Y9Kn^eJ?rd2_TTNShkbo=pVC2Z4~;Jz7?8W%k;@AMhUe1WhKUYm z#^in!zy9`JZUg#-;v=zM;65W)YcD;}`1@SigYaj4=I6S)NJZ7M+&?h8xRhfjQl)ur z74r1_@J8UUA@`jJr$+{E$n_?wwz+(p+gR)VB>|{y|j}r(s+^Dmvb?by??#H4F+Dx zZ7;m){_nX*Z6x;l{>Y`@c;W7-4z z?A^Zmx#tmeZ~UFBf@cqM*JBPQvC4#2b|jxdXy)2nwQ}!6{io#tLG*a4;AH=iD#Ei&YMU{vTCu5@>UA4 z7bSTkXeLMY>&O#%7bM4rHfQrb2oBvZ)m6gRee64e7{KzYOeBO8yZc{Hlz6v-(q4|C7CF(;)<=Y7 z!h%2Kj}RWWt2lp$cwqFR{Hem2ek(0{n7b~2C1w+f+Vy{fHQBp8f2YkQsR!DO0KOU|h&yT@`nb`uN6ro^qT@5Mt^*&X^ zsr*0e$cqJup5*Mg{Dam5s>iFrjq|NtvoZ10M2%K8~bq z!zfQOE4*MoPLe{PSPd}|*-Ru6ZbucIvXzJ&h%Ue+o~*#~i!HFl1b_;JKjI4x2{s#& z3NSld6O?DE}*$ExC3wgreK;?Y(6zDsE3(haW*e{6v(78%e4*#>GmXaf0Qq1yB0)a z+XYZWKYK13)a+aE#7QbvA6oE06g`Uy=)9N74)?~g0LhE{zAd23lDs%#Lcs#Gdi$=U z!-aDF6K_)XeSxDSTItjRl_VPZdrE;f>6=mD2g$Pvo?(_`xY{gl0s5Ao?IhmIiwpJ( z8T&6T*e8m*l@@V*R$IhM zyFG3Q-Jyb4!jy(%1$0}6|GMZ*L5j0fe0iy$A12d+xgofaKFG@58=z|)<5E}2 z6#fc|i*3`)wV+9a@ts5$TE`l1iK0nwtShL0n`t~Ktkf{uxJeYfbB%OF!mV^X&q%*s z%!{K6jP#x#FP>;=+#!CQ-rD$9=;?>{#;W2Kd%GITgvu87HF^l`>>p&z#mo!L+Hof( zQ;d#KGTJ!Hfvbo#8DkXfu>W`?z9mp)xdX+v6`Z%tHfGZaJ&P^w3ypsWWqn+3?CUQ5 zI&zya3bAAWR1&p~&2j02#VrmS_ae;8r!&U&PyI;I5#wJ7fU&boGE!FC6ir?%GC2}D zWAGvVGiQ4gx1=kst^WGEGMRPMScR0_ZSMvhj~Y*5!rQ;z5kUSpZo~}L%qVHa=Z&G# ziL}UHjD=2QNy8$VC%n{n)(Y{{cAht)R%E_r6$w`_8jsmZgf?9^VlplL8?W|n#sEy{ z`Zr4DYessOgRAMub>mOgsEO)6658A_dLZV@*~~FBR%iUSuJ{ITxzwh++P^etYQT(UK!sAMsMF3G4p|c>#6-a<58;^aUXd5!MIDX zI{4530jtn2#+{gH{nxVjl0PrEcZMGwO*7qST%BFu;sZJ#6KV$Z|KYlWO*K;oNn{vQ z!(@kT0YIbeLu1Cq5sSe9<; zZZ8#U=a}|mmQyPPY;)IGn`An)sR_#(no1p*l*1zctk+ ze;iBng`B~rN|nqkyBC>I$HFYYK!NG`TJ8&dzcY2VPK`@G8ELDTW=f-Kgu}B;XRXp8 z;c$^ZnCQ15IKj)srm5CMFg^l%X!BfJGp@3!4ZR2ub=!^H4{GE_a^BsqK^8qRIgxft zOqfkqK2Yqt{i!cWC^0=pbZh;Vn_9!3rKayNTBDU;A>L`T-qc$f=~Z26dTmd2z;BW=p8jsa3|K9)r2k>6ZxxZcH%zW} zR2gBnOqd093z22FP0pCko&%g|=t-__Ygh!w9-ExKDH}EpBvn7t!Hj+n-SnyQ#gxx1 z*4m~Ja~s(5j=c{Wy1@k7!U34E+`myu>A8F+zJz|aI3m7$)oTJvshd2Lc~65Mbx?AQ;15_C{&_^rPT`m zVnpWp6&^)ugT_)Nc-AT`#*Aec5u%SS)JoBKM7_cS7L8BK3b!EXFtj8{l^1r$T1Y|| ztSFqwH1k<$C6ytnLe!G8Sv5(}DYEcKM#V;3xC5ybpjsJeokGUP75>0j)JQDcj$|Qe zc5YH3YRFZgklV?HV;PlBsc73kNm}7&Y=n~J=$uJaN?F{_F5GODLR#b&+F(aAj7lAF zY*=`ylFf6t)~fInW?IWts|qTl*{M1deql)Z-i4p7LL$A>pVWr80}9h!DO}>1!ZDc5 zGBdFn(B|7hJ=$JWv>JpWIFbY>y3o*SLSYpaW_Uk3Zah7^#rx5XQwl3NQnI^e6)wOm z`reouEUGjjxPYN2Vw^$$_kBCV=Eq{T)`yJ?L|Az&voI4I7=AwH zVf{GFx)3vkWu*MdVb0YUrt>9C2mm42Z@(T>!O-bI`91$4%36mHe8oL=cG_x+Tt8los2PJu{PwW*I4<4Et1$1*n*|9*mF1>ridNJ(i{ClDWo=*H6R3Ke^#s=lxDcC55r;Fumc1*tPYb=M53$EQY2{ zZY#i4&xcLmZ=+*hAV-5I$HgAQ7MwnTT2eJB_80s+?8n$WID9oFb}>U+q&019_|OBS zFN(DWJ*?y0;gH#}cX87SoFBW8d8UdnA;O%2k$6jE_u$64Z)I#F99~`lXt5PKeCYKRE10KI#T{ez(k0;uqK=yWVL2a7cF=U6`OBrjix{fG^6 z@lxyu9G<%zyTKZT<+oz_INzn;V+S+%DMXc-Gm=aJa_@(>K>iZ>H(HA50h>OKeT=vO zhZnIdH+P5%g@g!lBa4Ta5HKlUcnUS%*l_AyS^oh{?k^>Y9`?S^RD{RsIZ9mcvi$Bn_xS=%7)8FtPM-f;)< z@9gGrXR!13Y#Enji^7^taShS+l_!GY7*?ZDAzb>$xq)`g0^Q;GsJO1!{m4tyD}Caa zIvK1Oh%kkick19cD;(wwkL!T>FN%+I$G^7-d4}!hV0K6TW!?<)y90s6o@cHg z;(nqd*w~pri=h#b*McrWzAIQBz<XpV<~g^j`Zrd1^iPqre4DD!cY?++V&fU9we+- zZQB?QUd4CfxM!^8$Fs}@O^8sii62VYE!=8UuVy=c9hIWl4*pQ;GZlOJ`)OMAe*Qul z`%=pfqE~w#T72We-Uxxy}&_(>Kty7?-<1bz00Q+wRtpW>q4xA`pdm>Er%G?_7Fkv%vS z(gSTi;~eh_yWQo7@ObZG_C0=}74HmPGvk-$900tY@)_30zynYDOz*yLJH-n@<_o4F zjFjE+7oU5gvF{~+gE^8V{WZUq!6XqW2*TrwZmg|2%{vZN{cCX{_ zV~hRqSG)^q1JLYU{Aqms+^6_9SOM>O2{RcLkOayaCODGKBw;_7gb>`uiFZx)NJwC5 ztVpRz5MeIB3TWb+a1|4L(=1^mCS2GiL56={>5#CF<*^O|H-Kr~6Iwui_k=&OqY$p* zJ_(&!?mxc5iTfu!z%KSfbV3tMToIoTgTt-jgo{}76Ql{YDiqE*kkFiE=7(ykgegZ8 z0E3r7RCoa*M`Q)yL;~91LmQ74-k(oM#2j^(6V79$cDtT%7KaYE6Kb)tPv1{KZy3(N z>W2w?aVUM95Q_89e3^ir4W5CjKNBwDF!FW6Vw`^M?*#PFtV9#8HsIV)fi>LfCV0Z2Gc+q~32KiBhJoMO3UazEVBX@~2-F!k z`3tzG@97N$y)8h`H9@YR)=R)J8vO&*7dCDpcxy)Sn)(TnzkhTy;Xy?5M{^3buDM`( zJ)p3>zVLPnK_0`slZgq9$4!n8FSAbj2>26?S z^$2u$$4!9?{OPzr%hv5T0SFXri*-&A2!_Td`hj^T1q@#lBO$*c@#(693qK3ym{+wo zM_Zzv6)=3_V8Vom-FP-{`${Sb&b=)7Yzf2-%st`y8v>TY5=@M+zM|m6I>BxtAl!Oa z(7+Ol3a>pvZbo8@pCB(Iv5aSePi7=$cqy1~OJZ&R7Hnpi8JQTs&R+!A*c!}No%DnY z%@SK9_f9Z(gO{xm@3te{P6Z}@Y|hk|e}xW&$eYfa^VWgD@tOf3Ntn3!`w;G#1IBe0bCgP+(T`mM3%_VCNMx>;IB^f0rS!mxyjHLdE#UX zur_VKD~Q%4GPH_+qWZ#(+Qb+}>AsTlg_~0n(Qy%kSAJR|!%XNaFNmaNI~DkE6`)B!4po@Cn_zGACg-iUP+>-6>nYD-!WZR#*9Q+u*6U`F7cHmjVAq= zh?WJB)SqW2PUSMB&PzlGv6Iy4)rmt{w(~*MG(gwL#{*Q<#@m1esfp;D+_i~UY>m{W zZc7}&U`U97GpI+wX?qfTbBupKm>9}M+nz|Y<)VGgCU)eaBQGVQJ#C3dgDxkYGZD?&xq7LnD zo5-|jA1;h`w?+QZ;XL04oPCnWvi=XD{74@JcYKzZV+mXyM7x4beY=eN8tafS&cu00jhzDsllPh3PHFf39y zkkJ$r2Da-eTxv=A-{~oQ!STP-&%}S#0AXt`wQi{JI49N4;liCOo}rifDT=SjbS@?5!$AabZm(YMd++ZqKuI~qR|}F2F*m4Txy3lqGnvGtb=G2 z!!kJBvHfep;|k_?71i<<(&Yflx``O34IsO_=p(~e+f*d#0k8KEF)ftEg+Y6*%n#V~ z7O~v6A%HaK-$(ST3&^^Z=nAakL`&F&$b-Z9B9`az0CC8JHxop~W|TvUP&DrQIY0z+ zlV#dQs$V7*WpmZHQiv+Qzj`XgP^IX1h6Vu@Y7yG2i&!8jNi>SJ`l-pHE6gfzNE2P) zIK0ddu}s;BCOc+{l2~52k;0LAqD35sNBN?Ota@lvC_2Qc$JGLv2qwx zA!1sEN%ZigQnZ!haCnS}tN!A0(NEuBJvD>fN)gjdEpg>Zt4%5hS;wLR%0ana^px2QuQrOtaeA1vnVrMV zEh1lLTNt*B(B9#scXHb)8p~>n?z==RTdKp6dqfwx>b3htBU!7TTq}CTY=#zxM5!Ey z>La4jtQ<}p72Ra!Fyw?t%yHQHGy8m@?v#kf>e>G=tR^t$!1-EIp)c+Wm$ogX1v$7W*i%uTI3Ykp$|V(m~cUks7Z2UDTIH+9v#T zSG3N8Hq%{?L@WpG9Li4plrcbMJY;Ow6=SnFz4fQjGSdBt7^L8!^LRPQAX^ zRvgZ(hj<4Qhqq2F9AJ&Jcr$bLHtu3Ir-D*XF>?>TqJfxcKWSnHk+&G_z)8&T*+)Eu zwdV@-6E|bl!@H*9N{+*%7GmaGjomH9!&n~VAU(vxX#wI=3-Gi!(GzF`#b`f_lVUHl z@rHOV;|)|i%!(ANX=elPbr+*YvslS+Ta*|*yCqS5FEKhAfJEE$5u>94Nc7eZ;=j3K zj|YkyS<+PZ;bL!=2k%I>D6lF1sUIQNGbD#q$^&U=+aEaQ+&x6K9Cs8^yOdcU)g1zRac0f@1Ur zf;g#crx-1=BhiBg#WnUcI{J*5X^&yzqyfK(n}N(nVoNa0QsxP(E{fM#Qz2(xGYNTJ z9K+ZiqkyRbm|iCy$C zd@HtM*@W_s7LsUC{aI|WZMLKdZR+rZxug?|q$VtAu$Ca}5TieGkf2k7NOZrGB$`vE zzq{lq*Ft<6N`B@tyl*67@_JOU613~?><;hxN;+^I)=EDK*Eh#BlVmVBJVdbXIFf(2 zk)Si$i4;fLNsQg{m<|%OZH*uY;01EZvP!hu+}q z^x>A6aVNOzs3e$~F)}s5vWDm!*kc?!(HY5OW_Huop>F^9FOqm>P8b0c9+!B*-4`Y3 z19dX(oORXce7b10mAWuT^~p$(wRB@^^v3_D=G9` zK;i;Ny^zFPQD)Eok~lJSebk=`SjjudCa!UG`y|=Tb%HiuBxr>j?m)JkmoDcL$C*jd zx(Cv$L|B+opIb_evzZ;%(vw_<8Me~1Tr}6-RIG)gsn~B$ree!nq!+lnI@pHqCQpzHv+nJ@ru%OF% znFFluA~okk-P&D>mcJ1B3{fUg2lg@v<=#iiG&><}1X~WC9Uw*PONb<`h8QJr8!Bae z$RCA{3_}iqU>#ugaA^_O{yvP5*0FS1XtvN3_zI*A!R0Q_o#0RLQl{P?!$1Txkn2GW z5-H@`-w#UZsYc)b-~je2k)mOdD9)nHsJNG9(%)Hn1_Y)8XVn@jm|iJG8zvBw4;m}| z#93c3UivE+jhZNZ%Vp?4MLL8JZ zCtXZyh2Ds!w}a9! z7F8&IkxIb2)wb^N(J?9dW{7xV-YKK9<)@|R7^H>>_E*j=23$hz<@;L(9p-Lck-C7r zkEPaRD;w}7Cc+X1T$4iX-tgmnX)hMnC3?iz5Mk$VM0-AyHfJWf$x7@7Dx76Dn5YM+ zobcWQbSdULz^1RzC_&T;C%lt-FesC1!dQV5?D$El;V3WtQV+@*&N45E*pB1qJ++g$ zvC@MGjC&UeE!<@GEP7nrTh<$7d5G=6B7dYumk_B3T-8wagzEtwHI{MnfJ z3Wh&K$efr*cnkx7i7+~l~S&bRx@OG4}ij_l`F|r;ku1GkvoFJRQaX2wa#ti5-`NE(A=n7JpovBQ054qAC~pEAspeL)3QVcbAJT`2+SJxJTFV(=%d4a25g#$&etrsiia1X!V_1FDs*}5?FJ8Dmn~v!8yxoQnfXVRY62bmY6_6Bd;BzL5Go7GVMt>=9)m%Fjd_YuRv zvo^^a!ev(SdFIsnqV449Av|%!whr?77Bu>+i~M&kdeT$ggH-~sX_2fkT;MHtArO{W^J)8Tv6}gWSNT@OV(SMQ#P>Z3J=uEpCP7j;|X~j4lRC>4`R7Jz~F=>xOP>}G6&*4lV{Rzm%Xpa zw_uk#drQ88L0<@{0Q%gPUt}3BN#Qxa%S*7qJnyp;P(6^JVJ2|(kvstt2z)AE^!*xu zNC>7Cf<*X}FXZS1zMVk(r+oGI*9`~;d?jbuN{AM&d?U}o1YW(9FJ&dr<8L|BS5Sog z`H%86OrXaXW&+zLD3-8Hcv1a{Anb-BWaT4E1*7{Ug89NhHsE>cAa^*$T2Y954AKvI z+bet+Neu_XJr#DK+*N^&mAj$n1WE)7cbsMqJX{pF*~~;iAp(7d)r~oV)$Rz_KTqxj zH+U%CGqa6uq_BYPy%fQytE0l_`YTvFgyDd|{oG7(6X_DJX{ES;$L6v&ii0@p)lSh4 z_o!(BimUi{zaYgTBoDkFq5v$9;*k#w2QRuQoPb|L<#f0pN^u=aF>+%^PdK%o;x)@X z%Rex!LC@w&E9g5|k%r}&G>pn4i>C54i&4a|i~yvLOyyHs_$g6w+vs&5A<<}2f2o4C zQ4R+f79I{z) z9M2^@pMEp${FC%U5YW-8HVg-sT&ZCW&0FsSX`16{!pt>U;>guie=v~ zJSDKjJ|^(4uT4GpJQrTEUkQN-~*|bfZKAdr+dUqm+>>lL7*tK0xUR zdbx16vOo2N8;CehV`PE88+Ws>07nzIlKHTf`~LEO>SJiPZq`M4)8Z! znsghjtUdZ*hypYmYvu;dRwi45O&gT9AWx`_XOP%+oTeXmFfh~u@Uk+@zGVr28$+EphO*>6rST|Dnqc!0G$|fjTHdeqeVAE1%7kG4{Qp?gm zd_}naqw<9rWpjO+axsHKzG8Kpu1u*Pn|`yD=%YYvD)0p;Szh0LWz%bpvZj7)mdsaP z;@FH|q-2?#er0o^TA9Sk1|nPE;fO3Ir|opd868KCT6#S^{ioAL3u9L@N|Y&ocRe5-ofnQRO3Lf*p;Xe5HJEL8BMnDerKS z9{Z>)Pim{OE2^2ywlcv&1lxmC z_vbq*qm?e+RSo8(4tSz+w&g!`hD~y+wUdt>;odS*VTn z_{myb#id3#s*Scg=uU>V?ee$JlUU zsv5n5C-Qx+P@6Pgscz~(Q>~_|w{cE(YK9suA|iS7=Bn$sRLvrFcP@3yay43|MKX+E zX#$h3R&U}Oo8MOTc1}b0_o@q7=CVXB6-U(mz|zvo3pyQFAEs)756-J6GAjckLhDQF z&RpZ`f5XJz=a#yPBYpUxI*Id!ZqL=dIB%HpmwF_p0soKc04}O9(-@TzW}z`^*1<|s z%w+%$ns!_d@r#qjp2L0at_kK+gBoaroRSxKY34IJksOrSO^?{ldoJ!P@nn_fX+k0!4bBWsrY6fyqmk}Bz%lS*F;$EQk z_h-JK-Q-@4p|?aMGN(P!B)Mh-%hOI1B0Qni^yQr1FI&@)W7@w^Q^JXQp;Y6@;Ia_S zbNzU{8obx|BZe-R%)RaBX_~DZH9^C2H_V%-(L%3Dnr54z0#(Z@C)z{yj&_vilWo0~8qT z$fo7nBZ?lYv?nm-n;W$A8?dRC^oM>R;HY*Th_N)}fMLh9`7BUqc@nfguJvQ-)O%$m z>%dNNqC32DLfe$3XGaL5!1^;mmT6@b6)*s1-_TBEd3uStz-jli4}Ex$wz(h8 zlRmM`P%sieNM67Ncv-nW;1DnQa z8-waEK{lYawT%_<%u99!o!mV;o8gU`HwIzvVT}d88bOEidC4Zr@1~-%EIFhTi zPm+JNA+eROllSsSO#j9h>+>#oBTX~^JGq9&j(kX7NKx`WCx4`MjI>A@&T{L`b4p=4 zVh5F*0EGKWJfV$i%8zzbNo%}QM%fbqdbCb)ph^<8OBsw7#=nVmgF8B<9HNPngHpOt z>90nmaJtFtoxBh zPMXyN027NBvuJL;heG*AIthc-@0Sz1QSQ69CRaM!VVw>pV@*Wh976A;4@orbnV;}^z@rV zGv=ohHlxwE`%=)%fux?QO+ljxi6$OP>Fh(JbMB^~cPb=ReLtldohO39JfEhZNAx7R z`gzJME_L|plpOS(G0yPI$CO$wy3|saX$NXk@&*Eti*C#J_kMKzCtg17=`&lH>8jh# zV^i1+pSAX2*ruX}z$Gcg1uk{h1@m|x(9q@65I*ql|w3%mzrB z=yovQ-X3|+8NF{w(nA1!b zYmIbvw5{$Cvy3_z)n50CT|6Cp*h#m<4AGbrs9RhQ8h3(pKh}pv%P`#qOyhloZe2ZS zh`Q)LGWs{Nj1D?>*X_qNPDklh)q_U+Ub+qS(ZOo`i0Nu;_(C9xz zcNo)f7|yDV?a{i4jD0_{#}H6kgZkA?)yXP2NuXQkfVhz7sy#G1o;kB(C@j2@th06F zt%nbab!T}fga+LP9BRvSXnopx*tSCFggP}CF;;im0)<|abQf{@i^)1`)NtY389KDA zZ9V)A=w=`-!Hl`OY#S8TEzzMv?AOCB%P5|5g{~I=ZoW!qjwFDsx6=H(x9gT!qTlj8 zx(OKnajov06|+zw;7g#+9rWy3YDv!A1SP#od&AYobxBwT*R#4+?4Ix~Hqx36O#DT6 z6;ltsqSIpdxi@vI@b5l%bqQFMc@K4+8ASo-+NE^^0cNQ_pyyU}cUJjASLJN9d&e)j z5=JoyE=0I;ga&_dO(ix`yQl8Jw(;>yCAL4+AoXYbdv>E#XDrw%-&Aib*x}|hKWLe{ z7hmVMPPM^4AnlZDg|BOZQ%~XapwQGYxZIAe^!J$VsdH`7Z~y+Z{Hp<}`*6O^gHlU_ zP#92}N_@()JasNsT=l5bZ8mH^Ko#fodzu^a(9~r_XWl-ZaP|DuHjHiMD}MtpC3G5tNtkYj8>uB|MA zCihcAu&Ia6x2lJ(8#vcP*BIQqllC`~>gw-lmAJDO-%opvl{5GmmD>MBS{825KfR&K zlfFwkgBy0o&uOi&HsZ|E2ih|84F+fyd5ia$9>nc(s8xHA>6l)h3Gz-RE-gTSM|w1v z;GDjTy?i*>UsLJ<@3^G@&DIwa7C$o*$hwjqg!-lQj&v4%&@)|V3l?52bOjy#(s$Go zG!$0*r*~wP%1A8~j&GiR)r_*rX_a1GZ&s&Ur>5u zQ%MHeE}GUx z1{ta>TTtCD!v*G_&QRM>qrAA3QC%l!8yYQWnrZA* z1~tz_FF;6!_boEf3lI|B(<*aS0~*zL&onlxp;4LL8qw6b37N)@Eh#Zmz?t}*Eb|rD zgRl^ATrX)!t0>B8o^Gu|Kmlr=+Z-nV-#RYWc}b z^qz_8_MAy|@6MZ)zy5+r&H0xyRUE?O>n1w8Zkp(%)S1-W>P{xw%$?vq|J{^f!M)5m zTx$OZnP<3)TRqFvvONiI0nxZLiPL$-=gchDc7b5{a1JkP6sN+DHd#h>f3nRo`uaNi zETgYyI%XNwy}>=psP0vbvW)63^~wt1l(nyEmQmfOTV@^Qyl+`&Qx$oErYf2TXBj=U zE+osS!c}3W3<(igMiuh9WL@C+-s_pQ-GR5CK14_oCbkF8!?KtkBAgnQb@BUOD8lo@ zvpiWAkD+oAV0e5M%V&BcW@Y~Xe8pJ}K%HL`4_KLyHP#&X2lsXbjYV10zF!D{0U-js z$|4CVoTkd^VF^AMdU?YA$yrJ>N+&2aD~*v3=x{Z|2{uj3TF8Mdt|0S| zY-gCAk#)*~@Pfl~v(7S$I=wh+G%F`K$&j_so|5P?J}Zc2A3lwpcswNg zPe#Li%PS!~JDuZoDYAYBfXD!YSU&bQsS2*{ll|Nth%XF6J8ulnE?`;U_7!YNO!jJL z>YZX`wx2DHPEO6fWJ9AldD)$~XpJEoowAL49XPN&`-CNpHXoB+!9}-D%uciWeyc%5 zC%^&Rcry?kvbQ*!>HKK~5e@B@W$$&OtgdX%Mju2Ft`>W;S8xq*_pxkiSDJd^ib^7s(UxRawS<~o-t~t#tX!Lee z&Im3;pWZnkEN#O`gj@1b&@RWL%M{iXFDiiGI)Z>#Ic}imwB#oAk-byDoWtlKHY6PQ zeMrt&Hf?=HZ2>77O*lpXAjjL7#^F$vbn*(0CVDU{1|QUt#~aHa`HG{ zYZ7xx>#wif!WL0XLU|R{jvLKa+tQr`aCgmL9 zlsHqD!!qdq3vfqjj{X0EaT79fe&%=uXXmhNH1aQAi8(n;-;n(iX1hKIJwYdJ)Uq&# zW#{03;=$0OoPjK(%vTusq*2wnoFQ##wDwZYX)eRUTRFWfY3j?nIRm*4c+jI9YpOP=e3E0u zMT?&0B(ki1$Ff7zc|P?d5`%4j=D34tnj9}EwaqoJkMp&qD-xdD=Xy9%A>6%k`_WDr z>ilz)xYRqHa<4U{8P4>}MTct<<;Vx-uHa;EINX%FdPFWdn3!bvDIxbFr;&VdZV6Y+ zOqP3q%WzShYt&vVUG8dbsH;oQ?ZGl{KzjOtetf$kCs%4k-J@|)ZUVzh6CyBgZe%?@ zK6eI3ID1NN6E3=NMs9nHsxGbF;5CpthQY4zrvNy*ZgSk7o)De4g_i~-H-+q(fem$H!niDhiRPLW#G~;6KP_EditGT)LX|NU` zOB~}1_t)hPv!JpzyO--zAEz}UKFCE6cZr|%{391_aYCXG-sHCCWcT}oovU_SD>s;9 zmRHGOAv$fT{p)QDfcSfZ!AUV4!PzSGfnVROoM8CYChxpCmFb2E17$aMs*d*``=tUfs|(Agn3f(M=(NEmL646x3F?)Q zcZ|^k$z1vs$jgwSuLsVy4+LvvdCXJ#A*T!NXSlSn1cr0%ox!b~WETkJdGlDBts*_o z6Ba7-5_yh?EdKK!U4QHU{6{jg&9E6!N#5|iD({#j?=3ixlJ|jO-bB9i!(2hYXSCA4 zVQOAu1}j2D@v}MaEtF^Hg?3<|fy%2u+l6^7-@=XPs*eHfmgRBJ`9>_t+lQzCm!)|u z2Pt4Qh|pv#A2t&zXAkGufHNP=+`;GEL^~i{m*)oitjjBML!|IJWbklZ9@=BZTki!w z@5{?HL&+Hj@>nL9#_F8l)Ps3@SzHSvtVD!aghe)M4+6#y{sCs5%FD&p|NU&6b`d17l6ZhD&6)e41A|IBNP!v^p3>{0r*X8JQY`yV|0GM2u{D83)|94WXu zrNF)GU5U9Vv(4A5TIvautBLYjq_1jnpe2UPsZ2An54|Kzw=#(Dpbw7;K-)8KS z@?b`9eKr=p?g#w}R^i+C(>pM0|M~#^LQJ4!FuVVq9-?2xOu#EzzZ4VL7o*?AssZ;n z{Xu3E6vxv(=(T{|1W`i$VP*oW#Co&?{#y_w)30UKz*M<@F@p)9LZyF!>mH$H7k++{ z{uHzDjynBXOkigkyZ_l|=-;r+g;DE|2T!NyZQwM${+$bALB5|_Fjjw@Wuk!LAc8w# zfd>2SGxS&Rpg(n%{t*s~fZoLpg%cO+(Kj@2Vf<44IUKfLu0M^#zgFmP;_%`sy$%h@ zFserX5dUtoMgIVYF5C1qI6Syr{}Y~D#O>9iBY)n)b^G-f7V~am#?4FFUOZF zFVH#1h)eo*c*vtPz#{Vk^IzleO=x~g#_3lqT+}sxmx*;ouly2LB!G|{VR8Tb z_L$R(!TH2X%7^9?FG(4me;icRkCIy zRmp^!{6$y=ZFkc0X1nvrto!_){MFbUO7`V9!PjRW$@j-9+Ib@X3=YSi$^RYKn|3MR z4mZ4l8~GP7pTW2D+uP#bkMnbJz9-M~`+2f;&#_gV^)6uFaI~v$k49))vpS0cFGPtp z0cWd%1E_v*-l2fy%nRJGjPPiMgj2x?Og`7O;0YF5=3bD2{pn1jf?bUM5DVn_Prbp- zm;x)<(XRj_1(4wFbbK5myI>3Ex3f^JLutR}0w!{9Qg1$Jkj4U9oeY;D+CM?4A zo&_y&xT9~uRAy1?Zkt=cvx5uts79*(#Nh?^83s-~b&UlW4j?!mcsHhiJQ(;rzMutW zZzCy)!=Xe~&;YZ}OD^zZd3sB#nG$d10-nWL%>sMU3z*h;V6q4$AN0;FIAj#vE34o( z!$V*|ZiwrWt%ib>O!SUmM^V8`7K0dJVqro>!DHMW0^hrN!1&67MAY6vQy+H^z@J>; z3eaUI`1|C7VJzN8YRTF?Xe;oTR^Sffekx!(KEenS4V%p@AYHXXRlx$>FRYnc;DP(G z{qqZkF{{B}Rp<>Kt}JjP$FKo(3|l&Eu(UwL;xdFP280N37H(Q)YYXr#9(3A3dxO#~ z1^F!VC4!8egbac6b`|vO&CnSd5n|wkPX&0i-u74Fd)!gIFe`k~5QVqA3RmOyGQqzP zeSY~C4ro@m3Wt9*FFb(5EiDV{aJ!n>fnJa8M6ZABOt0??q}LZk(CgAJ^tyF7di_NA z!i%{4!XM~$Nk4ksY5=`{d|=@ze0^3ly&e}suYZcA*Z1=aAK_7CwWQFS)!GmlM^+!p zc7!&`g~zc)&+7`;V09U?3IlPtL0`!9_}gfgAz<*;LGIwgb?XUmhM{m4%h|C;tQh#~ zltMBi>ph(sx!cUbFWAW4))n@_Y%6N0lB2dzB|qFsmAqzqVG>rd+rGk%j2)B;UN~A9 zVafYQcU_4+Rk)eKU5!tTpE8t1YVZX9j|)43Dc1|hW@;Yr$eBX4?7ZUbFjr`}P?&^{ z0msqTmkQUQGnR35cUvPXNpIdLJWhE5c)ReYdgy?l`ocf& z6#l{J_e7OL=w4?_9~OqQ+;3tTA+m_24fuF{nCHqaf1=j`MD2q=6=qq{=qd9eYigpE zcdd);XyRY4Mds*aYiuFghD9$O>Y)na4t`)#i=rvKQvjXE)1U6sHK}D0%R876HO0+A zmf3SVP;F(f2REO0Yy+mZD$+18JkX(N5Z({V2~@N$I?4*r#0Kvw)TXGK#f|?#0qvaF zp@`u{2}CGs(4P5E(8gSbz@k-blH`DjE#@}xY*5itmM#c!5dV8?uBF|I?l^+kH_+Bx za|aaxmX<(Z$+ldlh8L|shmRm3;V4OwtqYAVNH2=Er_s-aMd*_elHpi!kpyjJkMo9B zno>WHDhffz5a8546N{A2G`f9Gkp}H`k5fA=D!S+hmOSAP00Y(+F+Ci{-sxwKmZX-+ z^BTjn4MkH~8ZMH$A?&lMNW$Yyhl^{9np*L$)24$~B(f~OA+4tNWRWHKvZJVu!9hk? zJZ}PeCKR^=f^@ocdu^90mc)R>z_J54Rc=@Yl;l5*LvAInxskcv$qheo8Q6 zJHp={7qxRBnt+~fi-uEULH&oKQX1W6UTnc7HnJ!da#=^Y6fZ~XIFMaoWP@VV(n-{; zQ8C)BkwguCrqsSoi<7Kq>fYAHZ5z|*+n&YfOC6H;RPSQ+-7JYN`Js3km$%R0Vi8yI z#^J?3Fg+4Qz5`J^k=PKufq{ZzcTnA;*bCm06@Q@M;EB4JWj(3UPJQWeEjMlPbXzLJ zw#;I55D*ckKwo^E6DQhGypGG@IJOvln@2L-8&`Y*JwU{IJTa|!50|$J6o+woys@wt zeak{JbXZn=onZ|-Fft{*1?0{CW}}len~E8ReTX_RR~G-{?JXVxZ*4BV&eBog!T=Sv z0$I-KHeitj+U7lBdojZh4G>f|?VrZO;%OFD1Np9??VjS5-`@>D1a*Q@nj)B2TfEu~ z)$Rs5A1Y>9nt*CAf+>fKJ(wx9K2|&zQ*Z^poG51L2MGn+pNkV1Zt3Aq=Zgop0k6q? zPx$=z;t?!TAP5y*ZFlv4@l{JK3Ow|**v5v$uD>oGOvHl`Z;KbxtB*gT=0~m`{9JsT zrp>b`IYncIb|u`^Xor#`RwQ35_mWb365Hxqa*&oC=U=jr#=@GF1k$U89ZPo5v|gP{ z#!$S=A;uDG!i*&nBTBYVem=cQn6_R}sFhbgl^n1oSC7myUY)(bc(wnc5;4Wwy3DBM(iJ67 zD00!-lD5=VTWU&9(6k@7mvmtnHHiG@N}jsH_HFlA|tZkEdlG@4aeDJ zsRSMCMwQB;M#v6RCcqdFZj;+AlDF&9w z7oz9S#H_{;Pfk{V=zj4UQ~Ti%Sf22Ws4--chkGllXB#ZR*`jh+P_w|Wo54OtC|}ra zkzqYcr~DOR))E6crk1dYTW*+DFE%Sz7;4N37ED=VSVCc8ll2A*h6ax2*anvK-T*46 zr@Qhl-fB=egUFHP_F&#{TRYhJuwlL}<#+V7;RYAodfCv|g{Im)G@w1vu`=MLM}|i& zY4ogfX>)2YXzp2RZAVkR{Yug88_E09zZBg7lIYH6rMIkTbamTO^tlH~Z4^-YBg10Pgr&Gm`llvQd})~D=J9+&D|S~}I5X4p8o6zv{CiWQ74Mcb~B=nvydJ8&6B zPAy$yLsPrWF3n(iyU(>qKM=j4bT)6QQxEhFh=|_(P1#<$#R6%q_wLeTEKQ$7 zM7uq6)-`*lOCV9#@<%b42#H`eb9D}E^*;EJRptH5sjUTR^(TL$kuDgDhFg?nF> zmLNO8$Ty|ekas}O52a`lvkcz*Sc)bw%izqsctS1tQ>bdjVGPE*j8LazQ zhF-!igOkk4iMxp`%89$#S(OuaJ7!%Tj^+E}SUv{3^%$4(aoDXLJ!$?M4QT$!jmpnr z`NjS;y+bpaeyushnccGd5H2TfS1x55&A(}ZWIXT#+Aifwz%Q-m_`sH3%Pkn(5(>MO zcWTC)4<|^=-|{k7$Srl?G#JLNH0#?;@--LNoa56gF9tjMS3XtmvZ z*z$R~(uud2-eH{mSpM$&`)&B{Q+XJ|fSnyGo;je9&3!8dogm=}(&UV`(QgOG^IAq>S<6z=u}XCo`0g3Y_{H~%0__SwbBDD z?^@XeSnZkT28L~%?+vtj<~26&;NKdIRL^e=rtO;N2co)FHUqt;8F- z!1R5Hgk4l+*Y7R`gL_tv4fhXLg$AlL%HRNPBsxVbTooA@s#dB4149%+3T0@J795yT zIsSj+}zyFa7-1hpZF`TfXa;cqva7chEJU|hyjR;nSC@ zP*7M%7zg-2a#28s&6Vfu{FFhF!Ql!`KyYMaNTfm$5vU1@(1a>Afq@!@G9r=?^i}-V zTwvs`HC}M{-pbxe-Zl8yZ&Y}W#fm@v^B>TwYF*AqsU+L||ZWNO)*4 z;BC3(312=0VhbNturfj$7=ZK}5~4vu1StcwA)&$Q5RDe8*42EpC#)VadL7Rx02oF?fL&5?BLqmf?w5o6g`aeV+8l(kMDo)*MRHC*`C`^Oqj?k5B=|U(KJKeFfck%Hgxz8 zeTT>b|GQr*{+auKs4KjgqyzY2P*p?U|1J_3SyR={FCr)`QlSkDMm`uAqDJjlr45f% z1qLZY10$8{F!<9iv$HIGg90K{p^@4^Rj?*R5vYv_L%nZA21qB-0Sg;~Q9jJ&z%{m;l@z5|uWJG`_0(E(ch=4F{7(g!P0ng1Fg&J8Ha`xcB zu*l%x$dK@W5M`J$A^;tKsnx2HYXe2V#0Id|W%L@JuQmet;{U_mo4`p?oo(Mw3xX^n zAiK~#AP6c9wJ#VIT%s{9xIAWap}M=uxMQMOjLK?|2_oRk91ukua0kV;+yF_U#vS7l zjmivZMOyR;3w|6(fERcTy}=ct?7ur6lZCsgst<8y}P3_EWY3X1P@iW=;-u4j83 z3M`F)bzg{I{JJ(CChM@Zn?}*%Aq}HQ4_S5vCvV$^q81c!*RZxB_b+U{g@@7d4wX$+ zEgD{))0s7I=(gdRmX!}gX28ZF;pCP%H)X1|-h9J+ty;6kZ(C!F%;q^`C$I}vEH{U_ zllSul%jF0zxIx}EJSERYtmi#5Z-(jx!L%&i)i4XpCo|+kmE-8^ zmTTyqXCoe|hA)>}z&`K!Mb|Gl;)R#Rkg#pz{F^hmK($ztdCyhz9Ew4aNy494ocD%f z`I=n5?bEYL+ag0(t2UkKu~rqqyK{!;j6y!ozw7}nQbdt~(R?=Mf|n11z*9nYE*{0z zeGXXFv{l_QINFeVT#M=JbLv@|6>gf_x-paW5z+!*F?l`%^j6hIa>q6_g&vJ zjDn%N7BkcGY1?-#O&ovg90cG+t2xe0rQleWZRt8vrmG^Cn68=EY#v!xgK)7Tq~NHU zimtGWqGF=caD2#;3ZJ#gNoj@Nd9qe&n^uwIwm}`9)}GjOWRotY*>k&zKMt5XNK9JN z+OOVF>+NH9$d8_jv})2dEzi{QG*|Uq*Yb)!d!lL=LIiOpUKI^6oU%=<$jk`RN2t^K zNuQxsq2t=D^2+k%!>q~!iIHc`9V6OqnZIjJN88Xf#dKYi{QzxB^R>L^1s3AGXSnjw zIni`QQ3?vXtF9Ri$GmH^W3rwC%mP6^eBmi^J!>f1FCCN}&OO9$M`h1a4b`(ORX4Q` z3R-%rzWC+nxhGU>d{fg+Q!l7ivVowF z7ugY{U{)~DDP0xuuoy5q(O2|>K>HaG_I+*5+RO-5nimkRi$&BU!wZTEEbE38v4cV} z-eM!sQAuwYDU(%%!kON1BszY(er_)72U@|*a};BJLA!GDEOHP1#?G@=tZ?g_a!}B( zq?BlIo|#6z$Y#m$%^?*qdKoP;vv@? zPN;rkDJojJNhDmfq3Qa}3?Jb=Wmxo%Yo^Mq?4+Khzo|fxD{RcN)qB)lCpcb)(stN`N#}1Fbq2Z62y7WeERZKc!?lILGj2728!$}sF zi$Lmg-WCyT4Tl+qod$u|Qw)qSwjEyZB%_zpy#TqDZU@Ltrm9mB!%_h;$XD}@5%&Ae zYUY`xI)x(V7RslFMMOm>ve9)=X;2;ltcw#?CqiOfm1g53ESuh}P{+(w#S>HKjzijJ ztsq_GQJ8$}dnzKMg6+jpwSvp4n%E?Fc^(K$hmK}t7%uB8KxSv@aXMpNh!=gR>?h4P zn#)7Fyp$rRA%Z^l;$)OowPId11-s&aaONMIZ_kWKZCTuKbgNdi-I2rDvZr6zw5Qne zow=jy?Rv|skQq&1E+@`U`Rdt>98^eMGc6x!M|C5`L=I5888KYEp@|c$$^aQ1*H`+S z)H*3|=n!e|ERgG~ao6S{BT^qn@G|zx6_DWBQHz$Y=mvAsD=MynmhGD^M^0k>7=h_g zDHb_YXZuEW%|+% zQfV!4(_4-?7Zb^f$L)`S8ZeuvGrdYBFz%J2c}fVw_U|yyVLV%bh_>oF=#0alA=l@ zBRflaqkePsujEK-IBVi`rGM`Y@IWA zK+U#av+dVx`yG8worK4lZNJj5P_ymVZ2Qt2lIDG>+4iNox@OzoiCdv&+y7FGOU<_b zi%d4%a$2+P*KGSSHl&Ivyk^_4+4gI;{hDoGt=aZ#wtWdns@e8;KpShe{r}=ssM+>w zw*8%A=KsHD+n+UV;~C-Y7hQg2H&ME@{|K@2qnZ7~3-4VtuuHgT&gFI{eDr}uqoVTN zUm+$<1_cGrp+Hyz6I8`v_&`>ODonu?=I#n|6hV9Jm_T9fBAY$1*(6ck`wL zrqwTi(FSE95u#vffIsP~;^D8yrHpqGWEoBmAYBA-Xhx;sC4Fo<`R}Ss%}%u$?z9(H z0YXWCCUL_*=j@jQDp+vA`l}`o^E`-G8I%Ov+;UXCpn=$t`2QG%0?NpstF}kLfMIE@ zP8$$9KHR*f7JVmnfydBF=>_!(m;%?q6d_zp&HJ8XflxJpw+m$!K`u!!PI~)>IPJ8C z6LZy?#vG_LpWd)XE&z2LfPzw7b`BE+hwkabLlNs?;_i0BDgD-hbWq$PGm>R*%eXbb zZ0sr~m@0=!XoBcVkiIH#Q)VWxF8uBWPG` z5jjwdCt|yoA25;YXoN-OZNqd3&jG9F+N?`(vw4Cx5;K2I$5& zS!Z(V9~jO&v0*+)uhj7|I=SD{r=)Lnbdr1Nug#E1l$U0T!MW6D!b#rGo4apL*8miP zB4r-(P#RDM07L|&0LgI_&6gn&?3jQD3=@byM-!(Mfrfw%ImjG9%$6AkhQ)z6wr(=3 zb&&UjfKYN30$3PXgLo1aWDG4zmREYqn%Fv%^UO?dn$R#+%$U{C3k(;t&0@L{ykf9r z11=`mf#WN%@__ymAU(+6Jiu$$Rp^wA=qmsNCN8l6f=2i31mVk8Y7*c;R3^22U{yqj zI0`2fs20UnLy+1VGSym)p!B&a4a%Kvj69Hgiyt;LjLRAhUe~-PGu#L3p*Wy0Jj+mttpcY< zh@KC$#q-3+-)$Wf6pC5ox=C1Jo^2ddHCQkJIE;n|FiqiTmcX>>>e^pqW~7f$XYf|~ ztPDCXFeUA!sjkWbs}ue~a|g2Jq&<{a`Oi7~XMLR@KaMTkV5=r{G0!$?F_Qw7Z89%r zjU`NU>h~K??K<4E^96Pu)g>s5vGfQ6;V379g)>9&f(C}u7Oa-xq~Md;d5B20jeH(B z5ev<*3l=bNR%CS4Cns2X+o~^4Th(x4mSZrjWu9UmG4tl8-r|eD&+n7-R0~v=50;t- z1L*59I-t}DjMZ$r5Q$hEV<6US6KtZ!GBOkd5yEq2s3Q?LdDTv)=;lJhn#>4x8V+nV z05VLJpTh*OB{CW`Ch-Jf@t@}>QEpWlw#5a5mT4o>n~i4ZCuwYVlq0@MXAl8d zdU#eOBAB5ePP81T4U#fC&bTSk4RCXGHHXDV+&_UZ1q8AXi4#SvN~^kfrrXf zBC-zrF*_2-T?e4D?f^O@$|8zFK?^GaZ>s7a2uUJ+Ds}epgC0Pkm zMVmyelvx(Q0Rv%05|8vQCZDCE*8?&)RJ0Y30H`29p3*ckuZQa3D6}ShSd@_E;YleP1j3_EANqEWno>0CUhRk6aC8QN+Oze*DiXSCZ5Q^QlkT5$OVr;_z{lX>MRy zdch_USd44IaYxFb)HeO1c;w$#9-B*VR2N%sCr2ew>Inn|M-SML0vW{=aw8E1tjUz2 z$nR2gRYLBiIg+MuNF+x2^mdgby(4*@QX17|RR0(;x%-?FY@+xkUEx;ZCc=O$q( zPJ2AN_((kuXeL>N6bl!s0_tV){Hm2^{$%#haJNquz1OpjJRvIic}M_AvK=r0c|3F= zR=6`s6Y-kG2Y=OCQMT^ic3J#z&#d$qg4hA+W^#<+9n8y|FNz_zYZAmp9RydJS}E$_ zIeRR=qi3B*GCLgyqr$0AB4N@dlLp2m5w=WjO{TH9gH>xq9sG3I;`@67N+ickfwu^x z!3AL_Q=pLbBp`1Q>Hox|WKge@IiXT2IU>5>Rr@R^C%fSq0l-)=we(Q;EX1E89&D0z z;uHm$5%;iat>})UHF-yFsF1-0+#+}-+^UX*;%YicPIR(AdC48C)e3JoaPc0!>Ttay zi+BiCK;%sF)!;+TlN<{)L(w1?Q}P0<)rz{e=o^b4993uL9SuRT7~uajB>I$mO$P2& zatDJ)Ak$1FELN)(_B(g+{on6`L?}M~*Wx|Jn=daO#W%g_(Iq3rnvqL(6Mw2(GFDvq z^5RKfUTHx1*(;0p%yg(QL>&0);$HGrV(M#)zt$Yi-d%iq?`Aces)EwUN zHtn4mC9WK^r0&c6Q6DaNeerEw>JUsl9rzJ1AHr3X9%K)mqVe z9@Mt@;J!IeCi?-Y?E@lXMv%(~5&^u}uJ3SnC7!8ODgjUWWWmtT`grljJ$5Bit)%c>nIKK*?0Z+HCK z-ihP|@1*_v9$oTkmpVXXWacE#7|MX5=8>7nC>2QUL33Q(^zy~d&sD1wz1N@Yx@2}}iC%5R-*@Oq^pd~b z>F+z#s1K*^vxIq!-lmf))`wz%bq#!iw1VvaOktBPIA4h8an)MU`~LlYOAhW^2Mq%0 z5dqozq~iuQ4j{+@s0(OQ0cR(3)X4#?QYqYez>>dxy^b`#K%apS2&zBU=6m31Zde<3OFaCP- z=S#+hXWnu3>&J+*Kc;y0XIIbcBHZqcWAE$VNa_7A_@f8A$l`#D`J-vwW%01jxZ1r} z@TkQ^&R!%v_j(m z@pJig!-*@piMB`Y7%Otqxb~X7_WMWgm>{|q`HKm~_OIXO>uyRtr!2d>*!<`n`-rJu zn=>>VLjI$bd6)z57*Z=C3dvz7cmKD2-DbsoM zb>}s9?ZQzgGObq+j<3%?FTT#L!yDo|iA%TLv70z&$s@hRiZgjR|DF99AiAC1_>?&G zvsFXI1?M*I^}qX7JpIWXgJQy*N#{1&|E>KPC4PTi|XCLv%^u}KQeO;K| z^UmGFK|g5xyt}yhNVbRrE^e&ro0Wk*p!+odb)Es#I}Vm98erqt*1}AElmd_N3Sfjz zk@ym@x+KhJC&g-}VwMU(RYx2WvGW(>2c|LNo&b#+lJy0IAxW%380I}-g9%PBy;Y+i zhP~N*9GJuOW+Q<3%5g0lUYM?y<1S2n6_+cWz9il9_ zRfDJ)7Bs+G2O}VOLev4j0C`Gf{(F-=`Zj_%(OSs&1rB~hAL24#SV6`H!51M|!NI3B z8zb(Z&PZ=I%8&D>4UPT8`fbglq3(cO1{KI9)iy6*CkhR~KKZsum1`>PkatLgc(%YJ zS16b~jAAx&dl9A`>|z#su_T(1!Drb0Y>O1>Hb)hC%So5%6$(gjGKVJ7Y8q)!UuqZ< zPT$l_*8lXD6VQ9LmLsl-&3|g%cR#lxXv+ctX*&euaH=yyz(+GmV2ORA%!-6AMJdOl zynLxzrkM5lmF?Uv=|j}Xc2;GEcES+m)8AQ?44;sap~F+2$&x1BBsVu$SreQzVNT36 zLJEnLkxVB5sbvh4Cj$zncO8z7sWR52t3_in0Kh`i1zivEX?`H4&Ju&#p%zGxKtEyr zQ3>55=rH0a0;NxkGXzzYfcGj5d*aml8jk~-vj*$D19JbDI|JV?Tg{26MWR zhkbz99<1aN&!3O^lX6vTDiy(zj7i!EbqW-bs!hto?1X%;^3HbTz$XGG?V(}@B^@Rp z0%v@fqgXU#;+2LaB1D-~OdeN86XNIl>413Hcl7&6wwwO?WbR=Vn3vorbg?g>A(Nka1eEH3pIf3=Q0o zRB=VjXoSO>Hfg`(0JOR)%@SuVllNC^Hj0V)XwvHLV!?ZjW5=s*1qL2MEwp!L1yS2b z8SHz8WLv@hK@uF5m1 zaa<&PRt{P@`J9QeLTF^U6m4=o;~#agza>;rSTSXMpe3_DOCCC6dI`}ceg^9tye9FG z#tV$sC=*%}1Wb}_6lh4#uon`|LELf_J-TCoRcTuj(>`sSnoVz8yl^~`kzah;*n5PU zM;L*8h0p{=nw~kCREJM zaamj}O&ek}o3LdfI!X4AOvzqLDg>FWJ3hcdW!yrT8`9deAm@@SNmUvZBw~#g*tiio zOdq(WH5XenJ6?fU43aQdWb;>?Xs?rz(;NggVLBSdbs1A4W4Z}ABsj&9IR;{Oj5z;2 zQS_#+_>e4V{E;G;B((y#;xH%|L(+G{ri8MP(r6StUA4`K7$aI+J$G*!x4&L_c14y( zf&dW?aZq!Xvb_}ufFs`1E2!ZGhs%h_D%N%>&9+BvRT-R4XIGW!*lBU02Bf_)OD?X6 zj4b`3*z~up86&3lTG}m(Q-L{0QhQ(!gbaBICq5Dr%shF>LK088lv)V=C+LRgI-@|H8-Okl=;mRa)L^-ieha(;Oj_QeO>ksEO@y2H=rYq=RYdFXrW11M ztrmq0=@&CcH1)|9<)Xpy!d4|y+7tB1-j2*9Iq;wgNp=b1D+$;o91D{&_IpqP4%;}# z8*!el>m(Xf6v+{Vt&c!YYJW_Cq{u}&1gjFl2m-elV3wk0 zLsftd&7hL)1i6q?j~gnA9k$7Jm8;TRv^8Yi)aJy;N4Gj+!NjI< zTXMueg&{*_!NtIfX8Pf#m!O}?Rq;4U9QgK!CoNO zl;lLp5+Ml6B~O^3&-{YD5qmNjTp%+*!y}JNlsWO?PKa)7f# zkZmTRA;yYCue39FHBZtn{YIHgMZ~aa^ui+Y%MjJh`b? z4t*=|S;TNz5wnT)LYLvSoW^AKKw*k=e@x!ggyexp1*tH7hwhG0UKu~^LC8Y76ix^; zNthvnUlqxnhXWF7Lk?d_a|jnM5Gc~4@Me-I<0=gsag=U)n@Q4)NHhf0#nwP3Ao(AX z`GEC;qXWVf^6WrUozMqC%>AHNa1>`jLqzI=WE2sx->+i(r_o(&+KWHaMck2~A@s(6tKF2Co&v3t`S=*J1v^ zrGr@LfEF{ff~^(8#cwpB+^2bJqr?LVn?&lkxSbMZRGE*RmZO&bu68W2Do+&08k5vG zKxiVQ+9NRwqXcG)Z6CxI-ge(gwtB9E>_hM;&Yc_~?0`kdI~#g$fVfLo;<=Qeo7{BH5F}2F`glOL9F0?EL{kmWNdwlfI}M!b^&euPROF z#WQ;@or=RYwdusBarS_vyJu1CNMJ$6FkA>S{}?Bjl;=2Xd~#QXvu=>YjLbC2{*7H! zCJC`E;3MQ*Gl`6c?oO+;(3A9ok@b-mC6l4fZh_KB+830VAkgh_%DZHIs)J56tyL#B z2vln|GSJUl*VIo;epS@v5Wz9%17U%74CxgXBv?C1JHs{wsYnnz8vq%Tw7`R-2(+gV(_7T|BRIEQFU;_LrNU1R-T=#ES zdC8fU(y*8XD?Bjcv}Vb1G<9i2KGt6xw^fYmhD*HOFvPPDHVw||HX1^7kOFofsvo2= z2@3#_0ItDA4=g%@9G}{CL@Go`+D^;jV(K7io%q+&XQ$U`WrE8{dv97<1xtUf2zi~D z>A`p*A;Uz4I|v=XW0Hc-0z81G4MZzG(z2v8z$yyyaDYV^N=XcZV5G1IK?<##;;yrs zqL|19nGu+}pe7?Z38y6b59!+Uz*2mdWVaxt9~mLZ=?8Hw1}R|U=$%kiYZ%ZGY1>WnsBicnNOgh^rsHlR zzf#duNH(OCgVIe*hgDi+`oA$>&89b4VVS@F!6p`$Yt;iBXK@V~LDCE;gIyVkz?M#m zDpYckoIr7nJ2iHHMIWpIaFCI1jeJcOsk;El1rYK2qzTj*Y%C&3j+7c3iFH$O1QQ#L|7>kfi5< zEPO?Z~ zUU+PZq=Q4xV2&ZsNW#WZ2vGQ+CJt0KLiVfgG z#bQVoL5TqG#IniBiOYxwkrc@!6w-L}tb7^U20ntgCUh~hO`y9{Q;T%49J%orQamg; z8u;0ljx>|I6fmhGoRpJ--h{N9-Yiy*ZSzSBn$~Edh%NiPY2-wc#idl}VFiHT04Qw* zEI2*!@}z@AkjEGe&K@6kw8DV6r(uyLQ!*(Qqnw~shNqLMgH*a{v$B(^qsm*0a)SQ+ zmidFQm8U*byu@T&U>*q$DGrx9Iz7gAX`07{EHOEW@huAbVmW|`D3V4GqX_2&q8^b5 zMXgBe9tJ`ZrVR+|-k5`MSimifUq&Ob7k^V=8k4h`;8=b`OUvr+}n#c6LaKAj-(GhINMn3&v|wnVOcIwM^w=*tO=3y^c3Q<-p-9?OP?9K@`&DlNB5i|Gx=C$T-ZyO?zL z(!IyqX2n{Qk)Pz@)<{~&{)`%CF{j8t>w^tbJOoBLk78EBDoFhb<9(H(>a>J7PEsbQ z(J7;-%rN`q@6OvHGFE#se4L3kCKC^XZXhfaX@kV;I4vw3T4awWVAob+`6P?X#ojKB z*D}i=n-BJ2k`xoxOD4`Fd3k)UN!PL?%|_Vo5mo?U`Q)W^LAo>C*hwO|LA>OuH0{Jo zu1eEU4s!`q6nB2mv|En;1w<5sQHt!}5UL}k1lT@EaY|rSECT0z9CtjCD?yBKd=nwS zzDE!(?|{t~laKT}XDvVnFv!DMY)JWv7}O%W3z>!SYy@87SE|xr90Qx)p4>L#Gc9Ye zz|mM7_N<6}+zB{ciH-pHO)6k<*IzLmMY+ebVB)dwWBHbe0A=oITnuDFMZCq@V}*-| z9?9g$a431MaaAzDWOqa#kRi^b!YyKrauR@LdZTU-Yh|hJF|IPBaKyKM&F4*Z6HU9` zR4bMmax6$1=}5;3fy_!271%m}COn=E*e1e`X44}wmRD6t?54nAIlBOZA>y*&$l6*2 zB>^8e6I}-5M9G!W(Kr}z`PoFgbH3r>@v)NOXTpa_fWD3e0lgGEc$G$D?W|gxiyvxM z#Pxq`0%^&p5M_u3TT=1zl1aXbKn`Tf#lj!LmVrY8Cznf?c>CB4We#iGL^cG8gtymM zD($5?{%-*p0LUyTI`hZKX;GRDz!3^iLTUtAcaxz=Wu1=!|!)tY<}u%Q+6yjP^#rmAcHe;J0RR;U zO}xDbq!`Z7Xzc>1#e5=orM4*p%cC;@$Y5HFFh?+X{}a>k4GKay!Uv^syNLsouQr}r=yi{s7j1D0YT7xaKQzA5;@zm z=|QMs^HUPF6%MeL{A!pHz8mlEfiGEY?+dri3O1X#>kUktgtqU_sS4pfQ-jh}gU@1{m50Vvi(EW4yd@o#BwS0n3rV0CEI&E6m62 zB7q6=))VS1sz#?7;VP+Zi;)jCAJ6(qZ#qg*G;IKh^}(p)HAd=X&EWSWjtt?BP!N(9 zAVo=AM|-Lzn-mBx!m-Vv?Bh=2aFSF#xSa{26N}f*r=p~A$TGzle?a>IF(Z~tf-Zww zuxXOPUF%?YOm7@>N3_tu)ugnn#QByY(v+3&FYT2jNPtZqtq{QgvjI3~x+6o)QOcwp zH8MZqh(`?uRLOQI)kwT^1zhMH%5p}tj=D+f=+Z_a$QU>Y(~l5k1k2zTgz*BvRUYBT zhy~>s%)-W))^d!qs;km6DTf9vJ9>(<&p8(!peU0RW&9}@;nE{gLpSQpN?}q07qQ6( zc;dm26a&oy`8V z7|xxAkJe&1YcZUi^T{Pv$XX0%Ert_UKNy-?4CkoyaK~BFAE>7#cZXc6H` z)Geu>JjW(in#k~C6Zkc<}_{Gu756Xx~A6T?|c<4pRg>{*)*kbs_vCGXf z#Gr6_R=gZ8-%niU&K@C7e_;7;;y`!yF!9s-m)D8m?(918&;!dSi7%YlB)zzQ`DoGI zo!v(m&g`SV>fhe1XL_F!@M!^`&)jSumE z$KHAEULts8`Oq%o>&A*%#cPM|F_u!{``&qH_@|sc{mk>kl&c;d8Z+P4J-qxo|5NTa zMyz^d`8~}WmJbq3HY^_{K0avn(B_THyNcf)JiEU*=^%RCZ{zYIV)Mas28#(BmJb$N z51yUv8TTscRF8vaf9-$Z@8_MfaXFuB!*e!XcTG0a7|#H6%XPW0I=RH7r!c#oSg^5= zczn(3KH>B4T=x?{y-8hx~PP%RH`I57j>~i zJ>E@pu~WsU-yJHR|KsRdr+TJ*zE1U`Yn|#@JE<34o6)JFy_1U3wNCY%oz#o2b*ks? zq+WC_sW+p2YO2xP?DQz{#ZI?WqlweGW^}Q0&7F;l+F@YMNmhpXUx$X_-`UWpI~$w$ zV&~>NkB+F@&~kV@`I;`6GeBInq2-`tE^gY;a%58Mv$5ryN%6FeEypCqbsJkwN{Z(; zw0tiqKHJdpt)#f`FIv8y6#H&!IUy-N{fm|#C&eQclq=N#vgN?!>U4@dcWegYg{xWy zi9ao9*;QCqwv4F!<>Qt7vd6DlMpa(ibZ2|@hp3+1^NlOZx6dwYnUq{Tbz%8wS1xS% z&*bW-3(LLQ`s>QBsN$|`xc9WH=*rDkwbUi`pSh~#;H21hQOn^w`a<@;J6i^eA1!Lx zC;9z`MdfbHc)Z+=4Ue}RT=`eCw((clCtBR(uO408^7S3R6SNc3i;Cp%x;3`sDu0>s>-Jxc zYHTr+8`nM6azs+x+*p3pJDw_c?c=9f4(?GNTanq$lTLlQWxwQ)W<1?;$c{$HJAEaM zOmE^zk7_PI={e0UlPW7keT*tS-Q1E(?)0bT@_2qjlslz9TlwHHa>?;rC%FGVL`!zZ zO^tZcMZZj1TE6LNODl)hki(n&`EQoCjB0OrX?cZASymq7naj#!GVS?t*Rt2N98vK) zriZ+aw&irE;hOT}uDPcCmmlpYZr)rT*vpoe2iAL`<(M5$Va5X+-O#?aa$rpny|n0; zA6;8Hu%?IxHu~kEYs&+>=(puHaqx95hwf;D6kYNiF1nsh-+W!=ovipBM!&qzFUjlK zV@2gVwBmQz_obGx$?q#ylwaS%m&&hCy}tYs`n_C!ea~NCxiIW_VLZB$u1s3lvUhUB z&tERjzA3Mi-_!>yE4yLG-H875w!wzjsc)0xq73& ze0p`|AUp9ON5AyEu{;3vH&vpQB1o z+*I!K$DJxgYdEU(?VDRB?C7|gY&)`z+itGxI2rw-ZRgFF(aC$*{g!f{&$y+0EKS`~ zUIU-sQXbi@TUriF{%ql`El2b!?>4Fu@5hsGqs7l|EsyfX)|TTs)QVo{=3832iDkD{ z_DdDsLKf)sw(_%nep~sl`|j;6M^@ZLl@nmFn6|ZLT+*43Z?AlLs@Qy0%MhWgr7z!I zQy!el)^zA`a)Ly)K3G%k@tuF@&|}(?Q{bbm^mzW-mSG*b!K)k`H}llmax)*UE%*DV zJ390`I$hY4-zxWe>m4nVEA9wY#8upp3cHFU?<{xe{5#8=?8A4K2Vmvf9XgtvG<~-=|G4(U)U>S$E!Yj>A# zJMHdrN7vk4?&#v}EywMcnyQ%I%rpM!E?(%__jGunx}2MXMReCS_muCt`JQrT$KTtb zvv4`eiE#bpWv zimlJlK=jKg_qPm7ZuPVK%Xi&$f4Orb!j^9&70wRJtLOMXb{JxkkI5mv>O;Cb{DJZ_ zPJW==xdjij9A42mGw$5N4_ovOSEFgk)o$YG2g@Bh`@wR@?s~B0vQFwwg<@1z4{NGm ztR{CB=69mV>`dp_naa^Y<46>a|Eh1)RKa##tfmSkyGBhFjLcRwRj@2pX|cu->7zAO za92@N1rZx+s$hA2)KtOb5OrfIv8D=&nkooecWkz(se+=W3VNPE6+9ul{!cCEcIl}a z1#;%=dDx?-jF~@FO#DlW+Tr5fD~5>Ke`$HA*N&P8iQ|8^YO474Ut7j@yt;DsC^6)3 zEqC@P*A<)p*5d5=8ut5p%W;!L^T{`i4d*GVzJ5qg^5R2M=D?ROM%FJGCf@tq`V%TI zZu;xup<(dDRXsA5S1)*N{ff%(BQIL@kIL_ve=OcpjDLOoH!3cMSNv#IH$_ZSR*ens zyJ^+c!*V{1@{(~?han!uPtx&2x(CURrsRvzbcsh7&Th!1*TL-fli5SUalc%3b0Ufu6uDNv8P#GRjH@h`er-XB<8P_>T>f zZ0IB&cMH%YS@_{hU1m&gCtRu0v@6aXxBA$eR;6t?AQaJa-_^ZG_%!2MCamDlB1<9? z--kg(F<_ohijuNVlBe77J&>0j3RHSes(BLvb?93mgU|a`5G8cKe_<>6+{yV)dU_v{ zGzCUH(9f_sF^w$63V3B5h@GKbPH8#e?5onUBaVkLDB@hn@=_sBv0#-3#KPF-6-6z= zmqEsVAT3D_{e7Aw$+!mZ9*pOX1(gvrQ)XZlKq*5Y1*xJ;+uoj?9-cn9DR4P6zlSVM_OGgEs(R3I4|*T-@3UsgVP3tfu+U3PWoLfeREx8k{6>EOQV!-$Y`ZTK)Powo~z zJzNOBO!DGEV<|a{;=Llvrd70bScza{qTg)UcF``t$8Euz#_IaPQb-ZL-Mlt40?ssz zl?8h+6Iz9{3i=rr&T>!5tL(`WR<~2=R%tldD$*NvBYGxVtZZ4m_e5K-SDlI_27_Qe z@3}6#9EPF8higOQ3mndZhEOxz5YBIQ!79f{Ox09(LhCOwGt9IRQq_(OMO7wdC;Bkc zO?_{Yf3{9E{cGu~wIi)| zq}7fzc~&PS zxa!JxH@pU=Y--c4nD+NI$JAA6S`{xG+@y$q|9#DFxuOOuY7v&gB5H>NYa`^^bOR;C zFG7_XYZMV3bxuX)D4LQxoB^VmYr)S4qqeR>M(nBytDsWwpqi6}yKqoLQRfv3FqJEC zr=iEdq#Fsk5j}1;z3Ju~=Bw4(j5!4(zP1m)STji+y{2{Km{FHr3NRT<+Ys79V{W5U zX|OHB7#nyN{FAmr%I3aH2j2g1Gu)L`R#8O;lqw_Di3O_49PP9tR(WM*7W=yN=Ryzc z=gr-Bgd9t_^kB@>ptFQsl)0%wN9qSCFJa$q(9`84d!1uK3+(%Obsh#`%o1Gg`n&P8|*EqLhB(R4N(n=yw^5L3Xw zaOKf+B|W0#v`4$9rU7H7=LQgt`zWm@<|a4v&J!Clb?I$-wq(dvQFl|?#0C&qo>*kx z%PK7P07A#SiJgd7>7cYTGf~m8K^YI z#4zezqe3CJbr0rsD_}SvUPLoC^rD;=7B&YfZ-!I)twkZOa#U0jAe!j|(}}aU%5?0c z5&P*cOp#WnG0R#9<*GcDIR3`QF=EED*2BcBeb*jUJJo8ZTJ2QpBze_NwJ$$WYo}W6 zRO=va{GWBI;a-wT@#812y|{;X<(I1`hMTuFpc1#8vG%A$B{tqqEFTAJk;LI}d!euiC+<((O`yL>=4-3bJQ@7sphcCpwTkjb=?>k%X4ZpMXzR6pJ zw)Nhz;iDVxKjOP$*~a_FhV{e3JM7G}ah&|<6T+Lmnnhr+=zn7Pqs+76{1e0e-7@c% zZ4N`f>Z8ruzYy|yAl$$3VE>bZdisUQ`#L9laN<|Jsd(er4|Af`Z0j?x@1_UCzMCGJ zF;pCW@1luv6qpN7zxhz#ZeR5c@W+G1cQ4-5Cp_Y68~6IE&$j;=>-$90I=t%K^>3e<`M$X12dk#`R#nAO zaog+lt}4`z-W(}r|6tWo9WP6yggE`x^-ILpzJ2`!@!W;0j_g>$o4910`1i+e#=rHd zxTmPQXw^6|`S3M7JK|?)ovYXjQr860hK>?xOF(=_4T)o5_|R7Fg85y z^Yzd46pN0gcu0>89}TZVeR5n3KzZD4_{)71F4wVq+jGrgfXzahgXZU|Rf<3n{l{*& zY>XK9IWIgsdc$T-ymJ-J+%aQ=+gHq+L9x%G4SSxL^91&#X^ zeaPqo9sL(wMbkZ^7oQRlXaXZqdc(fBq0h#Xsx`dwpL6yR$_E?v!en8Zo<{l%8+Ft~ z2geG5LzaHywe|C%=dVUP3Q)Z9B051qcd?EcXx9N5H&h+K0JS2}MA)`*{>_=3SHKoj zK-CVgx&$7+(4q~7LUBCubSR#f@>0W)FftM4(wi-BoAXt1(2$KIa~f72 zvtYS_YO03kd-(u855s~~nq5ta&0SN!-+&=S2kzk%iUrJg25=e&7>#G+Mc2Vd7`(&V zng@iNe>vxN>_Y}9ki5zd60(5R3&R7BU{qe)H;efS7)Z7DBb!%HrRC#4ZdJuJdu}&z z?8uG#jCYk|4w?AFQ)8=_sp)PJOA#YQetB%EPBBj(uoD4d$=iu*x5`?mBrT~jR-N)v zGcD8RXeWl`D(|f*HQ7Ncng->nJXP7ZyP&q_YHO~x<~p1U|Et%W8Ozz*$8B6PAoB+) z2xi5y12^9B6-AHms)IHTuh0A;TyxIGIfF6}#ggS|b2j$-%0l4TKi}9l64d6sykKMa z@`6X-DT%-Q?DB~r>6Zq6g}csEFW$uGmwbN3=hu85wMk_)r;Re+OI1p_+Buk+M3EK zQ`8*rPz6QfLIBJPhf?Ivs#+_OU`}m&^Jl&4IN5YgtU}(k0z(7eSiptl`KHeqSM-A9 zj#X<#cYNT3H?PTxi#Bf=8~(J{mP@*bd%Cxd4TtZs<;h;+iY!-q?f;dbC`XT4K|FONNFw9<*i4&&Aur zxc6<3$!4B>hT<_#QfxYx9)0x8mdm?{{YP=}+Ra=3*uM@`p$^s)lXG5|nOj}Wf`U5l zS!xid$cD*ltx_vI{;e%P9U}U6rHPL}lkGnB*_N^QHMUZk^B9fUU1jm)Ui|+1?y`77 zFRotNtM$e%Is6ZXjtC0Y)ie~-1VXDIsQR9&;bU`Sp=4d#oKw1v01vDoz37^Tr3zUI z$gQr}uCH23u^^Nu<_rv{Em)1PSg;FuwE%2W^$bN$725<^=N0ps3P?3Z*y2%qJu@P$ zX+xYpqxG0NNV!v*bu~bEtq%CRJO+Fz0BQUyZU1)OFfG8yiscsV81|R5RL9L1WPbsl z0SR<8ImjCFmj))-4e<|d%w$2y`3mk*1TQ=^c?(~UX%#gfba~Tv!zq7h!Y@~)!5HvY zr9A;`Q5EgZ!~JunTR{E-VyW6v%vL21I4JsHg?-m40(BlZ7hzZRnHmVM`MilQ8L78u zS{BR;b^&#U`HE=Yo&vW}DB^u|J$!Ze4smPaCw2m!+}9K*+zYQP)y9nJQ2^dJ@dCrVT7bX<3ccr{a3rTKWNp}M6t?THA1!IHOAQf@ryMl3+1rZo;ef~ zv%r>tFWoVKD0>#zhhpBrD{I(hd0v9#wm71|Nw68|uA_rg=Xt;ovzvH{t6qW;3Pu6E zxPgDwa{*h(UDVKgz!jd7ctoqT7{qENok(j@6UT3xZ_BmT=Wxy3=bQ@V6fg$_Iv(aCxFB0GEp%DVGSw4P?`ceqxe@sS3aX`}!y^MB!LYVjt&Yoa z=Ual=%|iWE>uZ^8m9{@WrS-&|pV};0k|e@?<*BWGa;9F?RpKXbZUfQh9QM6{ZWtN{ z1K-u!<48=`Re-A7M2IkxF^Fh7E^+`)#R8{xh@C^CO9CBKyzlWlK6Dr33bGwhKt@3; zx~eOPNf{7MKDQNje`=%cAtdRIM!4`ege2#i;7kBLxN4CNF;Kjs=OGZ{0Czm%aFPSt zRgjF>Ts*cL^m`NhJvJ(g8y3bB8{^7AY>=A^4M5xx74rnjfCu1l3jnQ(AXyyK%7fuX zh@0D*K-{af9G~3P8Xh@(?iexs!lpgNC7-qqJxuGo1XUBs$ga24iWMl$eFeoKI0+O0 zQ7{hkgsyTf7In;7$r)Hp(p;>Ff%ku_i6xjmc5bH=Fm<-7ey7@c>g$xG3&|3!@=z5^ z5I~7es9RA={Qw>OeBgRT2La3>%E8dv%|k%$Fnjr&0#e-ooMvl*!@FWbG&L*4(zr4+ z!cjc{QAlJ!Kd=Sn0o$ROCEOroZ zKaT(v3prEI7Xy{$3`|f)X3Tu16~kqE%ds`GTFaZ}Hh~4YqV?b$BCyYyL>LbSMUZ}u z3Yg5opsV^sU$xs+Rfp4xNR5L01))E0XobMAblyH%n#DRGKSZutt3YXN@w5F}`-*>eS=w)+rqr8u#WGV>1Y<0Y%qxk# zR9&LFuyG^0V<`>1P<>*K6gAV8Drq-OmRb4`bvo$~-BM(~8;l;$b;$ z*Z=sBuTB4fe^Ac}6R=Vk6BK)bs@7@xB;A~(U?ZQ|_R}sHEyCk|*48~Ual(Z93Eu?f zQ^!ANo>!;TE9wt>_T0%I){P_EgDVzX+4e7hb35)gtFi5d(R#gEuQ~M=^dzQMk7=Y{ z)6IJDSL5sCPij4GIdM!=+qZXXuPN?oYTF=wGNWyet~NS8nD4fs{dU|}qd9r`*5)=_ zd@!SJ(Ep{+)k8eA>Bin->g8=qGV{gO;vXgs{L*3jPjSi5+xCseZb91~|8vIfaPhl^ zZTbIq1Gr&++o?U;2hbFY7PS4RxU`{dR_X|j|3%v=|Mx!Habo5vvwDjOi`#xaG|S5S z(!q;2!l?w(2=FqYim{}(-r6Ar(&?dmJUx}SINC9dCZYj5%V=&k$r zXu7O>=0D^=V#fHbW5l|XGyUc%W44CMm_K~|@0n}GkM}CQoViWhwRdThIDdHQyW)n? zrM<-m!%L@$7sgXMcSPwFF)q3`qI9Ad_jRs4GNv?KT$U|O7MI$5J@D-@dx(#+rLT(< z58!LtgwhakL5^R0kL9cRRH<2~TYYiTd%KFC|E@Gx>^71r zuTSOLF_-n8ZAB=S^Ab}oWc+74RsSUMp5~QZ*pzRxS_qphoh)GWFNjR zzu+y1&-UimL+beY##L_(6x-$3qYmWjGvj0lCRHw+P}9L zxL;|5__KUrA3XK;5YcCUe!X#G``^x$Uwa(F*E>FXdvDQmJYQejkFOu?wQZo7J-&3D zxbq;setuV7A2IdFZDhZnK$Rn8Yn!KT>n|>qUzd&HD-Zo`aqRw-7GB}+AwK`{mTqEt zJ-?psa;@PAv!8gYo{rxopZB1H59}{apUBry3SZa$ZQC&Mhly0)&Ee~nyPVlw9Ifz5 zw#m2qy`!fL6s-!C*VXg&NVVjNC31|um{b}d+Eo5**Yu{G-g~*Flf=a*Qo3!!_C3XoE>&)o^W~3QwhtGhC-HT#oUA)u=e6?M ztV2q+*z*8NN6BSXe?`z+th?a*dx-1T^ywxxFL}3{xK92$(kSiS{I${vVz5;j-F!f4 zPci>%T)zHbp7xJllTUk8RH46^aUj?0H+t&r!Q%9T`MTg3>i*<}ceA2ReqAPK>!FirW?_5tznjeU>rAdsn!@(5 zk#!W^?a3)zUqx>#nxAqA*LFXWYta}#AisVhr^a4~GJt2vp;!>G3# z&n2d>epeCe<<}?W@~u0(G*dkJHA?Hg^==>W(V!1|i8l@}9W4%)%krCFFExlE@&R7E zd)5ST)z?ei#QsO{w@1olGwKe8l* zEf)%v4;H`q237tcm#;GVy_`7esM6%jz46Yt_NdY|V!fPBXMMADsnFy$)${1m55!hE ziLO7o^i#3&a7uk19oUQa@gCd_$8fVtj^^5($CQ?cb$e49|MGh$itt!|Fyz;-oe=gD z`ya=YEy`Wt&OP2gP5k*dejR-EE*Sm@NHTmVPTs zcgRw!EPW(PAIQ?fvh+_`dQ_IWEur*|EbS>vuTYwCR-G*VPF|cKOZUmrBw1>br6XkN z@3M4~EVas#CriJTrSoLzR$2O)EIltvSIE-cveYC?f0LyaS-Mk}?v$nVvh;{7Jv~Df zpOnShW$6`J+Ad2aS-M)5K9Z%s%F@4OX|pW#yqeNBSsE-$FUitqS^A|csj~EfEFC0E zkIT|GW$90{^le%CSeE>&d(7bd$l?#=#ph&chAh1)OABP__p-E1me$D9O|o>4EZrkZ zD`e?WS=uT~&&txLvh;gddQg_$k)<|S`l~G6B}FPLZXJvUH{_-6TstlBHkC(i~a(hb%3UrO#yPI$3%~mTr@! zC0%Dw3}x{RdGXh>v{aT}kfjz`+9FHqWa)ibdQz4?k)_qLv}+TkYh|gwEZrbWIa#`2 zmd4A{pJmCFrE6sA>#}sCES*Sc##x(WahkmN7g;)2mR^;mi)HCWS(+zH_sUYEENzjc z8)T_bmhOPdQ6rE z$VEjgDfes^pGqaC`%v6(owSXwk&;%(nSlpUU+`thmDsujyvl%(eJvqY;oFm zN_Ps+*gjgQ-z}{Zrn!BO@T2dR&d!Lw*S&SVlq9oa`zfU(#gDFktDmU*#oK#^C!Jcl zG$X(F7n29Q+bjI=w9+oS?D#JDo)vYjxx1KL%=8ckXENQzy6?T!Gd#g7{U-Ut8TY^4 zOT6Cj!NFo}zfAY=(n9IY7k5x@rZ5b zOWAg~=yDc)Q;yn}^zHn!N$ihr4WSC{T0JM5y}#G9{d>lqH8Uiwv1=fg4Y^a?+_p!ARAd-h^(-1oxLzmo4O zU*I0udEC8jO1FN^|JvR^{Qi$hkH^1;lYdg`xl7!mM`xDCiR?>V`in^ymU@OOFD^at zUvBaIkAB==^f~&X?qcm3@AeFTeM#x54{xdN=t#xsmUiuPnWje1HA0cYBM6uGkF`=+++H!gsGKZBBmKxN>`M@m;OQ2r+e@ zv77kgitRnaU6+)?_~-E1t4qCiiQ71E;|;9R7&o#`DbtS4(pee1|>D` zIFozI)^47DO)0rHan?J%!z-^XeOlRW)T0f9cHcvc{@}rW;fpIuk0w7~bsG<`Ze{7} zjL;u{_xxB5dai{>-}3ak$@H1Ds`TTG{N7(2bIrD1;d84?jT!OeDcjGFwU@S=O2>-H zr*BWHpKx>O+>HF*U%d8pR>B*%lP^*(*YnpgVt zj~B(ZHKhlWI@7Lrx0iVKyVRL^+xx@AwmVACbpECJltFuonM|qh^L3^BE7}sYHAJ)? z)3YjbXj2mz78SZjl>EYzpbtiAzQ*7Se2fecG?Ve%3uyl9wOSE>{ z9@t6m+xqS?RDAaNo;~7T41Kt?Dft^^77O=|ljuEl_Kk0;tuH;0{9N~QChDcdx1yg1 zioS#Ubq&XDEd4(Dnc3Yd%xx<5+C{$45#o)XQFHpJJ;sR<2MymXobfBUj-xj%`zGky z5b?%@J$i?iJ@#LJ2`_k}^hHLj{d{{?Y@VA{#pL;=?&74bZ=Wyq*&m7Xy1ku@;PX$F z2502={^2K2m(EX$KYh0JjimU}bEWA?@#M{NZ;9%@{zB>Fq`2ipS>c?fcdh3A-g06E z`S&j~OL;eH`Jh`k?C+)PGGf|6?+*x{{s)g0 z-;>{8ONy)hRoa>qoBu7h+o;j&zbM@l7X=OM8lIAQi!Cv_H$U|Z59#vOw*QB%>kg>m zc>Z}d5J3SeqJWA8EB1;aMx&yL8cVETiHZ$tVr-5c^t)~*v!1-_Zi3TefkED;N+Pzj>1Ul(-_xY%NsylD$%f@jDS9%iyy>ErB;>k? zGZmd;X;M{_m$>9(+N}5aYhRPI&metWL~Dm3z|>Qh6;;jT93N|S(=0uAYG8iyUCsPt zd~MSLouOKg=^H(Hu&!ygo(!vRat=#o184sPj0f|ge|PhT^J3q8SZ2ZDOuHtguH^rX z(>%8~G5HuI?k#?6YJx4vB!xA{ARHDREle0^&hczzx`CWOTbbS($kfs?Isa^@1PyNs zkqIFV-8?henr0d#4j0(pQialQS1L!HyO_Mist^kjXeTY26r))7vbGa54B9u zwufn1L2*Lys<<(~Qc2;_OBzGIAc7!`LUYUdxKX>V807N3O>n6N!Xv$XD$;_EsG)9O z6P9?Upaz6A5J`J{eLS(ZM8SUjOpWzUT5urloFH`QrUwl zjX=*1jWxCWK#+9&zLb8jk_X){fv~3CcoUXkmV*GM3WW}=>`RwzKCU8QVt&^OYDgPa zxgu2@0R!nY*@S>(@p*(UI4g`M&kSc&8Zgx~1wm^D=6XR-v({FwKzpt=cBNr6;VP`t zOiOhhHm`fP)T$JBzp}eHHba^hm&QN^kmsAqW$DTxrF4?W_7Zttm=5YxZftpib&>6}F);!bnHK4|?1fx+t5THeTaKk4T53Xo6LCAc1x22A*}FjVoZ_=;TkjUa5qrU+_S!MWnv*P7A{+r-)*rK71m9_v01i$_q(MCZC+JXu-`aBp(PEnXDbyDB2Y z4JO2JOo1i9G?7VZd#n0T$||#$_;sV{icYRP-CUjGc2sSqwcTZlG|f+p*!&d496uek z>XGJ+t?+@pPFr;!7_!YY-ym^s$~_8|q<>STjtJNx>*ma>W6gDi=T4Jn5e>HuG}ld< z;@60>23K>(TmOjHHtsfIxn=HG>hkRb5bej!9M%L?>MW%2A_J7?UnX3QLYgnPYItcl<`bu+!7-lCp7f(X47Ur^IqZy_6-*6M^s1MdOg>`sIjPMNTeBzA zoAajOl<+f*hqs^eE=bJ*_olc8=DMo_0&w_tw2CYFmw{3yT{Iz_VJfPN5V091tBzkD z&fI~B1_R)$^7Z)J6<#Z(KvqoDFG_O?$b}cHdENAzUU=~>y>QPPrgCD!O;ak+nDj*e_P%Y=y|Q=Z5HV2>pd`xLJt??nkP9UbMuSIYO7#{hPwh7bmeT_0 zJ@-tA!Q{TS|C{9r$Kn=<=VJG_k2tYH6Q=Aq1 z`7wX8%axr8HJKud;8{H;44#z?r+{Y83G0GzHM_U=@aSPN zb63MLYCJT%hUi}09B2UY^dUCa-;^-lGaM7cT+AhkNQU~Rvh-z1^JC-UcE}3sNBC5QsjWeZc==xLK%k`*v4NNO(>%Uht3!RL^8Mue8H3Bp>z4b9; zhbjvu#Y2TRmFn8u4Xk2DG%fQ*ZdJ3N))WyCV6LIJDyJ9Za5V+qJ`JjC241PQ)c1*7P!k@^4W8I}iy z#a<0;B9=BY-_bK6IE=Cu1(ucTb}4bEg&B(+v*#IrP{x_h6RitfZpwHj-X!G zt%1}n+?-~(BVLD_u}SIn5{D!F!1Q@fnC~BNorfdQ5#~7tiF*rl3$sur32v|tMWqH} z4QmA#_@L`4H!-!3Q~+~^e`;>4bILW10^ZkbMV=!u^{!TgvveO|#@>%PA;`%oeKTDz zSGxhll{Z%r+Xu^m;M(9f`cQ$co)0x6oaN$J4C?6>@f=6-AXbxr+r;GI;$T8!x7O4b ztF%#Ocv_}N&nD77H{&FW#i63liqOM0h)eN2cnF?TI^)s`6U++@689!}pvE+RK<(GNQ2w0n&VXAG-G1yA+*X zXpS(f()?!AMdq0XAiYmxOMnd>b}B7`YLLItxwyM8F|UyfISb(QW5a{WQ`E#DXwM5X zzT7gj3$)YUYc$^v=6I(>XaKaYcbnVdo9m!jADGm<6&Tb)G9!-%xeEk)cVu?Q11OT) zE(m`^e>F&7)h%Q`C27~|S{leE2GX?$&egcgTFh3^a=o>3aN9|>+;}>R_Up{o@@1yj zlp5L$o|_EEha%B!oZ_PD*VUKrloa!cLRBS&2kFc9g-w{rDE9c0qpVo7#cZlc`+h_` zj5iLVXx=(|AjM{2o<0)QF3Wk^{yC1!d7f6eig{Y*A4{N!ziP(O0g_&HZI8JgB{Z$y zfKL8dL0{CryKdg1liOvQ2mbH0O}%Nx!H_I17TuCV%YrI-Tk283YzRs))T*RS+aY(+ zag7s#I_sQw_nPWq?_a--7Av{lm+qFuIUbn1eaOV(3a0VVEa?TfHtRrhJ(2#W8OMf< z56y$jl%)C%KX7^7&C?4BxEYOvth%A2#9$7F` zhYEOd@ME_pQ1bL(y!|sbxTI)P-2z);G9UF9kbA`kyHd*JU>7ko(9&HOk5R02|t!-JOi^-~M=|CsX2A8C&+k;)`O(M23rGhMQ;97g?T59UTa&qu&fw$Jd zw}b17p$#lBR%XKU3DTJYI>9p7C*}Gzu0a)R;cT^K6AL^vH#(`Kx$2>2mSQ@$M3b6X z0x2r6v8x!?!g5!a*rk=Fvd$BA8WJCtHhW3Nq*jfK3(>~XTPNmskUT?zeFZv)aE5C_ zzi`XR=Z(uyz?8-xc5XrkXXhxNN5plsJkSdkbTeRP&pqYQgp&xHs`ZQP1ucL?Mh9oW8_XYT`+cTvQjj z_Oh`Hm9C8yd}I#`qCCkcf+H+A{W{zjYbM@m8bra(VK=uqxaP;*;Cm~sjVoR!}gkzuuVHWet$0-7jQ=aPlIJ!X;!X(*7fwM531uNm&7&wn0h9h+7X5#yw`yKI$9WB&7swO26B3f@DiKEcwJ zhS;4OvZWI&-y0;(hp1)f>c*zkDQ0Yfml!iijs;Wrp-arIW&!l%P*YdRO+j~N##(Sn z!(@IaHEwG&yi2onvOEfHi?L%+R;+XOQ%<*9VotIJr%)`8*@G*$@TQ2ytz2lCdkYt>%=(o4QQ*EZPgdC$ zWvNteh}^r$f?b^^0-C3UO_pL}>lO=Q-@=*HZec4ok-oK1FUkLOtK#D1c4=vnT|giI z=p|)sB5jxDPaS8~?MbyfDUe*BB0Hg-?gPVIY3M@upl4|o>?OHkoX1t7sPZ_OZT_j% zOBCPlY^Q*Q7>ejj5wNSj4q2W#W$MOJni7V!aHFpV;_R#W5ozdJXJ$fXZUq(b$cxq< zlo0%h3tb%o0~&Cwu#&*zN6IkNJN`s|hxuT%-Vd;ftPX7|kZ&}|i%!X@uQj+ngojpC z{V8@?7>;veA$R|2=XeY3OtCj+PCmrVin4l8ZbcQxCjo6;sn>ewfXkFU@0<(b*#%2^ zy$p|C)XEk(W1WCbMPHK6nx*mi_~ZqU269CabvfTS+c$!CqOMwsI<+NL8hWB_Rmzx( zwjaA*sM8|lrgJ`ON9WQwDfD!64{_>NfjvkKgR=~!{nDZ&u3Bs1N)2bBtJXV~RJ}#% zDcH;GehSl0|NXynN?iHFf?W@{ovrx#eW#M-)Am~8+QWRE%IPI8XGwplX->YUp$&nG z+K2sx+7rGhvG|GQjgA)# zOV;!!)in0(9LsK}bm&MxM~`$In((3AaUpKBCpN@YTzqDkVW6Qe5v=3=+!6HXwS2YZ zAIn*TO_=_%Adrt94_EAbS=X2TdTHsJ^rh1s4|;`F0Vtn!;H{O{mJ&r6<)>ii#7m7T zU)-VD#jVw;LqdDJuks##k@;|NfSEF&eG9SHU_GVfvHgQNm?lhW?4{P9D@Y4yWPI{jKn8k}T4z zSzWNrKoU<(+}WTYp%S&LrIwOPbtiNLc~%t&N3WE$a;pKUBwx(2^;#N3xvg zQrG&sle-hRqv~5tI*zIuQ&w$6D9ajJf_O3a`!-ykgUs=DzLdPG4Qa1Ieq+tazP6qeS4<9XTu_t%Vgqk0xj)*x&nf za;Nvcom{D&dc;kZ7$s$r$IWiFzlQ)vP*I*uAxM8Q~0tf!Wyv@O`AF7FJ3{$KKssUMdnEN)(6 z-zS9{Dt_)}g|}j9te}9fuo_gd28{Dcc)o&AWn*!zr}Yn=(>Xen+bhh4Zhe>PEs8}J zs#d^4oMXv5AsAUriW(nQf=Uk$^AznqwO;(6R@M_e`&$tya9f;q%Vj)i_h;~gan-P( zFCJ)xODe3Zxanay(w5Y%gRF8BEDZs>19!1#h!t;>G4}*(8%m!aRzf(2Su=GWxmgfc zsVeIFO!2`X5Xv;9lv7>2C}%ttP+qh~jkF>XVYzs;=Pn{fTXFo$a?7F!=CKE5tq5!M zzl)t|j1`dvm&-Zolzn~9CzVCj82ALH9GYOoc_#Dln_^heJVfXuE8eH$%-q+o+koFb zX-*H0hPeo|$7$=VSTwh`I62h{Ps{8)R*$ATadB;?RUR9BXoVDaDa?n;)a>d;?H@uU z7C5Z7T>4ZTwzf}Jz+XiDj!DvRw$n06&Nk70u5+#mnD4(@A%XexRxi&s6!~wMuZaCN zUu7F^z{><5(1lWZu}&pL{P+3Y;CUS2-^o?1TVM^-+A4C4R)mt=rbb(>_2|u(Zl%P# zMb243k?Wup&z7nW^=)y~OL#9WFl*XDLKv7O6)>-bj?l`$T5sic0?{O~h-FE99T}HqzYjLVS&r((l`PsT( zuLGIbA#fe?#YDQd1fQ`S-`M@bH#I*^&2OwWt+!h7N`G6`iyGyGyNC&CPHl?NeOByo zSehJvJeai>cba)Ny2;W*e+_r1l<&hm=<>(iT?y}Xx`}m%3V9NOC&5b<<+_(7|4!Wz z&~`_se?DwQAYz??_yM2nRHNp{uqp;Dw&*+SjmPBD2;7_aEd+?b{M^x_EcKdJb*+{2TW;nYhkJ0-i!Ja|A=N=!IyMI@MD!G@kcAX$GFbw@pM z?&?dPlXV04Cf*iq_{EB_jB$i}rO5ZEC;sBx1!?^0w9KG*5;WlY+65eFuXT11qi zynXQ3*%?-xsxar}E3&aOzI46~V7P9@Ynrog1Ul_HR`gpU@P@4Vjs;qA|IIp%LhVk4 ztohA47cUmt(_y-^;LW>Moc00N zpFJrH`;?^IN7jmTtwFB}bp0OI*b|v@(3z(|IP*+4_9{oY4-kz1c~2^ld1Ra=PCbxb ziE*h^l5z#gj|C0@$W=|_A}XUV6Rdl*d!yR+DD)ne1%n= z8d}hatW(ZooV6C~LW9KRqdl$*pXr3DRg-Q+mZ$Z@N4V0leWkGdv`NF0Y=n0rN{Pu1 z*+#~BOM^C+PHKI)K5ZY2am!Y%*cvgFA45qh1^4OgNyE*NRS)Gz$In!L^pQ^$Wu8iV zV2V>)QmPkS|F(B|(e0U>&4sC&)D3UZ*wB9?UB%?*vbU`#;I&A6X*PzUra9k;yz|0} z@E$mhkz_#Gu(HiJ>2lvnV*M-YHl4tY_1*i#mqJ_i2@vbv$W>hy5%KS=crL=F@rWIk zDw%?7_3@%fUDPVn!MBgg!2lbg1+4#+7+>3y8oBrMawq8WOzF}%CQ5tQy6UCnXc9)VG-YM>_Mk^2`&Jg)%h(Wwa%r};gz9}OQ}UJGSYW+u$8-t~ z+)7b{*08nUtG&HxSvMTLrIxkr(8>HXR(3)xD{sRw3`^rzu1-ekWyGF}wh_)w$lW}K z1WuMY`Henk5D&Z;aiK`rtJH=n?;tRHT1(F|w`gcaZ5(4nA#M)I%Q8`Siz8_niJ!>8EQ; zy~LIf+Zo9a8DuYDC?!%l*i14z;Ie#EaxcWi`SJ>*~7#WoWA)JS+ve7-q^(gr!5W>#0*Y=gwT$!QJPdGyALzOB0rQH`XC zxE?mFhs;!}#8DkhnJ= z@UjNpUK?0Nl<8-KpD_1?pO7C~CJnH4rJM*QP)rzL!=WmYUL=?1ZKXf66=78P54Qbm zp!H@v4aZlebtq~m%6z3dU+20!R8|GtoATS7)OL_BdHN0V5KD*K5PUP$IU!4eT2E|? zwqYa01o;9yJ9|o>J}5{WA8Es~z!ay$f`Ro@tB8}MrKe#Eugr3Rkd)dq_BqxQ>lho> zLP-`_;bDMt`s2I+-@^`~(u1AH1Q8Q#^9>T`!()9Wd&UihY9`sR{xXFZ<%l>NcI{W5 zc#86|HpE;^nY-NPgI9M|ci}lzIxfzXYdVF`vz0zH-DcJExPdZ{f^QDNSp&`~MCX~( zi*ON~kCqZuzqI9OxPZSYQbdw!QA(Ae)x?-Na;PP%z+3+~-sMuVT>|Y=K9E9?f=ady zETf>;lrT9J62?dBK984D}Ry7Td7cb0#8}QexRs8+INN7kD36Z>)go@cg2n zO_77uvSQ~->H0WR`WXQ~xOc2tCwS#>}`K4qQDq5&dvh$+}7_F~pl*Z$aaWZZ4z;np9?Z zS@C9zG+eD43DCg&io;8b*IRAZ_00VBLF8_?IrK~nuMcH~4KFV$@08PJ-a}X>KFzK~ z<#%H?y~}c%=hwTXn*grA%gZM2`Qvau5xPe%rc9CNYy#d18!X1*Hp(Fw9bQL#wO^V| zp-gY`GY>B#;txuFFohp4AX@t8Lve9OY?};}X+XGy55>#TPsh-%F2$U$m3keAUw$pl z9G8B%<1n}nd_+E&){b?C89}Gyf&rYLhTv2xF;k>_ui9q)g$-O{D=)3V&#(kpX2*i}JD zAO$xW;gVE-gbQ8Shp*=vPDP*k{Vpwo`Pgwe`CRGF9YpOj{`h~$6T2eP98?6mxmEXV zhyg2~g`33(`J-s*MW=_I@yHgBH-0a|ufeNSEutk6E#Zhl=4$Wp{=9xf5WTHD+Lh8P z7_e3qXs&s z;wTS$n&FKoUs^Wu&sq+xk!3u=l-tDle&B3R*+}4exDj5#j?YP|$5cxC0*B87z3o^Y zm@56hXjIOQ`6F?GRT?LWOp;63wn>%j8Y2xc{+T(UbUk6GwJhQTdq+iehaY(#MZFghNLSy4f%5WOn0{ zEd0am*q?A24(hl}K(p!fC^Q@{!Prw;!qQzf*zYCW*DiR5v1EGzkf zwn31N$_>J{2NRuWK{fK5W^HY39{c}PlQw>aH}zP6UDn{K(o)vngstwMZXZn*ZadAi z-3&PefqN5&ezOgK;qA|MQ(d%W!}|+4cF}!wC-w463|;-cwm>mzmh?|Z;```zaN6VJ z?H(vM%jW}q2G5p-_q0H4gDY1mQHF zQP-{IL`s}&A8>8sDcXHwN1Vbqk87{*>}w3vG6;1PxS0t*K*qzyPG9=_5B8b(mbo!P zILx{?T2kvSnq8jCoSo~do%QWoXctVbN)U_=#eC(8A(`zdb}qIfP7@}$Gd|JVwA9`; z$?9}urI$e)K(YCjAA@DM{Z*dQ&W#Pwr2d&8^-%p7+KBsOs?(k2Xx@`!h#JCHKm}>y z*$Sxw!xlR}sO#f^3h{*zFEvkAfir5SvzpJ6} zgnofioYJ4p^(IfR`Fb4CYprZcXc`CS!Z2oNw%fizPnuHY_;c>`H2W|uN!fet*JylAM;SW3&;E*2;^KaL8H1Lz z9*d6l$-m|xknB=Y7c^+eTeBY_m~_HPP(43kJgj( zPuipP2({>~3a))6Qy4we5)@LC<)B|U)?&mPfhs23B+Yb>`V3Jx<~f2dUDER=z@8v zQLv+x7@sXGxpxPy2^Si*qY-9^j=SgdPgl+MCI*Rn3va7^fu7uHlilas0S@~*Jy~3p z{+e@Z|7EYGCx_?S>*>jLf7|Qm$vb)WC3t1u6~l(xlLk=G3sjrt=A3D(Uf7%C5XKEN zE!|7$Abelh$7r}%`PzO&PY!=;->WC9|7*v7Nfr=y-rGOdlMx07Mx4dWYvu?N?~6EY z8fa5f)C!F*ph?XT#wx`fs0&FiI_0H=iYYD*Oi_sov#VpZo?PnYK$khUwYviWGbc-x zcHlt+Coh$8bk&nJyc|(ll9o1hR1*ii9nEyo>#`24)v^E$40F^FEh;#w>!fiN9atin zG`E?fuGr|~sHc-2RCXXr;%XdK9NqNf$9@j@0nYs_zybYm*+05C{6tPQ+0okWa5K1r zY79MhR|4r+pd*bgdMIVYS2Z1D4Y-pE7q3hr+(|WvcGh-uC67Uv3l-})V5>;#b74V{ z19O3K%!S6HQauMwrWnVB7$Ax_a3DO8xG*+!tkjbYgPo-WRDeK@3vibMn@UA-0rV3? z#UyUFcMI9 z58ppiGj>e)yM@L6VdD_I$RLl;8P{}sefsYfKIckf4J2@hxfS#Ql zb0p<-HAh47vWslcFV&z&T+`Kr#&?670s@`x`ffKz2SgWvaLRSU9aFWWoZ`jB-X7BQ znAAGLu|iKi?B)1LPp;~X`ZR{;eH@bzYe+FO`Z>b&+?)L!SZz3W)IbNO9w*;@Chd@u zI|e)OgqxEOhdSUUIoWTxBUw)tk9MrrlLtn~p<#wWqa0YWIa&O3M+05L$73Dvxtx1# zoZ}lkIdZ(TWX`=k!Le9RPMhTTTTgxw>%gMG4Av=*SS?8tzIV8b8Pgo!>7-IK9Qaa` zx$1u*4TFo}Iyn&T zXW@68H@iiU?JS&6da|PlUgAFsXHzuAu~|=wjgC`#a=~T?A`501@{=Q7Pd3=*fal}f zob3)o&73^{vuq|OExQ~!dafna@kmeJNpt+ECok@E+|!c>4>+#r$yJ9O@a8Nb?69=C ze^+5$!_9MjXyH-xIdrviN&DxhbQ8e6MU&%>Pxa*L6OQS6((jZbNl%_nckI)X3(q(P z;$jt9Ebp9SkDhz*yaOK%aBi)Oj-z_+-zrJq+m2Sd7!e=4IiON31zA(i}c)Ge#+N+vO|FKgMrit zObEW8aC&t#@mMcR2upRP4Gsi)VL~(xRNyQ*X|1Wi>&YbTYN@mq8MPHZo%FhnY$9`Q zud8I}$?xhb7#+^-*-*iP#mVeO%6kLdDCUSI+=JMj5}GJ*=Ppj0e%nN8hZ*mJFl}d) z(nTaRQ>6EkxUHtrQFLmd4AgM3yQT7(PHG#Y)E6JOR!lmnOctkRQH+bi$% z4?2%482i$;2(-fUU%S_#UP>p#X8$6H=@+TM+j8<*Zz-=sE*{Z2?`aIC zil3rPZXOOQV?R|w5DVww903c@w_1{dF4=>{cLQWeCYAq8LCnHQ#FnXga{CYkOF@}G z&=TDFXr$qfodMX;;ZhaAy#-VOJLcqPBa~%YlAwTAqRA*FP$!KYtzhafm+Kg1xt`oL zR++0Op(dDZ=jEu2FO;-Tz>xc`z>p7~DCRzCa0F^u8Y|V#bRPWR zsY@lWw;C9Plxd^2Tu1HP6LEb>lDWXk&}!+rQN%J9;B6J>aD zzJ?OzmwmX-W>^6d2wWTFTOPr<>i%;P?x+f5-jqvNa*Q?1TK6{WVkEe5gA^QFNlO_ zc{wCF<;{?w$!j5zi8~?Z%YyPoNOV+Q2Z{3XF39izz6cVSyaf^k2N%Mkqnv z$B03fmoY-Y@+L-T};_^k0iUwTwiJ#GI&@yYoRAgO~KR56*I%XTW&%=Z}Mj`W* z4ppRSLdt`XB9J0)I0e#YokVQK$k4KVK#^O;sL{!YW`@6gn$*YTqnKFvGZjCh zW76>Nl}bh2M806Yvb($-8p&1hI2bD9XEbzA>*}p(ROCuAD&0?n(eXGXfIUM3Yhf9< zGu+N$`oL7%1BJQy#$^+^9xWpiwdy%^EFI*!GxHG zg|Og4*uZ@nr*w@8F@tqXIxKyn3@gMCU5G)hj0rKL3gvOunEz(Q{5Najf3sr$n>Fpf zSu^#l`5&}%)_>XN{5Na}5@O~T z!oHDMI~3H2-xngr7s3`5!V;aBSn`9?%V2m(4;Cn`0V>7=p|rjrw%`SEJq=u>)Pj`xitud}RV0z> zEmnrMGBJg(GRNY!S;LNNAX5XkH6WJ^uvEfY8Xc2O>5JuVgt{zIA`BO3)e@yz6S+!& zBL~YwG{=mxN?hdkQOtxB`1$@cex96{OYu96^Bmb^@lu%)2ya88Q#j`DG}uipnP_n_Q&}2JI%DNREOd62QmdNu(@fhV#@S386_2jY(2w8=g{jl2Wa-bi=Z4c;4uktK?1K zctD*H5gc_3RI4Ro=k7@L3bW4wA zwsI_UgpyZ7aar^?NQS-Sw+4C;6uL&K*hTtqwBZ*x@o0`&Wfh&fAc%?m1V8tB%1A~A zu`>TsA7riTTM!4uoPtY_j@eD?*Fds^F0R3z_!Jdeiwd?p`@!W$b1W?B$-rVdevO}E3nkMQ8j9lcr5}N0d968s^alVkI0jg& z0T~ zWpE52gJXcB8j!&;Ff#?MQ+jd;Xym=2k++8NyfZZN#?Z+7LL+YrjXc|pJlTyLDjIo9 zXyhHCkz+$6?+1;%9W?T8(8xick>|CMC$Nz>f=1p48e?+h5@_UYppkchM&1M(IbJgI z7SPB$KqGGejlBOea{OfE-Jg*+e@5Q>8F}kxGCHy_o@>0;!0V&qw2x{guGxDy^$ia<~ zw{%9{(HYs$jcnUS-p(0$H)rI{oRRl(MmAp~@8paeni$zs=Ns8njclp$Y^d?PiHm15 zjb|&3=M7vuuT@4i(RjAdcs9^@w$FIpy2Z0~#xHdYZQZXCLe7t_Ffrl##$zrYMsDif&Y5048k&=Sy0$ z5lh=ky0%g23{ZX(Jnl;xz6mSjOWLzZ`2^s_CittD6uw#M1CYE~=>ec@=FARTaOm=q zlD2SW_7UjLS&;)SX2ewCd>kMb;h5T3d}GExf|*QT`8C{07ErAniL`tN&W{r5+76|Y2iBC2V#+_k zPuIUbq7-*r>e(T~vmCYSQO4cHSzz$bN>>!vqJbwrqsl~TypzFNFn^~85~=$xv^|m5?1Ih{>CrBzFp*m9M)wkF@otPqB3;#hXR1=)aF{|; z(XVV8l8Q>QX4wo$$4o0=HSJXfL2ieAN(X@X z`?$`GecY@H`;|~+4%iP<$fhm(m7V~9??)fAsnr3cH^9OJFrjREaDX#w9OTRy2RZZC zgNmOkR&@Nc3yuMUtK#D1lP>uBOkRPT-&mq%htPSV_(Nz2QT8Di92feW(DY|S9d|30 zDYlU>Ug9{c6sPMge2eP?NVG^O13Z{}|9WsAO2#`f2DLga0QRl!937&zhm~Ovz4kCB z6w&L$m^4J=jws^*emkNJ1!#N}V@0&!D2C+%Z9NK|U!XS{h&-l@26pI}G77-=I1a_P zQSam6+)lB_G4R`Q*(e&nohqMD#@631d#oZ%i&=8Ppqr`vSD>2J$-}>xaS{*q_=pm2 zE5UrzDlIW9u7-0|=A`l^K>SJN3&XjjQ_375b5G&$^c=l8rOX5PDxEo=r7N?5O+3xO zdRmzVZ15Rn3c!^!jCDM#Ob2%8ESj21x6dkL07A}zmP&iiDN_Lge}S-6TK@~erd0Ad z&$K1yQ7)B=TtFLA>8lIMbUL*Ys(*GtiJ@Sb8u6<#7Nm?{p~_Tha}m$Om?QO~QWV4|%Q`^W#70Xarsv+?b*CqYZ($hBW1pQUW~NE}^bm^370YQSNQXT$7>1BE#*n zG6Nv)G8&dkuQY7(6=gE8M^}`I)FBhhy{{_ck#XWGmuYwnJxr&b*D%iMwCft&VLDa3 zjsZ@mudkzx>6CjN64EK^hBDGUUA8Q>JmT2c3bfIzG{y~*K_J$>seBHQc$3S&y@@K) zY3y&xc&)_b$|zB>3YQ?yTU?~gE!1qK&u%G$0S?}Rimg=jHso08yW7eHfTy?7AuEl! z!?bI6&>SnZzY7IgY1>^0=l>QO-weXtn^T#`N@L=C4{^H~K7u+8Wm##??+D4Q^yqgy zhp`Js@m3U%TrkC)zDW&~{!%d#Ey%fw@Tuj%HmYFd+H|e)rDD);pKE))u zNtd7E>DEn(_?t5`{>I$BN!^|)aR8T|G1fH?GwUX$=fN^=Qj6z|r9OuaZ&K}lFokc@ znt!0Do8%d`EM9w*R>j`wKFYh|o{iJKhU9TfBu`^g=&=OrGq?Vz@= zlth3luawmQpTAaqz+Y%$sGq)8jL4Y%Mp*(-@+}@N?VzN$$^rntcgjM59q$-x{4ct( zgZBT6M@KuT>3ijCO~R4)@IpIQwNm|D`JbzPx?hCe_keG2w?4Sustu}(;o7Qg>Zka9 zs}96AvY$a60I(atoeTJ8qX)uDQ;Mjawd>G^6_KUr^CD^#z=a~}aDduH)gb`i6;(e2 zcvw`Gd(w`@7;Gt~MguERTpb25x;WQxqBs}#E5TrX36}Dx1WRe>qWT&3(O?&~Gr&d{ zwFkgoE@~t|2UpOZ(=b=H137dqM7jr1ZIO_VXkwB)iqf(OXg0uIZD2S-5$=AnM#E}!qj{Ll$9+kZ?6<<$m+tE@`XhMG`z2K6qDmSxb|(&%RfnM*@- z2GuL0cGb%L)D`6tx>1xT%HfVGS7%2v=y(~m7kJ%0SwKHev?hbrdvg7cJ=Kqa)$&ri z08I3PE;8t-7iYfr;;OoPb5#l6jNS8QVfD&FH5oKZ0~gA20rzq&GqN1Bq?F@|Y~`4< zMR^QU27O;%?Wr~R^YLhKy@|9@Uda+SpoL$4gpomk6}Ya+71aJHbG`!0t58wx2W&z` z*cUP@s)GTlSAx}K&^MLT5t`U0KS1oIc)C$RZ9%ns)Y70f_fh)*#QUg2G$!*RFzsJV z9i@^ZPP8pkRv$(lg0qW3y}wk7Xh1ppTa@{rW#3h14c(~B4Xom;hC%RfU)Jn)Uslv# zzO0OXH|6t-zz`0vB5_5{2_4#b@x|42iWTmi7Ti?0A}(E8Xka| zwSv+Eptu!Op_)1g;QMOoC;&$_bu2*N>Rj${|`otH%ZE)`uzP(U(#@gO^8d8^g=x(PvGd{X9xTC)1SX^B~$M;BYN z$O^6C@$zUyD_CY8?QA85(0eU2yfv3gYKZ$r&5{*LC z%7*Ls(_U!dI&BES!f~Dc4S_{k@OMsdnid+`9$mH2#`bCmz@zqsv|%I@L}6;L3&kiGG7NhN8#~dL4@H-Jr;h zsQ(7-=?Hz?pcfsXvKtf{2I1#vco;0;JpB>|lQ~ZTonRg3DXtSt<~%*_1Vx;u4j)6< zd0MT3ryrwS4taLQpyW_=XK?1wna)@!bEsw)b%F=~e`9-u<1rymi_xC$YJGWAfKPtw za!Bn0Q^}z&pFn&LZTSS<YHDoH@9wI?$a(jQR&6F8xE-!{9*jzs~!E68{k#0~wkpoGB!~X(ruNl@UoV0a*Kdl^!w6h`l@;@8^$+B3 z?#?ZF*BvU!p@HG*WPo48p@bZ&)&oYHLz8=8!sJk959s14z3c(Ieo9??LfcO%xhH(g zQ?hBGNrc)0kEF*%fb%NFN5C?#(r*z^-c<_hr4ILyZ!N@xH$rpDHql#-ugS|1zCo|- zZ248n>V^4nm6}GX-vJzsgu1ViZ*K^FKy7-%Y#-3l-mvTk^q@Cd@qn84;mien!14!e z?W2YV$W!Q;OY#W1FAklx1C3#Wfoeg(F7oP&GP`JWUo|3Nmt_7FN76AKBc05DBBe9$ zr{DUbp8XW`DfF@*f76O-zn?NcMaTA2-G1t)xRM0{;J5uCazEYer~0`hOOf?w(b5PE zsQlJCU+2lxvA^2Mof%5RqmpbRJskutd}3V|XW{4iW6C5`u>qJ)$@JL(ID%wK8GzwW zCffjXJDFMzR67F98i-kyOeY4aT{Lk4>mlw~3Iz{_IDG$HPT$NYQ}@p>l*zREGpu{b z^iTtVgRmwh)0jb+mC5weAT<=gGDvL?P;)SIjvtKCPNrjnxu*AnF`JU9>kuyR!w`&p zGF=~nRginLdq1iVJ*ZXBpA<(9g%3q1hO)2?L%D{mp|Fc&sy9siq&AmpcogNLk2^KL z`~*;Km>x?lmOoKkJK@+fOl^dx1doQPecYMia|WCf&Qfe&7&blzuI99%$Mp4ZXzDRt zAC4A3CZ8x+)MJ_urPedNrqxlflOrUe(5WNzCJLNKsCzVnHPKM?5qcaA2YQ5>j(|Ho zLi06{F#^JlP`Qy9<|8y#1II_gMIWJ(qhJ$9C~6dJ;t1^p2*5)W{9mdAP27hc%>;i? z^81!W)kb58vuNgMxP~mcH5v`bq8guLk;|glpQGk1y6`#VWl^OuXz^ZZIR+kUFVPrG z$h~A3izR61<{tKEl108!o*JeN` zFDP)PI@JAzR7R`XcxcnSE;X8|HkTjKRn%wU3(A^_no#}=F8KWysPF|n{DLzZdKz!nQ^}d5X!z6Q`Kbc+jMoQ)fJF(iJVALd6{FhC5;9w&vO_ zEUK63-7G|&%c;><5Obd*zQSa_Psv}Q`S-~tGgp(#Y$$IvMb5@JucqYLpsgm`Y|u85 z%N&gJCK@zHZCyJ}$}c4!O5toxufBU+e)aMdu9)@nU9{lf`W&^5;Ublqi&=D$hR%hw zEi`8?Yjvhu$^82gyf$b z7RdSS5sue1IjOR9qk$JtyU4>gjhain;~*)WCQD$YB@*1Foe~_RixR9NYn=x=`l5u;5GG>;0TSEAd8F=?4@l0AwtU8TCctmT8%IN_^)aA&>$uWs| zm|RfHXYcZBc|lL5q_AKTiv& zJWaK}T%^ZR(iVFEgZdsr@P2{%HKyO!@mSG+rc?216%DIQ|HQ*zucxTR*y~L(stu7& zF{)nz_$*Xs1FTx8{s2&Ak(vmQx=39D&~C9>0|2FlU>=`XjB}Ki^lCBO$V=+61it$v zZC!%p?j;plicQ%|8oLymfR}V`sX7Lr{xU3EFKNXxENL$(Zy9F}Nl;^eT}a@}I*Ewk zU((V<#&QywWx#T^8ZuE|6B#q?d#RHIW*wM&U%7yBh93k?yR9Y7(jG8fYPr5;c&shG|{b zGT68l%X}gke#BClNCSW50tbJDz7ol2ojS;!y?^x=vZGHl$XkvwiTA zHD#@X!V)Qbz1qJtvu3)1RsK*~s@%GPx!UCDQ7bj~S-}HT`Lkf&0!6nVe>1h-qSn%~1{jXh;Vl?|F9d{roNtLm+B;qM{0VlT_AoeY`uXsbFEV8>Cl8co}VdXU}*^UK7) z_^H9vVLO)WOzL<{tw$%fBSOfeuaBYKHFu!eOxkk{w{phqfEF_8;W3y6^4qvh8##IE zXuNep9>+m$_cOE3`x%?oOnUG$OfZw$@5B*oCZ%ZL-EjoBRd*p~&ZM!saQKr+f9%3G zEt9(MR>zmhl-{6M2g65;%i{CBie<_3q*{#b?#7hMq`IjXp-ftx$^u_&V8|X!GSq(x z*IQfmU_dh|@)QPdaGDzK%HqEJ#6Z=uynX0G8Um$EDz+EFS0-JPB^K|6@n@1(x*9|- z`w;qMQdBy&z47}ve~-*Bx*zJ#q>uMwZlfO>2t5ruEq8$X5qla2(rJxa78i~ob?5-* zRVM8{jRDHjI655Up6)%UPSe^n1`jf`0`Q-xT@G>UaPpAajIsoL zSSHOo3uCHz7*i*cuAfEzp~HyXGO6l0^r7YvOxaADeMFrF@bfvCk$2p;huT7Fcm zfHa1^3jl^X5&)yz0RRKs003j#5CFp}0fw?3Kwrxhf2|FXf$N4P(s1K*n%~{m)46KgAVeh^6UbbfsBf zU?sqqwg9kTm;o@HzSQuv>V-7MRQ4FdDaRY*Cjo}8I+Z)a!_fGQ8u~xux8e+U7voop zem{f7hzGF_`JLq!U?k<#!}v)v!_f5rz^HWwz<}Y8hR&%zNMqCn;bDLAU*J~`Q|n*g ziw{%n^Y9MKe^F~9efSr&<}khb1p~&ES^yE};eR;OmzJJ~>}U4nfzhcH@Q-h0`cGz~22GZ{>4 zbs5f@-zca)2R^p?9J=wV+LM&aIP1=)*O%c+vMK5cW=S?3zk*dLn*y)mus55QT!kmd zroXPL695KZ!!*vOi`O`_?sd+j>*_=w7Ve!0;qnI#yqI+0D`T>$>J4xaExZ9ECc1G0 z?IH@fiFOg~zp2gv2>wl-2C(Hf6}Pxhm0Oq%L`fR(yshHHSW3LDeqEZRiz&YumB=5e z<{|&g=Z@N+()Rh5mICgm`2385@2dC`iqh_~xH`XMn2A359a1mQ>EGdYFC=9`Nf#(K z6K?eaWoN420*v`X{RY7C2Rtt`mZ!@1)L;bY;rG;#%JRj{v8`f$@9ieL=Q?iE^wCo% zMNe26bBi|JgN&#J_@Ut~pERV{N9rhw%TnFJvm{I10}%39O#}GrvAP!^OSo?sVi_zE)GIavqjwo(9w!6r_wpA8tEqY7U-Wx zA2+)0`lMmfK7TigQ`BBXSH`5$cAL5pjNR>O3V>oq6{)n`q3!@^r!eiIqHY5AwW|IE zQ2PmEm!6=9sWj#lD-xS(5z*-dIVc4LRz1lnBYiv`wW!xvCMb z0GM*&`f{oHQ*{Nv#ix*+OB4P^y}4BS8M=~7hn{ifXL;&oVDIwK!d%+&oUyL|KxQsk z{!xDf_~r#;0WZ~L@^^nyoX)<4Ps*kHFV#UM-a2k?~j+3 zLR;Kjip%2e?ognMI|T}KfEFl47I}a#?kt5vad%jXJ-953ySpw9GY{_2`^m}7S>XQe z>-LZ5oV;_AoMe)WbdsTo-%;iLR513%%pYEG*pQmM@|cC4^tGim_s?u&&en$U)8h6n zep)J$_dmm?$ZEQmIUl01H;Yr=CLt6O*Zc$bk9Xsmbs+Njm?I(9`IyroD#bIWL7a(a z&VuL~-&_b0-;ua70{FUfb5wkQENn)l#J6)kqiQ)Mb zq9o=zh#E=FwGc0pnlbuihmo~V?~%1Arj%KjrlmAPXkj)pF-#gIH#d4+nU%s^kHCf$ z=1Pd>Db3{&UsG~uSt@fCLV>B-rZMX!*s71*F$|S<1=K)&mB*K=WHO8M zXBOesR%(^j9G6Jh8QogLgKn*9V|sH4wSWC0F>)D@&YS^}FufTKu{^yQ1yL>o+G{JF z&45PSN}(A!6r0hUiqO^Z7_QHTTxL?m?B;lgBiV6$W>V`M44>sN$0F1>C&zuwX--H# zQ`I8rDAYpzsHr_HvM1)fneK(T%pLx?=WJEj?C5oeb`~~UW>PPjqgNMg!qa4ez9HTE zhD1b!hKEHN2dPjI)a^VSDPlH($XL`|0NshQ<6g~O5s?arzWM%H4xuRb7*ZD9H#Tss;s%f>-?;8=28Tfl{0(by@q7v&F&C` z$|K9w^jigUKg5d)=01pZ70p8seJhzKASzWh&qE}y!Y1ddm`4zrQzV^0s@6jXJ41WxnS&w9)n~D-zBvk^@(oz*Z(#lpp&EhaaEL>J=1_?04b3qS z$F&G*WR6DYN+XQfGt{~<=W@9*CvOwP;%*S<(&cx~<>BvU04(8BY1~y6^-bJ2qF;`_ zA-%)<_KPw$QBV`J0v-WPX<~LzZ&NfeLm^r=HG5^;q`Jj=tP$WJbc^^urNVaUP0io% z*eIZxSq7q2GqVLmOf%&0jxshkLm)!J%6 zk~@UGoTkO+5YDJgS1xN;S2oGhjUAZSjV<4GGYu5ku{(#3cSpP9^^#C7c|oYz7op?^ zryFXReGu{(W+X&N4|4#-tsdxBC#Y3Va~Q9rUxs)%9vA zr!{|-PYufgVO%WsAy7>dH=OI;Gn|XP5N@{D6`mf2Y_Zp^YVuFL zxoWNZaMgD9K_@yv0e#IbS-9Y@OOR6ipf~z=4(%G;w?pSJOgwz3)6$NB@CitPMW6ez3X5XQT zX<-vL627dZ&XH!PtZX`XGfdSFoJi0)ykAIg=kB3l-J*=O^dJ(w@Cg;{Z&rlp(cjFZ zLm4Py1kQQM{=h#Q4$pd#j9&IN@v*M{W*R@Nn8AMpx5lMx6)UBq+yl&#c*~;g0Gvee zvc&)#h8fg(AZGj-^zT5-+%u@hAWS1O=*b|QK4#FcKg@{`2?k?wpFwj5<7_a4@(#f) zJcAAlF{dTs{2$zg%MWf-?;dCXcu`|kzN!hlv6ScdP&3ajE+ijjs+Tf)3^QvbQ2(dL zT)(Jk0@@pac3Cvs#D}n3S54t zgJV@|#m1$Wv1VI3F~UrQ=&K{laELl1(G%a&u92Ly;Q!1)2(A1d!wjPsP8wzQ0{lG6 z41)+AjS2NFT_0`shX@+OaQ_&yA3`O^a-Pe_awx+%bC7o6XbLm8T>6(n#7@PlepqVCv!eQ=AX|^IB!0Ck#GTvKNgskVX{+;&kHc?;6;&zT=}O9 zIWFHK&U*eLoc-QX#>M7-=*{I19vnce@OK`Bx&RVK|Y4B2qtz@9t;PX9M`hMvVmL=z*5KT8j?%BiGD4+k=3xq7kE@2m^m;vd=V9u<0X_FHeb|7^4pYQmEIfaic@RSK>{NE6*&Od< zOxuX784umqh_2?Lx-m%Qq2n>g%0q#h(5F3geG~evhnj9?ae6aK^H75==;0nZwuNE! zt?am^EJ>1R-I_|&>=b@K7 zIG50!?8}v%7+82+W|x^00)A%2*4nrpctxLg;c&j9>bubuU*XH17)Y-u=N_DpUeRPN z-tRGUAe3P*j`$}s_L`M4e9}kkUNij&AS@)bTlY@kI1_)OzxSg5;`<2u%<2%4`;gOV zy1frw9N#(Ek0!xq6859Mr>Wrq)Z#S#eE|0wr>XnjXzSDT;%}S_IC)wMIEX8kTNH5+ zXNg-Ba}XKdqJV!e^ls7Qe~|bVc^xwQWK>&j7&jW>pHS*YU4Zop>DM>3Gxlqs$%k-K zy-sfrnH7_&H&D>ek~U|ro6pF$BopmDWG19;hcN`MQ}kh!w+M?T!#KB{xD>46b>_HEBf*_wp{-|eU9o`Doa0cq7DvyS%>c8U$4FT~;pZ{- z7SO@-W{@tZ!5S3QU=3wE2j8%tek#Oj5UaCil#&&?D|4kGpj39){Ijs(&A;?$U<)sQF#W@Gq{z?$RIsqTk-7 zJO5&`R?)cvtp6Jo<- zOe${5_XM+-o3=ec4Q5gDr?`WeMWIj4d^(hec0NTl7E$_VW>ttb&&;9Z*?}iYx1O0} z(yQHTjO$qZ%RlM}_6-i}5oH{sAcZ=YAc!g!F^pUCT_9T({>Xrv7T~T$ZtJOwlGz!Cod1K z2i8*`4`#&m_$CX78oh)A&uIEf+yFhJvoA5BKBKCyQ0Zs1`xPd`XH@hxt}&j`s@Irh zpHcQV$m|)-dV>S-jK03Xsy?`HHH3prYScEdPf7 z^nnt5XOsTlF&TfLhu<02i#0>_n>MM7;{B7w zZB@bl<4td?BE)ZTtxP(UfjY&tYT#e=E8|)vAa2IBIzv?PL8_ay*vD#(|J#4{vC2V| zj)x*=6UDQ-LBz&`fp$-AstC( z6@iX?dqN<~3ds_64iCfWv=gRXb@#?4#0Ipu{Py;)to5(y9wFF{M=#;#^8J^kVX)wn|gaR8~po$e{||PlZGObNa%m zt@MaS`fOyRwvs?cCh6(V)K&`U$SE`Zo!Tk@9oa?tZBwP^-t9}t#}3a(W7AmqytYwH z8Y|B)F<;W)$h@Wm8LfJ>F|Cy!`i-YbWh_V&$io8Lej6 zgtk^DYphP+StqSPVVTjl=Fs{8WNBrFOLHiF78uW=@GRCKzd0()Etlch#iw~FZB`UE zhbCpS+S9A7R&yP_=(aB<>+-*1G$O$IP3P4LhiZRAt0u3kSwQHIjv}jiMgz<5J*~? zispv1oUjfA(qy57xiP*t;baJ;X+n4MSb0$KdG%1evU#mGeg{;A3iIY8KEQR+%&t8RS7z>uS)@it<2C-MoS1}Uz$!Awn{@s z8I`C;5p+{7r~+*(f{BGo+wAp*78bQe`@cb5aBX>^C51Ib?;KtnKOKr$1ra~Fm^IH& z#T(BP`O%_*Q_4_iam)^H=z4K8cl)#~QLwC#I=rk{hG4qBNmBd(l zLy1da^5D{1(xp;XLBFRe%hkUAG;N-{FqJKhTK`8d!m&$C;p@ZohUAs**nr6%PteO{#v<*bPiRjZ+8 z2A0Rw?Jtb4<>^dg zD-9*7Y?Vhuy~zb%xdo;4H#wmX8(xFC}8E;eNCg{S4>f@UP0S&DL)Vnd7i5s>q z1llnZJ#35<+il7egmdt18WM!Lh|em@0Hsu<7QbWm<6NghAj8%Wu**jWo8WLp(O(AU zk}6GcDvP47P0_ic=yX$S9E7U}dcf#rn1rHee=}=1MAhcjbchShtq_Q^E#Q9?dG&%L zsasol=tK)E3&67$RxgN&y)Ybxw?rF8(W#c!*hEq4K)oK|7iUtz612ECPJIR2JWE59 zTUkLcxzh^MRTQ;pZB6uL%L;?2PdNHr!8TS6KPH<7`B8yR&$83pHdae*)M+rqw8uPC zx+D5?v$kA~!ELP>$SG+%D?%G3ap8OL@NZ)~oXVo8N4Qms0@~xe9!2fit&k%aR}4rWjMH!w9SFveXCF&V zz-NLAEJ;tbJE6Nq;bA65;_6OT9q7LOaH){JGw0R5AI>N9J98P&I$NP$QL`d(9`4hH z$=)t}2-ZiU17NnsXV2PN$!KK=&L~loxj&|ibX~bF-}~aE-nlCuodf-??$n^0H83H2 zawrNd{X4xHx3oCz9{?|Mbw^)_qQTv*Nf5&aqS-2k;-VvpUJbNr(A`jUB2?b6!XVHu z;FIbL)u>Gmj7jbgH6hR!veV-pm~Oa3)S}Ry81URHiqoNv%OPG8f%70AV*BVeM+gU2<%VNgg3Nxn!cqsemNM%CGC0yI3LOVF90Esj zDFhDOf&cTE*@vqlH5rJ@Gd^a$A#k|VXvC4KO*;l*5Y8pPKQOz`r7nNqLV7Ok_`@3F zr?x&a8ZPjoES_b*QTM@^)3CkuU~8Z@FH1v*Sb2P-l~uqK+V=-K^_3x3{$J9S7z*d- z(%_*O@)q42iWajd!7z*(i&_q|MnJqAYgMI;F7zae292|Rr{gYM=v$O=xU~Rc`gmLv z`;D-wLQgaSoo>Vk%nufMMp!1qt&!F#h(eRB>SX=T`oqss9?d=AN7<^a>q?hLVNSCs z|7Z($2P$UtKYsLT^Ro_AZw$_e79E&km7|kmFxV_gI2N;&MYYCaY_of%XvbL0knH0) z2)H*H0-n{P!0|XAuzP<%z_Y0kaH=!KPQW;4&xX^xi8x)cd#ir&tj1(66Q0$gW0S4+ zzqmJL3I;2?*ICC{hft+m>k3fIsa8L)qjYMjH4LJ`G@Rd$((!1_ITxnkjD3{SO~>8S zQ5rGbngEgLPiqB4;klR#-~5StmZNlHuGN+9%)o4Yl)~p(b!cjoHOf!zZe?7(<455o zW7<&vnW)53+CLxHjg@DiTO6fI3vgL_Y?d_!dSkNQL(E@j^(OahG}}?ivdGFviKEe~ z?A-6PG8!Y0T~i2N<)YGaFqDo`&>UQ2v1_&I(;SRI_HQl(Tw4kOua^AcP`~-O%wUIx zLco{l5N8)yCn4a*a0qxX+K+qW__+SGaN6d&^mY+0d7~-QVypSjeRcU_D^T0UJjI6w zcW*90xtHMLCz{-wF`FG*f{8hrs&26w(4eKbE8%RrS$=eP;g-^rY#C;`XmTyHjzfIi zYIUI1%W*psO{=z{!Md%m20_2K!a54EW~FrwV#q3M6GY+FxNMH513Pd*@4v>HkdSl! z`zvPK5IRt0TPoVL#(D{hj=QW;lxLmgg1&N{^#UUK9;+95ZNPz#b`RfxnF!3-%Cb4M$V50~l6=H(7OlX`NJ?twO&vLjTQ}v$zq)L!ka6 zf2q3nR*X)rdQ)1t6&-`?zZL>jUjk9zZEf+2p0(ZDiomw*IGJ*#%h1Rj=h+7OlQM)mfhk8s6bL7>hAf$A!Onnrk?qEiQOc`z40 z8PzUrxGl)hmLEC$_lv~;VM2p@;sr0Zn&9=6TKBFX?+6#3|<~?Kx=e zgBbdcbp>MLaVv;c9KyWzl*~i88hnb^Cav`l6^>xcJf-d@afZ8i1n23el;tRHGP#KM zRQ&$g(JvIDsoT&bKw)K7spp&b$&eK8dFaTta;a zWL|=voJ3AHsL?4@{01F7g@-*isPJhk+E49BXLx1C9dIt}%;I&%YUazRa&{VFVY(iF z24|@obn*;_(hX{V7L~j~MJ`#5DeRopL?^$M&7Z37-{8ub-AM`Yb7h5cb_7< za^tRA6?MwcBKSskg58DVVA zht}Mm)9iSJYd1D7L1`c3+KN*|;*mnkV~oe06#t3U;Fsqg!=9je{QP4k#Q5h{Yg+#l zM}QwgL_th@hT90vp%j&Uj^4*svmgRqSaVU&1ut=${`SHOfS$#~{QUwCd#zEvYEwhw zdT&bf%KD8;T6ntjf(BbwFF%gxHURy{`*s#e;=xdQK^;A);S0Lq!Sw*QU0Vob-OcOa zthea+rC(W@e@XerD|9nXS)QK0!u8b)O86QNB_7h8*SHLNND1Cp-G4bY8{eP?D#u}n zM?V|^;q}g%q0Q<{^`~}??w6y>?{H!Lkg~qVB>RvSzQ;W`=USWEeLx#?ni90@gH`sI zgrz>>)W!+()Bir=u?eRxOD{gc*XtDU$;!g}I~pai$?KRXqgNv=c~bknb}xfaxD#@s z`zkPBHKdOp+ebQp?FTp^qe&u;9wgv-QU-$sd`rP#Xd{=CW!_9oTw;cA=vb z;LZ1P=46Yp4qz|FJ0as-K8~I!Ahs-n$pR`g#Qut?=~N+Y8nelC0SkU-Fhjt*W(;Nu zc-58x35aOVAX>l+4dx1H*^w>g1Gscm`UEpsC?;xSL3p-UK)FE-mI^rY2ZQAT?B-ad zz;kt!77S;LwGQC+S?`3565|l-KRFDe};2bVFA;W`B6%l!7 zPoAffTy0-73V^SwvRMS!u4WTpyP8vg?P?wYwyXISSgIPVavB%sTF@cfVuhU$;yJpQ z0=rd$+UXdSbO76zc0xvae5wLYmJ`rIgNgzw>kO(mz~y9F-62jUwFKCi)K%b`^1{0% z7t=sM3Jn@LfZYmmLI(D~RBkmDu($++7L60Q>?|{sV$xbnj+bT7PQaEj3_1#Uph0H= zsdSRA0{+$@RDinz=h0JumrIjyA%AJmS3sXCoF-Dhy-ExQ3do8ze5l@F0cuenz%T)! zI*$T!1|UQVFn!Kw1Iz5Xd0F?(vxg*d0DV1MKf@*gZannAkl&w*b4x=M!M}_yPj# z9$#31-Q$Z1uzP$-0o>tn{Z&SY-Q&v(uzP$Z0d|kCD!}gXH3Zl_zP13n$JY~JclbaC zeEntj_{L&l_xL6P>>l4-fgjKPtsKBJej6ub4Az$h?FFpWAXvaH4P0G>*lD^6u+ta< z>@>X;;PsPbBX}V8b^v?P*9jTD`*Uz5fYJjw%@6@kG#DnJ z8aAEAyfj>Z+Jzcmq=07{j1r)BpoYbmAT|GURsPUqoS5v?V1fX(5*2AC2}nPR!4v^^ zG?*sf&(Uo0r+{qZ8AJ(i`AlFkONd*8*#cHgVv9KfCQfEBPe7$93>F9|JdMF30cwpa zd|x8KK61-litsX3Y=^B(Rylx=z6%WEVC|`P>)=HO-U9qCGw>0x`3i&h0@S)Huzz;!cP+R!0UU1!VZj_N4{P)1a&aTt?tGHYx8As z=;i{j)>_%OQh>L2U#LM_vB=`mq=OJUO{ZVeggAf;?dF7xP6@e;Pyqoc81xYENP}Ji zmZoHja0OiKSI1OL`iP0zhaR3s2pFD*L8Jh+J{uMT1WeLkkborV*AoY0h=_KAfR(WwwNTqs}O@J8mRHt zLz8J@Qmh!8{3#$waRyNW)W-Oz$}9nyN-~%&;7BP3a|9%=z+j$$0SaLJEf8`~n=De` zylM`$yE}?ms=#Fhp5k+b04p58?X$`WIniqsuvee6{RRiH{YEE*P5E6Mze&iE8Vt4w zm|T;=HUVmZI$YQ;;B0LMI|Zoy`eCtKz@2&w_6nHLfWiLX)%lklJsZU2Z!uZ&JA;1& zuz(F3994i9uFq`77AG9Ql|AKzjD#&X`iuaz&|RH>&k2dsnN2PT7^%S}0mZwp z#T5bPG`J>Ua96gtAz)QE2Db#X>dxSf0xtI4$6#_#OzMR*_*cLd4IT=}(wi+F3$Sbd zOaWd2AC1NDsGaEmZVrzVGCuTC(JteakP`zq!5ab72QqjkV9X!}9|Wk68K8_$0_qN7 z@I^rXp$xtWNIRTCtOnK5sS}N0;)NCX+H?0v25|+9{~v>R0@T8Ol zWZlf5iGcAMG!x*pg)LeL@Y~Lyl>)0(`_#U{psfSAIodlR{_q2uuOomK|ob2>7Z&PXT+6vqhMIaVPam)?3K<(`?dLz=X35`U&WK zoOo-3IC@6e`^9Cr%-)vj03n$ z$2lQmf4- z0`Jt9>WqWfC2stE(%DSfWc(}lQp<1ATGWFf^x45P@e?>xGBJ{>m3EumqA?W(;&*^ zzC*Z$A2=anS5l6CBp^p>22TWh&&uGLfTKAWyig!U9mI|qc)Io|z&j``&&L+8dHgBD zg}#;e4!?2ydjYRC_$c6dA-4D|Kz*GA)%Yr)VGRb~1sv8OPE*H=o;Bn0`12NWt`?{9 z5umo*K(6rxEUL@EPe5>e1_=bjZNMOrfDC~Qk_c$skU=s9T-+Yj8!<^CCPy1HNG0H4 z5Q8)VLVjnEPCzMa-~m@N2v9qE0Av#Iz8Qlo0#de&%UALNLTa^Qlk5Wev|*4_z=QS- zatpZAfk9pYU4j|p7vR^GK>-0nx-lpO;L;u9c_@=2Vxqpm0_TefDBp`g2>}_+^8dMSRek5B|6QDlh0?%p)xIT_SEdgp{5?Ivv z4@_iGPk{Q43oIHmRp%e>0WYR7X(%SirZH$N;F|`&3s4)FAd{v7TFzn6TtL`71}z0l zUcjKWfP1cmOxgWeb~eFdnkPXPJ}u)P?d0B;HXW(!;V;Q)4Ph!Zk& zw99ZQGDFn^`=6*RM>>ELjB-Lot?e8=M!<0m#tHD-$rcj?OwwSI0Pj<5F-3rD#APPa zgk-hutq?0a9r-1Dm>=tmwmo4`4_~Y6q^=GnQOg?Jxw}7Du+2S7o0~0Yg zEFeQ-21f-vPr~51fQ?BRoD{Ium5j-0A!?%-9J;dtzNBPuUO?_N3@!?YPS4=7fT#=% zt_nz>iNSRNdjc5TY^v^mxB-f0XL4Ii7Ug7cS3t(x4DJhfnTNpx0ps&CcqE`@0R~S5 zJT1uJnE;n>Q6?{hBrV0j5)ii>gO>usnr?07ci#=gOC4#S`0q_ z*Z&9BX7W``7T0C)UBIDw4B}v44&7#(>ND^bP^%FG9|4J*F^Df9M+*ji4saROS}{rB z5Mx$r28je@Y|9{tfS7g+k_pJyo9_!7aOgn*O%6mS`(gcRw|CS?TF9l)TRfP@1XR1mOsB!fx<)XqR? zqACLHX|=inXVpB5FG?wkS{mT~gD2WL5`PEhBE;7dP@5Pu5HK;CK|=v{mO%6C3P|u5gZ2XY;r;{A?=Sba0!TyMFy}KAz<_c2LBUa zdof0V!^$o7l?Wsm?*Mjdq7yRCU+3t_3{XBk?t7ETR54j_i@|gOyYN&DSvZt!;oaFfF~Nb1;qWr z7CQu}?}s7DE&;>5;sLmfJwnuX!(g&cz#<<82Luf9XK+wJvcwDy3D}&J!4U!5QZP6s zpj{dUCp1vcAF`xla!O3pfq^4u6+ru8cxGga3l87|b;$`Cr!sT&6#><W#2dt+dp>z+nY|v7@41=Jpu~< z27vMZN{ISW8tVNy2?s zjX!oYE(cZoiFzC#Pr%Ol415LbYQVr>fZ7=gjwcjgmytvP40n9;9-n4|MREslnJJsA z`#+9XpKe2ZY8AguB~YJ;0Z8WnPLRO~8Hw6*bS44nb8fKDqQGXAK?uGg1CY%DoIwsJ zWV{XGXjd*Fce*jjBS3Ang>_#VdKHvuR6FeoUXVSfgN1=wB`Q-JrHDuB<~Ak&gI zaOu`BE%EC{b9`9=>YH&$P+q{B@eC>os5zNIWdZZ2F{mmaz3_81n%-hH$L_kCggKh%)ZekEB zKz#rY<@ONJcq@Zm0(x#^5H4Vxn?WB3xQt~xm_#_lP#cjU*GK_&ml>!4&T{;PJY_N1 z0o=8RIw2$3e$Ifa#`fyFd9WV=iedQpzme2SS-Nr8iS<*o?KVJWh@sGdXr673h=qbV6}kM|1wxBAV!1r0xCUV zi@yY1e8eC|z?LTrHfx~Hf9jioXuqvuVmHTj1#q2%rRvYwVwVHBefBsZqm757_X(K$ zoxuSCd;Rzc^g#j5k}x>LorKF+o07>9G5I4cgJS}0FHR~DqujEeYoBodyLHY985J{e z1{VbM&Box8fWf(3Os)u-nuozP1>C9(^${;L&P@k!8MmE~ajpPI-xYAC41@a$%u*Tr zi|>3PgNF{_3?4fnmlOX?kwq#&4SWg=2}}oY0*@0i!fSK%D*a zE3j9AjBVNClLI)%FC60Q-?>dV{+lAWZo_F=Cy3L+2Asg#2|3a66j-n9E4AYc{2ajc z37n8|rvpbP67Z}mgCs4~`ImF(5y~W)n5>InkV1etltC&1>LZY-W*P;aDK9eU|6-?i z0DF+h^W>da%4YyyfbW{^XG`fel&%_V?VFvug|^C|}U1mxVz z;5Pwk2R-CbPyyF6<@u0leCt+3k$no-|Bx^40Io_&CuFSH&pDJ9(Ed1svI4x$GAJ(~ z_az1u6pe>UH!zQu_CxVly?i7IDp-1ra~W7bT)j#4vp8+0UX`h2^ksVa7(roa55o-_5xa` zVbDxkKmm693|8Q)YB20WsPY)*0B*41PRPZd_(c3j zhd2pFD{xZfuseuz80P@aVS*Df_TrOTju+O5EkleBB6LpZ^1CuCF^ z!TIeK5O)HD{R;dzX&iI_XK=^~8FBt(`y&E2&0%m%!1iUnJpY|gWS*)-<27t@+5w#9 zStn#<+RV`x1hiSp;Ie@48e9`FXaif^6wvQ426t?L`G4_7CilhUqXrKJq|)U+5n%iI zT!8JFCBXLVl>pnbw*s_hF5`m`+qKUEY|p+4usw^@5)F1+HQ1*fe(I>lRba6Kr+0B> z;yZv_(9a2}jU$zPLIJL+JD4O9vT!GZV|zMmGcE0z;!F+gq-N23g96Vc8ovD_9Yy^_NAPV+J=(nzp_H^ z9pD5N1Ykc(RbpiU`3^CtCZLNhqox46&^ik2R9;}4N|i@_0eRXmXsEyzo`34r=c5=T znb^fN6<`7J_>MkzjWf-^;2NE@^tGv&UAnS*v~;u$YrFs$MHiP zV%&JZfO`h#kmm`5kz$eH8H3RR*6T9H39t*DD8MddiU6mS=|b#cq6FB*kOEs&RsPqU zYd=SU0}5b!P1RuY9l&*4=!A@JAKA|(0>*u2uv|bp*B2(MgpB#hV6A|c-x+KWkl2e0 zjS;XnE`u!sa%;ET0&G8b3a~xf(^5VE;HucJ?H7}F+OvZKY|jo0usu5_!1nB<0Nb-O z0&LIDEAU3Operl`JAcU`+=N%0kTKVvqpu6VE}yE&Zwc6+n895E*zHqU{41cVF5-~@ z-*jy86u_n3Xs=CPh>7i%M}eoxQEUaOa(yipwj=KZ*p7S@U_0_ffbGb40lw*6?1@(^ z6mwM-bFDH19|75FGVpZ(w~xOQGU8|E=tKev=Vp*pK!!XFQV4KskeUI{Ke>yrNjfn} zuM5p6pkhh3$ReOuSq9kzglLdcz}NC@kw?H=4e|?6byfd=C@AEdu6+>!|EtEC6c;d9 zgHi%!)nJRV0+MUrD+sV#u(ANViK;2!;#RlYsHT|MZB$2q-9+^T*iF<>fZaqv3h-R{ zzB7B)R4nW!Y9SWkUH$m|tJY#-w^2I*c8hcrV7EwT0d|XY6=1hWr~>$370y7qMS41b zyHJ=8srwH*zKFFhj3*V zIw9llmK?oAfPD&FF5rtkC$19UrE^>>!0rhf1mM7{n#8nH&mVsDYm1mn(N}hE0rsWd zP64*#dj!~y>=$4=a!`Ps>0t$;RM$x9n#-OXa|qY|gcCA~L~!(J0nd6dI49s?7=w!f z+JrN>A|S8MS={^Gfr-844 zbi+AG0sxmj4o7t+iN$2q7&b{JVBtsxDFqZB#UPD-vy-9 zX_^VJ$3#m3_LyiRz#bFr1=wRESb#kyy0li;U)%uppy(zh_LwjP*gc?^0DDaI7GRHw z2m$t(=r6z?6N3b}>_IU^h}~OV0_-s{Qh?oAM+>mW#5e)=n3yQQ?(tIu*!_F@f5q7S zIZ90I{!9Yw{yay3-6iG=*f5?C-XZ~ZcU~&M?#?S5;41300_^_0 zNr2s-w+gVk^L7Dtcitty?!B(PLhSB)K!DwS{}Et!-y;INb?-ec!0x@L6u>(`cm%hW zTjZ<*cz!?cgbcT9KF41Yf?a{tAi65xt=HQHjZC=_pphN0KWqad<9_lVbwkf1e`p`Ah7`KLaZ#335c&Nn^FL_`&AZc09-${ zM|v@_8z7Say8*Haup1z|0J{Nl39uU=uK>FNeiIP0ThIT6gxC#GRDj(8B?QkAlmj6p*I^-eJe z6434pWTrNPJD-f3y}74+ICMod9f^tUyNr!)`O^Ea0rR=qg~7u1Tl>FAaJM zSffF>0pM_@UEje1?D`H9VApqq099X9W|RO_m+wEu3bE@uL4aM~ z$pY;9P7`3)cZLAFzOw|_^^I15Ck*W1tQ?sK;9|l@dx6B;6Ut%%*v45USSBF*3kE9% zgj)>O2*7sED#>~QhhH(+C}6Jwc>c9nNQHN7vQ0n<4R#0!ea{xV1=Rh>V4r}h8vHHb ztT$KokN~wEG(0=XfbYL|YH~tM62!8}X#w6EoD(o24(EDNz)@Yy6#>6#a9zND4Q>e- zfy1EgzwZjM56r&;?1q0Nz;5`b0_=u=A;4~Uj{v*jUkl)d$Cii+xVS^u4gXP0?1uj$ zz;5{O0_=wO!rsriQ`rsgBfxHWUjcT*ClG*k=l-8qh~4nX1lSFqQh?p?X$05}pI(67 z@R6LKC_ z6%+6>A={S}a6J)&GA{UO${ex zB+tOny#!$QZFLlT3#hC!h!8M1fGzq9@XN+vkbq$>O@;`;rrau5J}&H5X`Smxv9SFd zEx`6{oC1ebO-B93c}!H`p#n{(F_3UI4@c0xwmCLH}uz;JD^w+L4mZ2FxoyxZ9sI61}>VCUf{K<9yN0u|x^ z%Tx*FOp-W&y-4PSoc~g#6kz|CDvf|89XW&a0_^|vWD-zD7m-zf%Pus#5Id7x0_-$- z72t+{tQ-C}2e6+7oshA$2YXRO!1dk?iVL`-Gbjb%(ph4ka&-X8iitIdK?MQcLl{&R zU?2W!0&KTxD!@ak-vmxlM=b18>I<+2X-^sov5N_kOcv{L+0+4C+2&42ZAY&hZzaGk zw5-h}NKo0NbrF0d}r^1lXDO6JTdLK!D1W z+$}uCc(3$!_$L{wMo@=pCi|Jb6wRdH5T#Kbz?AGF%7MHZxt_7Ajs03Ibqr?#{ zR%)?Ii*KqC5c!W58??YO1qF9$v0sbFT3prwi#U|YRxM^~fn^2?-qGT`7OS;5qs1mI zuw+45{-t&pfZU^lC$w0r#S<-NXz^AHwMYmF)Uq6ii(04!GYFm2Laj1ENG;-kP;c); ze9}U_ijRUMYuAFNQ-b&_cZ%i_m8+c4(pAg#=XZH$tda5Fylygb?cW zK#09se9=O^J_o4YfP>hlg?hsaA@xF)3sSu~1)<&tf>1B@K&W?hAZ}_gTMPB>3!r+X z1wy^40-;_vfl#lAK&bZ|Ak-@X5b8hu5OcIxu7&!KCZPHcV>?{otN-yJsQwuOu|*5@ z*c~DD@C{Rh}&Xy4Bga=`2q2_gj)JzMZCNc;$Pqd4o ze_MMh;CqGvZ9En6CBXJ=Jf;2D#g7wbYE)i)KJQ!`Pd3`u#^djg*Y^Hn`Tf`Y7|fcg zOot+cdgBA37|9!cjL9-T*Anc>_~Y?C;lxu+Fp51Lw3`b!`7`8^Mk0_JW#Y+9x7>9p0n-`2D z{?CuBp#Om%gW1WylP977sh?S8#g6^VrhVS+r+V7oKjXE^^yp6vwJGTwoI?^5+}V>e zg&Z`zFv^X4h!m$roju7>9q0wU&e2o|d?wA4oo;vbB%&!wYuI3~Kc(*C=|D@mcyf4^ zCZh|C4t4RQjHia(G&&IO2~hrBw{w0$=R!Q0DOtkX+W0PqAA+vV8tGehg+w^+UhE_iK#Q7cZ~=SCmRq%xR&2e~poGcUNM9yLkfWc~`iC zw`T2p6q~XCVtiHSJ3rI2=b1kIk>>Ni`C~A^Rl;^4Qq4pcI^)8oVHfSvewxvYLH_47^rJW)RdmEBUMy;VPTRPdV8R^taNZ&i4m z3O`prsa0@}(mtr4Y$|w4X>pX6U;WfnKZ_JAtF)x*r-J&4uYQWFpK9vojxq^Sn!oya zsDde!wq0p?loq$D`rWF+>6BJq{Txuiz3S(_`bnhNKT3P0er~Ftztm4<6;Z_fy1S>9 z7rrmt!0;4|ug*Y|a!~TWM&$6r8c7w(Ov6Wy&Kh5xjV9%#paNE2#Hf?fr2HzBfjsMW zCL~WuD_&gn_16MDJUQ_}(4Zck-0{`fX;LN%3bZmIE{f*$@Z^oJPEwPy(48jkbQExS zS^W4>{PdWL9B`%a<&zeQ$u`Z(A77ohCI!&FRaO9!Kc)6PJ-OnmGuNbi^zw|A4}PfW z2POw@?F^vnJw56R%HMi=)E9WN_VVQLQ711-Jkphy!g_f!rBSEZq53onp=t+lfEM-g zG{8yC?B%JBudx;l^OQ=ePOpel6@ZAM{$ZYSX_V&(snaWjI=wY6m5`u&F#Vnk zK8y{WjU(<=PhU4{npNE-7z_ReVXZ25W@atYD7;ts7#xuyGi{unHM6^Ur8mhkrB-(l z#wP4)thY1Hc1daO!L8ra&Xro-S{ReD39#OS_zHIaH8!}fxZd@4oiW+jFIgtD7m~{4o&Ld`>vp>64C@_Kc$yIj1!D ztuJrir3_d1U&im)Q%~>LcS*D$?5d|(6gJD#+85EjVS7Bys$h>ht*sPoHMY6a>;<;7 z(^?bkV`rRkS55Y=cec!%RH@6c>zv-N?k%>PV=dAMdh1Pn%Dm1>`wJA0=YC!EUE5>{ z-zn?L@#A9aId`jS@9K8Qs%{L8ir7<)ZxM}j0giSbyQmp^+y@rFi9!t&c8rdn}Q?6TBMN=cbENWc=>jz>F%Y5DcxyWeOQ>* z>u>kA-XEHkD}GL;dyiXIy}3kJ++}NR;4w!Fz^$NW3vn}PoO4%N`(b^Rim=4Afg4%9 z|HF3Nd~59z9u#Qp1@5c0_8hm}T5F1#)Hv+U`{ILNN0+*pH_pETVeKtWxLS+*!O=2* zakRqU9j!v#c(&bTA4e;dz|n?adjg$H?PQL278??1HV``zXsv9zq_!GqJjMAK6HIW$ zmZ_+5(Pqir|2FtIE@@VH7RP9deFgN61pi<|0j+()P6Ea&_k^||V>%XBPalk~g+W-W zg!TJcdxC}gS{qi*(K6RinmcUI$FE7#pv^ES8i6P+(nu2+Pq|UFQ=?QAaJywP_p(zT z8zxC~9gz`6=cXLlad4|l?hH3S`lL#z9&i|8SOagYbLV^c@mr4Kn-%$tHSKyid@L5T zYb|}aqdms*bBZajliZvT?0F!g_J7EyqG}t#w)Aa@6cg9WC23NAp?fXdkc& zTqo(eMl`JZ){L;=TWfdzaUcDW3YZ(YfG?j zTWkBUU|VZ-uu_|~NF(bQeYku&W_3@V_-SU&;^^kMB*)5Yz0!KtK}Q?%kE7Mc(rO)> z32Um2d+uf%KlLrHmqf3}ie_F5ZIr`OX04^X;%Eo3npv}^Hymv*mM_~Wux?pvgRnkX zYw;gA+8xm*KXzEaQ%9Td%txtX>pl47uJ_=xfA`|*iI}k!D~k16c&DSjKC(-RsYODUv6ldhTYt!!lcAk^9MqFFhM3+6xk4Ol!(%?^W!X%{`*l*KPZ} ze~a%f8~@uKpW^FP5}$5J!rEvoZ`ImitZUVp?=VO68Lu>|pYU5zZ=bR55ve|1@uq;$ zu_>v0l5ZDWc@qTSuTk%Qq2Xb{JqvKCYS(s1Xziz|Yc9KE8Lz)No)qxrzU4tWg_WLix&cP~aKFT)zWhVF1q~F@tqnH`7 zsgeZ`42cK`?bSQHZ@+-5(COZc*tB$K`}_Fxe8RU0?xn529q`E-P%%JdkeA(RqwET> zb-MxqDg$@(4&ROy^Q~MzVr&%dsj^+}mDS&f!F^r*{`FT=!#}^}@LgB`I^r_W;&VuRt$vsyO3YW*;B#z%AeFxc#n;uKJUV_B;Y~=J9!62 z)4mzsvgVlQ9k>vYlahAm7SgXnr%vGmI|TO)3C0(Xm3M(lyaQL0SJbzFfOX!1G0HGe zhu%HI`*r9U(k&#ci*2>VJMaQkjrx|(=dyR;V`>-mEp4Y~-hn=G$3{gC#j}9^Sg5R5 zG{40PWvz9>%4Dt8!;)mJZNpk*t;OI8q1IC2>7v#u;qjiRa4FS=9q# zV<4V!>4nA_&pFyG%Dw=(sEMdr_5fFY~znmn1f|cMwjaxXVxMYp>&dfn~UQMQ@7qj#fO2 zqn*csTOE4>D{Zy5G{2)A$J$!sgZpW+*ezMSzPc9_j@_Nd>!iC)i`Xss6RPLg#%in( zHEvRdk+B86Z-J@fO{pr_Wdd!#YWDJN6E*a^LqFHkdCUfiOuM4JtnqC;v_$J zarc@TvCDkuxH%&O8M9*><*ySQ)}?1iK)>!G0bN47b`9wp64o!EcX&iZXeWg+sv-iy zyQ+Rp%jU!u$`lgOp(n;6hC~}46M8hLLh`kv;Mt!t1wwU9*g_3k9yIoF$rljXH6S!1 zG%TWDa9HP%yee&hfUw?$!ny?a?HfEOUqDFDh>(CbinpWnvt#R}4uF#Z-1|bqx`Yf2 zs1VRIB#fq(k4l|b%_qu|izNT(*pl(IS}8jAPpWd}L;R$w*Z%*cyB{6fz)n|aPVE1Z z{hwuJ)n%dTQed0^4BI83Y<1qJqzrRov&{XN!YeT?ocKBsEg1XWpPJ8&%}6iTeDI8az`3!xD0*&eT}uCQPjd3ijm<|@YJSV?E-^25S(bQN>#xJ0J=bCwhVj`i@#Fp# zn4Z4wjLqni$t$o1W!x2;C3kJFz^hA++~k&&GW{Xg5? BK4Sm? delta 380589 zcmb@v2Urxx|3CiS>y$gLa9r;Pf{KE@ca2@_6$KS+QL%Ty-cZq1M(n+Jl(CD(sIg)< z_8t`#ON=JQ_?xnKB%km1|2+Q;AD>5N-n%oedH0#w-P?WhAx*LOZJHuuL+s$n<$6~f z)@MZNm>$U$%fyx|Un#j#Or@mCJz`=iCije~kX$i2IksG-a>?b<|DNT0B+k3pQ{n5B zU5~qHQw)q5)h98z{J?CBqra$qOl4i=L$6%7l`9E$Rq0exydb?en0KgFNzMRbUyBUf0)FN7 zC_bY{G#3Gm-HVIhcX{-D%LEhWhDRIE}iQP*NP8`sW zS9z>__h=V?Ik7VTIWmHC08L^av%1fKo=GDYq)Ua;0CqiA8hCZLNItns6o1eg2sSs< zs-!~`yMLd=zw?#=YK2$I&-Hk@Frc{=Z{$CCwS28&GX7#IBj?~B_OO6%qm5F&uBQb5 zC?b-75LJx7(k+&cO{~Plf>q7527YC-RU0yN*wBH4`y_rpq_i+HSkf9-fcX0`2s%UOuH% z7)U8MOp03A0M~wu1L?7LnJBEsV!%~DrkG(tdT9SXy#^-^?K7ZPXY z*L2Usp~%;UE=adxQLTLKK6*Z{hnn+%V|QzNcvrZc-&NAgcj)EiqQIbQ$x-|-o(Rqg zS~ebK=il{;%G~V;2wjk_@&oo5IBWodbAd~t9b8BXJRB8NI+j$N zPm9+B=j#1ZenZdd#FpwLJHH_!ig!*3qE5lj>m1EFv9~z+ou!M5Vk&3fDJ>}>cqo4_ zD$3^yt&*@T*v1OtFFvL71-(jO$Em`%-})T8yPz3;omLuppt4C*o$XH0L}EV;o#eoR0}edj;B(T1G#s?<(wU?D&N=6 zU+Pwtqh5iXhNF&#P|)dJ^Xy<=@hlrZG1^KZq-MC0EA+9>QD$)FUYrdn+VwKkjuh<{ z;zv*s7at{fD|quX)hJ4*zJb6CeV+GpaS|8v86pj-Tl%8|Zh}La*2T z@5mI~Q^+fP`JQGzJfS3SPt+lq<8Hn&qakQ|!coi5C{c?4K3YROQOH*hkw2jr#l8)^hR9)slqY!T@;IGZ8%sQaP{O$U671PjSGAop=<1PTg&@L4+qBwPrK37HE20SXl~C)J zmLk-9Lj5tMG@-T=YVo%6ggQv5Zl@@p=ynz)Luf>tXGemJ5Q(zYZ?$Li%^;pjR=)bs5Q+gwTw_xPBbRxE=W?b z^e3-SatAp%08{i6_)=gtGnClTa54l^>EssKbO(>U$IF0HKb@ z_9Ij#p{^$NC)8(puHgVe-6hnfcPWIrhp5z<@=E_Rh>(}a$u=Vf6Dp5T`<{*`)Nw-X z4NW7|WkP8yQtCOOHrJg*&K)Jx|MUQaIzcFD-9?0YK&ZNjiwSidQ>pUh(bGs-7 zDYcJKZTIDobDIdYw8LdWK|+OHrqokHy(^&98ba-UcqNrIy-!FhxJIa-2xSbuPNU7BGlB41+y`=noz3;wx5HkM}%6_@X(x8 zO#Vp7hp)S5VQML%P6YNK)HXsj|L~Gfj|tUfO{F`p^wREhd!N z#V^C>J`w6}pX$po^$Vf;j{jx(nN&nxA>?lh5s9d^gz9p&{t8SjAk^Bql9ibHnNW%6 zHxueLp1eBI$~`4iKULsyZ~ofaDDFMKWMpyv$1IHP;7^R~9F)-) z&mMCZM5b5dAC7VIT}GSuNuwt7!$wDQvE)ePXdVA}V;z3j7B&BNj0p|5g}06=&#l6L z1MsAQdppU>O-WX6r3Mcfx*((PN7SIKDBX=v4E(Y&!Kmk6B&z|TXn=aIQO>uSR!fu~ z&+nR7k8d&7!rxv{hrcqmr!bP4aD1LmU)zXpH?0Q$YnF!ed;ra=U<8jR8a#3(K6Y|6 zNU_)yymOL-zc!~DR}md51ybG>3*ZaVV!_+u5jr$`S0G2x4n)C^Op8TJ%3!|7)H?i! z)VjPlwGv-`LPNfMS`1pc>irxHPc4l%55W>NUOt~Tp+W$j!v2p@A8oA5|2VROZhJ7R$({QXI4{$pxw{>`L12%}R#MqfPn z`C1N3P2-o}&BFCYN^i<9Ume7kp04AcPe&t9_wWl=Hsj|`w-Uv#N8%c=F9CI@wmQCCS_3|5 zYAwF}l99ZAW*NjJnm>I^ijed8HI9c^Hfx!{@UNI*t}fd9M1mu-C@U{YtxVkMczO#2 zg6CPEq{wo32vK?$#9V#8)I=HId(Hs<`nGUBdTt$FGuMI?a2SgVx-Qrf1e`BN%83Q9 zZPVZ*8vg#q27HCI(#V9N2piALKJ1KTX2SlCdEJSjsl7TO_s26fR#FUhc4X`rHQ$Aw z!F?7y)r=xBn!D?#hA*hiT_QedTWI3r(a7pv846j-C}iL~{=&jm{813buUc3#0MFVO zIEtT_Wd#Yft1I~ni@GBbE)%eoSxSC-riy#c&s^r@>utj!?k1Y~wqDJnvmixL+khSK zXd&#P()=~hozGj8!-o&+i)6%8JeDybrwj_~7{0<1+&3KM0yW=aFIt6y-g1obz@H(o zCMql`Pe%0awFsl)EOMQ{ztjn4RJ8?RZ^bJDjI06{zU|U7+%b}%DrEZ7k{0#ICdZ~O zk3ha2%U@kvoLl)%ubI3&k{`aHCXWZ5u(336TK+xiwup3#SWKXZd*K1`;sFon7!|{( zZ8T>-X&Z_;pU*E_5yd-J1#!iB*C-drYt|uvzqlfvcaAE}^DF!ECx$oR2d{J?Q{p8C z);P{6*nbp!z-lemmgJX>t8{+@z`*B_O4^_hXv{6=$B!}0UlYd7!-nNL@wFGC2wh{~ z%A*mDz^UkD#7i<3(UQ0&tC?XL24dPteH&l@0RS8zej*aEGa=0JA zY_E#@;~yFp2En?;Ia)unEDqiPylBD0#qslISKt?Jw$9(&l}stYTQuNpa-RVH;QD&P zfH?#(c#A`hmos?4Z=1^V702O>AB9-Q%bLGq#gp@cww6T9-b5}FOB$eI74I6Eb<>xIkkt4VHj2$rncm;&VNW`t@4_8U>MK}J^Ha&@J zF^Vpt%T_y+$PDoD9YA!i7GXib#> zylTQqnF1z!J=~K|*slP8bt*6;li(E;J~QnfXB5DaI|s{zS5z2i(1Br~d3=F_|6|`! zVChm2z&}4Yl)ry)97u~t#JGJ!`R)hP!1iyvj88f=f*-VhG~eY=8vp#jXg+`cR5TD? zW8s0u(}D7i@ce_r6TlnX{rjW8182;d0KV^$k$h5adH`Nn;l|@=<9o*}{HWvOdDF>c zzU#4h{J`S@NCykD|2S^q0`OYO-!_R)JEZ~9iHOt1Cr0oYXVUnLQ|SN6G+zA^Do;-c zEZ;4*RLX!}3n+Nf{L>k{8Z}d&3gpJ(;Sj`0HLp3D%4htP22#2g1c-#D=!6DbMA+G; zvwb)e(qGOMfaa-36ukD_^Pm_3H>2+ozW;@Z+-&`C5>`AC{;mT0Z!j4W|zdW4pnKzbib9oe)d+uHUfAZ>kzRRUi;6XBK zcJk_Q{z2Yo@cJ}rdgPjo+s@az9?NYZe^=qZ{v{N>_!U4ee&OX4Zul#I?s`}53SZ(z z4Q@|%-y1`?*nfTb8F16hVf^hON?@P`Ab6#*}Wbu z<+yj?Sf8N{`KC{@|2>M2Ejvh<@k$CT^_zAB8O?24aF*k2{HLc${~i)CRvf6iiOPYD zNg`SHyJx>kiU{K17rk1^j!_<@uE^Jenr<#E`@`#dvdl(pHT?b)M#J1HWF zald!}?;sBQqX|LGzVzp9F@|1vm|OZ^freHQS3t0VRmvs*S1`eHB^L}^%D846<`wRc zbGK=2NdO0Ftw)frRzk@=Au<7{hGV#SfZB3gM+Gpax7EY6YTP`^xVsit)aWt561BPZlxMy!M`H*U)aN!6=YX4= za7QJ?MMuYR*U7Lju?=^N z%6{B2Sy2>N2wmk;w_s3z0jCBdBSjjxdN3D41vx&F3!}9c5+;u8kxpb~` za1l9h!kSs!j}|JDX)h-(sz^?N02T1+L2fBE%Y>s`3^m&E6G(YP2G>tq3tF3S-dB5g z$ycj=oy(_ZtKa6PQzy87mwPQIeXl;{W(Sbk-~#R$J=W(FSBCc3`i0w1j|~@#PEl8H zE)~6_9K;2Q4%1_HrRZZ&QFK?!!j*s*Od@L_)!jFbXr;KQfB*q1VE0H-Q!2yJ(jpa= z>t0z=V_K_RN%W0M)2N1M4fT$%^+fmR*;kE3r;6b4Jwfs6Av!oEPSl9X1u|QRbRecB zXNKy|qIHZCLbQa~M&02;chLb_%Ssj*DAULKib_+FxD?S{S}PbP%A;rVMvGzA=o}ywBz4nk(CuVn|u15{^Dt?Qig5t>}I++Tigy zQKkSk^R_5JPLHmABswV|jCmqDCsaE;6RE_s!H5^4=?n%2KB*QnC>Hf?4vMcG8V2&( z);7U?Z$w)uH(=O%(Uc+p+9CKL+R3mM$Ko^x7f%dTzzbhQbIf4T-41#%;wuV+TKOU~ zTplLwPqh!MCUF`oi)a89j53Q4Gx`x>Q3b}C#ZJgu#ZiI{&pX6(SZug!tgJC`{@mCD z2A&)G9jxUQH)dh%A26|?V}w}6prC)C#K7{!#AgNZG$q6@1vL%0EgCTQwWuqwWQlDImO)UxfjX*1D14eF z=Be_)j8)>@3w+Y<1x3hCoe1}*s za1*y%3|P6Do-N)bz%+*J+_c&!{#6jF{Xy|uR&J&p5+4*`S|4TR2HgEY91MHqimM8- zkbO+NMW_z^LA+j&H{z6d2`i)BPm7C-SUX3b70(i+{OP=yaYjpll8fSWhWrUpeBBj> z-*H8}fK`eoSH-~$DuAvV;y}Ry)o!s{VB~G_Mwa1Q-V=ui!w-5WUd}50&PU?o49dq7 ze+tw+6%P|Eko60@1ui@npJ3*pY`%Ddz(f9PaTco{!VARN3}&Eu81-H}Lg0b>$gYP9 zzlqN=>tW4jzaBb&VRuLHr?@HOLa-HhHD{OtWDFaogA*i@6gyoFR&+~*)nHkV;%e$d7BpHH0`ni(*!qVzK zFPS3nJ8X&Mos7yhVzplnE!RpS1c|3_mDmK_UU)Yn7Pa8&h3@`u2K>4~Iz0F|xRYsqf{!hjDF-&9%rqhy58ZTDx%wm{l8 zMJ#mHPIc!@{K3gtncH(uG1> z&L*A6xCU(l6)x#y!FtOgrPYHe*ZJk79jvt4rls_&pqTD$qz4!-WZ>l00@T_imV@)Q z;g-x)PhS|>S;|RB;KCZ+q#qdBFGN+q+#b??g2t-#lKNsWtdDe@pr*C`r82>42M0@Q z6-5wqlgZGX3Zfh(l?#GIjg#t&jH&>&Jl$pR=ZR9Eo41(imnLeuUmBP$RSMEvntxV&B3L*Tr@9_a$X z`SK4+9|#TZait^J0)Fcq_X^RU)qLou5AhP9!b*#eiDC?&JZHt%M0la;po9P z((^)I%=#+*E{I0UJB2Jwh@pvk*&E^L1edI@g>A{uBD3@`H8|2@lmgT+me7GTyQwAk zrMm1Co%K*nnDyS)kWFBrLSGF5n){OmK8wy+YlcfYA!e!Hif?mU98u-gFSqGL(hXx%5at}7{37d_U zm1S^gh!DC9F6>Q}%@$nv_#~M`IC^7>tO`raA>deW=d@f0o^KeT1#kK_)`2Pt+=WVNp9& z;R}nGdWA16wi*=e1yh7N6lEFiK;e0a-tK`niYY1>xv%&h)OVn5Ed|T94gAm%tWsO? znPo!bG8Co2o1IDr+*w!gmgBy{RrM842`Y~_QdGv}pUo6Eae1wkVhF>XQQ#i|ob0L? z!(dDV(3W0XzTHi+I1p)TcwYs}4#fXQM2PjsG5CgYT6pPp-iO(6V z=*tomWc<$~6vOfO14k=ZuB;P`nPU`QmY64jzB_fK;7o-`j4(p76oXkYLKZ7# z;(%SeMDYe=%~+w>#EO->Qc)Vq^meUcI4j1l>lEEEKW#QBK4X5GZBcAt#hSWRF%I)1 z*~P9O$!^6*%*P*l6{}hKC=L~4n0>YE0mWh*EEf*32h01zibWV>R<2?!n-E=L<}t-5 ztcW>3Dp>A0k-*PBsVKv;S3#X?(w*bm(#>=*<-FofFk)q1i-1sY`kX?SS)ee(IkyyF z7`05mRZxCUQGi5*pB^esVIMsDSn&|44X%2oNWhbqC|}{i=e=(faVYfRun&qGxLvc4 ziUfRo`)9>jB`QbD0tSbn^0hUfA8yyt9iY>qvVXaNo&l)5Ts=UJ@ov=)V9MgP+Xlpe zt(yXL@aA^``{W1-X(E+jK7a`63z`dI^@M=WYE)Jj6hI{ZYj6OO{K2q*(lT^hJvQKE z5Grp>3+SvsW!a1Xv5CQxRxJvylsPCz3I@Ue1wBFkLw>U>~;H`zrw<*easC0Yh*({8>O}tkcV{ z1Fo|?Ux0KP1LAanc50$3UjurF_=JSPft6SS0AoUg`3q*ak|D4P)q9u~O245Ryi?fhdooVzh_ zpwD$cn@xc<1=Pw8EE7-^T!3)p@Wr9Pu~>1*#{)SPDtqSzHpS7g_d(!U>=_fDQ$@9V z8F&pVrsS)@Be=|e9atQDR@nQ%{wzCr?8?BoA-^~b`y+6k-)Rm71a)G$08t3HNfmSv zd(J3r&=YL&u8trl4(rtLAmS+kveotW~EVqPxg0K}2`I#M5$px1dT`_xF1SnOHUoNa)I7 z{Dyq@!f(MQxGW`TB+A4z!xWzu)QTZVg1$_i?Lr^{Rt@AiHC<$Aq(Z!(SSj)lJ zsC5?I2%3yN+jc*wAuf}j1+BxL9GoAt8<$55sMQv{qgLztA*ep?zw>j@F=kI6yGh~M z`!zV;ztsCpZZz-NC!Cj*pfIZjA-h zl?{HwGTUIC0_5@NhsJqI14uaA?pXs=z3gGn@XXc|nS zsd49E6ON{yeS?c*_U8@?CU&|xGMLzD{J7u>*dBW)29xNTIXRd_SHjd_5?zkzw7fTi zmdj=Zcf##IX9SOAupdMr@j~M>+ltM>by?&^Af3PtRger0*%ACF&QB@X)H){){5Pxv zk#!<*pk*DSh8b}t*p9WAd5LQA*iEX%zz0-|JD&u1!QQTX5xfO!XaAev`^?kHkuYT# z__8Qi2aEq6yu_b`ZiOhvuuP&zS(PBd{1G!Y*{XbsGelpHa?*dxi*1og;>A~^l*Eg7 zmr)kUiyL4~)~lu@{#&7m@+@Xp)JjQK!~@zZiT}c`O5(rqJ(MKRsCz4k|32-bB>sD_ zpE3dq{3u0fXYo@Mu3}_yn*ST6Dg#+I2neJFyfQ&q4ojezt|W`DyctTe=-QpGB#W+_ z8A>vh?&6i?Lf6bi%7xhXoJ*A1I4N9RqjY0QK5bMkVvvMf0E6ff+x!S{Y<8Lr#8fO( z0z{RtR{^4%N~YcRbh8<~%peF{xT(DL@7GNHrAZc$druh-O}CVB3{L0=0JrWc86Jhh z{UKsNBjMhI%a4@X*kx!6(z3-0=y;+OGfY1|K`OwtFOmQjTOOY@aml}H@2A&UQ9 zIYq_2hmYl|tx{BGC{<{=@E-OKQPm4XSTq3W+=S5`Q-mjifOspfFoLG1LTrr@tus%8Hk5dZAK4l=;2 zAo#JhDu5+2-}O_~0fEaj4w%tSb&(~k{0Lyc8C6%%qMM54!DWQf7#!`X3Ih)u)=;QP zP^F7ATRSyidk+=M6;6x?5gx}N5=5O%DsZ;DQx6@ZReeQ-k;P+G-!qs9VYPxY#;Kwh z;sW5#p#2$@0Tf(O8^Jf1I36CGq&h9Z9KprYRp&TT8!=P0mexw9tCrH*&$E5CsdH79 zFw$=KI@RqUQd_=D)k8*V+I_0y8b-k|Z}Zvu3f3mis?RyAT0}$w74uZHihyT_oiC~G zGb9kKX~K~mUb&*`N-bXJx{BrYMj=$+8!A0xPzuZ#Z>f4vX43DdGK!>`y?0edSv3O- z?yGuJK6*bYqJ`2Qqa<4-Nj^VS^{31Xe_kZ_v%^&{R326f!J4mpp0fRoYDSSn$}3Q{ zV@VK~s)e)!Zv#WZ=#9C{A637Rs0Kg($>c6RJUa~d3ne}VnF?vvBN`}keNke z=2>Wn5Y^obAuKmC3zOzD+%pu#UX7<}cSnj_ULVdD_TrCLsWDrGa)i0rAQGqFDfLDLJf`%VM#cJTrDXTa;Ip{V<;2ShN@_6xgs*N zu6)R5mdhVVoc5q;(~we7S~X+|gT*02C}6ll0pB$ViDXe9>em^l%5~Ml1IPe(_R-}GNSILLv>Qg3iY@tgX8BS^!8mNC@d0>bzcfXlh4yMS;m|>|n^$&EP04jG? z>(I4Kl^K@pre^wOkslk5PE^NG-VY|JOVd^QmwxI)RNB-1)m^1Tii$(jne^fa$Crh@GSn;~R)}(HNFOsu&^U_2pXRIM zn0-HGOMVDkyI9Sd;hO-A0PakWG(qb!^{;xil-vaDe65nejBNFJ=Fr0k03pbLe3@Dg za+|p$pgl*uIEQ!=5dz`QC&KzK9BrUi-Ju(oaHtenjSPFoo7!L=3R0mN} zK;*B!csu%8on927wBXjl(n|R3i&{$qCqSeTLhZU(Q;Htb2Wqy{pt~BPImmML*{4G( zR2www1cRJ0Yx0@B2dPO45Lgf>Rk4^1erMBkq%7`o`ve&8)fnip^--Gr)LbbgG&!_Z zFi#CL2{+2vgSRb{Qn$R1{?~T41%hfp=3=0tu-`JwAQYcPjY7+%?Rqe8|!OIu*wVL znrNDFRFa&=NJJvZ{id3^bZM3vr(s;>H3bOTK_!{jQnP~cU%QQu|Dbk0{`roYn=A{a z#9o^Aptw6$2W8zf6C^Y%EbXCLz%V^P1Qtx)XM8`+AzEvaqIpFlrr`)pJY$Y;3f-w1 z^h`g#00*Xz_o?{!WX*L}XMy@@nsl0^cF)s1W%;QHx~x+NqAR64IPM^RPS^%-EZ0Pf z5g}czVR|MEUA%>Pt2Lz%2K=^8^F+#R0TVV%umjOn%?XAn0ACHpAGQE1SG+R9vfDIj z33$7>I(m7{E={tCR?lW@_5{*u#t{wrehX=^`e%(-XmI1U#wAn(?rB;J2>l;v&M9fz z#&0!K#I*Y0gXV+K;K^srXO13y{fDNcfKdFaW*U0`D(2z1N{g}{sgBfY(a#`BwQs2Q zJE_pXq`hYW-9^@h;CXp%ZV}{1AJ++kx{6x#I)oU#RRix=*3OpF>bRO(^!rJ2^t;+x zZxFYNzIJF&Q|%7+5rg32X4-v$+$uP{gLbF{mHAz?pPk_2m?^?-rV`_|2N>}|%H~&2 zV5;9V2zE==qL=orgW^nW9Wg2!WNFvpGJmPIh6t6#S7@u^GI^D@1uk>eXb0gka=kW} zL*_0 z`!BkseSq7Kx~CnD>0cjcV^K+eLRIClb__n4^HeL5pz`1g?Q%?adZqmhmn{pl=tliI zsD7tCfy-;}DR}Cy+U=Mw^_zAZr^T;tPY)QJl-zS*|HM867W4(c^-fz8q~sXTos<>Y zKv3$nRt_!}Xq8~r0)rZCd#AO5t`*SFw$3duxWJju+GGTVe$>?k4?5?Ib~)xa`kS^A zrjt1x)x21D8`JY;x`+7u&_Es0+>2mcXMDVVhz>pfxDIB9>MmgBlEQT8nca2x_hEK0 z$E=gXmj+!4+%n9pdx~59Y0-IciCR=vpt5tgj`+axNFDKkx+QhQ2PT%%5g#}bLpf2E z)e#$QD6eaUM<72(Q&rS8!eAXL>5k&kSVf2KTq8qP)iw7u0;rJ^)~v3pkJ*?~Q%78; zVqG0^nThpveevE!)y|+V(o)g10*Ah-=J> zr+C-9QM}sSX**F*-4Tp`ELlesoX}TC6rA-v73;+S-4Gc%A3sdj2Xjmmmpck6?$vNz zBJSCIlr9CAN5|;;`&z&z<8&gdz2;M>_U28e+N+RGwKr@I)!wcQIt<5C_J=H_Y?T9) z{Xes)I<_yP?Ek)kvfpzxZ5O_lszb7Ys^j5is*ZNsDBkHEwB3wd6tCqTst(aUir4G_ z#oKp?wi|VXs-w~|s*W2cs5;cAD4z*G>E2^?w9eBF$H8&ts_r-ze)bJrJTCKp)=kC7 z2jA04F+K7D?Z4|0Js>^_dY??h>J) z7qP>9(TCo`<#j_Sdhlu;+-M3NhxoR+V9Y=P#KQPA96x3W8BPrl+O+aLeVn|>!9;cXaep(;Y8@%U{q=@h0enKEqg%Q zb$b;05w~mmBy=^__vh!KM;r9ZFrLw>*WlyD?fMV+xZSBQX+UL@iuzYrZ^6C4^*>>H@p=7C%+HWKy%Cq`m-QrvSG}s2 zW4i8jJxQZ0Zt9<4dh%`kJKS&hT|Ij47Mb8f-shHmz6T&88cj`PZtUd0Zy(G+o-SNiCu&)^Z+V-$Gj1#dhtR@b}=SJ`A_30UQ5smOjG>H} zR>zb#ED);B%7#)RdbC?rLkXd}q`IM|P|dGtNEE8^bqqT>+SXpr0EMH^8W>gyV2c_X zst89PH#H0ps@+@oyLnm~vIK zYMj9#;ug|*I6l=dMmYXrg5g)8^_wY%Il|G|(+$sr>f~7l^n*xZg1WN}dxWZDu7Bv= z8HVM;(Zu!Z^*z50gmcj|_rh7ScIlvaZ1 z<8J%iw)B0!pNxKJ=p;0F`q=L$>!134b;@(UuXcasSLuy6{vc`e&fhKYgWoGJfAo9h zq~HCcUHIZ3t@2;~Zhw3;Y!`UgFEaX!-9ctV#!l!ErG@hq#u`F{hk?cpGAd|ejj^N8 z5P(>1ncgUeKWUA=_^qlpCJ6nu8jSJ(XbdAwMv-8;sxG51Q;hc-eVM`&X)Go5?q1yJ z%M{B?8hx4KO)39K39&|Brf`)t`ZC3f@LW|0m7LIfDfB$&XB9VX5-juTNv3g#JEo_+91 zW``Eu_=@EkTp_~Rg~pizH#HX(k(+*5#?}mejV(2lJ}@(4h4C*j)y>p3#z|~O8VhsQ z8vkHW3q*{d_nr|SxwpwUnRWP(EyfoN!(%;+h3mE%(*zzW>@>1GRX||A-(|cdXtMoY z78t0>F;-()q@v-w!aIkIU&LVX_F{VYD%Utx5NOm7MwV;w7!e>u1x!0(WcmP&9|0f) z8O%6oG%*^eE7-9;KM15~O%kwQZ7KzZoi@H^bCg1;zA*WWF_AHJy25sOMmxhD1MF{I zLCh7S8qE4=EDIW3HGX52grIc&Wb6l9TsIbDxzT`_X$?{`jKNTL&xrN{*mpq3yG9*I z*kUxpT@Q>c1TWG&X7wUE00?_#RH0|%jlCFsK;RR>{K+^K2#maaVJvi|3gG)!#!!%P z+SmZperZf+GsS-(_l1}9jlCE>OTcQeGhYt#-We^7J|@7d+?lU|=^u?{illWwV7h%W zu4Hzyybx0`ocqmamCyv0D>nHOR5O{0F+sHk7#1K{1+YIuIi|DR)Sg+=|GT9Xu_)MYIScVQ60TxRyGj9vLU5T9o>!FNWJs3`I%!A^@Q1Shbn z;DXiknKf#VY6K{p#lR+;Ne2$OOb#e^m^7@e1{Xz`M#*U^`xK54Nh)hy%2ZcKWgB8l zEI(qvxe|g{Q$J=C_F80efLysr4fmEcIa%!pJ61MzrHg8Ky1MCSj;x*F?wTg_7Js~q zg4=4F4hq##bxr7t9OP)p`lb~^^-crRF`>G>p=qm7?bq1f*51_L_Chn$KA{0O~$oRF&mSB&PF3^x1+b};;CG7n&p`5!PWFWMsjwUVFw@A&CtHxCkIyyG;p zd_v(L*mfA@HZ#S~f57B=&7%drniMm$Os4+h%MsQXu0; z%nTo~1{eb%j4&EJvCGWsShlJNW*pr`Em~t9hWSx#FmGa*#}UvJ*ngwBErV*YFulO| zXJ!T1*wCy4rJh>)!uvbSTe0uNeooYb_1jS@S1&Z1;rTsg^ie0|O44dm!Dx{zuH{eP-w3`X9^^>~dRvG^+wpdElbCL;xzE z-K3@Vk@+gil^vg+SSEX7Y4Q$(TfdlpL0p34ugwhaQNaqB0>cZ;e==%sJi1_Nu7=g4 z{MC#eRXY!_eKeoM<$V>Px9%LC-^; zhgE7>NGx-8EcID76NKB0(v~3bYN@3xNHCxaPrr?QqJ`zYv&>?#Y9ZjsXBIQCud|ea zI~rMXmH*zVz^6(n*xAJ*1r>}XEPwmW-|h~UP`_SoceW(6M8SUyp#W%c-fpx-mDA0F z9-coB*LAm`$C}T>&@x+w${&VV#4J|{|1q8f#7uk=@PGcGQJreB_=T%A z(Q>ZH!U=*_9a<^t9@ExN?@IJeKPEJc}1ks9!QI^%*=DBI$l$bec5K z@Pu3sI`6Seg=s4+=xtkQ9Xna0hkaIA-pUbAoiiO?Oyl80;hH(chWNk9zsO2hFb=MP?g$ye7v#*Dn z&RBTt5?q*B4{rQq5msp9FIdn6AX58=?`8U^Xw_x3I2R<3YkJiv^y4X3_dW1IVBGxO2U<>|*gfGr|bpi*_ZHdcC z25YVumGvyv%|#iJW$io&aSP8ltUC|`V6?}&kwIq|10akr@YdBO06y|s4>LtaL+dCI z5{qEST7F0gYaTqdRrba=8#`M!}BoSf74v&|$<{=vazJhf>n`#80&`Q>uEHP8a z%AP9LvzV2%>ehWlVI`-g6$Nz`)YY-Fd|418j*^|I|IOakipW6dZRpnVxSTu4+7y>} zhFPcMGHJB+HZE(YS~uYG#Uv{V_$)YUx^+enD)kGj=ry%jaPT7QL|lGcO8eJYWu1@d zYwN6CaJw?QtnD#9b1!YDJV4uZIzrpMK5orrxmS+U_#T=|=|$ z9ldQ-VM9L?&4P;qZRn?uS@7pz8%pO{aD~b?2}|nH+NLmO10snTztO-1#~E!p3^&hW zYmX&*VYjhdB=PBopbGCRh<4hHSoaOQl=I*S+iW?a7f0KAF-$}NjX@^>aIBndE0<5N z5$@mHycBp`-o|i^5Wiux7}%E6+zYQ&u=Qrxd+@bKTi}eUwj_?rhXvJaCOI#D(h$Ve zvu$O_B!r!}w_j;ta(&xAF`xUV29|DQDDytOQOkaS)#(6&Sl`c>ofu*C@5NUHvuqiie>DiOf@qir2o zE(8+Qpw23AawqbIg7G#{FtMU&md#0RS9Y$gDy^mRwxz5h1OFgk(jrqL9u8gmKFWOU z8zRm{Qp_q?u*$}=_Cx^b^qTjV)waHjF(e=qUvIlZjcC|p+sPI~0#y2DTL&8CAGg{1 zu;g+i*l_SB$7O-eJvJ_wx>+dM`Yhrn?5k}L9YZU( z|3+QU6l}LMWMY7H(GL`CKvUW)wY?L|EbK?X6L1iI*ALoCmK+@dEYQ^!j?>xEbFCzh zRblp>)NmI~_L2&)I=`(Qn%wq1ETfX7zf%@f5q9y~(P!Y_er%_KJtFLA>9+&Va1%g} z5_aav?ZHFg^%~&bo9IX|xul)pV|2i^!Z9Ad)>{R0qwP!&BKQ$NLX4f^wlQX55&H75 zUC8YBW9{hskvlRg*nee+K_8eM-mYkG$CBs>!nWCN3)I)LmsKKD;hRpdYcsoCjELko zJIhvrpdQY0tKi3$_H8WQRERLDjr}vTWS9rgsFhsy^sCSsq4g+1q~u6C&u>E(P6 zdtQ<3H95(yWJzv5e(Z2$Z##PT#tu-ipZy{uD-ii%MOH50#ew#Zn1LS$+pjV*fCIq} z(}voaUcg ztz>}~TkJug)_Rm>$fc70GweU&G+cHLtJ@Yr+Tm|=?O}{c`a8_G`Su4`Qx6u}FR^Lr z?`Ug*o$1ckKh$N1GZ))0W2WMl{Wq9$t*{?t%zl5D?cypsy2i8vtXyk9TNF(}`%is24>Hh0$jzcAfJSTY1smf*D)YBjP1g-=>J+ckSpaK0Dwa_w49q z{tkHj0UcrXBTBb@V%IT`G%(GsfprV)T^J|7EHJR+2lO_$9G3~s{bWzV(-ygi74X&m zmN~ItOqeHfpl3dIz;ZH2Ta;Gd%s@vL%d($XYtC3_C`cIM)WJ}VV-#L=kc&|=wL=F| zn%T|pVyGhtk5=C32xSf?G>REUn;qw{m;GUN+{gC1Wp|8c)NTsMd*><*O0_A`2o5Ud z=)kB@0#hEYC`m<>#yHMngl=>7_TWH*AyKE)wLYY)NDC}Ae4qDTRKuO zPZira1}RXvsjK6Y9F?n*9q6w24%n}^1KssT8KJMEEIyt*$bsIHvjaXG<~WSYwWA%S zknh1OsgCDZrbCk)OuuO*&T?^@LkjM%3^#-AUz{`G+?ft^6?F$(p6(z4m^_E_5}o1L z!RnBiOB@QgJ=3uX19!-BEMfqHh}kAs*#4^>XM#9DukfXAcdTbH1=(2T<-fAPMLUqV z3lbuV65;^h>?zcqSq07=G7rkkM8UIlv=Eod|~B@zAk{ znq}w{#{ot@up`=G&@;!GqA|1kx#KcrW?{aA<#98glI^g}YX{Sgp%9_oTgQ3IjQfM* zD5GZJ%3mEV88Q{Xe88Q5INnev+3}6pNdQ7|)60{sIp=3)3l+kYlQ^GH%|ywahZr?O z*@_G5gx-s;aQ^jQU@Ircd5N;MNL56($oKfFtDQ`{1mZ%4+IpyUo}_H;(>qxn;`|T1 z_6BE5#?(9qD?J$O4Drl`B8M}Sumy{`oCi3Zir{;yT2? zhrh6t4?iKsX<}J;6a3r@Pqg4|dC$+#Q_Tn6u!i#lW!+ZG32E(VZQpP^>-vt3tnd7b zBAgMnAkgI5JPE;B&;f$8u=yz{06 zRJ&l&!w21+ofsDub13Y@2ORnEf_ zVy=Dbop(q-2|LjD&BIU?kDGl6Jl0;ngo`%8%1y>=JjN&}yAt_Y@uB{ybIoV;e6rJUz*bh5jN_isozF^}i*@Id`2lTw z_S;=d8=scEyEu4o-_;n@=;d~RSuPjLJpdm{66n^!CET|``=B>skTIi~1{6fNZZqVc zf1ujo#z@yAmPjjvX0BB284XoT776=!`xWW}+SMz3i(5Q?{2b>37X85g=>$-@t z{j92sVRr=l<3TiDAC|=HM*s*x1#*_6Ki0)AYo=S=1qRh}ji7pkd|lUX=)*fm#c**$ zS6`Mi_kRubpqXoYQOzY>R!4iQSP>l6(uLl6NnD|J8yCwmwUABZVCY_6TNl%}sr)by z!CVzss@K`Yvg<3vI@-ncyl7@7LQU!BXQ^*@*Ri5n0Dbzhr;BOh<(CXcvmIJ{xzMYC ziS_>M<6_wh{s-XVey*}C8Quqz4DR1X3ta!r8<4Vnrv#oFHuQ8`j~dzLS` z3v%`axh)+s=r*`h1isc-+=&Wm0KM1!i=0-KCEe&7O2k4pqTM+{b$MyGM`&=lf_tEV z(5k9?n^0BPa@(b}Th03Jn}WQNjogik;*z~U#uuj@)NB>q8m?>M_OR*>ujTuJfnQ4Z zhhN&ci?hPOw0O6P zecS_N+!+|1;xt2=C*)-|k z>DlfZQto$p_j%D=H+n7ORJR#E7q+z{gzyXsyo znCI4Y_bx_80Kw{U)6H~WsgN7#Z8!Ry9Z}1ryKa_i@P%02?z>MjI}4HL+e3G*z)jv0 zH_K}BZ`?d{uVk445W-9lBk{QCgJ=b>+-n8DS^JLFZwO!%tn$JAl~F+gg5@{&2|+<` zKfANpoJYW#_J{jj(YWdI)ty7RS?KW;jhO?ShiOlOtp$;_?h0D5%RMZwN%0vy3hq#N zsxszgqSqjZ?jfzA+`yh%&jF4^7c3p>xyQ27M4V;d9f*TI8kT7DgbLtO9e(hZE>BGc zaEQRG(Mb)eO8U`$j`lQRKm)`U_se_!5*U0_$%9^Ki*pP7p^66z)mhd21GTH+KWeY# z8PBr5L1WGW1urA*^zoW+jXf%1bbB*D__O97w45Z2Y>V@BX3Pq6@iNXzuRFJF@9_xZ zOzG%h`sF;<78q|Y7Vx*r*}4Qj?04NgR(3yp?+(WI%>vQ)trh4)L?7+t;K)9nXy0l9 z9vI-M$FeyjOvhk!a{H|9aF2$}@POPtOC9V%TSB7epGJDxGU|CINN_(@lKW>lsh-&q zVTA)%Px7D(tpvUJG!N5ukg!kC$sIKD49_{iiVtRa(4LTh=g#)jXLf(IrK>CUacs;& z-pH7v$+qsx5)aze5v~TU@StrSsn%TULEAb~ExFOtjM+;D{D5v#lDl20J3K)lKCV|B z@l;{u8X(M2xbc_=ZS@F)Q71iUt4FF!E_l#Zk5u{V9<XB;ZOAp%Wk?M~H9<9%X+R`6EAcXK ziDIO$4REK_D`U|gH_-b%D6ucx0baNAb_IC~FUyVvp)8>9h&vhJT_XlDZO~Pl(MszOrW$#J! zrDs&lsp>`VfhPyEt9j7`L#m@|ct23#;P~3!908zy179y_ZRqcIv5~)9W)p9L&@HpM zcLvMPO#dMg%X4@LU;$n9wkTh+xd_f}=UwKrQ%5h$+pG}cQnD)NpyHw!e zQ#bE+Rwo{u=w;d{5gr11dJhOZTut`wVdbH1Z!go848lYEe%`$T54HhbhP5_CFg+R5 z(o$Gvuy?#L{IQ{|A-fb-81DT+NJ)XCy_;DzIbnn7qGGvd~T5Se98CAHV4Iju`5j3epn1LBM&?ZU%7+U9EBscssG&#lldT z10%G+xy3aWF8a~S^2TC77@Bj%Yk{xxyvG^UkqREn@{-+>8BV$BJujz=lwJ?KOy5T& zJP|~^LxS}ldxM3QL*jGqSz(b-{iS!aQ2m_mMc<7fONTSBy}O0#>;mr=>MF3&dvCam zHc0*KN9g>AA0g~dKf?2`euORG{0O~7;Y|e|PRPTDvuw+VRMD?LpwD{g5I18RcGqQY z4G4uLRN)OpRAJNA;Y?dfKQu(p!vvwj!omkJ^OI!NN^jK2rppv#FcmQ(T&_Qb`uFM*t2Z-L6+!x z*e-k`y}4MrW_U%Gn~NBM>_E%b3r9OpBH5|kb?HL!|ltEsIMrg}& zQxWycpf?o1_6|q8Ov1$Y{^4ksNvdy$g`-_2sXiYUj&_-(x;r)8w?H2?Asp>8$1-7}7&cuM{*oCXVSTs)zS$7o znL*byPo``OCzqP~!tZy4yIJx-T0wpf(FV0N$6ccv=GFVdnYM5EP0g42QJ4FV!;>EQqf`Vt~5?!*4@4y^!Jm`uIIjimK zMLM1ex{v4^nE-3i$TLCbFs=Xyi`jsj$UBEi$+SO$yh!KH;nA!_yIl$DYexc{e()ua zt^`49HEY;g5O^a9X4e^Qw{n!d;iW6+&$okGBMq>fOdc6roqVff(~@T03-T6~NP9jE z`VBEqra&hW$%LDeol|3jWFmhVCSu0wr1;7W|3ZteZR- zwfk1k4I>h$2u3Y>nsgINPpg7Yb2jVLc&jru&7*^zF%v|UY?{Ue!)M1?7;Kb?)(tIB z3Lb!L+vd{RX~7#r4zxTY7*<~eI&@7|a3rS7!(@A@2y*yt3D!^)3`?*Kwo@bX8&pk# zy)b=s_J;Cr&ivEI_~F~Km>WkP%#D-?^Z z`&FUm#|3ZVzs{Nv41->FgK={3MgEw2dhi2Gx7lPmexz;89J69q%`>a8-~8aVNUQbz z?oivS6~P6VVHR*?Fly?zE*QpHO!jFTgJGP-imkQ=!#Il-vv&mdK~{>s-<@kaygzse z=3E7=~S}SpQ)#47*tI`J-SMcCq5tC&4i6V#UX= zf??Rjie26X!?24LC7**~*d-LVHj==oi~XpzmE@p}U-GL^Z_9#ehbO!euxyTnYXX5)E78AM8XTY!n=J zQ*ATs{koDJXxM3g$oL7>X;R5r8?nk4giGphWBjO;m~5CEX;zSrS`v@$II~x>W%sCP z2`sxa-FU@GVB&-oU&Tx2AVV}8paqiVsgf^NE5$M7qBKbvqIbtKm*}!3zI1K6!~+xm zZW|>%NegRfAX(!Q(u!Qkl3-SG0cDK1in}LUVrNS>JcZ1>7xE=H{<};Ru)bm(#p;@* z7aiGHQiZ>MNps2K|NeR+zz~3m5f?n_wUn&E#4!_0T{^A3F+<7i_`l{*70BS2TCT`i8nkRX1;-rFc-&`nD0#< z4be-yw``o`x{X+zJV~O#gkaFXD8dq7PMt4tslqg{V#9ig2ut>FlAz{d1XPyzGGwy^ zH9%*)SlY^An&k)L5^mn2^KauR=Y?@a{FsqQ2 zY;Hf7poaOC2oGLKc5pTu-$)Rj1QQ|zA!T{_PE_+waun0(RkAttK{A@NDgG>3jfD&NREniYW8m-Yb}D3TZf$FvBSka1hZ>a5RsNRge=GOeHVWS8BNM=O8CLi^1uLZ z>gE=*g|{~6y+SZG>|dz0Xlw5fTTCndKQP*=Atrxvsu6-YJn%niN(6&EuM)zu6+ z&z-7X?f(l(o9cw1CL_$0gag2}Xh!{z-#9N93CctN2XJOchz8SPFvFB?tlxvai3k~l zX+9WA?b}aXN!h*7ZnQKuq%&r`$Y5Fzxc~hLP;F{Re>B$fZPH-+voYk11M3G6k{<%! zvoDbN(S=Py0?;nsbFZuh{i%7#1Kt1+ZyVA8(|2U@n)76m-c?`+;GWJQdTX)Y=G`r1 z81EUB^$fwS!wTU;$dO6X28FoOk-bCqif%{qeh7gv1?x)4`-i+k`wm#0C1o8z8w?LQ zim?>*ygPq4OAt08BpwqfO)zR2H6;XQ37BZBr-#5S0V@tF4S`t#R_rh@1eF1cy+TO8 zDeec}x;SJqri*HViJ(rKLtvJGahga&V3vRtzw8TvSprskb2P-%4cvP?1cu=3*Rg+u zz$^hP?l>O;vjnUddnE*B30U#{^$?gPV8!6uAuvtAiXQhvWN0_tH~K!y(Ak3)KMi?} zhS~T{Vo!R1j_6JYz7F|_fT2)n0ucRD0$T4$VaOR|W%WiJ{T{cG&d2l(gmqcZIu%vP zp`Ahg^tr9{1+0GiW>=vv9HsRzLFLsC(ynx!i}WR?2PHgA;Nd`$*G}4sWY|i5;trud zW`M;y=+5jM;g3H2XE<7gpvdp^8BA5$SUq5J&uVk4B_Dgc@>gc8!fh4w*dJ)A_DId;Fmr7Ga)zJqs z>0QjY`(M~UT5Qa`il9N(G*T^{%awK`T8in%GFr@}MX^%U;%gC*&XahVU^Z7My)v9`CAuCj<%SZgV2^%bPXLlhp?bAu!g z#2R-QJupc65%GGV-C9Pc4VA9tD##sySHZcF(i@1biNIl;m>l)(Pf}R@6l_8LCP-m@ zl@;$#l%B$z!2;Z2q-46(lfp+8;IIh;t66HseMF?YFkK=6ml~ItT2tD38N_uFJ!*v% z)_&NFzN|FA=;&(muT$4bf5X0$7y~JY1()m<+!j`nSkmXBkwH?W zoEF`Zq9!yLQ4^MfI3RMkBdupgZoJF%rP_y5t%JyR>T~HUu9fMprQ2;`u`#s@ZT?;g zQ~gYw^v_b*Z_JA4zDif4Ye?-}u(xqS?J4w#L#V0xJ#`8-RljX6p%Tmh6-4d$-2nAj z)zC=H0M!JerceDtVSvg6ZW9;^15{Rws2>UgR8|ZK3H3o6xL6iy|J{P_Sa~QM_GYk4 z6``g|-CY$5qe=E_WK?Jo_GP8nQoHXCd>@Pph4oy9`Ys_f5sOO84WTeS#&CX34K2YK zjjd6ZNGfWOD|x-!5Kr3x1u1(R3Tp}lp}jE;%;Kh@y@|F#C}xW*JUdTZsN7x@x*g#> z6cE;9Dh50^MqCaHY#X}S7tu{(2yE$V_Mp&qNX?C*>xP7eU>_#%a3E>bAhZ>1zzOvs zXB&iKnjU5awkg$SMCdz=a{|H=dU8xCX7oc3{1obhFg;-}T`(yWHOOHP$4v>Hgc*pk zhv&=)MGa`!!)3EW3Hr^>^Fog!U1kYgK0kCU`psXVeQQqy@$hhH&U`C~idzltG6d3teH^>upYjqB>=jDp+tPw7+E>UR?-9rTAeS*4>BA zlJHGAenhL;_0Tb>btS>KYTpTUtvpLfUG9hW#dHW5ui~dqA!D|1n)1NQ(7(_yft&98 z(2ie1N4sJh)I8TPC%W7ztTSe6l!>DA2(zchJ;TS1${&FUD! zu!Oy=FU}eY#L?_3(Uh{ zB4~#ZVbRezB4bF!laL?ip>1KGuuTRS1-=&}Bo2MBC(H_66?Dh$vkj!(sORA@88TF{ z;Xxq%aw^Qv%Ib``#?bQ4ri70sYj1>MhD7YyKkkL`Q-Aetg?+Li#SNmoi2QEY z6NEnrfD{0K#JCbX{3G#fErVl_fdM`={b|@JTanGx7h#y4Q6|7xI`mbT3#L0$iSWal zu(#GCo5AnHFv}B_Sk*s<88G8WhM+LW{40|c31=gx(Ti5HG&d5qC(4&bc*vZ&4YR7q zFmC^^x46?Y-ZIpH^M7DGs>)ysm*89USq)h`JF!?CD1#J5?APczGT2thicjjwU|xh3 zH`SL_oR zQ-|^3o6}B)IXlQ;_P3W^!St?}Zj6IuiQ>xM{I0UCoK4$a_=*L9sWh;U>;h&&!$c{S zKK(&E6DaV54A!q$vEqvi)~|%()@$J<$SU;x zDa>|`;X5&7Q$bz|+cXz(V!dmH!`4d1@lJ3!Y^`L)Yw~c|TFHt_72&2%UpG}aY^`L! zE{Y9@t(B}8m=q3MD_QY|Asn_=vZ8B7IBczC#kbkvsD#NTgXzIkdVtlD*_GYZ2K zk=pxF@bx<4c-X61cnTV(tc|Q*=>{M(r%m{8NQYfS{kn!L#0WuK_X+=iY;hJ*N&j%z zj>r`4J~+G|x5Uih;rDrQ!szgA+-k;&;jWm8Pq4&dBA*go_}`-pg=d>_egQMWXJb~` z0Adzt9arJJqGV+_kE%^ph4ZL-a6|YEr1nHq0;u*>x;gwb=jlkphjZnX?h4m%<=r@l zR^BXf=4iMx*?t70L1E}Hivj?A#E_YJ+llZWtNwRO2soqZv)kcqU95JBGbE)I;h5Ym zYyw81t&orl&%<{hm`tA}pG>~K4iBWAUxr`Bw1XxD%`i!mTdSS) z@P}|GBozi%i=OxtUWkbYj1W7P>1!kJPz9`WE~k|*o#rcdw}C$vRhMHDyD(I?Hl6Gz z?}V0&9n0(zEcYTS{p6mM2FQeMiA|R{wa(e;Dv9tUd5{T~aBHxGU zyMtcNi1QgUd&xW41B;LS<+pJxuFyLJ<*2N$z~T!1Iz;XzxU1&~`6DEOZ6)$5nC=jJ zzu%8?Z{hv&pV058wZ_X0h)yO20#Ai^51%T3h?JdnpDurktfg0ImsxTLfj}REt)N$E z^SS7Vb%nN_FMlpn%YsFC0`ZIGd(j%OS}K3Wnvdo3zpy4azfwK|GqeKp?_je-D>ll5 zFq8fOu%7IXlsl7+w7xxwhz;pP>+X{KU}gmv*2|Cluq}npt=>Sx6knBBr#=_u+tCOf zIr5tHSh@TqW_F5+;`v0*^HcA6Ciis$ADf;JxtAZlmG?u&iuHtHvJK^z|KYtuwxN96 zCwVLc(XDY2$1$sojPF<5h${4reZ&mG8yVGKoFe9-sWP}=w}=3!-Za@W;+z#+eXEGq zhu#r;guj>hM%cUIyna17`SFbpU05$-j+t5l_KjQkr9nC^FYFD=*E*?}kUbp+qqZJ! zfoQkNC1hh8&sMZ&X~a!I;@r6rrv#n)FN}C5_?+XCh*ii?KJdG3H2YRX97eh*gNdNc zcSZCTh@IRQ(Z><4Nyj4IgC|hUS!Vog=SABey$}&8{QUV^#7N=xp|>LT2-nzq5pozS z($0?~9tm<4R78wHho+KO5&W!o@S6zKVhF3@&`{Y?*qd_|sbFa8I?Ej?Ji){d0f7Ra{no%@s$8)Kr%Waj3|k`9}5 z`_u}|dFDzWNwfm>1-eRvm$8Z^0+pEw7HZ{Vq5_qR1E};PD>MAOiAR#MC-qHJ%&-AI ztkv6{sTd-Vi_TFD$C+#hZJn#oBdkS%*BU#kQaZe$;y9+O0MAb%``;;Ak>X~GnmG1i zC8CPvikgB>@>(e{2hJ;vy|uLhwNu`zyJDQUzbvqWVwgZ>erLr-giHW5mAZCSU?%k_ zJnSUA+ohKR^|3PH-9vgSmS9>Jcy}MVcYxw&a7UUmSYe9^sQ}W0J|C{Qg^6Lp!vr37 zC&mFvJJNc4q9>hFqNuO}jf~n5?n|eSR@6p{)`RAcSKL6ef`{EmXS=$-q+F_$(dv^F zdj(dk3O}8!2uDpxuY<7QzF6T%z9cF~(X>*<5_4GiXRZR~bW6#f^A)QQPB@)IyVIzJ z3fx30AW$HOIu~YoeV`Z}oHi*Svs1PbHGEvBfUhGjRpbe(8M#7%T8UVvm_a|SRBRG3 z)~;0`zJEtSBn8Ixm@4-Cu5hBgHY>IX1cE76h<-!>BCR_qYthx)Q4xli`G_!ayA%@z zKRdiff%#VX|Da{;Q=GO$NzUX`4`mw~d_>V54HK~qbget7kYMUMlSe=xfM73#p^hZ$ z6nJm>d5B8SMk*&0`5CAayyka1qtK&?p4|;Kzx7C^J#BqSQ47u11k;_AUQt{$F&p`( zf}nc#Lg3J?1KHn=Qx2wacsLXh&rRHX z2{d6<3BSljd?6edT){eg@wnB88U82NfJ~i{Bz;8FEJ%uF5ELC(O!< z_H$HD6}-dNMTr%W0;Ut9b4*Nx5~##OIYnTx%}a^dY)}c5=&ihn2^S2Z+~!$r^0|ky z2K}psat|5?)B&FpsIPRSnYEQtv~QbXNY(&lcQU1}@(QoqbVxmAre*YWVM;dwK~YYY zOO>y&zAaFs0F`O(s4bK!7o($?09P6V(Yhj1IZ23#gEh*_7&K^OI+Bu(N_XO!4Q7D8 zAAAX(Hz-jCCF}Niq$-i!zDj6!+AU2PiE;gZF$^SU)0Cd%Y=l%we#umxMVRAXc$mo+ zGXTxcQMMO4QCsqr$etiq5CByrx_!`BP!uRP3Xr#pl!%U@(4qPck{TN+QMrUoFdn3K zAMgt3EQVRpGcA~_k>;%}l2*hNJAAi_m6(yKS;X!hIR=#tRARe~Oj*@P@kn88 zd`S^Sjty5nv4CDR3Q$@TGctRGl6T5(mngeh64^ZHt8vQdLX7-zqOt_Db^$FOo0$!y zn`bBuR;0ri>kN`OONssrXakjq8oT`Ts_-!3U%@X{4!mM#0O*_l zuPU@Ap$qMN={rZ27qa3uCjuh<#YMG7^oYhDss*A)*!ifQW9Hxmo^)h&RV=0}&xC}B zy~sp+6`{}kRFGnj33)g`wO4e|S#?#5M2aaA)n6iQWti%Y3u))o#6ZeJ`Z|z}z1)My zsAv`Xq`R(Zg(GboqiShQJOi6}(Zg}7e=q_~Pm0VVR}HE_QkEAgAul<+ZiQ{+TV#w=kcDoM{a%x>IaurfT zl~_$^zZ#L}kgmmHqR$n^(U-L&msrMT_JzWHT39dg4QBBP+?2DKd$ll@z6^<6Y#AGX zaVh<)P*3y1B5jZ!)0k|W1~K5SA`+FC1Z3g}8Ih5-xdRW5i9}7#09X{V?dn8Z>LdO5 z`^Tq6N?fdNl2I#0)graKTX~XcC%i6`g87KK6*Y{lG62^roz5;;EgBZ18-9LP@-I^J1TOdMQmD*j%>Kb&> zlgJBIMZV*#q8u^J2jeS%5dd=_y~d?hEq5={ANWl<2YcN}qclV;aNlE`mKf3szC{#}ez%ohsXHR>2;#<^Pf05)_ zfAw*$=+$-AF!jmI8Xl@X?2l743*3REUz&QG)mbqsM&ESxas(KhrKn0ZJ&g0Ra|8H`_SUrH$06W%oW0)CHtv zk=lWbFIMxp*MFL;dvadGTC0CV@G_%PKuyNzRY0J*oz(x>kS}|3;In$&)WM=OkiU=S&Qo|_qB!sUKfs=^P>_>HTQPcFuPwKI}*kYo3 z7B5;&QIF!qnbXw^?MVE2P(~V2AH}pQ<`u-9Q^VREDdS6%H#hLx)W$k}Dqi8S}Fx-kdddS8tgMo>_-5$h$i{bO}Q{`wP7)tF33%+ep9 zsUM(CH2Q^^!=qPf%m9;dsPVV@G+GZ6->I{?9v*za>%sSv8Z~Ln1Q_&1-Gy^_{S_TO zw@Ngp(WaPVtub;6A8j@0;3>7&{DC$FankhS9ICl$kPUNRn&YOaKy&!ZQ!|=#=;f^; z$m&j4`DosuZDFXU8NoT6tD(Ux4l=KD^4B~;>!GxknL|(=JcpKbE#UAZNMov+X(1YP zi0UuZ97F4&TxPBp`UnjoN(!r&YHp&N?hV5=XE}#yC7NHc94?Qtz#R+6 zXy8*CtXigz(_l7rGj&cMuR)!kWDomJ(!hQY#=&KZW;Iq1O{QudqC>--8Jek_!|2(V zDj_!AyGu30I85eTe6!hno~EAIY?7%9G?*nirr47UHNT_1Q?=M!L!6gtFf*-;L%}jl zL*!&;Uz)krY?a6B@$F{ajT(QnXO#b@fo*`yI|psWd&Y0uGb#2@)LK5%Lys$(CY;0NtN1~={dLVjv>v+MFx%qn zE&L$tTe)T_7iG&`O%JR|58cy1`gvAY);z=y$F4rIU^v$HsRmZu8HYy|n(0_k0$ymc zFk6DaGm6NWS!zeJ=%a=&Rn>f}$>$+t_y^2DKnNisDg{*dkOLF%r+=`)v65jedhDxa z6$cz`9gU1{-vb`7iJr{?J2^xntLFEBOB|!GVOP}zQ#es)_h_{>Ta{W-4A| z@=%`aMqgBkK5NUYK+jf-M(t)3Oj_#x%#${)89f@~X$6tdM%toYbPOhV2oDo@xH=6F ziv9z$T@eu4l3LlxBdAkEbTx#1C?LEM9fdZEj#glfi2y_aS(p;-OjgeGloMTYG$tdl zfI)a6G1kjCSa7l7M`lMa-7Vb40I!9N-_@N2R zlQ!-a9gOMb2?+FSpJ-I(9rk*7*o}nuN%bYV&+xy9&#CRHzF)MHgQ%zGL!(bviABxu z=rk{c%2>FoIr)JXnYuQ)9qm6g+6(ETMsjU?vL^`~7~7r>ofBOHt#g2>O2dAMJ|(s- z)M;V#UtG#}i=wSD`@fkoU5+NZk&NgNIoYxz`UOH)CX~r^<0|k7QSlEqM1SNS{AzRb z@0|1DZP9fQ6_v18L>!EEAwOSDZcmQyjP|CFcSSGYZy@{dzDxlY^*JxbDep|QE0MlT z7*B_th%Ug2Mge9om!;-~=nkI}VycjGk2r5KZEZ?d`deg-A66;~SXMmVv`&iY?28Rv8wRITE49xM zYYkc5AjX>v>lhPA-xkH}6J3HFZW4nTz%$nc_?q-e)0lra*ZajWEzv&pt!Iocah)E| z_1Ca#j1;Xuz=AKY3tf2{*FUChRjmH@Zc6bLdSaZ@hRJwN1hD*Rzv(e^{6%6l*Tp2D z4LkKjj4OFO*uFi@`aNbot4LMohodo7(G?O9qtL$p?RCmbdgXjf9@b(65M1b{D>1+E zNY(Fp%q?_lQM+1dHFDD>brqfUG^W23(>L*Z8-rQ;V~!4hHOcW$p!3XXsj;Ny=a_J^ zp;~GPIq)v#oM_Hp-^U1vF$9+@gd2IW*OwUh7$y7l{@+LxwvKgj6^obMW54l` z{lGJ}I(%wTK=6>qp60(kkBGg9*6J-ytQ$3|W8JX>843ukcxcT_h&A=g;*(;1J^p*8 zqN8$SH({v2bM1tF@mku~7`vaVF1cmwQLZHa*0J!7bf&t~#j$&Maemv_D8%+}YSlk> z9EK%4*PhlK7^~r-r~PmzUE9c9?U1ppHhg`OmRUFf4_K2|VmZ zYHdngMxRZM-4XELO-UFB*}7QNhwT^#c-WKd{WI2=YB$7=brV%`X}4Kt>-L&;R=hv< zEZ3R-U~G&Jf-kGb>;HsTCajB9m?KsK3I&uyjw0P3Z^z!?#QNNgU5Ocy)u|ib zl#C2W^CgNeY4Ax+L!3KlSv{?YhQEsq#q7s40s7M~A7lCUDmvgxtiRab+PWm}GOy7S z?Bi}=2D-u<=u5Xal>ae$@USbr=@HkR*X8B`an*U891|EfnD-3b>&IQ@H@sEEP3AYu zh>9D*Z>SR+HyG3501nNFXNR-{^noF+4Q6`8gy2oqFO0LNPxIpLazD6bj9bOW>vNmL zt#K9|rD40c-R@$sZr`|bTol^@aW8nAU^_T2zlwN6`$=)_Es@HB)b3W{Otfj~aLD9x zI;5VaY2&Hg>^KKZq9v20m8hT^%ENyl*?ib9YAIMpW zmJacemJAD+gUs(zb_I2HeO>5I6HTo)Z)#rg7$j4kqIWSnj0Qm~0PO z`r{vSr^uWXAAq||ko-v5t`8(dUEP4E0JZA0PgylnTypONSoyzue{CkXH1hB2c5}IN9#lo|* zhb4HDzg$v%=`ibrrJ-Wuqzq4Zjvb29vV?@HST+P6cBI;*gs+@QUY7)ux21PWsLHL_ zvq!>f?t^`LCA{Iq0euqc^C-7wNWxq0j+;g%oZ(&9>EjbzvGWhK*2085^lSk<>`DJw zmT-^@aCT)vFmGxdHYSY6)M>$Z)N@Y)>ie_oVdKFBEAD-54=0$WQ6rBgnC7po|45kW zi3m3WI_c$@=}Hz@XO5*S{z{1ARry(Y0%kve39t%$OFm%-H}|%?2@f&-SO!+|Ho=8B z|D7_PZhD!3p2ML4vxloN?_BwSXh?$5z{#|i5*YQ{!meaK3bMI%o2e`7;^b= zVh!rIGBMSO>5-(bNQ5l%e~-9g!yhF6%!_|KPW)za@QTDl?#j~Fi9WoT_s;z5{7;EC{MU_N6KC*Z1Dhn1 z+lSjFt>6xR-#%#~zoEp%d_yz0qzn9pB#$Ihy?E=HWU3cisw55Jk7=tV4M5BQ3E50o za~)4M^iFgnMcWhoX^UD(VRoV-=hsUbY>AOrw<3^GY0`eH^TcZ1;0&@qG-(YYB%8WB zZZpdzc0?kb>p{-!4DzIR!;(r7{gjz~O6!slyYi}$mqxWKeG!!uVP$om25OS#+FLy$ zw?_}lAoUZI;OkR!liWx|UA+TYxM+0%NlQ#Zrc`5{H8<*+l;n$X%{tNAj&!#+2|kql zh?W|XhGCYG1P~IMqz@#k!*#8QXO|>z8k?6?4-+65*4ZXWrhT~$k~-Of=EgQo+JZ1I z6A#efQ#X%@xE^TjYBHzNbTWCPUPBvBtP0~WKs-f zY%H*$+G$A?QD+G}TtZjOO|lOFU9!*WU7eEz3uw=Q(2K3$#_+TEPOR^g2sOilB%W>OC)xL$miRK*3Z4__yRIK$QRpQPU*RM3ky+U~+t@2u6>!F7;_ z_6M*veO5)A283v2HEogb_jo_;TH)W-wY4=J;o2ZX+YRYjqeySL7W3_7P~a%CC_=j% z=Y*rEn^GHxj9#PYN0k=!%?4mSn%s}lV$L71XQdkL(f=+ng=hVd!j7gdVzf36VCKKI zTFC$Ti27%1!v#0U%+o%#f~(r7JtbUi3bo(ZwMeTG{yna-)$}OU(D9t7p|A)Xpacj`M+qT0?v_zTKKl~BbvNK>mXdSmx=E`vr-!& z{QYf>)=IeFYQ3nJiVfNf;djkut(Wk7##ZeO;l06B`v}v)S=><9pX|G?b)>uZYIk_? zz(FUT)eZxA;&4Gb?7zDPF`>HC=!@EHp~vv!H7#byD*#cTr>GAyzWk=WB!q|~cDiRm zh}rC^n;`t1SXH-D2r&-=bOQz5w5qMk5^T4szOISzw{?i_E~W`LOF<@G)Orbh0?e!% zpez;VYTP4qGr;G`VvX(yPN{2YN{ntj$VC2**UiUbbWha93K+|EI!vSkf!0#3LFDl~ zRW}REqjkD2S>W+&mTo^5Lzko52N(K?R~Zek;=L{qGnQ)UgJAxU@mnM$mrrR^2YN5E~olT*==2!Hy)UdKllx?Ymod9dKXm)^!)Cw>p5W zibIGA-kt6^s8hKC>a#Pt69RjBL03~?f9X%%B_#U+{5M8}zzI63xU4YPz zu_}7qTE9sk{j-A}8G%JqvP#m?mA-V;2MeUDx#{}}WG7eAI}2A*O`jxm7cbY+#|VFW z)Yt!v5d!+Gol2#8XPOkI4-sfH8HPsaQKz*`Xavw4XrfBLS?H3ziqc;c6n;dbKZWGj zk-}K(l$+H)V&$jEB>EivT0~ej&j}I5^a?NX?peb&WIwt~Fef^yrGBrq$jex)$7KJh1Y|jkXSdO(A~oEU=$h%h$mzZyV|ieJ4_(wr z4>Pt*X)U|yF=_pPTqSBP`fGRn5v0<-hpF334*7kHZ;L1f(D>YL?d|864pn ztoOGet2_7hrJlp}sJvumFalr>Hmpw-`f#+qzGw#;@RPo?CFZpy zM83Jd)FjQWu58}o4bM?!SoZFIVtMra! zWriPgnC2BZlc|IB0rch~eYCZx@z5pu72Fl>EY**}xdMBOJ9SvD*CV}?Aq0|d=ixA~ zXJ=V3QLNOTvVaUS&J7X=jSpAr>%(a)A=m}%)nh(X2gWU-9rx+Wk@_g1?+@sI;)a=W z2phLc=+(n|R9QQ;6*~8mT>pOA|;pg<2l%Ncz|9L$s zuQYr3*=0R^FOc~|@2hxQ?7F5$<&|a}bT`d0`$Re3Cw=bdQHiA)hdKAmdI)%k*F&dA z=qO)8KRwZp; z4VXOA^uR-dE3c|IpBRu6!X;Gt%z#QE&A2|Hpvq>hjja7%nCXaWu`+i zDupyW+?MusOJ2ymGtes;IX%#p08A}Xw#(o|2USV_g98>-O-4?6a6q;Yy1rU69HeCi zALgHo9H4v;cp)GeGEp06$&{F*I@R93J4SsmWtj(ZHkgpFvrXplLaY|=ayxYwkuA) zgH;Ql451I&BoDM_4o!P@PKK1yf^XBH?#Yl+nia$QCLeXfy`muc&msZL zi(I*#>`ro?rZl2g%ac*r;Ftz0^F^O|l-vm|AHYU~^`UbdQ#xYYja8+uHQ+-B3q4cDqN|dSG@3xt==QX_Uy2pB zDiMIGLN^AaJm-`FS3-|X#PS1X#xqP z+tY!Xlsahs08^c+V^b11r_qTisJubUU4&H91X4-2r@fL>wsXXo3=2F35WVTctdwRL zPhp(?C#iJ91}O@3-2$xYv~H6WNXy0y7|<$ZG$sKMBlfS%(sW_J6bDgZWZR$=%s^fM zr2y*ZAd z69t&f{-T~npGs+jHlmP4ns&LHQk8qev_}>=JAhT8Nl#M}u+B~)2Q z(#*RvzodLbw;VzOX$lFXA(M^(Mr2h}F^hi8sR3&|kEuJVr$UZsMz6DfD&&Y}#j!P0 zAxAVTey*JgIiiK)iu3hSUBw^oMx;WDX!h@aD^npwG%E(=r$UNo@hM~KBdjkGAw@KS z6wz|>YopW$SjPsGALytisaD*RX0}WU+VG%IG0PKAWgtXN}AY6c=Axy7(_gwI71BvF`eT-+*1+TeFe%GkNDCcL+igg#XBmAVyEKLD z(&KAl{RvEGPar{b676*+HNrAB<~-8`@=OzY|6D3024M>ObknTS^W|oZj=hr#$)?#2 z9q*;)_#k9h{3*4)m}i=eCrUo1zWnbf6j0<&B9U^NG)OkfIGwgj`vWtGtFtq`<^SZF zrjTcP7G{r$fJGr^H6)T`oO}Y)AiFdx>guIIdTCaaNYh?nM!t+GWQdNXw-jjs7~`7| zTnXfuo=$@!(_XoVoIBW!W8AvAuSe@)R0L55BrEYreF3+gB;V0&b=SfAjdQ-E*zQ$Ii^{$*-vSZW11Bu zv(q5QG%GsIO@kcMVsU;N;k!7Nn6gbBNFQ+y4oxR~A;-FN`PG`j3^`XOZCZbTu&G%lmd z&h$n?dTJl~?r}P#`(@gA@iZNhOS9sgm+6pPniX%pP5%kowI)Jx>23BIsob|3xn!Wn z?Etl!dz7H+R~BG=sDI52$R^FyWT>6tg7I@rr z8SXDGsGseYxm>IWWL(e8lK(#RBqmsQx};a;a7@S%5GW9P#>2*{p_#+D%WFnvPT|E% zqcaEaVvC_*<_)X^h{a~B&|E@TagK$GQHy`Z;a^Iqqp#1-`J?m(fzv&j8L@e7_Cx9 zsbf0EC}KLqwo@pgJGNJ7I!1TwsEmq<>ZpeQ+N;~O5v(>`JVtAD%Bsd4evn5N=0Fx; zjirY?vkoDRKb9tWXN}}uc-j}w!LM4@Su}^T8d-fghk5~7Q*kw6EbUw~D+jYk#gy2! zwwXgk-K?4aodXs81pWHogR}UgGwCbMTJYarFSylMdN?#|C7MG$d6sD>@fAfD=F|t{ z5U$EXZN_5{FN?~W#$6#TItz37hQZ8^$@(ltA+k6j3$ufb!Msk)+KyIdu|CUmSiq2y zwG3<01*us_(H#6Tvo>>e-ptOz?4o0Oh|JCU71MIU!<}f)qO6%>DhRTpL6$es-O&5d z^~@@r{EG>yvdxGzD$ZFKZqr=`bX#4ll-z%-W5a=4E_ajLmYQlYh)IU`bLy z_`^wTDHEn<J4wqA1}yyi?Jwl;2^1Q zXZu{zrB{v*nbX!@OYbesT3`uQ0~)s`>xmU)LsEXM;zMKCWi@q%KkC%<_8~De%ZqNO zS%nyL3S?>TU0Ihfm7Ylo4;$&{y;+a>u<-5vte^Q8xIoc z-q|LF=zX(qRTG1RGCVtj*T0FXY)I11LPus)_8eY(tM0qjctb zZ|KeUE=tZ`&+l!OWxls&j``jrx#oMv=V$-M@6B#xzSp^l`QFV<&G+_io_&S)eOtE6 zK7=u#Njo_N^y^JNpU7TKr*+Ma!z=>|SQKoYQ9&!!+h_}o#uPXc4yz>%9wU28=C@1O$29S%AlZ( z{a8H+FomSQRgM=qJ2l;tmcMXtvLXwgX4fReK31Nj{OiDGwEolVo!p&XJTvR+@$>9& z+#x^O=jgbuvRrda4(a5cvzR}&%Ol6+ki)%l=5bwxR5#!Iuttu_d8hfC?=7sEbAjth z6O=O+v;6~%&2pp#(stoFnN`W{&{`SfO>)joL=~+}1J`>=MKw|*HRm%1B{!!%Df_0f zryJ68USno4tT=)r*)MUlC)e(S^%~~nASNFuKy|YtWgP>($ne6PgE(;}ld|(_Cu&!e z-~_M;I1MMfbH?&UnZaCSZ|PIkT~nFEWY7JMI=Z`8 zPK6E0$gSl|_x_Nx)Sk&pe;ASjZH*v0JvlPxGynC^pK|Iuh`+i`$%(cViw$SwK>NY& z^_iRF;v^OoOLG3gEZ+jh4n*;5g(rD_Zb$=aw=UN8-!2F?S7bZ4)N@*4>=0@{87$Y%zh-{VFC}sr-8yC@9pH*IbPK7 zP0lPtEu?_81wI(((B6wI{hBicCrUG-+oy1%N517GV?rlzXeNfv`PR8*@bxc&O|D(; zcqAKIY@eHp830rg(K+YBwgE;Y&n*`-dauMPanId_Y4iahg>I~xyB=|%h)%7W`v9{< z0WVdOvgX68km93u&ff*rWJPYzTBOUL?R-g-h+K$VZF2qS-+8%CNQ;Yap}h-oU)eK7 z)4ok|gGHUwRn2l6!Iz`J52$CW+#E--*rQ`Eg)ck_zp6Xurn`v6pMS`$>n0ZWm*k%1 z_b#50I}Wlz3-`t@$b|z?toX7lcWAI!9CkGKyy*C}^{L!XoI}@(xf6WE8*Crvwt#%t z0z#jUxoVC}t@7GCiNDHR@(TGYrq;@P$Zr@Y$2cAQyf`dY(yry)yGgapA4<^Hzz)6}yV^97NGhHqV1S6-@T@HhHIz-m4^M z`#E_L&#rlar3-sGkden)dei+~@?s3~o^S1IEMl8si#Et2<+^mP$Yx0(37NEec z{~N5yt}S`ntS*yLSKQLcj;(o15pk~0;k-b)Zd=}HM9`mEXMi`E5MQ${DLZ0xqziWC zg;|jr`+{7^_(vn%X!-6ucL%F4B0bHaJj5V_0zK3g-`o3)zI57=ys?<5B0Nms;anm+ z*U*t{Jf1fhp;;43IyrqYuNo~sk@uGkS$K7j7ddr0Z=dCWinDpGFnySR@v2S+bSUtn zxmWTw*pZ;ugM5kopHP`RFXcIrv&*c#Xwr>5OqxFOKW~ZaQQ$`R-pU*9##BIaD)L}6 zxS$Q{_ag64JF#fpdo8&W>zwdRj)vCpr|?|tZ!f0*B}$1VRNqHQyC zthBQiN%YH~LwTAM23rx4x%>M~9 zU;uHsN;$UlV>qmTkn158jhu}GwMqw-H!1B><1 z`D>9Z1aT6nUu?cLG9oaAB+|d)^Y;r>79{1bvWSYkF5lZSDpw8p4+Sa*QuBYah)QI7 zJ}PN%rGbuS<&PDp4cKPr@x&z`DAvB%yqp?+i0;V4zQJ3ENUmW1-I4J*vaJ4GQhYv#>pqEGG zUlOisf6U)2T)U0UUu}slok{Nr`Op@0&*xpPGn4WaCQ-!>%(RP1 z)s^pYqkqlFr#8TSR%!kzLAJIF^G^!bh~=V;wkt&$udT{ohnB5mXMP>gI7u7x#{fJz zm($9Z{z>zLur-nbX1PGT&E9iBj1?m23Oj`cv$#*cq^m5P_@RiH3kbfYdRat1wBmeZLBQ_ zzOKKq1*X$(7M$qTRKUF8M58?|8)2L#U@FHLZ=ziotme!xDPUR)RDYdrY~~EtufG_d z2`YHH)L7yU*Y2B*DTo0)1?oyGa`ArC4ASg?aW|rY5r!6|czs26GUA{Sv4TAFz_L(M z`;jqLWWwuDBhMKxBf@AUz|{-J!!S`RaM^I#h{$GC303n?V;~};R06nOH^Np4#^u=! z)87ff{{vJ1_8sn(~!l1Re<-KkZzf_9>Ww115P8w;G-K#HF{bfL9t70k6DREQ`9 zQ0&MbZ;E{B(Aou)oJ5KJLkrF$S|yVT)nxBq#sE53QJ}VAfMl?;z?;;*YxJX@Q3Zo7 zkX?i(G3Q#l)8yEK8(gExgo2B(ssmAvR!u56!iyE!0%6Tg_;pEIL04#cg<{R@f<1^i z$V%Z_-#6AI8FsDx>5>KoXY51?yA+uu+}yMPld=1M@H>^aaHkhrn0+Rrb-|AonWSue zMF1Vxp-n7D(B$O4r`0uS2>9e$;72UbG z;3tHBgoj@v-f6YApr_bDtGc}4jV&oI?d(PT*A#61?^qPDCSa(;a|5VyL%}d>@%4K* z6=0S{8O-0m6|_Zj__DPCP7N{@(Cr17B(;pg>m3C)2#+M2?i4mHy;Kk^+GEH5f+Kb! znQ2D~5S>&Lo}4~7T40A!3MV9|zn%~x7*kC6se(!W-8U+^^gdmH%FS=)Vs)$4evbyN$izB@KIGZH0?bOpzXQN;4uxxYKUxDu%^ zTIN=mXn}Xtq2oOZuW-Bd_AXqFXuN1)^nsg zis<7o_aVCILX8-vht@63=VAJ~q!2M!H3KHm6lq~stf>S_Npyg$a2(fK(?G z$?xg)-jTkWTlfgg)(k^_DpzIF6Y~rIv=%A|U z^Xxr)_RKkFBx<3V^1a2es{~Jq=dX-~bNi^SH>`_w7DhpQVq@%ep4AKRXcUGPxrQ`G zO6QOeocwj{P98xlFnH$P*c&__Im`$iXxNEZcQoK_zs|V%vDj^OVdH@TtB_~PW?_RP z&hs_xCxqD-VyE#8rk@bLxDv~CiGu|J0fO_6>#;Q)UI>G&KjCQwC|8CD-jB_8qSlO0 zK8p=?5-r*BN9+;@!G5<`#ldo4YRbh9aeG8Uw2xEVT$bUnS6p+JA+TZGC1D;ai;al?Bgai=*HB8)0#m;iJx zD6S#;*wk8qw#h9gSi~)5v zNB_6T=!dV3iG#DpY3p4b9|y~KX>{2{OPdxaEIR>uyo;=!(3e$5KFNBNZbpajthk+V7Fs&`An?O zPR8|PUiZO;xW}yN?p=z5bN;9{ZvPOs$XDp2vO0V>_Q<0v|VW#OGheZDL;ev)6IU>dx!c?{VdI z<3;z{b$%E3j`8aHAr9A_*Vd15S9n|;)z@&Fcqc5jjo0zEKOzW7Jv!DFce9UwWH0om zF7EMTnSGwCAAf_{=f1}AaEK5!)ltpk_c2?JX&J9}6jBd%iigASX@)Do@y~fiBr281 zfOs#|u33;bo)8`1)kffSxljBe-uAPQ`*XCVX-`=iC9oK_B3@x`bKY0+sf@Yz&Uo0}O@+9*D;~44?<7vo3rwAv?xG2h3FgaH-LyAtn8+sX^?x)sm9df|Qd;!{~uL_CUL%{`je zyohgy-kg$#;BS77AI49bz?i1Mi}TyB;(Id(5b$yN>rN|&*DNF|TVxR;E<5D8!y(K&+ zM13N1qK|~@PP~d*~+MGN0Q|%n)Zdnm1P*eP;!bz z^~)q(II2Tb>znpIaY3urIyS;X)=1o#0NGzk5_l$-7DSx1SrW$RE!t+$vSEh=o<^ze zo9&bgV+K^SSF)d_#_X3YV$qKWB*830@1qjfU`C619JjRI{S%ViJP*=9l6v6))bBjd zStl&3iTX~mg2!Dvmb5{e_YSv3f%~4=;OGkyID~2)Zg)viVguo_E0W395O%sDxlTgo zJCZFNu69=5;wH0{i=EM_&>js?pnHNR?siWSN@~ixFA1^}%@l+P$aEJY-^UV;lMC>{ z#}ckj{CC_Eq$uYZ*Puqr?)*){UbF0bF4<@evShuI9N=gRf`$QYIFD68;d0?~={J8$ zU?0Lvw9h($$07iz7W>#H@GR;@w6Lo~!gVVk@Uv3_&m4zh#JD7=ISdUhS4dEhCW!V* z*u>WawRov_LK}{{1>sHg6P6R<0~;l*;w4b#n=pWb0DjRV!PN%p{ur2WnYZpq%@WEu z>K26G(K6vN5q^1_gdMyDT-qgE;p_lI=i$nXB@1lad86T4^=PLc46 zE@2}HCm0eIJ3!bbJE1kSDvrrd;Cf>ibUaZ3uYD7mp^4iQI^nV92}60LBrq6Y?gM9G zkD9bLp^-fhE1Z}xpAhw!DG2&-Rzg2__}yuFLI@$QU7b+Dv&{@@l%wg}5`6KP?FoB1 zIWvTZIAM#cxn(wflQ4#~OvovLu=5$AWj0(8TBi7t&@u_vgqCS?Lui>tH-(m&dpltx zX}JMEB^&}!?DQ((C(>dseoOEG^T$?i5>Au9pL?IshA7~zDDiVn1*D*wgHP;n2am+z zq-RsZnqDt4k*AA-J_R^r@Dd7N;FeL>!ifq3}W=M`cCmL?WCCVgy6> zIG>nIIHv!Qc%CS=+x5h=By_oxcz`JT^iPT35$;PKChjGn^5?`blK=DPiD$@f-LHwT zt#&4kdX>18q+k0Z(Uz3E^D)tlYcnL9`~;vcJd(Z@?IY8$UTCFf63^fXGq5(O=ExH# zjJ=Y07Bb9gx~wHS@J-TibhT|#ewT&ZhoYN-IwQBhr24|ND64)_ZyVI(RhlO{;G4uT zJpB#SA2(`}^t+XS*EAq0_1_P77Ca0jr&zgOdtOFF0*B{?$kyOa>KxH9>7B@<& zkDs?oQZR)nJ123x8TmUN0zCFY& zO}s{#f%wa1mGFz=m+QLLSvM%W@GnF&jEShM&D`^7D zaA0rJI*#{fW{dnobV_*CwmO!?vl@~3_*nrnJhv?TRc+nz!`n%4ZY7ZsZ@ZTS zmpjwwwMWF>Xmsf>#NKE$`$-ZU1W2Q%=Sd43g=pJ9lD^`YC;gQM+}!#xX+BTqVY_CxctlG(gyt2%j#&Flk8PZVQF z=I9%L2ldCBjLET_!hPcAkH1Pw-fBf@6=x=MOo=|x!XPWxg@;sI;$u$&P}mHQV7#Ir zIg-P>2}CGNmu;p-cv4Za))u*j$$hY>BH71Iv}n#Bv0Yckj!L#8;$q$SK)a0k+;~bq+=-m#|#(2boWE-Bg9`!mo9ge_Fj^t1wB8A}y++?@} zn;i9b_Lt--96|ufRN;xIwJYoYp!Z<9H8 z5yD;A$tyV(IUBotNM2|~tDn7F%Jan<_|L|^R?_R7hA?MUOsi-o(ttaJKgG!0CuP^P& z@c>0SR|$4&BITK&(!vM|+aYmRIEf>|U;3vNaw>Q8!2_F0PYZnvw`whgxfT%+KW-z1 zMcp*IxTExz&EvS1t@B^|`s6aozH&{ewBR^WfPr}P=) zf49Gd|C)i))-3h*FzIn7)vggzSb!aP&%+Ck87YOkB&dLW;-oiO-r!^@d+Li#;1y;#k|_VfUsFm z3~C8r=(dB@7oV$?<}#)uM@#)#v}S@u)|g2aSwBve!Utk1_MWNIC_5o)_qkNW%%S02 zX$;S(J?fM+6LnlBwZ|^YrD=&5x2+n57)GRtj5#DD%io7DM>3S^APO zx7uMzJ&vVt1{TfRZl5Lf`F^Q4%Ukb=v>V4d3Jg--;grpU-Ooz>m{`Zon#Ib#AcdO| zDAn?-Quqo_qXVy7qV;b|H?h?3Z%N@Q6q;e~9ka8-1MW#LGX(K37GYmMmY#&O0!e58 z?sp5=lDC#<_B#u1r}q}z=N~M%i$$`rOkH7iG8ZnRAdcaKyUZPVc+24af`~SqaDb<* zKbH#4SQxNE1wG>A1~Rx&l1e$sPd0|pt=~*$%ThbEku_tfst&Tz9LwT}cl(c7k0)Bt zRdzr$OL$SSqMM9k?tt>T%l_n;@idjmdf@9lWL)cQNnzC9s0u(1y=6SlX8@3i1N+Fn zhi@`Y(VoaYUbc)+h(bJEBKw8M5P(A=zL_X1w-Pv{NoC{zJqHXhH+kl6wE7iF87zaN zDrlvV)&BeH5rrA1mHo(}0<6)?eq+_Aq{v3|RzE#ec9~lRE}60mjKlM68PB|ps-R=8 zEQRMY8!a4FC|k@pJSvt=;?+aLQrTf{4mBp(M8?6lS~i)N!{8bj*V0U?hmWF1U+=$E#ob-jSF)zurn2;R*&5bN(m!N8J58uc zro5A#;pXu1gKQk*Fh?Zk_MQi=dSe~#uoG^Yb=M;MrkvA@RLvD9Yuly-cmR07V8lIsO$gYS2j!~0pHWV}6E4zInIg!lBq#l7Tk88A(4(?`CFMQ`<$|G|p= zJV@TqR><Pc4PTmaVJd)d@;kGItJm;c(y}cmh+-nvg zughaOJ76@jRDiQ?%g3`OvAr++f>I9t?{75qWrU(7Pd66zRY>rn?urJ& zz=FT+rLg0X0C3=-2uj6gpyC8$^=y!$f~8grx1>s96zkoDyk07WCl77v0Rujhd7zIA za~$X$Nhl_9qz!sht8l~T^opODg`G@Q@V;k_M&=6Ka8RZK*27To<`ycxVlv6f6us<( z)D6`NI4_1~xHd+ygj*)@Dj9r8u6^i+KTcANaTlD;l`qT&_RT!SOzw_t!A5{>kDiwf zx5Ez?D6*L48JAd^uzZEWi^;ffjlzjVcdl0ivFIP06~QdpeY@fe$I?LNV2QYy=bpHs zb2CTSpwr(e!tn9kiY9fF(F|xO7{;Yi0Ufb z6tkp@(wd37t-BHy#ZdW7(H2n$^|A=%-ABnad!ZeLXcwOysDxD~v`4oZYL>)nn3DIc ze>9?v2CyzTZ-f$VE1>k>ja1&|@nA5U=!pU^Jn_b=1m$oZ?OG6!^+I_38l0qr;hD&b zO$sGuJ+ZG=d8*;RpUUE16-pR1srGED%-VZirTme{M*x@(oz)xca8|AI6f=Rrd1Y09BInuXeAIAEp{PQa!(TRyiqh1qkIy?7?})T*A#9^0VJ zvd3YR;EfKU;GK z4>fxU8jLEJxZ6+udK}6W#(#4KZn)!nrGZgi{;>{}v)xs`7}$X;+l6@ zD!@>|HKxMJ%~f#N5%pr~mMS)n!fjit?y(0k|Bfoyq)IbP2~xf1k&K#K_Xt%(GR9%=V?d2--JoAA$6jHV)#l6a z#Mr3cPz`#}y3D-GaEi(a4a`-^I6&{rR1L=dc`B}t{iHC0!ggqHfr@7#KL8ZcT^Z=y zuYNYztw^=kR&*GhDp&31lf{HXOezVFM*u1&95za|#R>>K7_C~xOQ6eGRSzD^qy$<{ zRLvp;c1>0-<0arQRkewyt5O2`>8iDafZI$S0vIqpatM#%1nw84TI+c#o@K3+`q23* zu7zZ@aNr`g&XCC=ER$^*&pjeV*L4yQ}lC85QKRId2x5!C<(p!i}BJWLEZtxDo(=}&M7;OueF z^Qtt$Zrue{H%@l3NUVD7fy=I_9IVX>JaO5qK#!jrd*LJ3Rf{>h1Vev)Q_|49AuLqQzK5;1IyUh2?JqEjqnZwc}(rWcy~dt66`u8>s(k ze;=*YUOZEOU^!&=W_1I+!cILOuyIc(^<@!+ja=00Z6G}Ap?*oi-9GB!yu6Wz`Z1ip z-&pNoW{*mm{Ehw#e|3Fc`V<`jx*cB8RNaRN@vw#ZAR)c3tr~8yKa9)UtKnp-!?q#jl<&b-acxr2wfd-a>niYsW;h*P72hT4pH-55lN|az4pWlHyo<|XoF%TVVr?5$1#2uUDs72?8$PsLtfmege9^ z6?*c5P3ophS!cfDl`;YDn@~Tr69l}nTm8URh@L;7zTq&tCejNZIHB$X&(_2a>wTy0 z!t>|=3J^G>Ygg1fEA&K9)H%Yw=f>C6TbZ@px}~1Op+LYY!G3qt7kP$KTKJ0})v)!K zT4~Fl_&MkvsLyb7xbjGy$T;+Rte*bw^?*SXt`&w<1>ZhX&u7&a|ElIVKMGM8{8G(z zt}88E`&ymLI9R_`^DKy^Fg^ZIbM2*~h0p(~&SV^hf8^${eWGR=&&(JoB%|;fn$Xpc zY&D#wl#CWg2Ropr8H2s?GI8_icNI>&80y-6FxbB*Mfi-b> zce&;>HYZV!)|lrcm&a;&<|G6Wz1^&F!{3k7EMRkz(UUYhGp|orOD1bBxd{`Gaq~1? zS!elfi3Zk{)9Fasa?L?DUFo`3!!V zGoEKe1rAE|;ikq8ce|nCT2e(2Fd)ojlaVj)YJxbK#G@SDV;2mQk#J7i77);<>BqK5 z#9z|KIq_pnG|w9!5HKF?`$OZ5Kfcfev5~po8_g?Tju^mTh@@_D%Lnr?wtcMDJlz;* zr8Q4C3LLaB-Jn^AIcZ^E8;w43(JtnhZctG?^pD+fU;}Nwy`Y!X{#u?F=)@1jBLap1 z%nrl+BA*F$xRusCi9&6NRCKx|Yp0FjnOcx~usB%zj2T#HxRz^c3FQko?&yHd)($_9 z)RL*tlP+F3yPFoSxulxy)x**XHa)d%dFB$d9`!Yt(@C>6q3B6}?K_US^e2?Ifvuf! z^*}9rilug(Gep~#<8>N&bMu$CO1MS5w#o(-W~&CGpOdtkIVjQ>YVYno@j^!*z}LYB zi2ZO@uVTnw;(i%lOsXei?N;|xs5KS-8{^r7m zt3uCev^=MQY-wlchi{M4PPL~TP}M{&&tO4d(B|dZF8Jsqt&!*T@F#@pQ?<{m1UA=a zXqR#*$Dpgn{6AkJhQ$}Dt@z3Yh-;h z=PPX_kDH`mHFuu)qubwW?a+L?k=|(R7Hu=MfBw0Xnsc>O!H|52eEE|oe))r>qfKGSCP5_wnFOA9+uSG zJ$0K{>XQBzgz!PSG6x~=fsvNH@$tHW40nT6m&`~uQ0jIv>bJEzI0uh%Sf$s&FifLq zM%@B8AzHskH+mSa>i~b)1mzyqIipS2bTEB9tn26_v{lt*-RInGWr4*2+k>jx3xB+; zgVjfr{>6K`AxvuVFFIGItl`gfaAz9L5ckTWw@0saTUdrK|Fq~W`lD_GOMP#nH@C-U z_WC(2HPTgYZo4z?`bjJ`&Bv1WeFOb5mU_ug5BF8lirci*o7MfamENrGEp7DOnAv>@ z(!XsbKAdVpJ3xj z8G49d$y9ui; zV9K@n&8)KpY}4;x8v1FkzLaNPEBKOc^nu9M*4G!i9oHWb)Pf(J*H7YBMhzfh`%C)H ztn&@HVd3w0OFxH^KJrkX!mOd&Q++RH4by(pk761K{8KMxQH_U*KDVF9NRsZo_fp*Ow}U})hW*w5TR1GAq# zZ4BKxRED7ud>G#!I$LDh5M)@zRHBbEOcpe`qqkutOWZNYFo;DxMjEuveD0_h`ciLb zfy7gKdE>?kgUp%=g(s^G8+qQJf+)Q(AnKUC2jm$VFp>jG4HZnv3zY^}4r|3Q#SIXN z9+C6UA909Fr`^u;4b4`Mo@n5C1{KXW7_skULpL7dA%)SC=?0#ca8P!(@MTc*nPG-4 zsNmN*hHE@3m~U8!=g&2S@z^P_SYQoxFIr^S%UgHbB?g{@S@6I8D(AWtLyC3U;ztJ0O09#PMG{@M0=iL}IX$mp}+hcK&QA8Rd zxWZTp-5Y;dW1P-uDJf|2Pfr@78Qv}JP^b9z-q>z}@s_8V?;l?ndCut~eLw)l2NoFP zoPlD!HO3Q!^39FL1@-wn%U1j_2?_?X%V%d2blx!B+R#%Mh%7k*Ux^7%o7cO}>jFWg?WfCrU#(m>MKQzG9$_G!i zPI=EWKOr~>aD0&m^0mX!4k;zJR5EOf2=DG{un>`=Cg1wG+Ua=u@hlgy{P0lxHwB5R&UlQv6u-YIRB_LrASn zIn5CIk4qWGs#q~81(rO~VsB=qT&&00t|<4qu^D>mk>-mRu1UGV8ffy-lzBW3j5d%N z(H{SJIt3O&QI4y>OBu`5+x>cq8b53uOc(9|_7Dh*HFz@iN!QxCG}&rzu>SafmMR5;d%A|!Mt zc@KLDhMwNB=zrGS91hQO_}^7Wi3y>OIaO zu?5N+XKIEvk2f|#OFjlWpaZQP?2u1ksweX43#;oKgCz7#c_U<9p1MGE4=*WC&9Or* zx~K;tr=4Z3Q01sp-mwEse)OanQZz}|paYG?w3;y-$_QGLszx!$WQU&4FnOaHS8v*4 zt1+ou8}rOqus%Qump&eykjgW<07@Bp)-7FF$%=9}ZnnXVCZ%q$5&eOVO-sGRCnSaR z$NCwm(L95TnUp`yn3ejQ6;RR4N#&W@e**durB?CS9UxSrs2LueaP%VRd;eY?7!WjW zAOf9`uilutz)|!E?z=M;=G1@S&4ttmTL{&cQ)h$x z`1RFPcaq=kX6jm32si(d`jZ2M=vC@z5rl@C`%{2@z{ZyEGXQe|4v{ zi{!T{IBh5q^F(wS6<^gmjf$VsFAb4=_Jh;xi8$^tY0J279%lWJ_MNq&mx70*6U+=% z8n=_^;Fjfya({W^gqGNuoY8P~8qe{?cbcX*M$e6D5y;7y79jYx89lpup>s{rJ&`&; z&2El1t;@f+L}UTRd$nob@^nlK0-?t9u7UtykPR-*eu-LSq#fWC1B)}$L_Bjvvjl^X z>X@xFQlEB!E#CKyJ#o{*G@TQWqTTe1sx&_yZ}AEJ)?HgSoIED&keBEsZi3QagUL($ zcy8K863(BOc8G+^1!)tSLHJ-_8eHl867M;XHpLFYLC4af{UDrpFYQ~B9{*F?W?Kkt zAE&{l!k74qr)ew6@90-)wGI#-`ZMhu31``+S38Mzpo3|J1Ch)leJh7{>3B^IdBfu; z&ZtUV2zR=9rqAbaebnG)`F#mJVRKmn(u+^#H8CIX_NGa9Fjxh4Mz`Wzz2Y9e(8HSyT@?U#3d_$jK)e7el*>?>y*vh z*F0ljbk832bF^*xVLpK>QO#Cs2OQl#{UxVBmH2k2^mSIiVscRW(mJuY8=O9smxUll z%kcCIgv#5<^!0V3BI}a=C#OX-mAZCM-%qHVj!s`wCo1iGrEjd8R;Kq&-%hCX8<4)L zPE?i-On+WCDg%b5A0bp+M$}O&=`rbnoc=up9oPah?9EG3b$D`8`XU$LL%n(rL%N9P zy#RDW0TbUyO?UJXt;P?^)4`#y#@Lh&4t+H?R;7bOUya+=q`QGb!;$0C@7O@-J2@R3 z`)d4bO1eFCWc>TA^t;v&UPbBP$XDa+dFgo$5Z+#v{vFA;b%lVZU6p=-{BFJ`-5TiQ z*4u>qU++j?VGF<2d(tNo{GSh`pW}Iu28l+Xk3s3)sAtbgxVw3q$p=;RuI!E19#2mp z0(hQH=ee_&c>KQtgT5Sa@^|T12q1$KBlC9Y3a5aGLW7xD_hX0Ryla;P7Xj8MJ-$-WfYdyZHHJ&~`sn zKjS3%J-1+L7i$e$+B!FZsKqb%q0Je`Ti(JMwo!NX99W9vqf2mXzDs zRro!&d&WFR_#HSvDF1R`#y*notHBwS!4QfoGpIe;R%gs3s#`KTV>{2HHQG!ynXujV z`IL<1RAG(%eDK-@8ErT_$OuH>5Wv}?TdC=GxO7QI98uk=O@b(kw+O0B+A65detQP( zGT-hHRCjfcpt{!wh5RQD3#uFcji9<2rv%lZ^Mb1M7cwe|>h4|+jG5H*I!dU`XnBf8zSl`W3Hn>mK`uPZ-h))Id#|0(k+ zQNoZXf^>n;GIL44{p_`%B;}jTGo=4^{E*p-NF8sLHHhPJnz%_iQM`o?;j)29ys5GS z%5lxA%hY!lhlZMpa^q3Dd)5`+vb(la`r^ADS%2`jS##|HsHR>P&$}xCkf3wzvN{T1 zzYqCjNn!DbsoWEF49MEaCldt>!%G6QI&#Xy5GFLwx&n(!2%G#?Sv;Hm&EkdO)2*|( zzD*MZ3<`SAh@9`3#q-eqiAbx?SzI&tPYBt;Stl5qfnixZN5p)>S{$C0Q@2Js5tVh7 zvDwxwYjK@S#;r#d-@RYVio@`Qo>{vYn?-%Hcy<(j(#@}Z>)KLX24=y{bku+^4$k7) z$M%Vh@6ar+wTqt+(ne&xVr;Twvv{7kK4G1Y%NoWrLVrTIl9+XdvDqojT39E$@sMZj z<(d9cHn)GzYDh;;H28k3Hy*3Y%5g#=56gV8V|G@5?#@AAF$~DT9jF0d@xrX8fkITf zH|rj(ssq1<6OUxUeH%2|`e@cZ7JYpz>kTaBA{joO&VtWXGEyCB<$hgl1`Wuss-e#x58r0Di*R(r;`^!KdcEcJ)?S;vLJ1aG#_4q&ObU9-&+ zZ+6dy?{8E#gJ(7z=1Zf&-j)njK9&r)e)dY1A**5bSytOH|7@~UktnKpU^Z-(q0!e( zv&}j?-aMP@!3cDgfUDYN2f9*qp-17_a0pP3EMI&(BD?^%2dn~7#B#2<)8K!I_ zV{Sj%qNhF+vL~_Bo6{_fzimeL879xHnU>VF&$C0hJ4{adN6zS3mn<*bb78iFvmljX zO?C@zsVsRW=~_1oZMoO&mL!EA6{n&H8ez7x?K2p(k|Nr7oX17I|#&|UCLfk z7vc?Z$14`IJ#ouI*Yk?w#}jvXmHocHKys*a&IewS_?%nLDp-C@dd+z6 z9J1b>M2Gq0z`+NeR!CKkQYFlQ>P_azxhn&z0@#^B~Ta3MWSecK|3ER!c0_O!}b zQ(uS{b;9hYHy2jTc|eU5ny*tyXnPs(PC(%XHN z(}^iEZD-CS)~>p}IY*elk^6I6GnM5Y&G`U3EC_D(w>h(!(p#RhDE-ZOi_$k-u&B5A zQjU%x{CwR)XZKADowVB)^|rd314psbDxUsm$*}N#&KE3oz=NDKtm0Nra*RB0T|xh) z!ksb$f6Hmkv|jTeCzqo~U;ul^^w-fL*R1RJj=5$7U+dgq#Ty{2KV zS=W`mxnicNeNA)Cx<1`9_b4;D6`d_r6b4zUXdaSlHqYCkxn}*X3AbcOjLbFbPt+y% z0^@tXXYLLc(Pgp*eIQDaCbviK!*jWx>Q4>Nz4-6FDLy|U*N0~$gmRH+L_#jl9=4IQ z^ZFuxd2W4lJD^EDT$`9X&KmUKD9hz}@+D{((5~=^K?`TDQ3Vt-p z$Tj_YeIhDbhb!4`xM^nY2A;1*76kOHRh}oxd6DOi^RjbcmGouYqagPdx0o}_bI0%! z!jnz8i=2T$y9v3yc}|M>n^ZhUngPH->> zc?cxOQPp|yP3bcB9-9X{UM}Mmlk!X)mr`P=Sxg)@^%HZJ=5gH<4InYtX+_>%H(+x7 ztGxDv`KzzW`B|^+_%~#k%__SXB3U?0IX&zD<;d(9eCt0K4 zW(Bdem@aMexyQv5ZSzlZkXbsapabfmEVM)N-DTd`seS&>)+n%juqU?doc{`r(;!hW zqOYxl==UM{$LxjZ#;*CzY=r2Y==_l^L!aLHp*-epCc>79l(fsQ*JT>_DiH*59g+BD zz8C5_BejX}F5Inu{t-J$82vaje;l8-KB2b2?}z2T;PG64Bi91g#^mo2w1-B-<@4;_ z{|~_Y`1}CQHu$S}Efez#8LxH8`IU9o*Voc~55c<7bw$3e?tmAR`4VQMQR@8r47;;F zzozckeGK_r=g9p>TO3NsKgg8$d3yegy7StZk?;I}(71`&`6n5#ki2}Jb2R=#(B%Al zu6B}UtS&4+dQhJ0VFbS$v0i}AG; z)|15a2_CyUep(uwbv@WU@aT!Zf6zr;F&6bp85(KOjqR> zDD4FEXjE2^$T5Ay0M?j|tfwaw%wmM|rWG_{(M7Wg+B4yBL!oaoEfJIer3_@ ziv`12u~SzH3hL5hZBVW})*tV`T`=56khR(U0>8Rgtr_t_K`!fsJzo^S5gyc}9=tAS z&14UFZ?UdCtHRM7Eo7Ou*r1^WkDDQBcwr+nBqg>ZIy(pUvGvQ%55d1X6rQ&h1iRr< z*uHLpky`K+_d*36twyGLfA|-g1zXyp&@9-Mc7^6{(_UP-v~Ge0h8DI*2W}VmqNgRX z5mYd|IlRz~HP(eLg@fuQlTg8f0$0?!cOmRO=#%e(-CYVIMc6&M@C0kCNBt~<&KP15 z^!P}NpuUNP$2iT9&Zu9Ct_f?nm1o-rqc2s3+*A9Zr%RpD>CR7_F)Tda#?fhK-Pz)U zOSOf`BG+p+|MNfT1ML6je-xj$89r-qT4VfHR|qG}czL7`LXPQ$+^gd$Nso6=9C3q; z!bThoh&5S-AFM_1usW|WtOLh93CinG+eL*ut7b-aEs90$Rur;Vbt4xS?gJ{wV|gLs zU_#I^ps9FX8&fK0j}$tfGw-at(T9R$CnQ~8=!N^NFD&x{Qsl85JzQT1XQ(tT^2Hza z6~f&u?@;!^LY~>BxjHvI{ZQdv4&y=uVKoru5f<94JrYkC(ii8PDl8za|Kr)hry>Zy zJ6~Ai4Po5j{?qAv-7U77s$=bT;inr9jewv&J!Pb+f3Gm47dcmNCfIbq?r zqT@Uh1p}~AsI(+DSAkLx7k|sfP@~~i?)#P(2kXhirSGWi|KNaoY1;*T}WSZvnZWRS-gJ|e&2mi)Z7Jr z+r282FIMtw+y>pmp`Kf;?eS^9;)%9qRcACW zZq7M!32+GD;6Mp-f_3ZG#Ti7@S?!9i5LIM#D4s<`76lc*BH`<>;+8y5g@ig@+_iYO zg>`nXVy=rEsS*Im6_*bvZcjL^8d6NHqN=)+NG}6pJX^UyIAJP}cl4kSCEPhRJUGj=wa>^<}F~@A%;Y}sQ0iLXxkj;c* zHk0?5Sj;=sfc5ovZT;|rDaE}=Gqs&jEFl(EJ+t_G@;hNpu{RMZeSx5oK8pmEbX-#G zNjgsSIzc7Q>jjlu-yo=D-6laL6SovECMsyVODJ#kbupcFpWjowmY74uzTzh2?{mK? z4kRktb)xtT2`8K>{*lz1d8ycmbi9%q#TN*lA$N-5dm#M&xwwGj`{ikIf1WjRq|xVe zF7iP8M!>1HJsQH0?(3Ph|ntU zl5Ap6XBw95=Cp@6bo-9A4fY5q`QFk2-nA%c$lYxT90E8$yt7RSeVWD{O5jw8cX)qr zNk2R9ckuW>#WCMt)aPVr(y~8Kw{MF^ZYc^uANrNRspq<4F`gDx5=+Fp)1?IV*T2Iv zdzQ2$;m&>~)9WVY*&!uGpg^H%l1G&M#4)InX|13&1aN-%UaTPIj|n9$h?owFl6Vp- zbS3o(>%!EM0G?O7w3=xNb{^ zJJoI&O3Q%{2s_J4p7S(_872-V)|C8A`byASuX;G4wj>#R0cz^!T@Oj7lz1Zevm5?# zO382@bELK8em!^_syCy=8^?cE!gZ5^872ld`@Dp@ahEwI3yIHIH?O1~@p1bXlyKdy zN|6I~rH#?U)g@l^qB8^+on_(r%S&WDCSw7_063d?imES5$m1V&+bDR7%B>~EJaZ|E z3~xz>;`zHvdiLhhS} zWjkVr)Y9XmMbD>~t|RI)<(3AKaAQ#^*IRLOy9`A`t_=1@@2=ZV#IsDLvw5y^HDkr% z@28d0*;?GcigGcuQ<$=p0@&Tlpp{5vgBPi3jDdWBbs)-lpZNo4}Wu}6jqWS=$Pe+ zO&3bxk{%j;b*XfnwGiEOr8JXcF#20v94q0><@*bVjnP%2H*b_47g!;Dr& zCm2xH*@!Np%%C!!?Zr?$UpU9+Y;f6Q9Kl=(4_c@H=EuS-v}j ztG*~JvW2k8;<9_LqAf_Yq3k6`lMB|@&K3{bShkU)I}(W+;69tn6e7_UymU)hQ#*7p zvmsr5$g|Xj@IgJTpE?MKKz{iOD9xHWjw7kR)es5@99@PlK2R+N-?30~%Pw(0gObX<(UKPBzWA1^{2f$^uIbBpJ{JCe)k&4-Wh|fR z2*Rw)DL+V*lTuWEnF!g_RKAC#zaLxv0}=kx`0^heAlx;h9H!wr@iQACJSW+M{)w%Q*&L4DQC0rxS_xmJh|ZzAC@Y<5oyv1cmKT zu6vdPT5My22jd;(93v$Hs64^1Ou*$cY|!nFojg(7J>{$ay=%dMb%IlzGF*6|e65vG zeW%0a9CJ(}N*PW&QeKanL+fMZ^B9NkPLxmm_bL!LIG!v|h32m$D2$|5*-OPD#__Lm$eI zv())E6{lFV)TzRpA;zWR8`uX#^0xA>sB{*h+x#nFgDXuPA6NnV|7bM4Sw#@bP};Eq zHlothUY#q(GTa|REydP_TZ$z|R%~T_{d!e!odyiHFbr+7ed>b_j3|S%*5Sepv^lY= zFP=Q0;!Afy$3qe;8uIA)Z`dv28vu{U?l# zaF~PXD9>!lj9`a6jA;(&lp~BVE8R>SBMb&887vWgnc|7|dYgD2#{i)gJuh)^#6do$ z4?IszfRITZ$L!GXtf8HDG&WW9jM-+Czn(^1;%BmRL8aCyKIoe^a8kTSu*ngfTWRHq z_qR2Lz`9P58(WJ_7*^(z=*ckCTUf74qL-pgkKnZsiJq01;5b|w9V|2X!}?>ATBbF@ zrfM1;q&I<6rO`JA6YO}V(d{Xw_N|K&vD zdDBch6FA@&$VF?5DS_S)fZ+-88do1<2pliz;QN>G z;0bahq604~y^y+hrJe8swV-EZ9H;3ESQxOv9L+jeH>5I`3DFZ(RE%x<$}DFg8k}2c*3|pFN)bzSudJMIFJ#y>rV`F|pv6kYRl+GKG}?DUWe1jF z)bz@AuritGy4&2!Y_5;?tS<(jn2nWlMYsO)U?|^I$>CQJ9mJnGJ#|LaTgo+P-sVc4 z{cPZq0}!BqYu`~BhB|Gpw8Q(iRNm$4rvD3z%k!8~FfeLr3##h%Uho^A#rqDj$` z;UgUJkv)})I*TS1Ufo{XU%Ar?=zV^ua&6t|(bL&~KV0ece?YHii#8zY(aHscp5{d5 z%KsyJ2fnSm$>AH(-;As;+Pr?K9qxIqas`)f_-m{7#Wmkm4)g>msnfjiW2KFQ=oY^F zOXXF22=~6MtN<0@sMnR(Y#{V`R|$u8-@^C*tb~(uZ{g2BRK6$qX4+N3?FzTB!lA0f z1;R`9gx^c*SM~6Q-?!RU(Q=#GSJ86Hj#Ya|{>GiFz9Z$IhF8JKytnYdNa63fU8>GI z!SCMvstk4zt{GDGl;IBRC%``+7I1feBm6z>n82ge ziK>1CKl5BwB2oB}@2eV;-#2blCGvb#{!hg}t@1#}iliaf_IVZ0C&9n>0MI!A;;S#J zdJ^|WO}F#!Rj}~r7QX#w6?|jAg(q88QrjO`iA*W%Wam5S^*6{uWMyBdJ*#)er21s3E^P z-Cl^^E~|cSBRYZ4S5>E40S5?s;fhh!9W6h89$g*H%5|Ak{nSP%7d5@wQ%JQMvJst^ zlm?;A(OzzN!R%@uCjqA(YOtod3EFp{+7khY>y9PWX;wn%@@3TnS@gn+>Ub87TwT51 zTFCI*y6WZ*31 z7dA*WZlovf>|b-zo~EvLZdKzf#F_-v*s`4AH9Leq<5%5lwpk0QyL#2UVbMeVYP!OT zJW_$%;F^`J*pU%6*I0(laW%iP=+?xV$L3U7%{^9ZrMl)JOI@U|afT;G0=7H7=Bh}D zuFR}yz(s`(AlWk$H;y6 z{FV(;426Yh*(q{WL9Qm>AXn)$`TEu!0#T1{wN224ZnX{3%5JspXiQfi5Vw1NJ#=yR zd_T0UTWtUe-95hvI@qi-65)Sme*P+Iret;jPHgctXy^+h$2we?604)NSSzrK?$ zRg;}!Q01m&qq9AL-=%%?z0sX$pf+;Mf(ACgyEPKMUeFLZM%Q+$I}8r)Svx)=P$v!* z>kN^hMsbinR2&i!6%`Vu3yaW%hC~E~gz1CPmLG3U^#AXf(2L(^G{Rq$)-H4k)I}IV zBcj5@p<0bDG%Q4`jS%Z1BBG38I0^d3^j&@ zMQL@0D6!rc92yj)HEOgJ@Sk&0ijU{j?sWmwpUBgFbhF~N?4gb;0z zPHzwp|0x&FTUGnDQ(#nRXk>&jGTdm4)Px#BjG7=_WP~_8GFYP(hlNB23G)6!E+lHb zuMu|ns`i{yfFW2PB-TV}#9EL%G(0jiGT0ETGa5BIT~L@ITp*|Ur(9IrulLsW){3s; z4*{bi@~u|BKzHu$8yGC5{NuhK3l7k)e7`xZWs+#?ojt;rP4~<=Xg1>B9|R z5n^qyAv992(}o2{g=xhayp~0G{D1%rW zu8S~60CSx-2#rdgQxA*Rq06Gcf2diE@RTvb0}TIA^@}!R#ce~Pf;x#SD?0=>Glu9R zv>`!Z;o;(t&|pw`h)x@-4UPgSH6cM!I7m7s$0i^u6tt()=yegHnowP2kS0t6l88gZ zQDS3|J_Pq_J!!uv0L&{WLSr;&f;9TjAVZ`EWREmPg@gtf4Pl`=qQ17_8O7j zf2|bdby*SgPj#YR%_aq*0dvL#1Q;WN!=p5j(1F9lLZK5zg=)ehpf`qy!-9jNBJrpK zB144Hs5eGNK$q1)j|d6ZhDJp|*Vjdb>%zi9!co)jCpE+|Cnv2I1!$ll^kMpt2)#iZ z8X6TD6%h$tGSmEm4hl ztZje}I&!#99AeOGLPMeDBBMgX;h#3l5F!rI2jPRij?S_157k9PYQrP+!I99aq2XGM z!Dui-M-L7O3knKFp4MZ0SVz+tL!$Ii5uwHqT_~7#WN3sT0vxG62wb?B8mGCV{X@-B zsP(2XBLe<=%^GxY)m(AA;NT#0PYa3&2?`H2f;S2Z3yla1iZXz7;rfVhtr&(5Bl4V! zfI!w9XiexxdQF5FWC#ll(no^ph%$mZ0jmuQHin?{{pGJ=?fFuf)?99$F9Xy!nV6U_#j{_nNx(4Fux;((xks5#GLLrZkdd5jC%wR4QG zKX_`5F~|S|T|_WA27@LTI$5~J5ETRtHVhqHbjt^yn?G6x5`h=~f9$;noE7EW_ni$* zdXcJd&SGIv0jHd4R;-B{1=J))O>}0?oWzP)Q&fr&WmRBtcP|h{SO`W1#i)!G#6(Su z1!7H9SUgy;bEn)UmOS5UX7+G)gLB^azVCfM&vPF?u3l5lTr*ewm*4;YGaMsVC^!l| zz>cfBX2C6JisG9E(a^tjSTgq%jrpsZYM@(Qjsd{l?BqNr2ns5zQ(n|OyI^Qodt>9R zHJQ}f9Z|#7%BEM$96F#mnSYP1pIJACHMVU2hz!CIG$F>tF-P< znxgsl{mvs&#Q@n2gTiSmX3wsf>ZSLX(SBB`>4UbzjIGdgg=7v6&Zd8tFQ)u8o`hX9 zfmdLe^jTp2oa3vG={Tlb7M;K~bSG@+zKWIA@bh^Vc$G~ypF^Z_9o^5{fv20cr{xvF z`Wx+b*VbgsKx6%4|IG0~+cs>|W4t2T=q>{&FVrWmYMX`m^tw$UHnQDSs(aG(dSxHe zG?MKu&vdf$Zh+8Y#pcv8(Q=$x1oT@%^Bncs`4h@0oTGTaC+d(|VHay;Rea#5lbv=irO7(JP!Lt=#iS!c> zox;$>_M4cCu{_BvPOI4!o&GZOq>44m2_}B=mzjODmgn2Ps|9)6*K>K#^z0lWQ^8@~ zP_=>`PU^Z2$vDWFE((^Zn+0|(-$q0$c&HGLt_EfPQtGKFM>AXDqOwMM$Xo%~kAoz_mSFMW}EL)mL3HeJk?DhBdQSGF7i7Zr}!L z-cbVGQ1XTmuMD*nDmCS{td2;p(|vE|D6x9|%mL!guCoS<5#8(ikI^jc_#JYjfp%i$ zeMig7MK^ML(qfx({DNW!xq$UX zDJX8vQ8ZPqv$=TAFuBmyjJ%~Po@W$n1RmdHSSm~_wu*cK-A8ITrP-BUvn^&0o^@h2 zy=F^Hf4@oDkM-Hq+VnNg^?b{5^K4w`SbLv zxs*!fs;7!!wX!q1i;iJU*?T!0pU3!l_3^NcNL=zx6plM-aQgUX1 zRS5NZVAyYsK)s1}1cQ~`wQ?phn69`wotww#VIXd>)f0S?5llBd@bbPYH5=45^a>@9 z`A%1v%`Bl-`DRw3`n>qeo^^aysZjOCCmWTzoSn=yY!^YnDyXhnun+}p1UmLpjp}Va zGi*3+Im@Pw^p!)FWGK720#dK*7+6I(8}Pn`WQeLcG%H0xP0g{XV>Hsef~H#q*F{wo z4Nq+z7EXIupwpyQX^QP5>(xqC#v`=;@L6>kENa-!uuvh$A<5b-aM=D#wp9zUAem$c zk(R>tpqNIUjm)zhk1dMDLh(Hx#WYekW5Wm%C8`iRvE?Fb`X0tLMb$jbm-?QAWGt1l zc&^cBX>~_)P03cOJ5o3w{ivDfgyUxIHO?MqS>-~bW~u1(4x$Y@G&UtKhwaHSJcC)N z=40boq<~^gN;Ncw>yKZ6=c%bLT5XU8><0`j(@DlrdRBUi%y$0sba-aavY;!dsNycoPl&}=krvL z2xh9Pg9TNZLLJjqScJljtDB@DPchk>kPR_Evb$lP%d_-j;dXUQ&_>80M1=Hg)*>H6 zJc3saJej9RpwlJtzz}dLK~4a(E94`;D1-TTN|+YJ=FkQ=wWsv~9+a0q3)|IpcCh+1{pF8d_N{ zK-OjWSTt`=WoVcR0)}0Pt&#KU8&Ag?l4gV#lkS?$_I7(?J=T!)PU^5>sYdDmRoc(a z3azJ=wzu@}N=%Y{UT8KuH8vH+l>R60+Ub<4H=ybbsCol-_^GPifK)$3)f-Ut2DE_! zs@{OAHz3UiQS}DY?vZXhuX+Qj-hiq%;7dFZRd2vfTpU$zKql2NU-bt3s|%v)4Jh-X zRJ{RvRJ{RJZ$P=%rs@rdT-{Y~Kt~Tm)f@0X!W$4Sxn$P2yNcgjuzvsW(tGC(>LfCI zf7mm;`KnoCYQhVq&3fT0Mdd!deD|y8&6>sE&-uHWziY(2S+iTSs_qA-i37wlfPs0c z^9%Te+WVda$@7J>uHq{v%uq|SDA}Fet>>b>g0L&jGGiP$mAuisqfF zs}_FbJd=;vq1Q|BnCtNmU|W2nfN*6P6VoRE2E_PO1OYT{;AbL#z)!o5ng^()*# zhNljCPy!Y#0h+oEJyxM=Rh;>Q`jfJtuv6=HCvR4oe>J;r#xBv76jEX zS^*Ujpx^*AWB3BiiGX9b0~{NXUiZf%>$Plpt&#Uc7615Q{oYyC^TFRa1;!VlIe}(d z4v}8Gitp&A>Ln0?0vI+B*ap~WUxw`fMMD22xJe<-%q%4Sbx$sHtQMg6aYOLz$W!`m~zyYW2v-}!> z*NDIZ0qX)0VC^z=H{9~;X0Q*0G!cowI8!9NO$B_a8B8}OrweQ(ANdy6JXDWsJ+*r} z0>>(h%npFg3hgE_(6yof2zo^7H;IkSO$m}EP+X=Ap>a&C93haN3hFaSUnz^hoAY@0y}>BJRc@tz%-myXD)5E}eJpjAq z$gv7_vyeVNdqOQh*|fSX2_)WMOnqT?&x~o=Ksj`l8Q?@QkqC8mufuCR)WN#8gA<0z2KdyH)6?4q%oFBeVl}%t&v#QrJN@{loGCgk!S1 z0qzP+An$yN1wxRpPb3T=U$lr@0IC{CTmba}bzcC21ZFHJ1F^vE6W$5BQ6o4x-m{`P z2a4JOS4iwAODT7P=r$o2ZxUJMyWz+!GRB8^ zthBD_5J#6jG_?*9K^0nSM+icN?}>rYs!Kd3)3PANB?2A^U?l>^1}%-CL1)G>bQ*DK zKopra1>&EWTL2sLgh46*ck^1bvA2nlVDE^raiXb9)D+SR0RU29A&`#Xl^8!Ahxk;e z+Z3A~ub-4juUkwSL5T8|Pt^C$x-w3Q9gFS>2q{B$1(0Z&8jxTaai4q&F$SP=O%hdJeIwR4YGJb-2m}j&H1R*#Y3X=wMv*1b^s;#7IE2-K_snD(Px#9e29)K6?PT6Cg}dUcpYMHg-RYlYa|K`{0XP;5|2qy`uVCP|_6-sPVlPje zry145`HmmWF)Wf&IKB)V#~H4Y{1sPXNIJzOq#g?NoP$*??*(La@JU5QA}Swyo-HHi zlVoN|LeBJBEwT3V>rcRAomOiUUaW}IzPP?eRwZ*OP7C~dIsDMl7^wlYP)Pr%;DDoQ znF};Zp)o?qTjcOj@y20h1azR__{d?7#vAWB;rLOTALUC(ghKi|+&dVwF{hKTGmnju z1Un#G$m`JNy|}ezcv{8cpLaFsS$>;RqbH&?P{((hb96>0&7_8th=fyQPE(w~utg~MTQy@*YI?invB$q(#;tgRx{EP3={@SGEiikPM(1~(KYF3 zjOS#Vka^h1ONOH+wN5Mc7gngV%&fXvpR;E-dVv6VT}<5~hK|6e0`#RoQpNz+mP}Db zN*8SOo=3g}QPW5uey!C6_9}g3Cut@s^h^imMTHUBF)2lAn^_SKhD4l$vwG?`d895~ zc$ye7bj~T&*;SogDKok{yGkq4zdO644fvD;=S=J-W*odOD_X~0*Drke@Hy&NOh_MZ zy<&s<;coG^d*!$0Tz%!Y=7v{(Yu@jEC>s9sU<6ei@|7Ro`p~?-;X9AaJKU)ybuGJ( zrZ^-(0*AwrW@vc3$Wcy8C&MYkdw7Mr#IzsJ7#8;UWZt_yYAuIUEdefJJbyV{(~ch? zIfA>uaZ3IfEfEUR?~0SNztE}SA+}Tei6jFiBW58-E@yH~v3!%VFGu!r3uK;5rCzI5 zx+_WretzGEJ4w!tmr^N^T3BLYTykKOE*B7%qJfg(n{)9KE8Z17@w43;*7V4NjF2g) zeHYA^MXpXZYS0S`a0DP|N+34w-7vf2P0{ljMm5~W8bw0)<5$8^a*3PQ`(%dN^|x@(9VShF1KFm2Qe2_|U-(|0&bQ zlg9>MDan69Xem64T&uu>K}(V7UQb@J;$6`b=O5GXz#g?Eq9PNJ%`+r;3}7ZH*CbXI zkRuRWjE8Z17ali8#7XPRdSv5t&OASURGVh80d(O{@J4Vj$Ddv9KP$%ZT*l@tk zZx|AO@lwOCHEkF76NkRi(6j9kv&BoVG>qT*wS&a8)2H_mH~z8Vg|-`ZRNd4%zq6RT z_x#!~shR8j!a1)t+}^1c??0dlos4V1IzffteI_B2%vR=@_;}k!e5Jdhh8Wt~aA?0; z(B%e%2BbabiKp$aJ9qBlp4P2`1yAF zt@pLge~{+Sk<^;pU1W?V8(hHvItMYOJ4jnLoZCWCjXIAekNy z0bb%$fvJI3!lw_Msf`Q*)JNJ~F&V_d!SkcWrz>US4{RPae`F^l-1g00C+^xi`qrJ^ z7BUG&%LXsII;79(XI$)_6P$lQZEjrhyeBK)l8pEt>^1)n?Qh=kQfnqA-!lj&#SstPRq*DhbI&#k-=Ge{J9S4153-7JW%JVjzrgTmWBj z8S@&+=AdaPBu}h(SM%x0}ctgX{;n4lW{g7h!o{dWm7K4AvuQq(M zF*jJWK6-CwvCeDEG(Q1Fqo5%AUDq;J^za)8izPGX4e4ZBj%ZNs+FP9AHx7zUiOc-P zzT)6%w+<8c_>BYOb5F^0kNn52yNPc3_#7!~^Nsz)XPFhl#HsoCw}ZvzGdcJD%!*ya z#DlIH7VhOXUI>-=f8Sg5J9_=z;bZy6YoL)j{D#gV_z`cv`mDwwV#`_bo%_$|CZ@f& zkY(*hjk}1|KWcYw?Ae@~aCW> z$CWQVb^4y-pz|87|BlKhEt#>0c5Q&pnW+EN|FyDvQG_%(Fax_;(_Fym`-eP z)!3^Hi!4ZD;$LPD4r^bN>^C-n6-c8J?M`Za%>_QkT4?e^sYR4S8Pn^=FgN`5<_TFP ztzsL*E)g-}!PlF6W)YHPT2usOg}@bdY3xou8M+b0L9wgSIyNu?%7JwU_f2@2LO`8E zQhYL-lbMl(%U<3ov}2AT#zfVnu@C?wHX@W5HVv{o!gWBbjw47|412}fWStz5TEAE_ zdX|>0RB;5heRMz3U#xqpd9SRd24p`bH*RD>Byb1$7u5pu9|1-|WbkWC!OPeCu=Bvu zBwL!~*r*8TMPP}g^irPkl{ZJz)4=Q&5cdNZ4jct!vhToILNG>nSe{hu6{}tfwiz2@ zdaZ5AUJu-_Jjp8|FhDeY4Jc!PgpVFaL{^Z?8=70-c?syWf}$C!cS#1E3f-f&hbIyU zl{Pv%fEg<^l#_rNhh);fN6-p&LODou&OoB!!>C2VPt2Zxpphq`-ta6SwT73EL!Cg~ z16hTVgvd=3eTot09vB30A!nYKNz=9;gM1BZF0W1>4s*#@A&snrQvzE!oEXyMqin~YBgG9v; z@|j+_ADg+g)QTfi!*CbW>iVd4gp*fVAX zb||@!gl!Q1cAfO{e622eu2wRfOjWA>~ zK@*iDxq3{tW^^02R+8^?5)^+(E^>TFc#WXqa}^#yj&{a4iMmOK4mScw@j#Cgea9Kg z)9Z}5+%kGufWko}Bf+Uh;+)$tpRu444E&e0j z4w=NpMM;w@^i84tCYC-LjSh)h(;LhyO)oetQ@<+O#pH_+UW*P+nrG%fPC?8v^91#< z2e8tpQXosjtcVtXjU9g{=1X=lVs?GxO5_%L%GJm(EeQnT=uX|ozf0gG22PoS8X8ME zEHV5M^+~Lam~sS@F`i-->NmvgM~aDA?8~WjBWNk&n4?6mtZQRYX3NZDv?X*}fniB9 z)F~LQC684cVU{&rouGc5eZk60tE3berQ}S{`&bsrLbEa~B^LB38atc;M;sm5J;g}z{xLEA$dj-}~&83ke#k|gE$=gGRx z#^57(88TXn*nW@E$BqnDN=R4>2@7;p!zs$94GjXh)tQ5QE-|_Ums=(R@89Cs7X;qa zO2zc%CJoUjtx7R*I`kn?wt}9$oAw!FsAZcN+gIL)mW|98ge+qIA({~yB|PfTy|{it zWLd#DFJqGi#qrar-QwokPqGRFvcr_bNSoGXl6a$5-1mI*plpSYiaBn`GJyQzAok$f zz*dONT0pQvPh;D0a>)j!;aQ3v!ALCzX#x5T`Uq0?g9uCU|;y(}~$ib+d9R;;A2sKKN{yA09Ls1oRWHjSUsf zQ7W}D#^G)+35ut|I_Hv!As}qNKvU_sd-@L#(MsytvC7l8Pix?td6+&|(;nG-gO{gotzq zXo}2sB8fxrBoP!TgH_=hk)m;&HiKO(ibB-_!uw^u5JKWHY(it86fhl1ep5ZxDWkoZ zHc6=$_fJIf7!Y#zqu8<@VEW1RDxdbR8Kcg2T z2JPQQ`IwbqzbVeGa+aG4ozy|msxUnD_EQrbA+7b)wivV8^e;0EaoF!??~^5r&QP#3 zvl22uA>QNZD8uNd5LIesyqkl8A#aAHULue`hcO^B0^l6A;LHWyH2qcyT!}L9NPZ1M z3Ioq10y0l(5tYb7(}d;>b|fEW%(9#y=~bIz0c8drL1}*AqRMva`=nA}dkaYm#0Co?HWC0{SR#eVB1AYmi)f&N zN^{VAa*36rLXFWj3}QO1Lb2f=ynnoho!C^jAIe@?T7m$EMo6Q`RwB7tSVmy!A;4W# zu_$@r^rg*H$TySfy^RyE#ClkTPU)CpAbliu$N^HJ!FC9Wsh?yr9zR&QFWh^GZL~UD z7z|(7Gjtf*pgLv|l`D3(<65c&rk|D}X9coX$oh1ST zoTK3F#wm;S3&P)A7?C03UrMV~_hUBd^a|x?sN&pnn)b=E7UbE86cQZ~?u^?}C-npV zf4Nc7=81@?vs7T9!bd67XyAp1%L_arod-~Yv>(w2WTFjDA*`AtJ>V|UfUxUera+B0 zRFZA=lO`%jFN*m#tM{WY>fnD$v0msqtK2U;E@2k9$F*dw!m z@XB!ZkmrK*V&bsN$o-+LlSF0YSHUdfN#RObLqLkMyr6Vo$0P?%VpFWpJssvvg^}4o zu1s$^zl5&ORQRSzOJ~QKc1QzkKs!dBE+4>($8N@qAQu%$hv+-f4D5q(A{m=xg@b-s zMf?X+o5vAN2cqXlPNsYzM8~?NCJS8C_FzetX(2G5FpM=Qi*UI@-svkz3Z-bGWz%c+ z#521tn3RPLJFV7u_d0Ljf?hB&BHyxe>QJ&tfC>bmq}f4NWX^lKSlV-8;)@s|9k@PN zQ%OS4t9m5-ARZp@PC>I0tZYW+(W4D8fk+--(!IFsEz$<5!WOBE_5B$W@eoa|R&irX zL28u=SXOyOXju{vkmrr|V#h>1Mr{cga_nd%87bftj!41dtbWqlqLGCqLZ8a4ePD4o z1DXSClOAVPh)BUlctERJZ*(?y=zB5l+YoS)-6jV~sTpq1tXo%8TcP4MTVjPucd%#g z|60=^kr7S1b|t6BILNV|d!T7ZR?U+DM77bn_*W(%!SJFP0eO)WcI39CRuwQtVMEVZ z(srNPMS2I&Y=wc@fh!7`A*IQ@e4CJ%N&leOs(5C<`mQpwh3g^l$xMax5=eIpR4Ta` z$uEH=E@t%w{)Avpiip6%;7jf&5A417`CJVhumLHiI$dvL19ta?E$bAZHVM3S(^E8NhyiD+< zqGYiwAX5h9_j3{Qfqs;I30N!1ijId(iWSJ0is4{7XXTK2+mgIGm8uo%-34Ujs!(h6 z6(s%GMZDK(!Kkjt+T&orWR?vbfjFD9NCydeUgo^B5p`s0EfNw2P(x37191Aphi1c4 zpNhPTY#(j3qv<`=LB*;tHamFLDzsT?Ppj2ZzYAv9!v;3(o53*6E=7_jQZ(7*D1*J6 z{Rd00nx{{be1LQeCK_^^fGCx;?~?4Cbd@$Em26j-cXLf`wnZ>*xB}qG^s&+6m3B$S zgJ{F#V{Cf4*bp0wjs%3H)oqJscU>?slU}#@SY~~Sb~G)(oq)ZQPz!caQf;vzuzqL( zh%(m`8((Z}lS^ba9fC#B9FcB;%d+|M8?s&@8|KVdrO7aObqpxXE=+jr-jbHx2s{r* z211-T^Y1g0+&bCxiXi}%^z;n>v`S;E!La9>>g1gy2lF*lUszi$sm_pokN6D*2Lsf; zaWX%^S>({tP$RL|fz6fa)ln-UB9=_$g_zv1cK%EpWSFNw6)S{-AY-td$TX9rMPhKv zRWjBsYb(?m**?@vg-ZK-$iIk=T?PBu=&r1>*#zjD3ub3RxPlZO}|u>∨KtfE+1(@;h z@G}#MwIWSpft1B)=eUKVX&KM8^y+iIIJZyp@nm&MuRF5iuYSL&dlm@*FdkwF zCnr)QvqlM_Aqh9}q5DkB9I6?)t}GK62mUjt#FO;`(<^&5$_BmQEgOGK+7!D zfHv@zsWP*st0by7u!6iwjzD-gZNeWFpiB%&gJiHEkP7&~c5G=3Uc;B!3r(4-SMCTX zIV5UCl|@Z3+D)_cx`TL{RjQjzhKgXC^~j)QkzbWyN-Q=qjUr|?Tw*BC5)`4z49X<6 z#l0+(9islQ=dlhzpiNG5G_@Sj44#<~`Xbj5J0(1h6LTCYi4unY7RSf8EIC02A4065!%!@4EC~OF{ zWGeR*y}*kjq#J=+=Ig`DOsY|KQQszX0;?rH8{ihuI9n_oe#BRe(kcmkv*|UH5!uC5 zTA}91;TIV~m|}a5vD-~B6(1fNCRPLyCf4^#9Z1W5t=+2=p2FZc$iMLWl-kJewh#R_7 zNa~$sO~p&+`$P`qr3mOs9HVqvWAH+2i1qRfk2e8fBo93l&SbKeVY?odV|=M-WYPzP zz!L}U#(P+L&5j#Su1Zx$?wM$E=`!X8Sc!#U1Jfw`l!c)aGHDr?Tu4M;c-=97la-$N zk^`PhT#q}s=5g1W9MiJ?(XuQp1B zt!66JDu-sYiQ!UafdJU1AqmJhFPRQmu4SYZFCetZT&$!RMyf)Fka0aEew=GljX_vPAtt$bfkhq#hcLW|jA3BXugnvW ziyppA^ab3cWZy)gV^t(qYAzQ$z#^-DhJj0v2Py@FImZk`;L%X&NXZXu7ay&}2F5e3 zLiN6QS~Q=KsZetSN4>yn>Q$$-8TQEo;Np`e6oj4GM3ll@p(?t>_M*QhtHPqI@J>67 zXH*>eAEi+zBt?3)H3Cyi4e1KE(+W)c8J1dLe#}LL8#aCP3xqd>QYFBw>BW}uI03zx zUUg!xt59p?Jd36sf}cxPP^|i3J0Rg;14BbAzz<@>vMvCDVegD&N93;v5Qi#?kcm)B zcpbhMLJYC_BBE=sYMlAT%3p#60my=P1{4hIDq|`9PD%^C@L~U0E?C8(0D6~Ki>c=gJ1)I4mSX98}ue{A^ZTV9R~Gy*2Vi9(wj_^ z4bt5}DFYFWg`SmI=9(rObv)*iS(jeF7VmGBsxD2tQEk%>Wy-;cPN=bsgoOi2GXM>1 z7)kS}is4~{fKz0#Yj|Xr=3bC~4glhS1k%{>QN|5J$%nC@7bG6)s4oE~q<7E}+++k6 z5P2}UP+XL!>P@c|MK%IcRH!yqbN<kAOvn`u`g`Vn=^@1fiZIpJ%QjG4A)^KK`unoyn_%1}TD4BlO47OtA z62kkWvrIw*3&fH@paLic7MMh31D}Ag!^G!?2+9KKNT@onKxj#D&FJCAL91>-p3H+; z_i&ezDjz5U0vXG#47ULro6pBdPvZH8nL4f3Kny>LT`s*+nfWi$)w*Xb$ueQGNda*u ztX-lK;re0Gm-Q1w8Ks|zWibR>d{yWSgeEW*0XkuD2G`EM=<$x+IVk*iXe+81t-*99 zeicsu<~@h?8OtmPYuw1b7SFfZ8yhk8SE#*ab(1zCwO(=9m{l6PTTg%jAOqN_Kr<3n zPZn+s_aOTgW`6{QL@)+Jn!`$t;h4_@90K{311Op_?8MmmcD%FAyIYXlUuF!#tDz7k zL3$oMp3GX}E%-G6Pf>IE^0qAHvOiL4PGrhTHJ7%xamF}9E1PF%X*ys`lH=P94mt-F z4jGe87dgWwhFZ?E@t-y#EvLt?3dD~#$r7A(S{HSgXz8Pq1Q_kM#3^A zFN(FS#lZJV$2Wv2 zn$qUG2A2=s0R90J5e-BiS5Ck zs*>*j{l-MQCFTIsh8_SW!7C;G`YucrQQp(q3U$Z(LB+ZyS%s7&vw#7lX%ut><|)aG zqOrFzJ@88#7&T%*To!65ZosnWBhBE2b6E%j;;3=o13ymM8trXW&2UsVX_`W9z*Z$$ zQjkblGNf1DDM`d&Mbhhq5Km^(uTX8Iy-C;g;kr5M+=~xXlmirH%;}eCfXj(Lw8q)x zz>z4j0sszg#sY~F4Wh?m%1cBz)*u3PkV7g&aF@d#D|A{%k9PWS?O`9y4Tz!roY_#8)EqAg=^Fco!pPCOU}A%eJ2;;#;S+U}v8GXde13CB7 z0W*e*dk>lc`}%=1uKf3YG5z61FZcD`^Znr5GcLZ+J^!LYaG~foe#V}i#?;n{X*QKB zhs@|Kwj4U6R&@Q_O}mQ4ht3!votbBD|rEGEsoX^7Z=-J&6)$DuP0{Qu@rS5IEI zh`*b{$?I-jm=Obhwnx%w)~1`YU%At2y$^R4ZyT+B!e76A^Us4CCp`A}#SeCl|NlXa zSkmdLUf~xfEqQ2sSJ2|KCHUryfFv+Rq-;#n=@xvBQ1QxeoV5uh{NB z+9o>L;l}8_+ub<%vgllg`waPg9qx#c5-8MuETxyPVS4&b-2&j z$$ineRY~>6!*Kf<>;h%>9s8z#J(W7)h5hEA03>MEl*0M+0-RkDHyMKCp%ZRcITW)K+@GuvW zS~p$aa&S_tozrqaQaoc$>B|rKP0P2Fv!BgrIeJI!s%W^I2aa!O=`4OYxBR_e*nN`s z8vl69-pMbYo!fF~QoQr=mZQpEYU9e5q46^=pVzWSa?hbplwNB36Q!4W^of>3%YNBV zR-?!2+|0&_N$KgEc9bi+oz;ya5<4K!_0 zd5=PlEqgS&>Fq@=W6Rn=eSkLLLRpg=BI?lS?jPS&>d>2RDz)R^ZYqts!)|UlVn=hB z$s~BbWv}FOp1Ha7;{6wwx11Tb-1z5t@t-X&wcH^ulv-}y3#FEO?uGJiHsh9yekyJ$ zwcN&AN^doMNy`!O3pBsfa>$PNgSu2M9#fZ4>61%Jm43LS{LQTR%|3dmr7ro1sY^>Q zwQ*_brTVp$KJDX|OKo#!OZj?19j z$rHYKwY(ZwpQB~twU&L8>vLage?1ysAOC`{IQ7=jYg~70%Kg396x3|4y^Btuf?esg^y<@T;^jpbG{{D`(mlSii zw0ld^6w6`PcV$agar(-(r;2GSORxI$%F?Ue{YJZ2RfT+25!G<*s&?eiO=Wi6n^FUwtRLw3qtrT2W~u9hR) z-5Yg$^u*DtTgJA#6gBZ(G|c6zTXswOVbSWA!;<2b)uq=w`0kctlC#&|-Eve?obq;Q zksto6($BtlyYw=5{;K83@~=~x`MSH_Y0;Ah9CuI4K}qqtdrA*De_N^Earc($z5L#m zqsrbs*#eflM^n9XZ%b|RnBMo59`n(=rT4hyzV`3Y@GS4aPut$(pf#oUxMEG|0cX5l zdXH>adXMwMcJE;%ThWKS#~;I%O!6L|g{8-A`k?e4bMEi(+o*HqeOP*tF%OhphN!A(awJsMv}i(9)wIa#0B3zvv&$&5Y3ZhvjLt9$8Q@rS>**gFoxUH{fH;Q%pj#j?6^wzBMKti+ZMQIs*x zQpNgR=IcVivvKw}*CA&4;IWXST_HT5 zum{eWaZTmBrvG@x&~V?!mi=Pa+5pZ2-PB>;fG|+cK6oURGCN795gt7tjzqveJph2Y!-I)z}Csb_~JgKhboCzgChQ>>&S=20@ zt!GlJ#pHWH^MTnMEGiH-`;M+sH+&;d-TAN=0sDY&#|YI^XG$tR-GeO>EQkRJ#DuO; zgRjqJutC4eC<|+zT>uG?r0VbsDm)h?jnCUKfx}_|T`5H6FiR&?lTo(%O4W)f2P{`d zq}D3by=Q9TOlxL0@yP+p_f%{JUYT+#yaHXpyD2VA+PMN`0ICJu3>lo56TYd$$@nwr zGe)v34{oFCO6{9m2QHEdBeFwEmw0qF}oV|fM2J9xQ#Q-$Ff_Uv5S zHw1wNHJ=JyE!_vfYhclFuI~B@1PhkfeiMYP5j{i((lYqC^t^B8pbCeaOM!<{_aLz} zXa_NA0&F1gjKQjqUUU2%+4PDnp;|LdIobBw-&V)j<-B-MCHMg=I=fFHr$Iad`HkVT z!fAO8dc=efw8AbCu0MXk;+m-ydZz<hPQ>$)jD{88nT6>nD>ZbND8)|h^t8QvL6FL5O+tij^GOKrZ(Cy1_8Y&JybJhOg z)87kwcM8vcYWesYaltgMjru`y;#W2QKDhg8pyT}gg1;5~-OArD!%0uyc1B&zjp5yY zzD@lq;NbP0Zm*4T!H0c*+vN|#1FRwrLBSQk?*m~sT$m;-aDgxRP2rb}6xU4pU1I4Y zGjp!Tetx&5eCLOfu_}U7!f}gTx z?k~Rh+sf{lhuc~vhTD&u1%aEdq43*qqCrClRTxBVv?RZ9 ztO5$Wm~_`{1lBdPSHksTl0nSu-N1Dcph{!#J`GA1Ydophed5 zwowpEJxPo`V%F_7wH0c1W1`YZHAkro>fc(qH;j%tDzdJW5f7RsyuF4bx7T6VbtSzg z9Nh4YyU>#6loB=MX`L%flu(^M6JA|77t?x8?I0hdj#IS*M~s!)aGG8c-79@me{aFw zV#%@1uzSL+idBpWWTHJ`#et|9hEJRR@%&u;^{a1a{C?*VTET?CIe_$-F<`k^)+~e7 zgb9W2m+&*nxtFE$13%!oeva{whj$kOSJ#4Bmnj&yQnehIWaY`FSFc4gFdJy;bw{-E z(F9b?0R339>lu5AR8_GWKsM~il|+?FrU|idL4NSiu=ee%n0=|0nqvFNdM%S)XQUs?d3PF2 z$ILbblN~&yImd(CI1j;i&NSiJ)?n9Ox-H6IL-(+%VW5K0G{BZj&!vusXy|$)Ot@0bxTGq6bN_9MIyVP6a z+P7Bjsl&XiPvDNLay4_W` zyMGnSs@t6uIIG)Tb-OF+RR0HWcai@5+wZLUY4@7{jN_nR%&+=x=U8_(->XNNzS3WH zY>hZ`_4HoCK5JFs-`ApL0QL~^>Ny|PigzEG*X!y5XRqS#PX6xVZ#92+^Y^Q8z}feV z+`Z=Q_%$B=(}UDK`I>wBb^WR}_B{8aq2cB^_w*UULpNSIb)X2B-$P{Y<27AG^VV|* zi4&IHGd3)&xaV;qrMKK$7oND~o;Us}7Oh)TclBvo?hQ}da^Lt(qWf-PUHI6#HQzW@ z?6>8fx=`6Iywegd)Ghp`7~sD#e#hn_6nO%3cGc!Sss5j_KRU(#i$^g z`0BBK$lv|pSpR_mC)YH_Pdq<-VE?cBMDeo+AIORWw?5eC>H+H?2nVcxaOyBoykfwJ zaN?|cvYo;)W}pet1)V@q-&F&e-(u zq~W6X0~G)9kB9H=E?&Bb;)|Uhp?L5&c*5#Fk6fIo*-2JO|?E9~O*iURTT6={J=RNY~S>g(buRybLAWa{qV}2=tF3L_y z(1q|{d1Su$^rB^#mfzk1cv1G72zYVypC0+S*mwz$jIt{c`eMg%c=fA~+_r~U@U69V z;dj4ys$xPdem%|?DszbV3D z>{hq-%Du&&-Kl2Xx7KdZ#7A=}u9>>l=_lq+r8s!r+Feh|6l~p*zzAI20UpKz{##5B zSYhA`SBMszD+Y!0>Kjk*oGApprrA24Z`}Qwfi~y`q>$EwJT6^LOuq;fb;ILL*VSYk z%_yM6;^DOc1_Ta9ufTQ{Q{ktE9owAn`Tnscn_9V{5%sb5-u4A zgH#@uKH7C2#m(X!@n`$!rM?ZiCB}2aIr$1E4pIzrzK@m-5xr-@kB%Piki!D1d3kH% zF3r*(n56PN%kpy?=l~Owo|DVjx>wLGJGRoq#+M2&5Oc?6E7d(|b(1O%`s>;~GMKJ% zrknFXMgSwgZLS7@EWpzE03@u$@KtR3LFeHG&GA+I*d90w*WsgiPb0vr0_Gyb%D1j2 zqjL zcQD4~0#&m#TXm#|oFN7xfZod4ph@hU5rZqT6=s1rY}DpK3A&;}-ze=(M}_o}X|%sP zy}b-mnvPzYCI)9w&C|Y0!YdN5Z=}z@(`DVU)p=K)chz~9>n<8xvnZ1A#Ka5k?-HJK)w*6^ zRm{73-F552b=N)GWoyj?vCv4iqTZd>T)cjluPS_BJ@KdO`Fo7NU-S1H{vPM=3I3ks z@3;K@j=!h)`#pb8^Y;vY&+_*ie;fGQ$lo9Md!D}+_ZSd@I7MVHydVGyvgk{e^?l_zW%eGwZ00H z5VWCFP%tUyTpQyvWf$wHZ&LgC>Npbmx zO&<)%Vg+_wO9ij$;Z^`c>gyiX=|Br?)ixcmVef|eOoe;;KelXGIA!Z5cWBck)cp6) zWOW;#-c)zrO`9qG;WKJGw6iRJ-iP8F-DL5hZrnPn=jLB@$~u-08rAjj0D(&bItSRy zvjWqy4c*ec#Jz=AAqVW&&~ZrSq(Fk)hzY&mdU+j-y#OSdI3L+Ukt}u4gSH1=7zC?o zdp`aWA9Sxh!OZdWWFvibN-dfnp8$(vR2MUU1VnVbW-QvqKfD+bAE*d~Zu zN0TTt#fpX1SY*@zJO%|5fFM3N18)rj8cZIpo50jOqn*fD(D{NqXi5|JpNqE_YrS+L zI~E4~yp&)fKP2cMJU*!}uyph+HCw6bNMdaBLGG7T@`#5xAOnU44iNx;h7s6`V+J^R z9ZezzFX%jilx&`-S&Stnm1g5L$r+C8yS5Evx1B#k(LpBDId~^?c!g{O*OcYpJ@Irp zReHPzh5g3Nyd5lWYQ>54Xr|VTQzSwRo`2uwk&3M<m0i&1BDLqdPpO@tHSSL=WSCx3q+4QOfd;tu+WrO4mSa@mK=`#mO ze?MB9g+>I}m*o^!GLuqAr7^rbU-`P71R#qKxBv(_zZtJ%rD~()qC$nS>vY3UL|4Hi>-%+05o2H3JakO1 ze4^2=3TOoot)9WUtvdylF)+G0Q1H5@C#d5JTXHz^WjWC*^p)LS?^4r8rq=%M3eDz} zCR&9Ll3HXEC&0<7_LpFJ!fhQ-kU*62VtGC(`KnigrK5!;r-Wy+R926?&HG@;I9g}6B-4<`NPS6gK zCzuxsDuEDAKE!P=qcm&+N66+0gb4^hj@=9hKkG9gJ*-Ho9Pe#gT6)FEeNMBQ1&@`CXCKgWK zJnTqy)VUWQs3-?0%9ztHL3(BDwJ;rwbINC)@2D(n05Wv2Ls|g@KktV5CotTC@0p?c zq=Yl13!&n$%YZXXyS)*ge}$gwpnbXN6xs|LHENWrpumR*jj`3$+i z8f>e?4;8@Ixf1aOb^{>{Nd;`0ZRClh$vXi^ArCWY9-AcN5(8b{j%2GfFVDOKXj?w8 zEyFN$Ma$_%o}D^RIEtTFZM~q!H-<~DZ2~KnR&6YTRjd}Y6Fc6nt%qcDIVOcEO{ly$ z)5A4%kc*&b*pd}HAIk|7ADS(f5l_LEN@r-q`?;)#M5{OkcpGMAPP*mV0#Gc^A#%vn zWf)N|Pwz4l6$b$v#F1ylD^p}ptyp^vrczouz2*p}S37@mZk#&KDu>r-mXo(Y`Cx`- zJN9j`nFcF?;oAfddO^7UKbUEi6s~Yeu8BPkeulLE>9A|L>Ep7)-RbRBP~lp;J!@Tu4-_R3|ZCS%Jjyn z23OVKsv2BXgR7uFRy8=!{C71t+}T~iReQD0>{jzp>>@sMOzYlX)!`gIW3+yFWcJ`L zU;ElY7hD(|(qrsc4I9H)#Tu(PwTgLwt{$M8A~UV^C!JNYU4%DIYwcFk*%+s3Vq$aa zu>L#lvT8?1r#DP*{j_JdAPE*Zs(f=&5=&IIJdbQmle;_`+s`Z(1W5+cIn)CSir?CzyVph?}o& z?e*U~1=ou4&8@xu-Tq@99`%3ySBAGQYW@8+-I^ZlR`a#5eN9XqwPl#NZm%u-i3@6b zb{8j%*)m*A>~-zHtN*^&mhkU;y>Z0fYJMjU-o5x@&Ap=kh~gf?7+yS8oRur?b;CJZ zhlrC@j8$BEx&xp3*89QHN`WWV@i9`+f_A+>#581llV(ZhO)?15XmiU;@L z>LVv`Zp5C&?}=`*v~W-En>&Ki*c-PFuDL_>uPYuZ<__n?IY*8dC>HO<$NC0`Q3ct( zdBjz+g6QiO%fo-{!J)V_+g}VA#m$pdd399ryW+Aer8&Lc++FmmZ*>)86@Kyg!CaW96i*Xp z$kEY9ExO_khth;!zdcZ_P`TyE(HzQd5m}AHw+`j-l;51NyZG?Ux4VjE^4#-sB=mdv z?crh%ox>w64zE~0ad>>ot@7M5`Q<%w#WTcnhf(_Yim6@2efxiVKzz&XIc^ysySukh z{Em2iJf%Y}AJ|_AgYOu65S=n%NnLNz$K>`EFNnr98LxaBlg@L1*?6AK5(lQaKSW zSo_Yd;v9#oN7x)b>l9BH)&xrJ+Pre`lCGjOuoUmYYM%@>M1|!E9TAL z)=T&Y%8KNp`h0!c0P%`EyzrZCKbvq6hXpxNm-O0}5gX*;hjIc&Hy?E{ho{O0J7IB_ z=Vi8a6_3bsV~*h*U;b?&#o^}j zi+y;rZ9~MJ@?00$nm>AC+p*%bqdA-_>sWhq@ggx^RzBevrrWvSDE?4x5_Usf&*0u+O7|$R&3?hk=|AUp(;ciQ>uQ zdBC&sXZxN|yg@uGyQuX9R-pUkm!CSJxLB-`Q~Hs|9vCksYVUOw?nHjkXC&u7c=JIg zKG$hd@k8-@xvsB0v96og{lwyR;&9nGPn}r2R2Xt@UiyRg4in2y;b;%6_O-KLo!9+qXK$CKcVy{Lvh-J3`dpU2-azR;WT~$#-6>1MW$7VV+DDe| zkR?-=o|L5{WNE1^O_Zfy$kO*^sY#a3mZiVS(q#=(Dc&cGGv&!=WT`=x7Ru6MS$a>F z?vSOMW$AuddRCSmm!-R8=?}6bWNEW3y(LTU%hFS_^mkeMyDW8`Pw8V>+Etcbq%`&H zT3K8nPmYzPU&_(}vh){O`i3n1O_olUrRQYHm8C~y>3mswP?mlsOU<%$jVyg4OHH!$ zx-7NG(k5BDOO`gu(!;W}VX7?tP8J`NrI%#s53*F0rFUfMV_8}!OP|ZqZ)B;*4U}4C zX^1SnBujhA(r2=y%F=pSIz*Q4k)`8gX^AYIB1;QoDY&8g)UTa=yDVNPPtKR6sj{?I zmadbfr)6oOEG?F$6|&SIOZUjq4YKs8Ed5%Ro{^>1vh*ie`n@c@ElXQu=`XUhO_pjJ zDZMO9Q~Su`R$1I#mi{42qh;yOvSi588d*AAmTr}$39|H>ES)Y(ugKC_vh*uix>S~4 zm8Gj>=~G#nCrj_j(#^8;f-K!GOLupkN->nh`{l{s$kJ`Hv{9BqS=uB^Z_3hpvb0Q= zK9Qx(vec!C((hzxfGj;BOIca^P?pBX(k-&&$kM~IbhIqJFH0v;ntFDNES@P(z9CEJ z$;(^jleaNS1DtrQgcZf6CH}vh=nry&+4_ z%hE@(v|N@x`;II&%3}9sN`I84!Lsy$EbS>vD`iQMrA4xIuq-_wOUKI6N3!%?N|#*M z`Qpj`MU7W9jz0Td;Xd=GCHDGW@h)-5xOe-De)G2OD*p3(#nm&s(`RI2p zh=kH#o?bjb+_L{W@lD}w-!EQKBaa7&4gc|W&l_(4Ko8&kLGih=bK=2U-ph$YYihcQ zsjqD784h!cPbQb2^WN?me(n|b{CfO|39oPM86F%I_f3v_Pkpnec<|cyHL+ph*9VFp zjOH2jciz(@eD#M#zed!Z_|9Z08|Ov+$!#xWoL#)AMjj6ki|#K1>TYDy z`idn7UfM;RUwcWnH5V5*Cbt}Vd2zI;J*;bg@#xRb-bJkb@tZxuahDdKNG`8Ce{1~g zu=dBrkCT&Uyzo}fTgU#i`1R<`Lmn|GE{f+KOkO3Nc4hG|Ww#4%A0b*Vd%vexea^Q2 z;ZxI!k0+PM520CC&M1D-;r5JZoxE-LHM3;IHx8)LDG|r*6GP-wU@52=}_W zxUEL4`Nh_Z=r?8SB&lqiR`ax z=BWj}`iU!VeQ%`LbjL2;!Z8bqo1z~)jL7+?$!j$6`W?IMA~@Y6Jm<#Z@8z|n568dT zS4`bP1I)RpxUN*;*^B91?iu;owq3>CdyC!0sXy+W6<73myMMT1i5xtCe|+2ISh;9y zDSlIAp4%1=={3uWm(|F_0b=qd+Wy#gd-oN!x4qXtymxu=;u>+{6I&<8I@Zb+{I2%N zt$T$-Z!MlzLw?V#1H>&yZ|f=Uc(4dR*torR5ocWVZjbQyzbsyxT(12wkL2=DvH96P zU4?l6?E&Gk+l%)nmln^u^}WUClam{6=9f#>$gY+*h0K*d$HiNDhp)%K9DfWqJ@Rnd z6(OgM*l_mNT|{fYzJo-+A^kgtAFeI_DS2izRHJXZ!0Nx7IONw1iP7tezfCSL8T(F8 zG3R=IeZd}mM~4UhT26`R4XJ!j@!HtFy~I<$S=l2z;ql_VWmiJ$$>Kk2#BQD6Wc=Q{ zmnt3|{bo0D(_3#%mKyD);`oo=N*1H0r;0;r4E zM9)4;)V|jCw1c-4$JWT>0paCu6u+Mo-zyd`Ns1S~S+l$Y{X9Z__gd6@`d^(kA^ zHI=0aNu|AoS3A>Iojt4{>P=s23ZS?^oG@kmS=x&RE2Z6W41%#J-obQ8V-&d^O@5lR zzD^U{u%ANd(ZAER`fP4(mNu%DA2`6I{q((PS}m6jqh)2txH>#2KGw> z^V=e01j>tnLZe=kDJ3oqmZr-ilRFCaCOtyty?9ecXP87ooV#g%YVx6b?tcTtN`zk?+`_bSV!RF#(bQ??lsey%~Nf=JLY-D>)CjP}n!78hWAFds1@S;8GO2H@E^>H$!J9zcV2g=1y+^ z$y`7#K`DEmx>3!t!S3SCJn0Xa$Jf>7O--(<+(Iw%zZ)DNLKm32f6xJe4#2;C{kvnl zJX9?~VhJ=FW^)7xgzaG+I+;mJMi|iGq z^6+RVDc+M*osaS1czGl^h~^-&(>4S7zn6fxu{=@P;RfWdik>q>*ypb@#B>a61Y z8acMW14#xEgdoD5vI0ZG>7!0?Oh2qMC2M5oj0&LWZsl>NwyS)Z6>(v1TGYIFy;KZK z$(>}bK#5z**Q1bQSe`EYY_c0@N(0-6A%X8`iypJ$%y^h#rxvpo*<_ky0FqM2+=Q~e zDp!S)z9|PEX2;;a+-%wan)qp}DaHjnYxYar?G-~G&=4zDZ7gn1lY(uYmoX7gX6jA$v>0=j-Y5P`FbxM2}iUa0GVF5H@ zD*B*YGF{aQh!GZ^h5z7ZHXDnYJJ6EL zPS@dI%p75mcp$ZNHQzIw6A^A^R~Id(sfYO?a>6{#@W1^&!uB5`hEnBvwg^$e$2<{d z0`+hb04EK*yjQM*HqD>-npfx)?>Xk`BFo?WT*u**t5a0fis9OnuTtE6T&KXBGX*~| zJ56h!mN1{t$zIS6r97-qjk0=SeylBJ7CPnPr&wj;_M1Z~x1MwB*`gCxyvHzYNnUd$c)*@;&}c<-@wdgpHQla8OFwv@|v2f>cyFftBZbGLw5iR zT9~n0U>UJ*wXQZyt{3S_Nk`BO(b9ZarzSqe3YpZ}?4=8HayR{8{=2m^XX@mIQU~WH*|GNS^3md8!!=%e$S=m6VYnu;V$9eMxHQKmk4NWF z7mQ9)8|O~1a;$llLE?dg&Q+tN^OY)pFgm5<%%6OzQCcSxJTn%TpvpBVWv8i}7}wv7O(VB}oyCwpD^;NaogNx!Mxe)J zIDdEuaEMa*bh4BkNI0nJVs@_bU3C zRORGcRjnHhu?3y-k_Y0-R`p8o{r ziuG!~8L=GjK;m6lbfc;jMb<*|Ha(N2#m%f*L5l)zFP1~i?A!@ZN>Sp{syKqoU%@<< zN}Vtd`ixf}Vyc#)xD8eH@Sx3dX#-4l3NJ-*hpT=NHhr-|nj2UU1+OvJr`(HG_0V8D zNi}d`IejU51IX)InoEmotK=9-ioh6Qk(R{;iu-ahQ23{qi)%^ZnUA8F`CMS&Mzf_7 zwGYOD5pOUq{QlQ3!Spf8#Rh}f7#p;`zFbB=`t3Tl;j$XK2X@H-_2Ka8TSJ$)hTRdjhg#! zm=U>i5tQze+!vdUFK(H!qI2GwT@aIXt;WZicf5E<`dLX48TZU`11RfaCMoQLnVgtw zMi|HB9evPVNiLYl=l_sOWa^8LKt)4qQQk8}H$s22H0*-HAlLoC2>V*i2ppKaO~!>8 z&z1U`i`-~8chVXq-Ye2WFcUAZNzbcS6G@NFI5}z51A9cgLxFcZ@-P6a`(aC#muFsO zkV%|SJ~aosXvs6r%w6?l)feWTdUDAt^AJ60cw-)`CllY9hiOSdv3T-#)cU~GCL1g` zm5}o3YB5VZy(?NfQ2buR@<^`~nS*sfZQLz=_2f=Z%O`rWq>rVyo}A-n!C?lsH7CH* zMo-ocawZA6@s#yZtq;SbqNOZ|gt?HZv}LFZO?ro*2JepyrEc#L)HEw+nP@O1i;VIX zoTew!`e`^1=fjYcsZpVnJ1EMHVryeF_gARpuw-aC(OPcPZ{Zdfq#ww`^TV^@Iy2@+ zRiKpdU>?v2%rzq{(S;b2Go!*Ow04v`b^cWG6c-~ctE4c40Rpf_27r$Bqy@Ham#bK? zMJY_GKvDZqG`1z^@2gpUll0F|;Y=dBwIw2XeUvX{9|nC!YtZY}v>cUm9R8ORezh$N zWIHA-G}olOkUABGQpd7GlAFCn%}P@Xx>!UFrTx`y0itL<%ddrLao%^zt^uA#oS26ozOSeM3#(`O#a8bUQWt$Y6-&qQqTBibq zeO|`{N6na1bzA(a%aWnG=-SfqyDTSrD$r9;DO+}n(5(nc98t$l{Mgp=-aySiL#)d$ z0hR1vi6#FT&RBO|2g^8ktr>94&a-v6$x?OwXu>9R3cK``Ook_mu^=pDPMk@VqY0(! z28)`p7DUpbJuHUbDcTSR=`pd+M`1zTEC~jQ2MU}_!70n+hx_r(b&FHj?z+BWP0xIC z!J$-^BxihC*HfhR`u~v=zN;HZ9=lCm;&>km&P=%m=R*tZ_@#*GjdlIS(S8^^y#e~k z6P}NGsO7}P0T#Fa8DPTr+7TbazN*Co)ZQjpsVXGa)(&p6#rW- zmYiSe`f8Ym*ZSpdycVui)beYYpYYKMd{-Dk1B|A<1FykOmPl- zQQN%miO0L5h5R|?<@RgVTy7|k_YPKx7Au)6#LSG4U7~==&%>f$*=^| z*cT0aXiF%nD4r;F$YdT~|HYPI@qVsUK4+qbct&-oereiyxV}4$Yj5=w6~D3U(#hy% zBt6NhUyL%3gX|fCZAHcJ{wtE=&enGqrRG^q=>-d#o_nUgpC~b3YL08f`EsNPS!lVY zIh)Uy04@zgJpa{Sd|^mRQv zEo}XRWw*vI+>+%a`gY z(ejHfCw~ydv@~hyT!z~=XLEj6^ZQTfwHv^0mSJsJy46`3NflFUkm^qvULD+Mdlxi4 zb-QJcF0Ei}l7iHd^h;N0YfE~e76_P;Q)M^^EKP~M8wAnLjt$)DpB`xN`Q3%srPYN~ zVjMbNwin2E_F_@fnx3*mD;+}7eL(qhzh%EpahjelB@JreNePt^%)dTh!Io9_S>UOp zhf`%|Eww3nbOTq)7z9e4BNjxntQh%hQut+B+;mO^!(KF@i`8dS^f9Nx<<40QJYhi? z$z|@ZEWRE1BOFo#m_i3Dss}lXfe$(5yQ?1shXvG!j zw7A!>Pb>{wQGtFgmBq^fkEUUmc3iil>*T>}A9~TuyI8}1xGCK{m&u>wG%#58pnF#_ zB0On#+;&>7z??>y#I?b$@SKfH=9`pQmMa}Q)A4=<9=`oca&Aa7NOo)JMt6(A?)I20 z*r^P?0#C>9x0bhJF}wS_)7>qxT5yB`Jdn`0GL-jOGf$e(znP!tWS2gHDLC~mOQItvZO~AY_}v?U>sgJ1xr;_pJwru()~ozpVEj}2KuU3 zxpP7@cd_Iz3j)?57tA<+s{ODmEqV^mpM6PxXhyG|!y8-?TmQCT$58Y+b_|7H%#EdM z&#`w1dnMNgBm)R1Ki>4%%UXfDhN@vy;w_?%60hY%V{*oFlQ$ii2LGMcyLk!9nDM9> zh0Sj6A;5@;oO!as@d#z$MDQd|dsJD}dT+s|f+=$zTfIejgB8cZ5*K(1f+@))gy7yZ zbNVC1hHlp4lwB)2h_a_gyVL3vIJMQqtZ>83_>N58;!8IxY@P9(Noa6E!8~^>W?vWr z4Np%iY>0Vervy4xNiT!Y-&;iaTC3(wI?60ph&B6^El-eBBZ&RF3{8 zS8eG@k3MbgMhCw$d5QtWt$2H5)JHf>!CTG2)UkxM17$UK9;WOoVTICx2MYO6%7v47 z%7CX?{aO~KTw}{pVr>~KCcfk$SZ3+uBgjh$wrELb*{D@jstPTZoQ_L;B#HUeKEIpj*TrzyLg0=r{=_zK_wc=z! zE7K7j`LbSq$Ka78Df?aP0I{M$z6^NV(v)3AEt6cfwU@|fWQBd^m!_nuYB7=daXz=y z4dql-y~M4i`JB3faKuuwmAA-iZbjh8BAEMKa4S!GUmm`dpJ4^H%pb}EjeJ?DRVe|F zi0!D>vHW54uhA-0#J2svDZaEWy^SZOgg0;#2w?Pn3%K9cPCgY7Cp$kkPGNDRF#TH}dY&%3b7kv%+aIqkNxE&ge?S zJidcl`O|<}aP!_h^R3`t2FZ+SP1Ril_i`HC{ytWmfk=r03JlVcdoxTh*c^ zQSJ4$YVCkRy^(8RCCXaV3R|H$ty~4x&0Bi&;WE4k z%P1IS*{c0xtT^4|&SCwmp!49A+Dp1q4Aa&2^~LxJ`4dg*R6wV$A4n64ldVN{oXt1! zT&prv<9aK6BX9=}$28T7AcQMt3-qnj0Z!n4D?K23H_eL3n8{d}u+rFDm8BdL#`4_^ zD~`G}iu4Sigwa3+rprrd$ZRVjZYE2Ur@Z=Vc~Ndo{yc!)MN!<}t%{0jbEQ*d&Vo4_ z_pVj2Xz+FZT;lgH!oIb>{IE*M3@4xP*7_Pd`Fm@W-czj8rSa&$V}QspTG!}hP-P@# z1$8P)uQzt|q8F>+bADf7MQF>FBa)~lvKBc#fPe?UO2Qph)`_io#kSVP6F75P1Kh8jM}%{m2%`&6hygboF3E%Lw9(O;lNSdzKMd||ZC+|gaU z{mE�?qtWXObbRz|O~MX9b0F8>{YA?KX}T%5Es^7P1zZQznU)OorZ&X zd`T2euMcAN%}K*MkRuPtg%?SjHqAy@0ZzDvEuD)~*YTZ;i>M<~SsFP%oMCd<*3SO4 zZsQF7q5mhD((^JS9^)ZG7~f8plQg|^S&C{p(Jk2%UU2p?83(kvkHZgq=`w(tTb<_~ zmrlr*01wo*!=q1IJ!oCYE`cKPl(bz*5kpQ(+hwLsi}A={X6hqvO4?sENP9y4(^=UH zCL_3Ia+p|o-iqBNXYyuX%>^qC%FA^^7|35wUAP2gD4om^)HvIkL76dTKk+i#I@&;< zlM${Id{Xt-6)@hPY>yCwuUcmtWD=(#GJ;#;ZNszYYq3Fe>G#-DqUJU0WCP7Mp)@|e z8b%Y$D6{g0^*aN_J%vX{GfKK}QoeqT;Ozl|rdo}>ntN*c78J5<{=;#zL=}TeEk{EX9qy<&JVz1 zsq09m@`qTg^9>TmR#v+E1&^&EG^CY^ug4x>vh}sewM&wdLu}Y2wSvzZ;;`oGMR-vO zX$Boc+u};l(YtZw1m2Oop^*hn?h%2qa2RVDN=koJ9cRRHP-Uio4)6w#R{2wFRa*B3 zLZaWrxl>YQbhX8EX)@~!&?df93&nd>7zXd6&d_o73oEu5z;Oi95l324udKIq92J)# z|IXcOiceoVGX*w$c)G*<{Pfc+#1>3Zk=+C6Lh0_o;{JQN1T$GKTH>O?hV5lOPQYuB zf4~cO5n0rR9!iRk-D0NlB*lp#?zSf%2$6+q(M}JWt4Q&*A;M>I=r%rh>e#&!Js*ZJ z@ON)p2dyILIFfSrJqi}%{cNxV=H_j?992rH(4(vvA7Fz^)#S)G{4&OZ5_Pc~Os1pi zNdvFQ$o4SN8_ImX~IO8m1Yo__w(%}u~8#u_O7TUf-u zzE_-I)z*P(FLc_*-&JkX3=)SEscu6+#Ys#m#Ck}U7l&)x;2UI;kSt3(k38}cmO8e{ z2E$hQdBr&S-D640`3PdK_Lbi$*0W{MrhX6c24Q_0TtwelXas)|`MiNGma5IhOdr|M zhBH1Sac=ZAyaSI-T!micMCryh%vz@8bcDBso;}FlrB?+}wTbPfPQklr-U71;&1KHo zx2z>-LRYnxNNiz4n8}$($D#P0tVj5kpes~aG8QkArM0vv8d+>;ZEL3&@A4MK6GMB| zqvln6xoZbsJ=@tZrTpCO6Y@Xbbfu3wpp&=V(SfuMwwVT*44~Ljwi1+7rcWg?rjrf3 z0?r(A9PhjN?UA-vrjI{WuYjL{U-xkrUv-xKV;+8M4-E{Yj0SytDYqM18N06!0>oGw zmXreFVfFh|qTd?yaVJnb#mP9?v?kNgG<-^0oVIpHt6Zm}RV901SY$GQ#@o>V7XIc^ zpK^3)BbLORp0Z%&(eQBm<>{}zP%v*ap2pPeZNrv5X)~M~3_Xa(f7Z7Wz4X8-LQr2h zznFqpz)R~B$T$N}=v$f|jX|n^J)C;h=r4s=Ns~_m2G}N0%3SAoX4Pgc6$#?HX+)&$79d}MXO-yc2 zYzY<&w;>#5Zp5)(V$4X}3n#Z++7mysZ8A{BmpHD#C$;^O4bG#NpfR>N2B6wGwtx{n z(NM&YUgGe0+d~a)y$mk7=>@E#i{tydiF=>hj%oz$Q2OE{Urf{iK9oHY)Z3FV*IB4+ z452X|l-EnGOykD)ccaV=7(lP7a4V8U-2B4!kH*Xa9h}z-4K2`hO1XjIqUJ1E1PkSF zf0}TWZ3g;@T3^DPwA$nc7-%!T=~&v|k1o{4jBb;tS460&3`M2&cNI}z*=}hi_=rC4 z2b(VwXiWAaAA010FOhip?DGxWCrjqg9R9{bM1P0r!+8Z|leYISD^TL(zX)RReA^u@ zk5A&b%@ZCC#K$ndKuxn2+72^SAWCs)e0VV!OW(=tBo#XAUYa7AOB(5jgDXuNI|@{;ChX&w=jeltOg1ai#5uCIIWbE&zNb2?7Gd zo*!+yH7Z(FMkKAa-PTa~A(ixh9wKS2&7|cyyM;$j*B*I`ohi2S8lgZr8Lk5YDQhEE z@Ut6i2MeeoWuwi?s6eOnF-LgMtCTM_YdE+xt$2Z_?WWDTn#j4j!BMmtTteh-m6K|B zESx~Whv9d&V?xjE3Qy2}2mF)a1O?2%)5x53SQ(J;QFy>6ry%+NgbLOjAM8UbRcwXo z?}AdmAU`}3@LDgOh@9@hqQyQe;~?+)6puc?{1FBnws5f5ii{!tqPM_eT}ZSfk^d02 ztoCO1x4%fY;I#~Efb(N@R~mf??KCa3N6?K!SS$`KxBH3Y!*a3MF$J>}pRwaLgpD{q zC1jeP#%A(2$>6uv*&n`Qe+r^pE-#vGT+7IX3h0v<|TAH4FSdq?8k zC@T?8@We^=2LUa-j*-es%hPEgFbWWy63#(Cp1<6wL(vF!-}D8D;G5EcGMOX3 zceiXs^u{nAa@Q8=LOr)*CBP*C<>=CV49KkvXRO;K$2QL(as7Sk++16ri-ya+l<<3K z^VV_JbAPL?D!nN?+?_WtlgyY1%q`-qa*dXP1QdrTk!7+EM;SlbHf(r#k)`me<%hQ< z{`KJTz#}v(r8HioXG4g1Y)gb=FO8QPIG!#$Qf)$O2jKmGpFFwjGlip}86(xU#0RgP zp31e9DY340yl=a0L}fAlnT*Fcli!&c{I?B90gbz0zr&XcEPIK169+rL6?ym4hJ6?C zKthN7Dd+s~`r2;l=09@9X9`QtnA;hTcQ1@AC*Hr2ooaCQq5kIfziw9WcyH@qFljH- zO?i*nP5UD4sKj;!1X8OUX|?u$rnb4X&t!eX~*=uavX(miNgp=KY>YE z&BvZ$*e~w*$QB)4CAY-#`iE8X?%Vr@NfWYpdx40i*$3q#$vqvDDlXXyD z?SxX;2F%fnqIQrS+i_;${UEbsG*7^)sV0=9R~~Rfy-M0K&6tOu42&yhFG-1G;7XW0 zrL-L(Fq1j9V-eY7u+f@R){ZShenEkPct>g49Q4Y03q&lv{MxA!mr(m0gT#6F=q1*M z+1*_<9EWWP$}8K;P;{lSAylr-Sa(`n9fuL#743+FxC~D?=E?ndTp23gW~`gWQ=^g` z3CXj+vK?DOYZAv-w`14&@z_8ys;V6)gZrVn_acu?Oi4{4FqT+zjb zc7#)m%QZ~gYixh4<9sIY&yvqWgt}^fa9^1l(8_{ z{!+*JEb5@wq{`Z`-D+h=fXAFmmVk3d8+)#X3w%@hPEYRaVE1>?xY(87?PL$oafF3l z!n2EgGln=EPJ-WMYupvh*;z$*4V2myCVNNpijyW=#~Z66t`8Ybu0B``&vds>LR9R7 z;m;Tk?>%$*wh+pB>f%o0?_m*{*VCS)lcNJbZZgsyN=L>%EFnJYWyey%1v#8%O7yNG zczt;M!$2{!kNuENP8pBM$>eoSrs7XX@ZogwWGptues*{tmcY?|&gYQ*uTQ9V4zR;l zYt54fNK#C4?J53L+Zz$$)j@VVdj}vg**Aw$aNl|O4G%86E{=@BX zyUbKj?WL(-XeV%#I15diJyLoQ=HUs+tq@2Lvo09@T)%jCwflslo>+Jl&60>Iw zo`TPT<5^_(w zcB*}ifjV5mlT!9%N2g(oOJrLkM78PCi6N=&7e(d_`;P{y_sBLL*T0mdKW5oGBtN!A zQ0#1&!7lNBwlsq;>o`5vt2q$VsV+R%@I-00Na9$kJUrFG6VvOmLv8+*{h&^WUMQ#k zCo}Ng$2VVUXL2#$NH!O7o< zdD2jr%>8UW-;Q%!#${Y7Ixn=Z!d~;G?Q0sf7&24dI2YpI7t4MF4JYG??zd|M@eT7g1UBK(FkH7S%dW-QuW!MHOukH$DX4f@! zC)~0#jnn{66!&xzXx82PEICqb|yoBra+RI9KaG!?X+%Nt3P%|tN_x;SHXhh3e zEaHC9UezG+K+*b;Yz-$b9<~qHlWmXMg3>r*d?si^H zapeSt?Xmd!q_iiG4cJTL4xwdqcLT;LOdi^pf}IK`JF zvG2V7sGj`hf}A9rTlyi z>zX*~iaWpCzt%Fv`0LVJG5?N!N^4=fY42c%fhv z-gB*cR}KUxkKeN|){~#+*iY!mh7Ztrjp5ZF_HPViUIbaV9O)a%SPXaZgV|me-}o+u zgS%m|BS7Wk1e^UQJz35n{RiisQ{?i&N%fJvvYw2{v*TcsbK{@daS+GJpPtFqZ0mw9 z;OeDy&1veadRH+Ass@fvOk5oh z%E|5S4$_mKcsf>T$^G6A_+F-8@p0_XlS};^?e(O?-!WKA()MUan3x&psHc;T6?Y&i zmt`rmm7{`qQ^HX}CqL!%khIwdijUF zv8Wm4D5>Myq8;I4N*zZ_9S>>cs3;tDWye@lvoelqVr)G}Qyouf=Liuu>&q@}{20p% z?%Qfcy&9n-NwHW{c$;#(k!&gOK=H1zW4@N8&`*_O0<#IR5R*nVbDYtWty(zx=t+zZ z42Bsn9tm1fGnkXD9kDtoqOAjaWyz)K_-H%Xpipl(WnBAJm+EvxgIYv5_b+QYI$9Vc z9w;7na!k~d6FWO*>dE(A9Lx3O#;%T3J=wpTtdNTx>h2ilq9vPr;)v06SN3vX)~Cue*r2Z@tm!=!0z48t9G zEXPUDQ4Y9SndG-S#j4L7@FxX$&C!klda0krI2L|L!jr?tI;q(N$Dj{MyFPb}(Mh!@ zIS>ePU6&_2@WnkRpH7u_#>pPjy5PAvHaYYkrkHzL^)OU;ivHwZVA9kuY#?>IIHrB^zZ>B+;Z9C(t> zx$k~*tj7K?8`F^Qj0;+e@`J8Bm*(%*I_erE9w^SOlOBqbU#@o?)swM5JK)-7E+y@D zxQeQ&4!BI_dY0yZtLNnY&5l!ga?w@?!dA}Rv0aXsmP~it*OO~991rv)B;MAOv-UbJ z>d6879as#wn8yLfcLuuD4Xwu&cRx}b&Iz>ndHA55pTOZ-4@t+y$w5aPll7$Os3Vz^ zL1J;1Y$!9t9e3aX4JQwtbnMh~Xa4HIhZLNvo^c?AKjy-yE_HT|@o#Ea^$1Oeg zOtxdco=m#p_zMoQ3MMZu-|InbuVM18tK*!!yROM$0v<>hrbeRb4M%?s7s)pr2&yGX zT)pjRr6()jb1c>wPTzN2&~wusIQHtfV;(vjdhRHTk`s)lGJr!)>zpn`6#YKdrXp*pyR?GA;pB|6 zN=Fwhd99qXK+l~RqRiEk#ljSrSyBhIv*2>X=n81dkj~DTw!MP#F#?;;m}xI7%5HHo zy^;biCzF&lRB0rZR#rlE(y=NEw9Z`Pt10L7WK0bOiwEZh)sl_nWtdD^`gz$RyrJiBlHo$phUK ztQ;p-Kx?=gvH{)e0e7qpPaQviB7#`qa-fw^ihuK z$@G3ox}F?2KFAESFGMPv`C}e5}+xaJ|BP<79=5 zqr!%w=L9(bjI#y&{khbY#6_b?%FlZ8(PY^d&RscG!FGg`nbVXF2EH{j#=uu*#<=o* znK6ERS!Rqk-;^2S!q;TR1n?c1F}T1I*W|^x@$Hx>C$GkgDa!X^#?<6XF~K5l#6+gN z4Kt<;UxgXt%lBZ$6yr-UQBK}~36_iU)<~3)mtTTM-h2rluf2@%;X5y5itvS(z~pV0 zXqvq066NJJm&lZNT%v%y;1Za;-7?0XueJn>yw?&1(A}^c-CU2XBOnKELGUYv!C?GGHjPc|fCQ(ja zFNs#jyCvs%Bxv&XNYLcf zkue^8ZzMD$FO39?yfG4(ye<;;%DWl0@m{0{{*cho?SKD^XOkX?s~>$z8F1MseulF_%dB-1k#$M_ zT*l9E7&CQhUcR==xuVo%VuiX@5?Xn>{4b#meulH5Lgu|@E|4j2TLsd6wM4EIB}2pJ zVTS88=S!vjXVNsJ@SMnExL#ELJjBm%9(k16d#)JD$T5~oSKGScCQSKr13$xgm}UNj z0m!-}e=g%^IFGH&-~9$zd+{?oVHcI3qm(Km2TxLJ%yIi)LM{0dg`eRGXQ|5^Wk--4 zI7u#b7?iU38J@73d=ueTu2PFcWhgt0Bv#H6u*vz)Lzl#=a%Ls5swBoYib{u&#EO$y z8YVSZfW1AaVe*dLq=ff{FvFn_Xmb*Ze269#D}=cf!aNFLUWG6h43ez=99LMh5awD4 zb1#I=@hpUT7s7lCVg7}%z(SZbl!EG|#S~!DWF#hCT@u@j#H0x&CFIQ6TZDl#2srG5f`1kw{#6KjUI=?p2$QBRrAX69 zCkkQG_zP&#`XwgaV3M@{IgHBbki_#q5;aUthyqMb2#HBQ2-7Qs$thAmlT$=u(j6x8 zTq(fDb$4T$^oB_Z6M)T;L=Bx-h$!ciq{;b}#1pFklQXOU>$6+K7yqtK9k@mXCD$bAd9j(IKXA_=r{Qw1&y$16ZmC zR%k%356CQy1tLCSAAPq_`POiOyca34hE>#mkrM7JR|#-D!7>q_u!iO@Qp&ks)be&x zx@07JD}jYNFIGCbOD7NhSF{G0A&;z!l^*WWy&^M>S}j55W?Hxe1)kBJCCUbOeZ4+H z-zK4N2kBOl@+m%HZ@N?&V|YnhmMY~8_vqK95Pe^ha+yjk!`>%bG+w3z8w|(kljTZv zU+JV##bx;3_yij*UXF?~#m(i)a)aR{jadOPxnx|SM21U849;6{lkpr+N+k}*Ro)2= z5w8qSIEGh-mFk8)^kxN?;uNZxtjsj5q%FzNh8931T!!O}Pgq7blfiM6JV*%-LWBvi zRTA8LAgnl#pWz8>sW~a73`?mOLEv)wij>WG{iga#v{!mrsS*x3&eO1!===jZ0FuE@ zrj<(gpc}ftP1O-sT&aPd>_#%U(BhMXQ}Ds@9Er+W+qMIJLVNt&=^~kAXe#s1bw}3f z9x_Y1XVjPpj~t({iH5F1Rd;F0Dr|Re(z#Vo>26Y2DN(-CJA-i}oOOJ{YpV96(x<>->03oM~WPy8eekW5?X;*UzX zIZ!{7zyAUh<1|Up;-!QTxbS!md1djnz!F-{#ZS@sl1awEGJkdwvJA`cv*$-gGSy98hI;dCNMfo{=LO zBX9GJyvsB4-wqggi#LyVct+mf8F_za;q98@o-m67L@k!O#Q zCybG|bw=LR8F^D@T*e>U>SsH!WEa&llZC=6?I<;0A941$wg!)*25~6&dn#n)R{UKqs zJJ1*HJpWfE;ZJI_4ksdi(i#o?y-pbltY3;U4&ZExk`VT%ln@bypWiAvB@BqjmvEbU ztjCIXn^vq>+5+5J51)OTDs8~Rd7GweP}&0=*#O6Qn*x4Tx&sXRS?LV0>u1g^wh>1( zw`sse&fKz5=?3hzhIL3~mer{^r+Z6>Qk5nEFH)5@08P`d?7pR`X-X@AU((dIP-QgoWxY#cpQKrJI%3VQ*!p-e18FU3Yfsid=#+Yhhep#WbvrbZPH(m= zpLnOs2Ji8}PWr4TE#0P6D?KTG>Tq~49!93#@&wh@hpBXShvJR0*LNs2D$DpFp_JT( z7udl5NkFy2`y{#XBm-r8;k~b%K2>}uE*&fFJ{p@2_3xu&=@`p>6tGk23ov@85(6N1 zDm?+bGn6=hff-6afCCv!E4qtmeRnZ!>n^4h+pV+!OWWPdvUIo73E17;N;E+EJsA9b zl(0wX0&rjtENLIT+XGYBM{#?V?mpbc1&h$;Fq{vDd8_z(U^`9|^4gXyMS+4pjZ zCi|4`VO%0`DN1a@k7oE|m*sc*0`1s`Ixo;a`_RV=6uTddyg*y_L&61my&v{-fw~FU z4>C1iIDqr)3pC__G8iE10H(+Vs{M=d8NjMvlz{**e&KRm4#H|y(U^l!!zwzafs%)m z;lO4cQicIMIE2G;g-RU;=Nf8o7#6yQzCDaatik05$|!)2M?l+2qmCek+DX@rDANF9 zk1AgP{CZTG1<*PZ2ctXbSf=tNKy((f{F0?i2lml120M-^lYoUES3U<=ew;D46Ut;@ zvreD}qMuGEc*agePJ%}C#Ytr%fa4^D5e+?sxQQs|lrky#0Iat6ugV1AXMRO9h@wv` zlWDNb|K+rTN2e5V28|_JdIrj&T z7V3YVGqcYtQ-HPm4YgY+^EYLRw>;fU2shxM=&%bN%U0@ARD5^@`2~f!(u8-4JNQyB zC}TCgKzHzsao70bE-H1k>{&AVx;yQ>r_|Bz4_#6s+=Jq-D6U~F-y#{JJzR84@$mwx zO^;Vp{E{-r`;~0Pr!sq5IOY8TF}V7(GL1ip3I2-iU4j|BqW0P7_bb|;t&9hVybNdh zisoO&z`vrr%gP9V-dCWgS9JV}G8&-PRR%v^l`P4>V>t3C^mnB{z|7w_o zVAy$d;TBqvM(QodNuxfuG0%l}(E4Wj;typkfcX!oYBR+>REBx8h@uG)@$q=6oH|lM zS<3v%j8Z0y>Sii!Qif?_=9-lFFfI`?0VSs4M{_9~J_o89$}@5?!$Ur!0cK^m_cPg@ z^Iw2EcN*nBhWNauRl|}MwC@>JwxAu)Xqg4W{)}E)(8gyp*opypMp;&L^BGmMapqDR zoX#`KvoWokU5Ph56MO8+WLLuxs*(p?AE8xw7?mSb@=pxM5nA>qo|GM-pr@R<^eH^V z5%T*>N%WBi{0YUkp-FqU;h9Dzl;*tC4_|J)RisGYXBgTe^xZQU*%5jJ%$tja?m@BX zd#KxQ=n1alYYOV4=kO^g8^)o@|3$VD9t z?2(H)0H9M5wXb)w)X`}xIy+RAR)Iesl$X9myWs}6cSTfp@VOOL<=!@-s2UIOTTyio zK=op3Z>{ho6@~r&q>P&=?7aTXGf=Y;7T@*>ICebA=cqx=T~${IY3s`ENp)2RgfZuW zJa8KRbQ)XNr$9A9FDcwjZHvA2NH?`Jz+N{suEtB*_#Lmn^vP>ynMH5%%iNRXccAbL z3)rpT!m5YmJUpCH#6243uEt`czQjPogRLU1MWYZ8|NXe#czL1hle`=W@`>E}{<%T37rDKu*C3K6S@F2A& z;U+Kt;<}!g8Xp7dUojLF3~JNlh91t4A)A8zxw4`D+=5O1Y8!}G{nd6pT=GmDO77`a zg#P?U#ihJY8U_~>O$<=mXtfXT4z9?a6dwrrgWuQpDq!*tQ;~@eESEz*{nii;M{3cBTh$kvBmYr)-KT!Pu%2Y8)^}39h4l zNwpWSg(bP%-ID4j!0MJ#`^wBxYJUJ*DcD&ybtnx(hE7W}=j+mHcVMw)Fd2|phHLnz z4AVN5#h_;sl~p@wJ${>nmd^cwT87|`p}1iDFIKr=Opa`-6wJdlE||N$H<)7mh5sE`{VSa97G?drsXkbkJHlfYBwLbxlHJ`9W@l+QG`B^gy!W%Oq6-5 zSt+U=f~j(x8ic5=0H%kap5v4mqSi57p+7?)(nkKF>Ii@@LLt&dzlFjN*r-w%ro4^5 z3xhsvbT>>L2M`mk4g<&tS4RPqsleqDE2y6Xds;#L3}8S-DAz_iDnfK7{ZYXV&^qm2RQ=N*?<@#zvzMO}4 zMnYwobRd$8dsc?~Va}4S;N0x0ao*e0+JkmhR^7lUDl?}?6%2bO^{#>;%A~X^XkaG2 zsDfe7q}ZyQxu&YxQxm56LRbnuQH(^jSwXFe4Axg? zL3!1=uI4qEWn~SupAWb3NEpP1S13y1mDC2>tupfFnGb}=)KvRuyeSdj^@{wE7Z=O; zp~^QkS&zMIaXYrx!VqPWPi?MiWNjE}CY`RW4h5(lr49#J8ihg0q}NgE7=TfAnDclY zm~1Bga2CUtN#E7QcxO^hU8Xhuh}Dwx5!Yb;NbRhtrCnFF>1|J`<3@P*ssrw7tj9Y3 zwjL}#ldjd{?nl(;?oX_*_CV&Z^?7K^G=Mp0(!d7Hvb_PO9rWLThoM75wH>e}4Pn)p zbhjbAWF}Q<1dGq4&l|CnQ;j$?pfQ&l&=@|9ReEnCnxssk>_%!G!lfZnL3xeUZW^`Y z7ofiWf^zG@H{k9Le>ZI*fKEQ8hq`i2F%t zjDIaHifiaS|f<^QV|85#Q&T^T_msdFb=^Ij8U>+VLuV~0UMkAxq*<+LyjjkV~k}a_mAEPNP;VO^O zk(N;UF>-B%0(+=ZE7;E-TF?pxw}&jPU|V~rU27QJ9@^9zO4>uk+CbPI8l(Zy2IW%d zdK(OD3RP|k&J>#079KN&l(sOx6zbCsCYD0GHQ?PIQc@_PJ&ZAhPPb=Tcn8Q#p&1=e zZ38iBbHHGS6KEkdev3^2H?v$baNR!h(o!f$=%Stqtvq-tn4WL+zs^{rB_;J zm+s*BjmC6`MgK+zB(|1rbVq@;RJ{iZtfd(}khzpr^+36$^rQ!RvXnaX#H?IO>w2Oo zODV4>tZgZ^{RBq3l-7KL0?X;}Cur?*a_a@FT23*&)aC&5d%@I})45(Ku$)4BW3DZy z5xt?+<&@qV^)08jz15ZgE&6b|ulq2|xjtAXmXm*9C~!Fq>dV+h4LJH@C0R~2`@wFP z)98L`G{E+LT%Xd9IqUR?j+fKi{%ULQ<$7WtieAEHFzASU0qQ_ z!MDSCgW#l2(91#S>j`Qpr`bcGhx2r72sqD^ ze>{W1@u>7XZHmWoa-LqrWAx5b+fNxR{S?B^)9p_&i07%+PzGNOg*!V>mxf~4&Qs(t z4BL77LIY=pp`r(59fmP^Kuw2Z7CfLIhohngWFL+peLyWoK=cDzGy>%w(ESl8V5heu zV1RZSI1<)ur_&?hyzNwL6y}+omW%?+4N4z{;y1|kGth3(*v~K~CffcPX#ddp&oIya zp(+WW{XF#sI4)s!aiIO~erIrpQUq;BJ~S2^!c<7bmH;4R`3>B=q?; zm7fe-dQI_@(dgH-Wiq6^rstDk>aVHA6m;k{t(XFpy(Y&LSix)RFqJ{tR5jN7wQSr^ zHSmzPrW+m+Jh>r!mFs9X?&%nL9so2T?PA8_Tb;9I>t%NS} zK~}*z=ztzTHH$bvK{GJV574j~=+Xg7pMeUt(1jUL^cE^P6ZLGNVKYJ7Lg_O>6LeuF zOhZuEENIe9{bnKaXPQ0>R{Jwuo~3pRldpUw6u~2}ga|z8(iYEG@|l-bWe&BPjX9A+ z%V(ocIb@%W8JR;(zEm5A=AYb;YBZ{mR+10y55;N+_e;No$GJ^AC3s60BzQ`S1nJ~4 z2jDqX259Cy-u+*J96krtji#0;<@8Q&Nq(isnj53ayi14IPmHe?lbz(JKio zR4Ng*@bTC>yp~fS=TrskG&MPSvX zF2wV0IQ8y_0(dj5iGL}@XJMOMAfC6q8ucE_0d*ech)&%_0pCH=0je#*7V08_pwSYT$tc0kv`K;-I`y6U9!fp+ zy*k&hm)g%$n}x_(II2;?=&qjs`~HW8-k%O1H+0n4_=%%G8#fZK8q$V&>Qp=^D`SN7 z{F6o))oB1ZMs+4Y|M}{70DsI^mjX;)pe_P%S*TV7K!Ffyvk;#AHnmu$mZNnG)lj4} z7s8?3rocsr0&mlpMev`u>D(f0fo@Z+#aKFS<1P+$B*4?fSom&J-z8WuZ_~jgoLM1B zO#rqii8CK3A?CeJJ(n`JZz;2sU#5m56P0#=+nBdZtqQPv89e)2`gE!z(gONWX;7F&_KO%@pr;wkxz|5bZ+jPqL3GsG1eY{#74Uo1PYD}kqHOx6m1DR{o zvhb<5*QlSl%XhjH?gklX@Qwi79JztA}W*ZG&r;Y`zbZ6rP>VxM zi4AHa0Mt~4rfyJ!kVbW(v~`0Tj5O+uBz1#Y3Taeafg*qAVyL}5_5NAy;(l6oqeV%) zT7M0nbpQG@#GR)1KdX`dqO{+L4z8y!HzIOfPnjDLVXr4cD#m_2#iyzGW35zJGAOC) z#{l3fM7l>D%C!yR;7z+SVvQ7{6RIG8gEkT%k(C7xVwC_DFM&m zDDT0;NOIYX5lE%Jo7IT`zio!?rBcl;7~E7^paJ_9j9e<1i?{{ircE9j61$h3aESO+Eo@`bK7^3AG%! z+MEEFBDl954ybdGb>;y4Un;fyMV$^X;UqrE&-n!|g~z-F0EWAr){y)mes~ZLk%zcC z)jb3w=5Y?C5rqnqK7#4NBVK{l9)V@@u!qy_Bis^o-5 zD+r9S0vYy++7TH zP3m=0Edw5mcRx7D^C#7h0N$U3mw!%=PGLg!IfWiQr!P;T-sd>R#b7Zd5+LYTHA2gT zrhmmUx{ucX3P-e$ZvTokW*;>>4cEDkwx5Pi-bba*sFMK}o`ECXM}M8cU)frj;R z;E$`AP#0*x?+mX0t|kKOeGO5{1-f-jO#(=`t}X!h`#L7#1)6$;%RRmUtLKW!P~=Ut za20)j6P|h%{dyD1Sw#(QVcxHzEw|LK0cze>zXHg(jXAN3&fmtmuTa1poMJ3e_^hFcch%Vdd3Vu{H8krUERFd_YKwb03cHV*chcbd z>S};D_tk9xn{(8y06lWmojyCI>mQd5o#ThX10L0)lt0vAwBVyhf#BKuK-~o};tzG3 z##;3%Sn)&I4V|nR58*U+QszT-JHQx|ng&qZtZoE2U}kKvMco9<&5FJfh2^QGsBXxk zYRS7pJzXbGLYzW$$ExDXGa6@8*8}+5)f9kTb`&S-<51-lKrRZ?HYzHsQ5{L$|?0XjbW_gbPEp$+;9aQ%H2K4COzk5(m zWdDp-f5F%|Pd~mO`}5@g6*K#JTK)~^C|>=FTeb64;2XNaSDF*2u0P)}#c^;$h!@{r z7KgNhco~OV-LEw4J4*hQ(*1xTUunk=RO44_@e}3vN*{i{nGZ27{tf;Vo}bHHh~I;z zQg7>FE`#`_MYyL41uC4-9Eqg~>l2y{AYu}l6Cgso%()O=iOe|=^Anj1Ac`b5S3q1y z%wb);k@8!L^)}~0O!qP8L-_f!Z?~@*249UN=5&atBGDQz~p92h-1l7 zvh~zCh50)~l9c8ah3QV=1nr_ zok?wOg$PY!Zh**^)?8=DYN2AaAXgeQLPhXFsFBXxs6z{=MHdBH(v{Q*?O)hTfzadW z&Cz(|u9m@U1TifGs%9hQ%xF%9*qG6bfT)_u42QUq$y@{xm>H2{?%`WTURhAN8)-on zRPIJ9o|U7X&T7tvuXQ$are0dnC>WVG!tn@M&Czr}_KlCmdlcRiOeqtge9>9Vru5_4 z8{e$|TU((PSfI`m2L%W9>(?v7*ho2Ym`(9opnndt9>ne(rc1A`h#iEaVh2%-pE;Di zr!bTMW6?#_FzS}gEI~Dlf?gDp$E;1wlbT-mSIG268qNJsvXAuC&zz;>Tpx*~u8&m4 z+Hq$4nYDCXeWZlB&1q1dnHwGFBl+b)Nk7t#JmwUL3cqmJiC@r-K2p=XW=4;X?tr}J z0be}Q<}7Y@^SDgoile)zCGzMlC0pw55)#lSBw+C1e!)Qz#$EbY9CdkwW|lxtIYN(0 zn5*@&i_qn;D|9&>Pl?(ZSjsfGoKPuO%G?3*yp*{QVtHxwq9fG2jJXRUVOeu8#DTKx z>t7E2?FeNqZ*GP-Ri1r=Dxe=7p_~=X^$=$&nrk48N@gHlxHNBI=Ao~Z%(`$_uZ)Bb z(!0uLB*d;N<}rwns^)2k3f0Ug2(RkqRfwC_S!H1j^AGsC)nrkimU#xgm|Es>h@G{~ zQxHSzu&+X0^ALO=>zW53w$)>wQQtfaU;YMW0SH(!UM;cs)x^iX8=0vSMi>k5?}<4O za8^TeID~g2bmIjyv5`5-W5I&P>X$}0HYY-OG+{BhiTN9RNt$9TE}$7r%`p(Z{^n$e zIa*|FW=?`{Su@Nl3&^iIr?Rv;N6*!Q#rhVUN}*pll`X%Te$a$rjj;A2V@tCNM5~r& zSG5wOrP&W6M=NsxL|7{`GsOBYxwq_rQXKl^i5KY^0*v@ul5BSoxH~T`2fym5DJ02y)U*_ru!^bPM``|$A zrlg3qVdU0ZJda*Ta0$4-_aD-gF zInD9CS;g$l8MWxcDu?=*22#n_mwj{kqDin=rLWmrn}0nR=3ft{pUp}#zzl+K!~pd9XnH?@&FUP)VdsLl{H21qsEdMefr_Rt!CY^h2XZwW8^}fV z8^lE&HwYaqnw||}mBt}vHu(C6prf6j=n%68MC!pv>;w%TYz~5WH5j>{p!T6=FvPh~ zq;i4^4nggops*pPdYOuNndrn2vjpC#`VTd;Q1YQ>9=J;mMe2;k;w9_Fp=PU;FLeJI z*NW%Ck@RS!*-?F~DwkSiF${%&K?R4KE{ILTF~h!~k|Qw0U(mJ@xX!$wIwQ>)5YZzs z3BRCjqs*BQ)+kJ$FKEhW+zPy)Ok+@!FKEsfGd~0}%}sa4m}+%I$+5VE9HZf5QJ`b= ze5^TA|GEC)Ia=t!bLt*|mMk&Xtd5xmi#=Q@{xPaH4#^#(edEj!h=SwIP>AK@Q5nZ5 z#RP`qC$Q#+3FZjE0lzVP_?tOMCx03HM2yScRD6NiIdRW{Lsa6C6WNC1lQ5edqm`4) zp%57-Gn_n`^N5?wc?3>j-@_@Kc!#OxFr8{#TBI76mQse9ovG3^Q>_sEDFb$K> zG0H!kqpX_l7{aSIj`*o4J(Khp(z|y+2;QC@qZu>Mv5t{f7?*T(81A;Pq9Kg)?LQM! z-Z3&~a$0?6p=nTcvoIYVqrlmiII(hMHm-rkXw)3sLmeZZxvV*1E}HEa#m~h|i&Yu( zIEVOo95y1Hi~Ba5a|nnq`|Bd{s*HNgC^eZ~sPcRqjeU&j&gWX#JD*GT%K|Rhyanc9 zge4}f=@EocdyMWAt29}N;eo|63%OC}XKppE&}dkt2{I=bJ4la+#S* zCAy5QsIeR~{xKS-MdWgfaV*YQ!L_h`1&76~;Ou*@#3kt%JzB|?-+mP?E!>PSF`HYOcY>3BEOEKCRabi!G|IH48)ZTZ^0JhqP<0si5aN zvmr#2b!KyjW$Vm7Ss$tyKXeyLpnlXXSMPrPLjyu03^(Omk4xGO>a^Z0n?$YKz>Q0< z)=6m4J`D33r~Nb1`SoUT{LArez3C6pa06`rPRBRE4u-kNcO!B-P8~Lybs$!3MEQ?X z`b{imY(ldgr=OcJ+K2X|urVSYY)mK#*#e@`MHDBTmR&@b3a3Pu%=QpnFPR-64qn0)J)E*##+_R@4Z6(n&R#a#>xC(P z%V3+|GOBUKtSH|YNCC}J(YOT&r+d-p2jNuq3X54+%+~Ndy@K%tcoh#H;WX_k8*%q4 ztCYEhDJY!i8fRo(!%ZFxyv`ApT*vT))z>){|35jx1{Mo$a9XWyn4O`q>jvAN{3afb z!YS`f_)gNeo0wuw(vh3U;3WCoLhn9FVYg7`lk`!GPPb9mlXUbphZVYmTMdqvhXU{5 zwt5Fmx?`5iv_seG%r<;Ok$6CGFaA$x2VJ^@$tjAm-^Fc76#3sptwzzRyQqjL^1R2Q z=RH(z6dk#T3rG~@x({=s$fd>o`>->LD*T0cDTEL;OIr6g zZiQY_>1ViUdP#?#VT!#;#h&9a?k0sk$DDJMVxD7iyGf&8pkPm_{Yx`H{d|GSc}m4! zngunQguiwlyfkY<OAFJ^ z2KvLo6@LSjkHMU{f!4*aFa29&bC24-#oTs}7QDrjdXK!{plX}{T@>;KLt+<2eL)lNqGDfBLw70gt633Z-B%YT{x193W$)f1v%VyiFyt)G_| z`MT*^Vrw8o9dD~S{=4__v2v5!+bW#=Z=K-|&JZ8#c#;ukE~)UL_;26kV^x7T>|+gv zDB+7F*3c?n%RmQ6mc*(B(JYA-3~?-pH4LJBQfNM)ElH8*IeL@SstQpknUxo!MM^6Z z^-X5wfO|?Z%O4^trBwpQa9fSxuAa*Br)F-u-67FHC zt$ZF&XnAT>*cs}Z&Z^g&tD1*}kK$Q*sd)z2 zV$rY+R(_4bJXYW(pVf$lX0!^yy(**C4&qxzYY4=^Ox6a7Oqs3i5N9)6Ga$ZXL)qqJ zv8uz3r~^EfP_?X9Q;4vvmdj%+CCg?_(dwn>Og7Xg$C>7HSWQtI|MI58^_~=@UD>T7 z9*5~ccB{2Fhdhm1kjW}Q3maO=C^!d_KTO+mSeqc)=d|`fr0}zP{U?z%epW%$?L|Lp zqSotzy#mN_2_1h4D|6(wT6(;p{dukG6kE|sM>+CZNpV4cL)UVn!QW7!Jm}1CC@>#J z`HnnRd$^PQV*L)`{>55EH7qL;wa#nx06-%BAP}Q0wasUxg&Wb@K_Et5^388GfE&?T z(z^Vp-mP>ozctfiHH|F_OQ?WVB+3@?FQ=!VxB^yT9~Er$ z`QlAE)6OVD9SS1B)l{LFm5Twsh4Ts2SyZ9N6|C%>PYsXL zRI?(cq|>y&BIdu-l(~}C!RNFpP~z;i*_$g_tvyaJsBDcx`1s1!1c-~ZFr@2LLH9UK z+p1XeAuiXpiqOESR#CW@SGDRxJgbVXcAEUFvEKe_R$KT|Rkyl8Alp3jq&_-miJIvB zbE=}-xvN__5!AFUW-sp=oKjd_jBx)Nm=aIZ+#0CA)0DcNg+I@0T7}_mP!n?;8(*ES z)kI?{J8_D3EnElK*kVMrFu$|K(;;ANYuZ}d$^|zpt^@&NGp9<%|C0Fi8$5VO0Pc^T zQ0Y48i)?#E+FQp;jUhL?xrKY4I+({!FQ{uZK`1P(1_2|hK)}9Y6bpmlhLNp3meSdJ zR!*9XAGp`oL#~WwW2EG4Vs)Th^4V1;j>j$`tABY7^SrZG*~sTYgb;I?&K6r1f9m^t+YrMTIFtBUA*Bzfu&@2=nSzI^D=>;?1dkZb3(@ zSsAEUW6b;FEN0G@3I#t!!rDQNkY=3ZA4&lG`7{<_Q&UhHn3a?lwbbctUlX zW47ih{q^5DJ?o589&3&+k+%hE`U!PwX%(cv7MQB}f|8N8wy;XU4O`|xAlYto?N^Kg zPP+=#Y>7e5(FXfOsxqWq;zO4jKPf;7Tj3fLNkv+rS4PqU!>UC$THzWKN!eRtvWcV_ zfw+2aY>oaINiPGfdaBAB!@Z~tYATZA+u-6FN&aoE?hrfL;yMsXEe2q;mhXiwX|%Hn z=p5e;^`UKzR}`XC?J(s=Qr7m?G>G6Js~p{Jk1JdxZu6pXRct0THh zBpvK%O@^r1$qI+KI1m@AoSm(LI^`5DA6ivtWgZ&b8JChsDj5tbQDs$>dk~DM-vw8P zNE*}ySBFR%IS3;uUso=6v#!<%ok;PCKJ+NvszUUwD|&Gx6$`OS((rCp9k|Dbz>=5U ztcu=Tcjcy1ir!XMs?!}KFp{Qp=ZY}9a}_n|VFdzS9E?m}^spKx<0vU+`6LL-gT3A3 zSKv$6Ay!K2*^{%`(Gx8nNm+WaNIt|WL;HJKt$>mTpeZA1WdJvfPj71#e4Be)4}!QVTq2-g^1;faHI-;hKU}LKslo`WJ~cJ0{5n_~eXW5(&aJJQ5Di_7 z1_xRh;YMqBhCo9HL7Sk!Ds#JC$Zc(_&OVZ4NxDDWT z?+Jl6Z2*CGZ1i~`a1;E4YySxoGET)f*TEn=Tq%QtL32$ zgE2n2>Dv7NTCH^`XMk2KL%Tz9i^WZsot|ip_EQy#rmI5Rhj78se$^<~Q08d8z7#VQ z7in(7ZnS9_MlH8vRmwb^J1-iuJdGJ{Rs2tjei_bHfEJzaah5KPz!m*06&i`Ia+X{p ztcjYSh|?5Oh#{9Ov$ET z#Iga)ZW`*1O)5{m)6pgVZP$tEoCoaM z4=tEfo63iA(P7s>NmvtqVt2 zkEP@h)&+<=5!OwJ$;)uNm}mi7GnP6munzges>A0v6PVK<0Vr$0A&3V=3ce+_tas>d@@fcnW$>-g~SjRDBI@pP$q8J!tIPYcPF2r_6h; zRZo-~Zs&&>mh@gF_qN3}q5pZuLQI2z{S#E!9%~i^tlkI#gS%3$eVE_b>eUdb-FR|& zPG{Vhx1ZDK{kV*=!K!?)wJu#afCoBQw%H1#wFfZ@pA(FpNShDgy2^(4rO?A@ceZ{2 z)j4AIg4rlS5@j~bUr!y5;lj*CXhYwR;bxc1K@cdyuT zCw}tx4IL619MZ45TA_W7!jGf>uB99&aBsU7U&2Jk;k)T65MR$?QaOAQ7vr_G=$ti( z_MF1)=UQrU-fBVpPvgE}EuA}$E9cYGcv4?WjiPWvx9tp`zSh#MD9nU4{=g0SS}Jw{ zHx-Nj!0paj8hHVeX{NKRgG{^7`Lk9raOAZD0@=7Bki#$tB(AJNx-%h=WNQed)))c_ zE%u0@^cT@W5j5>0dQt@abrrdmzJx+V(CkZy6+ziATcHr&uEB;qmtkiFb-#|m8W?R2 z_lZygZ!C_SSy31VK$X0LUK~Nef8siL=n9G#K}Y|@gIIy9m^L`8dbIf}CVI{&$m2FO zy@p1@krCHWHqN6r1d@;VPs+9b#I=x9_J=^CqY=6C4UCH0wBiOHaBnL^lIHcLnn@3p zqnbBSQck@xUA>94Z&S8gF#R^(#NrYCHvPPd-e2i9djD-2bPql1-fc{$x9Q3~%nQ}- z;FkP0jk$wr;9RQHm28K~c;fIe|GQuZX!BjvKc^A`fdsljAZ|?vM9c54blfZZ~N-Z=wbu;X)rLlod+<-Bkb9W;hGpl=2EhB-c?Wik#PA>egN z2BQT0NW)-EGnbQOfox1%qN0wjL#pEi*qKgL;Ern6Uw&bYDGp#Ora3<2NMFmS1ce0P$`F;SU# zp22YeYEKdx>ZAa>Y-bdBuhM9ZQvjiH&H-H5D92~y#}T~Mfe=P zlMh(sngck6KOGUzsO`nzwSYE>8JGg*`Y?#$@yDfCXB5J;ccP+>B?R~&AVYEn zpA`6{s$3mS2#qfa@D?cStWqG(0bGMW9G@{GH3uhX?&x<+=fUGIp^zzQSS7K5BiKxZ zBz*<6)OjQma9x9k5ZVgt%~DZjASn%g*ZJywS<3KxLllSQHOAi6?c4UkC)1{lmh$(g8G>llyv~>mv?+d zW_-l~`jrH<)u5_?>NS;BvMa+ok&9k)~WjQY{%I&5s*fMW)5JpS~xzn zFHD)$O2Dcz4B9qN;QjSRnQ8{0cL1zJbDlq6K;Hd^Z1*FqadJ8zAK|cZRDx5}t z0Uj<*f`x3?AVk2R8XRYcfJfCB3>T2II)hOHnrSdrKtG+vcmXTwa+Hb9)%B0-bV?m2 zQ$&Td%5(wPvZQKprhr!U8O#wdQG;*+rF4`90^Vq_NPr7FnpCPwgz;G7001r%+~8fP5fGM;I2&LKvlHmq_%z%~so3&_!yHLeP<2gIKO>;Z90fIS56 z3b2QO>n|bp5O^fO9s*AV*hApC0DB0$5@0vDDZm~AZw1&x;DZe?{ycP#|12u@5cn#< z9s=J5*h3&*fIS2}TR7d>9s-F3*h9cafF1%aBdHL32&52T4}sJI>>-d&fIS2<3b2Pj z76EpT&o033@O~QL@N2{F@p(kW?(z8q*gd|W0K3N*5n%WD;sWd*UrK=8%o7>R67WESIRfTQVvTtMa!q3pA;6{fNumlD z2ytt$P{778)>tfH2F`Ovl%)cy&0?@zK=C;YRtivCDG_D00K4VZxfGGZOrWyS0o<0G z9iLGxf>ZciK#>Iuwh1_=!43hvi8Xc!7_*eY9s#?T>HDvJLe4B_mHh&8uVQdeK>9Td z4h!hGmcda0?sW_z1uR|9;DmtD8yK8wq3(bFS^7Ve$|7}-<-%z$sE+dv;Oe;G_>2Tw zIrx%*OnVqa3+Ur!a8fVc43k$v>?BPE{`sKx)&ZQyd&g%~JI4up z6tMdegUBVtiA;#d-9+!sNTC?7Yh0r+|Xj7$m@^L2cH_>kK>v_}pON zC1CeW28jiHy~n^uK-7Kx{F6jT3;k4@Oab0?8t{PQq;vq6KDFaB3OwZCv;qqL%^0VrGHal&f2Ce9$to&dFBxPPFya-1oC1!%W{^w3?l%nb2t8`3YIiLfrmz6J^u-k5U9h)4u|`P;aCMY+e8!T`99&jFmhTM83s|Z_MF+Ty zraxGvvO|p58dMcfIG#1C3mBNdQ`uQlfI8(IptgVuo($>=Q0JRNqrL!jvN?dOp%AsX z7o@QOyRiNWoL9rG9nNWjMhgdU>03HJBZm%dBcQnk?G^Z{5>N*{A%RY!k;A1)S0Q$s z9{-IK-~i6FkK^N`)sbXB0e)#Xk3a#>G#DUYO}+&tR~CaTyp4 z5s)||gJA-~G#DWuMP}9*B_KEpgE0c~XY=Iu4=zRCstQtPU7<7+9KeO0==h8*c{q5o zfD%O*Ock(8gXsc#7G;ev0UpH|%+f%Ozd%jqh)StatTInPiqZ@s1O%30ut0!1Egpt1 z6!1qm28#tG$DU|tEEOs z3ErXr?}{#g)54&?%>k^x!|@p(s<}9Pmykc|FxVqtW?csR1Wc&MV7~yh^BQ>^6!5Ac zgTn$IG-7a6!1N{zB7araU%h=B8?lkd2~k=7D}z%4)MjjGoDrao#0NO50B?gLO-wNl*DY1(wK)6{29;0&mlf!u zhfrw;a4nQozPl20>(dL z5GKI;F@sqGrUR%ai8(^DK4F!40?fY|LN^hr8wDKEV6%W<@O=kp{4M|=eBe8Y zZ9?oy-l@PBRqOrm0SCm{;{dMpeU8sK`<{dM3+VcV!9fA)0})8zumC&7V+!0?pK&uz zCQGPPPH3XmbijAY@fnZ5a|&k!)c0cjvjQ$@a9%*`M67W^z&#Bv3Hag78qqExcYT;# z6)?<~!F2%{lQ6g;V5SDQ1SG_92(bN*0CheBz&!zWSsy5%4nc4k3zD9{ zKMQ!T!50B{im}Ew0h4Pp_%6V|4uhWp&S;PTTk*9O{p%*=@#iT-9nk>Gy#%alz#y>z z_2~_0_y|y6+W<%+AYl^*$pmC+${>Y+4*m>MDd6JzsNIZ78c|VS;y|kD1e|QaAcFw) z6%J@*5>T!cgDe8#G{`34b8FVfAs}tLggpNIgw$)#D!By=>d4?10qUzA$Ty#W2VEHy z5YVeTgF*s)dNU{@V00e_#Q^s31U{ zL;;OT0)8FJpo)MFqg+g?3GvsUhJeo#SfiGJQj;0f5pZWJgL(q~p2ncT|G*3ejRc$w zW6-3Py8dtvcr%NMzo?|bH%DN6a{=ljBmln(m>a>Mm4J4O8MF})w3IYXPX$h>(VTT1YxH&i59Yp(&v?9ngAD;SwlL_gfQwU5 zpFcs_fX;6r z)n1M;!2uj$qT@5_?dRah0?unNRe;Yy)|f6JOoK21o)=kTmH^lI8%*X1$$g8#JONj3 zGl&q7`7VP60&?DGuu#C$zZfhQ;QN@tQUP{ZS8(a&BxqFEYNet8mwv6|GuA%i6xIt+ zr-(p*qkt?g8Eh7i=qH2U1tg4TuuZ_Ics<;92+5UzUzY9?pgtsnZ1xD~kdVPX0j<3l z>=&TED1#^m1?<=0umE*L2{exK_~X*2^kot$Dql1>Az(~W);J|#crpfO1Y}9h;H&`k zH5z1dUcio&3@!-R;!4Hjl901$7(@$D2cIC3s{-<6U~pZ)qRb3#2#CnS;Ff^Q*%;gr zppHgCqW4;<=O3*gBJo`7G>~C zfXllilQ%+AmSbQENLY!%TLD|DGI%fGc?||11fI86yb><}?d20rV1>|YVz{deDqgHz+NgQG<=)fSE zfUKPuq!6&PGlNtD3U*3G4AKcG5x^jWfMXiCG70hT%_><0+}9wRfc|}0BZq)E z4g3U5@5>sw1vKx+;1>ZGHOOZJT>sR;GpMuzqH;)sLITvmGtej^U|}$WVgf1;Vo*YW z`n(XLloAj(m_Zo<7eWOw1X&{9r0@UY;0Q?2u`$h`1P~f4;qwf+1 ztsKBvv~hgKsbw784#1@&Y{bzaNTGwMgsouENkEeA47vzV$LJtRHwD}()5-WMIzUea zZYW^?@zvV_Y(-z?`>ul3*N@bj)If)D_yEUelsmu~1PkB@5k`mt$5jf8@a6_N4sie{ zFwF58<)DP%5d!X=WH3rVlQS+RV}x`$$G{~ZG5%;oBI5;2!m@vW-vroJOjcmGGV9Du z)|lo1Hfx6CGp^p@;F%1Ne*$CXJtnh7W%+#ua|IlFz#v?}RkSm#m@nYUBL*a((h~-Y z1lVRRRbZvccKlO(MjVN(a0nZ^%JCW5a94!jH3IxB2I~YAk72MuK()6FHVJ6@j=>fI zbKf)AY6Fb_U3l+_Y_^Mv|0f1J1y~yF7SQW6YwQ*9LIbyeg!lpr5kkHp1dR1a z1PzyQL`bx!BE~TRE4>&T7cknF!ASwBk~26hV0TIee+bx@hQT=joii|q(m=g`$dQT3 zMNv@=14E(}Sg2Y`eLn->ngh6@{&alC#q1n>Q$Vep3~me9?8o4)fCsr5+~$A>$h|JnhpZ#q6>LLm;05m3A^0LK42A&rZ( z$_D{?N-_8(;8J-8u>yKkV(?XfIS{zDlQ7hqdaN&#Hh5*S5Butr%MxODB8m+;>wad<@m ziKjBCEa1a522};roynlOfMs(S)D)0)9)sEfR)#aE+eY30vR$j^GpR2sM~Fc~0m~ON zXe>Y-KZWXODj;elgJuGzuVTbc5|ZT|$=bU=ko;@JSi#=0o{zX2bc_Yh*9hygCPR!E;C#KT)`6<>O(&;ev|{aYmae!{53fQbJ0#x zaM75|E{-<(BuD#A6nmUvFiAkkGYqB(@I1?4ngBcNFa>rfTO!Z1#%u?$Epr{89qck9 z6p2z1az$|jasWqI{kG{ zFbNF**Q{~K0bD;v9G}rKhJ%j@Sn`v>aREnt_-*q^0j*QGn4A`}B`t$L1dPnc;G6*4 ziVF(7RA$-lurE7+&AQ_FjH=l~diSOMHJBru-TW$?EHIDzMUmHB7*D;54tMW|DcBbW~02r-V& z2(Hh;?*ynb(a?M!6j-AYSmxrJ{?7`0P#`P5K?sen4&W4BagNtm(vrh}D6mgOxUVB5 zz;RX#ID)6+bAl5outDkLD~2iq9|y30631se=*q##1ib2)u*${>RRxLHqNWYPavXLbNvk=5}To#wE9b{pU-e`f)coT8$>orrSe5>R3l zgFFJ3u3?Z@0Ig?`U%!I{GpH!QBbq^F0qU!ah*DJnJSE~S?;(7c5u}DgIFDM6&q(+e z2iFmB$h_N2X}CMM%Dyelbr-yNXnp#fDRcLbaM%DWn$7pz@BUjdI?yYmqBj<74kFa zE1+&628ICjp-I$ke*vCF83Z}NWvCBLLS>*s3|DamAp+8uWDqJ~RaFK<1(d7KV7LIg zenu(qirX1qtwSzj9l#YfuC2Pu&Y!tMgh>iqS1BBB!5UK?z$r|3e8y3H z2oL&U3hY$+V}E5Z+X1XU*YP>Qt_Vf&z5!!EM<54qghh@If3I+QO9agB#9)~Mn^XcG zJs7NX04K28@fnkPa`0LKuMKaWf7S~*AHpgd75L|ylPwP5B)2*~W9o3$->$&l%7iL< z(%t0%*5Bj!oM5*C_9U$%9CQdrIPCb08sj;GqXN`7JWwrR0KY}398 zur2!`z_u&_&bKq3s0#ZU=%X4Xp#oPTqyR1*VfFzgDMV$( zK?bP>Jk}tcfHOLei~{UTvk0)W$u7Xo#ZSPBgSz|W5n^YPPk^0GK?U%V2_N=7%$5~# z0GF+p<8y*bDzHN7_dm<}WgNizuRR z1=yK3PylaSaW~Y~S2a;%0r@*JaQQ2;RjD*=%&pi$60x&sCBV+6tpbNt6rA#iREHEW zIyi_+*U9l2Povn(>E~D5zCIJpHR&t_7UjaH7BTxbEZ-qLur9q-$r!hzY zE^b^8E?uYsZIl2;5S3D~Oh zm@2@|bcO&smstYtx^y;kh1l6d2(Ysu1-PAlYr~~qtiWnjwqo84mN|gSw!-nLqb60; zuNE-%8-sNUxHyH*aZEOf3eKEVakdC}`;);o0m(f$)13m2CS@Ig zS9u%}Vw)Bzz_#q90Nb)N0&L6939v1@Ai%clvH;t%s{k(Jv8qCxWU0#gr&3XXtMI1d zGjN=x3ce%YbutF`1wp9-vQi(f?ST*2_K{Y&vP^MJQwN!jxf~m zsbfP`pBo_{V15->`G zxdLp%BLvv_k^(!C?b;(?mcFxd3$SnX4hpahKO(?3BvOEF$VmZqqGuFvMXJ7m zlPgv6&MBe*mp;nz86^gD@FfAS1~9lH;O`&?*9CM8W^hwL0iDJj0e%cz#(g2*hH;#S z0``Y8cp{+25C+c#;2cb4_)7urbsBF3^cc+=F#^sEXYgJFHU6rMVDd>+c4_cMK#x(Z z5htL7PW7jN%i~$Yqk~<822M>?mU#*IO#^QMnZ`i_*PkRp&gw*x3)ncB6Gjs&l}!c#D|M920y5xiRA^)qP;M%NoDBH-vuzra-2YRV&LFRVXEPWS5HKr@L16*v z2v%fMOhBbM3`z>vqczG1m^@qe|MEgg={S`HB-I_Ws({FFPPK-B#t{r^3plMoJpp^? zvqnP!33Z}P6wv)22fHfcn~6&5#SDHGV2_a20_-u-PJlfoItsAIL>B?}nCLD5V}kF$ zdI`~k!ssKw9utNDy9W#qV2_D`0_-s{Sb#kyh6=F9#0UTvk9Wf!6r)AO?yW8X_L!I; z!0xP*1lVI@ssMXT%n-mmKEjwKVB=&xDCP>W`*VZJ;t@u#@~tf#)g@zZV?kk!aXyJQZN4@mzt$D$3{6y8pj&2;23>@fpdta*{Cu zE^cS=UO?Ji3_b}MwVS~g0Uh@<3<*cDJofL#Gq1=tl(Lx8FPb^lXakyzCs z4*ty*P|pF}9~wA5W8I$|+*rWaa}4|iG`h&3g@Df28MG3xOsCP-1{nXzZ?j4VQAwmh zX92e!utqllWB+2%Q$V!V=q&(e3#+E=C%{94{sJ~La2dfu?9zt_u**9{fL-3<0_^gR z5@45itN^>b;|18oov4B8|8{w&h>Bg_=>qKX&JpEIGX60q|n*XddTx!*9@ARyRcuvtJK4Ymq6^NuxkIKX8b)nvCr zj4Gd4WuJgD8XOSN?=x#07SQkugJS|}YH&h8v?sqfI4$7BcaGvZE99UiQ38_0v&tm_ zo*G;cFg^jNdR@R-oy|=Fg*CV%AX0<-HbDO$ui632xkZH=2Ftqy*cJawfL-w~1=tn; zMu1)MF#_z0e=k7SyUX|_#IE=+0_=*96JS^TPXTttd*GmD-Kp$~_Yz=Nyte?m;*)5g z`oCTA$wkGk_*4Syicc%RuJ{ZB?26AUz^?dg0_=*ngyutcQShE^S(XA`z+$>gVQs`#ON@)Np)8>MR^QK!8Vf1_K3D*9i<3Fv^cLh6?b> z#bAU2F3uDOVyhuIT2$_9;1Wf3~3;MP*P4 zR@ow;p9b3mcvWPLodV{RWw1xU_X-T$0(xq*4hmp9J4YBt6yXXAp2%?`6~Gd6ti930 z|USFYbxQd4nyH;Vm5aRs@G3$YW)E5MFZKmo3JoG`9xtFQyu&Z3Ubz%k=0xP*W^0~wSS z@IWU}4#1_8>@$p2DvF9VfyxycZR zwAiA>A6l%^Vx1QAwZP(k6=AOy7qwWV#cM5=X>mza0#vtaL0UZ1;=C4LwZJ|FrTM28 z>$TXZ1@0RV}ckLa7|n;*=H- zwYZ_hcP+4aMQQHVVx<;pr9PlqpAVsy-9xBV?GP8Rn?p&pd>le80*6qGn;}kWp_Z(| zr19*Ak@nV2=zz`p&nKs)Eydxx?6!z zmu-mKT9{g>c^y#Av=C|{gHZEC=Lp)=A*PDAvS?0NVe*Kam4#;Znvo_AX0g?Y6C{`& zQGo576IN6O7E1=c#pb7}M5mY>;hhfqD!T1olp=r3V~pi~oQPJY7ae1g`L6pn%i0MH z>jeL&SIBqMKfSqVTYPw8mC5h_!f8qs8yM6l0(|Sgc(`?dwKxBZQufXF{-?L0w{Ur!QHtYY8WlUACGIBC9jZ-tlj?<=0hQ>Ye|>;SY~6 z-Sbac&d!3)cR@N>1j)s>)AnD###c1~mO?UCO+6HvG{OSn$Zmv zbk+%>n%!e^rz_R9q*Euy{}n>9-D1+>%OOgOigriL6aNe^>U;8^-dy2x&agQb|3&Fi zcT~ukf3fgXQLK6DKlB{a3;&`tum|Fw{uc|MbCxyF34PZi<`;U<13e<@pR6pb=b*+t zV|-~xPn5&@am1He^o+^pQI>}Hj447_d&cyozP)1dkiYAw559L7laIE|KFW=9(@ty& zt>_h#-}j#FJwP4-F@6-&3;EsuCoAZC_n+SE)I0#jV{Iw71V_tG{yF|)>!17!r!Q5q zs|+g`bnsMlBu8S z>L-`_*`!n!tDjTqXPNqWp?*@T(AUb{8y3 z>gTxnxuJgk#!nfeq6*%w{I!(pnsTjIKP8m+59O+&T=~_{8s*LE-rqN-y+>koxe3ch zske{MLJu=o$r9oiA*x}-6iTcvJz?3Ydmbx0;A)y<#HcT!MjA0C6RQgl!gf}+vis-@ zP*_fS)X2&S%_meXFeXo8bsY-JMY%d#xuBvhM`1Z={0J)tR2I|Dz?dxfe%OUTr1_k_ z2gc<0QkNrI;dbTn=1WpoK^k=MKtX8VrcwQ4>L*s$qOdGf^0}1-393s{ST-vD#>xht zx-y0RLaRRE8;+$0#N^1JiZupB(LxmkzSY!wKunVq>MA-0SE(7O41JL*PB8;wyeVaH zOma#X6jLarx}+k4x}-uxQk9^XN*Poc;8T}W2z5z?z{k0QV=_|5t}&_ATuDcQVtjm5 zQ4khE7lUGIVSa#$`aIF-;F!|*(9e$Gn6kB$#bY9dgry4VF?e9#enG>#4(r#ePeAD4 z2z3EfS7E(=MpdK!i$Rq|uhLS*F%G!%4~z+~S4Q228i`Wjhg})dI<8vyY>sBt@Vy*% z4KYe4Pmmxqf_9EfoWYco@=t&3&OiO#lQaS9R@j(`560+k%>>~~G1_$lpNP>ezqO7l5Fdrn>@B_qqg^@i z85r$KddhJv$9G>e%Y03_+`-G<_0HvP-q>gKAa^-RtukgNWm8$C2+$e_wzV)HpFL7?ScC{PrxX$8C zZOu%al&xK%H~`z&>y8S2->QC#izx46;wQCg)kJhgAI3!xT z&WmdS&WScIx(6P9|FTH>MJnC#IMrDn5Pb&6IU9@IK`-C8Zk1j=HWS4yH(g1{A$yzCw+r#UlcfFh& zRoJo)AnckQ;JA+WRxWq`MjwCXDySZSjLxG#*fkrcLuyy@v9@c75fS277J+A-9&ut4HQ8Az5phSJBVv)^`D=W?{)GRj+D>RO{SDgBIrCim6O8@FP5O#S* zIj&0=99PE6j;q8K+cm^^e^llEwqnY3G_Z1s4DOq8ACITiXW9LVQ}y(TeSeCp1nX;+-Me&B#S&1&G3JMG#au1z@TPO~>S&`!Hr;v_qE4Kcpr+`rI>Fu$Jt1Kb%? zed?Agy?Q7#*5MpFeS+Ob96)D$afg-sG&NPy`zow@;)K}tONu zc8$StL)ta_f#b@91BQ$j?gc$QpQspcOr`r3=L6}ZWt!t)Anh856M?j=YZouuHPLWf z&&Aa!&|z`Gj%)TH+cm_9$5}+7l% z-Er&ZN?X!DRAIkhOzYz=X5pFDcn0}*RfqgjM7CCscEoek7nuU;puj%+&zzcxtKDk zdWm6tY6i8V?#dUxj7i~f!F}NFm%{0is`nX25Vp4)%iS?CUw-5%Jy(%$*siX3y2oRm zx^`s_c3jV~GhMTO*phC{b>~d?_5Ki7xQgkA9p!q{ck=0ut1I@9Yv#u0aqTLHUE|ty z5ZlGI>oB&7Yu8Qe57(~!*ch%|m9QgRyPjbyxOT0>9&qjIwc6!4bFXn+xz;)^uMLhX z78|^El-`@gg)QBh5%zLx*MsejYacdmYc>C@4s8u5V{5i{ zt;U{g?K+0N*xJ=cflE7kNr{_V*+>eCqUS>;H2Xkeadk)#?EOSnhjf~jg#)I zJHCdLcBvOl##U@t)_b2TVW+ZorM>C6j$^a3X07fzuA|tUY{$U1WbGP(?Z?`c_^IQ1 zAg-Cu9p?AaaZP{arJPezJ^kuV_4J!>-_q)Zm$4TchV@qCTRw?xS8xi)bvmu%iol*= zfONe^E$3g*u-nRbTSDb@3@K1(imc_gJ`DSlj| zV|P9!sZ}#*L=nF_{d$HL@oP0?VE=$3eyxN01qT)JYtnD9V(pvP?OMA*-P(;C`qzhd z#K3?y-9r!~pm+Bn{X;8hydQbIS2eyoB?3<*E#8~ie0JhtqVd(nZ|U{C9|e3qG%e_Xu#6O3_+_Rdh6-$2 z#G`3*1$~G18$6_Y|9&F_@XAmHwDf2itpf6P#r;3!$}%7;jST;hJkd3erXM{hEc{1y zuULov2 zkNDx|x5BgOT0{s-)^%Y2;Lxu91NsC6^|Eu`;Mw#H&58Jt$#u@N=^dq&v}>=B?!&tF z2p%4QPyDiZ_dT1&B4~(uWEzSszj|-*M{M=gt{&Lqt6hz-xmUaPVOOtq?Zj(3?MjC? zblO!7@2<3KEnZhCmplLbA08ues+X6 zxwpL=_6;_(>V2_kGCQu)IULtjY+Kc#QP{7lU26(CuJhQTYQ(uKq>kT{!{e3PEFOP2 zzsGg==C<*B3MExge<-ZuJJkhX`;N<_UU z$7iHGnea2aV|-Tkj>++X$=!7#;-`60u0?Ay)6<3Vzf#V{@zp5BocAfbx}(`BVsU&~ zy0kcc9zFc+qs?eZd=teoEm#^KNCOtd=Su8X)eq`4Fn)8kjNON8-{6kiN%{r#3K-rw zNfO$Q8ql?8 zaR1=rg~RuqCm&>6uV1}P3}xb;NP SZfufhVQyxYym>35;!*(1^b}(N delta 64 zcmcb1mg(AArVTBOhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i SCTXTXoMM`sxOpq1;!*(1D-`Ge diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 6940f54511c387c55d5d9e8e8827cc7e10edeb9c..0665ce3750ab615199ed8503e65bc65e8cf01bcf 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp R+}I@1!raU(dGQs-900@e6iomC delta 63 zcmca|oAJtR#tn-Z4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 ROwvq&IK?zMaq$(#900\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.624851Z", - "iopub.status.busy": "2024-07-09T06:25:39.624680Z", - "iopub.status.idle": "2024-07-09T06:25:39.818392Z", - "shell.execute_reply": "2024-07-09T06:25:39.817872Z" + "iopub.execute_input": "2024-07-11T23:29:06.290823Z", + "iopub.status.busy": "2024-07-11T23:29:06.290372Z", + "iopub.status.idle": "2024-07-11T23:29:06.483993Z", + "shell.execute_reply": "2024-07-11T23:29:06.483464Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.820461Z", - "iopub.status.busy": "2024-07-09T06:25:39.820284Z", - "iopub.status.idle": "2024-07-09T06:25:39.824833Z", - "shell.execute_reply": "2024-07-09T06:25:39.824377Z" + "iopub.execute_input": "2024-07-11T23:29:06.486462Z", + "iopub.status.busy": "2024-07-11T23:29:06.485967Z", + "iopub.status.idle": "2024-07-11T23:29:06.490704Z", + "shell.execute_reply": "2024-07-11T23:29:06.490131Z" }, "nbsphinx": "hidden" }, @@ -2590,43 +2590,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0048ce4822394612977d54522f371396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "03645e2db82a48cea591a8ecc43409ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "048da9b24b0844fdaaadce1da85d3915": { + "016f1eb0d49f431f8154dfc281b7eed0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2679,30 +2643,67 @@ "width": null } }, - "04cca25384c24b1c94d911de385adc2e": { + "024fbf1daee14ad2b3db969d2d31abe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "041d7c77246e4e6d865dc5c76281a0e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0528e5ed9e1245b09aaa992f72e251f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", - "placeholder": "​", - "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "layout": "IPY_MODEL_6f48bc417ac74a4caa8d7301b5e9d132", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f14e3767a494d52b3a4aa39ab45c2ac", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 } }, - "0640dc756fe54e39ba89546a15f279be": { + "05910fb228344f99b6fb2421fcb03eda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2720,31 +2721,30 @@ "text_color": null } }, - "06dcb12093be456cb352de6ce861659f": { + "068798076ab44c168b827d553cc68eaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", - "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", - "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" - ], - "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1b19d1d5a2204a46a63183a7ae4ad67a", + "placeholder": "​", + "style": "IPY_MODEL_b35ea1dfe6c9484a867f70cf435d0af4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "07de4e87697443a892880c15d1e511c6": { + "07278c0a2c4f4efaa18e011beb526122": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2797,23 +2797,33 @@ "width": null } }, - "086f6f5b94bf449da8bf7c1157f5c8a3": { + "09702eab3cb44acfbe4f11faf746f8a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_664417f8c9824aff8302f2bd2c3166eb", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f428e3dd24eb47a5957a9a52dc7d490a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "0a5df6da0ddb43b7937c82e97c6d8d54": { + "0a539e37aeba424fb8cd19012c58c191": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2866,7 +2876,7 @@ "width": null } }, - "0b18d70977e84a5b881906cb08d32a0b": { + "0d41a847afc144efa3f4df4a63f7feae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2884,7 +2894,23 @@ "text_color": null } }, - "0b3fb420b49940f589e153c0d5c3fdec": { + "0f14e3767a494d52b3a4aa39ab45c2ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12031f62da1b434e9c0c3403f03003fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,48 +2963,7 @@ "width": null } }, - "0d1066339f76479d8d58e5ae35748f5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", - "placeholder": "​", - "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "13c0b9289c5e4e8f92a21c0307aae6db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "140978469fad46c2b6b98809eddb12e7": { + "1279f431179f4f75be94430543adf937": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,30 +3016,57 @@ "width": null } }, - "1524351aaa084a11ad505c11404bdbea": { + "12ad7eb3f7dc49e3b17fae9c08ecd71b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", - "placeholder": "​", - "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.34it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12b1d86563ac4fe2be7cf24414974919": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1423169506464d2fba04b318cc3d49db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "15c58bf8ec2c41c58fdc7ce58a27b6fd": { + "15a4b48b248c4b1e9f323f7942fac504": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3107,76 +3119,30 @@ "width": null } }, - "160801910dde40a3bc9f92bb4e901944": { - "model_module": "@jupyter-widgets/base", + "16c45a85bb494cb0b0d17b9f37c3ccb5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "19246b6d91f14aaa9f10d7cb83049531": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a539e37aeba424fb8cd19012c58c191", + "placeholder": "​", + "style": "IPY_MODEL_30e886288a3e4b4fbf16b912d6075334", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "19a410fe62c9469fbbfdb218f3a51fc8": { + "1a97309cf5c04d2cb1c2413785fee022": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3191,49 +3157,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", + "layout": "IPY_MODEL_12031f62da1b434e9c0c3403f03003fe", "placeholder": "​", - "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", + "style": "IPY_MODEL_aef2eac0f01e45e5935b1fd1e35927a7", "tabbable": null, "tooltip": null, - "value": " 4/4 [00:00<00:00, 1277.68it/s]" - } - }, - "1a69c5c720624a26a9ef7b1cf11811fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:07<00:00, 8658.44 examples/s]" } }, - "1a70726215b842018678da6d06100009": { + "1b172141357248b38823f60e93db8028": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07278c0a2c4f4efaa18e011beb526122", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6ffc86136f284131bd5232af4109356e", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "1c78106bc0d64791b1920a0bba595880": { + "1b19d1d5a2204a46a63183a7ae4ad67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3286,7 +3244,7 @@ "width": null } }, - "1d30818e74e74811938c25e51402dba7": { + "1c66f852cc344a53861daa78eef80ac4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3339,111 +3297,7 @@ "width": null } }, - "1e43c58cbb0d4962913d5ebbcdf1554a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", - "placeholder": "​", - "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "1f62a32153e44d988bd8265c95d6522b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "209c42932bea4cfc866adc42d1e0bc34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20a3b73248e646e4993c7afc88dc3bb7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", - "placeholder": "​", - "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "215e8fef035f4d37a36a704de452b760": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", - "IPY_MODEL_5bf0bcb594a046af91590125b69df952", - "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" - ], - "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", - "tabbable": null, - "tooltip": null - } - }, - "2183a55cd7d345069c3ac605305b0edb": { + "1d3bad97d2e140858259c15ce675275c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3461,7 +3315,7 @@ "text_color": null } }, - "21e26b29d83741a0ac17ca8718fb5ef5": { + "2123725a1625491ab9fff799e36dba17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3514,7 +3368,30 @@ "width": null } }, - "2221768dfac3448cabb0bbf2bb0d5d7c": { + "21c3ea1797cb45c0adf22181cbb36cd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1279f431179f4f75be94430543adf937", + "placeholder": "​", + "style": "IPY_MODEL_74990505be2a4a70afbb4b4064fd294c", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 905kB/s]" + } + }, + "22f7d828fb304f5ba183d6cf424ec288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3567,7 +3444,7 @@ "width": null } }, - "22b9600afaf14805a96622049f592034": { + "2431327b8b754969a6b108804f8ca832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3582,39 +3459,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", - "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", - "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + "IPY_MODEL_3c1cfcd9c8b748f189861ce1261b9cb0", + "IPY_MODEL_979c1027824541ad8bd55b423cda60f0", + "IPY_MODEL_d4b1e6f30b00448bb7aded7c95574668" ], - "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "layout": "IPY_MODEL_c01405278baf4bdba44934ff23dd1bd1", "tabbable": null, "tooltip": null } }, - "2397a262e2ab4faaa19c65aadd199f4d": { - "model_module": "@jupyter-widgets/controls", + "252c74ac926949bca01f866ddfb93402": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", - "placeholder": "​", - "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.55it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24133d82571542d193f42c0273b76a7d": { + "271d7e992cb94173aa35d87754411c6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3667,7 +3574,7 @@ "width": null } }, - "24343e388fcd48f38c917201d72dce78": { + "2bc56875cbd143b9a50e5501ca84394d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3685,102 +3592,59 @@ "text_color": null } }, - "2441a271713941f58f78b8fda33f4ac6": { + "2d510cb5255c4d4bb4c84a7b07e5986a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_49f26873e5144310b3a59d54e3402106", - "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", - "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" - ], - "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", - "tabbable": null, - "tooltip": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a265ceea88ae41879cf17e37402d8c12", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8fdd228ffdc24801aabe411eff39c5b9", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "273c6aaed1d14c19893916ddb87297a8": { + "2f7281d7325640838be06198153b490c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2a8e473785f54b5380a3af0bd5ee8ec5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_848175c647e541858846d644d9862708", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b7c46fdef0164329ac3e7125fb1a3810", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2b0a6e80cee24c8d92776690977c796c": { + "30e886288a3e4b4fbf16b912d6075334": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3798,7 +3662,7 @@ "text_color": null } }, - "2d1e313f048a4f3a8de23b028b96ac30": { + "3292f4de5dcb4c529c425ad60505b030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3813,16 +3677,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f01a831193cb480fa8538ccac1625826", - "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", - "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + "IPY_MODEL_342849c102f84b659a25c804774bf20a", + "IPY_MODEL_935acf77ea1341eaa37c7d81df57f7a6", + "IPY_MODEL_847ad97df0984796acee3c7cbb78845f" ], - "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "layout": "IPY_MODEL_fb2d8e3fda1543c993ce88eebbd09da9", "tabbable": null, "tooltip": null } }, - "2eb285ef00d8424b940fcd52e171abf0": { + "342849c102f84b659a25c804774bf20a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58f0ecb2ab4f40928bade2631f1d4e42", + "placeholder": "​", + "style": "IPY_MODEL_9793e9af67a04e4681b8db74cdf4ce03", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "34bd3f36d0f24a94bad3ba55bd3d0fb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3875,31 +3762,7 @@ "width": null } }, - "2fc5c7705c8a411696033cba51b98414": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_380f5576d14c4aa3957661b21a817720", - "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", - "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" - ], - "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", - "tabbable": null, - "tooltip": null - } - }, - "3352d2afb83f411eb34ef57cd4914610": { + "356441d6354d47c4b2689907d58781bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3952,7 +3815,7 @@ "width": null } }, - "336fcd5623114b3099304ef7c8d0fd99": { + "366c095618c14b9488fb458b3c3fbc42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3970,7 +3833,7 @@ "text_color": null } }, - "3382045b67e54a7092879295b3f663f8": { + "3727b797cbb14095b33538fc6339d83d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4023,46 +3886,31 @@ "width": null } }, - "345c5ca93fa94badbbf86dcc2fde77a6": { + "3a017f405d8f462babd0c1cf8efff052": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", - "placeholder": "​", - "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba2572654c6f4be7b70ade5b31c3a926", + "IPY_MODEL_912e7d110e334e919b6827334ee5f2d0", + "IPY_MODEL_9eb6842cc53548818b04c897c4d757d2" + ], + "layout": "IPY_MODEL_7886841afef14bdcacd0e4af4249f9fd", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.26it/s]" - } - }, - "36e9f11e672e4c928d6b86537f21d20f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "380f5576d14c4aa3957661b21a817720": { + "3af7fd032af047acba161cd73629c9b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4077,33 +3925,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", + "layout": "IPY_MODEL_be423c827bce42888c6733e74c7e56e8", "placeholder": "​", - "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", + "style": "IPY_MODEL_800cb0bfb4804e4f830060803d83164b", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "3956333acd4649dd8a66f905633d9a1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 64.66it/s]" } }, - "3a15e0a1dbb8487daf29b7db56d34511": { + "3bd8c12086754778a39426082fb4c712": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4156,7 +3986,7 @@ "width": null } }, - "3a97aab207204e0fb9a0b492587021ad": { + "3c1cfcd9c8b748f189861ce1261b9cb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4171,83 +4001,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", + "layout": "IPY_MODEL_58afc3780d814006861020d5cf64d0e0", "placeholder": "​", - "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", + "style": "IPY_MODEL_2bc56875cbd143b9a50e5501ca84394d", "tabbable": null, "tooltip": null, "value": "Downloading data: 100%" } }, - "3c579cf673fd400b97b03f32b9b95e1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3cf5000751a1413faba426291a215dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "3e2096230a38431c8485c89adab185e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", - "IPY_MODEL_dde263477419437a9af2ca03171dadcd", - "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" - ], - "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", - "tabbable": null, - "tooltip": null - } - }, - "3e9e0a7872664289907ea9b2a0c0f428": { + "3e67f3028ad1448c9372955552f7e42f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4300,30 +4062,7 @@ "width": null } }, - "3f09c19718b949a48059dec191d9df88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", - "placeholder": "​", - "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" - } - }, - "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "3fa1ce5ef68a415084e6e086c80d5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4376,23 +4115,41 @@ "width": null } }, - "3faa0e46f82e4e81b929be6c700311ef": { + "40f91204cb8f47288cba8ce54ad34122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44071e6b8c4a414784a2a417f0cef266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "408df73b367a48808418e0ac16815aef": { + "4426a498f2b9412891a930b9471e91cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4445,7 +4202,7 @@ "width": null } }, - "436dcfd1d6524d58997ebd20abd27ac3": { + "46cfd6f189cc4f07b2b2af64de8cbb06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4498,152 +4255,7 @@ "width": null } }, - "440697a08c6346efa46be2fb03bac8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4586a50b001c47b39290a335d19b949d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a70726215b842018678da6d06100009", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "4803cfdca0f84916a50f60b8c4611a48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "48054868536d4802a306884dbdf93ced": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4886dc2baffe47ecb690143c953f17a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", - "placeholder": "​", - "style": "IPY_MODEL_0048ce4822394612977d54522f371396", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" - } - }, - "49f26873e5144310b3a59d54e3402106": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", - "placeholder": "​", - "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "4d61ebc6154b44ea91518cfb38cf00b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", - "placeholder": "​", - "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" - } - }, - "4dc3098204c343329173882a90c17240": { + "494f520edd6643a6af2d134eb9f74191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4658,16 +4270,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", - "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", - "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + "IPY_MODEL_a07f036423be4569aadef006b5a4249a", + "IPY_MODEL_cbd94a256dec4e5481adfcd29f1febef", + "IPY_MODEL_21c3ea1797cb45c0adf22181cbb36cd6" ], - "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "layout": "IPY_MODEL_8c0d18e3209f4b6aa0ba48cb242c72c5", "tabbable": null, "tooltip": null } }, - "508d1420c3244c5c83b9ed16155ada6e": { + "4a664740c44d4888bd592863ec449cda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4720,7 +4332,43 @@ "width": null } }, - "512f0fdef9fd429cad8c5f4ed2059739": { + "4a7f0e737fd143499585745cf4b7998d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4ad9b300f0984f42b357aa5bd08c0652": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b84e2df5a2d4d578c1505f884fe5ec0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4773,33 +4421,89 @@ "width": null } }, - "51598d19ee6b4333a63b1d6da5fa14e0": { + "4e121e737f3b473e816b1dff94dda3a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", + "layout": "IPY_MODEL_e0ba2cdd12b047a9b432e07b8392d868", + "placeholder": "​", + "style": "IPY_MODEL_50a57d227ac3419fa15d56ba898680f9", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 40/40 [00:00<00:00, 61.75it/s]" + } + }, + "4eeccbea00404c6a85522a8c6f6fe80f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc97a95f31ef435d8eb93a17114e71b9", + "placeholder": "​", + "style": "IPY_MODEL_366c095618c14b9488fb458b3c3fbc42", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "50a57d227ac3419fa15d56ba898680f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "50c5f1c85c3f4ca680697dbe2009569b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "517e9a88dd474cac8c7f7723d261a5fe": { + "548235e599424738a67de3f79cfb7b70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4852,7 +4556,7 @@ "width": null } }, - "5522e860260648818409cb45e8e8fe97": { + "5611f48bfe5649669d6cf95001a05bbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4867,41 +4571,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "layout": "IPY_MODEL_dea1d9a6979f4894972e169fdc8b3ca2", "placeholder": "​", - "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "style": "IPY_MODEL_4a7f0e737fd143499585745cf4b7998d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + "value": "Downloading data: 100%" } }, - "5789650eb64d4dbab1f8c667a5fd4cf6": { + "584eaeb79032435f9251cdf0ecff372e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "layout": "IPY_MODEL_22f7d828fb304f5ba183d6cf424ec288", + "placeholder": "​", + "style": "IPY_MODEL_7d3b6d75a33b4f769e59b15a547942c5", "tabbable": null, "tooltip": null, - "value": 5148.0 + "value": "Generating train split: 100%" + } + }, + "58847b2de41a4bcd9199eddbc7aaf2b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ab928b3e1ca45e4bd34352dc7b8267e", + "placeholder": "​", + "style": "IPY_MODEL_e231f7427a77418b8220b39132ec4fc5", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "59346cab1ea9483584b6020a911d0be8": { + "58afc3780d814006861020d5cf64d0e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,74 +4678,7 @@ "width": null } }, - "5970145c544541c3a0c064690e3b8bc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", - "placeholder": "​", - "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5a7bae3cefc94a02b58e9ad0e52aacfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5bf0bcb594a046af91590125b69df952": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "5d4e96503b8040e196dd68f00001b30a": { + "58f0ecb2ab4f40928bade2631f1d4e42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5074,23 +4731,96 @@ "width": null } }, - "5dcfa0777e6540998053e4a29b29b806": { + "5ad43172c3614811b3be77c668f4260b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b829a4dfc844fba9c4348d1339b4549": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68833ce8d6684edda0d3c66f916b5c52", + "IPY_MODEL_f2f9e0d3456a47608e8a1ac91e8ed935", + "IPY_MODEL_7b240842aa27448ea8f19fc7d064b1eb" + ], + "layout": "IPY_MODEL_b417b89d5465454dbff9b438a2bb83b3", + "tabbable": null, + "tooltip": null + } + }, + "5c71a24e6e4a46e6b0476362d6f6a373": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c86d7d6754f445c8053139fb8c501af", + "IPY_MODEL_7f40e2a1af1c4e9898f1070e72daa263", + "IPY_MODEL_b6829f808da441189739e1a1d12f33db" + ], + "layout": "IPY_MODEL_356441d6354d47c4b2689907d58781bc", + "tabbable": null, + "tooltip": null + } + }, + "5c86d7d6754f445c8053139fb8c501af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5373916cf394a83bf107ccba42ad98e", + "placeholder": "​", + "style": "IPY_MODEL_0d41a847afc144efa3f4df4a63f7feae", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "5e63e2472a434921a76445a39db78557": { + "6004d8783e4340c78f2c17615163809f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5143,69 +4873,7 @@ "width": null } }, - "5ea8be39dce64842a42fe020b19fc090": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "5edfca35fc1e45d7850bbe3d5ac2afb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "612489c1401e49c9bb846fee02bd9f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6198d3b6f1a04ba4a34a5d2018c9b155": { + "6187fcfebb524fefa3300e2f931ce991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,7 +4926,7 @@ "width": null } }, - "634d98e457d644a884fc562b0b5d877b": { + "619d785cf16a4e7ab1e4b525ebb8d86d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5311,30 +4979,25 @@ "width": null } }, - "63ef519d04dc4bbd9c67f568f10d54d8": { + "632a67ce80d14619bf344f000fa764ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", - "placeholder": "​", - "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "664417f8c9824aff8302f2bd2c3166eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5387,7 +5050,30 @@ "width": null } }, - "67bcc9c1c8ee40d6910452f187311cd2": { + "68833ce8d6684edda0d3c66f916b5c52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1dad2b81ff94f19b1bd3b351f6eb7cb", + "placeholder": "​", + "style": "IPY_MODEL_12b1d86563ac4fe2be7cf24414974919", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "6934e24734464b1786dabefa21e5fa56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5402,15 +5088,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "layout": "IPY_MODEL_016f1eb0d49f431f8154dfc281b7eed0", "placeholder": "​", - "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "style": "IPY_MODEL_e9e67c495e4b40cbabbec5b57e585be4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.84it/s]" + "value": "100%" } }, - "6968618e0c5047b4ace24b3be9d82b40": { + "6cd53e4e272f4fbc9ebfe9f12d13f648": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5426,17 +5112,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", - "max": 60000.0, + "layout": "IPY_MODEL_15a4b48b248c4b1e9f323f7942fac504", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", + "style": "IPY_MODEL_024fbf1daee14ad2b3db969d2d31abe4", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "6a0d54aeee9e43a2a6613a32708b583c": { + "6f48bc417ac74a4caa8d7301b5e9d132": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5489,49 +5175,41 @@ "width": null } }, - "6a37073f2b7d4c349bb87cb4719c587d": { + "6ffc86136f284131bd5232af4109356e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6a90dd6a6a2443a98bde0d45de0efdde": { + "74990505be2a4a70afbb4b4064fd294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", - "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", - "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" - ], - "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6c31a58fa1bb416c8d82c1038eab5edc": { + "7715770c45ec4a438b0704b5a3e57caa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5584,7 +5262,56 @@ "width": null } }, - "6cd8c1cd5f2447968f787deb71aa5bd8": { + "77fb0e31218f415f9b83fd1e7f033313": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f24f3a724da14aa4ad45979b4f8cae62", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4a49a7010fb49c2aadb9b4f5f220a30", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "783d27ea5d684732aa739d3bdc700756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4ef71b0de2d42ed8dc7ddb5625e5f0a", + "placeholder": "​", + "style": "IPY_MODEL_96b987bf97fe4387bd0308d045f0d171", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 76.3MB/s]" + } + }, + "7886841afef14bdcacd0e4af4249f9fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5637,23 +5364,7 @@ "width": null } }, - "6cdfc2ba48ab4f3a9a18b3b28c17641a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6f537f948c654bed919b428785993db0": { + "792a85e6758f4d2abda66bd7012cb17f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5706,7 +5417,7 @@ "width": null } }, - "6ff8decb43474cec8270bc1aef096a09": { + "79a12aba6ce74534a31585a1e5b7629a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5759,7 +5470,7 @@ "width": null } }, - "702d10c13f464c7f9144c3ec519a43d5": { + "7aae530ecab241d097d2628f6caf2dd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5774,15 +5485,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "layout": "IPY_MODEL_853320bb529648f68c8cc0c06a820896", "placeholder": "​", - "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "style": "IPY_MODEL_041d7c77246e4e6d865dc5c76281a0e9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" } }, - "7175568282174c17aabd5b48f20140b2": { + "7ab928b3e1ca45e4bd34352dc7b8267e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5835,23 +5546,56 @@ "width": null } }, - "76b1d6ca14ca4c4d962e620e94507dff": { + "7b240842aa27448ea8f19fc7d064b1eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34bd3f36d0f24a94bad3ba55bd3d0fb8", + "placeholder": "​", + "style": "IPY_MODEL_40f91204cb8f47288cba8ce54ad34122", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7086.89 examples/s]" + } + }, + "7bec2361f70741578f0f2908e1a5e75f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1d124fad6cd4866b4e10abe1489a35d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aaf5fd6d0075441fb10fe6943d44a670", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "76d4d52a162a40a6aad6c51613675dd9": { + "7d3b6d75a33b4f769e59b15a547942c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5869,31 +5613,67 @@ "text_color": null } }, - "790aee9705fa42f79ce0f8850fc28992": { + "7f3c5e524a2a4b62923593cb7d0f0bcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f40e2a1af1c4e9898f1070e72daa263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", - "IPY_MODEL_7dbb1c566226438c82092b5954494254", - "IPY_MODEL_91cb9b53980c47cd817c545014defd09" - ], - "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7715770c45ec4a438b0704b5a3e57caa", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44071e6b8c4a414784a2a417f0cef266", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 8845.0 + } + }, + "800cb0bfb4804e4f830060803d83164b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7c16646bae234611b7eed4f389c43a78": { + "81dc9c6d441b4bc3961e80692ab894fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5909,17 +5689,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "layout": "IPY_MODEL_3e67f3028ad1448c9372955552f7e42f", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "style": "IPY_MODEL_1423169506464d2fba04b318cc3d49db", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7c7a25483bae4f619cfe4afba2815a1e": { + "83a18f69aed54dd5b886fc463424c44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "847ad97df0984796acee3c7cbb78845f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c4d0d567861b4daaa22849bd0c72c717", + "placeholder": "​", + "style": "IPY_MODEL_b306409d6d8c446483ac51cf9f4740b8", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:38<00:00, 1434.57it/s]" + } + }, + "848175c647e541858846d644d9862708": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5972,7 +5793,7 @@ "width": null } }, - "7d3d1214cad84f609b2ae65551813ff8": { + "84eac790167642ff9f714594b0eaaa8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5988,56 +5809,7 @@ "description_width": "" } }, - "7d81d5ebb400493cbbee965c4f1d82c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", - "placeholder": "​", - "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "7dbb1c566226438c82092b5954494254": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "7eb94f5f7a9746bfbb719504013c7326": { + "8529e85178ba4b9db501331d73389535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6090,106 +5862,8 @@ "width": null } }, - "801840cd919742fdbe5c2e8072b678cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "803df58ad8f246a7aa7af05b01bbbdd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "805ea7e6fe75453dab92e83969f8fe93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82fc78533dbc46d08a781919716d2335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", - "placeholder": "​", - "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "8381331e81c54cd79cb929ba488eab91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", - "placeholder": "​", - "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "85ab7c6aa7b341d69b9dc923ebdfa7c4": { - "model_module": "@jupyter-widgets/base", + "853320bb529648f68c8cc0c06a820896": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -6241,25 +5915,7 @@ "width": null } }, - "8689ad17b83c46c1ab297ec243208f64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8739c6ff8d994ba4be0b2287de3e0173": { + "8611e8b2533a4cefb2e310d479729c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6312,57 +5968,7 @@ "width": null } }, - "888473885a6149dd8b3df8549f631e20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8995f1250ad74a90bfc13b5eff00a2fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8acff64b052e48dc9e676ca2f1f20446": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8c5b91a2c962426c9d74153961b3f44d": { + "8859f4a2e8e2406581bd2251781b8058": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6377,15 +5983,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "layout": "IPY_MODEL_98730b67542b4f69b11359c7f1a64c70", "placeholder": "​", - "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "style": "IPY_MODEL_b52d3ef6a130403ab7171de161dbf9fa", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.73it/s]" + "value": "100%" } }, - "8df85e649d6248f69af1b8b2c06dc535": { + "896a6d7c46d8468b8cf89808bd7364ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6438,7 +6044,7 @@ "width": null } }, - "9141cd35031b41548bc5618a17448a0e": { + "8c0d18e3209f4b6aa0ba48cb242c72c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6491,30 +6097,63 @@ "width": null } }, - "91cb9b53980c47cd817c545014defd09": { + "8f962de488484a47ae549740480bf6d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8fdd228ffdc24801aabe411eff39c5b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8feed751446c42d6aaa2dbd4806dfb02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", - "placeholder": "​", - "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58847b2de41a4bcd9199eddbc7aaf2b5", + "IPY_MODEL_9f89f63d57814e728163a56953badaa4", + "IPY_MODEL_b7688d725a604d1daccbc087448952da" + ], + "layout": "IPY_MODEL_619d785cf16a4e7ab1e4b525ebb8d86d", "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" + "tooltip": null } }, - "9266dd3df82b430c88bf828066284aab": { + "9009b03fdd284be69f45fdc6d0f0376b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6532,83 +6171,145 @@ "text_color": null } }, - "94f306cf8ec749379c45de871b0e7b5e": { + "912e7d110e334e919b6827334ee5f2d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", - "placeholder": "​", - "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", + "layout": "IPY_MODEL_46cfd6f189cc4f07b2b2af64de8cbb06", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12ad7eb3f7dc49e3b17fae9c08ecd71b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "9954def9bc864f319508e65fe36fe98b": { - "model_module": "@jupyter-widgets/base", + "935acf77ea1341eaa37c7d81df57f7a6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4426a498f2b9412891a930b9471e91cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f962de488484a47ae549740480bf6d3", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "94f045cbe27743848e23223a5e393ea1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_584eaeb79032435f9251cdf0ecff372e", + "IPY_MODEL_09702eab3cb44acfbe4f11faf746f8a9", + "IPY_MODEL_1a97309cf5c04d2cb1c2413785fee022" + ], + "layout": "IPY_MODEL_3727b797cbb14095b33538fc6339d83d", + "tabbable": null, + "tooltip": null + } + }, + "96b987bf97fe4387bd0308d045f0d171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9793e9af67a04e4681b8db74cdf4ce03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "979c1027824541ad8bd55b423cda60f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3fa1ce5ef68a415084e6e086c80d5396", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84eac790167642ff9f714594b0eaaa8a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "9afd660dbeb04470a375320dc78c044c": { + "98730b67542b4f69b11359c7f1a64c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6661,7 +6362,7 @@ "width": null } }, - "9d2d50b86148485fb3e3884e2b2bbf34": { + "9a7583d8f246421fbeab990ddb98d10b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6714,23 +6415,97 @@ "width": null } }, - "9d6e31ccf4dd4aceabf442d6436fa02c": { + "9eb6842cc53548818b04c897c4d757d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfd628d2a7d849c08ab87079cb996a11", + "placeholder": "​", + "style": "IPY_MODEL_bb396f4d71c24420a755dbd1b2d4e0c5", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.07it/s]" + } + }, + "9f5a21d10cb04916a2ac3a5615e8f67c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9f89f63d57814e728163a56953badaa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8611e8b2533a4cefb2e310d479729c4c", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a57c2248d68145d5befc304e11c6f87b", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "a07f036423be4569aadef006b5a4249a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f39fed2f6adb4a41833c4217a9579fb4", + "placeholder": "​", + "style": "IPY_MODEL_4ad9b300f0984f42b357aa5bd08c0652", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "9fa40d4368164452af5dec4576e541a7": { + "a1d124fad6cd4866b4e10abe1489a35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6783,7 +6558,7 @@ "width": null } }, - "a035588db59040fda6d47042d64418a5": { + "a265ceea88ae41879cf17e37402d8c12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6836,7 +6611,63 @@ "width": null } }, - "a07fabe6cd554c4281f06c189fb7f17a": { + "a4a49a7010fb49c2aadb9b4f5f220a30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4b03cc20f664072a2d629ca64828dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_068798076ab44c168b827d553cc68eaf", + "IPY_MODEL_0528e5ed9e1245b09aaa992f72e251f0", + "IPY_MODEL_7aae530ecab241d097d2628f6caf2dd6" + ], + "layout": "IPY_MODEL_a64f01237abd49808c56ca182f2ac1a0", + "tabbable": null, + "tooltip": null + } + }, + "a57c2248d68145d5befc304e11c6f87b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a64f01237abd49808c56ca182f2ac1a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6889,7 +6720,7 @@ "width": null } }, - "a7643f32743c4af6897aa249c9d0be2f": { + "a7ab4c6f0a0a4061a37620d7d5669e40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6942,46 +6773,100 @@ "width": null } }, - "a81bc963e07b4ca2a4b8dde6b946165b": { + "a7d3ac3f022843baac6a27b9c3a70626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a99e55aa41f14516be50bd70062d4f9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_face9b5af5d04b5b925545e0e3657b1d", + "IPY_MODEL_1b172141357248b38823f60e93db8028", + "IPY_MODEL_b8dcfa37b46843bb8eced502383d7a98" + ], + "layout": "IPY_MODEL_271d7e992cb94173aa35d87754411c6d", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "a859e810938d4055a256a729f8d389ce": { - "model_module": "@jupyter-widgets/base", + "aaf5fd6d0075441fb10fe6943d44a670": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ac420dd4eaa64f0f9e30fd199e80bc08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4eeccbea00404c6a85522a8c6f6fe80f", + "IPY_MODEL_6cd53e4e272f4fbc9ebfe9f12d13f648", + "IPY_MODEL_4e121e737f3b473e816b1dff94dda3a8" + ], + "layout": "IPY_MODEL_1c66f852cc344a53861daa78eef80ac4", + "tabbable": null, + "tooltip": null + } + }, + "ad32bc96480549fca6a2a10b0c1770ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, @@ -7021,7 +6906,7 @@ "width": null } }, - "a8ef0954dcca4870a833eda0e973e2a0": { + "ae73f1ffd0204f44b97f38a819470a40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7074,7 +6959,7 @@ "width": null } }, - "b0b21430f5b9446195933039b4632b6f": { + "aef2eac0f01e45e5935b1fd1e35927a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7092,7 +6977,7 @@ "text_color": null } }, - "b391fb64df85406aa863198b38de27eb": { + "b0107ac6a2bb49b9a38c702fb3000023": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7145,7 +7030,7 @@ "width": null } }, - "b587a2728e9640d8a9ca1b92d99742fb": { + "b29a38c567754ff0bcc7fa7cb17fc671": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7160,16 +7045,52 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", - "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", - "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + "IPY_MODEL_d2c107583b3446f1a71d596da3a8ea0a", + "IPY_MODEL_7bec2361f70741578f0f2908e1a5e75f", + "IPY_MODEL_e6a6b4d1379844fea66b5dbacdc8e014" ], - "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", + "layout": "IPY_MODEL_c322893705e344fab0a85ba8906b13d3", "tabbable": null, "tooltip": null } }, - "b6ef56fd6db2466da0273fed8540bed9": { + "b306409d6d8c446483ac51cf9f4740b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b35ea1dfe6c9484a867f70cf435d0af4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b417b89d5465454dbff9b438a2bb83b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7222,7 +7143,151 @@ "width": null } }, - "b75b2dcda03043c19e92f21428536acc": { + "b52d3ef6a130403ab7171de161dbf9fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b6829f808da441189739e1a1d12f33db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c7e12067d0ff47968ecd2026352a0ff1", + "placeholder": "​", + "style": "IPY_MODEL_9009b03fdd284be69f45fdc6d0f0376b", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.51MB/s]" + } + }, + "b7688d725a604d1daccbc087448952da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbef86f69c5948d385e6b5323dac5063", + "placeholder": "​", + "style": "IPY_MODEL_c707b8fae19748b2b7f04d1824f16160", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 629kB/s]" + } + }, + "b7c46fdef0164329ac3e7125fb1a3810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8dcfa37b46843bb8eced502383d7a98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc4142d60d774dd2ad99ecd36603d468", + "placeholder": "​", + "style": "IPY_MODEL_50c5f1c85c3f4ca680697dbe2009569b", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8696.63 examples/s]" + } + }, + "ba2572654c6f4be7b70ade5b31c3a926": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a7583d8f246421fbeab990ddb98d10b", + "placeholder": "​", + "style": "IPY_MODEL_cbceec901578495581de6dedb04df05f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bb396f4d71c24420a755dbd1b2d4e0c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbef86f69c5948d385e6b5323dac5063": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7275,30 +7340,7 @@ "width": null } }, - "bbad93a33def4b229788aa20849516bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", - "placeholder": "​", - "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" - } - }, - "bc0cfa74fd9b478baa3776548265f98f": { + "be423c827bce42888c6733e74c7e56e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7351,25 +7393,7 @@ "width": null } }, - "bcdb721a85b449cd9eaf7819dc3550dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bf1ddb949cc4482ba290bb117f55ea82": { + "c01405278baf4bdba44934ff23dd1bd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7422,7 +7446,7 @@ "width": null } }, - "c1a678c9161a478e8d2196917db2dad8": { + "c322893705e344fab0a85ba8906b13d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7475,7 +7499,7 @@ "width": null } }, - "c25be99949354d9b93261eb01cd7f371": { + "c35a9e6279d64076af35d2f27bb3c1f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7491,52 +7515,26 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", - "max": 10000.0, + "layout": "IPY_MODEL_548235e599424738a67de3f79cfb7b70", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", + "style": "IPY_MODEL_e1204b89093c43c2bbef0f5bc7f321d5", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": 4422102.0 } }, - "c5e5cf9a26c0498cbbbc47b2b513a358": { - "model_module": "@jupyter-widgets/controls", + "c4d0d567861b4daaa22849bd0c72c717": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "c670dd237db04ca9a6e63e4d35cecdb4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -7580,7 +7578,25 @@ "width": null } }, - "cad3cae7738f47d5bf0f64d262df886c": { + "c707b8fae19748b2b7f04d1824f16160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c7e12067d0ff47968ecd2026352a0ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7633,7 +7649,7 @@ "width": null } }, - "cf54f0b1ea01482a8a59acd889c89c88": { + "cbceec901578495581de6dedb04df05f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7651,7 +7667,7 @@ "text_color": null } }, - "d2d061b68a1d431fa7d7e4082cdce543": { + "cbd94a256dec4e5481adfcd29f1febef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7667,35 +7683,110 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", - "max": 4422102.0, + "layout": "IPY_MODEL_79a12aba6ce74534a31585a1e5b7629a", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "style": "IPY_MODEL_7f3c5e524a2a4b62923593cb7d0f0bcd", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 5148.0 } }, - "d5a9c110896c475face60d8f33b9046c": { + "d08f5452094f47d08dbbe2a74ea43ec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e385b0671e9242808e2dd7641de8b129", + "IPY_MODEL_77fb0e31218f415f9b83fd1e7f033313", + "IPY_MODEL_e3fd6717d3014816b85eb2aea2670988" + ], + "layout": "IPY_MODEL_8529e85178ba4b9db501331d73389535", + "tabbable": null, + "tooltip": null + } + }, + "d2c107583b3446f1a71d596da3a8ea0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3bd8c12086754778a39426082fb4c712", + "placeholder": "​", + "style": "IPY_MODEL_d8e32fbbd29849109ebc95aa56af2320", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "d39985dd9bc642ef97f827f54bdaf785": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6004d8783e4340c78f2c17615163809f", + "placeholder": "​", + "style": "IPY_MODEL_5ad43172c3614811b3be77c668f4260b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 57.51it/s]" + } + }, + "d4b1e6f30b00448bb7aded7c95574668": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_792a85e6758f4d2abda66bd7012cb17f", + "placeholder": "​", + "style": "IPY_MODEL_1d3bad97d2e140858259c15ce675275c", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 119MB/s]" } }, - "d5aee2c22e48477b9f398e4ad03d9e34": { + "d5373916cf394a83bf107ccba42ad98e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7748,7 +7839,43 @@ "width": null } }, - "d83e3a00a6514bd7867d7bbbe2edf9f5": { + "d8e32fbbd29849109ebc95aa56af2320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc076da2e7464386b800e6b39aac828f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc97a95f31ef435d8eb93a17114e71b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7801,134 +7928,113 @@ "width": null } }, - "d9809a0d4cae4531973e9be895c2f08e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc05e2e419574abb89ddec85c5fcc81d": { - "model_module": "@jupyter-widgets/controls", + "dea1d9a6979f4894972e169fdc8b3ca2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dd31c22f11524a368f9eb1cd18be16f2": { - "model_module": "@jupyter-widgets/controls", + "dfd628d2a7d849c08ab87079cb996a11": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dde263477419437a9af2ca03171dadcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "de21539b01914576913a0b51a048b56f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", - "IPY_MODEL_4586a50b001c47b39290a335d19b949d", - "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" - ], - "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", - "tabbable": null, - "tooltip": null - } - }, - "df295f854e794a6dacc9fe1281979049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", - "placeholder": "​", - "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dfc1a61d6aca4ccca4fce1f46c9b016e": { + "e0ba2cdd12b047a9b432e07b8392d868": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7981,53 +8087,47 @@ "width": null } }, - "e31270e184e04922b08349a65c597693": { + "e111fc31bef446589348e8914c03ecff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", - "placeholder": "​", - "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16c45a85bb494cb0b0d17b9f37c3ccb5", + "IPY_MODEL_2d510cb5255c4d4bb4c84a7b07e5986a", + "IPY_MODEL_3af7fd032af047acba161cd73629c9b1" + ], + "layout": "IPY_MODEL_4a664740c44d4888bd592863ec449cda", "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" + "tooltip": null } }, - "e40aeb47074d4ecb90098770f4839946": { + "e1204b89093c43c2bbef0f5bc7f321d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", - "placeholder": "​", - "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e716b663d19a4155af04eb17f142c03c": { + "e231f7427a77418b8220b39132ec4fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8045,71 +8145,76 @@ "text_color": null } }, - "e73b799b5ff64804a99810863c6f0533": { + "e2c5a70587e24fab9bc9dfe7e0c32902": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6187fcfebb524fefa3300e2f931ce991", + "placeholder": "​", + "style": "IPY_MODEL_dc076da2e7464386b800e6b39aac828f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.21it/s]" } }, - "e74d0f623f774aa5a1554c10228f1654": { + "e385b0671e9242808e2dd7641de8b129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", - "IPY_MODEL_3cf5000751a1413faba426291a215dff", - "IPY_MODEL_e31270e184e04922b08349a65c597693" - ], - "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0107ac6a2bb49b9a38c702fb3000023", + "placeholder": "​", + "style": "IPY_MODEL_9f5a21d10cb04916a2ac3a5615e8f67c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "e85162633bd84b0c8065890dd355820b": { + "e3fd6717d3014816b85eb2aea2670988": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", - "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", - "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" - ], - "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_896a6d7c46d8468b8cf89808bd7364ba", + "placeholder": "​", + "style": "IPY_MODEL_05910fb228344f99b6fb2421fcb03eda", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1342.93it/s]" } }, - "e89a1ca0e0b746b0b9349efd7a426e3f": { + "e6a6b4d1379844fea66b5dbacdc8e014": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8124,15 +8229,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "layout": "IPY_MODEL_2123725a1625491ab9fff799e36dba17", "placeholder": "​", - "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "style": "IPY_MODEL_632a67ce80d14619bf344f000fa764ba", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 56.80it/s]" } }, - "e9632dad724b4651afed5367d50e22c4": { + "e9761a93b0b141bd91044f4c22289e6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8147,39 +8252,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", - "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", - "IPY_MODEL_df295f854e794a6dacc9fe1281979049" + "IPY_MODEL_6934e24734464b1786dabefa21e5fa56", + "IPY_MODEL_2f7281d7325640838be06198153b490c", + "IPY_MODEL_d39985dd9bc642ef97f827f54bdaf785" ], - "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", + "layout": "IPY_MODEL_ad32bc96480549fca6a2a10b0c1770ee", "tabbable": null, "tooltip": null } }, - "ea9573c409424d8a8bac15fff0b2b7d0": { + "e9e67c495e4b40cbabbec5b57e585be4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", - "placeholder": "​", - "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.52it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ec3cdb9f36064f85ac05856111e8b6e8": { + "f1dad2b81ff94f19b1bd3b351f6eb7cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8232,33 +8332,7 @@ "width": null } }, - "ed241b0fef474a6687201441ac67dd74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "ed9503bde9bc41e0912e3c94c2a43266": { + "f24f3a724da14aa4ad45979b4f8cae62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8311,30 +8385,33 @@ "width": null } }, - "f01a831193cb480fa8538ccac1625826": { + "f2f9e0d3456a47608e8a1ac91e8ed935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", - "placeholder": "​", - "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "layout": "IPY_MODEL_ae73f1ffd0204f44b97f38a819470a40", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a7d3ac3f022843baac6a27b9c3a70626", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 } }, - "f061db9de67c4b4c92b189d2906d780c": { + "f39fed2f6adb4a41833c4217a9579fb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8387,30 +8464,47 @@ "width": null } }, - "f512ea72b63a45489078a0f45d052131": { + "f41398ae64bc4316a9315c7c675f66bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", - "placeholder": "​", - "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8859f4a2e8e2406581bd2251781b8058", + "IPY_MODEL_81dc9c6d441b4bc3961e80692ab894fb", + "IPY_MODEL_e2c5a70587e24fab9bc9dfe7e0c32902" + ], + "layout": "IPY_MODEL_a7ab4c6f0a0a4061a37620d7d5669e40", "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" + "tooltip": null + } + }, + "f428e3dd24eb47a5957a9a52dc7d490a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f74501f2cd3a424a9fd976bc8add6990": { + "f4ef71b0de2d42ed8dc7ddb5625e5f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8463,31 +8557,7 @@ "width": null } }, - "f85257acca8547839184b5f056eac10e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", - "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", - "IPY_MODEL_f512ea72b63a45489078a0f45d052131" - ], - "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", - "tabbable": null, - "tooltip": null - } - }, - "f8b91b2b5043498da2181511d46d09c8": { + "face9b5af5d04b5b925545e0e3657b1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8502,15 +8572,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "layout": "IPY_MODEL_252c74ac926949bca01f866ddfb93402", "placeholder": "​", - "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "style": "IPY_MODEL_83a18f69aed54dd5b886fc463424c44d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + "value": "Generating test split: 100%" } }, - "f9b540e1a55a4d16ad1b5a90f594ee47": { + "fb2d63ced790495d9043be01f6120f18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8525,42 +8595,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_82fc78533dbc46d08a781919716d2335", - "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", - "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + "IPY_MODEL_5611f48bfe5649669d6cf95001a05bbf", + "IPY_MODEL_c35a9e6279d64076af35d2f27bb3c1f1", + "IPY_MODEL_783d27ea5d684732aa739d3bdc700756" ], - "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "layout": "IPY_MODEL_4b84e2df5a2d4d578c1505f884fe5ec0", "tabbable": null, "tooltip": null } }, - "fa1df74fd9f543a1bcb1d473ae793b1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "fa87a07117a74232955cb6e2e8b66aa9": { + "fb2d8e3fda1543c993ce88eebbd09da9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8613,25 +8657,7 @@ "width": null } }, - "fd5d6bff1fad4857abafef9b11b3dfe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fd9234c25dae4c37a35f1e4d52af48c6": { + "fc4142d60d774dd2ad99ecd36603d468": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8683,32 +8709,6 @@ "visibility": null, "width": null } - }, - "fe504683f63741bdac7f7f37aacf03d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 49189d5a3..095bdca3d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:43.397675Z", - "iopub.status.busy": "2024-07-09T06:25:43.397521Z", - "iopub.status.idle": "2024-07-09T06:25:44.500416Z", - "shell.execute_reply": "2024-07-09T06:25:44.499930Z" + "iopub.execute_input": "2024-07-11T23:29:10.824057Z", + "iopub.status.busy": "2024-07-11T23:29:10.823887Z", + "iopub.status.idle": "2024-07-11T23:29:12.031031Z", + "shell.execute_reply": "2024-07-11T23:29:12.030498Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.503054Z", - "iopub.status.busy": "2024-07-09T06:25:44.502594Z", - "iopub.status.idle": "2024-07-09T06:25:44.520286Z", - "shell.execute_reply": "2024-07-09T06:25:44.519788Z" + "iopub.execute_input": "2024-07-11T23:29:12.033639Z", + "iopub.status.busy": "2024-07-11T23:29:12.033155Z", + "iopub.status.idle": "2024-07-11T23:29:12.052163Z", + "shell.execute_reply": "2024-07-11T23:29:12.051686Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.522768Z", - "iopub.status.busy": "2024-07-09T06:25:44.522335Z", - "iopub.status.idle": "2024-07-09T06:25:44.561412Z", - "shell.execute_reply": "2024-07-09T06:25:44.560787Z" + "iopub.execute_input": "2024-07-11T23:29:12.054816Z", + "iopub.status.busy": "2024-07-11T23:29:12.054264Z", + "iopub.status.idle": "2024-07-11T23:29:12.079654Z", + "shell.execute_reply": "2024-07-11T23:29:12.079070Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.563603Z", - "iopub.status.busy": "2024-07-09T06:25:44.563330Z", - "iopub.status.idle": "2024-07-09T06:25:44.566773Z", - "shell.execute_reply": "2024-07-09T06:25:44.566347Z" + "iopub.execute_input": "2024-07-11T23:29:12.081929Z", + "iopub.status.busy": "2024-07-11T23:29:12.081563Z", + "iopub.status.idle": "2024-07-11T23:29:12.085107Z", + "shell.execute_reply": "2024-07-11T23:29:12.084660Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.568882Z", - "iopub.status.busy": "2024-07-09T06:25:44.568557Z", - "iopub.status.idle": "2024-07-09T06:25:44.576133Z", - "shell.execute_reply": "2024-07-09T06:25:44.575666Z" + "iopub.execute_input": "2024-07-11T23:29:12.087283Z", + "iopub.status.busy": "2024-07-11T23:29:12.086948Z", + "iopub.status.idle": "2024-07-11T23:29:12.094469Z", + "shell.execute_reply": "2024-07-11T23:29:12.093973Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.578213Z", - "iopub.status.busy": "2024-07-09T06:25:44.577888Z", - "iopub.status.idle": "2024-07-09T06:25:44.580359Z", - "shell.execute_reply": "2024-07-09T06:25:44.579938Z" + "iopub.execute_input": "2024-07-11T23:29:12.096716Z", + "iopub.status.busy": "2024-07-11T23:29:12.096370Z", + "iopub.status.idle": "2024-07-11T23:29:12.098921Z", + "shell.execute_reply": "2024-07-11T23:29:12.098460Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.582404Z", - "iopub.status.busy": "2024-07-09T06:25:44.582006Z", - "iopub.status.idle": "2024-07-09T06:25:47.496435Z", - "shell.execute_reply": "2024-07-09T06:25:47.495884Z" + "iopub.execute_input": "2024-07-11T23:29:12.100927Z", + "iopub.status.busy": "2024-07-11T23:29:12.100586Z", + "iopub.status.idle": "2024-07-11T23:29:15.157298Z", + "shell.execute_reply": "2024-07-11T23:29:15.156748Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:47.499186Z", - "iopub.status.busy": "2024-07-09T06:25:47.498702Z", - "iopub.status.idle": "2024-07-09T06:25:47.508351Z", - "shell.execute_reply": "2024-07-09T06:25:47.507924Z" + "iopub.execute_input": "2024-07-11T23:29:15.160076Z", + "iopub.status.busy": "2024-07-11T23:29:15.159676Z", + "iopub.status.idle": "2024-07-11T23:29:15.169455Z", + "shell.execute_reply": "2024-07-11T23:29:15.168985Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:47.510494Z", - "iopub.status.busy": "2024-07-09T06:25:47.510083Z", - "iopub.status.idle": "2024-07-09T06:25:49.420464Z", - "shell.execute_reply": "2024-07-09T06:25:49.419867Z" + "iopub.execute_input": "2024-07-11T23:29:15.171458Z", + "iopub.status.busy": "2024-07-11T23:29:15.171270Z", + "iopub.status.idle": "2024-07-11T23:29:17.248432Z", + "shell.execute_reply": "2024-07-11T23:29:17.247803Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.423063Z", - "iopub.status.busy": "2024-07-09T06:25:49.422479Z", - "iopub.status.idle": "2024-07-09T06:25:49.441395Z", - "shell.execute_reply": "2024-07-09T06:25:49.440922Z" + "iopub.execute_input": "2024-07-11T23:29:17.251042Z", + "iopub.status.busy": "2024-07-11T23:29:17.250497Z", + "iopub.status.idle": "2024-07-11T23:29:17.269626Z", + "shell.execute_reply": "2024-07-11T23:29:17.269154Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.443532Z", - "iopub.status.busy": "2024-07-09T06:25:49.443194Z", - "iopub.status.idle": "2024-07-09T06:25:49.451051Z", - "shell.execute_reply": "2024-07-09T06:25:49.450614Z" + "iopub.execute_input": "2024-07-11T23:29:17.271760Z", + "iopub.status.busy": "2024-07-11T23:29:17.271471Z", + "iopub.status.idle": "2024-07-11T23:29:17.279607Z", + "shell.execute_reply": "2024-07-11T23:29:17.279150Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.453099Z", - "iopub.status.busy": "2024-07-09T06:25:49.452774Z", - "iopub.status.idle": "2024-07-09T06:25:49.461948Z", - "shell.execute_reply": "2024-07-09T06:25:49.461497Z" + "iopub.execute_input": "2024-07-11T23:29:17.281504Z", + "iopub.status.busy": "2024-07-11T23:29:17.281328Z", + "iopub.status.idle": "2024-07-11T23:29:17.290707Z", + "shell.execute_reply": "2024-07-11T23:29:17.290143Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.463968Z", - "iopub.status.busy": "2024-07-09T06:25:49.463653Z", - "iopub.status.idle": "2024-07-09T06:25:49.471593Z", - "shell.execute_reply": "2024-07-09T06:25:49.471011Z" + "iopub.execute_input": "2024-07-11T23:29:17.292917Z", + "iopub.status.busy": "2024-07-11T23:29:17.292506Z", + "iopub.status.idle": "2024-07-11T23:29:17.301043Z", + "shell.execute_reply": "2024-07-11T23:29:17.300462Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.473529Z", - "iopub.status.busy": "2024-07-09T06:25:49.473356Z", - "iopub.status.idle": "2024-07-09T06:25:49.482335Z", - "shell.execute_reply": "2024-07-09T06:25:49.481895Z" + "iopub.execute_input": "2024-07-11T23:29:17.303192Z", + "iopub.status.busy": "2024-07-11T23:29:17.302849Z", + "iopub.status.idle": "2024-07-11T23:29:17.311637Z", + "shell.execute_reply": "2024-07-11T23:29:17.311131Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.484408Z", - "iopub.status.busy": "2024-07-09T06:25:49.484080Z", - "iopub.status.idle": "2024-07-09T06:25:49.491499Z", - "shell.execute_reply": "2024-07-09T06:25:49.491016Z" + "iopub.execute_input": "2024-07-11T23:29:17.313719Z", + "iopub.status.busy": "2024-07-11T23:29:17.313369Z", + "iopub.status.idle": "2024-07-11T23:29:17.321018Z", + "shell.execute_reply": "2024-07-11T23:29:17.320556Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.493531Z", - "iopub.status.busy": "2024-07-09T06:25:49.493203Z", - "iopub.status.idle": "2024-07-09T06:25:49.500767Z", - "shell.execute_reply": "2024-07-09T06:25:49.500318Z" + "iopub.execute_input": "2024-07-11T23:29:17.323211Z", + "iopub.status.busy": "2024-07-11T23:29:17.322859Z", + "iopub.status.idle": "2024-07-11T23:29:17.330611Z", + "shell.execute_reply": "2024-07-11T23:29:17.330145Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.502816Z", - "iopub.status.busy": "2024-07-09T06:25:49.502476Z", - "iopub.status.idle": "2024-07-09T06:25:49.511060Z", - "shell.execute_reply": "2024-07-09T06:25:49.510478Z" + "iopub.execute_input": "2024-07-11T23:29:17.332743Z", + "iopub.status.busy": "2024-07-11T23:29:17.332399Z", + "iopub.status.idle": "2024-07-11T23:29:17.340578Z", + "shell.execute_reply": "2024-07-11T23:29:17.340099Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 007861577..07f3d4c80 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:52.110367Z", - "iopub.status.busy": "2024-07-09T06:25:52.110187Z", - "iopub.status.idle": "2024-07-09T06:25:54.784149Z", - "shell.execute_reply": "2024-07-09T06:25:54.783592Z" + "iopub.execute_input": "2024-07-11T23:29:20.296872Z", + "iopub.status.busy": "2024-07-11T23:29:20.296343Z", + "iopub.status.idle": "2024-07-11T23:29:23.099118Z", + "shell.execute_reply": "2024-07-11T23:29:23.098548Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.786763Z", - "iopub.status.busy": "2024-07-09T06:25:54.786450Z", - "iopub.status.idle": "2024-07-09T06:25:54.790234Z", - "shell.execute_reply": "2024-07-09T06:25:54.789808Z" + "iopub.execute_input": "2024-07-11T23:29:23.101716Z", + "iopub.status.busy": "2024-07-11T23:29:23.101242Z", + "iopub.status.idle": "2024-07-11T23:29:23.104460Z", + "shell.execute_reply": "2024-07-11T23:29:23.104010Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.792282Z", - "iopub.status.busy": "2024-07-09T06:25:54.791960Z", - "iopub.status.idle": "2024-07-09T06:25:54.795130Z", - "shell.execute_reply": "2024-07-09T06:25:54.794637Z" + "iopub.execute_input": "2024-07-11T23:29:23.106552Z", + "iopub.status.busy": "2024-07-11T23:29:23.106212Z", + "iopub.status.idle": "2024-07-11T23:29:23.109383Z", + "shell.execute_reply": "2024-07-11T23:29:23.108910Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.797237Z", - "iopub.status.busy": "2024-07-09T06:25:54.796891Z", - "iopub.status.idle": "2024-07-09T06:25:54.839838Z", - "shell.execute_reply": "2024-07-09T06:25:54.839268Z" + "iopub.execute_input": "2024-07-11T23:29:23.111437Z", + "iopub.status.busy": "2024-07-11T23:29:23.111099Z", + "iopub.status.idle": "2024-07-11T23:29:23.137658Z", + "shell.execute_reply": "2024-07-11T23:29:23.137132Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.842013Z", - "iopub.status.busy": "2024-07-09T06:25:54.841618Z", - "iopub.status.idle": "2024-07-09T06:25:54.845269Z", - "shell.execute_reply": "2024-07-09T06:25:54.844799Z" + "iopub.execute_input": "2024-07-11T23:29:23.139775Z", + "iopub.status.busy": "2024-07-11T23:29:23.139424Z", + "iopub.status.idle": "2024-07-11T23:29:23.143084Z", + "shell.execute_reply": "2024-07-11T23:29:23.142550Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.847533Z", - "iopub.status.busy": "2024-07-09T06:25:54.847103Z", - "iopub.status.idle": "2024-07-09T06:25:54.850442Z", - "shell.execute_reply": "2024-07-09T06:25:54.849920Z" + "iopub.execute_input": "2024-07-11T23:29:23.145114Z", + "iopub.status.busy": "2024-07-11T23:29:23.144786Z", + "iopub.status.idle": "2024-07-11T23:29:23.147838Z", + "shell.execute_reply": "2024-07-11T23:29:23.147307Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.852582Z", - "iopub.status.busy": "2024-07-09T06:25:54.852188Z", - "iopub.status.idle": "2024-07-09T06:25:59.138875Z", - "shell.execute_reply": "2024-07-09T06:25:59.138241Z" + "iopub.execute_input": "2024-07-11T23:29:23.150007Z", + "iopub.status.busy": "2024-07-11T23:29:23.149602Z", + "iopub.status.idle": "2024-07-11T23:29:26.928577Z", + "shell.execute_reply": "2024-07-11T23:29:26.928014Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:59.141607Z", - "iopub.status.busy": "2024-07-09T06:25:59.141219Z", - "iopub.status.idle": "2024-07-09T06:26:00.038840Z", - "shell.execute_reply": "2024-07-09T06:26:00.038252Z" + "iopub.execute_input": "2024-07-11T23:29:26.931127Z", + "iopub.status.busy": "2024-07-11T23:29:26.930936Z", + "iopub.status.idle": "2024-07-11T23:29:27.847526Z", + "shell.execute_reply": "2024-07-11T23:29:27.846929Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:00.041846Z", - "iopub.status.busy": "2024-07-09T06:26:00.041473Z", - "iopub.status.idle": "2024-07-09T06:26:00.044333Z", - "shell.execute_reply": "2024-07-09T06:26:00.043847Z" + "iopub.execute_input": "2024-07-11T23:29:27.850537Z", + "iopub.status.busy": "2024-07-11T23:29:27.850133Z", + "iopub.status.idle": "2024-07-11T23:29:27.853085Z", + "shell.execute_reply": "2024-07-11T23:29:27.852592Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:00.046828Z", - "iopub.status.busy": "2024-07-09T06:26:00.046455Z", - "iopub.status.idle": "2024-07-09T06:26:02.001666Z", - "shell.execute_reply": "2024-07-09T06:26:02.000979Z" + "iopub.execute_input": "2024-07-11T23:29:27.856213Z", + "iopub.status.busy": "2024-07-11T23:29:27.855272Z", + "iopub.status.idle": "2024-07-11T23:29:29.866823Z", + "shell.execute_reply": "2024-07-11T23:29:29.866126Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.005648Z", - "iopub.status.busy": "2024-07-09T06:26:02.004357Z", - "iopub.status.idle": "2024-07-09T06:26:02.029990Z", - "shell.execute_reply": "2024-07-09T06:26:02.029487Z" + "iopub.execute_input": "2024-07-11T23:29:29.870725Z", + "iopub.status.busy": "2024-07-11T23:29:29.869329Z", + "iopub.status.idle": "2024-07-11T23:29:29.895368Z", + "shell.execute_reply": "2024-07-11T23:29:29.894852Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.033668Z", - "iopub.status.busy": "2024-07-09T06:26:02.032688Z", - "iopub.status.idle": "2024-07-09T06:26:02.043061Z", - "shell.execute_reply": "2024-07-09T06:26:02.042510Z" + "iopub.execute_input": "2024-07-11T23:29:29.899017Z", + "iopub.status.busy": "2024-07-11T23:29:29.898072Z", + "iopub.status.idle": "2024-07-11T23:29:29.908832Z", + "shell.execute_reply": "2024-07-11T23:29:29.908409Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.045235Z", - "iopub.status.busy": "2024-07-09T06:26:02.044844Z", - "iopub.status.idle": "2024-07-09T06:26:02.049066Z", - "shell.execute_reply": "2024-07-09T06:26:02.048544Z" + "iopub.execute_input": "2024-07-11T23:29:29.911226Z", + "iopub.status.busy": "2024-07-11T23:29:29.910867Z", + "iopub.status.idle": "2024-07-11T23:29:29.915028Z", + "shell.execute_reply": "2024-07-11T23:29:29.914487Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.050976Z", - "iopub.status.busy": "2024-07-09T06:26:02.050656Z", - "iopub.status.idle": "2024-07-09T06:26:02.056885Z", - "shell.execute_reply": "2024-07-09T06:26:02.056368Z" + "iopub.execute_input": "2024-07-11T23:29:29.917195Z", + "iopub.status.busy": "2024-07-11T23:29:29.916869Z", + "iopub.status.idle": "2024-07-11T23:29:29.923739Z", + "shell.execute_reply": "2024-07-11T23:29:29.923264Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.058842Z", - "iopub.status.busy": "2024-07-09T06:26:02.058553Z", - "iopub.status.idle": "2024-07-09T06:26:02.064989Z", - "shell.execute_reply": "2024-07-09T06:26:02.064469Z" + "iopub.execute_input": "2024-07-11T23:29:29.925794Z", + "iopub.status.busy": "2024-07-11T23:29:29.925460Z", + "iopub.status.idle": "2024-07-11T23:29:29.932321Z", + "shell.execute_reply": "2024-07-11T23:29:29.931877Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.067209Z", - "iopub.status.busy": "2024-07-09T06:26:02.066773Z", - "iopub.status.idle": "2024-07-09T06:26:02.072793Z", - "shell.execute_reply": "2024-07-09T06:26:02.072374Z" + "iopub.execute_input": "2024-07-11T23:29:29.934353Z", + "iopub.status.busy": "2024-07-11T23:29:29.934032Z", + "iopub.status.idle": "2024-07-11T23:29:29.940266Z", + "shell.execute_reply": "2024-07-11T23:29:29.939810Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.074940Z", - "iopub.status.busy": "2024-07-09T06:26:02.074490Z", - "iopub.status.idle": "2024-07-09T06:26:02.083051Z", - "shell.execute_reply": "2024-07-09T06:26:02.082510Z" + "iopub.execute_input": "2024-07-11T23:29:29.942354Z", + "iopub.status.busy": "2024-07-11T23:29:29.941996Z", + "iopub.status.idle": "2024-07-11T23:29:29.950445Z", + "shell.execute_reply": "2024-07-11T23:29:29.949967Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.085157Z", - "iopub.status.busy": "2024-07-09T06:26:02.084826Z", - "iopub.status.idle": "2024-07-09T06:26:02.090319Z", - "shell.execute_reply": "2024-07-09T06:26:02.089787Z" + "iopub.execute_input": "2024-07-11T23:29:29.952513Z", + "iopub.status.busy": "2024-07-11T23:29:29.952188Z", + "iopub.status.idle": "2024-07-11T23:29:29.957603Z", + "shell.execute_reply": "2024-07-11T23:29:29.957060Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.092426Z", - "iopub.status.busy": "2024-07-09T06:26:02.092121Z", - "iopub.status.idle": "2024-07-09T06:26:02.097472Z", - "shell.execute_reply": "2024-07-09T06:26:02.096931Z" + "iopub.execute_input": "2024-07-11T23:29:29.959629Z", + "iopub.status.busy": "2024-07-11T23:29:29.959314Z", + "iopub.status.idle": "2024-07-11T23:29:29.964736Z", + "shell.execute_reply": "2024-07-11T23:29:29.964255Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.099674Z", - "iopub.status.busy": "2024-07-09T06:26:02.099271Z", - "iopub.status.idle": "2024-07-09T06:26:02.103221Z", - "shell.execute_reply": "2024-07-09T06:26:02.102687Z" + "iopub.execute_input": "2024-07-11T23:29:29.966832Z", + "iopub.status.busy": "2024-07-11T23:29:29.966514Z", + "iopub.status.idle": "2024-07-11T23:29:29.970167Z", + "shell.execute_reply": "2024-07-11T23:29:29.969608Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.105280Z", - "iopub.status.busy": "2024-07-09T06:26:02.104977Z", - "iopub.status.idle": "2024-07-09T06:26:02.110409Z", - "shell.execute_reply": "2024-07-09T06:26:02.109860Z" + "iopub.execute_input": "2024-07-11T23:29:29.972238Z", + "iopub.status.busy": "2024-07-11T23:29:29.971925Z", + "iopub.status.idle": "2024-07-11T23:29:29.977206Z", + "shell.execute_reply": "2024-07-11T23:29:29.976760Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 8fba9ce06..ddaeab7a0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.359120Z", - "iopub.status.busy": "2024-07-09T06:26:06.358944Z", - "iopub.status.idle": "2024-07-09T06:26:06.770440Z", - "shell.execute_reply": "2024-07-09T06:26:06.769872Z" + "iopub.execute_input": "2024-07-11T23:29:34.388693Z", + "iopub.status.busy": "2024-07-11T23:29:34.388243Z", + "iopub.status.idle": "2024-07-11T23:29:34.820244Z", + "shell.execute_reply": "2024-07-11T23:29:34.819732Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.772937Z", - "iopub.status.busy": "2024-07-09T06:26:06.772696Z", - "iopub.status.idle": "2024-07-09T06:26:06.900862Z", - "shell.execute_reply": "2024-07-09T06:26:06.900374Z" + "iopub.execute_input": "2024-07-11T23:29:34.822803Z", + "iopub.status.busy": "2024-07-11T23:29:34.822517Z", + "iopub.status.idle": "2024-07-11T23:29:34.952962Z", + "shell.execute_reply": "2024-07-11T23:29:34.952397Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.903167Z", - "iopub.status.busy": "2024-07-09T06:26:06.902756Z", - "iopub.status.idle": "2024-07-09T06:26:06.925318Z", - "shell.execute_reply": "2024-07-09T06:26:06.924766Z" + "iopub.execute_input": "2024-07-11T23:29:34.955366Z", + "iopub.status.busy": "2024-07-11T23:29:34.954953Z", + "iopub.status.idle": "2024-07-11T23:29:34.978058Z", + "shell.execute_reply": "2024-07-11T23:29:34.977499Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.927949Z", - "iopub.status.busy": "2024-07-09T06:26:06.927455Z", - "iopub.status.idle": "2024-07-09T06:26:09.660674Z", - "shell.execute_reply": "2024-07-09T06:26:09.660045Z" + "iopub.execute_input": "2024-07-11T23:29:34.981010Z", + "iopub.status.busy": "2024-07-11T23:29:34.980418Z", + "iopub.status.idle": "2024-07-11T23:29:37.818083Z", + "shell.execute_reply": "2024-07-11T23:29:37.817473Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356959\n", + " 0.356958\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356959 362\n", + "2 outlier 0.356958 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:09.663103Z", - "iopub.status.busy": "2024-07-09T06:26:09.662695Z", - "iopub.status.idle": "2024-07-09T06:26:17.697818Z", - "shell.execute_reply": "2024-07-09T06:26:17.697224Z" + "iopub.execute_input": "2024-07-11T23:29:37.820720Z", + "iopub.status.busy": "2024-07-11T23:29:37.820301Z", + "iopub.status.idle": "2024-07-11T23:29:46.721138Z", + "shell.execute_reply": "2024-07-11T23:29:46.720568Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:17.700276Z", - "iopub.status.busy": "2024-07-09T06:26:17.699925Z", - "iopub.status.idle": "2024-07-09T06:26:17.841746Z", - "shell.execute_reply": "2024-07-09T06:26:17.841256Z" + "iopub.execute_input": "2024-07-11T23:29:46.723367Z", + "iopub.status.busy": "2024-07-11T23:29:46.723076Z", + "iopub.status.idle": "2024-07-11T23:29:46.891124Z", + "shell.execute_reply": "2024-07-11T23:29:46.890449Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:17.844287Z", - "iopub.status.busy": "2024-07-09T06:26:17.843913Z", - "iopub.status.idle": "2024-07-09T06:26:19.164893Z", - "shell.execute_reply": "2024-07-09T06:26:19.164379Z" + "iopub.execute_input": "2024-07-11T23:29:46.893627Z", + "iopub.status.busy": "2024-07-11T23:29:46.893433Z", + "iopub.status.idle": "2024-07-11T23:29:48.221557Z", + "shell.execute_reply": "2024-07-11T23:29:48.220967Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.167019Z", - "iopub.status.busy": "2024-07-09T06:26:19.166813Z", - "iopub.status.idle": "2024-07-09T06:26:19.597782Z", - "shell.execute_reply": "2024-07-09T06:26:19.597208Z" + "iopub.execute_input": "2024-07-11T23:29:48.224013Z", + "iopub.status.busy": "2024-07-11T23:29:48.223550Z", + "iopub.status.idle": "2024-07-11T23:29:48.654330Z", + "shell.execute_reply": "2024-07-11T23:29:48.653634Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.600017Z", - "iopub.status.busy": "2024-07-09T06:26:19.599671Z", - "iopub.status.idle": "2024-07-09T06:26:19.608754Z", - "shell.execute_reply": "2024-07-09T06:26:19.608320Z" + "iopub.execute_input": "2024-07-11T23:29:48.657912Z", + "iopub.status.busy": "2024-07-11T23:29:48.656773Z", + "iopub.status.idle": "2024-07-11T23:29:48.671443Z", + "shell.execute_reply": "2024-07-11T23:29:48.670980Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.610758Z", - "iopub.status.busy": "2024-07-09T06:26:19.610582Z", - "iopub.status.idle": "2024-07-09T06:26:19.629174Z", - "shell.execute_reply": "2024-07-09T06:26:19.628714Z" + "iopub.execute_input": "2024-07-11T23:29:48.673923Z", + "iopub.status.busy": "2024-07-11T23:29:48.673416Z", + "iopub.status.idle": "2024-07-11T23:29:48.696644Z", + "shell.execute_reply": "2024-07-11T23:29:48.696128Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.631274Z", - "iopub.status.busy": "2024-07-09T06:26:19.630949Z", - "iopub.status.idle": "2024-07-09T06:26:19.855473Z", - "shell.execute_reply": "2024-07-09T06:26:19.854937Z" + "iopub.execute_input": "2024-07-11T23:29:48.699194Z", + "iopub.status.busy": "2024-07-11T23:29:48.698804Z", + "iopub.status.idle": "2024-07-11T23:29:48.914081Z", + "shell.execute_reply": "2024-07-11T23:29:48.913445Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.857897Z", - "iopub.status.busy": "2024-07-09T06:26:19.857717Z", - "iopub.status.idle": "2024-07-09T06:26:19.876254Z", - "shell.execute_reply": "2024-07-09T06:26:19.875785Z" + "iopub.execute_input": "2024-07-11T23:29:48.916790Z", + "iopub.status.busy": "2024-07-11T23:29:48.916597Z", + "iopub.status.idle": "2024-07-11T23:29:48.936552Z", + "shell.execute_reply": "2024-07-11T23:29:48.935965Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.878330Z", - "iopub.status.busy": "2024-07-09T06:26:19.878123Z", - "iopub.status.idle": "2024-07-09T06:26:20.020972Z", - "shell.execute_reply": "2024-07-09T06:26:20.020418Z" + "iopub.execute_input": "2024-07-11T23:29:48.938784Z", + "iopub.status.busy": "2024-07-11T23:29:48.938602Z", + "iopub.status.idle": "2024-07-11T23:29:49.079693Z", + "shell.execute_reply": "2024-07-11T23:29:49.079099Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.023234Z", - "iopub.status.busy": "2024-07-09T06:26:20.023054Z", - "iopub.status.idle": "2024-07-09T06:26:20.033881Z", - "shell.execute_reply": "2024-07-09T06:26:20.033455Z" + "iopub.execute_input": "2024-07-11T23:29:49.082200Z", + "iopub.status.busy": "2024-07-11T23:29:49.081832Z", + "iopub.status.idle": "2024-07-11T23:29:49.092133Z", + "shell.execute_reply": "2024-07-11T23:29:49.091672Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.036017Z", - "iopub.status.busy": "2024-07-09T06:26:20.035683Z", - "iopub.status.idle": "2024-07-09T06:26:20.045307Z", - "shell.execute_reply": "2024-07-09T06:26:20.044756Z" + "iopub.execute_input": "2024-07-11T23:29:49.094406Z", + "iopub.status.busy": "2024-07-11T23:29:49.093977Z", + "iopub.status.idle": "2024-07-11T23:29:49.103812Z", + "shell.execute_reply": "2024-07-11T23:29:49.103299Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.047404Z", - "iopub.status.busy": "2024-07-09T06:26:20.047075Z", - "iopub.status.idle": "2024-07-09T06:26:20.077571Z", - "shell.execute_reply": "2024-07-09T06:26:20.077104Z" + "iopub.execute_input": "2024-07-11T23:29:49.106037Z", + "iopub.status.busy": "2024-07-11T23:29:49.105658Z", + "iopub.status.idle": "2024-07-11T23:29:49.131276Z", + "shell.execute_reply": "2024-07-11T23:29:49.130801Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.079806Z", - "iopub.status.busy": "2024-07-09T06:26:20.079460Z", - "iopub.status.idle": "2024-07-09T06:26:20.082272Z", - "shell.execute_reply": "2024-07-09T06:26:20.081824Z" + "iopub.execute_input": "2024-07-11T23:29:49.133375Z", + "iopub.status.busy": "2024-07-11T23:29:49.133028Z", + "iopub.status.idle": "2024-07-11T23:29:49.135659Z", + "shell.execute_reply": "2024-07-11T23:29:49.135214Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.084214Z", - "iopub.status.busy": "2024-07-09T06:26:20.083951Z", - "iopub.status.idle": "2024-07-09T06:26:20.103369Z", - "shell.execute_reply": "2024-07-09T06:26:20.102920Z" + "iopub.execute_input": "2024-07-11T23:29:49.137850Z", + "iopub.status.busy": "2024-07-11T23:29:49.137522Z", + "iopub.status.idle": "2024-07-11T23:29:49.156578Z", + "shell.execute_reply": "2024-07-11T23:29:49.156118Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.105637Z", - "iopub.status.busy": "2024-07-09T06:26:20.105313Z", - "iopub.status.idle": "2024-07-09T06:26:20.109592Z", - "shell.execute_reply": "2024-07-09T06:26:20.109129Z" + "iopub.execute_input": "2024-07-11T23:29:49.158760Z", + "iopub.status.busy": "2024-07-11T23:29:49.158427Z", + "iopub.status.idle": "2024-07-11T23:29:49.162423Z", + "shell.execute_reply": "2024-07-11T23:29:49.161916Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.111735Z", - "iopub.status.busy": "2024-07-09T06:26:20.111418Z", - "iopub.status.idle": "2024-07-09T06:26:20.140670Z", - "shell.execute_reply": "2024-07-09T06:26:20.140161Z" + "iopub.execute_input": "2024-07-11T23:29:49.164478Z", + "iopub.status.busy": "2024-07-11T23:29:49.164146Z", + "iopub.status.idle": "2024-07-11T23:29:49.192739Z", + "shell.execute_reply": "2024-07-11T23:29:49.192148Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.143010Z", - "iopub.status.busy": "2024-07-09T06:26:20.142558Z", - "iopub.status.idle": "2024-07-09T06:26:20.467470Z", - "shell.execute_reply": "2024-07-09T06:26:20.466812Z" + "iopub.execute_input": "2024-07-11T23:29:49.195027Z", + "iopub.status.busy": "2024-07-11T23:29:49.194661Z", + "iopub.status.idle": "2024-07-11T23:29:49.516815Z", + "shell.execute_reply": "2024-07-11T23:29:49.516256Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.469860Z", - "iopub.status.busy": "2024-07-09T06:26:20.469461Z", - "iopub.status.idle": "2024-07-09T06:26:20.472834Z", - "shell.execute_reply": "2024-07-09T06:26:20.472304Z" + "iopub.execute_input": "2024-07-11T23:29:49.519151Z", + "iopub.status.busy": "2024-07-11T23:29:49.518813Z", + "iopub.status.idle": "2024-07-11T23:29:49.522168Z", + "shell.execute_reply": "2024-07-11T23:29:49.521578Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.474846Z", - "iopub.status.busy": "2024-07-09T06:26:20.474545Z", - "iopub.status.idle": "2024-07-09T06:26:20.487539Z", - "shell.execute_reply": "2024-07-09T06:26:20.487103Z" + "iopub.execute_input": "2024-07-11T23:29:49.524223Z", + "iopub.status.busy": "2024-07-11T23:29:49.523940Z", + "iopub.status.idle": "2024-07-11T23:29:49.536864Z", + "shell.execute_reply": "2024-07-11T23:29:49.536400Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.489598Z", - "iopub.status.busy": "2024-07-09T06:26:20.489254Z", - "iopub.status.idle": "2024-07-09T06:26:20.502494Z", - "shell.execute_reply": "2024-07-09T06:26:20.502059Z" + "iopub.execute_input": "2024-07-11T23:29:49.538963Z", + "iopub.status.busy": "2024-07-11T23:29:49.538622Z", + "iopub.status.idle": "2024-07-11T23:29:49.551843Z", + "shell.execute_reply": "2024-07-11T23:29:49.551377Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.504650Z", - "iopub.status.busy": "2024-07-09T06:26:20.504262Z", - "iopub.status.idle": "2024-07-09T06:26:20.514526Z", - "shell.execute_reply": "2024-07-09T06:26:20.513953Z" + "iopub.execute_input": "2024-07-11T23:29:49.554109Z", + "iopub.status.busy": "2024-07-11T23:29:49.553563Z", + "iopub.status.idle": "2024-07-11T23:29:49.563951Z", + "shell.execute_reply": "2024-07-11T23:29:49.563386Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.516777Z", - "iopub.status.busy": "2024-07-09T06:26:20.516378Z", - "iopub.status.idle": "2024-07-09T06:26:20.525636Z", - "shell.execute_reply": "2024-07-09T06:26:20.525158Z" + "iopub.execute_input": "2024-07-11T23:29:49.566174Z", + "iopub.status.busy": "2024-07-11T23:29:49.565737Z", + "iopub.status.idle": "2024-07-11T23:29:49.575288Z", + "shell.execute_reply": "2024-07-11T23:29:49.574713Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.527730Z", - "iopub.status.busy": "2024-07-09T06:26:20.527427Z", - "iopub.status.idle": "2024-07-09T06:26:20.531215Z", - "shell.execute_reply": "2024-07-09T06:26:20.530643Z" + "iopub.execute_input": "2024-07-11T23:29:49.577281Z", + "iopub.status.busy": "2024-07-11T23:29:49.577106Z", + "iopub.status.idle": "2024-07-11T23:29:49.580982Z", + "shell.execute_reply": "2024-07-11T23:29:49.580413Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.533369Z", - "iopub.status.busy": "2024-07-09T06:26:20.532978Z", - "iopub.status.idle": "2024-07-09T06:26:20.584716Z", - "shell.execute_reply": "2024-07-09T06:26:20.584160Z" + "iopub.execute_input": "2024-07-11T23:29:49.583231Z", + "iopub.status.busy": "2024-07-11T23:29:49.582752Z", + "iopub.status.idle": "2024-07-11T23:29:49.634748Z", + "shell.execute_reply": "2024-07-11T23:29:49.634176Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.587026Z", - "iopub.status.busy": "2024-07-09T06:26:20.586732Z", - "iopub.status.idle": "2024-07-09T06:26:20.592456Z", - "shell.execute_reply": "2024-07-09T06:26:20.592020Z" + "iopub.execute_input": "2024-07-11T23:29:49.636976Z", + "iopub.status.busy": "2024-07-11T23:29:49.636539Z", + "iopub.status.idle": "2024-07-11T23:29:49.642182Z", + "shell.execute_reply": "2024-07-11T23:29:49.641717Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.594421Z", - "iopub.status.busy": "2024-07-09T06:26:20.594113Z", - "iopub.status.idle": "2024-07-09T06:26:20.604649Z", - "shell.execute_reply": "2024-07-09T06:26:20.604215Z" + "iopub.execute_input": "2024-07-11T23:29:49.644252Z", + "iopub.status.busy": "2024-07-11T23:29:49.643919Z", + "iopub.status.idle": "2024-07-11T23:29:49.654684Z", + "shell.execute_reply": "2024-07-11T23:29:49.654237Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.606620Z", - "iopub.status.busy": "2024-07-09T06:26:20.606292Z", - "iopub.status.idle": "2024-07-09T06:26:20.783133Z", - "shell.execute_reply": "2024-07-09T06:26:20.782497Z" + "iopub.execute_input": "2024-07-11T23:29:49.656716Z", + "iopub.status.busy": "2024-07-11T23:29:49.656373Z", + "iopub.status.idle": "2024-07-11T23:29:49.843043Z", + "shell.execute_reply": "2024-07-11T23:29:49.842369Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.785456Z", - "iopub.status.busy": "2024-07-09T06:26:20.785275Z", - "iopub.status.idle": "2024-07-09T06:26:20.793330Z", - "shell.execute_reply": "2024-07-09T06:26:20.792773Z" + "iopub.execute_input": "2024-07-11T23:29:49.846082Z", + "iopub.status.busy": "2024-07-11T23:29:49.845550Z", + "iopub.status.idle": "2024-07-11T23:29:49.853221Z", + "shell.execute_reply": "2024-07-11T23:29:49.852796Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.795475Z", - "iopub.status.busy": "2024-07-09T06:26:20.795196Z", - "iopub.status.idle": "2024-07-09T06:26:26.499101Z", - "shell.execute_reply": "2024-07-09T06:26:26.498454Z" + "iopub.execute_input": "2024-07-11T23:29:49.855530Z", + "iopub.status.busy": "2024-07-11T23:29:49.855103Z", + "iopub.status.idle": "2024-07-11T23:29:55.548333Z", + "shell.execute_reply": "2024-07-11T23:29:55.547826Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" + " 1%|▏ | 2195456/170498071 [00:00<00:07, 21936066.84it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" + " 8%|▊ | 13762560/170498071 [00:00<00:02, 77040074.49it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" + " 13%|█▎ | 22937600/170498071 [00:00<00:01, 83657296.61it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" + " 20%|█▉ | 33914880/170498071 [00:00<00:01, 93816439.09it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" + " 26%|██▌ | 44171264/170498071 [00:00<00:01, 96676047.74it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" + " 32%|███▏ | 54296576/170498071 [00:00<00:01, 98210892.42it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" + " 38%|███▊ | 65306624/170498071 [00:00<00:01, 102028223.71it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" + " 44%|████▍ | 75530240/170498071 [00:00<00:00, 99472321.16it/s] " ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" + " 51%|█████ | 87228416/170498071 [00:00<00:00, 104758850.35it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" + " 57%|█████▋ | 97746944/170498071 [00:01<00:00, 97567089.57it/s] " ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" + " 64%|██████▍ | 109740032/170498071 [00:01<00:00, 103924610.82it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" + " 71%|███████ | 120258560/170498071 [00:01<00:00, 100132631.87it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" + " 77%|███████▋ | 131792896/170498071 [00:01<00:00, 104452552.87it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" + " 83%|████████▎ | 142344192/170498071 [00:01<00:00, 100064070.08it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" + " 90%|█████████ | 154009600/170498071 [00:01<00:00, 104591011.15it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" + " 97%|█████████▋| 164560896/170498071 [00:01<00:00, 100094350.16it/s]" ] }, { @@ -3915,15 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 98318168.93it/s] " ] }, { @@ -3997,10 +3989,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.501872Z", - "iopub.status.busy": "2024-07-09T06:26:26.501334Z", - "iopub.status.idle": "2024-07-09T06:26:26.568877Z", - "shell.execute_reply": "2024-07-09T06:26:26.568264Z" + "iopub.execute_input": "2024-07-11T23:29:55.551094Z", + "iopub.status.busy": "2024-07-11T23:29:55.550447Z", + "iopub.status.idle": "2024-07-11T23:29:55.618507Z", + "shell.execute_reply": "2024-07-11T23:29:55.617890Z" } }, "outputs": [], @@ -4022,10 +4014,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.571436Z", - "iopub.status.busy": "2024-07-09T06:26:26.571213Z", - "iopub.status.idle": "2024-07-09T06:26:26.612980Z", - "shell.execute_reply": "2024-07-09T06:26:26.612387Z" + "iopub.execute_input": "2024-07-11T23:29:55.620876Z", + "iopub.status.busy": "2024-07-11T23:29:55.620695Z", + "iopub.status.idle": "2024-07-11T23:29:55.662030Z", + "shell.execute_reply": "2024-07-11T23:29:55.661591Z" } }, "outputs": [], @@ -4059,10 +4051,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.615590Z", - "iopub.status.busy": "2024-07-09T06:26:26.615223Z", - "iopub.status.idle": "2024-07-09T06:26:28.007434Z", - "shell.execute_reply": "2024-07-09T06:26:28.006820Z" + "iopub.execute_input": "2024-07-11T23:29:55.663943Z", + "iopub.status.busy": "2024-07-11T23:29:55.663770Z", + "iopub.status.idle": "2024-07-11T23:29:57.154881Z", + "shell.execute_reply": "2024-07-11T23:29:57.154308Z" } }, "outputs": [ @@ -4136,10 +4128,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:28.009673Z", - "iopub.status.busy": "2024-07-09T06:26:28.009331Z", - "iopub.status.idle": "2024-07-09T06:26:28.820192Z", - "shell.execute_reply": "2024-07-09T06:26:28.819683Z" + "iopub.execute_input": "2024-07-11T23:29:57.157275Z", + "iopub.status.busy": "2024-07-11T23:29:57.156920Z", + "iopub.status.idle": "2024-07-11T23:29:58.045399Z", + "shell.execute_reply": "2024-07-11T23:29:58.044761Z" } }, "outputs": [ @@ -4154,7 +4146,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", + "model_id": "ebd7ac91367148e2afe6a27320bdd648", "version_major": 2, "version_minor": 0 }, @@ -4178,7 +4170,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea4f3639cd404344b740181a60e6dfe1", + "model_id": "37431b2c574746939c76ac10cb8dedef", "version_major": 2, "version_minor": 0 }, @@ -4428,7 +4420,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f799df441bb4d05a6a28c61f333f046": { + "0a9eba41d6f74ab3b9a89d65ca44485e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "28363288b46145ac826217aa4b9fc129": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29ec8c96537842dda2eee61d045980d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4481,7 +4507,7 @@ "width": null } }, - "294a1c481a4c46e5bc9df718d9565bc7": { + "2f972b063cb24efebbee277aff900e69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4534,74 +4560,31 @@ "width": null } }, - "2b6cc201cb424f5298894e3085cf6d74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31bd0ebee4be4b6995b1299029dfd4ba": { + "37431b2c574746939c76ac10cb8dedef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", - "placeholder": "​", - "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "37549aa8f96049628f56685e9b488f6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5aba43e968e4b2ea8b352bd6ce4b411", + "IPY_MODEL_b044b60111e04eaca5eb81d3ecb06ed0", + "IPY_MODEL_59db922cdf5f4031937b8c911ca0b1f4" + ], + "layout": "IPY_MODEL_c66bba991f14433797a8e6e861762595", "tabbable": null, - "tooltip": null, - "value": 200.0 + "tooltip": null } }, - "43460e1d74ff44b6bdf8b3639d60c64c": { + "59db922cdf5f4031937b8c911ca0b1f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4616,15 +4599,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", + "layout": "IPY_MODEL_2f972b063cb24efebbee277aff900e69", "placeholder": "​", - "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", + "style": "IPY_MODEL_8cbd637e03ab4440bd7d7ca81683dd9a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 673.18it/s]" } }, - "4550b40c93134694b00bc701007e4553": { + "64b6b27f928d436ba4403ed9f9c61077": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4677,23 +4660,7 @@ "width": null } }, - "58c201af515141f191ad32c13265a546": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "59f5cfbd0629486ba546f97d01ea7fed": { + "71c5f03c40414ebeba748d478ef6ffc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4746,47 +4713,7 @@ "width": null } }, - "716f2c676ad44e9fb6218d0b8625a9c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", - "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", - "IPY_MODEL_df74cf1241974d8dba64d522788976ea" - ], - "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", - "tabbable": null, - "tooltip": null - } - }, - "75e04c762f744d54adf55d90a052c562": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "75f430393fb34cad87ddab50d62eb686": { + "756874159a5f4e59a3cec73032e792f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4839,7 +4766,25 @@ "width": null } }, - "a58aa13dc64e47faa0cc93bb6652151b": { + "7716b3c7d54a4b74b576940fa9abe6f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7d6d49ce25f0419788eb3168606f568d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4854,15 +4799,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "layout": "IPY_MODEL_29ec8c96537842dda2eee61d045980d9", "placeholder": "​", - "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "style": "IPY_MODEL_7716b3c7d54a4b74b576940fa9abe6f8", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 681.83it/s]" + "value": "100%" } }, - "b3b4bdc005f14648a26d1a16f3cf9fbf": { + "85e722e3d05e47ab92a2075cb222a274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cbd637e03ab4440bd7d7ca81683dd9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4880,7 +4841,30 @@ "text_color": null } }, - "cdbb5130f8d045468526e3f842f2ee28": { + "8e817c3d82cd42f2812de96ecc4a20b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9fcb8065af8840cbb001d2651ea73403", + "placeholder": "​", + "style": "IPY_MODEL_e7f294d203864e0e9c5f6c2b4e5fb3d0", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 678.33it/s]" + } + }, + "9fcb8065af8840cbb001d2651ea73403": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4933,66 +4917,33 @@ "width": null } }, - "d12154805bed4fff8e2d01bf4f786af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dee7e34112e0456e8e72f2a3ac0efa77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df74cf1241974d8dba64d522788976ea": { + "b044b60111e04eaca5eb81d3ecb06ed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", - "placeholder": "​", - "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "layout": "IPY_MODEL_71c5f03c40414ebeba748d478ef6ffc1", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_85e722e3d05e47ab92a2075cb222a274", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 800.04it/s]" + "value": 200.0 } }, - "e56f4d7332994f4e8edf32b758ca794d": { + "b3715480365745f09fda9c8cb652a538": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5008,41 +4959,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", + "layout": "IPY_MODEL_756874159a5f4e59a3cec73032e792f9", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", + "style": "IPY_MODEL_28363288b46145ac826217aa4b9fc129", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "ea4f3639cd404344b740181a60e6dfe1": { + "b5aba43e968e4b2ea8b352bd6ce4b411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", - "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", - "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" - ], - "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc8144a4608441f5baad14d16d57786b", + "placeholder": "​", + "style": "IPY_MODEL_0a9eba41d6f74ab3b9a89d65ca44485e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "ef0ce0626f2f42ccab835c3082d23f11": { + "c66bba991f14433797a8e6e861762595": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5095,7 +5045,7 @@ "width": null } }, - "f9df9fb0ad7f4fe6b179e8db8621c60f": { + "dc8144a4608441f5baad14d16d57786b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5147,6 +5097,48 @@ "visibility": null, "width": null } + }, + "e7f294d203864e0e9c5f6c2b4e5fb3d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ebd7ac91367148e2afe6a27320bdd648": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d6d49ce25f0419788eb3168606f568d", + "IPY_MODEL_b3715480365745f09fda9c8cb652a538", + "IPY_MODEL_8e817c3d82cd42f2812de96ecc4a20b5" + ], + "layout": "IPY_MODEL_64b6b27f928d436ba4403ed9f9c61077", + "tabbable": null, + "tooltip": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index b7c82c939..25a1a7095 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:32.925528Z", - "iopub.status.busy": "2024-07-09T06:26:32.925364Z", - "iopub.status.idle": "2024-07-09T06:26:34.040278Z", - "shell.execute_reply": "2024-07-09T06:26:34.039721Z" + "iopub.execute_input": "2024-07-11T23:30:03.202811Z", + "iopub.status.busy": "2024-07-11T23:30:03.202303Z", + "iopub.status.idle": "2024-07-11T23:30:04.351501Z", + "shell.execute_reply": "2024-07-11T23:30:04.350951Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.042937Z", - "iopub.status.busy": "2024-07-09T06:26:34.042544Z", - "iopub.status.idle": "2024-07-09T06:26:34.045384Z", - "shell.execute_reply": "2024-07-09T06:26:34.044944Z" + "iopub.execute_input": "2024-07-11T23:30:04.354210Z", + "iopub.status.busy": "2024-07-11T23:30:04.353666Z", + "iopub.status.idle": "2024-07-11T23:30:04.356586Z", + "shell.execute_reply": "2024-07-11T23:30:04.356113Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.047662Z", - "iopub.status.busy": "2024-07-09T06:26:34.047230Z", - "iopub.status.idle": "2024-07-09T06:26:34.058799Z", - "shell.execute_reply": "2024-07-09T06:26:34.058355Z" + "iopub.execute_input": "2024-07-11T23:30:04.358687Z", + "iopub.status.busy": "2024-07-11T23:30:04.358503Z", + "iopub.status.idle": "2024-07-11T23:30:04.370267Z", + "shell.execute_reply": "2024-07-11T23:30:04.369774Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.060975Z", - "iopub.status.busy": "2024-07-09T06:26:34.060630Z", - "iopub.status.idle": "2024-07-09T06:26:39.033668Z", - "shell.execute_reply": "2024-07-09T06:26:39.033084Z" + "iopub.execute_input": "2024-07-11T23:30:04.372297Z", + "iopub.status.busy": "2024-07-11T23:30:04.371969Z", + "iopub.status.idle": "2024-07-11T23:30:09.431431Z", + "shell.execute_reply": "2024-07-11T23:30:09.430933Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 593067553..c2e042b26 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:41.303187Z", - "iopub.status.busy": "2024-07-09T06:26:41.302823Z", - "iopub.status.idle": "2024-07-09T06:26:42.450257Z", - "shell.execute_reply": "2024-07-09T06:26:42.449747Z" + "iopub.execute_input": "2024-07-11T23:30:11.597225Z", + "iopub.status.busy": "2024-07-11T23:30:11.597046Z", + "iopub.status.idle": "2024-07-11T23:30:12.748736Z", + "shell.execute_reply": "2024-07-11T23:30:12.748108Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:42.453168Z", - "iopub.status.busy": "2024-07-09T06:26:42.452624Z", - "iopub.status.idle": "2024-07-09T06:26:42.456109Z", - "shell.execute_reply": "2024-07-09T06:26:42.455577Z" + "iopub.execute_input": "2024-07-11T23:30:12.751671Z", + "iopub.status.busy": "2024-07-11T23:30:12.751390Z", + "iopub.status.idle": "2024-07-11T23:30:12.754832Z", + "shell.execute_reply": "2024-07-11T23:30:12.754358Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:42.458324Z", - "iopub.status.busy": "2024-07-09T06:26:42.457999Z", - "iopub.status.idle": "2024-07-09T06:26:45.758135Z", - "shell.execute_reply": "2024-07-09T06:26:45.757518Z" + "iopub.execute_input": "2024-07-11T23:30:12.756788Z", + "iopub.status.busy": "2024-07-11T23:30:12.756605Z", + "iopub.status.idle": "2024-07-11T23:30:16.158299Z", + "shell.execute_reply": "2024-07-11T23:30:16.157575Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.761341Z", - "iopub.status.busy": "2024-07-09T06:26:45.760502Z", - "iopub.status.idle": "2024-07-09T06:26:45.799809Z", - "shell.execute_reply": "2024-07-09T06:26:45.799118Z" + "iopub.execute_input": "2024-07-11T23:30:16.161420Z", + "iopub.status.busy": "2024-07-11T23:30:16.160692Z", + "iopub.status.idle": "2024-07-11T23:30:16.206630Z", + "shell.execute_reply": "2024-07-11T23:30:16.205967Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.802392Z", - "iopub.status.busy": "2024-07-09T06:26:45.802142Z", - "iopub.status.idle": "2024-07-09T06:26:45.837536Z", - "shell.execute_reply": "2024-07-09T06:26:45.836818Z" + "iopub.execute_input": "2024-07-11T23:30:16.209182Z", + "iopub.status.busy": "2024-07-11T23:30:16.208927Z", + "iopub.status.idle": "2024-07-11T23:30:16.250637Z", + "shell.execute_reply": "2024-07-11T23:30:16.249848Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.840174Z", - "iopub.status.busy": "2024-07-09T06:26:45.839915Z", - "iopub.status.idle": "2024-07-09T06:26:45.842992Z", - "shell.execute_reply": "2024-07-09T06:26:45.842523Z" + "iopub.execute_input": "2024-07-11T23:30:16.253766Z", + "iopub.status.busy": "2024-07-11T23:30:16.253295Z", + "iopub.status.idle": "2024-07-11T23:30:16.256871Z", + "shell.execute_reply": "2024-07-11T23:30:16.256317Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.845075Z", - "iopub.status.busy": "2024-07-09T06:26:45.844811Z", - "iopub.status.idle": "2024-07-09T06:26:45.847393Z", - "shell.execute_reply": "2024-07-09T06:26:45.846951Z" + "iopub.execute_input": "2024-07-11T23:30:16.259302Z", + "iopub.status.busy": "2024-07-11T23:30:16.258796Z", + "iopub.status.idle": "2024-07-11T23:30:16.261782Z", + "shell.execute_reply": "2024-07-11T23:30:16.261321Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.849512Z", - "iopub.status.busy": "2024-07-09T06:26:45.849230Z", - "iopub.status.idle": "2024-07-09T06:26:45.873850Z", - "shell.execute_reply": "2024-07-09T06:26:45.873252Z" + "iopub.execute_input": "2024-07-11T23:30:16.264031Z", + "iopub.status.busy": "2024-07-11T23:30:16.263690Z", + "iopub.status.idle": "2024-07-11T23:30:16.291128Z", + "shell.execute_reply": "2024-07-11T23:30:16.290558Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", + "model_id": "251a33187aa94b1aa4699b49955d8a68", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "684088a7b56b4b3aa39b109dfa860ac6", + "model_id": "691c357de3a04b04a6a63d1b80ba4600", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.880372Z", - "iopub.status.busy": "2024-07-09T06:26:45.879962Z", - "iopub.status.idle": "2024-07-09T06:26:45.886615Z", - "shell.execute_reply": "2024-07-09T06:26:45.886081Z" + "iopub.execute_input": "2024-07-11T23:30:16.295999Z", + "iopub.status.busy": "2024-07-11T23:30:16.295544Z", + "iopub.status.idle": "2024-07-11T23:30:16.302377Z", + "shell.execute_reply": "2024-07-11T23:30:16.301810Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.888785Z", - "iopub.status.busy": "2024-07-09T06:26:45.888399Z", - "iopub.status.idle": "2024-07-09T06:26:45.891884Z", - "shell.execute_reply": "2024-07-09T06:26:45.891348Z" + "iopub.execute_input": "2024-07-11T23:30:16.304391Z", + "iopub.status.busy": "2024-07-11T23:30:16.304088Z", + "iopub.status.idle": "2024-07-11T23:30:16.307642Z", + "shell.execute_reply": "2024-07-11T23:30:16.307168Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.893965Z", - "iopub.status.busy": "2024-07-09T06:26:45.893580Z", - "iopub.status.idle": "2024-07-09T06:26:45.899933Z", - "shell.execute_reply": "2024-07-09T06:26:45.899439Z" + "iopub.execute_input": "2024-07-11T23:30:16.309629Z", + "iopub.status.busy": "2024-07-11T23:30:16.309352Z", + "iopub.status.idle": "2024-07-11T23:30:16.316308Z", + "shell.execute_reply": "2024-07-11T23:30:16.315839Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.901957Z", - "iopub.status.busy": "2024-07-09T06:26:45.901564Z", - "iopub.status.idle": "2024-07-09T06:26:45.938412Z", - "shell.execute_reply": "2024-07-09T06:26:45.937735Z" + "iopub.execute_input": "2024-07-11T23:30:16.318494Z", + "iopub.status.busy": "2024-07-11T23:30:16.318066Z", + "iopub.status.idle": "2024-07-11T23:30:16.360691Z", + "shell.execute_reply": "2024-07-11T23:30:16.359941Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.941344Z", - "iopub.status.busy": "2024-07-09T06:26:45.940842Z", - "iopub.status.idle": "2024-07-09T06:26:45.977181Z", - "shell.execute_reply": "2024-07-09T06:26:45.976594Z" + "iopub.execute_input": "2024-07-11T23:30:16.363298Z", + "iopub.status.busy": "2024-07-11T23:30:16.363052Z", + "iopub.status.idle": "2024-07-11T23:30:16.405028Z", + "shell.execute_reply": "2024-07-11T23:30:16.404381Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.979821Z", - "iopub.status.busy": "2024-07-09T06:26:45.979575Z", - "iopub.status.idle": "2024-07-09T06:26:46.104854Z", - "shell.execute_reply": "2024-07-09T06:26:46.104267Z" + "iopub.execute_input": "2024-07-11T23:30:16.407917Z", + "iopub.status.busy": "2024-07-11T23:30:16.407590Z", + "iopub.status.idle": "2024-07-11T23:30:16.542286Z", + "shell.execute_reply": "2024-07-11T23:30:16.541583Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:46.107771Z", - "iopub.status.busy": "2024-07-09T06:26:46.106984Z", - "iopub.status.idle": "2024-07-09T06:26:49.148445Z", - "shell.execute_reply": "2024-07-09T06:26:49.147812Z" + "iopub.execute_input": "2024-07-11T23:30:16.544989Z", + "iopub.status.busy": "2024-07-11T23:30:16.544395Z", + "iopub.status.idle": "2024-07-11T23:30:19.643394Z", + "shell.execute_reply": "2024-07-11T23:30:19.642687Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.150871Z", - "iopub.status.busy": "2024-07-09T06:26:49.150502Z", - "iopub.status.idle": "2024-07-09T06:26:49.209147Z", - "shell.execute_reply": "2024-07-09T06:26:49.208576Z" + "iopub.execute_input": "2024-07-11T23:30:19.645683Z", + "iopub.status.busy": "2024-07-11T23:30:19.645485Z", + "iopub.status.idle": "2024-07-11T23:30:19.704541Z", + "shell.execute_reply": "2024-07-11T23:30:19.703920Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.211500Z", - "iopub.status.busy": "2024-07-09T06:26:49.211164Z", - "iopub.status.idle": "2024-07-09T06:26:49.251723Z", - "shell.execute_reply": "2024-07-09T06:26:49.251225Z" + "iopub.execute_input": "2024-07-11T23:30:19.706625Z", + "iopub.status.busy": "2024-07-11T23:30:19.706436Z", + "iopub.status.idle": "2024-07-11T23:30:19.747422Z", + "shell.execute_reply": "2024-07-11T23:30:19.746814Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "a54c40cb", + "id": "6a908f9e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "bab2f717", + "id": "b3be3fac", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "4a53b370", + "id": "7f19d55a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "209659fa", + "id": "b4d3770f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.253937Z", - "iopub.status.busy": "2024-07-09T06:26:49.253593Z", - "iopub.status.idle": "2024-07-09T06:26:49.261348Z", - "shell.execute_reply": "2024-07-09T06:26:49.260803Z" + "iopub.execute_input": "2024-07-11T23:30:19.749595Z", + "iopub.status.busy": "2024-07-11T23:30:19.749399Z", + "iopub.status.idle": "2024-07-11T23:30:19.757264Z", + "shell.execute_reply": "2024-07-11T23:30:19.756681Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "c433c793", + "id": "6e8928b8", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "74646b5a", + "id": "d3d07254", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.263459Z", - "iopub.status.busy": "2024-07-09T06:26:49.263127Z", - "iopub.status.idle": "2024-07-09T06:26:49.282109Z", - "shell.execute_reply": "2024-07-09T06:26:49.281556Z" + "iopub.execute_input": "2024-07-11T23:30:19.759479Z", + "iopub.status.busy": "2024-07-11T23:30:19.759147Z", + "iopub.status.idle": "2024-07-11T23:30:19.778475Z", + "shell.execute_reply": "2024-07-11T23:30:19.777978Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "9a0f1590", + "id": "a8c210b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.284265Z", - "iopub.status.busy": "2024-07-09T06:26:49.283854Z", - "iopub.status.idle": "2024-07-09T06:26:49.287329Z", - "shell.execute_reply": "2024-07-09T06:26:49.286782Z" + "iopub.execute_input": "2024-07-11T23:30:19.780727Z", + "iopub.status.busy": "2024-07-11T23:30:19.780285Z", + "iopub.status.idle": "2024-07-11T23:30:19.783595Z", + "shell.execute_reply": "2024-07-11T23:30:19.783124Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06e039af78aa4922a7a5727f3929196b": { + "0591fd4eb5cd45ef8d6531b43eb0049a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1675,48 @@ "width": null } }, - "24abf0a07e174ecfb6ec768926bd9a35": { + "0ca1df28d2f54974acc1c60aa2f6f0c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d24b3d0a5d4148aab16f7c5041edcc34", + "placeholder": "​", + "style": "IPY_MODEL_1e47d5846da9416f9663e5b531ee591b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "1d3f528bc6b24baa82e1fbd36df70215": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1e47d5846da9416f9663e5b531ee591b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1693,7 +1734,127 @@ "text_color": null } }, - "2b835234c6594eaa9d659e33328d4ec6": { + "251a33187aa94b1aa4699b49955d8a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ca1df28d2f54974acc1c60aa2f6f0c4", + "IPY_MODEL_c4a6d9097c5d406884257c785cb32651", + "IPY_MODEL_29c365a7f7b14ecfa29f403bea0f1a68" + ], + "layout": "IPY_MODEL_ef07231bab74412c90b67fa685b78748", + "tabbable": null, + "tooltip": null + } + }, + "29c365a7f7b14ecfa29f403bea0f1a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5674f7be42a41deb9cb07e4a84a2b29", + "placeholder": "​", + "style": "IPY_MODEL_2d5009b0ae9d4048aeb908da37f082d2", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1018306.83it/s]" + } + }, + "2d5009b0ae9d4048aeb908da37f082d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3fda85302ee1491199f4f4c65e4bcf91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f89245d109e4e77af953572b3feb551": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54bec5aadcd74d59a9ff64eb0659ec9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e26cc178077645dd939cef214bcc45a7", + "placeholder": "​", + "style": "IPY_MODEL_d2f171bdcd77465fa33736e170b60bc1", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "567474096a2e4f01adcc1ae4ef797a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1746,80 +1907,57 @@ "width": null } }, - "3e1a0cbaae1e45e19806d88ecdce7389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", - "IPY_MODEL_d3065c15065244f0a790856a85909914", - "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" - ], - "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", - "tabbable": null, - "tooltip": null - } - }, - "49c52b91517445ea95a2cdd6bcf7b607": { + "5ef34e95b4074e0f8379225c0d5cee90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", - "placeholder": "​", - "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", + "layout": "IPY_MODEL_567474096a2e4f01adcc1ae4ef797a0e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3fda85302ee1491199f4f4c65e4bcf91", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1540041.86it/s]" + "value": 50.0 } }, - "4a2ecebbfc494ed9b2bada7d47085eaa": { + "691c357de3a04b04a6a63d1b80ba4600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54bec5aadcd74d59a9ff64eb0659ec9b", + "IPY_MODEL_5ef34e95b4074e0f8379225c0d5cee90", + "IPY_MODEL_ed0422d63c8d4d59ac6a32a29a729370" + ], + "layout": "IPY_MODEL_73aecd6fd93c4da9943de0f869686b56", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "4fbbfa9cd03647f4813a04fc8a4abc42": { + "73aecd6fd93c4da9943de0f869686b56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,7 +2010,33 @@ "width": null } }, - "5fcc8c6298f24a3fbf1ca1a58c292bd3": { + "c4a6d9097c5d406884257c785cb32651": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff046e1328004b7fb6c1d7656c1bb099", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f89245d109e4e77af953572b3feb551", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "d24b3d0a5d4148aab16f7c5041edcc34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,7 +2089,25 @@ "width": null } }, - "66c7a500b9334da2b1849d287af9b402": { + "d2f171bdcd77465fa33736e170b60bc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e26cc178077645dd939cef214bcc45a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,49 +2160,7 @@ "width": null } }, - "684088a7b56b4b3aa39b109dfa860ac6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", - "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", - "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" - ], - "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", - "tabbable": null, - "tooltip": null - } - }, - "6a7594e4ad2a4a2f97e56b5e1a6a9890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7420a4a93f6b475c9704a92f12d85f23": { + "ed0422d63c8d4d59ac6a32a29a729370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2035,15 +2175,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", + "layout": "IPY_MODEL_0591fd4eb5cd45ef8d6531b43eb0049a", "placeholder": "​", - "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", + "style": "IPY_MODEL_1d3f528bc6b24baa82e1fbd36df70215", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1046300.30it/s]" + "value": " 10000/? [00:00<00:00, 1353044.94it/s]" } }, - "7ec4490b5e064efd8d912a372922e930": { + "ef07231bab74412c90b67fa685b78748": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,23 +2236,7 @@ "width": null } }, - "8d038adf74b94c00ba237beeafd03a45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b618cbdb66e74802ac612b08fdd271ca": { + "f5674f7be42a41deb9cb07e4a84a2b29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2165,7 +2289,7 @@ "width": null } }, - "bf6180ca73df49bea8de92466f822aab": { + "ff046e1328004b7fb6c1d7656c1bb099": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2217,130 +2341,6 @@ "visibility": null, "width": null } - }, - "c26ba877617a46b5983aa98f97f6f4e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3065c15065244f0a790856a85909914": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "e22f6064eadd4807ae9f756d8590121c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e2ae6b9df4f8490b96524164e46e65fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", - "placeholder": "​", - "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ea0eb1e345874ebda4377832a5d148a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", - "placeholder": "​", - "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "ecb5b9b407b34ccdac02fdba74200b01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 1a1804c33..5bc7a9322 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:53.572917Z", - "iopub.status.busy": "2024-07-09T06:26:53.572738Z", - "iopub.status.idle": "2024-07-09T06:26:54.710376Z", - "shell.execute_reply": "2024-07-09T06:26:54.709717Z" + "iopub.execute_input": "2024-07-11T23:30:23.188652Z", + "iopub.status.busy": "2024-07-11T23:30:23.188483Z", + "iopub.status.idle": "2024-07-11T23:30:24.378195Z", + "shell.execute_reply": "2024-07-11T23:30:24.377594Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.713150Z", - "iopub.status.busy": "2024-07-09T06:26:54.712711Z", - "iopub.status.idle": "2024-07-09T06:26:54.717207Z", - "shell.execute_reply": "2024-07-09T06:26:54.716666Z" + "iopub.execute_input": "2024-07-11T23:30:24.380776Z", + "iopub.status.busy": "2024-07-11T23:30:24.380375Z", + "iopub.status.idle": "2024-07-11T23:30:24.384076Z", + "shell.execute_reply": "2024-07-11T23:30:24.383621Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.719478Z", - "iopub.status.busy": "2024-07-09T06:26:54.719131Z", - "iopub.status.idle": "2024-07-09T06:26:54.915038Z", - "shell.execute_reply": "2024-07-09T06:26:54.914515Z" + "iopub.execute_input": "2024-07-11T23:30:24.386255Z", + "iopub.status.busy": "2024-07-11T23:30:24.385894Z", + "iopub.status.idle": "2024-07-11T23:30:24.661502Z", + "shell.execute_reply": "2024-07-11T23:30:24.660982Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.917264Z", - "iopub.status.busy": "2024-07-09T06:26:54.916924Z", - "iopub.status.idle": "2024-07-09T06:26:54.922778Z", - "shell.execute_reply": "2024-07-09T06:26:54.922239Z" + "iopub.execute_input": "2024-07-11T23:30:24.663704Z", + "iopub.status.busy": "2024-07-11T23:30:24.663405Z", + "iopub.status.idle": "2024-07-11T23:30:24.669218Z", + "shell.execute_reply": "2024-07-11T23:30:24.668753Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.925001Z", - "iopub.status.busy": "2024-07-09T06:26:54.924597Z", - "iopub.status.idle": "2024-07-09T06:26:54.931679Z", - "shell.execute_reply": "2024-07-09T06:26:54.931113Z" + "iopub.execute_input": "2024-07-11T23:30:24.671444Z", + "iopub.status.busy": "2024-07-11T23:30:24.671086Z", + "iopub.status.idle": "2024-07-11T23:30:24.677899Z", + "shell.execute_reply": "2024-07-11T23:30:24.677433Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.933695Z", - "iopub.status.busy": "2024-07-09T06:26:54.933374Z", - "iopub.status.idle": "2024-07-09T06:26:54.937844Z", - "shell.execute_reply": "2024-07-09T06:26:54.937411Z" + "iopub.execute_input": "2024-07-11T23:30:24.679931Z", + "iopub.status.busy": "2024-07-11T23:30:24.679592Z", + "iopub.status.idle": "2024-07-11T23:30:24.684402Z", + "shell.execute_reply": "2024-07-11T23:30:24.683875Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.939828Z", - "iopub.status.busy": "2024-07-09T06:26:54.939504Z", - "iopub.status.idle": "2024-07-09T06:26:54.945245Z", - "shell.execute_reply": "2024-07-09T06:26:54.944792Z" + "iopub.execute_input": "2024-07-11T23:30:24.686431Z", + "iopub.status.busy": "2024-07-11T23:30:24.686096Z", + "iopub.status.idle": "2024-07-11T23:30:24.691640Z", + "shell.execute_reply": "2024-07-11T23:30:24.691191Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.947250Z", - "iopub.status.busy": "2024-07-09T06:26:54.946896Z", - "iopub.status.idle": "2024-07-09T06:26:54.950932Z", - "shell.execute_reply": "2024-07-09T06:26:54.950488Z" + "iopub.execute_input": "2024-07-11T23:30:24.693642Z", + "iopub.status.busy": "2024-07-11T23:30:24.693369Z", + "iopub.status.idle": "2024-07-11T23:30:24.697249Z", + "shell.execute_reply": "2024-07-11T23:30:24.696802Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.952888Z", - "iopub.status.busy": "2024-07-09T06:26:54.952594Z", - "iopub.status.idle": "2024-07-09T06:26:55.016618Z", - "shell.execute_reply": "2024-07-09T06:26:55.015980Z" + "iopub.execute_input": "2024-07-11T23:30:24.699250Z", + "iopub.status.busy": "2024-07-11T23:30:24.698915Z", + "iopub.status.idle": "2024-07-11T23:30:24.764580Z", + "shell.execute_reply": "2024-07-11T23:30:24.763955Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.019431Z", - "iopub.status.busy": "2024-07-09T06:26:55.018865Z", - "iopub.status.idle": "2024-07-09T06:26:55.029533Z", - "shell.execute_reply": "2024-07-09T06:26:55.029057Z" + "iopub.execute_input": "2024-07-11T23:30:24.767272Z", + "iopub.status.busy": "2024-07-11T23:30:24.767059Z", + "iopub.status.idle": "2024-07-11T23:30:24.779673Z", + "shell.execute_reply": "2024-07-11T23:30:24.779172Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.032677Z", - "iopub.status.busy": "2024-07-09T06:26:55.031768Z", - "iopub.status.idle": "2024-07-09T06:26:55.053007Z", - "shell.execute_reply": "2024-07-09T06:26:55.052525Z" + "iopub.execute_input": "2024-07-11T23:30:24.783317Z", + "iopub.status.busy": "2024-07-11T23:30:24.782169Z", + "iopub.status.idle": "2024-07-11T23:30:24.804583Z", + "shell.execute_reply": "2024-07-11T23:30:24.803960Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.056439Z", - "iopub.status.busy": "2024-07-09T06:26:55.055527Z", - "iopub.status.idle": "2024-07-09T06:26:55.061337Z", - "shell.execute_reply": "2024-07-09T06:26:55.060850Z" + "iopub.execute_input": "2024-07-11T23:30:24.807330Z", + "iopub.status.busy": "2024-07-11T23:30:24.806950Z", + "iopub.status.idle": "2024-07-11T23:30:24.812849Z", + "shell.execute_reply": "2024-07-11T23:30:24.812354Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.064742Z", - "iopub.status.busy": "2024-07-09T06:26:55.063844Z", - "iopub.status.idle": "2024-07-09T06:26:55.069832Z", - "shell.execute_reply": "2024-07-09T06:26:55.069351Z" + "iopub.execute_input": "2024-07-11T23:30:24.815713Z", + "iopub.status.busy": "2024-07-11T23:30:24.815334Z", + "iopub.status.idle": "2024-07-11T23:30:24.821427Z", + "shell.execute_reply": "2024-07-11T23:30:24.820928Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.073279Z", - "iopub.status.busy": "2024-07-09T06:26:55.072375Z", - "iopub.status.idle": "2024-07-09T06:26:55.083605Z", - "shell.execute_reply": "2024-07-09T06:26:55.083211Z" + "iopub.execute_input": "2024-07-11T23:30:24.824377Z", + "iopub.status.busy": "2024-07-11T23:30:24.823898Z", + "iopub.status.idle": "2024-07-11T23:30:24.833236Z", + "shell.execute_reply": "2024-07-11T23:30:24.832804Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.086287Z", - "iopub.status.busy": "2024-07-09T06:26:55.085572Z", - "iopub.status.idle": "2024-07-09T06:26:55.090541Z", - "shell.execute_reply": "2024-07-09T06:26:55.090006Z" + "iopub.execute_input": "2024-07-11T23:30:24.835400Z", + "iopub.status.busy": "2024-07-11T23:30:24.835046Z", + "iopub.status.idle": "2024-07-11T23:30:24.839604Z", + "shell.execute_reply": "2024-07-11T23:30:24.839197Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.092949Z", - "iopub.status.busy": "2024-07-09T06:26:55.092629Z", - "iopub.status.idle": "2024-07-09T06:26:55.197433Z", - "shell.execute_reply": "2024-07-09T06:26:55.196909Z" + "iopub.execute_input": "2024-07-11T23:30:24.841836Z", + "iopub.status.busy": "2024-07-11T23:30:24.841401Z", + "iopub.status.idle": "2024-07-11T23:30:24.954300Z", + "shell.execute_reply": "2024-07-11T23:30:24.953648Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.199599Z", - "iopub.status.busy": "2024-07-09T06:26:55.199328Z", - "iopub.status.idle": "2024-07-09T06:26:55.205311Z", - "shell.execute_reply": "2024-07-09T06:26:55.204815Z" + "iopub.execute_input": "2024-07-11T23:30:24.957030Z", + "iopub.status.busy": "2024-07-11T23:30:24.956636Z", + "iopub.status.idle": "2024-07-11T23:30:24.963863Z", + "shell.execute_reply": "2024-07-11T23:30:24.963368Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.207624Z", - "iopub.status.busy": "2024-07-09T06:26:55.207315Z", - "iopub.status.idle": "2024-07-09T06:26:57.128251Z", - "shell.execute_reply": "2024-07-09T06:26:57.127642Z" + "iopub.execute_input": "2024-07-11T23:30:24.966401Z", + "iopub.status.busy": "2024-07-11T23:30:24.966004Z", + "iopub.status.idle": "2024-07-11T23:30:27.020806Z", + "shell.execute_reply": "2024-07-11T23:30:27.020161Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.131390Z", - "iopub.status.busy": "2024-07-09T06:26:57.130806Z", - "iopub.status.idle": "2024-07-09T06:26:57.144118Z", - "shell.execute_reply": "2024-07-09T06:26:57.143599Z" + "iopub.execute_input": "2024-07-11T23:30:27.024340Z", + "iopub.status.busy": "2024-07-11T23:30:27.023084Z", + "iopub.status.idle": "2024-07-11T23:30:27.038209Z", + "shell.execute_reply": "2024-07-11T23:30:27.037679Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.146831Z", - "iopub.status.busy": "2024-07-09T06:26:57.146463Z", - "iopub.status.idle": "2024-07-09T06:26:57.149377Z", - "shell.execute_reply": "2024-07-09T06:26:57.148891Z" + "iopub.execute_input": "2024-07-11T23:30:27.041739Z", + "iopub.status.busy": "2024-07-11T23:30:27.040786Z", + "iopub.status.idle": "2024-07-11T23:30:27.044827Z", + "shell.execute_reply": "2024-07-11T23:30:27.044330Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.151654Z", - "iopub.status.busy": "2024-07-09T06:26:57.151283Z", - "iopub.status.idle": "2024-07-09T06:26:57.155840Z", - "shell.execute_reply": "2024-07-09T06:26:57.155317Z" + "iopub.execute_input": "2024-07-11T23:30:27.048287Z", + "iopub.status.busy": "2024-07-11T23:30:27.047359Z", + "iopub.status.idle": "2024-07-11T23:30:27.052926Z", + "shell.execute_reply": "2024-07-11T23:30:27.052408Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.158157Z", - "iopub.status.busy": "2024-07-09T06:26:57.157788Z", - "iopub.status.idle": "2024-07-09T06:26:57.167772Z", - "shell.execute_reply": "2024-07-09T06:26:57.167300Z" + "iopub.execute_input": "2024-07-11T23:30:27.056436Z", + "iopub.status.busy": "2024-07-11T23:30:27.055503Z", + "iopub.status.idle": "2024-07-11T23:30:27.067420Z", + "shell.execute_reply": "2024-07-11T23:30:27.066930Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.170046Z", - "iopub.status.busy": "2024-07-09T06:26:57.169694Z", - "iopub.status.idle": "2024-07-09T06:26:57.642079Z", - "shell.execute_reply": "2024-07-09T06:26:57.641537Z" + "iopub.execute_input": "2024-07-11T23:30:27.070842Z", + "iopub.status.busy": "2024-07-11T23:30:27.069889Z", + "iopub.status.idle": "2024-07-11T23:30:27.609004Z", + "shell.execute_reply": "2024-07-11T23:30:27.608435Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.644886Z", - "iopub.status.busy": "2024-07-09T06:26:57.644506Z", - "iopub.status.idle": "2024-07-09T06:26:57.765208Z", - "shell.execute_reply": "2024-07-09T06:26:57.764592Z" + "iopub.execute_input": "2024-07-11T23:30:27.612582Z", + "iopub.status.busy": "2024-07-11T23:30:27.611508Z", + "iopub.status.idle": "2024-07-11T23:30:27.747332Z", + "shell.execute_reply": "2024-07-11T23:30:27.746630Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.767934Z", - "iopub.status.busy": "2024-07-09T06:26:57.767539Z", - "iopub.status.idle": "2024-07-09T06:26:57.774227Z", - "shell.execute_reply": "2024-07-09T06:26:57.773733Z" + "iopub.execute_input": "2024-07-11T23:30:27.751147Z", + "iopub.status.busy": "2024-07-11T23:30:27.750174Z", + "iopub.status.idle": "2024-07-11T23:30:27.758952Z", + "shell.execute_reply": "2024-07-11T23:30:27.758433Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.777381Z", - "iopub.status.busy": "2024-07-09T06:26:57.776332Z", - "iopub.status.idle": "2024-07-09T06:26:57.784838Z", - "shell.execute_reply": "2024-07-09T06:26:57.784346Z" + "iopub.execute_input": "2024-07-11T23:30:27.762558Z", + "iopub.status.busy": "2024-07-11T23:30:27.761599Z", + "iopub.status.idle": "2024-07-11T23:30:27.769609Z", + "shell.execute_reply": "2024-07-11T23:30:27.769099Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.788740Z", - "iopub.status.busy": "2024-07-09T06:26:57.787559Z", - "iopub.status.idle": "2024-07-09T06:26:57.795543Z", - "shell.execute_reply": "2024-07-09T06:26:57.795055Z" + "iopub.execute_input": "2024-07-11T23:30:27.773109Z", + "iopub.status.busy": "2024-07-11T23:30:27.772177Z", + "iopub.status.idle": "2024-07-11T23:30:27.779528Z", + "shell.execute_reply": "2024-07-11T23:30:27.779029Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.799183Z", - "iopub.status.busy": "2024-07-09T06:26:57.798006Z", - "iopub.status.idle": "2024-07-09T06:26:57.804472Z", - "shell.execute_reply": "2024-07-09T06:26:57.803989Z" + "iopub.execute_input": "2024-07-11T23:30:27.783001Z", + "iopub.status.busy": "2024-07-11T23:30:27.782081Z", + "iopub.status.idle": "2024-07-11T23:30:27.788134Z", + "shell.execute_reply": "2024-07-11T23:30:27.787639Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.808096Z", - "iopub.status.busy": "2024-07-09T06:26:57.807195Z", - "iopub.status.idle": "2024-07-09T06:26:57.812308Z", - "shell.execute_reply": "2024-07-09T06:26:57.811777Z" + "iopub.execute_input": "2024-07-11T23:30:27.790681Z", + "iopub.status.busy": "2024-07-11T23:30:27.790503Z", + "iopub.status.idle": "2024-07-11T23:30:27.796116Z", + "shell.execute_reply": "2024-07-11T23:30:27.795499Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.814541Z", - "iopub.status.busy": "2024-07-09T06:26:57.814291Z", - "iopub.status.idle": "2024-07-09T06:26:57.894429Z", - "shell.execute_reply": "2024-07-09T06:26:57.893893Z" + "iopub.execute_input": "2024-07-11T23:30:27.798287Z", + "iopub.status.busy": "2024-07-11T23:30:27.798109Z", + "iopub.status.idle": "2024-07-11T23:30:27.878742Z", + "shell.execute_reply": "2024-07-11T23:30:27.878179Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.896631Z", - "iopub.status.busy": "2024-07-09T06:26:57.896354Z", - "iopub.status.idle": "2024-07-09T06:26:57.906205Z", - "shell.execute_reply": "2024-07-09T06:26:57.905633Z" + "iopub.execute_input": "2024-07-11T23:30:27.881131Z", + "iopub.status.busy": "2024-07-11T23:30:27.880774Z", + "iopub.status.idle": "2024-07-11T23:30:27.890590Z", + "shell.execute_reply": "2024-07-11T23:30:27.890042Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.910159Z", - "iopub.status.busy": "2024-07-09T06:26:57.909684Z", - "iopub.status.idle": "2024-07-09T06:26:57.912488Z", - "shell.execute_reply": "2024-07-09T06:26:57.912033Z" + "iopub.execute_input": "2024-07-11T23:30:27.893705Z", + "iopub.status.busy": "2024-07-11T23:30:27.892918Z", + "iopub.status.idle": "2024-07-11T23:30:27.896299Z", + "shell.execute_reply": "2024-07-11T23:30:27.895855Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.914998Z", - "iopub.status.busy": "2024-07-09T06:26:57.914575Z", - "iopub.status.idle": "2024-07-09T06:26:57.923907Z", - "shell.execute_reply": "2024-07-09T06:26:57.923469Z" + "iopub.execute_input": "2024-07-11T23:30:27.898408Z", + "iopub.status.busy": "2024-07-11T23:30:27.898077Z", + "iopub.status.idle": "2024-07-11T23:30:27.908114Z", + "shell.execute_reply": "2024-07-11T23:30:27.907670Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.925928Z", - "iopub.status.busy": "2024-07-09T06:26:57.925621Z", - "iopub.status.idle": "2024-07-09T06:26:57.932179Z", - "shell.execute_reply": "2024-07-09T06:26:57.931737Z" + "iopub.execute_input": "2024-07-11T23:30:27.910112Z", + "iopub.status.busy": "2024-07-11T23:30:27.909895Z", + "iopub.status.idle": "2024-07-11T23:30:27.916369Z", + "shell.execute_reply": "2024-07-11T23:30:27.915911Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.934245Z", - "iopub.status.busy": "2024-07-09T06:26:57.933861Z", - "iopub.status.idle": "2024-07-09T06:26:57.937104Z", - "shell.execute_reply": "2024-07-09T06:26:57.936671Z" + "iopub.execute_input": "2024-07-11T23:30:27.918412Z", + "iopub.status.busy": "2024-07-11T23:30:27.918060Z", + "iopub.status.idle": "2024-07-11T23:30:27.921488Z", + "shell.execute_reply": "2024-07-11T23:30:27.921009Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.938975Z", - "iopub.status.busy": "2024-07-09T06:26:57.938647Z", - "iopub.status.idle": "2024-07-09T06:27:01.641872Z", - "shell.execute_reply": "2024-07-09T06:27:01.641360Z" + "iopub.execute_input": "2024-07-11T23:30:27.923536Z", + "iopub.status.busy": "2024-07-11T23:30:27.923220Z", + "iopub.status.idle": "2024-07-11T23:30:31.984648Z", + "shell.execute_reply": "2024-07-11T23:30:31.984103Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:01.644959Z", - "iopub.status.busy": "2024-07-09T06:27:01.644089Z", - "iopub.status.idle": "2024-07-09T06:27:01.648019Z", - "shell.execute_reply": "2024-07-09T06:27:01.647564Z" + "iopub.execute_input": "2024-07-11T23:30:31.988318Z", + "iopub.status.busy": "2024-07-11T23:30:31.987392Z", + "iopub.status.idle": "2024-07-11T23:30:31.991474Z", + "shell.execute_reply": "2024-07-11T23:30:31.991025Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:01.649958Z", - "iopub.status.busy": "2024-07-09T06:27:01.649677Z", - "iopub.status.idle": "2024-07-09T06:27:01.652295Z", - "shell.execute_reply": "2024-07-09T06:27:01.651802Z" + "iopub.execute_input": "2024-07-11T23:30:31.993646Z", + "iopub.status.busy": "2024-07-11T23:30:31.993285Z", + "iopub.status.idle": "2024-07-11T23:30:31.997047Z", + "shell.execute_reply": "2024-07-11T23:30:31.996453Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index e7571dfc6..bbdde88ee 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:04.830463Z", - "iopub.status.busy": "2024-07-09T06:27:04.830294Z", - "iopub.status.idle": "2024-07-09T06:27:06.025206Z", - "shell.execute_reply": "2024-07-09T06:27:06.024596Z" + "iopub.execute_input": "2024-07-11T23:30:35.264803Z", + "iopub.status.busy": "2024-07-11T23:30:35.264307Z", + "iopub.status.idle": "2024-07-11T23:30:36.493496Z", + "shell.execute_reply": "2024-07-11T23:30:36.492965Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.027800Z", - "iopub.status.busy": "2024-07-09T06:27:06.027471Z", - "iopub.status.idle": "2024-07-09T06:27:06.212766Z", - "shell.execute_reply": "2024-07-09T06:27:06.212206Z" + "iopub.execute_input": "2024-07-11T23:30:36.496092Z", + "iopub.status.busy": "2024-07-11T23:30:36.495634Z", + "iopub.status.idle": "2024-07-11T23:30:36.685025Z", + "shell.execute_reply": "2024-07-11T23:30:36.684501Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.215365Z", - "iopub.status.busy": "2024-07-09T06:27:06.215033Z", - "iopub.status.idle": "2024-07-09T06:27:06.226517Z", - "shell.execute_reply": "2024-07-09T06:27:06.226088Z" + "iopub.execute_input": "2024-07-11T23:30:36.687632Z", + "iopub.status.busy": "2024-07-11T23:30:36.687336Z", + "iopub.status.idle": "2024-07-11T23:30:36.699138Z", + "shell.execute_reply": "2024-07-11T23:30:36.698702Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.228721Z", - "iopub.status.busy": "2024-07-09T06:27:06.228284Z", - "iopub.status.idle": "2024-07-09T06:27:06.463202Z", - "shell.execute_reply": "2024-07-09T06:27:06.462603Z" + "iopub.execute_input": "2024-07-11T23:30:36.701167Z", + "iopub.status.busy": "2024-07-11T23:30:36.700820Z", + "iopub.status.idle": "2024-07-11T23:30:36.942197Z", + "shell.execute_reply": "2024-07-11T23:30:36.941542Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.465737Z", - "iopub.status.busy": "2024-07-09T06:27:06.465380Z", - "iopub.status.idle": "2024-07-09T06:27:06.491353Z", - "shell.execute_reply": "2024-07-09T06:27:06.490841Z" + "iopub.execute_input": "2024-07-11T23:30:36.944497Z", + "iopub.status.busy": "2024-07-11T23:30:36.944303Z", + "iopub.status.idle": "2024-07-11T23:30:36.970585Z", + "shell.execute_reply": "2024-07-11T23:30:36.970080Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.493408Z", - "iopub.status.busy": "2024-07-09T06:27:06.493075Z", - "iopub.status.idle": "2024-07-09T06:27:08.559484Z", - "shell.execute_reply": "2024-07-09T06:27:08.558857Z" + "iopub.execute_input": "2024-07-11T23:30:36.972931Z", + "iopub.status.busy": "2024-07-11T23:30:36.972732Z", + "iopub.status.idle": "2024-07-11T23:30:39.218576Z", + "shell.execute_reply": "2024-07-11T23:30:39.217861Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:08.561982Z", - "iopub.status.busy": "2024-07-09T06:27:08.561454Z", - "iopub.status.idle": "2024-07-09T06:27:08.579506Z", - "shell.execute_reply": "2024-07-09T06:27:08.578938Z" + "iopub.execute_input": "2024-07-11T23:30:39.221370Z", + "iopub.status.busy": "2024-07-11T23:30:39.220809Z", + "iopub.status.idle": "2024-07-11T23:30:39.239032Z", + "shell.execute_reply": "2024-07-11T23:30:39.238501Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:08.581768Z", - "iopub.status.busy": "2024-07-09T06:27:08.581433Z", - "iopub.status.idle": "2024-07-09T06:27:10.041147Z", - "shell.execute_reply": "2024-07-09T06:27:10.040535Z" + "iopub.execute_input": "2024-07-11T23:30:39.241335Z", + "iopub.status.busy": "2024-07-11T23:30:39.240848Z", + "iopub.status.idle": "2024-07-11T23:30:40.875594Z", + "shell.execute_reply": "2024-07-11T23:30:40.874942Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.043766Z", - "iopub.status.busy": "2024-07-09T06:27:10.043148Z", - "iopub.status.idle": "2024-07-09T06:27:10.056923Z", - "shell.execute_reply": "2024-07-09T06:27:10.056388Z" + "iopub.execute_input": "2024-07-11T23:30:40.878730Z", + "iopub.status.busy": "2024-07-11T23:30:40.877863Z", + "iopub.status.idle": "2024-07-11T23:30:40.891772Z", + "shell.execute_reply": "2024-07-11T23:30:40.891273Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.059184Z", - "iopub.status.busy": "2024-07-09T06:27:10.058724Z", - "iopub.status.idle": "2024-07-09T06:27:10.131352Z", - "shell.execute_reply": "2024-07-09T06:27:10.130748Z" + "iopub.execute_input": "2024-07-11T23:30:40.894007Z", + "iopub.status.busy": "2024-07-11T23:30:40.893665Z", + "iopub.status.idle": "2024-07-11T23:30:40.981651Z", + "shell.execute_reply": "2024-07-11T23:30:40.981069Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.133987Z", - "iopub.status.busy": "2024-07-09T06:27:10.133447Z", - "iopub.status.idle": "2024-07-09T06:27:10.342019Z", - "shell.execute_reply": "2024-07-09T06:27:10.341476Z" + "iopub.execute_input": "2024-07-11T23:30:40.984135Z", + "iopub.status.busy": "2024-07-11T23:30:40.983728Z", + "iopub.status.idle": "2024-07-11T23:30:41.195885Z", + "shell.execute_reply": "2024-07-11T23:30:41.195212Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.344306Z", - "iopub.status.busy": "2024-07-09T06:27:10.343957Z", - "iopub.status.idle": "2024-07-09T06:27:10.361242Z", - "shell.execute_reply": "2024-07-09T06:27:10.360779Z" + "iopub.execute_input": "2024-07-11T23:30:41.198369Z", + "iopub.status.busy": "2024-07-11T23:30:41.197997Z", + "iopub.status.idle": "2024-07-11T23:30:41.215862Z", + "shell.execute_reply": "2024-07-11T23:30:41.215283Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.363517Z", - "iopub.status.busy": "2024-07-09T06:27:10.363117Z", - "iopub.status.idle": "2024-07-09T06:27:10.372893Z", - "shell.execute_reply": "2024-07-09T06:27:10.372453Z" + "iopub.execute_input": "2024-07-11T23:30:41.218216Z", + "iopub.status.busy": "2024-07-11T23:30:41.217763Z", + "iopub.status.idle": "2024-07-11T23:30:41.227794Z", + "shell.execute_reply": "2024-07-11T23:30:41.227344Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.375119Z", - "iopub.status.busy": "2024-07-09T06:27:10.374773Z", - "iopub.status.idle": "2024-07-09T06:27:10.461355Z", - "shell.execute_reply": "2024-07-09T06:27:10.460793Z" + "iopub.execute_input": "2024-07-11T23:30:41.229840Z", + "iopub.status.busy": "2024-07-11T23:30:41.229567Z", + "iopub.status.idle": "2024-07-11T23:30:41.328903Z", + "shell.execute_reply": "2024-07-11T23:30:41.328287Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.463772Z", - "iopub.status.busy": "2024-07-09T06:27:10.463410Z", - "iopub.status.idle": "2024-07-09T06:27:10.595934Z", - "shell.execute_reply": "2024-07-09T06:27:10.595287Z" + "iopub.execute_input": "2024-07-11T23:30:41.331534Z", + "iopub.status.busy": "2024-07-11T23:30:41.331213Z", + "iopub.status.idle": "2024-07-11T23:30:41.475505Z", + "shell.execute_reply": "2024-07-11T23:30:41.474914Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.598470Z", - "iopub.status.busy": "2024-07-09T06:27:10.598089Z", - "iopub.status.idle": "2024-07-09T06:27:10.601819Z", - "shell.execute_reply": "2024-07-09T06:27:10.601299Z" + "iopub.execute_input": "2024-07-11T23:30:41.478006Z", + "iopub.status.busy": "2024-07-11T23:30:41.477608Z", + "iopub.status.idle": "2024-07-11T23:30:41.481745Z", + "shell.execute_reply": "2024-07-11T23:30:41.481221Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.603912Z", - "iopub.status.busy": "2024-07-09T06:27:10.603638Z", - "iopub.status.idle": "2024-07-09T06:27:10.607432Z", - "shell.execute_reply": "2024-07-09T06:27:10.606860Z" + "iopub.execute_input": "2024-07-11T23:30:41.483979Z", + "iopub.status.busy": "2024-07-11T23:30:41.483636Z", + "iopub.status.idle": "2024-07-11T23:30:41.487356Z", + "shell.execute_reply": "2024-07-11T23:30:41.486793Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.609489Z", - "iopub.status.busy": "2024-07-09T06:27:10.609167Z", - "iopub.status.idle": "2024-07-09T06:27:10.645674Z", - "shell.execute_reply": "2024-07-09T06:27:10.645104Z" + "iopub.execute_input": "2024-07-11T23:30:41.489482Z", + "iopub.status.busy": "2024-07-11T23:30:41.489145Z", + "iopub.status.idle": "2024-07-11T23:30:41.525559Z", + "shell.execute_reply": "2024-07-11T23:30:41.525078Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.647737Z", - "iopub.status.busy": "2024-07-09T06:27:10.647426Z", - "iopub.status.idle": "2024-07-09T06:27:10.688357Z", - "shell.execute_reply": "2024-07-09T06:27:10.687867Z" + "iopub.execute_input": "2024-07-11T23:30:41.527582Z", + "iopub.status.busy": "2024-07-11T23:30:41.527331Z", + "iopub.status.idle": "2024-07-11T23:30:41.568384Z", + "shell.execute_reply": "2024-07-11T23:30:41.567799Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.690497Z", - "iopub.status.busy": "2024-07-09T06:27:10.690152Z", - "iopub.status.idle": "2024-07-09T06:27:10.784906Z", - "shell.execute_reply": "2024-07-09T06:27:10.784195Z" + "iopub.execute_input": "2024-07-11T23:30:41.570470Z", + "iopub.status.busy": "2024-07-11T23:30:41.570127Z", + "iopub.status.idle": "2024-07-11T23:30:41.675540Z", + "shell.execute_reply": "2024-07-11T23:30:41.674905Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.787438Z", - "iopub.status.busy": "2024-07-09T06:27:10.787205Z", - "iopub.status.idle": "2024-07-09T06:27:10.875324Z", - "shell.execute_reply": "2024-07-09T06:27:10.874533Z" + "iopub.execute_input": "2024-07-11T23:30:41.678360Z", + "iopub.status.busy": "2024-07-11T23:30:41.677952Z", + "iopub.status.idle": "2024-07-11T23:30:41.789805Z", + "shell.execute_reply": "2024-07-11T23:30:41.789236Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.877938Z", - "iopub.status.busy": "2024-07-09T06:27:10.877489Z", - "iopub.status.idle": "2024-07-09T06:27:11.089399Z", - "shell.execute_reply": "2024-07-09T06:27:11.088722Z" + "iopub.execute_input": "2024-07-11T23:30:41.792356Z", + "iopub.status.busy": "2024-07-11T23:30:41.791985Z", + "iopub.status.idle": "2024-07-11T23:30:42.004049Z", + "shell.execute_reply": "2024-07-11T23:30:42.003388Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.091873Z", - "iopub.status.busy": "2024-07-09T06:27:11.091658Z", - "iopub.status.idle": "2024-07-09T06:27:11.278736Z", - "shell.execute_reply": "2024-07-09T06:27:11.278122Z" + "iopub.execute_input": "2024-07-11T23:30:42.006376Z", + "iopub.status.busy": "2024-07-11T23:30:42.006024Z", + "iopub.status.idle": "2024-07-11T23:30:42.245802Z", + "shell.execute_reply": "2024-07-11T23:30:42.245141Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.281105Z", - "iopub.status.busy": "2024-07-09T06:27:11.280730Z", - "iopub.status.idle": "2024-07-09T06:27:11.286566Z", - "shell.execute_reply": "2024-07-09T06:27:11.286117Z" + "iopub.execute_input": "2024-07-11T23:30:42.248377Z", + "iopub.status.busy": "2024-07-11T23:30:42.248113Z", + "iopub.status.idle": "2024-07-11T23:30:42.254532Z", + "shell.execute_reply": "2024-07-11T23:30:42.254003Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.288560Z", - "iopub.status.busy": "2024-07-09T06:27:11.288235Z", - "iopub.status.idle": "2024-07-09T06:27:11.502240Z", - "shell.execute_reply": "2024-07-09T06:27:11.501640Z" + "iopub.execute_input": "2024-07-11T23:30:42.256644Z", + "iopub.status.busy": "2024-07-11T23:30:42.256283Z", + "iopub.status.idle": "2024-07-11T23:30:42.476429Z", + "shell.execute_reply": "2024-07-11T23:30:42.475835Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.504499Z", - "iopub.status.busy": "2024-07-09T06:27:11.504154Z", - "iopub.status.idle": "2024-07-09T06:27:12.558282Z", - "shell.execute_reply": "2024-07-09T06:27:12.557776Z" + "iopub.execute_input": "2024-07-11T23:30:42.478972Z", + "iopub.status.busy": "2024-07-11T23:30:42.478563Z", + "iopub.status.idle": "2024-07-11T23:30:43.537855Z", + "shell.execute_reply": "2024-07-11T23:30:43.537283Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 345a175cf..88b42a00a 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:15.909512Z", - "iopub.status.busy": "2024-07-09T06:27:15.909333Z", - "iopub.status.idle": "2024-07-09T06:27:17.025416Z", - "shell.execute_reply": "2024-07-09T06:27:17.024860Z" + "iopub.execute_input": "2024-07-11T23:30:47.295987Z", + "iopub.status.busy": "2024-07-11T23:30:47.295827Z", + "iopub.status.idle": "2024-07-11T23:30:48.446213Z", + "shell.execute_reply": "2024-07-11T23:30:48.445550Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.028078Z", - "iopub.status.busy": "2024-07-09T06:27:17.027788Z", - "iopub.status.idle": "2024-07-09T06:27:17.031022Z", - "shell.execute_reply": "2024-07-09T06:27:17.030547Z" + "iopub.execute_input": "2024-07-11T23:30:48.448907Z", + "iopub.status.busy": "2024-07-11T23:30:48.448611Z", + "iopub.status.idle": "2024-07-11T23:30:48.451812Z", + "shell.execute_reply": "2024-07-11T23:30:48.451267Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.033112Z", - "iopub.status.busy": "2024-07-09T06:27:17.032789Z", - "iopub.status.idle": "2024-07-09T06:27:17.040343Z", - "shell.execute_reply": "2024-07-09T06:27:17.039908Z" + "iopub.execute_input": "2024-07-11T23:30:48.454124Z", + "iopub.status.busy": "2024-07-11T23:30:48.453781Z", + "iopub.status.idle": "2024-07-11T23:30:48.461885Z", + "shell.execute_reply": "2024-07-11T23:30:48.461345Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.042282Z", - "iopub.status.busy": "2024-07-09T06:27:17.041970Z", - "iopub.status.idle": "2024-07-09T06:27:17.094153Z", - "shell.execute_reply": "2024-07-09T06:27:17.093528Z" + "iopub.execute_input": "2024-07-11T23:30:48.463883Z", + "iopub.status.busy": "2024-07-11T23:30:48.463526Z", + "iopub.status.idle": "2024-07-11T23:30:48.511286Z", + "shell.execute_reply": "2024-07-11T23:30:48.510676Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.096794Z", - "iopub.status.busy": "2024-07-09T06:27:17.096411Z", - "iopub.status.idle": "2024-07-09T06:27:17.113492Z", - "shell.execute_reply": "2024-07-09T06:27:17.113050Z" + "iopub.execute_input": "2024-07-11T23:30:48.513540Z", + "iopub.status.busy": "2024-07-11T23:30:48.513347Z", + "iopub.status.idle": "2024-07-11T23:30:48.530401Z", + "shell.execute_reply": "2024-07-11T23:30:48.529804Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.115656Z", - "iopub.status.busy": "2024-07-09T06:27:17.115325Z", - "iopub.status.idle": "2024-07-09T06:27:17.119055Z", - "shell.execute_reply": "2024-07-09T06:27:17.118574Z" + "iopub.execute_input": "2024-07-11T23:30:48.532498Z", + "iopub.status.busy": "2024-07-11T23:30:48.532194Z", + "iopub.status.idle": "2024-07-11T23:30:48.536102Z", + "shell.execute_reply": "2024-07-11T23:30:48.535541Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.121058Z", - "iopub.status.busy": "2024-07-09T06:27:17.120762Z", - "iopub.status.idle": "2024-07-09T06:27:17.134516Z", - "shell.execute_reply": "2024-07-09T06:27:17.134084Z" + "iopub.execute_input": "2024-07-11T23:30:48.538306Z", + "iopub.status.busy": "2024-07-11T23:30:48.537881Z", + "iopub.status.idle": "2024-07-11T23:30:48.554526Z", + "shell.execute_reply": "2024-07-11T23:30:48.553922Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.136707Z", - "iopub.status.busy": "2024-07-09T06:27:17.136279Z", - "iopub.status.idle": "2024-07-09T06:27:17.162081Z", - "shell.execute_reply": "2024-07-09T06:27:17.161647Z" + "iopub.execute_input": "2024-07-11T23:30:48.556499Z", + "iopub.status.busy": "2024-07-11T23:30:48.556180Z", + "iopub.status.idle": "2024-07-11T23:30:48.581772Z", + "shell.execute_reply": "2024-07-11T23:30:48.581203Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.164409Z", - "iopub.status.busy": "2024-07-09T06:27:17.163994Z", - "iopub.status.idle": "2024-07-09T06:27:19.093254Z", - "shell.execute_reply": "2024-07-09T06:27:19.092676Z" + "iopub.execute_input": "2024-07-11T23:30:48.583928Z", + "iopub.status.busy": "2024-07-11T23:30:48.583750Z", + "iopub.status.idle": "2024-07-11T23:30:50.576132Z", + "shell.execute_reply": "2024-07-11T23:30:50.575469Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.095800Z", - "iopub.status.busy": "2024-07-09T06:27:19.095336Z", - "iopub.status.idle": "2024-07-09T06:27:19.102192Z", - "shell.execute_reply": "2024-07-09T06:27:19.101750Z" + "iopub.execute_input": "2024-07-11T23:30:50.578713Z", + "iopub.status.busy": "2024-07-11T23:30:50.578434Z", + "iopub.status.idle": "2024-07-11T23:30:50.585273Z", + "shell.execute_reply": "2024-07-11T23:30:50.584817Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.104190Z", - "iopub.status.busy": "2024-07-09T06:27:19.103866Z", - "iopub.status.idle": "2024-07-09T06:27:19.116533Z", - "shell.execute_reply": "2024-07-09T06:27:19.116058Z" + "iopub.execute_input": "2024-07-11T23:30:50.587265Z", + "iopub.status.busy": "2024-07-11T23:30:50.586948Z", + "iopub.status.idle": "2024-07-11T23:30:50.599514Z", + "shell.execute_reply": "2024-07-11T23:30:50.598967Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.118619Z", - "iopub.status.busy": "2024-07-09T06:27:19.118287Z", - "iopub.status.idle": "2024-07-09T06:27:19.124788Z", - "shell.execute_reply": "2024-07-09T06:27:19.124346Z" + "iopub.execute_input": "2024-07-11T23:30:50.601450Z", + "iopub.status.busy": "2024-07-11T23:30:50.601274Z", + "iopub.status.idle": "2024-07-11T23:30:50.607789Z", + "shell.execute_reply": "2024-07-11T23:30:50.607325Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.126835Z", - "iopub.status.busy": "2024-07-09T06:27:19.126514Z", - "iopub.status.idle": "2024-07-09T06:27:19.129039Z", - "shell.execute_reply": "2024-07-09T06:27:19.128622Z" + "iopub.execute_input": "2024-07-11T23:30:50.609671Z", + "iopub.status.busy": "2024-07-11T23:30:50.609501Z", + "iopub.status.idle": "2024-07-11T23:30:50.612205Z", + "shell.execute_reply": "2024-07-11T23:30:50.611751Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.131096Z", - "iopub.status.busy": "2024-07-09T06:27:19.130774Z", - "iopub.status.idle": "2024-07-09T06:27:19.134005Z", - "shell.execute_reply": "2024-07-09T06:27:19.133516Z" + "iopub.execute_input": "2024-07-11T23:30:50.614165Z", + "iopub.status.busy": "2024-07-11T23:30:50.613975Z", + "iopub.status.idle": "2024-07-11T23:30:50.617541Z", + "shell.execute_reply": "2024-07-11T23:30:50.616991Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.136079Z", - "iopub.status.busy": "2024-07-09T06:27:19.135766Z", - "iopub.status.idle": "2024-07-09T06:27:19.138223Z", - "shell.execute_reply": "2024-07-09T06:27:19.137811Z" + "iopub.execute_input": "2024-07-11T23:30:50.619656Z", + "iopub.status.busy": "2024-07-11T23:30:50.619341Z", + "iopub.status.idle": "2024-07-11T23:30:50.622025Z", + "shell.execute_reply": "2024-07-11T23:30:50.621552Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.140207Z", - "iopub.status.busy": "2024-07-09T06:27:19.139883Z", - "iopub.status.idle": "2024-07-09T06:27:19.144100Z", - "shell.execute_reply": "2024-07-09T06:27:19.143647Z" + "iopub.execute_input": "2024-07-11T23:30:50.623893Z", + "iopub.status.busy": "2024-07-11T23:30:50.623722Z", + "iopub.status.idle": "2024-07-11T23:30:50.627585Z", + "shell.execute_reply": "2024-07-11T23:30:50.627067Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.146159Z", - "iopub.status.busy": "2024-07-09T06:27:19.145854Z", - "iopub.status.idle": "2024-07-09T06:27:19.174449Z", - "shell.execute_reply": "2024-07-09T06:27:19.173890Z" + "iopub.execute_input": "2024-07-11T23:30:50.629785Z", + "iopub.status.busy": "2024-07-11T23:30:50.629309Z", + "iopub.status.idle": "2024-07-11T23:30:50.657785Z", + "shell.execute_reply": "2024-07-11T23:30:50.657301Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.177021Z", - "iopub.status.busy": "2024-07-09T06:27:19.176539Z", - "iopub.status.idle": "2024-07-09T06:27:19.181309Z", - "shell.execute_reply": "2024-07-09T06:27:19.180812Z" + "iopub.execute_input": "2024-07-11T23:30:50.659942Z", + "iopub.status.busy": "2024-07-11T23:30:50.659763Z", + "iopub.status.idle": "2024-07-11T23:30:50.664651Z", + "shell.execute_reply": "2024-07-11T23:30:50.664188Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 9c34ac22c..5b9d1aa9c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:22.153886Z", - "iopub.status.busy": "2024-07-09T06:27:22.153426Z", - "iopub.status.idle": "2024-07-09T06:27:23.311889Z", - "shell.execute_reply": "2024-07-09T06:27:23.311338Z" + "iopub.execute_input": "2024-07-11T23:30:53.499408Z", + "iopub.status.busy": "2024-07-11T23:30:53.498925Z", + "iopub.status.idle": "2024-07-11T23:30:54.713257Z", + "shell.execute_reply": "2024-07-11T23:30:54.712684Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.314428Z", - "iopub.status.busy": "2024-07-09T06:27:23.313980Z", - "iopub.status.idle": "2024-07-09T06:27:23.508688Z", - "shell.execute_reply": "2024-07-09T06:27:23.508123Z" + "iopub.execute_input": "2024-07-11T23:30:54.715960Z", + "iopub.status.busy": "2024-07-11T23:30:54.715494Z", + "iopub.status.idle": "2024-07-11T23:30:54.911110Z", + "shell.execute_reply": "2024-07-11T23:30:54.910538Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.511393Z", - "iopub.status.busy": "2024-07-09T06:27:23.510929Z", - "iopub.status.idle": "2024-07-09T06:27:23.524862Z", - "shell.execute_reply": "2024-07-09T06:27:23.524396Z" + "iopub.execute_input": "2024-07-11T23:30:54.913779Z", + "iopub.status.busy": "2024-07-11T23:30:54.913342Z", + "iopub.status.idle": "2024-07-11T23:30:54.927108Z", + "shell.execute_reply": "2024-07-11T23:30:54.926525Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.527208Z", - "iopub.status.busy": "2024-07-09T06:27:23.526603Z", - "iopub.status.idle": "2024-07-09T06:27:26.126394Z", - "shell.execute_reply": "2024-07-09T06:27:26.125810Z" + "iopub.execute_input": "2024-07-11T23:30:54.929300Z", + "iopub.status.busy": "2024-07-11T23:30:54.928956Z", + "iopub.status.idle": "2024-07-11T23:30:57.569640Z", + "shell.execute_reply": "2024-07-11T23:30:57.569023Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:26.128599Z", - "iopub.status.busy": "2024-07-09T06:27:26.128270Z", - "iopub.status.idle": "2024-07-09T06:27:27.468768Z", - "shell.execute_reply": "2024-07-09T06:27:27.468127Z" + "iopub.execute_input": "2024-07-11T23:30:57.571786Z", + "iopub.status.busy": "2024-07-11T23:30:57.571597Z", + "iopub.status.idle": "2024-07-11T23:30:58.927539Z", + "shell.execute_reply": "2024-07-11T23:30:58.926898Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:27.471344Z", - "iopub.status.busy": "2024-07-09T06:27:27.471010Z", - "iopub.status.idle": "2024-07-09T06:27:27.475004Z", - "shell.execute_reply": "2024-07-09T06:27:27.474434Z" + "iopub.execute_input": "2024-07-11T23:30:58.930226Z", + "iopub.status.busy": "2024-07-11T23:30:58.929895Z", + "iopub.status.idle": "2024-07-11T23:30:58.933999Z", + "shell.execute_reply": "2024-07-11T23:30:58.933407Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:27.477072Z", - "iopub.status.busy": "2024-07-09T06:27:27.476759Z", - "iopub.status.idle": "2024-07-09T06:27:29.490391Z", - "shell.execute_reply": "2024-07-09T06:27:29.489818Z" + "iopub.execute_input": "2024-07-11T23:30:58.936264Z", + "iopub.status.busy": "2024-07-11T23:30:58.935810Z", + "iopub.status.idle": "2024-07-11T23:31:01.051497Z", + "shell.execute_reply": "2024-07-11T23:31:01.050800Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:29.492995Z", - "iopub.status.busy": "2024-07-09T06:27:29.492468Z", - "iopub.status.idle": "2024-07-09T06:27:29.500292Z", - "shell.execute_reply": "2024-07-09T06:27:29.499734Z" + "iopub.execute_input": "2024-07-11T23:31:01.054451Z", + "iopub.status.busy": "2024-07-11T23:31:01.053799Z", + "iopub.status.idle": "2024-07-11T23:31:01.062436Z", + "shell.execute_reply": "2024-07-11T23:31:01.061749Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:29.502433Z", - "iopub.status.busy": "2024-07-09T06:27:29.502113Z", - "iopub.status.idle": "2024-07-09T06:27:32.049416Z", - "shell.execute_reply": "2024-07-09T06:27:32.048812Z" + "iopub.execute_input": "2024-07-11T23:31:01.064674Z", + "iopub.status.busy": "2024-07-11T23:31:01.064363Z", + "iopub.status.idle": "2024-07-11T23:31:03.653908Z", + "shell.execute_reply": "2024-07-11T23:31:03.653305Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.051592Z", - "iopub.status.busy": "2024-07-09T06:27:32.051401Z", - "iopub.status.idle": "2024-07-09T06:27:32.055077Z", - "shell.execute_reply": "2024-07-09T06:27:32.054480Z" + "iopub.execute_input": "2024-07-11T23:31:03.656129Z", + "iopub.status.busy": "2024-07-11T23:31:03.655803Z", + "iopub.status.idle": "2024-07-11T23:31:03.659489Z", + "shell.execute_reply": "2024-07-11T23:31:03.659017Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.057199Z", - "iopub.status.busy": "2024-07-09T06:27:32.056870Z", - "iopub.status.idle": "2024-07-09T06:27:32.060234Z", - "shell.execute_reply": "2024-07-09T06:27:32.059802Z" + "iopub.execute_input": "2024-07-11T23:31:03.661468Z", + "iopub.status.busy": "2024-07-11T23:31:03.661288Z", + "iopub.status.idle": "2024-07-11T23:31:03.664735Z", + "shell.execute_reply": "2024-07-11T23:31:03.664289Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.062198Z", - "iopub.status.busy": "2024-07-09T06:27:32.061876Z", - "iopub.status.idle": "2024-07-09T06:27:32.065020Z", - "shell.execute_reply": "2024-07-09T06:27:32.064573Z" + "iopub.execute_input": "2024-07-11T23:31:03.666866Z", + "iopub.status.busy": "2024-07-11T23:31:03.666465Z", + "iopub.status.idle": "2024-07-11T23:31:03.669568Z", + "shell.execute_reply": "2024-07-11T23:31:03.669121Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 949e5b545..5c31a3f55 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:34.654632Z", - "iopub.status.busy": "2024-07-09T06:27:34.654465Z", - "iopub.status.idle": "2024-07-09T06:27:35.815092Z", - "shell.execute_reply": "2024-07-09T06:27:35.814455Z" + "iopub.execute_input": "2024-07-11T23:31:06.312535Z", + "iopub.status.busy": "2024-07-11T23:31:06.312371Z", + "iopub.status.idle": "2024-07-11T23:31:07.505288Z", + "shell.execute_reply": "2024-07-11T23:31:07.504669Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:35.817596Z", - "iopub.status.busy": "2024-07-09T06:27:35.817178Z", - "iopub.status.idle": "2024-07-09T06:27:37.096670Z", - "shell.execute_reply": "2024-07-09T06:27:37.095921Z" + "iopub.execute_input": "2024-07-11T23:31:07.507848Z", + "iopub.status.busy": "2024-07-11T23:31:07.507594Z", + "iopub.status.idle": "2024-07-11T23:31:08.894177Z", + "shell.execute_reply": "2024-07-11T23:31:08.893325Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.099444Z", - "iopub.status.busy": "2024-07-09T06:27:37.099077Z", - "iopub.status.idle": "2024-07-09T06:27:37.102193Z", - "shell.execute_reply": "2024-07-09T06:27:37.101773Z" + "iopub.execute_input": "2024-07-11T23:31:08.896775Z", + "iopub.status.busy": "2024-07-11T23:31:08.896559Z", + "iopub.status.idle": "2024-07-11T23:31:08.900126Z", + "shell.execute_reply": "2024-07-11T23:31:08.899524Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.104293Z", - "iopub.status.busy": "2024-07-09T06:27:37.103979Z", - "iopub.status.idle": "2024-07-09T06:27:37.110147Z", - "shell.execute_reply": "2024-07-09T06:27:37.109740Z" + "iopub.execute_input": "2024-07-11T23:31:08.902112Z", + "iopub.status.busy": "2024-07-11T23:31:08.901832Z", + "iopub.status.idle": "2024-07-11T23:31:08.908384Z", + "shell.execute_reply": "2024-07-11T23:31:08.907838Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.112184Z", - "iopub.status.busy": "2024-07-09T06:27:37.111923Z", - "iopub.status.idle": "2024-07-09T06:27:37.598528Z", - "shell.execute_reply": "2024-07-09T06:27:37.597913Z" + "iopub.execute_input": "2024-07-11T23:31:08.910605Z", + "iopub.status.busy": "2024-07-11T23:31:08.910249Z", + "iopub.status.idle": "2024-07-11T23:31:09.411283Z", + "shell.execute_reply": "2024-07-11T23:31:09.410695Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.601014Z", - "iopub.status.busy": "2024-07-09T06:27:37.600572Z", - "iopub.status.idle": "2024-07-09T06:27:37.605747Z", - "shell.execute_reply": "2024-07-09T06:27:37.605308Z" + "iopub.execute_input": "2024-07-11T23:31:09.414368Z", + "iopub.status.busy": "2024-07-11T23:31:09.413981Z", + "iopub.status.idle": "2024-07-11T23:31:09.419788Z", + "shell.execute_reply": "2024-07-11T23:31:09.419317Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.607641Z", - "iopub.status.busy": "2024-07-09T06:27:37.607468Z", - "iopub.status.idle": "2024-07-09T06:27:37.611290Z", - "shell.execute_reply": "2024-07-09T06:27:37.610844Z" + "iopub.execute_input": "2024-07-11T23:31:09.421817Z", + "iopub.status.busy": "2024-07-11T23:31:09.421488Z", + "iopub.status.idle": "2024-07-11T23:31:09.425424Z", + "shell.execute_reply": "2024-07-11T23:31:09.424966Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.613342Z", - "iopub.status.busy": "2024-07-09T06:27:37.613034Z", - "iopub.status.idle": "2024-07-09T06:27:38.555539Z", - "shell.execute_reply": "2024-07-09T06:27:38.555016Z" + "iopub.execute_input": "2024-07-11T23:31:09.427593Z", + "iopub.status.busy": "2024-07-11T23:31:09.427260Z", + "iopub.status.idle": "2024-07-11T23:31:10.294541Z", + "shell.execute_reply": "2024-07-11T23:31:10.293893Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.557847Z", - "iopub.status.busy": "2024-07-09T06:27:38.557649Z", - "iopub.status.idle": "2024-07-09T06:27:38.851691Z", - "shell.execute_reply": "2024-07-09T06:27:38.851100Z" + "iopub.execute_input": "2024-07-11T23:31:10.296927Z", + "iopub.status.busy": "2024-07-11T23:31:10.296730Z", + "iopub.status.idle": "2024-07-11T23:31:10.506079Z", + "shell.execute_reply": "2024-07-11T23:31:10.505564Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.853964Z", - "iopub.status.busy": "2024-07-09T06:27:38.853618Z", - "iopub.status.idle": "2024-07-09T06:27:38.858060Z", - "shell.execute_reply": "2024-07-09T06:27:38.857615Z" + "iopub.execute_input": "2024-07-11T23:31:10.508127Z", + "iopub.status.busy": "2024-07-11T23:31:10.507934Z", + "iopub.status.idle": "2024-07-11T23:31:10.512343Z", + "shell.execute_reply": "2024-07-11T23:31:10.511877Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.860047Z", - "iopub.status.busy": "2024-07-09T06:27:38.859765Z", - "iopub.status.idle": "2024-07-09T06:27:39.310110Z", - "shell.execute_reply": "2024-07-09T06:27:39.309501Z" + "iopub.execute_input": "2024-07-11T23:31:10.514467Z", + "iopub.status.busy": "2024-07-11T23:31:10.514054Z", + "iopub.status.idle": "2024-07-11T23:31:10.975021Z", + "shell.execute_reply": "2024-07-11T23:31:10.974401Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:39.312865Z", - "iopub.status.busy": "2024-07-09T06:27:39.312462Z", - "iopub.status.idle": "2024-07-09T06:27:39.647092Z", - "shell.execute_reply": "2024-07-09T06:27:39.646475Z" + "iopub.execute_input": "2024-07-11T23:31:10.977943Z", + "iopub.status.busy": "2024-07-11T23:31:10.977756Z", + "iopub.status.idle": "2024-07-11T23:31:11.308934Z", + "shell.execute_reply": "2024-07-11T23:31:11.308366Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:39.649619Z", - "iopub.status.busy": "2024-07-09T06:27:39.649296Z", - "iopub.status.idle": "2024-07-09T06:27:40.011855Z", - "shell.execute_reply": "2024-07-09T06:27:40.011238Z" + "iopub.execute_input": "2024-07-11T23:31:11.311627Z", + "iopub.status.busy": "2024-07-11T23:31:11.311442Z", + "iopub.status.idle": "2024-07-11T23:31:11.651748Z", + "shell.execute_reply": "2024-07-11T23:31:11.651180Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.014685Z", - "iopub.status.busy": "2024-07-09T06:27:40.014328Z", - "iopub.status.idle": "2024-07-09T06:27:40.429827Z", - "shell.execute_reply": "2024-07-09T06:27:40.429292Z" + "iopub.execute_input": "2024-07-11T23:31:11.655199Z", + "iopub.status.busy": "2024-07-11T23:31:11.654833Z", + "iopub.status.idle": "2024-07-11T23:31:12.095624Z", + "shell.execute_reply": "2024-07-11T23:31:12.095061Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.434217Z", - "iopub.status.busy": "2024-07-09T06:27:40.433815Z", - "iopub.status.idle": "2024-07-09T06:27:40.880331Z", - "shell.execute_reply": "2024-07-09T06:27:40.879705Z" + "iopub.execute_input": "2024-07-11T23:31:12.100128Z", + "iopub.status.busy": "2024-07-11T23:31:12.099760Z", + "iopub.status.idle": "2024-07-11T23:31:12.553957Z", + "shell.execute_reply": "2024-07-11T23:31:12.553312Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.882426Z", - "iopub.status.busy": "2024-07-09T06:27:40.882229Z", - "iopub.status.idle": "2024-07-09T06:27:41.097056Z", - "shell.execute_reply": "2024-07-09T06:27:41.096510Z" + "iopub.execute_input": "2024-07-11T23:31:12.556857Z", + "iopub.status.busy": "2024-07-11T23:31:12.556678Z", + "iopub.status.idle": "2024-07-11T23:31:12.770401Z", + "shell.execute_reply": "2024-07-11T23:31:12.769832Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.099352Z", - "iopub.status.busy": "2024-07-09T06:27:41.098978Z", - "iopub.status.idle": "2024-07-09T06:27:41.279647Z", - "shell.execute_reply": "2024-07-09T06:27:41.279135Z" + "iopub.execute_input": "2024-07-11T23:31:12.772555Z", + "iopub.status.busy": "2024-07-11T23:31:12.772363Z", + "iopub.status.idle": "2024-07-11T23:31:12.952525Z", + "shell.execute_reply": "2024-07-11T23:31:12.951899Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.282138Z", - "iopub.status.busy": "2024-07-09T06:27:41.281802Z", - "iopub.status.idle": "2024-07-09T06:27:41.284795Z", - "shell.execute_reply": "2024-07-09T06:27:41.284347Z" + "iopub.execute_input": "2024-07-11T23:31:12.954790Z", + "iopub.status.busy": "2024-07-11T23:31:12.954455Z", + "iopub.status.idle": "2024-07-11T23:31:12.957485Z", + "shell.execute_reply": "2024-07-11T23:31:12.956926Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.286727Z", - "iopub.status.busy": "2024-07-09T06:27:41.286354Z", - "iopub.status.idle": "2024-07-09T06:27:42.233918Z", - "shell.execute_reply": "2024-07-09T06:27:42.233305Z" + "iopub.execute_input": "2024-07-11T23:31:12.959627Z", + "iopub.status.busy": "2024-07-11T23:31:12.959311Z", + "iopub.status.idle": "2024-07-11T23:31:14.006845Z", + "shell.execute_reply": "2024-07-11T23:31:14.006365Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.236357Z", - "iopub.status.busy": "2024-07-09T06:27:42.236129Z", - "iopub.status.idle": "2024-07-09T06:27:42.414922Z", - "shell.execute_reply": "2024-07-09T06:27:42.414319Z" + "iopub.execute_input": "2024-07-11T23:31:14.008900Z", + "iopub.status.busy": "2024-07-11T23:31:14.008713Z", + "iopub.status.idle": "2024-07-11T23:31:14.146793Z", + "shell.execute_reply": "2024-07-11T23:31:14.146295Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.417052Z", - "iopub.status.busy": "2024-07-09T06:27:42.416742Z", - "iopub.status.idle": "2024-07-09T06:27:42.567516Z", - "shell.execute_reply": "2024-07-09T06:27:42.566950Z" + "iopub.execute_input": "2024-07-11T23:31:14.148900Z", + "iopub.status.busy": "2024-07-11T23:31:14.148723Z", + "iopub.status.idle": "2024-07-11T23:31:14.290758Z", + "shell.execute_reply": "2024-07-11T23:31:14.290274Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.569723Z", - "iopub.status.busy": "2024-07-09T06:27:42.569386Z", - "iopub.status.idle": "2024-07-09T06:27:43.238504Z", - "shell.execute_reply": "2024-07-09T06:27:43.237885Z" + "iopub.execute_input": "2024-07-11T23:31:14.292854Z", + "iopub.status.busy": "2024-07-11T23:31:14.292679Z", + "iopub.status.idle": "2024-07-11T23:31:15.038674Z", + "shell.execute_reply": "2024-07-11T23:31:15.038182Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:43.240966Z", - "iopub.status.busy": "2024-07-09T06:27:43.240541Z", - "iopub.status.idle": "2024-07-09T06:27:43.244348Z", - "shell.execute_reply": "2024-07-09T06:27:43.243899Z" + "iopub.execute_input": "2024-07-11T23:31:15.040887Z", + "iopub.status.busy": "2024-07-11T23:31:15.040533Z", + "iopub.status.idle": "2024-07-11T23:31:15.044365Z", + "shell.execute_reply": "2024-07-11T23:31:15.043812Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 5a34daff0..a03640684 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:45.444339Z", - "iopub.status.busy": "2024-07-09T06:27:45.443934Z", - "iopub.status.idle": "2024-07-09T06:27:48.220490Z", - "shell.execute_reply": "2024-07-09T06:27:48.219850Z" + "iopub.execute_input": "2024-07-11T23:31:17.291877Z", + "iopub.status.busy": "2024-07-11T23:31:17.291695Z", + "iopub.status.idle": "2024-07-11T23:31:20.167105Z", + "shell.execute_reply": "2024-07-11T23:31:20.166523Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.223134Z", - "iopub.status.busy": "2024-07-09T06:27:48.222782Z", - "iopub.status.idle": "2024-07-09T06:27:48.551328Z", - "shell.execute_reply": "2024-07-09T06:27:48.550787Z" + "iopub.execute_input": "2024-07-11T23:31:20.169867Z", + "iopub.status.busy": "2024-07-11T23:31:20.169350Z", + "iopub.status.idle": "2024-07-11T23:31:20.495262Z", + "shell.execute_reply": "2024-07-11T23:31:20.494703Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.553939Z", - "iopub.status.busy": "2024-07-09T06:27:48.553405Z", - "iopub.status.idle": "2024-07-09T06:27:48.557550Z", - "shell.execute_reply": "2024-07-09T06:27:48.557027Z" + "iopub.execute_input": "2024-07-11T23:31:20.497961Z", + "iopub.status.busy": "2024-07-11T23:31:20.497489Z", + "iopub.status.idle": "2024-07-11T23:31:20.501762Z", + "shell.execute_reply": "2024-07-11T23:31:20.501353Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.559562Z", - "iopub.status.busy": "2024-07-09T06:27:48.559266Z", - "iopub.status.idle": "2024-07-09T06:27:53.022684Z", - "shell.execute_reply": "2024-07-09T06:27:53.022093Z" + "iopub.execute_input": "2024-07-11T23:31:20.503814Z", + "iopub.status.busy": "2024-07-11T23:31:20.503635Z", + "iopub.status.idle": "2024-07-11T23:31:24.734562Z", + "shell.execute_reply": "2024-07-11T23:31:24.734040Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" + " 1%|▏ | 2260992/170498071 [00:00<00:07, 22563462.22it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" + " 8%|▊ | 13991936/170498071 [00:00<00:02, 78087497.12it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" + " 15%|█▌ | 25722880/170498071 [00:00<00:01, 95869318.12it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" + " 22%|██▏ | 37453824/170498071 [00:00<00:01, 104208415.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" + " 29%|██▉ | 49119232/170498071 [00:00<00:01, 108625049.70it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" + " 36%|███▌ | 60686336/170498071 [00:00<00:00, 111010192.90it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" + " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113042160.30it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" + " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114381724.94it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" + " 56%|█████▌ | 95846400/170498071 [00:00<00:00, 115176752.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" + " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 115879216.59it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" + " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116271034.09it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" + " 77%|███████▋ | 131072000/170498071 [00:01<00:00, 116543973.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" + " 84%|████████▍ | 142835712/170498071 [00:01<00:00, 116782185.73it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" + " 91%|█████████ | 154566656/170498071 [00:01<00:00, 116899168.76it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" + " 98%|█████████▊| 166297600/170498071 [00:01<00:00, 116976973.61it/s]" ] }, { @@ -372,23 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 110818033.91it/s]" ] }, { @@ -506,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.024946Z", - "iopub.status.busy": "2024-07-09T06:27:53.024611Z", - "iopub.status.idle": "2024-07-09T06:27:53.029364Z", - "shell.execute_reply": "2024-07-09T06:27:53.028817Z" + "iopub.execute_input": "2024-07-11T23:31:24.736791Z", + "iopub.status.busy": "2024-07-11T23:31:24.736473Z", + "iopub.status.idle": "2024-07-11T23:31:24.741181Z", + "shell.execute_reply": "2024-07-11T23:31:24.740735Z" }, "nbsphinx": "hidden" }, @@ -560,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.031408Z", - "iopub.status.busy": "2024-07-09T06:27:53.031096Z", - "iopub.status.idle": "2024-07-09T06:27:53.577241Z", - "shell.execute_reply": "2024-07-09T06:27:53.576593Z" + "iopub.execute_input": "2024-07-11T23:31:24.743449Z", + "iopub.status.busy": "2024-07-11T23:31:24.742931Z", + "iopub.status.idle": "2024-07-11T23:31:25.284399Z", + "shell.execute_reply": "2024-07-11T23:31:25.283756Z" } }, "outputs": [ @@ -596,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.579601Z", - "iopub.status.busy": "2024-07-09T06:27:53.579322Z", - "iopub.status.idle": "2024-07-09T06:27:54.102985Z", - "shell.execute_reply": "2024-07-09T06:27:54.102360Z" + "iopub.execute_input": "2024-07-11T23:31:25.286696Z", + "iopub.status.busy": "2024-07-11T23:31:25.286313Z", + "iopub.status.idle": "2024-07-11T23:31:25.808458Z", + "shell.execute_reply": "2024-07-11T23:31:25.807874Z" } }, "outputs": [ @@ -637,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:54.105484Z", - "iopub.status.busy": "2024-07-09T06:27:54.105073Z", - "iopub.status.idle": "2024-07-09T06:27:54.108602Z", - "shell.execute_reply": "2024-07-09T06:27:54.108156Z" + "iopub.execute_input": "2024-07-11T23:31:25.810731Z", + "iopub.status.busy": "2024-07-11T23:31:25.810369Z", + "iopub.status.idle": "2024-07-11T23:31:25.813893Z", + "shell.execute_reply": "2024-07-11T23:31:25.813436Z" } }, "outputs": [], @@ -663,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:54.110579Z", - "iopub.status.busy": "2024-07-09T06:27:54.110395Z", - "iopub.status.idle": "2024-07-09T06:28:06.643708Z", - "shell.execute_reply": "2024-07-09T06:28:06.643176Z" + "iopub.execute_input": "2024-07-11T23:31:25.815970Z", + "iopub.status.busy": "2024-07-11T23:31:25.815628Z", + "iopub.status.idle": "2024-07-11T23:31:38.427676Z", + "shell.execute_reply": "2024-07-11T23:31:38.427081Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", + "model_id": "e178963db0b140cebcc986e7a95dfca1", "version_major": 2, "version_minor": 0 }, @@ -732,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:06.646239Z", - "iopub.status.busy": "2024-07-09T06:28:06.645832Z", - "iopub.status.idle": "2024-07-09T06:28:08.702608Z", - "shell.execute_reply": "2024-07-09T06:28:08.701924Z" + "iopub.execute_input": "2024-07-11T23:31:38.429964Z", + "iopub.status.busy": "2024-07-11T23:31:38.429776Z", + "iopub.status.idle": "2024-07-11T23:31:40.476211Z", + "shell.execute_reply": "2024-07-11T23:31:40.475587Z" } }, "outputs": [ @@ -779,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:08.705102Z", - "iopub.status.busy": "2024-07-09T06:28:08.704635Z", - "iopub.status.idle": "2024-07-09T06:28:08.961907Z", - "shell.execute_reply": "2024-07-09T06:28:08.960875Z" + "iopub.execute_input": "2024-07-11T23:31:40.478752Z", + "iopub.status.busy": "2024-07-11T23:31:40.478522Z", + "iopub.status.idle": "2024-07-11T23:31:40.733860Z", + "shell.execute_reply": "2024-07-11T23:31:40.733234Z" } }, "outputs": [ @@ -818,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:08.965548Z", - "iopub.status.busy": "2024-07-09T06:28:08.964610Z", - "iopub.status.idle": "2024-07-09T06:28:09.623328Z", - "shell.execute_reply": "2024-07-09T06:28:09.622779Z" + "iopub.execute_input": "2024-07-11T23:31:40.736521Z", + "iopub.status.busy": "2024-07-11T23:31:40.736095Z", + "iopub.status.idle": "2024-07-11T23:31:41.401207Z", + "shell.execute_reply": "2024-07-11T23:31:41.400662Z" } }, "outputs": [ @@ -871,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:09.627057Z", - "iopub.status.busy": "2024-07-09T06:28:09.626207Z", - "iopub.status.idle": "2024-07-09T06:28:09.967511Z", - "shell.execute_reply": "2024-07-09T06:28:09.966954Z" + "iopub.execute_input": "2024-07-11T23:31:41.404101Z", + "iopub.status.busy": "2024-07-11T23:31:41.403501Z", + "iopub.status.idle": "2024-07-11T23:31:41.741361Z", + "shell.execute_reply": "2024-07-11T23:31:41.740846Z" } }, "outputs": [ @@ -922,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:09.969885Z", - "iopub.status.busy": "2024-07-09T06:28:09.969463Z", - "iopub.status.idle": "2024-07-09T06:28:10.214869Z", - "shell.execute_reply": "2024-07-09T06:28:10.214223Z" + "iopub.execute_input": "2024-07-11T23:31:41.743489Z", + "iopub.status.busy": "2024-07-11T23:31:41.743295Z", + "iopub.status.idle": "2024-07-11T23:31:41.971390Z", + "shell.execute_reply": "2024-07-11T23:31:41.970787Z" } }, "outputs": [ @@ -981,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:10.217596Z", - "iopub.status.busy": "2024-07-09T06:28:10.217139Z", - "iopub.status.idle": "2024-07-09T06:28:10.308655Z", - "shell.execute_reply": "2024-07-09T06:28:10.308107Z" + "iopub.execute_input": "2024-07-11T23:31:41.973865Z", + "iopub.status.busy": "2024-07-11T23:31:41.973521Z", + "iopub.status.idle": "2024-07-11T23:31:42.050609Z", + "shell.execute_reply": "2024-07-11T23:31:42.050111Z" } }, "outputs": [], @@ -1005,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:10.310977Z", - "iopub.status.busy": "2024-07-09T06:28:10.310791Z", - "iopub.status.idle": "2024-07-09T06:28:20.594421Z", - "shell.execute_reply": "2024-07-09T06:28:20.593788Z" + "iopub.execute_input": "2024-07-11T23:31:42.053107Z", + "iopub.status.busy": "2024-07-11T23:31:42.052926Z", + "iopub.status.idle": "2024-07-11T23:31:52.419235Z", + "shell.execute_reply": "2024-07-11T23:31:52.418555Z" } }, "outputs": [ @@ -1045,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:20.596810Z", - "iopub.status.busy": "2024-07-09T06:28:20.596554Z", - "iopub.status.idle": "2024-07-09T06:28:22.741544Z", - "shell.execute_reply": "2024-07-09T06:28:22.741042Z" + "iopub.execute_input": "2024-07-11T23:31:52.421797Z", + "iopub.status.busy": "2024-07-11T23:31:52.421373Z", + "iopub.status.idle": "2024-07-11T23:31:54.688468Z", + "shell.execute_reply": "2024-07-11T23:31:54.687905Z" } }, "outputs": [ @@ -1079,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.744305Z", - "iopub.status.busy": "2024-07-09T06:28:22.743745Z", - "iopub.status.idle": "2024-07-09T06:28:22.953993Z", - "shell.execute_reply": "2024-07-09T06:28:22.953376Z" + "iopub.execute_input": "2024-07-11T23:31:54.691137Z", + "iopub.status.busy": "2024-07-11T23:31:54.690628Z", + "iopub.status.idle": "2024-07-11T23:31:54.893218Z", + "shell.execute_reply": "2024-07-11T23:31:54.892555Z" } }, "outputs": [], @@ -1096,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.956589Z", - "iopub.status.busy": "2024-07-09T06:28:22.956213Z", - "iopub.status.idle": "2024-07-09T06:28:22.959468Z", - "shell.execute_reply": "2024-07-09T06:28:22.958900Z" + "iopub.execute_input": "2024-07-11T23:31:54.895817Z", + "iopub.status.busy": "2024-07-11T23:31:54.895362Z", + "iopub.status.idle": "2024-07-11T23:31:54.898542Z", + "shell.execute_reply": "2024-07-11T23:31:54.898105Z" } }, "outputs": [], @@ -1121,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.961611Z", - "iopub.status.busy": "2024-07-09T06:28:22.961200Z", - "iopub.status.idle": "2024-07-09T06:28:22.969422Z", - "shell.execute_reply": "2024-07-09T06:28:22.968855Z" + "iopub.execute_input": "2024-07-11T23:31:54.900492Z", + "iopub.status.busy": "2024-07-11T23:31:54.900316Z", + "iopub.status.idle": "2024-07-11T23:31:54.908457Z", + "shell.execute_reply": "2024-07-11T23:31:54.908040Z" }, "nbsphinx": "hidden" }, @@ -1169,54 +1153,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", - "placeholder": "​", - "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 287MB/s]" - } - }, - "17e3dce4b40a4cb8a2b240ec353e0eae": { + "06030500f3c04fd99fa242a1568dcb8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", - "IPY_MODEL_f925fed948884b0e9a39e8a060169585", - "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" - ], - "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "64e12728195f4391b6280124850b845f": { + "24045c69f1514aeabfe0f4094eb09204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1269,7 +1222,56 @@ "width": null } }, - "83246a4b1973465e91e701740cd527e6": { + "24d49b137c8d43549f4f0bd82e7e5dbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24045c69f1514aeabfe0f4094eb09204", + "placeholder": "​", + "style": "IPY_MODEL_f3a9a8cdcf8941b289c7a7a5e37c34ec", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 290MB/s]" + } + }, + "4de70e8fec2444dea22f3f7943d23a4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a49628ed5744400d82018a4e57ed8afe", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_06030500f3c04fd99fa242a1568dcb8b", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "5239d07277434b87a8dbe5da68b57b75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,7 +1324,7 @@ "width": null } }, - "847a0080121d45e79b430fce2ac8676d": { + "a49628ed5744400d82018a4e57ed8afe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1375,41 +1377,7 @@ "width": null } }, - "aaff29c1d12b464a90fcdf95eeb1a265": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afec228371694b259b4beb453ed5662e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ce4ca1db437c42df9608894483bf3780": { + "ac2f6c5cef9d4fa193d7e2508a3b60aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1424,33 +1392,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", + "layout": "IPY_MODEL_d555a250e7774596a1baa43603ab3ebd", "placeholder": "​", - "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", + "style": "IPY_MODEL_f02e8e68fc3946e495bf0e0139fc3eb8", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f68e78a7cc7d408cb71b2a049145349d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f839052ce8de441fa54a98bf191b0352": { + "d555a250e7774596a1baa43603ab3ebd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,30 +1453,64 @@ "width": null } }, - "f925fed948884b0e9a39e8a060169585": { + "e178963db0b140cebcc986e7a95dfca1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac2f6c5cef9d4fa193d7e2508a3b60aa", + "IPY_MODEL_4de70e8fec2444dea22f3f7943d23a4f", + "IPY_MODEL_24d49b137c8d43549f4f0bd82e7e5dbd" + ], + "layout": "IPY_MODEL_5239d07277434b87a8dbe5da68b57b75", "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "tooltip": null + } + }, + "f02e8e68fc3946e495bf0e0139fc3eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f3a9a8cdcf8941b289c7a7a5e37c34ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 9a21f3bf0..3292abadb 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:27.147640Z", - "iopub.status.busy": "2024-07-09T06:28:27.147460Z", - "iopub.status.idle": "2024-07-09T06:28:28.302447Z", - "shell.execute_reply": "2024-07-09T06:28:28.301888Z" + "iopub.execute_input": "2024-07-11T23:31:59.264178Z", + "iopub.status.busy": "2024-07-11T23:31:59.263998Z", + "iopub.status.idle": "2024-07-11T23:32:00.476568Z", + "shell.execute_reply": "2024-07-11T23:32:00.475998Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.304997Z", - "iopub.status.busy": "2024-07-09T06:28:28.304730Z", - "iopub.status.idle": "2024-07-09T06:28:28.321957Z", - "shell.execute_reply": "2024-07-09T06:28:28.321531Z" + "iopub.execute_input": "2024-07-11T23:32:00.479192Z", + "iopub.status.busy": "2024-07-11T23:32:00.478744Z", + "iopub.status.idle": "2024-07-11T23:32:00.496820Z", + "shell.execute_reply": "2024-07-11T23:32:00.496353Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.324137Z", - "iopub.status.busy": "2024-07-09T06:28:28.323717Z", - "iopub.status.idle": "2024-07-09T06:28:28.326748Z", - "shell.execute_reply": "2024-07-09T06:28:28.326302Z" + "iopub.execute_input": "2024-07-11T23:32:00.499201Z", + "iopub.status.busy": "2024-07-11T23:32:00.498752Z", + "iopub.status.idle": "2024-07-11T23:32:00.501927Z", + "shell.execute_reply": "2024-07-11T23:32:00.501454Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.328783Z", - "iopub.status.busy": "2024-07-09T06:28:28.328478Z", - "iopub.status.idle": "2024-07-09T06:28:28.398404Z", - "shell.execute_reply": "2024-07-09T06:28:28.397873Z" + "iopub.execute_input": "2024-07-11T23:32:00.504107Z", + "iopub.status.busy": "2024-07-11T23:32:00.503713Z", + "iopub.status.idle": "2024-07-11T23:32:00.598232Z", + "shell.execute_reply": "2024-07-11T23:32:00.597650Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.400685Z", - "iopub.status.busy": "2024-07-09T06:28:28.400280Z", - "iopub.status.idle": "2024-07-09T06:28:28.580610Z", - "shell.execute_reply": "2024-07-09T06:28:28.580004Z" + "iopub.execute_input": "2024-07-11T23:32:00.600456Z", + "iopub.status.busy": "2024-07-11T23:32:00.600139Z", + "iopub.status.idle": "2024-07-11T23:32:00.780908Z", + "shell.execute_reply": "2024-07-11T23:32:00.780266Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.583196Z", - "iopub.status.busy": "2024-07-09T06:28:28.582842Z", - "iopub.status.idle": "2024-07-09T06:28:28.825147Z", - "shell.execute_reply": "2024-07-09T06:28:28.824546Z" + "iopub.execute_input": "2024-07-11T23:32:00.783410Z", + "iopub.status.busy": "2024-07-11T23:32:00.783226Z", + "iopub.status.idle": "2024-07-11T23:32:00.997850Z", + "shell.execute_reply": "2024-07-11T23:32:00.997211Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.827512Z", - "iopub.status.busy": "2024-07-09T06:28:28.827171Z", - "iopub.status.idle": "2024-07-09T06:28:28.831561Z", - "shell.execute_reply": "2024-07-09T06:28:28.831115Z" + "iopub.execute_input": "2024-07-11T23:32:01.000308Z", + "iopub.status.busy": "2024-07-11T23:32:00.999922Z", + "iopub.status.idle": "2024-07-11T23:32:01.004657Z", + "shell.execute_reply": "2024-07-11T23:32:01.004188Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.833597Z", - "iopub.status.busy": "2024-07-09T06:28:28.833194Z", - "iopub.status.idle": "2024-07-09T06:28:28.839457Z", - "shell.execute_reply": "2024-07-09T06:28:28.838888Z" + "iopub.execute_input": "2024-07-11T23:32:01.006873Z", + "iopub.status.busy": "2024-07-11T23:32:01.006436Z", + "iopub.status.idle": "2024-07-11T23:32:01.012230Z", + "shell.execute_reply": "2024-07-11T23:32:01.011792Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.841676Z", - "iopub.status.busy": "2024-07-09T06:28:28.841286Z", - "iopub.status.idle": "2024-07-09T06:28:28.843833Z", - "shell.execute_reply": "2024-07-09T06:28:28.843413Z" + "iopub.execute_input": "2024-07-11T23:32:01.014340Z", + "iopub.status.busy": "2024-07-11T23:32:01.013970Z", + "iopub.status.idle": "2024-07-11T23:32:01.016728Z", + "shell.execute_reply": "2024-07-11T23:32:01.016248Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.845847Z", - "iopub.status.busy": "2024-07-09T06:28:28.845459Z", - "iopub.status.idle": "2024-07-09T06:28:37.416310Z", - "shell.execute_reply": "2024-07-09T06:28:37.415785Z" + "iopub.execute_input": "2024-07-11T23:32:01.018748Z", + "iopub.status.busy": "2024-07-11T23:32:01.018423Z", + "iopub.status.idle": "2024-07-11T23:32:10.134726Z", + "shell.execute_reply": "2024-07-11T23:32:10.134136Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.419117Z", - "iopub.status.busy": "2024-07-09T06:28:37.418506Z", - "iopub.status.idle": "2024-07-09T06:28:37.425880Z", - "shell.execute_reply": "2024-07-09T06:28:37.425420Z" + "iopub.execute_input": "2024-07-11T23:32:10.137831Z", + "iopub.status.busy": "2024-07-11T23:32:10.137187Z", + "iopub.status.idle": "2024-07-11T23:32:10.144868Z", + "shell.execute_reply": "2024-07-11T23:32:10.144299Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.427928Z", - "iopub.status.busy": "2024-07-09T06:28:37.427621Z", - "iopub.status.idle": "2024-07-09T06:28:37.431159Z", - "shell.execute_reply": "2024-07-09T06:28:37.430715Z" + "iopub.execute_input": "2024-07-11T23:32:10.147066Z", + "iopub.status.busy": "2024-07-11T23:32:10.146779Z", + "iopub.status.idle": "2024-07-11T23:32:10.150508Z", + "shell.execute_reply": "2024-07-11T23:32:10.149995Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.433108Z", - "iopub.status.busy": "2024-07-09T06:28:37.432812Z", - "iopub.status.idle": "2024-07-09T06:28:37.436103Z", - "shell.execute_reply": "2024-07-09T06:28:37.435676Z" + "iopub.execute_input": "2024-07-11T23:32:10.152588Z", + "iopub.status.busy": "2024-07-11T23:32:10.152251Z", + "iopub.status.idle": "2024-07-11T23:32:10.155433Z", + "shell.execute_reply": "2024-07-11T23:32:10.154903Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.437855Z", - "iopub.status.busy": "2024-07-09T06:28:37.437689Z", - "iopub.status.idle": "2024-07-09T06:28:37.440738Z", - "shell.execute_reply": "2024-07-09T06:28:37.440200Z" + "iopub.execute_input": "2024-07-11T23:32:10.157807Z", + "iopub.status.busy": "2024-07-11T23:32:10.157420Z", + "iopub.status.idle": "2024-07-11T23:32:10.163881Z", + "shell.execute_reply": "2024-07-11T23:32:10.163328Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.442722Z", - "iopub.status.busy": "2024-07-09T06:28:37.442340Z", - "iopub.status.idle": "2024-07-09T06:28:37.450065Z", - "shell.execute_reply": "2024-07-09T06:28:37.449543Z" + "iopub.execute_input": "2024-07-11T23:32:10.166173Z", + "iopub.status.busy": "2024-07-11T23:32:10.165714Z", + "iopub.status.idle": "2024-07-11T23:32:10.176486Z", + "shell.execute_reply": "2024-07-11T23:32:10.175893Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.452147Z", - "iopub.status.busy": "2024-07-09T06:28:37.451829Z", - "iopub.status.idle": "2024-07-09T06:28:37.454273Z", - "shell.execute_reply": "2024-07-09T06:28:37.453859Z" + "iopub.execute_input": "2024-07-11T23:32:10.179010Z", + "iopub.status.busy": "2024-07-11T23:32:10.178674Z", + "iopub.status.idle": "2024-07-11T23:32:10.181620Z", + "shell.execute_reply": "2024-07-11T23:32:10.181036Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.456308Z", - "iopub.status.busy": "2024-07-09T06:28:37.455998Z", - "iopub.status.idle": "2024-07-09T06:28:37.574042Z", - "shell.execute_reply": "2024-07-09T06:28:37.573412Z" + "iopub.execute_input": "2024-07-11T23:32:10.183941Z", + "iopub.status.busy": "2024-07-11T23:32:10.183608Z", + "iopub.status.idle": "2024-07-11T23:32:10.311815Z", + "shell.execute_reply": "2024-07-11T23:32:10.311090Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.576401Z", - "iopub.status.busy": "2024-07-09T06:28:37.576035Z", - "iopub.status.idle": "2024-07-09T06:28:37.676628Z", - "shell.execute_reply": "2024-07-09T06:28:37.676092Z" + "iopub.execute_input": "2024-07-11T23:32:10.314495Z", + "iopub.status.busy": "2024-07-11T23:32:10.313960Z", + "iopub.status.idle": "2024-07-11T23:32:10.424888Z", + "shell.execute_reply": "2024-07-11T23:32:10.424268Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.678829Z", - "iopub.status.busy": "2024-07-09T06:28:37.678655Z", - "iopub.status.idle": "2024-07-09T06:28:38.159157Z", - "shell.execute_reply": "2024-07-09T06:28:38.158544Z" + "iopub.execute_input": "2024-07-11T23:32:10.427478Z", + "iopub.status.busy": "2024-07-11T23:32:10.427113Z", + "iopub.status.idle": "2024-07-11T23:32:10.938948Z", + "shell.execute_reply": "2024-07-11T23:32:10.938269Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.161651Z", - "iopub.status.busy": "2024-07-09T06:28:38.161475Z", - "iopub.status.idle": "2024-07-09T06:28:38.250789Z", - "shell.execute_reply": "2024-07-09T06:28:38.250230Z" + "iopub.execute_input": "2024-07-11T23:32:10.941874Z", + "iopub.status.busy": "2024-07-11T23:32:10.941302Z", + "iopub.status.idle": "2024-07-11T23:32:11.038384Z", + "shell.execute_reply": "2024-07-11T23:32:11.037782Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.252951Z", - "iopub.status.busy": "2024-07-09T06:28:38.252776Z", - "iopub.status.idle": "2024-07-09T06:28:38.261091Z", - "shell.execute_reply": "2024-07-09T06:28:38.260672Z" + "iopub.execute_input": "2024-07-11T23:32:11.040785Z", + "iopub.status.busy": "2024-07-11T23:32:11.040438Z", + "iopub.status.idle": "2024-07-11T23:32:11.049535Z", + "shell.execute_reply": "2024-07-11T23:32:11.049074Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.262975Z", - "iopub.status.busy": "2024-07-09T06:28:38.262781Z", - "iopub.status.idle": "2024-07-09T06:28:38.265296Z", - "shell.execute_reply": "2024-07-09T06:28:38.264887Z" + "iopub.execute_input": "2024-07-11T23:32:11.051530Z", + "iopub.status.busy": "2024-07-11T23:32:11.051349Z", + "iopub.status.idle": "2024-07-11T23:32:11.054237Z", + "shell.execute_reply": "2024-07-11T23:32:11.053732Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.267254Z", - "iopub.status.busy": "2024-07-09T06:28:38.266967Z", - "iopub.status.idle": "2024-07-09T06:28:43.570047Z", - "shell.execute_reply": "2024-07-09T06:28:43.569491Z" + "iopub.execute_input": "2024-07-11T23:32:11.056147Z", + "iopub.status.busy": "2024-07-11T23:32:11.055971Z", + "iopub.status.idle": "2024-07-11T23:32:16.798486Z", + "shell.execute_reply": "2024-07-11T23:32:16.797837Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:43.572470Z", - "iopub.status.busy": "2024-07-09T06:28:43.572094Z", - "iopub.status.idle": "2024-07-09T06:28:43.580386Z", - "shell.execute_reply": "2024-07-09T06:28:43.579870Z" + "iopub.execute_input": "2024-07-11T23:32:16.801050Z", + "iopub.status.busy": "2024-07-11T23:32:16.800587Z", + "iopub.status.idle": "2024-07-11T23:32:16.809241Z", + "shell.execute_reply": "2024-07-11T23:32:16.808773Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:43.582347Z", - "iopub.status.busy": "2024-07-09T06:28:43.582046Z", - "iopub.status.idle": "2024-07-09T06:28:43.650473Z", - "shell.execute_reply": "2024-07-09T06:28:43.649884Z" + "iopub.execute_input": "2024-07-11T23:32:16.811373Z", + "iopub.status.busy": "2024-07-11T23:32:16.811029Z", + "iopub.status.idle": "2024-07-11T23:32:16.875258Z", + "shell.execute_reply": "2024-07-11T23:32:16.874659Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index ae5ebc560..de6875959 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:46.574289Z", - "iopub.status.busy": "2024-07-09T06:28:46.574108Z", - "iopub.status.idle": "2024-07-09T06:28:48.491596Z", - "shell.execute_reply": "2024-07-09T06:28:48.490918Z" + "iopub.execute_input": "2024-07-11T23:32:19.906876Z", + "iopub.status.busy": "2024-07-11T23:32:19.906713Z", + "iopub.status.idle": "2024-07-11T23:32:22.252981Z", + "shell.execute_reply": "2024-07-11T23:32:22.252336Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:48.494276Z", - "iopub.status.busy": "2024-07-09T06:28:48.493843Z", - "iopub.status.idle": "2024-07-09T06:29:39.569009Z", - "shell.execute_reply": "2024-07-09T06:29:39.568435Z" + "iopub.execute_input": "2024-07-11T23:32:22.255955Z", + "iopub.status.busy": "2024-07-11T23:32:22.255551Z", + "iopub.status.idle": "2024-07-11T23:33:17.312408Z", + "shell.execute_reply": "2024-07-11T23:33:17.311778Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:39.571515Z", - "iopub.status.busy": "2024-07-09T06:29:39.571138Z", - "iopub.status.idle": "2024-07-09T06:29:40.663339Z", - "shell.execute_reply": "2024-07-09T06:29:40.662734Z" + "iopub.execute_input": "2024-07-11T23:33:17.314965Z", + "iopub.status.busy": "2024-07-11T23:33:17.314582Z", + "iopub.status.idle": "2024-07-11T23:33:18.467232Z", + "shell.execute_reply": "2024-07-11T23:33:18.466671Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.665937Z", - "iopub.status.busy": "2024-07-09T06:29:40.665611Z", - "iopub.status.idle": "2024-07-09T06:29:40.669025Z", - "shell.execute_reply": "2024-07-09T06:29:40.668588Z" + "iopub.execute_input": "2024-07-11T23:33:18.469889Z", + "iopub.status.busy": "2024-07-11T23:33:18.469482Z", + "iopub.status.idle": "2024-07-11T23:33:18.472673Z", + "shell.execute_reply": "2024-07-11T23:33:18.472250Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.671153Z", - "iopub.status.busy": "2024-07-09T06:29:40.670839Z", - "iopub.status.idle": "2024-07-09T06:29:40.674594Z", - "shell.execute_reply": "2024-07-09T06:29:40.674175Z" + "iopub.execute_input": "2024-07-11T23:33:18.474860Z", + "iopub.status.busy": "2024-07-11T23:33:18.474466Z", + "iopub.status.idle": "2024-07-11T23:33:18.478384Z", + "shell.execute_reply": "2024-07-11T23:33:18.477916Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.676662Z", - "iopub.status.busy": "2024-07-09T06:29:40.676404Z", - "iopub.status.idle": "2024-07-09T06:29:40.679978Z", - "shell.execute_reply": "2024-07-09T06:29:40.679552Z" + "iopub.execute_input": "2024-07-11T23:33:18.480501Z", + "iopub.status.busy": "2024-07-11T23:33:18.480162Z", + "iopub.status.idle": "2024-07-11T23:33:18.483793Z", + "shell.execute_reply": "2024-07-11T23:33:18.483337Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.681969Z", - "iopub.status.busy": "2024-07-09T06:29:40.681683Z", - "iopub.status.idle": "2024-07-09T06:29:40.684443Z", - "shell.execute_reply": "2024-07-09T06:29:40.684006Z" + "iopub.execute_input": "2024-07-11T23:33:18.485739Z", + "iopub.status.busy": "2024-07-11T23:33:18.485418Z", + "iopub.status.idle": "2024-07-11T23:33:18.488095Z", + "shell.execute_reply": "2024-07-11T23:33:18.487656Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.686418Z", - "iopub.status.busy": "2024-07-09T06:29:40.686015Z", - "iopub.status.idle": "2024-07-09T06:30:13.548442Z", - "shell.execute_reply": "2024-07-09T06:30:13.547829Z" + "iopub.execute_input": "2024-07-11T23:33:18.490061Z", + "iopub.status.busy": "2024-07-11T23:33:18.489698Z", + "iopub.status.idle": "2024-07-11T23:33:56.175531Z", + "shell.execute_reply": "2024-07-11T23:33:56.174794Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6cc3388bab2643c8b90c9272aea123fd", + "model_id": "c0584b24721d43d2868ec02247f84455", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c10054699f0e464a82009f0a5e0c578c", + "model_id": "f8938d4cb96f420fac56cae5ee37daf5", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:13.551052Z", - "iopub.status.busy": "2024-07-09T06:30:13.550744Z", - "iopub.status.idle": "2024-07-09T06:30:14.218934Z", - "shell.execute_reply": "2024-07-09T06:30:14.218385Z" + "iopub.execute_input": "2024-07-11T23:33:56.178473Z", + "iopub.status.busy": "2024-07-11T23:33:56.178219Z", + "iopub.status.idle": "2024-07-11T23:33:56.861174Z", + "shell.execute_reply": "2024-07-11T23:33:56.860565Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:14.221301Z", - "iopub.status.busy": "2024-07-09T06:30:14.220857Z", - "iopub.status.idle": "2024-07-09T06:30:17.059729Z", - "shell.execute_reply": "2024-07-09T06:30:17.059140Z" + "iopub.execute_input": "2024-07-11T23:33:56.863706Z", + "iopub.status.busy": "2024-07-11T23:33:56.863259Z", + "iopub.status.idle": "2024-07-11T23:33:59.837303Z", + "shell.execute_reply": "2024-07-11T23:33:59.836696Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:17.061913Z", - "iopub.status.busy": "2024-07-09T06:30:17.061694Z", - "iopub.status.idle": "2024-07-09T06:30:49.094226Z", - "shell.execute_reply": "2024-07-09T06:30:49.093651Z" + "iopub.execute_input": "2024-07-11T23:33:59.839536Z", + "iopub.status.busy": "2024-07-11T23:33:59.839257Z", + "iopub.status.idle": "2024-07-11T23:34:32.571789Z", + "shell.execute_reply": "2024-07-11T23:34:32.571226Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7019068b213142edb33e86d2e73ee210", + "model_id": "3da6e0e6f80242a69eed899f7f003b6b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:49.096361Z", - "iopub.status.busy": "2024-07-09T06:30:49.096022Z", - "iopub.status.idle": "2024-07-09T06:31:03.308031Z", - "shell.execute_reply": "2024-07-09T06:31:03.307471Z" + "iopub.execute_input": "2024-07-11T23:34:32.573937Z", + "iopub.status.busy": "2024-07-11T23:34:32.573624Z", + "iopub.status.idle": "2024-07-11T23:34:47.329710Z", + "shell.execute_reply": "2024-07-11T23:34:47.329133Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:03.310669Z", - "iopub.status.busy": "2024-07-09T06:31:03.310203Z", - "iopub.status.idle": "2024-07-09T06:31:07.123611Z", - "shell.execute_reply": "2024-07-09T06:31:07.123110Z" + "iopub.execute_input": "2024-07-11T23:34:47.332205Z", + "iopub.status.busy": "2024-07-11T23:34:47.331825Z", + "iopub.status.idle": "2024-07-11T23:34:51.162469Z", + "shell.execute_reply": "2024-07-11T23:34:51.161813Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:07.125567Z", - "iopub.status.busy": "2024-07-09T06:31:07.125390Z", - "iopub.status.idle": "2024-07-09T06:31:08.517470Z", - "shell.execute_reply": "2024-07-09T06:31:08.516908Z" + "iopub.execute_input": "2024-07-11T23:34:51.164843Z", + "iopub.status.busy": "2024-07-11T23:34:51.164441Z", + "iopub.status.idle": "2024-07-11T23:34:52.633372Z", + "shell.execute_reply": "2024-07-11T23:34:52.632812Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd89a714f4bd4881ac3bcdde2e818698", + "model_id": "c6133c732ab34f69926d67ba61ff195d", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:08.519948Z", - "iopub.status.busy": "2024-07-09T06:31:08.519605Z", - "iopub.status.idle": "2024-07-09T06:31:08.546961Z", - "shell.execute_reply": "2024-07-09T06:31:08.546404Z" + "iopub.execute_input": "2024-07-11T23:34:52.635841Z", + "iopub.status.busy": "2024-07-11T23:34:52.635556Z", + "iopub.status.idle": "2024-07-11T23:34:52.666054Z", + "shell.execute_reply": "2024-07-11T23:34:52.665470Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:08.549370Z", - "iopub.status.busy": "2024-07-09T06:31:08.549025Z", - "iopub.status.idle": "2024-07-09T06:31:14.598098Z", - "shell.execute_reply": "2024-07-09T06:31:14.597530Z" + "iopub.execute_input": "2024-07-11T23:34:52.668535Z", + "iopub.status.busy": "2024-07-11T23:34:52.668149Z", + "iopub.status.idle": "2024-07-11T23:34:58.869472Z", + "shell.execute_reply": "2024-07-11T23:34:58.868947Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:14.600337Z", - "iopub.status.busy": "2024-07-09T06:31:14.600147Z", - "iopub.status.idle": "2024-07-09T06:31:14.656339Z", - "shell.execute_reply": "2024-07-09T06:31:14.655805Z" + "iopub.execute_input": "2024-07-11T23:34:58.871708Z", + "iopub.status.busy": "2024-07-11T23:34:58.871342Z", + "iopub.status.idle": "2024-07-11T23:34:58.927260Z", + "shell.execute_reply": "2024-07-11T23:34:58.926706Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02d9a746ed0046739aa78a6ce0085ff9": { + "0044b9b331cd444eb439a799eba62326": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1053,15 +1053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "layout": "IPY_MODEL_60deca07abc34cb3811a667941e2f2bd", "placeholder": "​", - "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", + "style": "IPY_MODEL_1857b1f1c6794842b42cf4631af6f405", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00,  1.44it/s]" + "value": " 30/30 [00:01<00:00, 20.57it/s]" } }, - "0b2d6256d1c542d285214e15fc92fe65": { + "11b5ab5708304b01964b5005e9d49fa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1114,60 +1114,25 @@ "width": null } }, - "0c20fddef0b54b239fafa2cc41c63236": { - "model_module": "@jupyter-widgets/base", + "1857b1f1c6794842b42cf4631af6f405": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dd5218cedde49baa055e8096ed30926": { + "188d4e1710a14a4a825950556de3ccaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1220,7 +1185,7 @@ "width": null } }, - "14896ca89fcc44339c2b6527f1f9f9dc": { + "1e1959d4bb5a46e68d56612b7c1106be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1238,51 +1203,30 @@ "text_color": null } }, - "176760f869904a7fa39445bdd88719b2": { + "1e616626d69c47bfa1a9ce0674300814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "layout": "IPY_MODEL_a8069702950941be8203dbf7f4221c96", + "placeholder": "​", + "style": "IPY_MODEL_7fed8e007e194b8bb590f88491499d1e", "tabbable": null, "tooltip": null, - "value": 30.0 - } - }, - "228b0d40b0924b7a97e4d0957e103746": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "number of examples processed for checking labels: 100%" } }, - "22fe02c2e99045d8821cfc15a94e4936": { + "25a343b31b704caa9a29636ff50a07a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1335,60 +1279,56 @@ "width": null } }, - "279d7517839d43c89b15e2c5c84c7be9": { - "model_module": "@jupyter-widgets/base", + "2a275f8d7fff42a78662b93bdf128c04": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6a3d9a0e69f42b895a23ab7bbd9057d", + "placeholder": "​", + "style": "IPY_MODEL_c1fd01202172453c871f3ff8ec81caff", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "2abe5ecefb664d2bafb6bfe15ea93d0d": { + "2a466e8aba1f4a8e827e3e8e11685a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71257a600c5b4613a422b3144f6c0434", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_49958122122847feb297f878a5b28da9", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "2ba0dfdc96fe4a5ca755b26d8afb58ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1441,43 +1381,145 @@ "width": null } }, - "32a85d515d9e4eaba06dcc77490cad82": { + "2f3778ea55bb4391bad28e2a4c2d9199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53d315fb6b2d4760aeaf263428cde929", + "placeholder": "​", + "style": "IPY_MODEL_7599052b7ce24755bf23b007aadc307a", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "3f51ef64ff6b45ebb8b941ba2ee62b5d": { + "33f89b940d65475c80bd183856bdb9b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5830c0d91db46f0adaa38dda98a2a5b", + "placeholder": "​", + "style": "IPY_MODEL_90ab3820a0694de5a8b9fa82e6bfe783", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 150797.61it/s]" + } + }, + "3bcac2630f48440fa0c5eb289e75e61e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_25a343b31b704caa9a29636ff50a07a1", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6201c8a3f3d45d1a37056a8da401a54", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "3c7cb1c20b1a40868e755caadb218eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8343ca1756540558b403dbea1296694", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad64269f32284260a3633079e160dc92", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "3da6e0e6f80242a69eed899f7f003b6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2f3778ea55bb4391bad28e2a4c2d9199", + "IPY_MODEL_3bcac2630f48440fa0c5eb289e75e61e", + "IPY_MODEL_33f89b940d65475c80bd183856bdb9b2" + ], + "layout": "IPY_MODEL_7a95c08c82304c2b875e75cd4ed33abf", + "tabbable": null, + "tooltip": null + } + }, + "49958122122847feb297f878a5b28da9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "403d955a5e56429185a7d79c76b3f942": { + "531ec4ced94645a9b3fa12942e97ca0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1492,15 +1534,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", + "layout": "IPY_MODEL_57b5c254f1a8481da67c7db8837475af", "placeholder": "​", - "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", + "style": "IPY_MODEL_c7d66facd9064239833d88bbebac16a2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 810.84it/s]" + "value": " 30/30 [00:25<00:00,  1.22it/s]" } }, - "44a6a6e2aca946a1a5360a07e3b508d2": { + "53d315fb6b2d4760aeaf263428cde929": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1595,7 @@ "width": null } }, - "5330888ec41a4abab567527c6e1ffd41": { + "57b5c254f1a8481da67c7db8837475af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,41 +1648,7 @@ "width": null } }, - "57f13be2c99544fb9cc14d43a41b2771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b9e311328344481b090157819e78c90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6483735a58b043b6b18bce9fcea7af01": { + "581af7bb921b4603bc3521d0c4926f9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1656,129 +1664,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "layout": "IPY_MODEL_d773831d8d4c4daebf9ad8f0083cb435", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", + "style": "IPY_MODEL_e955cf8e1a924724a672f8b877d6526f", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "6584bb27a7154628a8d459aca88dc035": { - "model_module": "@jupyter-widgets/controls", + "59cf3a2e31724441b3c7fde2dde98df3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6cc3388bab2643c8b90c9272aea123fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", - "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", - "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" - ], - "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", - "tabbable": null, - "tooltip": null - } - }, - "7019068b213142edb33e86d2e73ee210": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", - "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", - "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" - ], - "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", - "tabbable": null, - "tooltip": null - } - }, - "7b951463c2014d63996109b04919b6f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", - "placeholder": "​", - "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.76it/s]" - } - }, - "7f68c4f29617499499ee2c05c5a6a108": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", - "placeholder": "​", - "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "83e9f786fc2e45a789ee9639166df7d8": { + "60deca07abc34cb3811a667941e2f2bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1831,7 +1780,25 @@ "width": null } }, - "855c64f84945411a9db3c53deb7492c1": { + "6189bc160d14416d82f0032eb0215494": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71257a600c5b4613a422b3144f6c0434": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1884,7 +1851,25 @@ "width": null } }, - "95f6f8f5058e4a999e52cf9ee97471a8": { + "7599052b7ce24755bf23b007aadc307a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a95c08c82304c2b875e75cd4ed33abf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1937,7 +1922,43 @@ "width": null } }, - "97c988acb93f44548e72b7e6785373ba": { + "7fed8e007e194b8bb590f88491499d1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "90ab3820a0694de5a8b9fa82e6bfe783": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a8069702950941be8203dbf7f4221c96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1990,7 +2011,7 @@ "width": null } }, - "9af440153d4e4cdf94b2cf7fabd36183": { + "ad64269f32284260a3633079e160dc92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2006,82 +2027,49 @@ "description_width": "" } }, - "a35e0222d4f14c66bf3c3a5aa2572142": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ae57c0974e774c6890338ba8b17d0191": { + "c0584b24721d43d2868ec02247f84455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5fe05351b274eb6ae456d2b92b5e926", + "IPY_MODEL_3c7cb1c20b1a40868e755caadb218eb8", + "IPY_MODEL_eccd1de9afa64ec1aa6568f416e20820" + ], + "layout": "IPY_MODEL_188d4e1710a14a4a825950556de3ccaf", "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "tooltip": null } }, - "b6e063e50c2b4445910ce5e867fbd918": { + "c1fd01202172453c871f3ff8ec81caff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", - "placeholder": "​", - "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c10054699f0e464a82009f0a5e0c578c": { + "c6133c732ab34f69926d67ba61ff195d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2096,16 +2084,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", - "IPY_MODEL_176760f869904a7fa39445bdd88719b2", - "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + "IPY_MODEL_2a275f8d7fff42a78662b93bdf128c04", + "IPY_MODEL_581af7bb921b4603bc3521d0c4926f9a", + "IPY_MODEL_0044b9b331cd444eb439a799eba62326" ], - "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "layout": "IPY_MODEL_11b5ab5708304b01964b5005e9d49fa2", "tabbable": null, "tooltip": null } }, - "c498db02e0b04391a5861cb923082075": { + "c6a3d9a0e69f42b895a23ab7bbd9057d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2146,25 @@ "width": null } }, - "c9163ef783e742f3acc05346e5afcb64": { + "c7d66facd9064239833d88bbebac16a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d773831d8d4c4daebf9ad8f0083cb435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,7 +2217,7 @@ "width": null } }, - "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "dcb4d54354254228bc7b456431069d7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2264,48 +2270,7 @@ "width": null } }, - "ce3e640376574f9e8d585bcb85603e1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf3b18d1306748afa8e938ecd97912de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", - "placeholder": "​", - "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "d1f1c3debd3a4626adf70f52c88e15f0": { + "e5830c0d91db46f0adaa38dda98a2a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2358,7 +2323,7 @@ "width": null } }, - "d504401538154719844d7826ee272589": { + "e6201c8a3f3d45d1a37056a8da401a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2374,30 +2339,7 @@ "description_width": "" } }, - "d8a1c7ffaa334c438eb48081a604d215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", - "placeholder": "​", - "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "db6c02d349084e498c97e2e6ed714f28": { + "e955cf8e1a924724a672f8b877d6526f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2413,25 +2355,30 @@ "description_width": "" } }, - "e2897f5daefd4d14a83b5100fa9e108f": { + "eccd1de9afa64ec1aa6568f416e20820": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59cf3a2e31724441b3c7fde2dde98df3", + "placeholder": "​", + "style": "IPY_MODEL_1e1959d4bb5a46e68d56612b7c1106be", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 771.56it/s]" } }, - "fade87555302435dbdddd0ecd183f382": { + "f5fe05351b274eb6ae456d2b92b5e926": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2446,15 +2393,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "layout": "IPY_MODEL_dcb4d54354254228bc7b456431069d7b", "placeholder": "​", - "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", + "style": "IPY_MODEL_6189bc160d14416d82f0032eb0215494", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "f8343ca1756540558b403dbea1296694": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fd89a714f4bd4881ac3bcdde2e818698": { + "f8938d4cb96f420fac56cae5ee37daf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2469,11 +2469,11 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fade87555302435dbdddd0ecd183f382", - "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", - "IPY_MODEL_7b951463c2014d63996109b04919b6f0" + "IPY_MODEL_1e616626d69c47bfa1a9ce0674300814", + "IPY_MODEL_2a466e8aba1f4a8e827e3e8e11685a21", + "IPY_MODEL_531ec4ced94645a9b3fa12942e97ca0b" ], - "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", + "layout": "IPY_MODEL_2ba0dfdc96fe4a5ca755b26d8afb58ef", "tabbable": null, "tooltip": null } diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index f95fb9e96..c35a52f3d 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:16.799869Z", - "iopub.status.busy": "2024-07-09T06:31:16.799691Z", - "iopub.status.idle": "2024-07-09T06:31:17.988936Z", - "shell.execute_reply": "2024-07-09T06:31:17.988319Z" + "iopub.execute_input": "2024-07-11T23:35:01.258463Z", + "iopub.status.busy": "2024-07-11T23:35:01.258298Z", + "iopub.status.idle": "2024-07-11T23:35:02.186338Z", + "shell.execute_reply": "2024-07-11T23:35:02.185630Z" } }, "outputs": [ @@ -86,31 +86,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "--2024-07-11 23:35:01-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... 169.150.236.97, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -123,9 +102,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", "\r\n", - "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-11 23:35:01 (73.9 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +124,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", + "--2024-07-11 23:35:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.65, 52.217.235.193, 3.5.1.160, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.65|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -168,9 +153,17 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", + "pred_probs.npz 72%[=============> ] 11.85M 59.2MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 70.5MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-11 23:35:02 (70.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +180,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:17.991436Z", - "iopub.status.busy": "2024-07-09T06:31:17.991070Z", - "iopub.status.idle": "2024-07-09T06:31:19.289852Z", - "shell.execute_reply": "2024-07-09T06:31:19.289351Z" + "iopub.execute_input": "2024-07-11T23:35:02.189111Z", + "iopub.status.busy": "2024-07-11T23:35:02.188690Z", + "iopub.status.idle": "2024-07-11T23:35:03.496983Z", + "shell.execute_reply": "2024-07-11T23:35:03.496414Z" }, "nbsphinx": "hidden" }, @@ -201,7 +194,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +220,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.292366Z", - "iopub.status.busy": "2024-07-09T06:31:19.291931Z", - "iopub.status.idle": "2024-07-09T06:31:19.295209Z", - "shell.execute_reply": "2024-07-09T06:31:19.294745Z" + "iopub.execute_input": "2024-07-11T23:35:03.499628Z", + "iopub.status.busy": "2024-07-11T23:35:03.499335Z", + "iopub.status.idle": "2024-07-11T23:35:03.502749Z", + "shell.execute_reply": "2024-07-11T23:35:03.502297Z" } }, "outputs": [], @@ -280,10 +273,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.297359Z", - "iopub.status.busy": "2024-07-09T06:31:19.297049Z", - "iopub.status.idle": "2024-07-09T06:31:19.300013Z", - "shell.execute_reply": "2024-07-09T06:31:19.299557Z" + "iopub.execute_input": "2024-07-11T23:35:03.504801Z", + "iopub.status.busy": "2024-07-11T23:35:03.504477Z", + "iopub.status.idle": "2024-07-11T23:35:03.507452Z", + "shell.execute_reply": "2024-07-11T23:35:03.506988Z" }, "nbsphinx": "hidden" }, @@ -301,10 +294,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.302022Z", - "iopub.status.busy": "2024-07-09T06:31:19.301697Z", - "iopub.status.idle": "2024-07-09T06:31:28.335757Z", - "shell.execute_reply": "2024-07-09T06:31:28.335203Z" + "iopub.execute_input": "2024-07-11T23:35:03.509461Z", + "iopub.status.busy": "2024-07-11T23:35:03.509119Z", + "iopub.status.idle": "2024-07-11T23:35:12.662798Z", + "shell.execute_reply": "2024-07-11T23:35:12.662214Z" } }, "outputs": [], @@ -378,10 +371,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.338200Z", - "iopub.status.busy": "2024-07-09T06:31:28.337845Z", - "iopub.status.idle": "2024-07-09T06:31:28.343280Z", - "shell.execute_reply": "2024-07-09T06:31:28.342837Z" + "iopub.execute_input": "2024-07-11T23:35:12.665425Z", + "iopub.status.busy": "2024-07-11T23:35:12.665028Z", + "iopub.status.idle": "2024-07-11T23:35:12.670584Z", + "shell.execute_reply": "2024-07-11T23:35:12.670111Z" }, "nbsphinx": "hidden" }, @@ -421,10 +414,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.345254Z", - "iopub.status.busy": "2024-07-09T06:31:28.344923Z", - "iopub.status.idle": "2024-07-09T06:31:28.685882Z", - "shell.execute_reply": "2024-07-09T06:31:28.685329Z" + "iopub.execute_input": "2024-07-11T23:35:12.672749Z", + "iopub.status.busy": "2024-07-11T23:35:12.672341Z", + "iopub.status.idle": "2024-07-11T23:35:13.029090Z", + "shell.execute_reply": "2024-07-11T23:35:13.028516Z" } }, "outputs": [], @@ -461,10 +454,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.688450Z", - "iopub.status.busy": "2024-07-09T06:31:28.688108Z", - "iopub.status.idle": "2024-07-09T06:31:28.692422Z", - "shell.execute_reply": "2024-07-09T06:31:28.691913Z" + "iopub.execute_input": "2024-07-11T23:35:13.031558Z", + "iopub.status.busy": "2024-07-11T23:35:13.031368Z", + "iopub.status.idle": "2024-07-11T23:35:13.035967Z", + "shell.execute_reply": "2024-07-11T23:35:13.035483Z" } }, "outputs": [ @@ -536,10 +529,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.694566Z", - "iopub.status.busy": "2024-07-09T06:31:28.694154Z", - "iopub.status.idle": "2024-07-09T06:31:31.218610Z", - "shell.execute_reply": "2024-07-09T06:31:31.217915Z" + "iopub.execute_input": "2024-07-11T23:35:13.037865Z", + "iopub.status.busy": "2024-07-11T23:35:13.037691Z", + "iopub.status.idle": "2024-07-11T23:35:15.710595Z", + "shell.execute_reply": "2024-07-11T23:35:15.709845Z" } }, "outputs": [], @@ -561,10 +554,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.221635Z", - "iopub.status.busy": "2024-07-09T06:31:31.220890Z", - "iopub.status.idle": "2024-07-09T06:31:31.224904Z", - "shell.execute_reply": "2024-07-09T06:31:31.224377Z" + "iopub.execute_input": "2024-07-11T23:35:15.713638Z", + "iopub.status.busy": "2024-07-11T23:35:15.713039Z", + "iopub.status.idle": "2024-07-11T23:35:15.717454Z", + "shell.execute_reply": "2024-07-11T23:35:15.716971Z" } }, "outputs": [ @@ -600,10 +593,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.226850Z", - "iopub.status.busy": "2024-07-09T06:31:31.226675Z", - "iopub.status.idle": "2024-07-09T06:31:31.232224Z", - "shell.execute_reply": "2024-07-09T06:31:31.231711Z" + "iopub.execute_input": "2024-07-11T23:35:15.719371Z", + "iopub.status.busy": "2024-07-11T23:35:15.719198Z", + "iopub.status.idle": "2024-07-11T23:35:15.725101Z", + "shell.execute_reply": "2024-07-11T23:35:15.724613Z" } }, "outputs": [ @@ -781,10 +774,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.234195Z", - "iopub.status.busy": "2024-07-09T06:31:31.233868Z", - "iopub.status.idle": "2024-07-09T06:31:31.260501Z", - "shell.execute_reply": "2024-07-09T06:31:31.260037Z" + "iopub.execute_input": "2024-07-11T23:35:15.727225Z", + "iopub.status.busy": "2024-07-11T23:35:15.726814Z", + "iopub.status.idle": "2024-07-11T23:35:15.754333Z", + "shell.execute_reply": "2024-07-11T23:35:15.753814Z" } }, "outputs": [ @@ -886,10 +879,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.262698Z", - "iopub.status.busy": "2024-07-09T06:31:31.262368Z", - "iopub.status.idle": "2024-07-09T06:31:31.266471Z", - "shell.execute_reply": "2024-07-09T06:31:31.265953Z" + "iopub.execute_input": "2024-07-11T23:35:15.756419Z", + "iopub.status.busy": "2024-07-11T23:35:15.756236Z", + "iopub.status.idle": "2024-07-11T23:35:15.760750Z", + "shell.execute_reply": "2024-07-11T23:35:15.760207Z" } }, "outputs": [ @@ -963,10 +956,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.268473Z", - "iopub.status.busy": "2024-07-09T06:31:31.268157Z", - "iopub.status.idle": "2024-07-09T06:31:32.664554Z", - "shell.execute_reply": "2024-07-09T06:31:32.664039Z" + "iopub.execute_input": "2024-07-11T23:35:15.762649Z", + "iopub.status.busy": "2024-07-11T23:35:15.762472Z", + "iopub.status.idle": "2024-07-11T23:35:17.199732Z", + "shell.execute_reply": "2024-07-11T23:35:17.199171Z" } }, "outputs": [ @@ -1138,10 +1131,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:32.666738Z", - "iopub.status.busy": "2024-07-09T06:31:32.666392Z", - "iopub.status.idle": "2024-07-09T06:31:32.670504Z", - "shell.execute_reply": "2024-07-09T06:31:32.670046Z" + "iopub.execute_input": "2024-07-11T23:35:17.201976Z", + "iopub.status.busy": "2024-07-11T23:35:17.201566Z", + "iopub.status.idle": "2024-07-11T23:35:17.205791Z", + "shell.execute_reply": "2024-07-11T23:35:17.205192Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 446a917b60ab5b882647de88542e37c5f684b538..8495052262d1a9d44a7088aa22107265488ffba4 100644 GIT binary patch delta 62 zcmX>tep-A(E~BA&L3(*newu;4sj+E_agv#tsX?kiin&Etep-A(E~8SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 SOwvq&IK?zMar0l!gvS8s3KlN_ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 73668f570a712b56c6096374d2f5f7924c1d6a5a..9acd8a5682e0bce4ae1650ba4810528ee1d5b63a 100644 GIT binary patch delta 13426 zcmeHMTdbT_754v62^1)%(w0J@^HVOBQrmsMK#ak72}BBo7!j#uUnxQh6ud-Q+EPMd z)EF|>KiE_xMtP8sLIcB#rG3%hgWO&;kzg=Jj6Bd7<4cWx|I8dXr-j)e@yX2TX*)A# zpMUSQ*ZS7_zO^2G_^ka8pLOup3#q>Qwr_5~E0gt-%gDV_k|YwfNl8efLli0*dxE$W`O=r0$psGfdyeYI#`^^5kC`>LyZTnDFERxU&(Jhxu+7^E|iO6Id2 z96Mg!wV<&~>148#Lg3plqmyQagg_1BmWTF{rS;kEOSjj{+FegpgZ9?CKHQ@c{$`HD z(^MEPJ%I(@d9NJ_Ob*=P>g}p29Kf~zK2U8aAK=1W_4@Y5KdDadNoGw(j9MDBNJM!i zTx5n)F0|xgaBRcOT?=|9aBngtxK|+(j9{K*A$b%j8*AEoHrC7AgIj0L8o;1OtDY1@ z>f4T*|zp)<-oq9KIwbNSkTkNjRE~ zLb^2qiQH-xMElC0swF2P&3gr8@jxhbA{p&D3sLKc=nwdyJ@#0=WN_qb_3z=`!YSIV zN2=?}hj_Ij?HNa_GkV;KNSy_)H9#(vvxX#ttmh0-S+xkgCC@!weFZs00dkxw%efVr z2(P>$pb0rg#5lKuJx4kSWrKjsjwM`+pxtvg3Ji@>8EtrM@9EV`+TEwjENFKxs}~Ng z|9N!)No4XV=qP4OCl~?mKQC72^@R2^1d>1KyWRbRLbW#247)cxW5BmY0u6O-7b8s zy7Uv=&IO-A82RLbvZ%npW^aWf9vPW?C%qiy#$weUW3S*TGapTb81?g4m#%9Td%c21 z?JHlLS9I zaxN+xl}aw?Cc0JFlsb|GYF$^wK(r~h zsH-SOj0zbLR&Zxmyn6^@Wd(OmgC|juI`n0vf0v?7!3^B-`UT*QDxlLlOFar@jtCR1 zRv-exsKh!umd}M;VQ)7s6O;FrBgk!iyE?xog7^4FQn26{5l&(W2|GBSb9Q8y#D#4NT`wJ_l@eE; z#o%PG(fOz<#OevF)8xx@vlwh98x?F<|JL-PNg*0(QJVx3kZ~S##h?HZ3z{>=U=K+# ziKG$*M3MYK4I*P1ltrOhIy*}L^ND5?J8}u0hs2fy&DN73HN37FlmII05VvCty23Hq zt52zKYzn6^UD&Q~|9(pS(MA!^Ibg_nN3V3kE9t!p%rnlC%d-?sI)chBJ&jxh992LH z7$yU^C@W$ZiCxV8va5iyD|ZZBlmmOzkxU_PkW~T$tWQE>=>(&AO@#wAyK1`cz|5+K zq9A9Hl1)yCfWoX0q$*+iWPz?YHYiFGj8a;04u)ze_>8pDGYzvj%^h6l5oq9*aDwa$ zRSHdnn$x|aXc|xyS2e);!&Pzf_VLSSXm9e?zVnW1pISJx>{Im8JMX)akShpTd&}1u zA)v?W^tJD?QD?z^CCEleNmlgk(x}7+kdlVxg!sXTdnxaVNm56t(lATev>| zE*J|Ir6C#ZaR?XAh_n`cf(%W@67$Yw1#RGj9ox+~AtVr_WX^;ENw69z768j=DP*7D zw;;x0t~HQTsG?x@h9bRDL7h^ROExR}CLbWRFRrd{=#};#!tnNw*NYm0@X{Ln1(&Um zE+S*ZkR;<$@<7!%y{v?+k4O_8u?qt7)KYNGm=Uy4KzxAwd$j6-ZGxPGrpE}eC0vdK zEiKWJ^&G$!pp!sU3mcB=-{k#}8esuxH`BV;OPK}fQN7W%flf0Xpm)$o+5<3(wvYd2 z%%ppeYaPWDsDM)Vh(wCAkCK+*Kw-r&M~-qy1HgJlJixEf#8J^?h+Y^0yTEEP>1=`K zE9@;tu$#QCX^&k#bIUrrj?Tds*BU|`)I`{X_Cmm2Cu*UA9K-=aYBrfn?!C11t!nAu z2hUdDsdlA;cjm*U5R4}%zS3>I3$l_~BalVz;7V^Z(x-qHw-5*D74W2DfcTrEjdV(# zdPk89=!}7NDGzFDxDA~&L^g$+PU^1!vWU%u;)tf4QQSasA;VIF&W6!!6b2*JS2zi6 zuezqbwke)s2)Ea-sTVdD^fsYHM-XOV5P9ecfl50f(BuKb9y4n0GH5U?$)I48a;!x6 zDuBQx>d_k>9D5Vob0sw)qRK(vGPGYPl$M5qf>eSi$$3z%?@B{y%Msv8JB|SN(v9`% zl`aB7;3FO?ETL^kK|cxFJBqSk)q8kraHC!4g+sClVS&61H2`FynxlzV09S2}$UR z6Q05M1VS3U3d$M91yiNPFmA?VvviF1`8(^4y}~KltNw{*%S~JBMLioKNhPp@_8)fc zN`wql`-o6Os+kkAOeK;SLJw5|_ymwZJE8cEjCdEqxGUjgVnLyq+?7K#H%&&*0+K?> z)U{q_yAp+c$DvxA>)p}UMfkNL zcGZ`x<8mFFQ|P)x2q7xaG)J{gu^Vt83v;|iS7Ek~Uh2}1iDbzw^MO_fNI8FX>9*dj zaRrN9hqO!EJH9m|7w^0L_(z6cTTb2d!!3(%n$8xcvxVtwVcxXs1g1HiEqw5RV>(-y z9hsE+{L|UOXs$P%Efhx_)7ipwwlJM7OlJ#|Th!Cp!gRK9(r9KnTPU>pN1e3kY+*WE vm^ delta 13647 zcmeHNTdW;r8Fl8AK)Dneds+(g>`kFov9$mFf-w=JCa6%5M4`6U{|aa+rA0(-IfW7o z5)`t92@(jG5F(NYHn8Od%8N!4FG!-ss1S?^MxrzU^#OuwW_H_iitO=4U)*g@aq=o-Ff4pM}M@CZnxr6{iVykypDvd85PoGLrk)P5S=4YS?5fJ5n19V z%Ha0?W8uqJ4*tILw81~WwyJvd{9?)Ark!UDHtt+H_|?w-V8zap2Yd0y?f5Y}R}7Z# z`q+Q|@SWHGZ19QQD+jZ)Cs&I;S1en-dQE@z)tBvX8#iCEedFfK-Hxl$_TaY1`txw9 z+j>dbxOv-UTL)`)_f80IYe-u*ZoX=}+qxsC?StcYpIZHNQ*rX(;n{wWAMg8gv1~#8+Z`K8-7K_{WDB*MEOB==sEpta31kjy2M z?d!T8s$aMNhc6u2Puyt5W1>na5wh?GD`X@JADF|ko7Z(dRKM<_XYjfxm=c5}m1RcO zOY1|jBxWWk_1XF6b)65@uiNzO;-mVEaV43jENU$@i3TMlv&9G8(-2ehx~_-zlIM>- zs&9obIvbU6!<;9Q8``|8^PzfW@BZECNA(hmlsM~%$8Ll&!mz|b&MpKh zlWN}Px*n?EcHEy%J-K-F@pZ*nX8W7KtFfn+^tn|di=m~eEy6?xulHt#%r*1BKII@%&57tI4n6ow! zqJqvEOAnq_`(MIK_uW$drs#LXC)JyG7w7fU_}Hc*v|Lwx=bqx|UglAIPNhp-wvNf^cFcX$e7NWeT)jX_)*By}*83pUEe{pF6~K69ok7(qDNuS= zIHgg8oJdBi^$!$FpLneJ?1COpKW3v*ssYu&l^0f{;)7K|O0KH?JIWKQeZ8qg!`VlQ zJByyfeMA|#j)@3ijnxJfDH0_zWM(S&)S(@XTY@#!bJv!%-w{7n{rk%eXR5X4iyvOM zW7EoAyVmqqW+`m4E*J-F(LfZFS+b0aL==U=?}-1Q&%=qERKWGI{ebjO+bm7CV|tJi1B>3+w~Vtv7lJ6mpVA2@+$8Tbr?`B%@<0 zA?C})@@n_ea^dj&2aCIlen;d`y+}&Z6}dWfwxrctKPgV?0i#`}3CyM$fFU`C>{c#W z3UrmW!L7FHBoJ6yDRQ<1#|?(1PGy%FAwgwQU3cNsbam^Ja`C9@2txr=MHAOv;M&2+ zR(P9Irhuq8#4SEm^gH6SWzuNSI8f*S!=mRx;7~bkO)Wy$&*>F?xtJb)>+#~IV%CqnG9%|#5*?qShgE6Esb$n%_1a9iwAZz>=YCnN zI<2X?n0y9820&X7Hc+dqRW%sesG z-cte^Pzu+p0>Bd2r_tt0Mz~3H3lO@+Id1`I)C-lpA%Qeqi$|{^S@q0W2lXZjeO!E3 zopVHaVZS5xr~v0%~Oogq`R4v<4s2kR{4IJ!BjNBA_C0ej=4k0e@0WZ6{T?e|Qr z>=8$6Z1fSVBn(Q5LEbCvne>ooxk5=T8Q!{PYU6^QA_+~A!J`!NB{|~_h4QeH1`73A z-8Nk=o2xrPq5^u{3X{D^Nx0+^jg}-XNtAK~Cmjn=Eu6%z;0*(Qf8o^9YRhc7_)MnR zxrfxJtPPYHEQ>WdM{7->jC!I;(m}G}{x=Hfm5#=-)ydy{yjGs$@64+CRn?KKdj8WL z$7T-JV8^cb+!|!aS?)4n(2D36EG}3@rh_4Zqq(R%xls)!4X(2x!)Ou-Fhw$P!V*Sn zkQQxWwc<0&s44MYW&`aM6!Mm!_&_)@qlX%a&p1A`sh(Y3erl#8>V0RItL}jEtiJHx z^0;31&IfH>1oNRqOLa?{p`?jQglRL9pHO8+bCe+3B}kv(IOi!iR9>J7y-d^gd`Okw zD|#9Ymx@Si!;v8x%0NN7Nv&}ZLP91%+YLW|32yN;;Hmk&b(8WW<3CL3eZRGp@69XnARU`-jxp-9_gT_PRR`*_5er5%HI#_bBzn}{tkZW%pW}*TS z>p-ek?>fNakfoY{KZueMeCLhzU@)Kw2|l3RZDl8m;vZ)(+AvsUZ5dXs4iJHSE%p%I5G<^^mlExkl7(m1D^?XV)- z`vKS8T+EKYpERGm#^Ofm`*|on-~!o>P%5;VaC>`s#S&nh7R%e42%SD z6+|Q)O;8?Oz6c6{Q|>t2>}vOha`{|s<_$n8z}1H+6KEl=0h4IsEMt&!0H%X3XTM_& zrWI)8?(VbUG?NQRw)b0|bQi3A&?^`7J1#2=J6STJNw*;2?Z? z03r}1;WpqZ*Q;zPoOzXz<1iVaa7gl2`5JRFoDZQ5t5bg-jC3ucaXLHVyViHPXtrFn z)~*$D4*OBf(Cmo>b&RCaIBY?YFN#2nnB4lE?H)U9{91q?V84z_JB-ih_`D_a3%BF^ z*g^K|*jej$R*&9TniI}=<6X_aOOM?2?MoM5G?_n4<`0wk!#hmKCi92M{9!VGc*idu zOy&=h`NPOCoXj8IKKYo;ALdV1Ci92-iy|FUfXV!!9%oMG4~LmDlljBjryi5}!}uY< z96NWsi$0k@92$@v=GRQ-5C4AjF_}M1<`3^YADYY`Ci4e;<+J`G<(T=$Wd88~H-FH> L`>&b$%F+Jgv2{bnQf9*Z2SV3uxArnPISo^PnlBRLsKuQD$ z1tVxgd+0#Wp%g*|;ehq09cu>;N_AjqJ1I2|;;0jC{q8&WrthNOGj(tuJb1jf-(7p{ zwZ5OVUb?ya(#_rHe!U~<%46TU`gj#*t+rW5=d36qlP|?sPbnK$JiZKR!=9W=-@Uc- z)UBNvzTY?8+L<5!#h%k%izHOAIvHbatctZD?^SWZ46nb@Txr^nw3MafY;rIq6HXY# z9G%cslI(B1Jl`G8KGj^Gb*d<>j5djLG*;y(ZL~@#TcxgK^T6-SZ_T>RVWaFXf2}z; z8TX+}&8hx7ug;J5$A2?F+ESH_2k^E?Hkz~NY-LO-MCmQ7{`@n|?(pvI`B$1QIolQDb7si&_tC-+#_$RZ^fd`0C%sM6J1ZDbXN?tlKz`8`AXx8|!&tAwS1qo|C* z8++@ec1GiT>;aOBMMw;mH@j;Q-H9H}LSf;T#Y@#s@H4$@>hU<@iyE%Qv z($_zI_L~>?pM3I6x37akQAcZRuyXgxEPWKp3Mh8y=ak2hV3s%R;gGnz;i!B(Vb zlDD#=os1ryc(eKG?Alae_7U)NU;Of=N6&rc;YTh_HRby0sn^=Sc&2~)?fFOA%?ZW+ z_2=jJ_qX4kA8B5kVXi-%xB{gEKEiz@~ zTC%X&SVL?~5y-bD{DsT{wIA(&_Q(0o@WLY~{bcm9OQ(V#fUUpwI|yL04wvuhJI;&lK`_2v5Mi5D{qxSe=;es4RK+H23xPaVLm z(<&wrL`F*@Geyy9D4NKD$qRsMkT=0Ktx=Gu$_XL`y%H=cp-F{j%b=>#gWOLnp+?%G z$92(;$l#|SDg$`Nq$GgOx`Nt7;GcY>IoH{#xCcnPYt|gy)96C&&}tN|0e!~+X|B++ z>Y}CL#WM?acBq}@5Q4ykk_B;;q@!@DRMt#Ah;?^(?LzbHtOK>$jLY+)F^eXSq`iP@ zMw>*DeklZ-!^UNMPQ;BP#NOFyPPYa~uAFO70zX2q$g2t=f!@aC^pY@q25SLU-icrY zE|GFAfe1Wf6a35wu{}{Jd*Mk4c1Fq&qpM2lViaUU_J8_N^RdHxp(cWlSeuHyRJ9kH z(+?PXNY#{;fgxeqDlj`p4xL8GROyn69e#LU^F-5T{MtGVssz7**>&c?s0HgBg|ACZ zn<~yaY^FML{q*KH3vvarZgW2VJyCmqt0QEGsy5(l<75PnI&@N%pvfr9Skyfz6U77` zg3mA!wPcwX${q~FL-cr{dlne`{;Y*CSTK;zVEq`i2hD0jXb)L|NxgvB-)B=%`?vO+ z3*F|RV-^szPc+B&Sh}K9AsvxVR;Y<&&#h*Nr|bdf?)*n z6!5p40oq~(h8mZWsxV~UV4z7shzOd2-OQsgIS{nAO5qq6z_1`N=2DROSArETj$mts z=Z-hOpM88|)PDBnTusItM@`$@-T&(g&3;EtX^F^=;hi)@G|P~EaaMa3D}3I81#U62 zWp*xP1*<^?&H|>n7-%nQ7s{bbI;$0u1e+)@Y6RoOPz$C5Zwg!>-x)P00xu9J_a?%w zk~z^I`%-iNgEBm*522315M&lkH*35&{6xac2zOzDMbO-GP(w>Pi8VkWX(WalRtiHZ zOc$IoT5dI{Z7z^l2hc=sn)TCDPj&}x6B#W=L$>>n?LK5&B5n5}+kMD(AF{Tv`aj!;(D2ON JM}BqJzX4z9=sy4e delta 8788 zcmeHMO{iU073O+RkVGXZO^XP=d-7~GgQVF%YwxwUBO_K&tTl8}kr3AYv!b*$A_`J6 za8RUzMASnEIup@Av>;xvn8b1Iuv7<1>_kc?nK`ohoqJ#6eTw%?9Nxgo;IVVoUO(T@ zUU~ic$=9!+{MB!d>dTRy;je$`8|PGRY&5yhf(kWerMMO48@Hw@P;>YxF3Y#?9DVW5 z(HVZ;wY+n5e&Xl7wz+yQz9gLSNylsrb1*GitCTm(^Ow8lx;+R9gCzt15>|UDnHA>3?Un8euZqHAf%BvV?>%U52T|86!Jad_bFT=kB&ha3c_essAzwNMrn zVx6g(O4?QlN-52zNaC3N^6DG&=el03Q0|!|K*RL``X3*7hX8i z?>8IK`by3lN0D6!MhZsFrKs?myga|eY%Ow0O~>d}iWF>(&gp85C(G7|&C9R;t^4up zil6ArJ_3H~bDzKT#FL+R{4KoM^7(7sAA!T|@%8ZbpXX2Y6QS*x(7EBIzs!#> z!~^R!mEfh4%`vL%YsoGKp}@fP(`aT7I+37pv%-x$z$8kFsTmcp1imLmoinYQnS7V8?0(Ud>a|>{ma|8=0BV5rIFge7uJ;VXbvQrR3;-? z`>_1wYxA4nyNR%Cq)kMXF^`L9b+k|X8)c|?G-NVJ){${0>SndH62Vu_%JO3)f%jIS z{)FjLu2I$jtl$7NfKu3SaU;rpGP|<9Ep!+*cKbB?!>6~GDJp=hA5H>gi|q;VCdiZk zC&~&iMK*BK+7Y@*N>Gq^z?+q`*DT%%TJCCvKKKwYoW|Pn~NUk%%RK;ltVu6lnVKmoO5io@%j4pe2s-{?tE_sRhy)o-2!s-JZ z+a6J`(e=*J?)1U|Pz}Nl)}v%y$b~bA4I0Z{o3hl`M>jEooK&%~Fi|kkjNDM8$9!^$ z>kN9A7>H{PD(9e!Bn=6>=1T=}Sf`e+oEX(^BH}s&zdhnA11Q+7?(~@$Hx;ZT$bYiR zXiX{S;Ic9*G@Z~bE^E$PxX3I;1*c3SMIl0evy~79hrJp3`=Q?)JMx{`m5Hv%VZ=<$ z;^EU%^|~iwi?%(f;rylUBjcwVarHXF!$qbdIYGl=g$T8fCSjfYo-+VkY;blKeId-3 zZzP3OttN$`f3th&o->4%F`Nv>JL6yj-^OCCZNV9D3_iGWh7)1a@b-T9RKGo}^#{WB zq3$@SSLK>qvsS?9RFa{ZbZuGb;3TRw#f|?2ia*? zY7AT?Qf*O8apYVc|8*X2ztuf_;H{>@t|xOU>Vb0osp}U4K5$?s>x!V#qqz#o*cRC) z?bAU&%IN2vG2o3%9)tiRz-UUW5k6s%hJM_Bs=EeB3RHsDG340rIU8XS#}Q_R6y^{{ zuX|&*w>|1wf42v9Wz2$y@4eN1_^ef7L%hHMMkk#BZfK{)v?=XktpR9DA#LzpZ>-XZ z*-B$etj2Nlp~A!a3L7Hvz$b3)j}dnmG$_s1nLK=Ys$%ycHkH=xSLcteZK9Uy3J}>w zJJgIyu6j{{O@x2&Y3=A%HnBG)gcuT#(}Xh6jN-%%{P4xcy9?97S6cS&Pj>HHh%Fo;QD{~rgGY!>N!XiY3m9=T zr9~FZU-24m69rxoA;W-Vwkdl&71lOzJ*{}rvi1(@2fnec27JxnZDe$IV?D-cy*b<4 z8rrWhHxU&e!Mkku$7j3!1=Oh;hVUeVp-Vm*HjrttiCgtB+~dP{?c%A5B?Ws}a2;JL zYCXP~DdSg|=PCODLB(iG4+!xU2aPiUH?aRFIpG!c8{8+kbX zboa<({1~|n0D8d-5hk!W&;^Jk;n6ihs(>x<6x#$~LEkJe)ki1)f>=q#Z zy>i(tKz0j|-2!B{0QsL=m)!#7KleJj1;~17FtLi*EkOF+0%Y_5wg2x65MI9g-Xp(0 F_AiJ)54hO) z8)6Y|rG=%1i8g|-N(k7bk(3tkCMYD;wXw_AXXczUGl$(?8EvnOme-Cd`|#eAM-Pge zC!hqu7?N2g%Q+*ljR{TW?x6+rY>kO8t6^IWt6Se{nG|A?=sarVY#Cz6F0j{1+oWvs zbiI1fi)znoR0}_9Uo>$js0sn<(ovQaK*!*M1J0?rv>{Hm(>vnMk=kdBT1(7DIiwQU zXyef;rO2a#KiKo1#p|lpGN>GM2$Ur%lI&v8t{4N+vP){OZ}VwQoNjkk#mA~&$ody? z;~ykU#C-GYs~FahJb{YFWT`P^WNizB@+JU)m2ST?2ilO2TX#Db_8ZiYY_GM6 gINJ=j#H;=o9Om&bkB52u`;GkPJlgjDiNVsb-y=Rj>i_@% delta 1977 zcmeH{J8M-z6ool+1@RhGFeHUV4i_s8W*&QH&u)Z(7J?c}MI_7<(+WXs6twa20}eL+ zhHDW{rG=%1i8g|_N(fk(Mp9bDxxpe4@#F{GV!F-D`u19DcGsqM*QSOWC&UAS`?$LD zaDj)6Qh>JEa+@e{jyZCZF=qi5vMwj;;GR|ew(3{6zt#vrf{SEDnZT62($Wf(D7u`2 z5Y3~_>S^axdv2>*`d&jeMkV6~1_uG8&zid!w81Ehci1d$v9s-&J$ColobcpGr*e>k zpN?;_~LT9Yjxp?QIa%1#EI24RD zoP;%KO0vLf0Cc9LLJ}B+G0yv{Q^Gz?_v0hRn>X9+!tr7aT>{mtZ?oB2(Kx^+JLCxp zWl3W+(VOhObjA0BeswmW=$&pirg|@`CtX$z=Ig<=TX&XkEM2*JeYq>Qho`&tHn=z6 x41chhBfyQ=`KG_ao_80auuTg2cY?cIo)q#wzrm!C|M+eG6cXE&)4i7`e*^o5O9B7@ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 929792ffc9ce25370536757e944165e0cfda8760..7ed2d44626555b912ac6112a4e30ab98da6bdab4 100644 GIT binary patch delta 72 zcmaELjpNldjty5h4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp a+}I@1!raU(xtW!#ot2AmJ1ZAcsv-cAY86QU delta 72 zcmaELjpNldjty5h4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 aOwvq&IK?zMv6+>tot2AmJ1ZAcsv-cD$ra83 diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index a03fc50a160d016c8725b55efdbd77bed76fdb41..d699ed6dab0ebc8cb4fec54f701bc74835a858a2 100644 GIT binary patch delta 32653 zcmeI5ZLDQidEay9oO|xr*cxol8wQ_q>=@(0!}WUIYcEV%ro|sXyf|1YB{3pv?Y&o$ z)(Iwtv_dsDMQv3a#Wq8n2eMYsER!zFH)ieP}M5wOXQ)gR5dX%Rzp5m zQTkhFpP4!L8t?th{m|nN_RPKeo@cL@=Xw6m|M@@HU;Fj>*M5Ee<*!~P-2*@V4}RtY zN!)3*t#vF4D;iO|vT2MhT~(W+Df!1ZZ9?gaqB{SlSN-Z67G-Lh+F5B#Q5jViAp}*& z+LWTGQxxj#({KI9gAbj5Pgx&c*viSEOj9%_V6BM4xI!0vXexqsdi7C551oJL%&mv# zMoX<+ETgl=7d{kGin0_Yl~pKpeyNWSJ##+3?Zn|lFj45LQX&Y&H_0l|)HN@q zLlKgyr8Z6U$r9>T-aDDA55L9(wG#3uZ%V& zOVmCZ4s`WVLl2!-pZuFYI`+D3!|O&z&))z1&HP25ef;^G&;G%))k}TjaQoORMpvEv z%y<6#<`XB*{@S0vV*TT@v;XtQp-aYZX}@#F=*F|Je*TRw z`tJG1pa0!Mi^$4#S=qvIbyE_ts$2@LiqfU3aNUUvJ#_w6-`l%p5pYOR*QNIc^!llQf0@49C6H+mlE_O^ZD+R-l^cxvA(b-O(HPIoMS&f_7k^{F6Q0o9=N0Z#Z#kKtUsaKC=}tf7aN&%SB&keh4eRWfyB>nfVc62pzM zp)Q0KmJomTDKf&)GvRH=|Jj)jkCtaXeCUzSwD%t$&)aAIax`t6&Fwq?=b@{XKXr2akwb0un(?ti zi$#0k`tix>)mF2O?GOFn_(Xf}tH(FCpP#YrZ_dVt+n@Q|=vXU0IojE|+FNhhkNw){ zh8?d8A=?Z2$s==~eC5sKNqf&t{Oj9K9_k)%FD|-o9PXYw^_ubGWjFfhP2(@M_s&?= zH|FD;UWR3!m3P0U{TK6b`SM!5_}sj8H;?1Xy}{Rg>L+&J_o<(_?(e>J^aDSz$p5tA zHRBU6lZ%Y|5yt*1=Q_D6G*^)W&&7pje70CJ#*J!8$SmIHV{6IJG4z zRazM0PgSJSwV!`>e02Hb?~ETEEqp3{Ds*ifk2a)9S%9euZ*>ec5NSF3$n;M~i+;1F zY9IZ?&bt-^c4K?t$V9ZSe{|>SxeL*&GU`TF!Pv&cS{rRuT>*tv;o5Vb;1wVLk@0<# znbH!ls9XT}$&zm?5w!<3H3|S^0m=oz_xA!?>cB!{?@K*|N7nIQ?K`b|8L#-;QMZQ=%Le#TMFr^tZc=r z1@1?PlC!ePHZhiU**^2w&avf}t9(rT)m8h%jcmZ;;hj&69v(O*dkc2ode3{`|BiRP zv zA?OA_3(JfDaq@x5O@^9Fa^_`zMjBU|p!fr4i|KlUp-KR22Ixf&H@NU}1G zFMXLLpNH$=Zfbo|p1gkgN2A4n;m{ucw>Vv|VO8*nM<#c^9?t-0t&X&|RH$ASRnndU zS;zbWT&!SJsC{|a^|-1878&rVkSfaNCIt;JNhTCJxzvOuUiuVnSCvKWYH$-!lp3uR zmZH`t_QDDomf!kMJGkAD*_GQ37;HA&?km5sbAn6VP?Hv}7AX+}i?XR|B~(Eu34E!& zc>) zTb??(T>QQ9zaA|HY|HlIy}NSWZ#8xcdgYH#rtMQt?VLJo zy1940l0rGctmRVIWvs1@M(L_1xTd9iYWioR#emtO{e^Gr+`AYs8&)pYx^M0rAtm8E z+VR%pR~QBosi4#)pcbYU&GNf0uR}%3=+Z%N)Do`62N*4j??3?=oOJoYzub9xbW^U* zNNN>aks)djItunkszOFzwI4h+IkptPIsVdU-fxrQIOl@_n>hf=oZxPoJFh~{XUIum%YgNBnTLYFKG$OJ&({Tjifq&Mq(fQH~Y0A%hf2izujE z%NSj#A(|?0tusZjys%5GSPWQ9s}(E;ELI!7^_Fk%+|ECwuAop1f-^E=nfWdxka+6E9|=3z-ovedx^ zSXr`BmzWn(Tj;?$HAMw7BjFV;knOJnouS~u)n)RD)FMd5I zu70cSmroKOR*CD8uZ~Zh)|-iI#o|e&!HczFS2Igk1t4xxp#l-CqTZ~ZjBd|;V|={5 z=jrh^%OmF|4~-rkIH3c{Yv4{EaIS&9D=x#vft9tO=rwG#@a|j$>%CF5BFX?tX~0ds zO3_8Pj{F(Em{@w@H6&D}GL{#~QnDniBy`G|OQqVp(l)^HDd+1<@WZ8ZgV|9RBXMVq zbvooYU|Y1GK019jq*bqN+m&l?JT|>{US}7gIYG!GZg@kr*+?K%O)}D8;4WI20Niby zc5t`w;NIJks7|gk(Rp7kFFv-D;UXn$4nC;?3HYL5IaTsj02Lv)Vh0x&0~S@6#0D&G zB(Vg1bux;&f#g?BT~caN8rp(d#wL-2#RHRB5q;@m@}OIQzJn6gKtUQ0Nz~Hiq;RP; zbEU48Yl5Z7=6F>IAVpFjA1j2jowt#We{}@W*lRj;K(XJn+(>43zixW_>0(cBWHYXi zVPT0_SQDpRN#+$cf%@6yX8D{OLkkSFY+7>fu}y~?IH&^-H*h`W{@gdPeODZ=e`VDb zhnqPcB;X_zRl}vD_XnL@+8`TCQK**BKM9XQrPU z&A?%lM#>g7C0~O#0T_W^R0c9NvAy`SyT_L68m-r;5ACbn^j$+%^EDOiSKRa!GitKb z;MGN_V=g31OW18rF<+OB%&26QJA6=F5aPBHe1uZ6lof%msMd*1 z{8dK217`C&h46zQ_b_f~7j_spDi&Ng6L zwe5SSZ=VmDCPj<(xg!($+`Jz6w+N(N<0-pnXF8!$_AMdQCTZt$XoUq36}^7Q6Udz^ z6Q$BNAS~D2)I|gD7oj6$%KfQ#}Bua6xD2B6a@B>byV(=PNr7W{>RczETt4%e-7k)A zV()o>S5pcQ_TaOi`c!D3rkwE0bM@pY*x-Jnp$iuSM#Dx%yX*exVow{j=k-s1=rZ?M z0*f0OOSwif(UYtNjdifF)?njDo}GShGAHCEYmgYw`ZomevIaq^;2;JJowrP;?sK%E z6WZ@+uK#WxU_d~3J$qMPsnB{ChNxxbXfqTOnLjKm4`&flDm7PA#ahv4q*DIjyLNL< z=bAN?tcXz}Je?&?1n7fIq=UT01_QF7AP}kv;590o019m&oMj4->vRQz&s6`Pjpn^p zNq#?cVR{dcrq}G60r{^Nrq|v?8Cau0$xem)N2&mw0Uz0?sYn?$tOYzjWFvPja+Tp# zHG#qvh%|hZHdu%~g6js+KeL&EX#kZ%E9$u9DKo1Y>`AMY;ND`li1^m)C^Ic(Z9A)=5Pkg zP_F&fhsVd3U1p|@PrXewKt_XAfk~+-+n|apOgh15MVPO$+N{@bYBO^>Wcb`a8sFAF z*V5m8`sb&&Piax_8Pk5}=cgy;+EGHRk}H}5;ce8~>JkYDB9^)&7(I5mbupl?c~M&H zKPT1f_qL%6y8r2c{ZqMQ`@($p_~81kF#V{eK+Ym48cUh&=B^@pqNz`Tj`nGt+KPnQ zr;xfx5Xq9BKfDO|pX5amXN!(MUv<}J&;?E*)BvB+j*GgaBuoV*yRKu2bE?ZYa=^4| zzwlYyZoqW2B1i6!IeV?ier16rcsq@3s1B~q2+5{0W?i_YP&FRlm>^E*f6&0Qgx-eaU04_4yC2(GapS)X!O&~9ef-nAYSwSF zE8TFs>)N+{aXO##Ix?&F5c)Y@F}Er_WWO#7p;7#`@W#=sZ+iZ>?L=fMPB0{FN;C(b2>G2UQ<%q~1%a%KcB%_UqfW zoa7emZSat@-qme3*aDORg;lCy#&ZWLQhvjil+qhY0<&gH0-+krl>{h;^9n26=3u@7 zqbT>5;U{;W9Fc82T2M`?6Od#Az)D(em8WM8J=vc5`1DfYHeeKuNX~NuM!V)(OP;%C zo@me3DwZsSFeyo0^t7qWNEu|RYDv?be66C){2fhpVoalA<0?=sSDRii?dmm^N7t9S zuc3j@-K2vZSW;CK3E&xRwJz}1RhD5CqN{WxR&ruq{{?Nl10e6edX6DuUgAS0AJLBmTN$DR3sUQT-FzL(1F`3 z)*K1cUY}Lf{_yVs5_^rR%vQQK=OLXVUS(Il9EhmM$uKf@LRhd zn9Kkcg(DI`Iv6AiG35e|^p4OL@7XBa=G1`^jfkd;!6Qv>(OEvJf}#b)n04tnWVQE{Ljo$4$KGRt${TQz?Xj_2gj z;Ey?jfDIW0s8y}G6%7iky~$@sGhEkd+CR!64ozI;1_B*EGVAG6(TWGDqwuyrhF|Zu z+Butm#p$t{dsL#u*{)jDmCx*B(h_ZJ1}KR4fo@J_y%?S6HI)Ytt1`TjI0+ftlvI3- zV^D2s-qv*GOjr4sra^9kX9+_Bq1R=tqQi_ftw`MTOL~!hyY0n4n5cQbQPqCz$nG2G z4HTWKXzQvxrx9}8S54MnX|G7e8)g9oEos$ZSq$^8te!T{ax;mN&>fXE*!|Js+hzV4Jr!fvT9uUuOaQ{#J#RLS|e?$lTrvGl50|=7j)3^P<}OnAdJMFbNB7&k;~=Vfc>&_x*^k-GTc>j-Yv<7Zk1Wl=n0c~$b`3v zjwz-N5;F~exT0c22Th)VnGA4Wm5r87AlwoMPwxTt4x%btz~P?otS6n#iqSR7Km%L=;tCO7rYYvdAdUyFO-q>BBZ zvj2LDYX8#%8)z>lw}I6)9j0W64xE@(NEMX~(NsYbXHio_DGmbE*`On5M#qelVoV+00qMJB{aOOc)wong-ySIgbIL{Fl;B`Bgb1M1>(mcW1(qp8U$FpsuH z<#?$#OuB*aq0k_uAvJ_uqi01MQq#x^o~)FW7+v|+Z=b8!X?F)~KXPREu6fOQFzE;R zO)DU8afl_@+`}%w*F(=-(L&NV^Sl}-0O!c)6`KH7ME6AZxDlIF>l~ax4N8WAmnNwr zz$RxSi>&x*Qe~IdS8JK|zd(EEkzGCSH@v1>SE`bypPSrzTDT3jbFfk{ZXq?Ol4!Jp zZ3R-FOeK4yf172@z}!;z)}1DD;IIz(+`uh8AS)Tzyek~#(9$k*lrv4pM?R;@Kt%ws z1Z693BM>S%BL17-4+}kqDWgY#rlR0h(@l;6!VYm1IDw2(Z@L}VxbmoADfVc+R@@7? z5(qOo>F7Mt`q5Px*Kb;-&iDFFZ}{FEsRcT~T*N5|{{qGYqST{&k*I8{wL)eF_gZUo zph40=5IRJdd5U<@=QqY=hqAOJ%AlZmARAz}Azu_tfh?0HNOy>AF<=mwfO>1* zYcGWkQ-X7uazqTk>rrh%B+>+EsPge~D7{T*t1HAhHSb2B1;&Av8c!BD0u&aFkuGqo znr|~zS;#EZy{v+&iCpIqt~p#1pdvPWZ82aUT7_zK-fuZ=bl|!?=l9gUJcoWO$1o9~ z;XppHr3KfWyP_5Yp=EmWq>2jfnqTEBuluI{8b?8Si5<-=zrXKPxt)RDbmm( zqbpt#r|vVji78i^ttd7!8`K)53kaEtg(RD`=}bozG_X-6S9RCLr|Rq*GHuWNL&)te zr!m~ocQ^;=#(_(DfKnOQGnsMZ-Hf{|1{M|8I1-4DR0IH)n;@`8dAwQh=PaU-)mmI$ zCQswFVQ;d8m!qQ0gE1GJZcIhJgiu0}E$V{g&rZTElZE+O71#OeD! zOt+6=5N-DCCWg!!NI2R=6CW{J<2`{A-<%k*->H z9l9Kt_dU=Y*iMli9A4c{k#46*5B{RJO-6D%MY^3L-A<7%ZW)-h?C8hs6e;6I1CyNF zDbkmiTis5PZl_3@kKIm@!dY&oNOMzuJ4L!4a^6mn_7AXbr%1O`q%S$=yPr+mPLUp% zUENNRZl_3J`d7KXNbLCC!>ijV((gNiyPYE4 z-A<8ir%1owyzc>d@pg*zMZ>GxDbno}Y5t9b+bPoR6zO(~bUQ_QU=DXXMY^3L-A<9l e?G!2h@3rj|>807#?G)+%7gMB5rbs_~?f(TJNJMi0 delta 32776 zcmeI5Ypi8wdEc{VpR>=5Z-Xy$@on#I6O0EB$M5|DZj00S1BiEiXt5pivG-(}jkzu6lKvX=VkX8*!NmQkx7ge5CRc|uER!cruQTluL z+ULwZ$IM#aLO*QF9-DL4+0S|}&+Y&JKZh@WVfN)O%%1zwG5NQnd7uB#`~U8}qHMg9 z#)c+{P{&dT-&DdizGtjxv~J8)02t@PYO6lbV5t&fog*l$VN5tE#BHGRZhA zi>9uucD}NrR;paR)WAdMU#a-0CMIh{EemT4Q%P4;GT9=E#zs@u#&>Tu@X-1H_@jUQ z=v=83oe)J+}wTjZ~5EQRf zO4gi@?`H-dI2JNKz? z{MYp-PM!PBKe>AK#XWQ&L@A5w0*gkpf=ydy$5gx-muR*zup8_CKBiAr*UV}HA)!JPIv6d>U;=v|i>gR65RjJFRu4S1 zcxBe@I0u(^+>W(3`}=(K>~f#K&G)*C+dgsk=n{Lgdf=Y+m(Gl?UVTEh#cw>b+~O-e zu-f7m->}@`Lw1%M`|ishzxQtUES^1^cd`!L3FWj-6|qf}K{y+ts48tO-kg>jF!a!3 zB1W&fW}a;DoQfg`IU}l2#IoSxswzfLdgwlD=%K}n_l-X6=Z?rxRjzOaXRV7EQdNt} zSpKY=s_H`T&_h3e_Cuq^*$*B0RVD#`eG)Lpwb}UQ zzt{~pCm*=2{l~L$_|Cq?rEkt!f5$j|M~>oDz6qar-_CnK@xJSS;H{(Y`mTBR*LUP) zme+D2zI*)H8)uHH-`x4kXjTN7N{Y8y_+-jL6($9Ol;g*8QQcnrIX>^{8zx^L%?C`2 z_G3?MziTe~&Fc2z@h#E5;bYrZ&8Rx6A|~oe5e$WXQ502KOWxF0RIKeIZ^!nNKQ#W~ zt(lX`gjh-=WNl&@Qwqj4buCn?V&fK{e`5UnXc}~oTFW}flDfH~swalWRG1LzBDKZV z*2%?%dv`uJn)O>I7oOe{^8uq(`+1&f#dLCgyZedl@17}HE0H@rd?2trZ8w;=#9U{n}{GtJC$UR5T3*a$P1D zg*3X1RyWcYaWRTpUmnf+Ew9!idaXv+t>-m=V{6j>`Mbww?(u)?d+vSoy?1{2!)NDr zHdR#Gl*(2`O`%MaV;hd5vZ`oUODiAUTHU+bd%Lt&s+|*y`D5Epj2`Pht|;%s?pq)H z!5?|YyT12&vh6c3j`v-z-)v}4{st~LV0P(p_r4(nV|T^!FqOegsz8S*t)T~q)SjvoD!)Fx z>q0)2R}%zHqbRE=mqk#OYFny02(Oa!q3nEaM(Aj)j1>)UX%gO8IsyzEBn4NxYT22a z78ib%yFBZ+T6Io0V0GQ;zW7_)r)Eki>0PKA`W3@XEK(9FHHv>#w(^UY{Ft>U88lrd zF`?4N3KvUFvCWwXn?zl8VXpJID2W=$>KH_6JO_Ximd1KlTjI*%xo?esd~4c|U@R^@H2(DH zv4PVG2c2f%W}1Uf4{g-Giw&&DcP7?*Z?~H7pc{V%GzZ`#TG_$D@sl>5NA&e`UC@ry5Swd*lMC!?h_Wf+Y zwrM~4we9!J2W%HPwcXqLKiob(4PN62O%v!K3~!rikw9?>8Dv`C@+$=RF0<)q>0!8y zm2qTgdJpn!1gOD7SzLSl{k-M!X3lEbJ6RTj&+^7`&7(GvJL!S2TupfST~fik-?Z1Q zJia4m{Z{M!)OObtf2N;Nn#%!1!iKw=TLsW%%et%g=!Yxrzez>x@@cf!383eg!-o7-YW;5R0VOa%PHPuNQ!YkPBt^0l2530NLL?Iv4+tfTmWNI+=6`ei&qnhB(_&Ri_FKK2 z*6x~F>FZc=Y-tI5&2j*06>l5Rve5I3|` z9@v#&3P1{SDgw(coGoqiF19ayV0&*d1GejKF$1<&(PLRiKK`ZgnX^`|`5t+#Dw|4H z&MN9h4w>s(DN*nTi1p%;Pi(Wi0hGIaI6=tu)M^^lW-koIk# z#_i_q|Gj(b#B5+`?OV=o-7|H95+_m}K@b4m(S0?Pf3$QYr)XAbPQn5d8owdZ8nzn{ zDJTvs+PrOQL0g8$kuimn$%R5vF36_vmFGi)D(R!F$p^dVakAg6Y5&nplXuSs%(jG6 z(Z&;#>)A1L;YfP1A&+}{D6U3r`C;o#XjYA=__Hx}WWVWE9XVhc7hW}Qcfpku z$(OF+Wwqg6#uTfPc86=pmX@m{sl9ZGH>6w!;fBEgHLsKO@DJ3^G;MxAQBx4By2y31 zE{vsd6+RTA0Rt3P(cfMC`hN5nu)RuiL$;qgy(QbFzdi8!$=z=hyX(o$$w(IFP-sbW zEmCMQG!94BjY-<|KtI3;bwQiey2<13jaJQ>IXW&voPJK^rN9lzeCgdAjb0I7}0$ zL0f8P99T=FA}X4abX01}q^>#}H2&c4Pt!6l)#@4Dz5Of(r;Q>hkE=!{g>2S>n=T)PqTA)8`Pwa6OWN2(^si;h0f6ZQ< zIbgd>-!m~__p$>%{^#S@zmcAC4LhkzT~;YJ+6hhyk1vG{)=4f?NUq)k5Be$8wT#zQ znnNdb(4}nuO?3yK9@@LTN^>@_v{rs)XXSu`nA30yuzWp2KAw>}M$V1p}Y7KM=X=t+a}ac{LHHdENgT%PSEz5%Z z``U7HW=5Q-$XTMq%MD>6=oD+%_?*+&>#n|>Yr+V47Yw76Cc%(LO}+y`4oDQ}Y8MyJ zjWh6=lc8v8rwFDl(n&Q{0&Sr+w-P*h3IB-S9)E5$AFx|58`EjO*}RO<-uHpY47AGc zy72y=*oP=Ne^mjNqyU_SZ;{M_ra*8^lz^=3JpeQ}rBzJ15X-nq7J=+Fy@2mG$zvM9P+fA zcGU|#{r4vlkVH3}MQ$V`9XG8{%`GJ9*-|%Ey$4lhPDe$pQq8fDc^x_#zJd$`IE$D2 z)9vR+Gjd}Ui94DSzyK{pA3{+mh?Gc}N$U;jfY~m7%mJbM%$lxVp8wSLt?eKG!sNz@ z7jjpI_8Y%2IW?D+7C{DjHvXofh+sL&))u;kR1Khf(dM3RK-jZ*>SuR=Ec?&K9!ylW z|6+=RPY-Nbwcp7Nu4sv%+>TnUNK}SZmTBQ+vH|mwfhb5RY25he&lmWA=8;Yl0-@fhH$!tz( z1rgCyj)Y`fETE=t&lxMPPa2Mg^W6)-&CZ3mGcaV~t9zNX>!51)(DxK1vry;fr{cgv?JhsG#U++!T^vDXf84*D#~Gqj$-e@JCR6G2hR3b(2yz|kZ3Q5erHAQ!S;p>oRvnE(+9nNRB%veY&% z+fb^{ev2J=G9R$0IzM~i-%fTXMBQDfmVP#a#jmLfDc;FriNJv5)hA+u!f)e>%_kr} zymfo8g0#Ch9cV&`={uC-V7ltRkmgWw8``q{o^5Dh`=H4*7DP|(S0WQZdlP89CB{=_ zg;JQsH+@cUIS?9RGn(Lv{|2@c4&JT;JR|DYD{=tki33mo4MawO>m^^;6|e=O4!S76 z^24Rhq~EHcr}&+%cOZ=DHM=ASM0;Vfb97D_LV1+ClLC?r_7HVT06nj1MS+2U{69bb zv8@^05A+lA@6u-62UHf~0%T9X1k`SwBc3(_)Pcq*r!`)rL9s%~16EJJXT##cPA<^~ z%(j<)7anfN=n^FP;O}i+HG|?NNMw!>5Qj9&Hpvtc*dutl)$1@G2tO!24U;}J0D+-k{BBMpKeTX6JW9!>jAw@==%t?9)2Og8OLAK!V?6tDJF+Y*@- zB47ps(2r2rk(ZzWipBF^*?DAZT3S?Qjia!vsB=^FN$7_6ri8b(%w!^w!1)CDh<+$A z64n~ozVw*lK_Zr{4(Hq$zft{`ghz#gEdBrp#g zYQY*HtC|H)p4nm`XKt>+yI}BfN|Yvb$;1GCPZ{>^Dbq8`aVc}>4xb2c0KN{|Sp%*s zDLOoI$YOix54Pldz+km>u^E&#Q35HQqBzKdSHg1u1T;|sf~wWa2g->&lVdrir9>v_ zoC|qdhuBl)kiTLPr(EZh1qVo472<<3B3Q^sA7KJeuzl`{@y#7=KV-VS|DkO)>o+X+ zJG4og-EG$~3!&Fi8o;z{GB=dpRsaGc1%$Ce>H+}i7mu9TqJA2f2x$R<4y5?g93-W(Ej3aswhk>A8TO%X~N6<}|$p_t@ZGlt7BkPSYnbpjNKK{sU&q_WlR9 z-#P2I>ek%Ml^XFyXc!A2H#>?dFbpYl78cXUua*(H$Fv)qw}RwgCM8qkipdnGD6bHR zWuoozFKpAEF?$H~jIt1dSfWPc##0|hQ3G_Q6>k3H-^jAbe#=YvPEH35UoIo501HKJ zp(({F9}vADECw_$fUg)hTooDAHD;;5qY6~ZAv_>sXp=6x+tC5)cQ?>AxJEScB}F4b zNtiL@#>fjFYmC%H<1%a$$mTUA|F8?d_WZZuR8>YY*FKwSkfr7Xf^1!h|1mT`4U6SOMx z!#s?VFrrkh3v}6tkxQg)qUzpoc}r)={pd@}ELicNkrZutA`5Lk@?W29#}0Hn)qw4l z25P`|*(Er{IP9TL(0(9>3^^mMBjeF0W^bz(Pu-G_gBj-v6(Yfo1~piZa*lao#2I9* zs;O6iDupv_U4d8|zzg^vsx8k3Aor?j?~4^%IAF2qu*U(5m$An#v)xOxrresV0d!N_ zgMT`Y>f4}}K>&)17SSh2iCBfhf$6(09CmIta6a`xWP~u>cQwm{PY-OI%USJ#-3hY* z{i`Bre znrF#lg)aq?E)YOkMGJt;3bu-7f$0a_5TO)+Gs1atVXCSQvYR3fCSikvps6t+dXZoZ z6pM%(TDe@@|Iv)=4H#s68dVmYNw2~7@#8yhp5;RThXT_D$MxWXm4X~3O#$~)4XkQM zG^qw~9FUk5AsPu(v}mmZK_vg(Mfxs8PyH>3^7A=`Z(dnsoxeXi!{Tc-%`IVv~xRqlKjH0ePR{yc6Lyk3Y6%S1S z4D6WLD;MVjs{%kqkbFCUPwt&PWg-;`BojAHNxI>{x*a-yA z;4Y|QoR!jZHfgV1I{dDppX*h4=u)O2Obs#ya1^M2D} zjkKPjWFo;Xb0_i+E)vM8C)H*RXA{FJ>_bOo)gju8jA+mpMEV8lNA$=LYP5nGpXu%< zs$=w#sICb!^sdY@Al=Y4k`kCGjSDUr>jAS}?4J#p<#Nh)2{|GI$Ve#q2oNZKI{@1a zsEC+b(jm&#&=(N+U)#EkM}QDZ3Kdwlg2-1hHVtWye0jOmdos@k_6*1-(J+JZq3uB{ z!Tk-KM}xP%?XSAKKJXK77UE4poPGF13Z*&&j(#_+ zYe<$O8z^yjIRYXbGP<5bq{-@XbU1Nw|39UjMjeif>53!XT`|$+wSj{>OlSAs*+WRm zz+UbvN6=(YH(hyE9W?TLU!|`8(ob*y&}PPTGh<4!+{~CF?mIXQeMr>2nK9iTZS4dl zn;Fy1jOnW;fDa)gn;Fw@Ki|5UG2P6Ve*0e_mphdM48Uf_bTeamV7zrD({h^`)75V) z85qRe%$R0^dtlgev6(Tw;&|(3#&k1dx;H+%FPGfRm~LiFH#4SJo`yc8Oxets9-M8> zDC}m&bTeamg<;@B-m{r8z2c1PX2x_gV|u0EFu$2G-OQMN+xgbbjOk{^bZ>-qGh^B} z?YXb2+{~CV)w-E6T_4Nc6MPL0&+daJn;Fy1jOlU`eKTW<9yO0bAL7e5Go}Z}TQ@VN zn;Fwr&;A}#Ms8+Id*)j=Gp3sv(}Vx7W1AV%&5UW^bn9lubpMx3_D^DNW=uCTrkfel z&5Y@*hI2PFrkfel{JR_mCMGvCru@E^gTvbcJGPlI<@YmeW=uCTrdJ*g{{Lsjbis`2 I-@Eqz0i?=qi2wiq diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index c97012d4a78b17755c17ffbc69674f3e7a859205..cee51c803b02255c02f237f986a9ffdb1dbf6057 100644 GIT binary patch delta 62 zcmZ23wOndLBBP;sL3(*newu;4sj+E_agv#tsX?kiin&ESC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 WOwvq&IK?zMvH3mc_V=8ONoN5ip%)hb diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 92a3bcb73c7fc65e14f6507846fe73e70b188fc9..39b4e0ec34cb1548ba5cc695ea8bbc16408aa481 100644 GIT binary patch delta 504 zcmZ2EnRDf2&J8;_4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp z+}I@1!raU(dGkxorIC{hQsgGDOxBt#mZCbjKUr$>^L z9P!CZQyWG2MO#qvB-7OcnmbyyVoJnD~;S#Ju9P z)S}7W>GG4erb|!mePAjRaXy4oK`x!Fooz-XqniD4w)^EUM&AVhN~*3n delta 444 zcmZ2EnRDf2&J8;_4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 zOwvq&IK?zMaq~;grIC|=B}-3UldLsaG(}5@z_wbL)EG09A}%7~((d1BKGDj7K^@6K$V zJSj_fa!8ia(>HQ5icfaPVV%6_hPV*O8OdPhf?NyYO}{9~D8dY6O-{%bpL{h- VZ?aCdDMbb}`{!);&tZ(Z3jnHCqwoL# diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 57cf4807f1be578cba727bea1046f5a4d2315ea7..4d8fe474e44b6865a38909fed5a42e9a49208f7f 100644 GIT binary patch delta 10579 zcmeHNTWnOv8P=LPv={^3Glyb>!3GQ%Y;J)7vCm~r2oTmb7lQ(J zfTSTQ6cVG3(grY6OIrbnDXms&LVzj{trQ4-ODnaIzO)ZOgZk3kptEPs{(E7|K30_$ z$=W&p`DVWF|Nr^tvdiI5CLaD|;^6Ow)v?ZJd%6>WUTc|_Z@QFPy3l>bg&-DZo=>RY z>K|byaX6#YtMwD!w%Top9o?Sj?;0}g!qm#?t781ZlJ;Mt@Z)yu!X0t9LbY#hJQ7nM zotq}9r~aE8AMamxZFv9Qt?$Xf%|pJ{zw`Ni82Y+w*O>h|MTsGmF?r5u253>r3?D zBE+FB518mNir_+90nRLf3vC5BlEMwo@mTI!hibIYd3k0XYAJ{f&($5tW<_iTxKLsN zF0>WkLWy}e6`Rml01S2K0TVr;tpI1G{42nPwgMb2f(vbZ1wd8=7}^SOya+C|72xb5 zxX>2i`Z7}!hjX*Qm9(*7NE}X_LS$$xL>9{n&P&Xes50<_sZr@KmKt0vH)&%bePMQF z$1|uYJ^A|E+_CcgXHb1K7h~;cVbomOjuuDF6YZ!aYJS>|Rz}U{4zw<6{;~r-6*Uu2 zqWMv?)j`Xn=ICnF6EzQ417NF*>LTl4wz+-=SWje|H&wGTyIRPG6==Ndt3jIl*h7%9QYj+$pN@V@md@U|Jb9vU*XCMDTa9yV`8Q-*=>vTK=A5xzLI z5miNF4sJwES*eEH*O2c0?dW~Ob0F%r38JbAi0ULDs$&yckde9xy4~3X(*$pZZZ|9l z!KKX*f=-(2iz&mLv@+$(#x3ZvXzaTb&CYS_{Hw|>g~Y;loZCD10U%r@El1Hp~JMZ_R=MZq5P`*SpdDtfy3--=sVp zs6*e0ytrBiy++sP28E`B(pitDN6?e?kfc4^LBX}{px}`mFjm_RP;h1k%+roJXkIi} z{Z2^6zMW`pRw7ID>T^|i{;?C1v8N#)6c%v^+TDX@M1!8`K{Inl3QIQxRqld7*X#mm z2X}$Ax_M|`wkuDU(7-(4@7N8#jckN@duKO<A>4AUj`F9lq>E@kq?nKGc|pQpFRY4)sC2;)_sY)Zu;~S{5}gE<&@S z=DkIzA#WHJnhe>Cpl)C>sJp#5>-j#2NAD8Ukj)#Gp9(Zl4(wBs_v{BTkG6oAf9?k{ z=UPC_otFGj261MTTL(bP(WRi}FH1qo#g`yWTb2RM;+LWJW36Dl`7)57Xa({ct*9Xi z%Ddl(-EdzUYL2WQwE^2ZuYl(r%c0w>gJ?lcEY0+aF>(b|`5zAg@sSlke0>FsaQ0Oo z{`zY`e0e1h54;A%ZL6T$j349?lQi-DRX|+58i-$94a8Sg!wAO@0r6*tfcX4VK>Ye) zi0_;=&~4HW^N6E0^3EFc-6&?0)&gJ79f-PSzGN=3UMIyo zzFd?q7v;-ESPJFKMf&^k|JCIpsV*0nD~4g>d7f*!wp{%NYRY;1=^N6mxm(%s+F=S*PlYc&jt^}3b#2iyzW1I44U!dTT?DKQmYvuWc z6=UR+U!p(d;s(D$kEec=87gbPLOlg(d zKv2hErlGsOPYIXpE!u&qQlQvUZCvsXb=uBRagz}fyM|{m!U(lZ+hf%6uCc6dsN#Ii@PSn7U8-{l}szp?Z9_zk9#gvb!VA8?2x?t znf7t4qy{GHe!lUL^icd#);wkjv<7g*w=|=bKTFl#2BWo=`r6T z$_++bi&2~Cfnz(aph2i`f*gEL8!44bNxAID+TY^Lr#`VgVJMdfwi)NbHPwWoIt^4L z{iKS+rC138a_VVKkC)_E{^;`U<6320#n|OKwVXix+NkpE>N@rfYGL81-yU@{N|IoK zVH4lbO-_l>h3#1Z^$b_#HE>N|PsRKJkGSBNd8W?|^@FAn7#thEu&MAo;;1QVr98SA zt12Nu#!qWFUQ&Q^X>BcKyv8(Dy=~htZSUUd_%upf>KZJt4ek?@x(-o33EvKEkE-w1 zu6&@T{>Yze>rm-hQewx-QDcXWke?sdrpm$JXd{xHV}`cI`buSPniA67y0*P#S!2_Z z_EOU~A6+Vj(>7GgitF0=_`^MAOsW8VL*759X>o>C_H@%DYMv3{3fEyog-8AR9MC}3 zTsr4dxFwij2$fw+5azhHp|Zv-&ovCyl3j0VW1kEv!Z7sNG$!(G!dT%UUCkzkyj#w8`BOS7bcY-y?` zk{K#?riwTbfpA?R491)wuytL~%wnS!KA)OQ=%(W;FVxb{eC9c+y~y-^+bQakW&0|h zsxAYyHtQy~P3EeF4P(#IT^x{N)6n~yFPz*JrC|3aHkRl>`3S+2jX9W1$5 uMFA=Am*xHPVOw^2zkJx4qr6|LV{Cc9Ebo^^&awYj`z1?WA2;;kWB&n1Ls((} delta 10582 zcmeHMTWl4_8P+kgv={_+% z(;36WAdHG%mpWF3n{f73>`QcaIo?3$gay~;7cbl#Gq0^}{U!4M+>2cs^X?ak_GtU5 znE2DNYmRst7;S%QVB77<1HF6SvW6XeZQ#q z#fx1pU+jvB-=gHjt_jB5{nWNy+S--qkz1X_9=R<3^rqHa8_r`>^4QcoHj>9ivu*u} z9-N2Rx8(p6JxU&&ZwuknJUHJL!jTkia+b&Z;5Jk)`Ofpp+fYL&Hb%DYK(?O87Q*=w zLpa|S!ub+&a3VIoF$DB==KvEuzAc2KDgQz^-xk7Yd2qh1KLphC0DW5sXXL^8wh+$D zgY#_xu77-LVt;OiTuB>4Lt=m8gps~6jLer8oRgS6L1o}Cr$(edUutl^+@y_R`fzr5 z+jFQcJ^2Qj>=OQ)=TLPp7h|nxRnT15iq-_p^R1{MXnx#^HU-W4Hnc5h{-O;%8#EKo zpcO&0(Lx)7=JYbu6Eshj0bs9s)K;2wq0oDxYS+HZEP1z6TBO`-JuYI z8@nL{9a^?8D))2Js0&}(_n;?(vF~eWNtRo~uL!pUW;|f0bWqXxJgAs!fQmK)Ey=h{ z_%%Yqb*{j zJKqs(KktAnyx#$1Jl>g|5SmViz>g>7VkZ>Uj!F=5wh{&ytppJxU1&wdQ;iSr5}poL zp>G9V+^T|J)2p+CqNRhS`&+O`xe4+g6~ z0LeId04>W%)YH83G7+AC9DrmTuE_=YMeKtP^`J$;pqG2l;_Q+9()B^b2O-eq2SM8L zgCMPHIa;3SYNShOa5?a|9RlB`*226UI|L!QPzxcsUkf3T>#}2N@L`+^|8n8m!WR$? zWZ$j>8E?G+5wcdGr2(MwFwopv0pzzb*1nZMKC%+Xr>)8+H`C-ddjO z)u<+C7!jIrvLm2wa1E%tw05ShO24b!@ zfS9p{+);+`_$YT@1TCl6ftJ6l11;CT2Wi@~9%$CQ1hpS)1ncNaKz_av$nP|wnjk3e zd>?khqfMwjuzt`4Y;U~`p0{m)Zk5N;%B)zb=@nz@MyT>X9tYx68-aLaBaCq66(IiV zt3Z5n6A%x+3dBvDq1&P#?;a*_W3`2Xs1krbDUn?;jUYGc)=D&@_uqq?lepT3T6O@_B}HMia@n#+GY zfHvh=r~kdEl+QYY`m?%TID?eTWAe{u(0iZ+;}TCQXMvwtJ@Smt@>{t7<4s%Qp( z=5zF?Y~0Wn=&964nTfpO3)B;O^SkWlz6Yo|>pA(?2dJbvu49cUj;3ptONeJOTT`&% z%C?~?)G{5)TN|Wf(Wuxu>51eYs-y$c;+{pAs;Q>q5}Bxk*gBE1fh|q;G?#feJz^9p zDMq|h6{jYn4ztDQEX5>-W?PhK%+y^OdzQ{TH)(w$?L~2&dNOfzO<_7AE+v-BD0NNQ zlBwcQP2o*%NHh2c|B_}V`%X*Uu~Ls}jJP7)ifIx?Ji~LDs@OU;97{I|Z+t^4N#6Wa z`Y;wLfzLZ5t&3LBc}c3^@0^jQ%p(?dhzJOAh~`n-F|8d5Wz$jv`~n zCW`okrJ&45f07eLvM?C$72&O$KoQ!BDC1m31cGKn(Z>fP9?zAWJe=TQuux& z7QxErUy|hbe<#%m7f#6h&2v(5oKPy;M0QLS3x1Q>vMj{QSbTi+#5*-ejIG+lcEu-2 zD!xT(#IO|2#g>?Js>8%&W2wZ<;zRFBQ@Kb?lCS@X^tZT(2XPoy2sU-%8m?_=BB_d^ zix}vdXQe#49xIKIz~h%B9FG(rTx!9FESJkf6xqHV3wnFY;tQBaiqI!puFeSaG#l%t zCzOb?z>X%f@p%_jJwj;-pH?z)3jge!G@lRsN}7`Fm@%<2)*qF&1wuuAV@qqp`r5j+ ztr7Fp%|%BAaKVl;UNj=jj7PbdO8D3K!>f`McU;@1Se2Pr9f+txgDRS*GJ_~g@jS%{ zA|eV%%vy_4OfkU>o7i$y#lfng(Nyt1I>l$e%fFjJF>sVN4dni$+OZDJTqbNmiL zDMo2Xmtv%Z@lq@nRm+GftES3ql{l7b=&ozoRCYDRvo%8toN}>(DKTVfd#*XAI&tyE+SSNSrJpqC3Y~2BPFCOGg3jOGG(Tlf`Sli z+r*WrrCEyMXqc(0%47mQd7kd61Y<=kom3Mmpe{0Lsg@&q%+mFIK9yS3uq>>)VqNiw z&MZrI#0p^Bnnp#0Ft169=`NNf#Fw6xCM9oQm(IoFQGx;wqx1+5w^kUq+)%UX)MK*a ziOoT5VvHz`W7&pE9kEO*uA(xWZ2Lq?py(~>(PbKy#oWS+n#{TAh-lhSrV(D^beV1+ zk&Z|1R^tm-VZ$tJn4vwpuwg#(!~vC9*f0wlW?{qh4?K@J*ZzNPn0j*LiHX;r{121~ Brbqw) diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index ccb44bd67247e737773035e62591b5072de69b55..7be74ca85d3f5efd27cfa017b0f272dce1dec3e8 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp g+}I@1!raU(x%n+;`&&*%AZ7w$=Iw7eS@hon09#-iF#rGn delta 80 zcmbR9NqEjD;SGB@4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 gOwvq&IK?zMvH2}$`&&*%AZ7w$=Iw7eS@hon0AlAGwg3PC diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index a2479d799c9fc5c89faebc332e63de68eda19409..80ff4ff871f589c61144a29d19c3ced3cb5bea90 100644 GIT binary patch delta 3857 zcmeHJzl&W(6y^;nvXCGlQOkR?#L6XmX6DSCnMNB^2rh}GXbAIDto%tNMF<*;Xe1ay zxGHRA*hV6Th>sLz5&r>Q3oQi;Z9)ny(ilAVJ$KDEnLi-!HMcp;_kHJl-#PEr)qS_F z?)!RUNzxmyzWdhe6;_QlSx0LP6v*UCLE|W8w8ilcNn>ziZMt&rvBNj-EuH?XS4IY{ zrK1o$Mi~NH?<0C|Om@M#E0?}_zgct>uKlsM^D=2ex#$2G0fP-zXBizteiUH#l5G{i zwa3rjxjwyfee(GaU9G^>rB)93NvhE%naLXd#0Y-){<1hU?LQDN@9D8Ruh3)(zF;8= z)pIjQMO{lYMh-8Y69=dFKNS}zePV9egQsLNg5}02Ly4S8Q7gM$d-pr>>!fc`@WcHx zVy$bS4+k~`3@6sbQlAw@ogpx?L>EGowlWVuS#nAm=R9YcI$4miacDEohU>hwx|nFR zEX8;^gx^{IR~N*WlO9r#xhj`cHRuULN-|jpK~-BJ&7OU7`pHLPW74MZ?3RGO0Un3L z>tc1dcwWS=8cSFy7E}RcF43n5RM=}6R8;dZ{kS1s+0$hM;3I_Mx$~@_Yr*B9se)5k zO?gVUC%y7XTN8-ilvq*?%2xy(OMoiblw*^&)il8UaQAN^Tex#Ex3|O!M?r%<>hx>x ztiFA6`Rv)1ez{a2rDY6}5T!~UqNU0_Oe9A*qjPXN7ubl?$o$ZB^B3{q@O< zGPf@LJkGi1;EV=UibOA^=lNAk))b7XvUMLwqbXHm@g^b=7N|~>SIQ*FCY9o0UOP`? zlfo>G`r+vRr?D%_vIcTMWO;dHuYD?2NoJYQgyFznI}3)BB}vAdG7(x+d25p9bj5v=hg`B`R%wV%ZP>GAi(`lN3#pkWMS*8m?CecS=> zgqj)4@W$t^x@>t>MAVE9=!eU{?TC?CSEF1^Hu63S!Kor^%-ZHkprjeaY)-lis8qH( zxjfU7Y|x6s7)W_dv&sAy!zTDMTSE3N*qs~(z8Q%P6E|C4#I5VTCwqw|sSlk_~mRomMmqrJ7V%U&o$IcuX{`^*4SRBR0QCu9w c#Zesp&MuDPLoV{-C_XYrk*0h95jXb#3kT(8ssI20 delta 3857 zcmeHJJ*!+*6lD%65=fL_G*-^dBUV20&c{9aT@In7oQgLA&wu>Id(EP&^73!HrvYRLPvD}(z$4{9qOYz(aWlq#ebN<@ zC8}bWa}OnE0^@x!nrvpqNe!<&IQ!&7u`y}4fAXe~U8`}=P}cf$XGH9xQz6A1ohu%K z)XcKdQHGkc_6%*r^UI&&rCpDaA2Mdv z=+nR_cTsgklU%4S3>6+M>@xzbL#{f0PN|@MF4t#~63`wXdFjq0b))+=d z7Okt3j*Xi$tHV>l>Md^vbXS@FrSN8o4h}~$x diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index 0d7cba0606e51a2ee09ab1399e7e2570fa24eece..cbed43d3608802d4fd5479f04dc558acf0f216d7 100644 GIT binary patch delta 84 zcmcb8N9^_;u?-hE4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp i+}I@1!raU(xtWoxoso+Xh?#(x8Hic7Gjg#;EdcSC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 iOwvq&IK?zMv6+#poso+Xh?#(x8Hic7Gjg#;EdcSC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 dOwvq&IK?zMvH2rs`$tYjAZFVBk&}5#5CGbW8N~nq diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 0f911f20b963ce18e84592842df4b261454dfa83..042d24b15a31e5afa710e794d6778b9c452b93f0 100644 GIT binary patch delta 62 zcmaDW@m69(AfusqL3(*newu;4sj+E_agv#tsX?kiin&E;M1& delta 62 zcmaDW@m69(AfsWCrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRxgVtma70B}ANaR2}S diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 98ed264b0f0518411022d8d43c9372fe2b602413..4eeeba3879c30d06674a2a66b3ee79affe6882c3 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp a+}I@1!raU(x%n+;`&&-N?Qc1mI{5&V`WM3h delta 72 zcmeyif#cf-jtzS_4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 aOwvq&IK?zMvH2}$`&&-N?Qc1mI{5&ZSr|wF diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 56da7a842689dd83c018e7e9d3b738be193b4aea..79012c0901437f305dbfdcf0d02d4f738245a214 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZOseP%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp i+}I@1!raU(SwAH|xmdqAzqBYhb#fuI)@Dnt^&bI$NE>ee delta 80 zcmaFyo%zLg<_(uPZHp{TGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 iOwvq&IK?zMQ9mU=xmdqAzqBYhb#fuI)@Dnt^&bI-&l~gr diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index d7a6ab65bfbf86032ac34e0a1e5c107eccfc77c1..9b14ec879af7ab6d4dd48e274efe925b6f5552c0 100644 GIT binary patch delta 72 zcmbPwoMY;7jtvJm4b2PE%Zu{U4D?NnO;e1M%*;#;QVmkfEmBiWOfAflQ%uZKEr7tp b+}I@1!raU(x%ne!`$ta3?H@UrmPi5sZnqa@ delta 72 zcmbPwoMY;7jtvJm4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 bOwvq&IK?zMvH2rs`$ta3?H@UrmPi5sauyfr diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 8f41ee7b889a12f92cb205657333eed7058657bb..9122cd92ddf369546fce3ecf94554a1d32d72e04 100644 GIT binary patch delta 2215 zcmeHIJ!@1!6m?|%4x+fmLUf;t<(kaLoi{TY6*Pj1iz14OE@3|16uOHMG(wCYScoZv zO?)UeDmD^@5OgaM?8GLWotj_ZFNios0vi!tWtS;u&VBcsd(Yv`yl?@BQC*#=)^c+lJ;|oFqe|&v9$ zb#diWdjp+q?bZ9seHib?xRNX`j_nuv&cllTf=z#NFZvQsgj6YW1{(s{dSk7UsTW#t z7px|&v1fO3LDN0Yztp-Xemq(>f5uk(OU=3-8XOvLjlbQBs(TU*Dy7mpE&u>yCn+XU zgXh9Kse{jUTt=JPGgWlHkl++E%rOqkVhB#DpeayIcq*MW()__zEP8-S;JmhziYgEy??A}GRq2xH{nnt$> zA%Lq?6Qeb-C_@|OO?#>zH47z7z4WOJmZ|6@P~3#*FTzy3@kahuwIxfAqV?_ON%S~! zwKSxbTOX8zpowBm_}E42=uND3I~Kf0dCjxA2BNvW7XA}c5(Nj!koYVeFb*m}z$Ti(3(uX&;-HG{ z{nyYdl+WX51Cdf5fdyS%+5KTu*`;vxK+HyYWTcXmIc3UWLF3LC7%8-LCbH0}G+Y?L zJC)|8UO5sta^l=T^?3iGV*@!Z4vWz_Q*`B8C7U^ox|3Xm eaXgdxnOKVEQZ$#M`R^ah|BUAO_O{#T`{rMlD0}z- delta 2166 zcmeHH%W4!s6t!S9i3%E&sJKXHa3e&gs`}OogNj5@$Y3IoAQ)pkGXa%g6dxdpE)DqT zNg8)PK!vCngUrrfaH+V{l?xaCfM88DGFfQrJ`KHS>hwM5-g8gge7WZPi#4U|t7qEg zOV2yVIR!OwVd7#1+aM?bCWFM%D~quR4)Y*FARr;I_&R3w!l#a7BWOH(rUw(Hs8UkU z-6@|qUzr+R+gF)9=l9lYZKL&C=ky|IT?;5HnM>$?);ZUk4cJ4=P9E6p`JJ7p?T^P- z&`9=D@5`ob`?i*ni@ZyOzY(pa7v8zYeF+ghb=HFctic+osiAu3CKF^q}gVB*;`@My;351CXE@XeCV`iWrCgcuT2F1>p(|Wy*l@2BH?nIHx`zI*K+mD*Mqblmtat@J@l05)AfAr^-u>IgURw z$$nzLIrJf73+VGN0S*5HdlgmkTjOYBw*;XvmY7iDfO!#xrZ`wnwUu1(oLoek^RYg( zq48=D8Yp!KF1?UiSSuW0X^kL;Y78oFRtl<#-`Y5J8a+ixG{b7*VnJbnx}Z3gQUS=+ zgj7h}>}yM7?^*N&70H;bBHI0TW|t3D(a}Vv6u1UMlt_UyuZS0z2*B1cDm-8EM~6U_ zC5})7JX#ogjtZIghG@!JBWin#5^SPsLa4J+gU40_adAl66K`x_yrqRg<{VWKPILir zvkRQxzKnWzNl`rzGgrQPwKpkq@PrB~iDCiLxNMv@O#{iWk-);QzKT-N6de6Lf!60A z`%zCmIgI9-pYzv>+$u*AhX;?3Rgd%^92hIw+2!b>F_uSr^Vb1&B}H8}r?VsfdL4;8 hIf;e}Rd0L8rS( SNt!7TrSC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 XOwvq&IK?zMvH20rg2mJ#|a1h8?T<@dXS4~sLsql)oi{jOJcb|RE zUVE+e4z9j(aP^hf{(OSm`ES1b-RG;=H_Buctu>;E?0hNOc$c!a#p6dirP(`c(@zdg z{Pf_&1n~jH2NA~*A3}T>aSP%&V!q}hh+7f2A#O)}6mbXQV~CF!MBqZLbUTb59Cx5m5Rm5^FKP7H3Ri&QX#t(GPg+U1R@pcV*Jt!Z3Su`gq^ifgIjG+xb4HsI$?^ zXo;8fF}bLX)ry1-*~Mi!y(J%Fn(v*oCY!yS--s+xNHRL;;nKzK)cD%hroY4XOf3R1 zpeUU#(J~-lvy4GTQ*izx*8X+U%sgEFR!6f|UKFuE{OtDW!^7^m?xEg)S;uG?$h1BiYe`0z2zAG@R?e)XlnEc_%2t;|%+^?6aSBBW zFUL!7b$^>Q6VIy=eKYT(oHNgLpBB#1p0Urpxc|Lpb}n4l?RUrnW`!IHCe4^4(gcGB zw7IC1czom7^!a1|19UHTCx^@LcDIdJ@0(tj{GfGPJ4pTLSHAx2<6nN{i;q3qYSY83 z8%HO0p4lDViPNpVQCpq&>irKaj=_;Mj;#>ML=D(7x;83wWwl9YwZdPoLolAC#0x{W zmM8;8obzm=^qIpr`E~c3NiT8zn9LlRDvq>x>53}85Ls_n(mL!~nU}C@C0@dgJ>cbp z#0>^?De}&T2<9BBp%m<@PqFdrix3X|s-s7{22sHxfsiKCdY_`VELl4rZy{+HD-(xQ zgmqd8;YlxHH)~`bUI*&>X5MSCJ2x{fnuOU=iM{rO0q&B^(R<~zGpn|o;Vo;y4LJzR zMHReK*`uBk8B>MF7oM2D4iG6SNvD#7w%Txr3RTFUWeF~^h^xubNLiOyYouJvzx@GN z+xn6;4}SZ_hlTiz5WC-aN#eYhziCg(H3Z7YB3DdrTZ?8)XN>5G1NU5`@nwa;7S+vX z%OM1|F77at+-B#bIZ5@HqFenh1i%w`zRA4Zlvb7q)!ZEFSw^%7C zc~(_rZ8EWP!dM3Qv>-Nmg+LV(Cux_4BV%Wz}K_tb-TAWwww5JprIR-5< zbdEF0ijv^yuWn-_Le5N8>HS=fm{gN92u&Bm?#2 z_AIRd(s3|J_~fNRC(7v2GT16;GAqTXdO?Y8xp)I08&??)L#)-nH>^JTSmkvWB$y4IGsAUOEP`q@e`s`}O1KD|yWDF|iNDMe^;4QY)z!!87nsFmuvux=#I%SxJwuSwBU!#|&%-nl3C zj9Y^q5u|f84m~Dx6cntEMhFP}tT9s-{$}i-=$?ioZJMha@z=Pq!-#6MDIZ?lI>YPu zYZSPU5BCrIY3ha_UFn`|nz9uL8?J2Q3pc*-W`6V<7&pFf-Se)KV9TAYBv8wqZG7R) z9qGmwZhYZQJnuRJH@{{u=5 BuhRek delta 7660 zcmeHM&5LAL6{oaKW=x_nnU9$Ct9sL9qG&UHzwbE)9g!#mlF=xPND?OZlMIM4nh>%W zL|urk92K7{$?oI;#NoI#vL+=uuy z;(o*f^Zk?CU;0Y#Qqr0zhNzs;i6V={%BxU(m@ieC1;Ag=FCH4FHokXC0?Ov;r_R2YmJV%AQQo=<+){eCiYhVUgDEJa~-bWu`F zg=;FohbrdpOs4;xG*b?oVW8E-|xP+ z)$3|ysm|2uqOm1LOp1{)s8XDYHV@Z--kqJl`t9i-CVi?J@13O<&Kn9fVC*%Ol-aXX zxy*6)?>N@TJiPgAC)$Zo#oq9XyQU8hyU%o=pNX8Ul9UR1YB+`G>=F=>9nAjnJ7bI#R4NiY3|Lv*+Yp)aasG z71K!T#$t|7tL>sCd&9-6-Df39ae>U$7xsSm^v<MB($EEN-&xmZjPm%`q7 z8EDn0CZKWor-nEG)!jM2^}zJnRYVI8*IYqxDkUS6(@Ky0 z(iXv^C~WobFs@o-d-!zgMn6Ddqc*oh;e$&yB5M=WfDA+OqznvcPEfZJyVQOLvGRFg$yfNNna?|Cjl}m-kaoz1&m1y6s6B_0rREw&02Z?{Lu7U z&5Xmj&rHAAXIW)hym7`DI^{yHUR01O(PDtbib-J7*g+T|!pRt|83=P$VW2Blz;!sF ze3^nwFm@qmZIXfLMFZC-gA?E?X;-t`%Dk9eIcw!zXvODtzy#+6vAWCKYeq0u{Q?ja7DpU zvH?zl)lLNA3$$BMh7Db~>X}mT`PsmFvog^K5TnV0t%tH}Z-(pt?Cx8cY9HB3<22+4 z%8AYbkb>da89v2<{qW-%9X+pK>dwsvmTzs>r$S^qZc-}+w>t&L)}HEq_v VgKOtz{rm9McDeq|vHrbw$NRsmrM3V7 diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 281c628ab3cb7024c567b24d662a66680212a9ac..f40170deb0c020497df2981479ff09c7f855d8a5 100644 GIT binary patch delta 1330 zcmX^5gsb@p7fS={RKATYM>q}53)0Jr^3x3TO^r=cjFZgFObt>EQp_z@Cb|aZx`u`dM#fggrd9@q zlP^S9GFzA%PTuJ4Hd)^7puVoIp02l(ez5`&WacRt=ouImb8%tOsi0wQtYtsv6Bt2M|}h3c4`l>Cz7+R2Jh!H8(m_rH!WicA8+ zhLd-$gszj617;s$GR~&S0uek^h$Hec&nbMdV((=>d3`j;F!9RfCkdMKr;0K9aZdGR RW@G??))dCADNGMH0sug}N@D;3 delta 1393 zcmZpE!gcfs7fS={RHltAM>q|OEKM@ZOEb&$4U*H$jSNjpEz&FuEK)6#4GhfFQVh(} z%+t~gO)N~(Oo2GXG&ynePtM<_^0urD3^oNtsdiktx<&>@Cb|aZx(1dC24+^qhE|4V zlLK8VSqu$~EI0Q%ursol>KPeLKIkGTh)`m#paB+@i}=lrBs$qIZlSiRiJp^+85x@CfhqIJ6PzP>U5Jlut_TFBkz>qsazS9|NR7G`q5jkJT^ZSjum9FbY69~b zu6TpwvdR4pKPJ!h;h}Rz+c!Bcl!w$9bBwkhc0RJ$yf{H)KIhcg%!~{mF!}USource code for cleanlab.object_detection.summary
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"411b3739073b43ef84da6df0cf4aba60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9d6ec450b2e48dcb5295b0addb03a08": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "123ee23c99d742a99e006c7f7848cb12": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", "tabbable": null, "tooltip": null, "value": 391.0}}, "f3d7b3156603425383cb4b2911ba3193": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94c15cadc74a4c81a5adb003090f1d31": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5517afea1ad41e8ae488f9341fe54ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", "placeholder": "\u200b", "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f7269a835d6543bb94a6753b3052198e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ffdf87c7ec64036b49757ac96c5536d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2a9d5d37de04498978de14e105cf28b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", "placeholder": "\u200b", "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.8kB/s]"}}, "f549e9ac8a50477798f2e9234e06003d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c040ce84f01d40379935c57a437135d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b"], "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", "tabbable": null, "tooltip": null}}, "cd106c03eda44df88946464b5e303d19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c78b67d28c6446baefef5e6235114af": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1cf39d974f3c4a31847e7e38d1e470ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", "tabbable": null, "tooltip": null, "value": 2211.0}}, "173164fe2c1547519e6c06d76b0453fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1551da70235541d895b9fec440352f36": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5d24981d5e842e399fcf3e5da26ef85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", "placeholder": "\u200b", "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "706af1e525724a4ea27ff6ae91e2d592": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52e25954ff904f37a41a6faf200c6f04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02b94161e37b406ca4394b9eef1538df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", "placeholder": "\u200b", "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007411kB/s]"}}, "de3971382db3445da34fe599b2fd18c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7e479504bac453bb70c779f5c0f3525": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", "IPY_MODEL_02b94161e37b406ca4394b9eef1538df"], "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", "tabbable": null, "tooltip": null}}, "debf497c726c49c19699637de9ea5396": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cdde541facd4993a93cd8eb368b2d0e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6e292337346c488586bf3e2ac3a4a4d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", "tabbable": null, "tooltip": null, "value": 665.0}}, "d1d88dae8067491696275aca69858030": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a066253245154949a867510c4f4ca674": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0f39ccef0bc464cb68eed457c4b8878": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", "placeholder": "\u200b", "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "597d3b6693934a35be0907fceb4d0350": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "913da8393f324205890c3c685524e256": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6601ca50f2504f04b6cfe7a18c9b4b20": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", "placeholder": "\u200b", "style": "IPY_MODEL_913da8393f324205890c3c685524e256", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007126kB/s]"}}, "7410928828ea4cb785ed34533ad7a38b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e38763de16664cf4b837920d4bc2ace8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20"], "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, "tooltip": null}}, "de9073d79ed24b348d5dcbd2cda64aaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bb10e84663246cb9e4f076f752038ee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f28aab9da31b46fb80c0504babe16527": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "7bc8ca2ed8c34db6b844e1f99c112f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e46a040636f42ec8521fb06f931e645": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c17f319f7c23417c9a96df1d497a5396": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", "placeholder": "\u200b", "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "0a197c7bd153480582add67b25b8f2f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d60ecde8bd1144dea8b8174f951c1ac9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e914425948fb4ee4aeae1d90e350d558": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", "placeholder": "\u200b", "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007272MB/s]"}}, "50cf7dc92d4a4dd998c121b070e7c523": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d426400e6f5f4f559bce90df2411bfab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558"], "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, "tooltip": null}}, "d2bc83af02974b4997b26d27c8043218": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e72d09cf08e4ed7a0f0a490217d3b47": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5d710bb5f824ac6a960165532df517a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fbabc79ad62741eeb0adf64606e0278c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6f873e46ffd45dca333eca1e6c1e98b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "76546dbd183d4a7e9e641657709c45c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "\u200b", "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "c512fd4195da47a7a6905726b34e5e3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d24b7d8cbfdc460e8b4363433bab3e91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a9dca54fcd34a26b3e76425f4cfc533": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "\u200b", "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200713.6MB/s]"}}, "9a5e0536f69540db9b1730bd6d61ea81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "223652b12d77470d806f5f9b123b1cde": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533"], "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", "tabbable": null, "tooltip": null}}, "a5729edb12634053b4bf3c1bf046eded": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "099c115234a74616930a360edf785b2b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93ebdc142e3847ae90d0ce31029d5577": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0}}, "8f9ef7f1a1f74518887b8021028b126b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3be04749419a4f8eba9590fbe0ee90f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51455100d2844aaf843bf237faae621e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", "placeholder": "\u200b", "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "2e3f9444da9b4549808e0df67c27c05a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "934707dc065d4f9b89b50d33e0cbc3f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3dadb3df17ab4dcb82e012b2ce2d596f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "\u200b", "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.77kB/s]"}}, "72719d99e16045d7bb4a1a75b55e01d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94487f86ff8a4e3fa1c870682ab05381": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51455100d2844aaf843bf237faae621e", "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f"], "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, "tooltip": null}}, "f18185f7bfb34126ae47151814798ae9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3ae141956064ff593c8324cddc63a9e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15a6d72a11a043799df4757893a899a0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "56328dda0453461194507f7896809a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7069c4f7c30946f989dfcde6fa323b5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8db1c5c0aea469698bab78a92251cea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", "placeholder": "\u200b", "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "630457c365244ae1ab9ffcac69becf0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d9ed5fd9baa4685b3b1df7e90e11a1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b6fe019e99740eb96bba95f2db47822": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", "placeholder": "\u200b", "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20079.45MB/s]"}}, "17285e4ef9524c7db1413a860ffd8f3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae2d10a9a0bd42468482e2cffacc15e6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", "IPY_MODEL_15a6d72a11a043799df4757893a899a0", "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822"], "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"37ca62f6acd64b39b73dc5a8d152bf9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9267e8fa5445448287e7280cc182393c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "151862a37dd14835b0039babb7a0c25a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_37ca62f6acd64b39b73dc5a8d152bf9a", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9267e8fa5445448287e7280cc182393c", "tabbable": null, "tooltip": null, "value": 391.0}}, "5298f51791c74e06b24ad28113475342": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c3b8f107ae44e2392b0f453d4ef898e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5407d64635464d0284a952e305213d3e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5298f51791c74e06b24ad28113475342", "placeholder": "\u200b", "style": "IPY_MODEL_8c3b8f107ae44e2392b0f453d4ef898e", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "871af46115524fc7a24f4d52d2475659": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e21b2d5d70274172a24485b9b4d87951": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26044263b2b14957b4c0050d0ddb5bf7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_871af46115524fc7a24f4d52d2475659", "placeholder": "\u200b", "style": "IPY_MODEL_e21b2d5d70274172a24485b9b4d87951", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200763.1kB/s]"}}, "b4f0b6d7f6844bca9375a97c30b0579c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c51ceb30f934a7c915dbd114a2ab52f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5407d64635464d0284a952e305213d3e", "IPY_MODEL_151862a37dd14835b0039babb7a0c25a", "IPY_MODEL_26044263b2b14957b4c0050d0ddb5bf7"], "layout": "IPY_MODEL_b4f0b6d7f6844bca9375a97c30b0579c", "tabbable": null, "tooltip": null}}, "8269af1311314d9aacf79c12b519bd6c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e208c59f1c3e4a1f8617d84915976c44": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb639b3c011a4e87b32cd77de06ca4eb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8269af1311314d9aacf79c12b519bd6c", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e208c59f1c3e4a1f8617d84915976c44", "tabbable": null, "tooltip": null, "value": 2211.0}}, "3a4d1a99ba714856a980e8c4ba806f61": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96c3b31693394704b6b80d46ffdaf439": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f8d0dfa2e519414ba836fa1d568783d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a4d1a99ba714856a980e8c4ba806f61", "placeholder": "\u200b", "style": "IPY_MODEL_96c3b31693394704b6b80d46ffdaf439", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "47b5cc0ee34a4ae09a7a50b0d0f07dc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8a7f54d606f44da83d5dc8b77401c00": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f2b88a7511d4ab4a78c34374a566bfd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47b5cc0ee34a4ae09a7a50b0d0f07dc4", "placeholder": "\u200b", "style": "IPY_MODEL_a8a7f54d606f44da83d5dc8b77401c00", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007391kB/s]"}}, "8915bebc69bb4c9fb94a0bbb73ba5b52": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6fa63d94d7f443db8da4517d5ed57f3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f8d0dfa2e519414ba836fa1d568783d8", "IPY_MODEL_bb639b3c011a4e87b32cd77de06ca4eb", "IPY_MODEL_7f2b88a7511d4ab4a78c34374a566bfd"], "layout": "IPY_MODEL_8915bebc69bb4c9fb94a0bbb73ba5b52", "tabbable": null, "tooltip": null}}, "05be879678f7477f9712e7eff41d2ad3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d290eddef0fc45689d48c2011a109f90": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ad69d66eac7d440dafac3f56b8a96301": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05be879678f7477f9712e7eff41d2ad3", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d290eddef0fc45689d48c2011a109f90", "tabbable": null, "tooltip": null, "value": 665.0}}, "0e498ff107884139a0c13d2145ca565a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee36943aa729414e9470f57baed9ec85": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f16b31ba91b347fdbeb94168d1486e21": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e498ff107884139a0c13d2145ca565a", "placeholder": "\u200b", "style": "IPY_MODEL_ee36943aa729414e9470f57baed9ec85", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "4cbbcbbb809544df972e151cabfffa0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93e95215713642d5a8196fb9e7566262": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ed74fe05e4914446984d4242379d31ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4cbbcbbb809544df972e151cabfffa0b", "placeholder": "\u200b", "style": "IPY_MODEL_93e95215713642d5a8196fb9e7566262", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007123kB/s]"}}, "fa7f6ac3299145ca9cffe758cf5d98c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "118602f24dbb47ddacf97f6da13a0a83": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f16b31ba91b347fdbeb94168d1486e21", "IPY_MODEL_ad69d66eac7d440dafac3f56b8a96301", "IPY_MODEL_ed74fe05e4914446984d4242379d31ea"], "layout": "IPY_MODEL_fa7f6ac3299145ca9cffe758cf5d98c9", "tabbable": null, "tooltip": null}}, "ad8ecd85932c4c698ab7028c12098713": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c34e4e6e17124ba5a9d22fb2b6f79a98": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d835b6b2ebce41f9b0c57e0572288d6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ad8ecd85932c4c698ab7028c12098713", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c34e4e6e17124ba5a9d22fb2b6f79a98", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "60b334983360447e9835bbac2b232eaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5a02085b1d34c2eb4226825c390b04a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f851d5623d434861a0f1b90c3fc2a561": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60b334983360447e9835bbac2b232eaf", "placeholder": "\u200b", "style": "IPY_MODEL_e5a02085b1d34c2eb4226825c390b04a", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "1ffdf4ee9ea44c43969cf6ec3fe9626d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d50c8667633f4691aac595b2723231fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "215030477a7c4b0bb77a7c10e019a76b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ffdf4ee9ea44c43969cf6ec3fe9626d", "placeholder": "\u200b", "style": "IPY_MODEL_d50c8667633f4691aac595b2723231fb", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200741.7MB/s]"}}, "a90dd531f2be4ea291e996ade39a17ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18eb905356294b90a0eb9565a2888477": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f851d5623d434861a0f1b90c3fc2a561", "IPY_MODEL_d835b6b2ebce41f9b0c57e0572288d6c", "IPY_MODEL_215030477a7c4b0bb77a7c10e019a76b"], "layout": "IPY_MODEL_a90dd531f2be4ea291e996ade39a17ce", "tabbable": null, "tooltip": null}}, "3305320599934fabb2e2baaf62b1a49e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "23000c0b80324873b97756f9bfd11fbf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d491448b0ffc4a978158c141a661352a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3305320599934fabb2e2baaf62b1a49e", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_23000c0b80324873b97756f9bfd11fbf", "tabbable": null, "tooltip": null, "value": 466062.0}}, "015077860af945adb2bdce523553c163": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92adebc0ee3c418691dfadf7235bf3c9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea1dacf131dd4d54afd058749c12fcd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_015077860af945adb2bdce523553c163", "placeholder": "\u200b", "style": "IPY_MODEL_92adebc0ee3c418691dfadf7235bf3c9", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "ef2c5bd217c94428b1b9ad7f7b7c4615": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db55dc8415754bdab7c13379faaf4948": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "626b20be5a794d6d8f8f1fcd4d51a1f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef2c5bd217c94428b1b9ad7f7b7c4615", "placeholder": "\u200b", "style": "IPY_MODEL_db55dc8415754bdab7c13379faaf4948", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200719.1MB/s]"}}, "37779113949e4b3cadfe19311a6f6487": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcb1650bc8824592a265782063d74434": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ea1dacf131dd4d54afd058749c12fcd3", "IPY_MODEL_d491448b0ffc4a978158c141a661352a", "IPY_MODEL_626b20be5a794d6d8f8f1fcd4d51a1f0"], "layout": "IPY_MODEL_37779113949e4b3cadfe19311a6f6487", "tabbable": null, "tooltip": null}}, "d3ac94b9ff6e4b4d9a833d33e6dccf71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ee5d70b6fcb471686b41d839c9bd61f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e24afefb2da48638a80304103b88728": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3ac94b9ff6e4b4d9a833d33e6dccf71", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ee5d70b6fcb471686b41d839c9bd61f", "tabbable": null, "tooltip": null, "value": 48.0}}, "9b8ae712d0ed489fa828d2aa0400377f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3af8a91d8f5e451389f81ec93ee1b847": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "618cda0f76c24ef1a507c8b511a5bff4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b8ae712d0ed489fa828d2aa0400377f", "placeholder": "\u200b", "style": "IPY_MODEL_3af8a91d8f5e451389f81ec93ee1b847", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "2ad415593b374e65a1bcb0546612c965": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1037a24378c449dc8f9f9d7f85b684d3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72951392d0dc43568054a44ae03db15f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ad415593b374e65a1bcb0546612c965", "placeholder": "\u200b", "style": "IPY_MODEL_1037a24378c449dc8f9f9d7f85b684d3", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.65kB/s]"}}, "5efe19a7cf5e4150883d3256ee0519d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "340c70a7f83c4b06ab306ef319226464": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_618cda0f76c24ef1a507c8b511a5bff4", "IPY_MODEL_2e24afefb2da48638a80304103b88728", "IPY_MODEL_72951392d0dc43568054a44ae03db15f"], "layout": "IPY_MODEL_5efe19a7cf5e4150883d3256ee0519d3", "tabbable": null, "tooltip": null}}, "c2d52add6303412dad09009ae59a666c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ecd62c8aba87449ea599f8d1dd021476": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "700efa603f0444389a2e132108816745": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2d52add6303412dad09009ae59a666c", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ecd62c8aba87449ea599f8d1dd021476", "tabbable": null, "tooltip": null, "value": 231508.0}}, "9d9d45ee12474388b1b5c17bd805ac95": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26e0e2ae079f4891a5d344c985d891cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5e2c68e5e3c44638f01c16b65e14bad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d9d45ee12474388b1b5c17bd805ac95", "placeholder": "\u200b", "style": "IPY_MODEL_26e0e2ae079f4891a5d344c985d891cc", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d15151d01e5c420ca9a88b8753b8e9ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0f4301d9fd645c7b6a2f9e57817a496": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bae48e79083043bfa0338dc3e0a2e017": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d15151d01e5c420ca9a88b8753b8e9ce", "placeholder": "\u200b", "style": "IPY_MODEL_c0f4301d9fd645c7b6a2f9e57817a496", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200735.2MB/s]"}}, "d0ed5a842bfc46edb47d887346e2909a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab2937ae039949aa81e28e5be11eab89": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5e2c68e5e3c44638f01c16b65e14bad", "IPY_MODEL_700efa603f0444389a2e132108816745", "IPY_MODEL_bae48e79083043bfa0338dc3e0a2e017"], "layout": "IPY_MODEL_d0ed5a842bfc46edb47d887346e2909a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 4b6fd48a4..a6ab437d0 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:49.240434Z", - "iopub.status.busy": "2024-07-09T06:21:49.240266Z", - "iopub.status.idle": "2024-07-09T06:21:52.341784Z", - "shell.execute_reply": "2024-07-09T06:21:52.341296Z" + "iopub.execute_input": "2024-07-11T23:25:06.686658Z", + "iopub.status.busy": "2024-07-11T23:25:06.686488Z", + "iopub.status.idle": "2024-07-11T23:25:09.700882Z", + "shell.execute_reply": "2024-07-11T23:25:09.700322Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.344435Z", - "iopub.status.busy": "2024-07-09T06:21:52.343997Z", - "iopub.status.idle": "2024-07-09T06:21:52.347958Z", - "shell.execute_reply": "2024-07-09T06:21:52.347446Z" + "iopub.execute_input": "2024-07-11T23:25:09.703608Z", + "iopub.status.busy": "2024-07-11T23:25:09.703138Z", + "iopub.status.idle": "2024-07-11T23:25:09.706596Z", + "shell.execute_reply": "2024-07-11T23:25:09.706102Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.350024Z", - "iopub.status.busy": "2024-07-09T06:21:52.349635Z", - "iopub.status.idle": "2024-07-09T06:21:52.352754Z", - "shell.execute_reply": "2024-07-09T06:21:52.352222Z" + "iopub.execute_input": "2024-07-11T23:25:09.708685Z", + "iopub.status.busy": "2024-07-11T23:25:09.708242Z", + "iopub.status.idle": "2024-07-11T23:25:09.711461Z", + "shell.execute_reply": "2024-07-11T23:25:09.710881Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.354801Z", - "iopub.status.busy": "2024-07-09T06:21:52.354380Z", - "iopub.status.idle": "2024-07-09T06:21:52.405560Z", - "shell.execute_reply": "2024-07-09T06:21:52.405035Z" + "iopub.execute_input": "2024-07-11T23:25:09.713607Z", + "iopub.status.busy": "2024-07-11T23:25:09.713267Z", + "iopub.status.idle": "2024-07-11T23:25:09.766261Z", + "shell.execute_reply": "2024-07-11T23:25:09.765689Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.407560Z", - "iopub.status.busy": "2024-07-09T06:21:52.407242Z", - "iopub.status.idle": "2024-07-09T06:21:52.410852Z", - "shell.execute_reply": "2024-07-09T06:21:52.410392Z" + "iopub.execute_input": "2024-07-11T23:25:09.768526Z", + "iopub.status.busy": "2024-07-11T23:25:09.768175Z", + "iopub.status.idle": "2024-07-11T23:25:09.771632Z", + "shell.execute_reply": "2024-07-11T23:25:09.771194Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.412798Z", - "iopub.status.busy": "2024-07-09T06:21:52.412490Z", - "iopub.status.idle": "2024-07-09T06:21:52.415836Z", - "shell.execute_reply": "2024-07-09T06:21:52.415299Z" + "iopub.execute_input": "2024-07-11T23:25:09.773705Z", + "iopub.status.busy": "2024-07-11T23:25:09.773363Z", + "iopub.status.idle": "2024-07-11T23:25:09.776587Z", + "shell.execute_reply": "2024-07-11T23:25:09.776108Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}\n" + "Classes: {'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.417781Z", - "iopub.status.busy": "2024-07-09T06:21:52.417462Z", - "iopub.status.idle": "2024-07-09T06:21:52.420529Z", - "shell.execute_reply": "2024-07-09T06:21:52.420017Z" + "iopub.execute_input": "2024-07-11T23:25:09.778701Z", + "iopub.status.busy": "2024-07-11T23:25:09.778289Z", + "iopub.status.idle": "2024-07-11T23:25:09.781357Z", + "shell.execute_reply": "2024-07-11T23:25:09.780825Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.422617Z", - "iopub.status.busy": "2024-07-09T06:21:52.422214Z", - "iopub.status.idle": "2024-07-09T06:21:52.425416Z", - "shell.execute_reply": "2024-07-09T06:21:52.424998Z" + "iopub.execute_input": "2024-07-11T23:25:09.783549Z", + "iopub.status.busy": "2024-07-11T23:25:09.783083Z", + "iopub.status.idle": "2024-07-11T23:25:09.786372Z", + "shell.execute_reply": "2024-07-11T23:25:09.785899Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:52.427244Z", - "iopub.status.busy": "2024-07-09T06:21:52.427078Z", - "iopub.status.idle": "2024-07-09T06:21:56.745262Z", - "shell.execute_reply": "2024-07-09T06:21:56.744632Z" + "iopub.execute_input": "2024-07-11T23:25:09.788507Z", + "iopub.status.busy": "2024-07-11T23:25:09.788090Z", + "iopub.status.idle": "2024-07-11T23:25:15.686433Z", + "shell.execute_reply": "2024-07-11T23:25:15.685863Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c040ce84f01d40379935c57a437135d2", + "model_id": "3c51ceb30f934a7c915dbd114a2ab52f", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c7e479504bac453bb70c779f5c0f3525", + "model_id": "e6fa63d94d7f443db8da4517d5ed57f3", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e38763de16664cf4b837920d4bc2ace8", + "model_id": "118602f24dbb47ddacf97f6da13a0a83", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d426400e6f5f4f559bce90df2411bfab", + "model_id": "18eb905356294b90a0eb9565a2888477", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "223652b12d77470d806f5f9b123b1cde", + "model_id": "dcb1650bc8824592a265782063d74434", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94487f86ff8a4e3fa1c870682ab05381", + "model_id": "340c70a7f83c4b06ab306ef319226464", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae2d10a9a0bd42468482e2cffacc15e6", + "model_id": "ab2937ae039949aa81e28e5be11eab89", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:56.747914Z", - "iopub.status.busy": "2024-07-09T06:21:56.747699Z", - "iopub.status.idle": "2024-07-09T06:21:56.750422Z", - "shell.execute_reply": "2024-07-09T06:21:56.749907Z" + "iopub.execute_input": "2024-07-11T23:25:15.689306Z", + "iopub.status.busy": "2024-07-11T23:25:15.689070Z", + "iopub.status.idle": "2024-07-11T23:25:15.691944Z", + "shell.execute_reply": "2024-07-11T23:25:15.691463Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:56.752430Z", - "iopub.status.busy": "2024-07-09T06:21:56.752042Z", - "iopub.status.idle": "2024-07-09T06:21:56.754593Z", - "shell.execute_reply": "2024-07-09T06:21:56.754165Z" + "iopub.execute_input": "2024-07-11T23:25:15.694071Z", + "iopub.status.busy": "2024-07-11T23:25:15.693732Z", + "iopub.status.idle": "2024-07-11T23:25:15.696526Z", + "shell.execute_reply": "2024-07-11T23:25:15.695969Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:56.756400Z", - "iopub.status.busy": "2024-07-09T06:21:56.756229Z", - "iopub.status.idle": "2024-07-09T06:21:59.390602Z", - "shell.execute_reply": "2024-07-09T06:21:59.389981Z" + "iopub.execute_input": "2024-07-11T23:25:15.698532Z", + "iopub.status.busy": "2024-07-11T23:25:15.698189Z", + "iopub.status.idle": "2024-07-11T23:25:18.826132Z", + "shell.execute_reply": "2024-07-11T23:25:18.825313Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.393398Z", - "iopub.status.busy": "2024-07-09T06:21:59.392860Z", - "iopub.status.idle": "2024-07-09T06:21:59.400402Z", - "shell.execute_reply": "2024-07-09T06:21:59.399893Z" + "iopub.execute_input": "2024-07-11T23:25:18.829155Z", + "iopub.status.busy": "2024-07-11T23:25:18.828514Z", + "iopub.status.idle": "2024-07-11T23:25:18.836278Z", + "shell.execute_reply": "2024-07-11T23:25:18.835813Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.402483Z", - "iopub.status.busy": "2024-07-09T06:21:59.402085Z", - "iopub.status.idle": "2024-07-09T06:21:59.406027Z", - "shell.execute_reply": "2024-07-09T06:21:59.405499Z" + "iopub.execute_input": "2024-07-11T23:25:18.838558Z", + "iopub.status.busy": "2024-07-11T23:25:18.838080Z", + "iopub.status.idle": "2024-07-11T23:25:18.841931Z", + "shell.execute_reply": "2024-07-11T23:25:18.841503Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.408118Z", - "iopub.status.busy": "2024-07-09T06:21:59.407818Z", - "iopub.status.idle": "2024-07-09T06:21:59.410977Z", - "shell.execute_reply": "2024-07-09T06:21:59.410424Z" + "iopub.execute_input": "2024-07-11T23:25:18.844292Z", + "iopub.status.busy": "2024-07-11T23:25:18.843885Z", + "iopub.status.idle": "2024-07-11T23:25:18.846972Z", + "shell.execute_reply": "2024-07-11T23:25:18.846390Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.413097Z", - "iopub.status.busy": "2024-07-09T06:21:59.412678Z", - "iopub.status.idle": "2024-07-09T06:21:59.415713Z", - "shell.execute_reply": "2024-07-09T06:21:59.415177Z" + "iopub.execute_input": "2024-07-11T23:25:18.849065Z", + "iopub.status.busy": "2024-07-11T23:25:18.848725Z", + "iopub.status.idle": "2024-07-11T23:25:18.851786Z", + "shell.execute_reply": "2024-07-11T23:25:18.851321Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.417737Z", - "iopub.status.busy": "2024-07-09T06:21:59.417358Z", - "iopub.status.idle": "2024-07-09T06:21:59.424003Z", - "shell.execute_reply": "2024-07-09T06:21:59.423469Z" + "iopub.execute_input": "2024-07-11T23:25:18.853729Z", + "iopub.status.busy": "2024-07-11T23:25:18.853399Z", + "iopub.status.idle": "2024-07-11T23:25:18.860118Z", + "shell.execute_reply": "2024-07-11T23:25:18.859527Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.425974Z", - "iopub.status.busy": "2024-07-09T06:21:59.425797Z", - "iopub.status.idle": "2024-07-09T06:21:59.673438Z", - "shell.execute_reply": "2024-07-09T06:21:59.672833Z" + "iopub.execute_input": "2024-07-11T23:25:18.862346Z", + "iopub.status.busy": "2024-07-11T23:25:18.861886Z", + "iopub.status.idle": "2024-07-11T23:25:19.108132Z", + "shell.execute_reply": "2024-07-11T23:25:19.107586Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.676761Z", - "iopub.status.busy": "2024-07-09T06:21:59.675669Z", - "iopub.status.idle": "2024-07-09T06:21:59.855719Z", - "shell.execute_reply": "2024-07-09T06:21:59.855182Z" + "iopub.execute_input": "2024-07-11T23:25:19.110865Z", + "iopub.status.busy": "2024-07-11T23:25:19.110462Z", + "iopub.status.idle": "2024-07-11T23:25:19.296173Z", + "shell.execute_reply": "2024-07-11T23:25:19.295604Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:59.859528Z", - "iopub.status.busy": "2024-07-09T06:21:59.858566Z", - "iopub.status.idle": "2024-07-09T06:21:59.863516Z", - "shell.execute_reply": "2024-07-09T06:21:59.863020Z" + "iopub.execute_input": "2024-07-11T23:25:19.298877Z", + "iopub.status.busy": "2024-07-11T23:25:19.298457Z", + "iopub.status.idle": "2024-07-11T23:25:19.302639Z", + "shell.execute_reply": "2024-07-11T23:25:19.302129Z" }, "nbsphinx": "hidden" }, @@ -1105,46 +1105,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02b94161e37b406ca4394b9eef1538df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", - "placeholder": "​", - "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 411kB/s]" - } - }, - "099c115234a74616930a360edf785b2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0a197c7bd153480582add67b25b8f2f6": { + "015077860af945adb2bdce523553c163": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1197,95 +1158,7 @@ "width": null } }, - "0e46a040636f42ec8521fb06f931e645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "123ee23c99d742a99e006c7f7848cb12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "1551da70235541d895b9fec440352f36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "15a6d72a11a043799df4757893a899a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "17285e4ef9524c7db1413a860ffd8f3d": { + "05be879678f7477f9712e7eff41d2ad3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1338,7 +1211,7 @@ "width": null } }, - "173164fe2c1547519e6c06d76b0453fc": { + "0e498ff107884139a0c13d2145ca565a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1391,33 +1264,25 @@ "width": null } }, - "1cf39d974f3c4a31847e7e38d1e470ca": { + "1037a24378c449dc8f9f9d7f85b684d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "223652b12d77470d806f5f9b123b1cde": { + "118602f24dbb47ddacf97f6da13a0a83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1432,55 +1297,66 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", - "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", - "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533" + "IPY_MODEL_f16b31ba91b347fdbeb94168d1486e21", + "IPY_MODEL_ad69d66eac7d440dafac3f56b8a96301", + "IPY_MODEL_ed74fe05e4914446984d4242379d31ea" ], - "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", + "layout": "IPY_MODEL_fa7f6ac3299145ca9cffe758cf5d98c9", "tabbable": null, "tooltip": null } }, - "2b6fe019e99740eb96bba95f2db47822": { + "151862a37dd14835b0039babb7a0c25a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", - "placeholder": "​", - "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", + "layout": "IPY_MODEL_37ca62f6acd64b39b73dc5a8d152bf9a", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9267e8fa5445448287e7280cc182393c", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 9.45MB/s]" + "value": 391.0 } }, - "2bb10e84663246cb9e4f076f752038ee": { + "18eb905356294b90a0eb9565a2888477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f851d5623d434861a0f1b90c3fc2a561", + "IPY_MODEL_d835b6b2ebce41f9b0c57e0572288d6c", + "IPY_MODEL_215030477a7c4b0bb77a7c10e019a76b" + ], + "layout": "IPY_MODEL_a90dd531f2be4ea291e996ade39a17ce", + "tabbable": null, + "tooltip": null } }, - "2e3f9444da9b4549808e0df67c27c05a": { + "1ffdf4ee9ea44c43969cf6ec3fe9626d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1533,41 +1409,46 @@ "width": null } }, - "2e72d09cf08e4ed7a0f0a490217d3b47": { + "215030477a7c4b0bb77a7c10e019a76b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ffdf4ee9ea44c43969cf6ec3fe9626d", + "placeholder": "​", + "style": "IPY_MODEL_d50c8667633f4691aac595b2723231fb", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 41.7MB/s]" } }, - "3be04749419a4f8eba9590fbe0ee90f1": { + "23000c0b80324873b97756f9bfd11fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3dadb3df17ab4dcb82e012b2ce2d596f": { + "26044263b2b14957b4c0050d0ddb5bf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1582,15 +1463,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", + "layout": "IPY_MODEL_871af46115524fc7a24f4d52d2475659", "placeholder": "​", - "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", + "style": "IPY_MODEL_e21b2d5d70274172a24485b9b4d87951", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.77kB/s]" + "value": " 391/391 [00:00<00:00, 63.1kB/s]" + } + }, + "26e0e2ae079f4891a5d344c985d891cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "411b3739073b43ef84da6df0cf4aba60": { + "2ad415593b374e65a1bcb0546612c965": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1643,23 +1542,33 @@ "width": null } }, - "4c78b67d28c6446baefef5e6235114af": { + "2e24afefb2da48638a80304103b88728": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3ac94b9ff6e4b4d9a833d33e6dccf71", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ee5d70b6fcb471686b41d839c9bd61f", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "50cf7dc92d4a4dd998c121b070e7c523": { + "3305320599934fabb2e2baaf62b1a49e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,55 +1621,38 @@ "width": null } }, - "51455100d2844aaf843bf237faae621e": { + "340c70a7f83c4b06ab306ef319226464": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", - "placeholder": "​", - "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_618cda0f76c24ef1a507c8b511a5bff4", + "IPY_MODEL_2e24afefb2da48638a80304103b88728", + "IPY_MODEL_72951392d0dc43568054a44ae03db15f" + ], + "layout": "IPY_MODEL_5efe19a7cf5e4150883d3256ee0519d3", "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "tooltip": null } }, - "52e25954ff904f37a41a6faf200c6f04": { - "model_module": "@jupyter-widgets/controls", + "37779113949e4b3cadfe19311a6f6487": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56328dda0453461194507f7896809a58": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1806,7 +1698,7 @@ "width": null } }, - "597d3b6693934a35be0907fceb4d0350": { + "37ca62f6acd64b39b73dc5a8d152bf9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1859,46 +1751,7 @@ "width": null } }, - "5a9dca54fcd34a26b3e76425f4cfc533": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", - "placeholder": "​", - "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 13.6MB/s]" - } - }, - "5cdde541facd4993a93cd8eb368b2d0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "630457c365244ae1ab9ffcac69becf0e": { + "3a4d1a99ba714856a980e8c4ba806f61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1951,74 +1804,49 @@ "width": null } }, - "6601ca50f2504f04b6cfe7a18c9b4b20": { + "3af8a91d8f5e451389f81ec93ee1b847": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", - "placeholder": "​", - "style": "IPY_MODEL_913da8393f324205890c3c685524e256", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 126kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6e292337346c488586bf3e2ac3a4a4d4": { + "3c51ceb30f934a7c915dbd114a2ab52f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5407d64635464d0284a952e305213d3e", + "IPY_MODEL_151862a37dd14835b0039babb7a0c25a", + "IPY_MODEL_26044263b2b14957b4c0050d0ddb5bf7" + ], + "layout": "IPY_MODEL_b4f0b6d7f6844bca9375a97c30b0579c", "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "7069c4f7c30946f989dfcde6fa323b5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "706af1e525724a4ea27ff6ae91e2d592": { + "47b5cc0ee34a4ae09a7a50b0d0f07dc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2071,7 +1899,7 @@ "width": null } }, - "72719d99e16045d7bb4a1a75b55e01d2": { + "4cbbcbbb809544df972e151cabfffa0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2124,7 +1952,7 @@ "width": null } }, - "7410928828ea4cb785ed34533ad7a38b": { + "5298f51791c74e06b24ad28113475342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2177,7 +2005,7 @@ "width": null } }, - "76546dbd183d4a7e9e641657709c45c4": { + "5407d64635464d0284a952e305213d3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2192,15 +2020,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", + "layout": "IPY_MODEL_5298f51791c74e06b24ad28113475342", "placeholder": "​", - "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", + "style": "IPY_MODEL_8c3b8f107ae44e2392b0f453d4ef898e", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": ".gitattributes: 100%" } }, - "7bc8ca2ed8c34db6b844e1f99c112f8e": { + "5efe19a7cf5e4150883d3256ee0519d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2253,43 +2081,7 @@ "width": null } }, - "7ffdf87c7ec64036b49757ac96c5536d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8d9ed5fd9baa4685b3b1df7e90e11a1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f9ef7f1a1f74518887b8021028b126b": { + "60b334983360447e9835bbac2b232eaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2342,43 +2134,53 @@ "width": null } }, - "913da8393f324205890c3c685524e256": { + "618cda0f76c24ef1a507c8b511a5bff4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b8ae712d0ed489fa828d2aa0400377f", + "placeholder": "​", + "style": "IPY_MODEL_3af8a91d8f5e451389f81ec93ee1b847", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "934707dc065d4f9b89b50d33e0cbc3f6": { + "626b20be5a794d6d8f8f1fcd4d51a1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef2c5bd217c94428b1b9ad7f7b7c4615", + "placeholder": "​", + "style": "IPY_MODEL_db55dc8415754bdab7c13379faaf4948", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 19.1MB/s]" } }, - "93ebdc142e3847ae90d0ce31029d5577": { + "700efa603f0444389a2e132108816745": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2394,59 +2196,79 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", - "max": 48.0, + "layout": "IPY_MODEL_c2d52add6303412dad09009ae59a666c", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", + "style": "IPY_MODEL_ecd62c8aba87449ea599f8d1dd021476", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 231508.0 } }, - "94487f86ff8a4e3fa1c870682ab05381": { + "72951392d0dc43568054a44ae03db15f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51455100d2844aaf843bf237faae621e", - "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", - "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f" - ], - "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ad415593b374e65a1bcb0546612c965", + "placeholder": "​", + "style": "IPY_MODEL_1037a24378c449dc8f9f9d7f85b684d3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 7.65kB/s]" } }, - "94c15cadc74a4c81a5adb003090f1d31": { + "7ee5d70b6fcb471686b41d839c9bd61f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "7f2b88a7511d4ab4a78c34374a566bfd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47b5cc0ee34a4ae09a7a50b0d0f07dc4", + "placeholder": "​", + "style": "IPY_MODEL_a8a7f54d606f44da83d5dc8b77401c00", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 391kB/s]" } }, - "9a5e0536f69540db9b1730bd6d61ea81": { + "8269af1311314d9aacf79c12b519bd6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2499,48 +2321,7 @@ "width": null } }, - "a066253245154949a867510c4f4ca674": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2a9d5d37de04498978de14e105cf28b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", - "placeholder": "​", - "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.8kB/s]" - } - }, - "a5729edb12634053b4bf3c1bf046eded": { + "871af46115524fc7a24f4d52d2475659": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2593,148 +2374,8 @@ "width": null } }, - "ae2d10a9a0bd42468482e2cffacc15e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", - "IPY_MODEL_15a6d72a11a043799df4757893a899a0", - "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822" - ], - "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", - "tabbable": null, - "tooltip": null - } - }, - "b5d24981d5e842e399fcf3e5da26ef85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", - "placeholder": "​", - "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "b8db1c5c0aea469698bab78a92251cea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", - "placeholder": "​", - "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "c040ce84f01d40379935c57a437135d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", - "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", - "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b" - ], - "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", - "tabbable": null, - "tooltip": null - } - }, - "c0f39ccef0bc464cb68eed457c4b8878": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", - "placeholder": "​", - "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "c17f319f7c23417c9a96df1d497a5396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", - "placeholder": "​", - "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "c512fd4195da47a7a6905726b34e5e3a": { - "model_module": "@jupyter-widgets/base", + "8915bebc69bb4c9fb94a0bbb73ba5b52": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2786,7 +2427,7 @@ "width": null } }, - "c6f873e46ffd45dca333eca1e6c1e98b": { + "8c3b8f107ae44e2392b0f453d4ef898e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2804,31 +2445,77 @@ "text_color": null } }, - "c7e479504bac453bb70c779f5c0f3525": { + "9267e8fa5445448287e7280cc182393c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", - "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", - "IPY_MODEL_02b94161e37b406ca4394b9eef1538df" - ], - "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "92adebc0ee3c418691dfadf7235bf3c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "93e95215713642d5a8196fb9e7566262": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96c3b31693394704b6b80d46ffdaf439": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cd106c03eda44df88946464b5e303d19": { + "9b8ae712d0ed489fa828d2aa0400377f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2881,7 +2568,7 @@ "width": null } }, - "d1d88dae8067491696275aca69858030": { + "9d9d45ee12474388b1b5c17bd805ac95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2934,7 +2621,30 @@ "width": null } }, - "d24b7d8cbfdc460e8b4363433bab3e91": { + "a5e2c68e5e3c44638f01c16b65e14bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d9d45ee12474388b1b5c17bd805ac95", + "placeholder": "​", + "style": "IPY_MODEL_26e0e2ae079f4891a5d344c985d891cc", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "a8a7f54d606f44da83d5dc8b77401c00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2952,7 +2662,7 @@ "text_color": null } }, - "d2bc83af02974b4997b26d27c8043218": { + "a90dd531f2be4ea291e996ade39a17ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3005,7 +2715,7 @@ "width": null } }, - "d426400e6f5f4f559bce90df2411bfab": { + "ab2937ae039949aa81e28e5be11eab89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3020,34 +2730,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", - "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", - "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558" + "IPY_MODEL_a5e2c68e5e3c44638f01c16b65e14bad", + "IPY_MODEL_700efa603f0444389a2e132108816745", + "IPY_MODEL_bae48e79083043bfa0338dc3e0a2e017" ], - "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", + "layout": "IPY_MODEL_d0ed5a842bfc46edb47d887346e2909a", "tabbable": null, "tooltip": null } }, - "d60ecde8bd1144dea8b8174f951c1ac9": { + "ad69d66eac7d440dafac3f56b8a96301": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05be879678f7477f9712e7eff41d2ad3", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d290eddef0fc45689d48c2011a109f90", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "de3971382db3445da34fe599b2fd18c0": { + "ad8ecd85932c4c698ab7028c12098713": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3100,7 +2818,7 @@ "width": null } }, - "de9073d79ed24b348d5dcbd2cda64aaa": { + "b4f0b6d7f6844bca9375a97c30b0579c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3153,123 +2871,74 @@ "width": null } }, - "debf497c726c49c19699637de9ea5396": { - "model_module": "@jupyter-widgets/base", + "bae48e79083043bfa0338dc3e0a2e017": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e38763de16664cf4b837920d4bc2ace8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", - "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", - "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20" - ], - "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d15151d01e5c420ca9a88b8753b8e9ce", + "placeholder": "​", + "style": "IPY_MODEL_c0f4301d9fd645c7b6a2f9e57817a496", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 35.2MB/s]" } }, - "e914425948fb4ee4aeae1d90e350d558": { + "bb639b3c011a4e87b32cd77de06ca4eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", - "placeholder": "​", - "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", + "layout": "IPY_MODEL_8269af1311314d9aacf79c12b519bd6c", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e208c59f1c3e4a1f8617d84915976c44", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 272MB/s]" + "value": 2211.0 } }, - "e9d6ec450b2e48dcb5295b0addb03a08": { + "c0f4301d9fd645c7b6a2f9e57817a496": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f18185f7bfb34126ae47151814798ae9": { + "c2d52add6303412dad09009ae59a666c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3322,49 +2991,76 @@ "width": null } }, - "f28aab9da31b46fb80c0504babe16527": { + "c34e4e6e17124ba5a9d22fb2b6f79a98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f3ae141956064ff593c8324cddc63a9e": { - "model_module": "@jupyter-widgets/controls", + "d0ed5a842bfc46edb47d887346e2909a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3d7b3156603425383cb4b2911ba3193": { + "d15151d01e5c420ca9a88b8753b8e9ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3417,7 +3113,23 @@ "width": null } }, - "f549e9ac8a50477798f2e9234e06003d": { + "d290eddef0fc45689d48c2011a109f90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d3ac94b9ff6e4b4d9a833d33e6dccf71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3470,30 +3182,51 @@ "width": null } }, - "f5517afea1ad41e8ae488f9341fe54ca": { + "d491448b0ffc4a978158c141a661352a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", - "placeholder": "​", - "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", + "layout": "IPY_MODEL_3305320599934fabb2e2baaf62b1a49e", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_23000c0b80324873b97756f9bfd11fbf", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 466062.0 + } + }, + "d50c8667633f4691aac595b2723231fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f5d710bb5f824ac6a960165532df517a": { + "d835b6b2ebce41f9b0c57e0572288d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3509,17 +3242,215 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", - "max": 466062.0, + "layout": "IPY_MODEL_ad8ecd85932c4c698ab7028c12098713", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", + "style": "IPY_MODEL_c34e4e6e17124ba5a9d22fb2b6f79a98", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": 54245363.0 + } + }, + "db55dc8415754bdab7c13379faaf4948": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dcb1650bc8824592a265782063d74434": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ea1dacf131dd4d54afd058749c12fcd3", + "IPY_MODEL_d491448b0ffc4a978158c141a661352a", + "IPY_MODEL_626b20be5a794d6d8f8f1fcd4d51a1f0" + ], + "layout": "IPY_MODEL_37779113949e4b3cadfe19311a6f6487", + "tabbable": null, + "tooltip": null + } + }, + "e208c59f1c3e4a1f8617d84915976c44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e21b2d5d70274172a24485b9b4d87951": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e5a02085b1d34c2eb4226825c390b04a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6fa63d94d7f443db8da4517d5ed57f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f8d0dfa2e519414ba836fa1d568783d8", + "IPY_MODEL_bb639b3c011a4e87b32cd77de06ca4eb", + "IPY_MODEL_7f2b88a7511d4ab4a78c34374a566bfd" + ], + "layout": "IPY_MODEL_8915bebc69bb4c9fb94a0bbb73ba5b52", + "tabbable": null, + "tooltip": null } }, - "f7269a835d6543bb94a6753b3052198e": { + "ea1dacf131dd4d54afd058749c12fcd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_015077860af945adb2bdce523553c163", + "placeholder": "​", + "style": "IPY_MODEL_92adebc0ee3c418691dfadf7235bf3c9", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "ecd62c8aba87449ea599f8d1dd021476": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ed74fe05e4914446984d4242379d31ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cbbcbbb809544df972e151cabfffa0b", + "placeholder": "​", + "style": "IPY_MODEL_93e95215713642d5a8196fb9e7566262", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 123kB/s]" + } + }, + "ee36943aa729414e9470f57baed9ec85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef2c5bd217c94428b1b9ad7f7b7c4615": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3572,7 +3503,76 @@ "width": null } }, - "fbabc79ad62741eeb0adf64606e0278c": { + "f16b31ba91b347fdbeb94168d1486e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e498ff107884139a0c13d2145ca565a", + "placeholder": "​", + "style": "IPY_MODEL_ee36943aa729414e9470f57baed9ec85", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "f851d5623d434861a0f1b90c3fc2a561": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60b334983360447e9835bbac2b232eaf", + "placeholder": "​", + "style": "IPY_MODEL_e5a02085b1d34c2eb4226825c390b04a", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "f8d0dfa2e519414ba836fa1d568783d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a4d1a99ba714856a980e8c4ba806f61", + "placeholder": "​", + "style": "IPY_MODEL_96c3b31693394704b6b80d46ffdaf439", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "fa7f6ac3299145ca9cffe758cf5d98c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index fe6c1ed1b..7d4818203 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"13ce66a6db5846b19c327782fc330062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2585d650431e4e389f7c2cb8af3ba22a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e9afc86b1d7747a8a5ffc78856b7be99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, "value": 2041.0}}, "9b8c3f610f304fec945b68d663dc6f1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "548b97dd6b2146f6a9d554e5016ead75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", "placeholder": "\u200b", "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "0378871c4f2e413ea8000172dab79c64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a337d23527c34d92b63a1ecf6707124c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f72f986090fb419b8286e7286897e414": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "\u200b", "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "f39fc7e456254975882ada6d5b90254c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8cdbf19960b9483e9551e22643732a3c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", "IPY_MODEL_f72f986090fb419b8286e7286897e414"], "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", "tabbable": null, "tooltip": null}}, "eae9e35f11f747b58461317babdc3291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9eabbbb13d5e47fca4e356bee0501603": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a0699a91dd3428f82bdfb374fb55e76": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "a63baebd86ae43c990c6edc598a4879b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cea818f8d7f4614aa0ad2ec7b5348af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "335c2445e0c0490f9984409ca39867c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", "placeholder": "\u200b", "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "1bc0bb9f226044e2879bd45c2c9361b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f416c4b535bc4e10bf36f83830f8a6fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b56b7a0332dc4e1c84a140c42ac16890": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "\u200b", "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007193MB/s]"}}, "3ce9242cc785425291f31afd9dfc53a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30534447f05f4c18b825551758a727d5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_335c2445e0c0490f9984409ca39867c4", "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890"], "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", "tabbable": null, "tooltip": null}}, "e0a6be03adc34387b1154d4540a2cc94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7c617a65a6045ee945688614263ebc7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "da2148b68dd645dd98ed41c8058bb817": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "678f7e339f5149e181d689627ef3a751": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f7d007ea0b342b4a93dafc5282e07b1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a71755eaad3434f8376750eb9e21dca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", "placeholder": "\u200b", "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "25e28f77411f4b358cd7cb1316e7612d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6398640d39d74482925348e964477d91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b76f8ffb6354f24af0b35f6de244350": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "\u200b", "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007799kB/s]"}}, "fdbd1eb302114bcc85c0208f1bf7e7db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5977ad08502f404892f9c3a89a020623": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350"], "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null}}, "f47e6197a8974dacb497edf4211afa8b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "524d49fe9932444b9e6f4ad40ee2b836": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e79c27b29e1c44bf9369d333f8526228": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1b0ceb5f33ac4b4db24eb1efc0185a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "030f1aa243f74fa89a56e4a7afd62228": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7515de987da94ef9a2d5455c30f1c2a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "\u200b", "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a962521435da44439fc8023f973b16bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dce66522f3ac4607beae79e69e93745d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "184d81198c9f44339286502f77c93c88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", "placeholder": "\u200b", "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007308MB/s]"}}, "9d721b1baf0c4e31970159ee84bcb8b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2301b773af73470cb4968e5546eedca9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", "IPY_MODEL_184d81198c9f44339286502f77c93c88"], "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null}}, "1ae5dfdbfc244f20b5e6a0872942a6b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d8898b4bffa4ce2b6f9d1610b45d2d5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4c7ed89197a84102acf6416893e2d15b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a3d79d00b77e420fb3bba762b3d9a0b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca119d618680421aa4275a9c3bc6ada4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07f71655f74d435e83d929c621c5fa4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "\u200b", "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "482e270b3b2347b69272e33a3b7fe67a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ea3400f8dfa41de89365044c0f8cb8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3231f300a42b4b8b99131e14ee8de6fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", "placeholder": "\u200b", "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.45MB/s]"}}, "6a19b58ad5ac45dab732546ed937e951": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9234ebf1cac34261acd10dca3480e239": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe"], "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"63830c02953c4455bf2a307882e694b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c311eedd4d94ed7a3042aab60351711": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2e232434cadb452db15b52025f13f75d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63830c02953c4455bf2a307882e694b1", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9c311eedd4d94ed7a3042aab60351711", "tabbable": null, "tooltip": null, "value": 2041.0}}, "7f1a0e085e1a43ad8ad51bcc9b185a2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6838a9f20b44828a4989536c3d55270": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ff0cd24e87be410d830bf1898531bafd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f1a0e085e1a43ad8ad51bcc9b185a2a", "placeholder": "\u200b", "style": "IPY_MODEL_b6838a9f20b44828a4989536c3d55270", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "a3fba0cc198f4a809f16fff5ba2b03c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "220579a0cd4d425f85811abbb8611810": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7be2dc5e12e4414b8fba92783fd60190": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3fba0cc198f4a809f16fff5ba2b03c7", "placeholder": "\u200b", "style": "IPY_MODEL_220579a0cd4d425f85811abbb8611810", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007457kB/s]"}}, "396587efd0864aae9b58aa7ec5cc9c9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb2e310aad4341e0a50cb4c851f45243": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ff0cd24e87be410d830bf1898531bafd", "IPY_MODEL_2e232434cadb452db15b52025f13f75d", "IPY_MODEL_7be2dc5e12e4414b8fba92783fd60190"], "layout": "IPY_MODEL_396587efd0864aae9b58aa7ec5cc9c9b", "tabbable": null, "tooltip": null}}, "3d4c959715f54b81988247f56813c284": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b942e27a8c546229578b7e5cb21de85": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bfc4e629b84f4aceb1bea865d950f0e6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3d4c959715f54b81988247f56813c284", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1b942e27a8c546229578b7e5cb21de85", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "fd9ef7c4093c45bcb3a36abc3055e286": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09d5f83f77114a62b69452c5812e57c2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e1cd8c5ed05d4547a44e0e5cfce1c74a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd9ef7c4093c45bcb3a36abc3055e286", "placeholder": "\u200b", "style": "IPY_MODEL_09d5f83f77114a62b69452c5812e57c2", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "f6e25a7cf14743e89fbb91aa6e7f513b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "225e238a71fd4a638bff69290a7dcd43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6dc9827ddb74589b400c970cd120be4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6e25a7cf14743e89fbb91aa6e7f513b", "placeholder": "\u200b", "style": "IPY_MODEL_225e238a71fd4a638bff69290a7dcd43", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007217MB/s]"}}, "62e5fe8b5e084811b72dc91897127c9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d850ab6649ed49cb8b052607a2e551f1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e1cd8c5ed05d4547a44e0e5cfce1c74a", "IPY_MODEL_bfc4e629b84f4aceb1bea865d950f0e6", "IPY_MODEL_a6dc9827ddb74589b400c970cd120be4"], "layout": "IPY_MODEL_62e5fe8b5e084811b72dc91897127c9a", "tabbable": null, "tooltip": null}}, "32bc090dbc3d4927b637880d9a7802e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "542b45facdb14ca0a0f72b608a5a658e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "735a363e36774a3690fa29b44cc0b7ef": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32bc090dbc3d4927b637880d9a7802e2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_542b45facdb14ca0a0f72b608a5a658e", "tabbable": null, "tooltip": null, "value": 3201.0}}, "3aa6368bf7b54e12b9078f5a2f6b57bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69cb5a99909b4c5a8cec3b06cefa3a7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e315d690a89b4e37ab73801a0b5c0e18": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3aa6368bf7b54e12b9078f5a2f6b57bb", "placeholder": "\u200b", "style": "IPY_MODEL_69cb5a99909b4c5a8cec3b06cefa3a7b", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "241c7fadf92041c9a0782f2206c3bc63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8df0ebff8609403aacdfe9770935c87c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0e7d808700a64119bb6f213e420aa191": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_241c7fadf92041c9a0782f2206c3bc63", "placeholder": "\u200b", "style": "IPY_MODEL_8df0ebff8609403aacdfe9770935c87c", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007745kB/s]"}}, "2519ac5c35254b62b3787adf23ece58b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d2b35635bc5477a83da9ae31a3db08f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e315d690a89b4e37ab73801a0b5c0e18", "IPY_MODEL_735a363e36774a3690fa29b44cc0b7ef", "IPY_MODEL_0e7d808700a64119bb6f213e420aa191"], "layout": "IPY_MODEL_2519ac5c35254b62b3787adf23ece58b", "tabbable": null, "tooltip": null}}, "e3b4f47f345d4461bf6e6a0bf1238b1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4a7bc1b71904b709a1ca41e943c408b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "358150523dc74bb38d4a347c631f08a3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3b4f47f345d4461bf6e6a0bf1238b1e", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f4a7bc1b71904b709a1ca41e943c408b", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "a16e3ce73b3b4d21a31a8ab152277cc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44975c962d69404c81eaf0b670fb177c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "39a72291f17c4a18b35760621d82eb36": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a16e3ce73b3b4d21a31a8ab152277cc7", "placeholder": "\u200b", "style": "IPY_MODEL_44975c962d69404c81eaf0b670fb177c", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "2851cb4aee2f42868781181e0fea704d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "475255a31f7b4587a76770b2d215e162": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "662e9d3c428e4e32a0617cd0ca30bc75": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2851cb4aee2f42868781181e0fea704d", "placeholder": "\u200b", "style": "IPY_MODEL_475255a31f7b4587a76770b2d215e162", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007135MB/s]"}}, "dfdb1e0f8c9347a994e39fcc3524d2a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a07fe7eedfb40298d86a2134c2d6a9b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_39a72291f17c4a18b35760621d82eb36", "IPY_MODEL_358150523dc74bb38d4a347c631f08a3", "IPY_MODEL_662e9d3c428e4e32a0617cd0ca30bc75"], "layout": "IPY_MODEL_dfdb1e0f8c9347a994e39fcc3524d2a5", "tabbable": null, "tooltip": null}}, "a16cf5593c2240b1b9bb2e5dc886d363": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11632b09537b4ae5aa9012d0bc7b323c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a5a65a1643e94daab843c8da334c7714": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a16cf5593c2240b1b9bb2e5dc886d363", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_11632b09537b4ae5aa9012d0bc7b323c", "tabbable": null, "tooltip": null, "value": 128619.0}}, "23c87784313f48b5bcf2efba8533b39b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5079a6cc2f74384abbc900bd4445bd1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f106a11643404737910797cebe679ed0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23c87784313f48b5bcf2efba8533b39b", "placeholder": "\u200b", "style": "IPY_MODEL_e5079a6cc2f74384abbc900bd4445bd1", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "762316a16aed43738d19d8e65382bfbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f5bda669d22b47e8a5409e4b4e6d39e1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "532c90b672f34bf08b9fe13c84e5e2ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_762316a16aed43738d19d8e65382bfbe", "placeholder": "\u200b", "style": "IPY_MODEL_f5bda669d22b47e8a5409e4b4e6d39e1", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200719.3MB/s]"}}, "a752748a71d3444a8cc14b90951e07cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5936142ae7141959a226ff0db225b32": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f106a11643404737910797cebe679ed0", "IPY_MODEL_a5a65a1643e94daab843c8da334c7714", "IPY_MODEL_532c90b672f34bf08b9fe13c84e5e2ad"], "layout": "IPY_MODEL_a752748a71d3444a8cc14b90951e07cb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index dc2c54cfa..ba5bdcb11 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:03.233428Z", - "iopub.status.busy": "2024-07-09T06:22:03.232964Z", - "iopub.status.idle": "2024-07-09T06:22:08.850474Z", - "shell.execute_reply": "2024-07-09T06:22:08.849914Z" + "iopub.execute_input": "2024-07-11T23:25:23.622274Z", + "iopub.status.busy": "2024-07-11T23:25:23.622108Z", + "iopub.status.idle": "2024-07-11T23:25:29.138300Z", + "shell.execute_reply": "2024-07-11T23:25:29.137602Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:08.853152Z", - "iopub.status.busy": "2024-07-09T06:22:08.852690Z", - "iopub.status.idle": "2024-07-09T06:22:08.855934Z", - "shell.execute_reply": "2024-07-09T06:22:08.855477Z" + "iopub.execute_input": "2024-07-11T23:25:29.140934Z", + "iopub.status.busy": "2024-07-11T23:25:29.140561Z", + "iopub.status.idle": "2024-07-11T23:25:29.143802Z", + "shell.execute_reply": "2024-07-11T23:25:29.143344Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:08.857959Z", - "iopub.status.busy": "2024-07-09T06:22:08.857632Z", - "iopub.status.idle": "2024-07-09T06:22:08.861976Z", - "shell.execute_reply": "2024-07-09T06:22:08.861565Z" + "iopub.execute_input": "2024-07-11T23:25:29.145725Z", + "iopub.status.busy": "2024-07-11T23:25:29.145540Z", + "iopub.status.idle": "2024-07-11T23:25:29.150162Z", + "shell.execute_reply": "2024-07-11T23:25:29.149689Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:08.864012Z", - "iopub.status.busy": "2024-07-09T06:22:08.863632Z", - "iopub.status.idle": "2024-07-09T06:22:10.501197Z", - "shell.execute_reply": "2024-07-09T06:22:10.500598Z" + "iopub.execute_input": "2024-07-11T23:25:29.152064Z", + "iopub.status.busy": "2024-07-11T23:25:29.151888Z", + "iopub.status.idle": "2024-07-11T23:25:31.115917Z", + "shell.execute_reply": "2024-07-11T23:25:31.115083Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:10.503804Z", - "iopub.status.busy": "2024-07-09T06:22:10.503416Z", - "iopub.status.idle": "2024-07-09T06:22:10.513980Z", - "shell.execute_reply": "2024-07-09T06:22:10.513523Z" + "iopub.execute_input": "2024-07-11T23:25:31.118929Z", + "iopub.status.busy": "2024-07-11T23:25:31.118540Z", + "iopub.status.idle": "2024-07-11T23:25:31.129798Z", + "shell.execute_reply": "2024-07-11T23:25:31.129227Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:10.516180Z", - "iopub.status.busy": "2024-07-09T06:22:10.515850Z", - "iopub.status.idle": "2024-07-09T06:22:10.521399Z", - "shell.execute_reply": "2024-07-09T06:22:10.520894Z" + "iopub.execute_input": "2024-07-11T23:25:31.132173Z", + "iopub.status.busy": "2024-07-11T23:25:31.131721Z", + "iopub.status.idle": "2024-07-11T23:25:31.137764Z", + "shell.execute_reply": "2024-07-11T23:25:31.137297Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:10.523550Z", - "iopub.status.busy": "2024-07-09T06:22:10.523111Z", - "iopub.status.idle": "2024-07-09T06:22:10.966866Z", - "shell.execute_reply": "2024-07-09T06:22:10.966371Z" + "iopub.execute_input": "2024-07-11T23:25:31.139717Z", + "iopub.status.busy": "2024-07-11T23:25:31.139441Z", + "iopub.status.idle": "2024-07-11T23:25:31.606352Z", + "shell.execute_reply": "2024-07-11T23:25:31.605735Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:10.969003Z", - "iopub.status.busy": "2024-07-09T06:22:10.968716Z", - "iopub.status.idle": "2024-07-09T06:22:11.621713Z", - "shell.execute_reply": "2024-07-09T06:22:11.621235Z" + "iopub.execute_input": "2024-07-11T23:25:31.608562Z", + "iopub.status.busy": "2024-07-11T23:25:31.608237Z", + "iopub.status.idle": "2024-07-11T23:25:32.413383Z", + "shell.execute_reply": "2024-07-11T23:25:32.412877Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:11.624138Z", - "iopub.status.busy": "2024-07-09T06:22:11.623795Z", - "iopub.status.idle": "2024-07-09T06:22:11.641645Z", - "shell.execute_reply": "2024-07-09T06:22:11.641200Z" + "iopub.execute_input": "2024-07-11T23:25:32.415851Z", + "iopub.status.busy": "2024-07-11T23:25:32.415523Z", + "iopub.status.idle": "2024-07-11T23:25:32.433928Z", + "shell.execute_reply": "2024-07-11T23:25:32.433491Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:11.643659Z", - "iopub.status.busy": "2024-07-09T06:22:11.643333Z", - "iopub.status.idle": "2024-07-09T06:22:11.646457Z", - "shell.execute_reply": "2024-07-09T06:22:11.645916Z" + "iopub.execute_input": "2024-07-11T23:25:32.436044Z", + "iopub.status.busy": "2024-07-11T23:25:32.435632Z", + "iopub.status.idle": "2024-07-11T23:25:32.438903Z", + "shell.execute_reply": "2024-07-11T23:25:32.438334Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:11.648482Z", - "iopub.status.busy": "2024-07-09T06:22:11.648101Z", - "iopub.status.idle": "2024-07-09T06:22:26.104216Z", - "shell.execute_reply": "2024-07-09T06:22:26.103596Z" + "iopub.execute_input": "2024-07-11T23:25:32.440891Z", + "iopub.status.busy": "2024-07-11T23:25:32.440569Z", + "iopub.status.idle": "2024-07-11T23:25:46.637808Z", + "shell.execute_reply": "2024-07-11T23:25:46.637255Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.106855Z", - "iopub.status.busy": "2024-07-09T06:22:26.106613Z", - "iopub.status.idle": "2024-07-09T06:22:26.110484Z", - "shell.execute_reply": "2024-07-09T06:22:26.109922Z" + "iopub.execute_input": "2024-07-11T23:25:46.640464Z", + "iopub.status.busy": "2024-07-11T23:25:46.640058Z", + "iopub.status.idle": "2024-07-11T23:25:46.643762Z", + "shell.execute_reply": "2024-07-11T23:25:46.643204Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.112655Z", - "iopub.status.busy": "2024-07-09T06:22:26.112225Z", - "iopub.status.idle": "2024-07-09T06:22:26.806714Z", - "shell.execute_reply": "2024-07-09T06:22:26.806127Z" + "iopub.execute_input": "2024-07-11T23:25:46.645953Z", + "iopub.status.busy": "2024-07-11T23:25:46.645610Z", + "iopub.status.idle": "2024-07-11T23:25:47.375581Z", + "shell.execute_reply": "2024-07-11T23:25:47.374885Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.809582Z", - "iopub.status.busy": "2024-07-09T06:22:26.809200Z", - "iopub.status.idle": "2024-07-09T06:22:26.813988Z", - "shell.execute_reply": "2024-07-09T06:22:26.813500Z" + "iopub.execute_input": "2024-07-11T23:25:47.378592Z", + "iopub.status.busy": "2024-07-11T23:25:47.378207Z", + "iopub.status.idle": "2024-07-11T23:25:47.383033Z", + "shell.execute_reply": "2024-07-11T23:25:47.382530Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.817256Z", - "iopub.status.busy": "2024-07-09T06:22:26.816338Z", - "iopub.status.idle": "2024-07-09T06:22:26.913005Z", - "shell.execute_reply": "2024-07-09T06:22:26.912463Z" + "iopub.execute_input": "2024-07-11T23:25:47.385463Z", + "iopub.status.busy": "2024-07-11T23:25:47.385098Z", + "iopub.status.idle": "2024-07-11T23:25:47.495967Z", + "shell.execute_reply": "2024-07-11T23:25:47.495319Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.915328Z", - "iopub.status.busy": "2024-07-09T06:22:26.914958Z", - "iopub.status.idle": "2024-07-09T06:22:26.927202Z", - "shell.execute_reply": "2024-07-09T06:22:26.926711Z" + "iopub.execute_input": "2024-07-11T23:25:47.498695Z", + "iopub.status.busy": "2024-07-11T23:25:47.498272Z", + "iopub.status.idle": "2024-07-11T23:25:47.511460Z", + "shell.execute_reply": "2024-07-11T23:25:47.511007Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.929241Z", - "iopub.status.busy": "2024-07-09T06:22:26.928921Z", - "iopub.status.idle": "2024-07-09T06:22:26.936556Z", - "shell.execute_reply": "2024-07-09T06:22:26.936102Z" + "iopub.execute_input": "2024-07-11T23:25:47.513628Z", + "iopub.status.busy": "2024-07-11T23:25:47.513332Z", + "iopub.status.idle": "2024-07-11T23:25:47.521307Z", + "shell.execute_reply": "2024-07-11T23:25:47.520769Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.938661Z", - "iopub.status.busy": "2024-07-09T06:22:26.938342Z", - "iopub.status.idle": "2024-07-09T06:22:26.942738Z", - "shell.execute_reply": "2024-07-09T06:22:26.942303Z" + "iopub.execute_input": "2024-07-11T23:25:47.523326Z", + "iopub.status.busy": "2024-07-11T23:25:47.523145Z", + "iopub.status.idle": "2024-07-11T23:25:47.527590Z", + "shell.execute_reply": "2024-07-11T23:25:47.527052Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.944805Z", - "iopub.status.busy": "2024-07-09T06:22:26.944495Z", - "iopub.status.idle": "2024-07-09T06:22:26.949937Z", - "shell.execute_reply": "2024-07-09T06:22:26.949446Z" + "iopub.execute_input": "2024-07-11T23:25:47.529658Z", + "iopub.status.busy": "2024-07-11T23:25:47.529333Z", + "iopub.status.idle": "2024-07-11T23:25:47.534929Z", + "shell.execute_reply": "2024-07-11T23:25:47.534370Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:26.951973Z", - "iopub.status.busy": "2024-07-09T06:22:26.951651Z", - "iopub.status.idle": "2024-07-09T06:22:27.069852Z", - "shell.execute_reply": "2024-07-09T06:22:27.069287Z" + "iopub.execute_input": "2024-07-11T23:25:47.537060Z", + "iopub.status.busy": "2024-07-11T23:25:47.536733Z", + "iopub.status.idle": "2024-07-11T23:25:47.649691Z", + "shell.execute_reply": "2024-07-11T23:25:47.649124Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:27.072192Z", - "iopub.status.busy": "2024-07-09T06:22:27.071729Z", - "iopub.status.idle": "2024-07-09T06:22:27.179313Z", - "shell.execute_reply": "2024-07-09T06:22:27.178807Z" + "iopub.execute_input": "2024-07-11T23:25:47.651956Z", + "iopub.status.busy": "2024-07-11T23:25:47.651597Z", + "iopub.status.idle": "2024-07-11T23:25:47.755776Z", + "shell.execute_reply": "2024-07-11T23:25:47.755223Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:22:27.181419Z", - "iopub.status.busy": "2024-07-09T06:22:27.181072Z", - "iopub.status.idle": "2024-07-09T06:22:27.284684Z", - "shell.execute_reply": "2024-07-09T06:22:27.284186Z" + "iopub.execute_input": "2024-07-11T23:25:47.758043Z", + "iopub.status.busy": "2024-07-11T23:25:47.757593Z", + "iopub.status.idle": "2024-07-11T23:25:47.863494Z", + "shell.execute_reply": "2024-07-11T23:25:47.862663Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:27.286639Z", - "iopub.status.busy": "2024-07-09T06:22:27.286466Z", - "iopub.status.idle": "2024-07-09T06:22:27.389984Z", - "shell.execute_reply": "2024-07-09T06:22:27.389427Z" + "iopub.execute_input": "2024-07-11T23:25:47.865674Z", + "iopub.status.busy": "2024-07-11T23:25:47.865344Z", + "iopub.status.idle": "2024-07-11T23:25:47.969901Z", + "shell.execute_reply": "2024-07-11T23:25:47.969302Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:27.392223Z", - "iopub.status.busy": "2024-07-09T06:22:27.391882Z", - "iopub.status.idle": "2024-07-09T06:22:27.395109Z", - "shell.execute_reply": "2024-07-09T06:22:27.394562Z" + "iopub.execute_input": "2024-07-11T23:25:47.972258Z", + "iopub.status.busy": "2024-07-11T23:25:47.971857Z", + "iopub.status.idle": "2024-07-11T23:25:47.975011Z", + "shell.execute_reply": "2024-07-11T23:25:47.974540Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "030f1aa243f74fa89a56e4a7afd62228": { + "09d5f83f77114a62b69452c5812e57c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1410,7 +1410,98 @@ "text_color": null } }, - "0378871c4f2e413ea8000172dab79c64": { + "0e7d808700a64119bb6f213e420aa191": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_241c7fadf92041c9a0782f2206c3bc63", + "placeholder": "​", + "style": "IPY_MODEL_8df0ebff8609403aacdfe9770935c87c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 745kB/s]" + } + }, + "11632b09537b4ae5aa9012d0bc7b323c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1b942e27a8c546229578b7e5cb21de85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "220579a0cd4d425f85811abbb8611810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "225e238a71fd4a638bff69290a7dcd43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "23c87784313f48b5bcf2efba8533b39b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1463,30 +1554,7 @@ "width": null } }, - "07f71655f74d435e83d929c621c5fa4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", - "placeholder": "​", - "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "13ce66a6db5846b19c327782fc330062": { + "241c7fadf92041c9a0782f2206c3bc63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1539,53 +1607,7 @@ "width": null } }, - "184d81198c9f44339286502f77c93c88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", - "placeholder": "​", - "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 308MB/s]" - } - }, - "1a71755eaad3434f8376750eb9e21dca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", - "placeholder": "​", - "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "1ae5dfdbfc244f20b5e6a0872942a6b6": { + "2519ac5c35254b62b3787adf23ece58b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,7 +1660,7 @@ "width": null } }, - "1b0ceb5f33ac4b4db24eb1efc0185a90": { + "2851cb4aee2f42868781181e0fea704d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1713,33 @@ "width": null } }, - "1bc0bb9f226044e2879bd45c2c9361b8": { + "2e232434cadb452db15b52025f13f75d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63830c02953c4455bf2a307882e694b1", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c311eedd4d94ed7a3042aab60351711", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "32bc090dbc3d4927b637880d9a7802e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,47 +1792,33 @@ "width": null } }, - "2301b773af73470cb4968e5546eedca9": { + "358150523dc74bb38d4a347c631f08a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", - "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", - "IPY_MODEL_184d81198c9f44339286502f77c93c88" - ], - "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3b4f47f345d4461bf6e6a0bf1238b1e", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4a7bc1b71904b709a1ca41e943c408b", "tabbable": null, - "tooltip": null - } - }, - "2585d650431e4e389f7c2cb8af3ba22a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 15856877.0 } }, - "25e28f77411f4b358cd7cb1316e7612d": { + "396587efd0864aae9b58aa7ec5cc9c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1837,70 +1871,7 @@ "width": null } }, - "2d8898b4bffa4ce2b6f9d1610b45d2d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "30534447f05f4c18b825551758a727d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_335c2445e0c0490f9984409ca39867c4", - "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", - "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890" - ], - "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", - "tabbable": null, - "tooltip": null - } - }, - "3231f300a42b4b8b99131e14ee8de6fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", - "placeholder": "​", - "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.45MB/s]" - } - }, - "335c2445e0c0490f9984409ca39867c4": { + "39a72291f17c4a18b35760621d82eb36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1915,41 +1886,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", + "layout": "IPY_MODEL_a16e3ce73b3b4d21a31a8ab152277cc7", "placeholder": "​", - "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", + "style": "IPY_MODEL_44975c962d69404c81eaf0b670fb177c", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "3a0699a91dd3428f82bdfb374fb55e76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "value": "classifier.ckpt: 100%" } }, - "3ce9242cc785425291f31afd9dfc53a7": { + "3aa6368bf7b54e12b9078f5a2f6b57bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2002,25 +1947,7 @@ "width": null } }, - "3cea818f8d7f4614aa0ad2ec7b5348af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "482e270b3b2347b69272e33a3b7fe67a": { + "3d4c959715f54b81988247f56813c284": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2070,70 +1997,28 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "4c7ed89197a84102acf6416893e2d15b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "4ea3400f8dfa41de89365044c0f8cb8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": null } }, - "524d49fe9932444b9e6f4ad40ee2b836": { + "44975c962d69404c81eaf0b670fb177c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "548b97dd6b2146f6a9d554e5016ead75": { + "475255a31f7b4587a76770b2d215e162": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2151,31 +2036,7 @@ "text_color": null } }, - "5977ad08502f404892f9c3a89a020623": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", - "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", - "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350" - ], - "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", - "tabbable": null, - "tooltip": null - } - }, - "5b76f8ffb6354f24af0b35f6de244350": { + "532c90b672f34bf08b9fe13c84e5e2ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2190,51 +2051,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", + "layout": "IPY_MODEL_762316a16aed43738d19d8e65382bfbe", "placeholder": "​", - "style": "IPY_MODEL_6398640d39d74482925348e964477d91", + "style": "IPY_MODEL_f5bda669d22b47e8a5409e4b4e6d39e1", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 799kB/s]" + "value": " 129k/129k [00:00<00:00, 19.3MB/s]" } }, - "5f7d007ea0b342b4a93dafc5282e07b1": { + "542b45facdb14ca0a0f72b608a5a658e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6398640d39d74482925348e964477d91": { + "5d2b35635bc5477a83da9ae31a3db08f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e315d690a89b4e37ab73801a0b5c0e18", + "IPY_MODEL_735a363e36774a3690fa29b44cc0b7ef", + "IPY_MODEL_0e7d808700a64119bb6f213e420aa191" + ], + "layout": "IPY_MODEL_2519ac5c35254b62b3787adf23ece58b", + "tabbable": null, + "tooltip": null } }, - "678f7e339f5149e181d689627ef3a751": { + "62e5fe8b5e084811b72dc91897127c9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2287,7 +2152,7 @@ "width": null } }, - "6a19b58ad5ac45dab732546ed937e951": { + "63830c02953c4455bf2a307882e694b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2340,30 +2205,7 @@ "width": null } }, - "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", - "placeholder": "​", - "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "7515de987da94ef9a2d5455c30f1c2a5": { + "662e9d3c428e4e32a0617cd0ca30bc75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2378,63 +2220,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", + "layout": "IPY_MODEL_2851cb4aee2f42868781181e0fea704d", "placeholder": "​", - "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", + "style": "IPY_MODEL_475255a31f7b4587a76770b2d215e162", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 135MB/s]" } }, - "8cdbf19960b9483e9551e22643732a3c": { + "69cb5a99909b4c5a8cec3b06cefa3a7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", - "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", - "IPY_MODEL_f72f986090fb419b8286e7286897e414" - ], - "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9234ebf1cac34261acd10dca3480e239": { + "735a363e36774a3690fa29b44cc0b7ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", - "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", - "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe" - ], - "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32bc090dbc3d4927b637880d9a7802e2", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_542b45facdb14ca0a0f72b608a5a658e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 3201.0 } }, - "9b8c3f610f304fec945b68d663dc6f1f": { + "762316a16aed43738d19d8e65382bfbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2487,7 +2325,30 @@ "width": null } }, - "9d721b1baf0c4e31970159ee84bcb8b1": { + "7be2dc5e12e4414b8fba92783fd60190": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3fba0cc198f4a809f16fff5ba2b03c7", + "placeholder": "​", + "style": "IPY_MODEL_220579a0cd4d425f85811abbb8611810", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 457kB/s]" + } + }, + "7f1a0e085e1a43ad8ad51bcc9b185a2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2540,7 +2401,49 @@ "width": null } }, - "9eabbbb13d5e47fca4e356bee0501603": { + "8df0ebff8609403aacdfe9770935c87c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9a07fe7eedfb40298d86a2134c2d6a9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39a72291f17c4a18b35760621d82eb36", + "IPY_MODEL_358150523dc74bb38d4a347c631f08a3", + "IPY_MODEL_662e9d3c428e4e32a0617cd0ca30bc75" + ], + "layout": "IPY_MODEL_dfdb1e0f8c9347a994e39fcc3524d2a5", + "tabbable": null, + "tooltip": null + } + }, + "9c311eedd4d94ed7a3042aab60351711": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2556,25 +2459,60 @@ "description_width": "" } }, - "a337d23527c34d92b63a1ecf6707124c": { - "model_module": "@jupyter-widgets/controls", + "a16cf5593c2240b1b9bb2e5dc886d363": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a3d79d00b77e420fb3bba762b3d9a0b6": { + "a16e3ce73b3b4d21a31a8ab152277cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,7 +2565,7 @@ "width": null } }, - "a63baebd86ae43c990c6edc598a4879b": { + "a3fba0cc198f4a809f16fff5ba2b03c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2680,7 +2618,56 @@ "width": null } }, - "a962521435da44439fc8023f973b16bb": { + "a5a65a1643e94daab843c8da334c7714": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a16cf5593c2240b1b9bb2e5dc886d363", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_11632b09537b4ae5aa9012d0bc7b323c", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "a6dc9827ddb74589b400c970cd120be4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f6e25a7cf14743e89fbb91aa6e7f513b", + "placeholder": "​", + "style": "IPY_MODEL_225e238a71fd4a638bff69290a7dcd43", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 217MB/s]" + } + }, + "a752748a71d3444a8cc14b90951e07cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2733,30 +2720,7 @@ "width": null } }, - "b56b7a0332dc4e1c84a140c42ac16890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", - "placeholder": "​", - "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 193MB/s]" - } - }, - "ca119d618680421aa4275a9c3bc6ada4": { + "b6838a9f20b44828a4989536c3d55270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2774,7 +2738,7 @@ "text_color": null } }, - "da2148b68dd645dd98ed41c8058bb817": { + "bfc4e629b84f4aceb1bea865d950f0e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2790,35 +2754,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", - "max": 3201.0, + "layout": "IPY_MODEL_3d4c959715f54b81988247f56813c284", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", + "style": "IPY_MODEL_1b942e27a8c546229578b7e5cb21de85", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 16887676.0 } }, - "dce66522f3ac4607beae79e69e93745d": { + "d850ab6649ed49cb8b052607a2e551f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1cd8c5ed05d4547a44e0e5cfce1c74a", + "IPY_MODEL_bfc4e629b84f4aceb1bea865d950f0e6", + "IPY_MODEL_a6dc9827ddb74589b400c970cd120be4" + ], + "layout": "IPY_MODEL_62e5fe8b5e084811b72dc91897127c9a", + "tabbable": null, + "tooltip": null } }, - "e0a6be03adc34387b1154d4540a2cc94": { + "dfdb1e0f8c9347a994e39fcc3524d2a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2871,75 +2841,53 @@ "width": null } }, - "e79c27b29e1c44bf9369d333f8526228": { + "e1cd8c5ed05d4547a44e0e5cfce1c74a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", + "layout": "IPY_MODEL_fd9ef7c4093c45bcb3a36abc3055e286", + "placeholder": "​", + "style": "IPY_MODEL_09d5f83f77114a62b69452c5812e57c2", "tabbable": null, "tooltip": null, - "value": 15856877.0 - } - }, - "e7c617a65a6045ee945688614263ebc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "embedding_model.ckpt: 100%" } }, - "e9afc86b1d7747a8a5ffc78856b7be99": { + "e315d690a89b4e37ab73801a0b5c0e18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", + "layout": "IPY_MODEL_3aa6368bf7b54e12b9078f5a2f6b57bb", + "placeholder": "​", + "style": "IPY_MODEL_69cb5a99909b4c5a8cec3b06cefa3a7b", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "eae9e35f11f747b58461317babdc3291": { + "e3b4f47f345d4461bf6e6a0bf1238b1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2992,60 +2940,112 @@ "width": null } }, - "f39fc7e456254975882ada6d5b90254c": { - "model_module": "@jupyter-widgets/base", + "e5079a6cc2f74384abbc900bd4445bd1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e5936142ae7141959a226ff0db225b32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f106a11643404737910797cebe679ed0", + "IPY_MODEL_a5a65a1643e94daab843c8da334c7714", + "IPY_MODEL_532c90b672f34bf08b9fe13c84e5e2ad" + ], + "layout": "IPY_MODEL_a752748a71d3444a8cc14b90951e07cb", + "tabbable": null, + "tooltip": null + } + }, + "eb2e310aad4341e0a50cb4c851f45243": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff0cd24e87be410d830bf1898531bafd", + "IPY_MODEL_2e232434cadb452db15b52025f13f75d", + "IPY_MODEL_7be2dc5e12e4414b8fba92783fd60190" + ], + "layout": "IPY_MODEL_396587efd0864aae9b58aa7ec5cc9c9b", + "tabbable": null, + "tooltip": null + } + }, + "f106a11643404737910797cebe679ed0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23c87784313f48b5bcf2efba8533b39b", + "placeholder": "​", + "style": "IPY_MODEL_e5079a6cc2f74384abbc900bd4445bd1", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "f4a7bc1b71904b709a1ca41e943c408b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f416c4b535bc4e10bf36f83830f8a6fa": { + "f5bda669d22b47e8a5409e4b4e6d39e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3063,7 +3063,7 @@ "text_color": null } }, - "f47e6197a8974dacb497edf4211afa8b": { + "f6e25a7cf14743e89fbb91aa6e7f513b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3116,30 +3116,7 @@ "width": null } }, - "f72f986090fb419b8286e7286897e414": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", - "placeholder": "​", - "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" - } - }, - "fdbd1eb302114bcc85c0208f1bf7e7db": { + "fd9ef7c4093c45bcb3a36abc3055e286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3168,29 @@ "visibility": null, "width": null } + }, + "ff0cd24e87be410d830bf1898531bafd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f1a0e085e1a43ad8ad51bcc9b185a2a", + "placeholder": "​", + "style": "IPY_MODEL_b6838a9f20b44828a4989536c3d55270", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 687422936..d8e6ac2d8 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"4f663e6b17ca4c42bf50adc567d16ba7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b9a95ea9570469c89df3c913719453d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce349bf1dbe749ccb7ed3c31e8593c0e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", "tabbable": null, "tooltip": null, "value": 132.0}}, "110ab4d837414033a320250c8a01f402": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00d78c11cb114efca0b0c49d7e0cb9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cb3e52e8971843afb00d0a4e915483f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", "placeholder": "\u200b", "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "53f5526f4be149a09e57d6eddb464297": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0a497561f9e46278d786855f5eaad3a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c62609186764ad4b5447a66b1294674": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", "placeholder": "\u200b", "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713749.43\u2007examples/s]"}}, "39e9da6fa70e44bea4cd6db6fbb2a1b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74c24ad981f147efb352816e9dafec11": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", "IPY_MODEL_9c62609186764ad4b5447a66b1294674"], "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"af258bf41f5342f888fdb32cb9b938ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae4c2204ef1945fb8626a471115a413d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "20b1eb2bb5e0415089cb29f663c789d1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af258bf41f5342f888fdb32cb9b938ed", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae4c2204ef1945fb8626a471115a413d", "tabbable": null, "tooltip": null, "value": 132.0}}, "3da531c66e024be4827f831a6b333709": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93265ac5a64346f8967e553181f21233": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ea8b852d4bd491d912ad2bfb3da04c5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3da531c66e024be4827f831a6b333709", "placeholder": "\u200b", "style": "IPY_MODEL_93265ac5a64346f8967e553181f21233", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "55b50da0d75848099545eedfff230300": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "314df2647cd1496680d45591fdb4f320": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7cd2b2bf3cd14f1fbc37d568cfa58eb3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55b50da0d75848099545eedfff230300", "placeholder": "\u200b", "style": "IPY_MODEL_314df2647cd1496680d45591fdb4f320", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712863.57\u2007examples/s]"}}, "51fb4ddf8ca941a0b67860bfd69f86c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d144f049a4248e783cbe9b8a2127d17": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2ea8b852d4bd491d912ad2bfb3da04c5", "IPY_MODEL_20b1eb2bb5e0415089cb29f663c789d1", "IPY_MODEL_7cd2b2bf3cd14f1fbc37d568cfa58eb3"], "layout": "IPY_MODEL_51fb4ddf8ca941a0b67860bfd69f86c8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 73ef9d94b..f601f0166 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:31.204629Z", - "iopub.status.busy": "2024-07-09T06:22:31.204447Z", - "iopub.status.idle": "2024-07-09T06:22:32.372754Z", - "shell.execute_reply": "2024-07-09T06:22:32.372127Z" + "iopub.execute_input": "2024-07-11T23:25:51.823422Z", + "iopub.status.busy": "2024-07-11T23:25:51.823260Z", + "iopub.status.idle": "2024-07-11T23:25:53.001384Z", + "shell.execute_reply": "2024-07-11T23:25:53.000768Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.375331Z", - "iopub.status.busy": "2024-07-09T06:22:32.374890Z", - "iopub.status.idle": "2024-07-09T06:22:32.377978Z", - "shell.execute_reply": "2024-07-09T06:22:32.377441Z" + "iopub.execute_input": "2024-07-11T23:25:53.004148Z", + "iopub.status.busy": "2024-07-11T23:25:53.003688Z", + "iopub.status.idle": "2024-07-11T23:25:53.006645Z", + "shell.execute_reply": "2024-07-11T23:25:53.006203Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.380095Z", - "iopub.status.busy": "2024-07-09T06:22:32.379830Z", - "iopub.status.idle": "2024-07-09T06:22:32.388412Z", - "shell.execute_reply": "2024-07-09T06:22:32.387959Z" + "iopub.execute_input": "2024-07-11T23:25:53.009029Z", + "iopub.status.busy": "2024-07-11T23:25:53.008549Z", + "iopub.status.idle": "2024-07-11T23:25:53.017194Z", + "shell.execute_reply": "2024-07-11T23:25:53.016743Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.390372Z", - "iopub.status.busy": "2024-07-09T06:22:32.390051Z", - "iopub.status.idle": "2024-07-09T06:22:32.394799Z", - "shell.execute_reply": "2024-07-09T06:22:32.394245Z" + "iopub.execute_input": "2024-07-11T23:25:53.019023Z", + "iopub.status.busy": "2024-07-11T23:25:53.018850Z", + "iopub.status.idle": "2024-07-11T23:25:53.024010Z", + "shell.execute_reply": "2024-07-11T23:25:53.023464Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.396873Z", - "iopub.status.busy": "2024-07-09T06:22:32.396576Z", - "iopub.status.idle": "2024-07-09T06:22:32.582697Z", - "shell.execute_reply": "2024-07-09T06:22:32.582077Z" + "iopub.execute_input": "2024-07-11T23:25:53.026525Z", + "iopub.status.busy": "2024-07-11T23:25:53.026078Z", + "iopub.status.idle": "2024-07-11T23:25:53.210194Z", + "shell.execute_reply": "2024-07-11T23:25:53.209545Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.585043Z", - "iopub.status.busy": "2024-07-09T06:22:32.584844Z", - "iopub.status.idle": "2024-07-09T06:22:32.959426Z", - "shell.execute_reply": "2024-07-09T06:22:32.958831Z" + "iopub.execute_input": "2024-07-11T23:25:53.212563Z", + "iopub.status.busy": "2024-07-11T23:25:53.212353Z", + "iopub.status.idle": "2024-07-11T23:25:53.586412Z", + "shell.execute_reply": "2024-07-11T23:25:53.585805Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.961607Z", - "iopub.status.busy": "2024-07-09T06:22:32.961418Z", - "iopub.status.idle": "2024-07-09T06:22:32.984249Z", - "shell.execute_reply": "2024-07-09T06:22:32.983819Z" + "iopub.execute_input": "2024-07-11T23:25:53.588925Z", + "iopub.status.busy": "2024-07-11T23:25:53.588509Z", + "iopub.status.idle": "2024-07-11T23:25:53.611698Z", + "shell.execute_reply": "2024-07-11T23:25:53.611273Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.986453Z", - "iopub.status.busy": "2024-07-09T06:22:32.986022Z", - "iopub.status.idle": "2024-07-09T06:22:32.997152Z", - "shell.execute_reply": "2024-07-09T06:22:32.996629Z" + "iopub.execute_input": "2024-07-11T23:25:53.613844Z", + "iopub.status.busy": "2024-07-11T23:25:53.613504Z", + "iopub.status.idle": "2024-07-11T23:25:53.624617Z", + "shell.execute_reply": "2024-07-11T23:25:53.624201Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:32.999567Z", - "iopub.status.busy": "2024-07-09T06:22:32.999237Z", - "iopub.status.idle": "2024-07-09T06:22:35.072126Z", - "shell.execute_reply": "2024-07-09T06:22:35.071432Z" + "iopub.execute_input": "2024-07-11T23:25:53.626785Z", + "iopub.status.busy": "2024-07-11T23:25:53.626388Z", + "iopub.status.idle": "2024-07-11T23:25:55.687442Z", + "shell.execute_reply": "2024-07-11T23:25:55.686781Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.074948Z", - "iopub.status.busy": "2024-07-09T06:22:35.074462Z", - "iopub.status.idle": "2024-07-09T06:22:35.096631Z", - "shell.execute_reply": "2024-07-09T06:22:35.096147Z" + "iopub.execute_input": "2024-07-11T23:25:55.689874Z", + "iopub.status.busy": "2024-07-11T23:25:55.689586Z", + "iopub.status.idle": "2024-07-11T23:25:55.710600Z", + "shell.execute_reply": "2024-07-11T23:25:55.710124Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.098742Z", - "iopub.status.busy": "2024-07-09T06:22:35.098472Z", - "iopub.status.idle": "2024-07-09T06:22:35.116671Z", - "shell.execute_reply": "2024-07-09T06:22:35.116210Z" + "iopub.execute_input": "2024-07-11T23:25:55.712508Z", + "iopub.status.busy": "2024-07-11T23:25:55.712334Z", + "iopub.status.idle": "2024-07-11T23:25:55.730322Z", + "shell.execute_reply": "2024-07-11T23:25:55.729853Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.118721Z", - "iopub.status.busy": "2024-07-09T06:22:35.118381Z", - "iopub.status.idle": "2024-07-09T06:22:35.132562Z", - "shell.execute_reply": "2024-07-09T06:22:35.132113Z" + "iopub.execute_input": "2024-07-11T23:25:55.732168Z", + "iopub.status.busy": "2024-07-11T23:25:55.731994Z", + "iopub.status.idle": "2024-07-11T23:25:55.747026Z", + "shell.execute_reply": "2024-07-11T23:25:55.746452Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.134629Z", - "iopub.status.busy": "2024-07-09T06:22:35.134293Z", - "iopub.status.idle": "2024-07-09T06:22:35.152969Z", - "shell.execute_reply": "2024-07-09T06:22:35.152458Z" + "iopub.execute_input": "2024-07-11T23:25:55.749236Z", + "iopub.status.busy": "2024-07-11T23:25:55.748915Z", + "iopub.status.idle": "2024-07-11T23:25:55.768624Z", + "shell.execute_reply": "2024-07-11T23:25:55.768059Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "74c24ad981f147efb352816e9dafec11", + "model_id": "0d144f049a4248e783cbe9b8a2127d17", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.154841Z", - "iopub.status.busy": "2024-07-09T06:22:35.154670Z", - "iopub.status.idle": "2024-07-09T06:22:35.169134Z", - "shell.execute_reply": "2024-07-09T06:22:35.168685Z" + "iopub.execute_input": "2024-07-11T23:25:55.770734Z", + "iopub.status.busy": "2024-07-11T23:25:55.770391Z", + "iopub.status.idle": "2024-07-11T23:25:55.785356Z", + "shell.execute_reply": "2024-07-11T23:25:55.784918Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.170991Z", - "iopub.status.busy": "2024-07-09T06:22:35.170807Z", - "iopub.status.idle": "2024-07-09T06:22:35.176614Z", - "shell.execute_reply": "2024-07-09T06:22:35.176098Z" + "iopub.execute_input": "2024-07-11T23:25:55.787449Z", + "iopub.status.busy": "2024-07-11T23:25:55.787109Z", + "iopub.status.idle": "2024-07-11T23:25:55.792918Z", + "shell.execute_reply": "2024-07-11T23:25:55.792449Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:35.178580Z", - "iopub.status.busy": "2024-07-09T06:22:35.178328Z", - "iopub.status.idle": "2024-07-09T06:22:35.196553Z", - "shell.execute_reply": "2024-07-09T06:22:35.196112Z" + "iopub.execute_input": "2024-07-11T23:25:55.794877Z", + "iopub.status.busy": "2024-07-11T23:25:55.794580Z", + "iopub.status.idle": "2024-07-11T23:25:55.812791Z", + "shell.execute_reply": "2024-07-11T23:25:55.812236Z" } }, "outputs": [ @@ -1447,94 +1447,98 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00d78c11cb114efca0b0c49d7e0cb9be": { + "0d144f049a4248e783cbe9b8a2127d17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2ea8b852d4bd491d912ad2bfb3da04c5", + "IPY_MODEL_20b1eb2bb5e0415089cb29f663c789d1", + "IPY_MODEL_7cd2b2bf3cd14f1fbc37d568cfa58eb3" + ], + "layout": "IPY_MODEL_51fb4ddf8ca941a0b67860bfd69f86c8", + "tabbable": null, + "tooltip": null } }, - "110ab4d837414033a320250c8a01f402": { - "model_module": "@jupyter-widgets/base", + "20b1eb2bb5e0415089cb29f663c789d1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af258bf41f5342f888fdb32cb9b938ed", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae4c2204ef1945fb8626a471115a413d", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "1b9a95ea9570469c89df3c913719453d": { + "2ea8b852d4bd491d912ad2bfb3da04c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3da531c66e024be4827f831a6b333709", + "placeholder": "​", + "style": "IPY_MODEL_93265ac5a64346f8967e553181f21233", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "314df2647cd1496680d45591fdb4f320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "39e9da6fa70e44bea4cd6db6fbb2a1b9": { + "3da531c66e024be4827f831a6b333709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1587,7 +1591,7 @@ "width": null } }, - "4f663e6b17ca4c42bf50adc567d16ba7": { + "51fb4ddf8ca941a0b67860bfd69f86c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1640,7 +1644,7 @@ "width": null } }, - "53f5526f4be149a09e57d6eddb464297": { + "55b50da0d75848099545eedfff230300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1693,31 +1697,7 @@ "width": null } }, - "74c24ad981f147efb352816e9dafec11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", - "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", - "IPY_MODEL_9c62609186764ad4b5447a66b1294674" - ], - "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", - "tabbable": null, - "tooltip": null - } - }, - "9c62609186764ad4b5447a66b1294674": { + "7cd2b2bf3cd14f1fbc37d568cfa58eb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1732,79 +1712,99 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", + "layout": "IPY_MODEL_55b50da0d75848099545eedfff230300", "placeholder": "​", - "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", + "style": "IPY_MODEL_314df2647cd1496680d45591fdb4f320", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 13749.43 examples/s]" + "value": " 132/132 [00:00<00:00, 12863.57 examples/s]" } }, - "cb3e52e8971843afb00d0a4e915483f5": { + "93265ac5a64346f8967e553181f21233": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", - "placeholder": "​", - "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ce349bf1dbe749ccb7ed3c31e8593c0e": { + "ae4c2204ef1945fb8626a471115a413d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f0a497561f9e46278d786855f5eaad3a": { - "model_module": "@jupyter-widgets/controls", + "af258bf41f5342f888fdb32cb9b938ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index ce137ebae..3563d4cb8 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:37.993129Z", - "iopub.status.busy": "2024-07-09T06:22:37.992951Z", - "iopub.status.idle": "2024-07-09T06:22:39.161512Z", - "shell.execute_reply": "2024-07-09T06:22:39.160977Z" + "iopub.execute_input": "2024-07-11T23:25:58.531286Z", + "iopub.status.busy": "2024-07-11T23:25:58.531095Z", + "iopub.status.idle": "2024-07-11T23:25:59.734561Z", + "shell.execute_reply": "2024-07-11T23:25:59.733895Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.163953Z", - "iopub.status.busy": "2024-07-09T06:22:39.163675Z", - "iopub.status.idle": "2024-07-09T06:22:39.167013Z", - "shell.execute_reply": "2024-07-09T06:22:39.166442Z" + "iopub.execute_input": "2024-07-11T23:25:59.737097Z", + "iopub.status.busy": "2024-07-11T23:25:59.736806Z", + "iopub.status.idle": "2024-07-11T23:25:59.739983Z", + "shell.execute_reply": "2024-07-11T23:25:59.739545Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.169075Z", - "iopub.status.busy": "2024-07-09T06:22:39.168891Z", - "iopub.status.idle": "2024-07-09T06:22:39.178038Z", - "shell.execute_reply": "2024-07-09T06:22:39.177537Z" + "iopub.execute_input": "2024-07-11T23:25:59.742067Z", + "iopub.status.busy": "2024-07-11T23:25:59.741767Z", + "iopub.status.idle": "2024-07-11T23:25:59.750717Z", + "shell.execute_reply": "2024-07-11T23:25:59.750180Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.180209Z", - "iopub.status.busy": "2024-07-09T06:22:39.179770Z", - "iopub.status.idle": "2024-07-09T06:22:39.185024Z", - "shell.execute_reply": "2024-07-09T06:22:39.184472Z" + "iopub.execute_input": "2024-07-11T23:25:59.752754Z", + "iopub.status.busy": "2024-07-11T23:25:59.752413Z", + "iopub.status.idle": "2024-07-11T23:25:59.756997Z", + "shell.execute_reply": "2024-07-11T23:25:59.756573Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.187067Z", - "iopub.status.busy": "2024-07-09T06:22:39.186875Z", - "iopub.status.idle": "2024-07-09T06:22:39.372545Z", - "shell.execute_reply": "2024-07-09T06:22:39.372057Z" + "iopub.execute_input": "2024-07-11T23:25:59.759076Z", + "iopub.status.busy": "2024-07-11T23:25:59.758737Z", + "iopub.status.idle": "2024-07-11T23:25:59.943464Z", + "shell.execute_reply": "2024-07-11T23:25:59.942915Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.375070Z", - "iopub.status.busy": "2024-07-09T06:22:39.374695Z", - "iopub.status.idle": "2024-07-09T06:22:39.746103Z", - "shell.execute_reply": "2024-07-09T06:22:39.745532Z" + "iopub.execute_input": "2024-07-11T23:25:59.945888Z", + "iopub.status.busy": "2024-07-11T23:25:59.945518Z", + "iopub.status.idle": "2024-07-11T23:26:00.318175Z", + "shell.execute_reply": "2024-07-11T23:26:00.317554Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.748354Z", - "iopub.status.busy": "2024-07-09T06:22:39.747948Z", - "iopub.status.idle": "2024-07-09T06:22:39.750850Z", - "shell.execute_reply": "2024-07-09T06:22:39.750287Z" + "iopub.execute_input": "2024-07-11T23:26:00.320296Z", + "iopub.status.busy": "2024-07-11T23:26:00.320110Z", + "iopub.status.idle": "2024-07-11T23:26:00.322938Z", + "shell.execute_reply": "2024-07-11T23:26:00.322480Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.752967Z", - "iopub.status.busy": "2024-07-09T06:22:39.752650Z", - "iopub.status.idle": "2024-07-09T06:22:39.786581Z", - "shell.execute_reply": "2024-07-09T06:22:39.786005Z" + "iopub.execute_input": "2024-07-11T23:26:00.324829Z", + "iopub.status.busy": "2024-07-11T23:26:00.324653Z", + "iopub.status.idle": "2024-07-11T23:26:00.358330Z", + "shell.execute_reply": "2024-07-11T23:26:00.357877Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:39.788986Z", - "iopub.status.busy": "2024-07-09T06:22:39.788562Z", - "iopub.status.idle": "2024-07-09T06:22:41.833490Z", - "shell.execute_reply": "2024-07-09T06:22:41.832904Z" + "iopub.execute_input": "2024-07-11T23:26:00.360239Z", + "iopub.status.busy": "2024-07-11T23:26:00.360063Z", + "iopub.status.idle": "2024-07-11T23:26:02.511453Z", + "shell.execute_reply": "2024-07-11T23:26:02.510818Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.836099Z", - "iopub.status.busy": "2024-07-09T06:22:41.835607Z", - "iopub.status.idle": "2024-07-09T06:22:41.853902Z", - "shell.execute_reply": "2024-07-09T06:22:41.853447Z" + "iopub.execute_input": "2024-07-11T23:26:02.514072Z", + "iopub.status.busy": "2024-07-11T23:26:02.513646Z", + "iopub.status.idle": "2024-07-11T23:26:02.532654Z", + "shell.execute_reply": "2024-07-11T23:26:02.532185Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.855942Z", - "iopub.status.busy": "2024-07-09T06:22:41.855674Z", - "iopub.status.idle": "2024-07-09T06:22:41.862009Z", - "shell.execute_reply": "2024-07-09T06:22:41.861577Z" + "iopub.execute_input": "2024-07-11T23:26:02.534751Z", + "iopub.status.busy": "2024-07-11T23:26:02.534404Z", + "iopub.status.idle": "2024-07-11T23:26:02.540841Z", + "shell.execute_reply": "2024-07-11T23:26:02.540389Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.864048Z", - "iopub.status.busy": "2024-07-09T06:22:41.863746Z", - "iopub.status.idle": "2024-07-09T06:22:41.869497Z", - "shell.execute_reply": "2024-07-09T06:22:41.869049Z" + "iopub.execute_input": "2024-07-11T23:26:02.542864Z", + "iopub.status.busy": "2024-07-11T23:26:02.542525Z", + "iopub.status.idle": "2024-07-11T23:26:02.548374Z", + "shell.execute_reply": "2024-07-11T23:26:02.547908Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.871525Z", - "iopub.status.busy": "2024-07-09T06:22:41.871197Z", - "iopub.status.idle": "2024-07-09T06:22:41.881508Z", - "shell.execute_reply": "2024-07-09T06:22:41.881073Z" + "iopub.execute_input": "2024-07-11T23:26:02.550375Z", + "iopub.status.busy": "2024-07-11T23:26:02.550074Z", + "iopub.status.idle": "2024-07-11T23:26:02.560543Z", + "shell.execute_reply": "2024-07-11T23:26:02.559978Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.883405Z", - "iopub.status.busy": "2024-07-09T06:22:41.883229Z", - "iopub.status.idle": "2024-07-09T06:22:41.892315Z", - "shell.execute_reply": "2024-07-09T06:22:41.891876Z" + "iopub.execute_input": "2024-07-11T23:26:02.562596Z", + "iopub.status.busy": "2024-07-11T23:26:02.562280Z", + "iopub.status.idle": "2024-07-11T23:26:02.571253Z", + "shell.execute_reply": "2024-07-11T23:26:02.570704Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.894287Z", - "iopub.status.busy": "2024-07-09T06:22:41.894105Z", - "iopub.status.idle": "2024-07-09T06:22:41.900998Z", - "shell.execute_reply": "2024-07-09T06:22:41.900471Z" + "iopub.execute_input": "2024-07-11T23:26:02.573307Z", + "iopub.status.busy": "2024-07-11T23:26:02.572968Z", + "iopub.status.idle": "2024-07-11T23:26:02.579945Z", + "shell.execute_reply": "2024-07-11T23:26:02.579485Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.903078Z", - "iopub.status.busy": "2024-07-09T06:22:41.902737Z", - "iopub.status.idle": "2024-07-09T06:22:41.912055Z", - "shell.execute_reply": "2024-07-09T06:22:41.911568Z" + "iopub.execute_input": "2024-07-11T23:26:02.581945Z", + "iopub.status.busy": "2024-07-11T23:26:02.581634Z", + "iopub.status.idle": "2024-07-11T23:26:02.590871Z", + "shell.execute_reply": "2024-07-11T23:26:02.590326Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:41.914091Z", - "iopub.status.busy": "2024-07-09T06:22:41.913764Z", - "iopub.status.idle": "2024-07-09T06:22:41.929676Z", - "shell.execute_reply": "2024-07-09T06:22:41.929121Z" + "iopub.execute_input": "2024-07-11T23:26:02.593005Z", + "iopub.status.busy": "2024-07-11T23:26:02.592652Z", + "iopub.status.idle": "2024-07-11T23:26:02.607769Z", + "shell.execute_reply": "2024-07-11T23:26:02.607327Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 957106402..78d524c61 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2059,35 +2059,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 7643450d8..80c19f468 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:44.582459Z", - "iopub.status.busy": "2024-07-09T06:22:44.582285Z", - "iopub.status.idle": "2024-07-09T06:22:47.462723Z", - "shell.execute_reply": "2024-07-09T06:22:47.462156Z" + "iopub.execute_input": "2024-07-11T23:26:05.380075Z", + "iopub.status.busy": "2024-07-11T23:26:05.379896Z", + "iopub.status.idle": "2024-07-11T23:26:08.376536Z", + "shell.execute_reply": "2024-07-11T23:26:08.375965Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:47.465496Z", - "iopub.status.busy": "2024-07-09T06:22:47.464992Z", - "iopub.status.idle": "2024-07-09T06:22:47.468609Z", - "shell.execute_reply": "2024-07-09T06:22:47.468171Z" + "iopub.execute_input": "2024-07-11T23:26:08.379263Z", + "iopub.status.busy": "2024-07-11T23:26:08.378783Z", + "iopub.status.idle": "2024-07-11T23:26:08.382282Z", + "shell.execute_reply": "2024-07-11T23:26:08.381814Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:47.470675Z", - "iopub.status.busy": "2024-07-09T06:22:47.470354Z", - "iopub.status.idle": "2024-07-09T06:22:59.043271Z", - "shell.execute_reply": "2024-07-09T06:22:59.042771Z" + "iopub.execute_input": "2024-07-11T23:26:08.384257Z", + "iopub.status.busy": "2024-07-11T23:26:08.384075Z", + "iopub.status.idle": "2024-07-11T23:26:20.506699Z", + "shell.execute_reply": "2024-07-11T23:26:20.506120Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06dcb12093be456cb352de6ce861659f", + "model_id": "8feed751446c42d6aaa2dbd4806dfb02", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "790aee9705fa42f79ce0f8850fc28992", + "model_id": "5c71a24e6e4a46e6b0476362d6f6a373", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "215e8fef035f4d37a36a704de452b760", + "model_id": "2431327b8b754969a6b108804f8ca832", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e74d0f623f774aa5a1554c10228f1654", + "model_id": "a4b03cc20f664072a2d629ca64828dfa", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f85257acca8547839184b5f056eac10e", + "model_id": "fb2d63ced790495d9043be01f6120f18", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9632dad724b4651afed5367d50e22c4", + "model_id": "494f520edd6643a6af2d134eb9f74191", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9b540e1a55a4d16ad1b5a90f594ee47", + "model_id": "94f045cbe27743848e23223a5e393ea1", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "22b9600afaf14805a96622049f592034", + "model_id": "a99e55aa41f14516be50bd70062d4f9d", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:59.045398Z", - "iopub.status.busy": "2024-07-09T06:22:59.045117Z", - "iopub.status.idle": "2024-07-09T06:22:59.048809Z", - "shell.execute_reply": "2024-07-09T06:22:59.048389Z" + "iopub.execute_input": "2024-07-11T23:26:20.509050Z", + "iopub.status.busy": "2024-07-11T23:26:20.508623Z", + "iopub.status.idle": "2024-07-11T23:26:20.512569Z", + "shell.execute_reply": "2024-07-11T23:26:20.512120Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:22:59.050786Z", - "iopub.status.busy": "2024-07-09T06:22:59.050475Z", - "iopub.status.idle": "2024-07-09T06:23:10.550360Z", - "shell.execute_reply": "2024-07-09T06:23:10.549830Z" + "iopub.execute_input": "2024-07-11T23:26:20.514763Z", + "iopub.status.busy": "2024-07-11T23:26:20.514332Z", + "iopub.status.idle": "2024-07-11T23:26:32.038620Z", + "shell.execute_reply": "2024-07-11T23:26:32.037916Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4dc3098204c343329173882a90c17240", + "model_id": "5b829a4dfc844fba9c4348d1339b4549", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:10.553016Z", - "iopub.status.busy": "2024-07-09T06:23:10.552718Z", - "iopub.status.idle": "2024-07-09T06:23:28.623727Z", - "shell.execute_reply": "2024-07-09T06:23:28.623090Z" + "iopub.execute_input": "2024-07-11T23:26:32.041262Z", + "iopub.status.busy": "2024-07-11T23:26:32.041016Z", + "iopub.status.idle": "2024-07-11T23:26:50.654873Z", + "shell.execute_reply": "2024-07-11T23:26:50.654222Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:28.626614Z", - "iopub.status.busy": "2024-07-09T06:23:28.626243Z", - "iopub.status.idle": "2024-07-09T06:23:28.631908Z", - "shell.execute_reply": "2024-07-09T06:23:28.631461Z" + "iopub.execute_input": "2024-07-11T23:26:50.657669Z", + "iopub.status.busy": "2024-07-11T23:26:50.657319Z", + "iopub.status.idle": "2024-07-11T23:26:50.662150Z", + "shell.execute_reply": "2024-07-11T23:26:50.661667Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:28.633766Z", - "iopub.status.busy": "2024-07-09T06:23:28.633587Z", - "iopub.status.idle": "2024-07-09T06:23:28.637822Z", - "shell.execute_reply": "2024-07-09T06:23:28.637289Z" + "iopub.execute_input": "2024-07-11T23:26:50.664017Z", + "iopub.status.busy": "2024-07-11T23:26:50.663833Z", + "iopub.status.idle": "2024-07-11T23:26:50.668098Z", + "shell.execute_reply": "2024-07-11T23:26:50.667542Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:28.640034Z", - "iopub.status.busy": "2024-07-09T06:23:28.639708Z", - "iopub.status.idle": "2024-07-09T06:23:28.648404Z", - "shell.execute_reply": "2024-07-09T06:23:28.647970Z" + "iopub.execute_input": "2024-07-11T23:26:50.670408Z", + "iopub.status.busy": "2024-07-11T23:26:50.669985Z", + "iopub.status.idle": "2024-07-11T23:26:50.678963Z", + "shell.execute_reply": "2024-07-11T23:26:50.678494Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:28.650474Z", - "iopub.status.busy": "2024-07-09T06:23:28.650156Z", - "iopub.status.idle": "2024-07-09T06:23:28.677896Z", - "shell.execute_reply": "2024-07-09T06:23:28.677458Z" + "iopub.execute_input": "2024-07-11T23:26:50.680864Z", + "iopub.status.busy": "2024-07-11T23:26:50.680690Z", + "iopub.status.idle": "2024-07-11T23:26:50.707691Z", + "shell.execute_reply": "2024-07-11T23:26:50.707097Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:23:28.679944Z", - "iopub.status.busy": "2024-07-09T06:23:28.679632Z", - "iopub.status.idle": "2024-07-09T06:24:00.730609Z", - "shell.execute_reply": "2024-07-09T06:24:00.729889Z" + "iopub.execute_input": "2024-07-11T23:26:50.709892Z", + "iopub.status.busy": "2024-07-11T23:26:50.709713Z", + "iopub.status.idle": "2024-07-11T23:27:24.793801Z", + "shell.execute_reply": "2024-07-11T23:27:24.793151Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.752\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.938\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.660\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.933\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2d1e313f048a4f3a8de23b028b96ac30", + "model_id": "b29a38c567754ff0bcc7fa7cb17fc671", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fc5c7705c8a411696033cba51b98414", + "model_id": "ac420dd4eaa64f0f9e30fd199e80bc08", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.676\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.060\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.516\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.728\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2441a271713941f58f78b8fda33f4ac6", + "model_id": "e9761a93b0b141bd91044f4c22289e6d", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e2096230a38431c8485c89adab185e8", + "model_id": "3a017f405d8f462babd0c1cf8efff052", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.705\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.057\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.374\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.815\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e85162633bd84b0c8065890dd355820b", + "model_id": "f41398ae64bc4316a9315c7c675f66bc", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b587a2728e9640d8a9ca1b92d99742fb", + "model_id": "e111fc31bef446589348e8914c03ecff", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:24:00.733259Z", - "iopub.status.busy": "2024-07-09T06:24:00.732863Z", - "iopub.status.idle": "2024-07-09T06:24:00.747461Z", - "shell.execute_reply": "2024-07-09T06:24:00.746842Z" + "iopub.execute_input": "2024-07-11T23:27:24.796598Z", + "iopub.status.busy": "2024-07-11T23:27:24.796110Z", + "iopub.status.idle": "2024-07-11T23:27:24.810691Z", + "shell.execute_reply": "2024-07-11T23:27:24.810247Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:24:00.750028Z", - "iopub.status.busy": "2024-07-09T06:24:00.749413Z", - "iopub.status.idle": "2024-07-09T06:24:01.220584Z", - "shell.execute_reply": "2024-07-09T06:24:01.220037Z" + "iopub.execute_input": "2024-07-11T23:27:24.812874Z", + "iopub.status.busy": "2024-07-11T23:27:24.812482Z", + "iopub.status.idle": "2024-07-11T23:27:25.290716Z", + "shell.execute_reply": "2024-07-11T23:27:25.290073Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:24:01.222996Z", - "iopub.status.busy": "2024-07-09T06:24:01.222634Z", - "iopub.status.idle": "2024-07-09T06:25:37.104449Z", - "shell.execute_reply": "2024-07-09T06:25:37.103860Z" + "iopub.execute_input": "2024-07-11T23:27:25.293269Z", + "iopub.status.busy": "2024-07-11T23:27:25.293082Z", + "iopub.status.idle": "2024-07-11T23:29:03.814145Z", + "shell.execute_reply": "2024-07-11T23:29:03.813464Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6a90dd6a6a2443a98bde0d45de0efdde", + "model_id": "3292f4de5dcb4c529c425ad60505b030", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:37.106884Z", - "iopub.status.busy": "2024-07-09T06:25:37.106446Z", - "iopub.status.idle": "2024-07-09T06:25:37.555548Z", - "shell.execute_reply": "2024-07-09T06:25:37.554986Z" + "iopub.execute_input": "2024-07-11T23:29:03.816541Z", + "iopub.status.busy": "2024-07-11T23:29:03.816157Z", + "iopub.status.idle": "2024-07-11T23:29:04.268371Z", + "shell.execute_reply": "2024-07-11T23:29:04.267794Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:37.558429Z", - "iopub.status.busy": "2024-07-09T06:25:37.557965Z", - "iopub.status.idle": "2024-07-09T06:25:37.620886Z", - "shell.execute_reply": "2024-07-09T06:25:37.620404Z" + "iopub.execute_input": "2024-07-11T23:29:04.271270Z", + "iopub.status.busy": "2024-07-11T23:29:04.270735Z", + "iopub.status.idle": "2024-07-11T23:29:04.333577Z", + "shell.execute_reply": "2024-07-11T23:29:04.333021Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:37.623179Z", - "iopub.status.busy": "2024-07-09T06:25:37.622863Z", - "iopub.status.idle": "2024-07-09T06:25:37.632155Z", - "shell.execute_reply": "2024-07-09T06:25:37.631723Z" + "iopub.execute_input": "2024-07-11T23:29:04.335624Z", + "iopub.status.busy": "2024-07-11T23:29:04.335441Z", + "iopub.status.idle": "2024-07-11T23:29:04.344118Z", + "shell.execute_reply": "2024-07-11T23:29:04.343655Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:37.634200Z", - "iopub.status.busy": "2024-07-09T06:25:37.633914Z", - "iopub.status.idle": "2024-07-09T06:25:37.638563Z", - "shell.execute_reply": "2024-07-09T06:25:37.638106Z" + "iopub.execute_input": "2024-07-11T23:29:04.345967Z", + "iopub.status.busy": "2024-07-11T23:29:04.345792Z", + "iopub.status.idle": "2024-07-11T23:29:04.350504Z", + "shell.execute_reply": "2024-07-11T23:29:04.349929Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:37.640623Z", - "iopub.status.busy": "2024-07-09T06:25:37.640325Z", - "iopub.status.idle": "2024-07-09T06:25:38.149293Z", - "shell.execute_reply": "2024-07-09T06:25:38.148744Z" + "iopub.execute_input": "2024-07-11T23:29:04.352504Z", + "iopub.status.busy": "2024-07-11T23:29:04.352324Z", + "iopub.status.idle": "2024-07-11T23:29:04.863489Z", + "shell.execute_reply": "2024-07-11T23:29:04.862847Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.151396Z", - "iopub.status.busy": "2024-07-09T06:25:38.151125Z", - "iopub.status.idle": "2024-07-09T06:25:38.159704Z", - "shell.execute_reply": "2024-07-09T06:25:38.159246Z" + "iopub.execute_input": "2024-07-11T23:29:04.865954Z", + "iopub.status.busy": "2024-07-11T23:29:04.865583Z", + "iopub.status.idle": "2024-07-11T23:29:04.874354Z", + "shell.execute_reply": "2024-07-11T23:29:04.873764Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.161796Z", - "iopub.status.busy": "2024-07-09T06:25:38.161530Z", - "iopub.status.idle": "2024-07-09T06:25:38.168634Z", - "shell.execute_reply": "2024-07-09T06:25:38.168169Z" + "iopub.execute_input": "2024-07-11T23:29:04.876589Z", + "iopub.status.busy": "2024-07-11T23:29:04.876314Z", + "iopub.status.idle": "2024-07-11T23:29:04.883493Z", + "shell.execute_reply": "2024-07-11T23:29:04.883006Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.170647Z", - "iopub.status.busy": "2024-07-09T06:25:38.170331Z", - "iopub.status.idle": "2024-07-09T06:25:38.896076Z", - "shell.execute_reply": "2024-07-09T06:25:38.895490Z" + "iopub.execute_input": "2024-07-11T23:29:04.885330Z", + "iopub.status.busy": "2024-07-11T23:29:04.885154Z", + "iopub.status.idle": "2024-07-11T23:29:05.651852Z", + "shell.execute_reply": "2024-07-11T23:29:05.651212Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.898304Z", - "iopub.status.busy": "2024-07-09T06:25:38.897893Z", - "iopub.status.idle": "2024-07-09T06:25:38.913887Z", - "shell.execute_reply": "2024-07-09T06:25:38.913315Z" + "iopub.execute_input": "2024-07-11T23:29:05.654391Z", + "iopub.status.busy": "2024-07-11T23:29:05.654029Z", + "iopub.status.idle": "2024-07-11T23:29:05.669561Z", + "shell.execute_reply": "2024-07-11T23:29:05.669062Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.916427Z", - "iopub.status.busy": "2024-07-09T06:25:38.916013Z", - "iopub.status.idle": "2024-07-09T06:25:38.921757Z", - "shell.execute_reply": "2024-07-09T06:25:38.921224Z" + "iopub.execute_input": "2024-07-11T23:29:05.671780Z", + "iopub.status.busy": "2024-07-11T23:29:05.671432Z", + "iopub.status.idle": "2024-07-11T23:29:05.676868Z", + "shell.execute_reply": "2024-07-11T23:29:05.676426Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:38.924037Z", - "iopub.status.busy": "2024-07-09T06:25:38.923722Z", - "iopub.status.idle": "2024-07-09T06:25:39.389398Z", - "shell.execute_reply": "2024-07-09T06:25:39.388872Z" + "iopub.execute_input": "2024-07-11T23:29:05.678917Z", + "iopub.status.busy": "2024-07-11T23:29:05.678586Z", + "iopub.status.idle": "2024-07-11T23:29:06.082761Z", + "shell.execute_reply": "2024-07-11T23:29:06.081751Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.392016Z", - "iopub.status.busy": "2024-07-09T06:25:39.391689Z", - "iopub.status.idle": "2024-07-09T06:25:39.400809Z", - "shell.execute_reply": "2024-07-09T06:25:39.400322Z" + "iopub.execute_input": "2024-07-11T23:29:06.085211Z", + "iopub.status.busy": "2024-07-11T23:29:06.085014Z", + "iopub.status.idle": "2024-07-11T23:29:06.094194Z", + "shell.execute_reply": "2024-07-11T23:29:06.093492Z" } }, "outputs": [ @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.403252Z", - "iopub.status.busy": "2024-07-09T06:25:39.402932Z", - "iopub.status.idle": "2024-07-09T06:25:39.408523Z", - "shell.execute_reply": "2024-07-09T06:25:39.408038Z" + "iopub.execute_input": "2024-07-11T23:29:06.096454Z", + "iopub.status.busy": "2024-07-11T23:29:06.096270Z", + "iopub.status.idle": "2024-07-11T23:29:06.101345Z", + "shell.execute_reply": "2024-07-11T23:29:06.100644Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.410787Z", - "iopub.status.busy": "2024-07-09T06:25:39.410472Z", - "iopub.status.idle": "2024-07-09T06:25:39.613099Z", - "shell.execute_reply": "2024-07-09T06:25:39.612513Z" + "iopub.execute_input": "2024-07-11T23:29:06.103539Z", + "iopub.status.busy": "2024-07-11T23:29:06.103360Z", + "iopub.status.idle": "2024-07-11T23:29:06.278507Z", + "shell.execute_reply": "2024-07-11T23:29:06.277809Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.615178Z", - "iopub.status.busy": "2024-07-09T06:25:39.615000Z", - "iopub.status.idle": "2024-07-09T06:25:39.623056Z", - "shell.execute_reply": "2024-07-09T06:25:39.622584Z" + "iopub.execute_input": "2024-07-11T23:29:06.281030Z", + "iopub.status.busy": "2024-07-11T23:29:06.280541Z", + "iopub.status.idle": "2024-07-11T23:29:06.288653Z", + "shell.execute_reply": "2024-07-11T23:29:06.288080Z" } }, "outputs": [ @@ -2446,47 +2446,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.624851Z", - "iopub.status.busy": "2024-07-09T06:25:39.624680Z", - "iopub.status.idle": "2024-07-09T06:25:39.818392Z", - "shell.execute_reply": "2024-07-09T06:25:39.817872Z" + "iopub.execute_input": "2024-07-11T23:29:06.290823Z", + "iopub.status.busy": "2024-07-11T23:29:06.290372Z", + "iopub.status.idle": "2024-07-11T23:29:06.483993Z", + "shell.execute_reply": "2024-07-11T23:29:06.483464Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:39.820461Z", - "iopub.status.busy": "2024-07-09T06:25:39.820284Z", - "iopub.status.idle": "2024-07-09T06:25:39.824833Z", - "shell.execute_reply": "2024-07-09T06:25:39.824377Z" + "iopub.execute_input": "2024-07-11T23:29:06.486462Z", + "iopub.status.busy": "2024-07-11T23:29:06.485967Z", + "iopub.status.idle": "2024-07-11T23:29:06.490704Z", + "shell.execute_reply": "2024-07-11T23:29:06.490131Z" }, "nbsphinx": "hidden" }, @@ -2590,43 +2590,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0048ce4822394612977d54522f371396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "03645e2db82a48cea591a8ecc43409ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "048da9b24b0844fdaaadce1da85d3915": { + "016f1eb0d49f431f8154dfc281b7eed0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2679,30 +2643,67 @@ "width": null } }, - "04cca25384c24b1c94d911de385adc2e": { + "024fbf1daee14ad2b3db969d2d31abe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "041d7c77246e4e6d865dc5c76281a0e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0528e5ed9e1245b09aaa992f72e251f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", - "placeholder": "​", - "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "layout": "IPY_MODEL_6f48bc417ac74a4caa8d7301b5e9d132", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f14e3767a494d52b3a4aa39ab45c2ac", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 } }, - "0640dc756fe54e39ba89546a15f279be": { + "05910fb228344f99b6fb2421fcb03eda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2720,31 +2721,30 @@ "text_color": null } }, - "06dcb12093be456cb352de6ce861659f": { + "068798076ab44c168b827d553cc68eaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", - "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", - "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" - ], - "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1b19d1d5a2204a46a63183a7ae4ad67a", + "placeholder": "​", + "style": "IPY_MODEL_b35ea1dfe6c9484a867f70cf435d0af4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "07de4e87697443a892880c15d1e511c6": { + "07278c0a2c4f4efaa18e011beb526122": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2797,23 +2797,33 @@ "width": null } }, - "086f6f5b94bf449da8bf7c1157f5c8a3": { + "09702eab3cb44acfbe4f11faf746f8a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_664417f8c9824aff8302f2bd2c3166eb", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f428e3dd24eb47a5957a9a52dc7d490a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "0a5df6da0ddb43b7937c82e97c6d8d54": { + "0a539e37aeba424fb8cd19012c58c191": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2866,7 +2876,7 @@ "width": null } }, - "0b18d70977e84a5b881906cb08d32a0b": { + "0d41a847afc144efa3f4df4a63f7feae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2884,7 +2894,23 @@ "text_color": null } }, - "0b3fb420b49940f589e153c0d5c3fdec": { + "0f14e3767a494d52b3a4aa39ab45c2ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12031f62da1b434e9c0c3403f03003fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,48 +2963,7 @@ "width": null } }, - "0d1066339f76479d8d58e5ae35748f5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", - "placeholder": "​", - "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "13c0b9289c5e4e8f92a21c0307aae6db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "140978469fad46c2b6b98809eddb12e7": { + "1279f431179f4f75be94430543adf937": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,30 +3016,57 @@ "width": null } }, - "1524351aaa084a11ad505c11404bdbea": { + "12ad7eb3f7dc49e3b17fae9c08ecd71b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", - "placeholder": "​", - "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.34it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12b1d86563ac4fe2be7cf24414974919": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1423169506464d2fba04b318cc3d49db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "15c58bf8ec2c41c58fdc7ce58a27b6fd": { + "15a4b48b248c4b1e9f323f7942fac504": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3107,76 +3119,30 @@ "width": null } }, - "160801910dde40a3bc9f92bb4e901944": { - "model_module": "@jupyter-widgets/base", + "16c45a85bb494cb0b0d17b9f37c3ccb5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "19246b6d91f14aaa9f10d7cb83049531": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a539e37aeba424fb8cd19012c58c191", + "placeholder": "​", + "style": "IPY_MODEL_30e886288a3e4b4fbf16b912d6075334", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "19a410fe62c9469fbbfdb218f3a51fc8": { + "1a97309cf5c04d2cb1c2413785fee022": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3191,49 +3157,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", + "layout": "IPY_MODEL_12031f62da1b434e9c0c3403f03003fe", "placeholder": "​", - "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", + "style": "IPY_MODEL_aef2eac0f01e45e5935b1fd1e35927a7", "tabbable": null, "tooltip": null, - "value": " 4/4 [00:00<00:00, 1277.68it/s]" - } - }, - "1a69c5c720624a26a9ef7b1cf11811fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/60000 [00:07<00:00, 8658.44 examples/s]" } }, - "1a70726215b842018678da6d06100009": { + "1b172141357248b38823f60e93db8028": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07278c0a2c4f4efaa18e011beb526122", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6ffc86136f284131bd5232af4109356e", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "1c78106bc0d64791b1920a0bba595880": { + "1b19d1d5a2204a46a63183a7ae4ad67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3286,7 +3244,7 @@ "width": null } }, - "1d30818e74e74811938c25e51402dba7": { + "1c66f852cc344a53861daa78eef80ac4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3339,111 +3297,7 @@ "width": null } }, - "1e43c58cbb0d4962913d5ebbcdf1554a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", - "placeholder": "​", - "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "1f62a32153e44d988bd8265c95d6522b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "209c42932bea4cfc866adc42d1e0bc34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "20a3b73248e646e4993c7afc88dc3bb7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", - "placeholder": "​", - "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "215e8fef035f4d37a36a704de452b760": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", - "IPY_MODEL_5bf0bcb594a046af91590125b69df952", - "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" - ], - "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", - "tabbable": null, - "tooltip": null - } - }, - "2183a55cd7d345069c3ac605305b0edb": { + "1d3bad97d2e140858259c15ce675275c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3461,7 +3315,7 @@ "text_color": null } }, - "21e26b29d83741a0ac17ca8718fb5ef5": { + "2123725a1625491ab9fff799e36dba17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3514,7 +3368,30 @@ "width": null } }, - "2221768dfac3448cabb0bbf2bb0d5d7c": { + "21c3ea1797cb45c0adf22181cbb36cd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1279f431179f4f75be94430543adf937", + "placeholder": "​", + "style": "IPY_MODEL_74990505be2a4a70afbb4b4064fd294c", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 905kB/s]" + } + }, + "22f7d828fb304f5ba183d6cf424ec288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3567,7 +3444,7 @@ "width": null } }, - "22b9600afaf14805a96622049f592034": { + "2431327b8b754969a6b108804f8ca832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3582,39 +3459,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", - "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", - "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + "IPY_MODEL_3c1cfcd9c8b748f189861ce1261b9cb0", + "IPY_MODEL_979c1027824541ad8bd55b423cda60f0", + "IPY_MODEL_d4b1e6f30b00448bb7aded7c95574668" ], - "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "layout": "IPY_MODEL_c01405278baf4bdba44934ff23dd1bd1", "tabbable": null, "tooltip": null } }, - "2397a262e2ab4faaa19c65aadd199f4d": { - "model_module": "@jupyter-widgets/controls", + "252c74ac926949bca01f866ddfb93402": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", - "placeholder": "​", - "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.55it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "24133d82571542d193f42c0273b76a7d": { + "271d7e992cb94173aa35d87754411c6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3667,7 +3574,7 @@ "width": null } }, - "24343e388fcd48f38c917201d72dce78": { + "2bc56875cbd143b9a50e5501ca84394d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3685,102 +3592,59 @@ "text_color": null } }, - "2441a271713941f58f78b8fda33f4ac6": { + "2d510cb5255c4d4bb4c84a7b07e5986a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_49f26873e5144310b3a59d54e3402106", - "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", - "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" - ], - "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", - "tabbable": null, - "tooltip": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a265ceea88ae41879cf17e37402d8c12", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8fdd228ffdc24801aabe411eff39c5b9", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "273c6aaed1d14c19893916ddb87297a8": { + "2f7281d7325640838be06198153b490c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2a8e473785f54b5380a3af0bd5ee8ec5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_848175c647e541858846d644d9862708", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b7c46fdef0164329ac3e7125fb1a3810", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2b0a6e80cee24c8d92776690977c796c": { + "30e886288a3e4b4fbf16b912d6075334": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3798,7 +3662,7 @@ "text_color": null } }, - "2d1e313f048a4f3a8de23b028b96ac30": { + "3292f4de5dcb4c529c425ad60505b030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3813,16 +3677,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f01a831193cb480fa8538ccac1625826", - "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", - "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + "IPY_MODEL_342849c102f84b659a25c804774bf20a", + "IPY_MODEL_935acf77ea1341eaa37c7d81df57f7a6", + "IPY_MODEL_847ad97df0984796acee3c7cbb78845f" ], - "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "layout": "IPY_MODEL_fb2d8e3fda1543c993ce88eebbd09da9", "tabbable": null, "tooltip": null } }, - "2eb285ef00d8424b940fcd52e171abf0": { + "342849c102f84b659a25c804774bf20a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58f0ecb2ab4f40928bade2631f1d4e42", + "placeholder": "​", + "style": "IPY_MODEL_9793e9af67a04e4681b8db74cdf4ce03", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "34bd3f36d0f24a94bad3ba55bd3d0fb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3875,31 +3762,7 @@ "width": null } }, - "2fc5c7705c8a411696033cba51b98414": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_380f5576d14c4aa3957661b21a817720", - "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", - "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" - ], - "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", - "tabbable": null, - "tooltip": null - } - }, - "3352d2afb83f411eb34ef57cd4914610": { + "356441d6354d47c4b2689907d58781bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3952,7 +3815,7 @@ "width": null } }, - "336fcd5623114b3099304ef7c8d0fd99": { + "366c095618c14b9488fb458b3c3fbc42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3970,7 +3833,7 @@ "text_color": null } }, - "3382045b67e54a7092879295b3f663f8": { + "3727b797cbb14095b33538fc6339d83d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4023,46 +3886,31 @@ "width": null } }, - "345c5ca93fa94badbbf86dcc2fde77a6": { + "3a017f405d8f462babd0c1cf8efff052": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", - "placeholder": "​", - "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba2572654c6f4be7b70ade5b31c3a926", + "IPY_MODEL_912e7d110e334e919b6827334ee5f2d0", + "IPY_MODEL_9eb6842cc53548818b04c897c4d757d2" + ], + "layout": "IPY_MODEL_7886841afef14bdcacd0e4af4249f9fd", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.26it/s]" - } - }, - "36e9f11e672e4c928d6b86537f21d20f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "380f5576d14c4aa3957661b21a817720": { + "3af7fd032af047acba161cd73629c9b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4077,33 +3925,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", + "layout": "IPY_MODEL_be423c827bce42888c6733e74c7e56e8", "placeholder": "​", - "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", + "style": "IPY_MODEL_800cb0bfb4804e4f830060803d83164b", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "3956333acd4649dd8a66f905633d9a1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 64.66it/s]" } }, - "3a15e0a1dbb8487daf29b7db56d34511": { + "3bd8c12086754778a39426082fb4c712": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4156,7 +3986,7 @@ "width": null } }, - "3a97aab207204e0fb9a0b492587021ad": { + "3c1cfcd9c8b748f189861ce1261b9cb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4171,83 +4001,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", + "layout": "IPY_MODEL_58afc3780d814006861020d5cf64d0e0", "placeholder": "​", - "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", + "style": "IPY_MODEL_2bc56875cbd143b9a50e5501ca84394d", "tabbable": null, "tooltip": null, "value": "Downloading data: 100%" } }, - "3c579cf673fd400b97b03f32b9b95e1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3cf5000751a1413faba426291a215dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "3e2096230a38431c8485c89adab185e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", - "IPY_MODEL_dde263477419437a9af2ca03171dadcd", - "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" - ], - "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", - "tabbable": null, - "tooltip": null - } - }, - "3e9e0a7872664289907ea9b2a0c0f428": { + "3e67f3028ad1448c9372955552f7e42f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4300,30 +4062,7 @@ "width": null } }, - "3f09c19718b949a48059dec191d9df88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", - "placeholder": "​", - "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" - } - }, - "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "3fa1ce5ef68a415084e6e086c80d5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4376,23 +4115,41 @@ "width": null } }, - "3faa0e46f82e4e81b929be6c700311ef": { + "40f91204cb8f47288cba8ce54ad34122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44071e6b8c4a414784a2a417f0cef266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "408df73b367a48808418e0ac16815aef": { + "4426a498f2b9412891a930b9471e91cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4445,7 +4202,7 @@ "width": null } }, - "436dcfd1d6524d58997ebd20abd27ac3": { + "46cfd6f189cc4f07b2b2af64de8cbb06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4498,152 +4255,7 @@ "width": null } }, - "440697a08c6346efa46be2fb03bac8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4586a50b001c47b39290a335d19b949d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a70726215b842018678da6d06100009", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "4803cfdca0f84916a50f60b8c4611a48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "48054868536d4802a306884dbdf93ced": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4886dc2baffe47ecb690143c953f17a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", - "placeholder": "​", - "style": "IPY_MODEL_0048ce4822394612977d54522f371396", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" - } - }, - "49f26873e5144310b3a59d54e3402106": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", - "placeholder": "​", - "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "4d61ebc6154b44ea91518cfb38cf00b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", - "placeholder": "​", - "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" - } - }, - "4dc3098204c343329173882a90c17240": { + "494f520edd6643a6af2d134eb9f74191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4658,16 +4270,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", - "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", - "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + "IPY_MODEL_a07f036423be4569aadef006b5a4249a", + "IPY_MODEL_cbd94a256dec4e5481adfcd29f1febef", + "IPY_MODEL_21c3ea1797cb45c0adf22181cbb36cd6" ], - "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "layout": "IPY_MODEL_8c0d18e3209f4b6aa0ba48cb242c72c5", "tabbable": null, "tooltip": null } }, - "508d1420c3244c5c83b9ed16155ada6e": { + "4a664740c44d4888bd592863ec449cda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4720,7 +4332,43 @@ "width": null } }, - "512f0fdef9fd429cad8c5f4ed2059739": { + "4a7f0e737fd143499585745cf4b7998d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4ad9b300f0984f42b357aa5bd08c0652": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b84e2df5a2d4d578c1505f884fe5ec0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4773,33 +4421,89 @@ "width": null } }, - "51598d19ee6b4333a63b1d6da5fa14e0": { + "4e121e737f3b473e816b1dff94dda3a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", + "layout": "IPY_MODEL_e0ba2cdd12b047a9b432e07b8392d868", + "placeholder": "​", + "style": "IPY_MODEL_50a57d227ac3419fa15d56ba898680f9", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 40/40 [00:00<00:00, 61.75it/s]" + } + }, + "4eeccbea00404c6a85522a8c6f6fe80f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc97a95f31ef435d8eb93a17114e71b9", + "placeholder": "​", + "style": "IPY_MODEL_366c095618c14b9488fb458b3c3fbc42", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "50a57d227ac3419fa15d56ba898680f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "50c5f1c85c3f4ca680697dbe2009569b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "517e9a88dd474cac8c7f7723d261a5fe": { + "548235e599424738a67de3f79cfb7b70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4852,7 +4556,7 @@ "width": null } }, - "5522e860260648818409cb45e8e8fe97": { + "5611f48bfe5649669d6cf95001a05bbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4867,41 +4571,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "layout": "IPY_MODEL_dea1d9a6979f4894972e169fdc8b3ca2", "placeholder": "​", - "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "style": "IPY_MODEL_4a7f0e737fd143499585745cf4b7998d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + "value": "Downloading data: 100%" } }, - "5789650eb64d4dbab1f8c667a5fd4cf6": { + "584eaeb79032435f9251cdf0ecff372e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "layout": "IPY_MODEL_22f7d828fb304f5ba183d6cf424ec288", + "placeholder": "​", + "style": "IPY_MODEL_7d3b6d75a33b4f769e59b15a547942c5", "tabbable": null, "tooltip": null, - "value": 5148.0 + "value": "Generating train split: 100%" + } + }, + "58847b2de41a4bcd9199eddbc7aaf2b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ab928b3e1ca45e4bd34352dc7b8267e", + "placeholder": "​", + "style": "IPY_MODEL_e231f7427a77418b8220b39132ec4fc5", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "59346cab1ea9483584b6020a911d0be8": { + "58afc3780d814006861020d5cf64d0e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4954,74 +4678,7 @@ "width": null } }, - "5970145c544541c3a0c064690e3b8bc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", - "placeholder": "​", - "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5a7bae3cefc94a02b58e9ad0e52aacfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5bf0bcb594a046af91590125b69df952": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "5d4e96503b8040e196dd68f00001b30a": { + "58f0ecb2ab4f40928bade2631f1d4e42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5074,23 +4731,96 @@ "width": null } }, - "5dcfa0777e6540998053e4a29b29b806": { + "5ad43172c3614811b3be77c668f4260b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b829a4dfc844fba9c4348d1339b4549": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68833ce8d6684edda0d3c66f916b5c52", + "IPY_MODEL_f2f9e0d3456a47608e8a1ac91e8ed935", + "IPY_MODEL_7b240842aa27448ea8f19fc7d064b1eb" + ], + "layout": "IPY_MODEL_b417b89d5465454dbff9b438a2bb83b3", + "tabbable": null, + "tooltip": null + } + }, + "5c71a24e6e4a46e6b0476362d6f6a373": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c86d7d6754f445c8053139fb8c501af", + "IPY_MODEL_7f40e2a1af1c4e9898f1070e72daa263", + "IPY_MODEL_b6829f808da441189739e1a1d12f33db" + ], + "layout": "IPY_MODEL_356441d6354d47c4b2689907d58781bc", + "tabbable": null, + "tooltip": null + } + }, + "5c86d7d6754f445c8053139fb8c501af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5373916cf394a83bf107ccba42ad98e", + "placeholder": "​", + "style": "IPY_MODEL_0d41a847afc144efa3f4df4a63f7feae", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "5e63e2472a434921a76445a39db78557": { + "6004d8783e4340c78f2c17615163809f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5143,69 +4873,7 @@ "width": null } }, - "5ea8be39dce64842a42fe020b19fc090": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "5edfca35fc1e45d7850bbe3d5ac2afb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "612489c1401e49c9bb846fee02bd9f6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6198d3b6f1a04ba4a34a5d2018c9b155": { + "6187fcfebb524fefa3300e2f931ce991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,7 +4926,7 @@ "width": null } }, - "634d98e457d644a884fc562b0b5d877b": { + "619d785cf16a4e7ab1e4b525ebb8d86d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5311,30 +4979,25 @@ "width": null } }, - "63ef519d04dc4bbd9c67f568f10d54d8": { + "632a67ce80d14619bf344f000fa764ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", - "placeholder": "​", - "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "664417f8c9824aff8302f2bd2c3166eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5387,7 +5050,30 @@ "width": null } }, - "67bcc9c1c8ee40d6910452f187311cd2": { + "68833ce8d6684edda0d3c66f916b5c52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1dad2b81ff94f19b1bd3b351f6eb7cb", + "placeholder": "​", + "style": "IPY_MODEL_12b1d86563ac4fe2be7cf24414974919", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "6934e24734464b1786dabefa21e5fa56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5402,15 +5088,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "layout": "IPY_MODEL_016f1eb0d49f431f8154dfc281b7eed0", "placeholder": "​", - "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "style": "IPY_MODEL_e9e67c495e4b40cbabbec5b57e585be4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.84it/s]" + "value": "100%" } }, - "6968618e0c5047b4ace24b3be9d82b40": { + "6cd53e4e272f4fbc9ebfe9f12d13f648": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5426,17 +5112,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", - "max": 60000.0, + "layout": "IPY_MODEL_15a4b48b248c4b1e9f323f7942fac504", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", + "style": "IPY_MODEL_024fbf1daee14ad2b3db969d2d31abe4", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "6a0d54aeee9e43a2a6613a32708b583c": { + "6f48bc417ac74a4caa8d7301b5e9d132": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5489,49 +5175,41 @@ "width": null } }, - "6a37073f2b7d4c349bb87cb4719c587d": { + "6ffc86136f284131bd5232af4109356e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6a90dd6a6a2443a98bde0d45de0efdde": { + "74990505be2a4a70afbb4b4064fd294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", - "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", - "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" - ], - "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6c31a58fa1bb416c8d82c1038eab5edc": { + "7715770c45ec4a438b0704b5a3e57caa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5584,7 +5262,56 @@ "width": null } }, - "6cd8c1cd5f2447968f787deb71aa5bd8": { + "77fb0e31218f415f9b83fd1e7f033313": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f24f3a724da14aa4ad45979b4f8cae62", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4a49a7010fb49c2aadb9b4f5f220a30", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "783d27ea5d684732aa739d3bdc700756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4ef71b0de2d42ed8dc7ddb5625e5f0a", + "placeholder": "​", + "style": "IPY_MODEL_96b987bf97fe4387bd0308d045f0d171", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 76.3MB/s]" + } + }, + "7886841afef14bdcacd0e4af4249f9fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5637,23 +5364,7 @@ "width": null } }, - "6cdfc2ba48ab4f3a9a18b3b28c17641a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6f537f948c654bed919b428785993db0": { + "792a85e6758f4d2abda66bd7012cb17f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5706,7 +5417,7 @@ "width": null } }, - "6ff8decb43474cec8270bc1aef096a09": { + "79a12aba6ce74534a31585a1e5b7629a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5759,7 +5470,7 @@ "width": null } }, - "702d10c13f464c7f9144c3ec519a43d5": { + "7aae530ecab241d097d2628f6caf2dd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5774,15 +5485,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "layout": "IPY_MODEL_853320bb529648f68c8cc0c06a820896", "placeholder": "​", - "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "style": "IPY_MODEL_041d7c77246e4e6d865dc5c76281a0e9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.31MB/s]" } }, - "7175568282174c17aabd5b48f20140b2": { + "7ab928b3e1ca45e4bd34352dc7b8267e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5835,23 +5546,56 @@ "width": null } }, - "76b1d6ca14ca4c4d962e620e94507dff": { + "7b240842aa27448ea8f19fc7d064b1eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34bd3f36d0f24a94bad3ba55bd3d0fb8", + "placeholder": "​", + "style": "IPY_MODEL_40f91204cb8f47288cba8ce54ad34122", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7086.89 examples/s]" + } + }, + "7bec2361f70741578f0f2908e1a5e75f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1d124fad6cd4866b4e10abe1489a35d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aaf5fd6d0075441fb10fe6943d44a670", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "76d4d52a162a40a6aad6c51613675dd9": { + "7d3b6d75a33b4f769e59b15a547942c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5869,31 +5613,67 @@ "text_color": null } }, - "790aee9705fa42f79ce0f8850fc28992": { + "7f3c5e524a2a4b62923593cb7d0f0bcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f40e2a1af1c4e9898f1070e72daa263": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", - "IPY_MODEL_7dbb1c566226438c82092b5954494254", - "IPY_MODEL_91cb9b53980c47cd817c545014defd09" - ], - "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7715770c45ec4a438b0704b5a3e57caa", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44071e6b8c4a414784a2a417f0cef266", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 8845.0 + } + }, + "800cb0bfb4804e4f830060803d83164b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7c16646bae234611b7eed4f389c43a78": { + "81dc9c6d441b4bc3961e80692ab894fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5909,17 +5689,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "layout": "IPY_MODEL_3e67f3028ad1448c9372955552f7e42f", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "style": "IPY_MODEL_1423169506464d2fba04b318cc3d49db", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "7c7a25483bae4f619cfe4afba2815a1e": { + "83a18f69aed54dd5b886fc463424c44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "847ad97df0984796acee3c7cbb78845f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c4d0d567861b4daaa22849bd0c72c717", + "placeholder": "​", + "style": "IPY_MODEL_b306409d6d8c446483ac51cf9f4740b8", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:38<00:00, 1434.57it/s]" + } + }, + "848175c647e541858846d644d9862708": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5972,7 +5793,7 @@ "width": null } }, - "7d3d1214cad84f609b2ae65551813ff8": { + "84eac790167642ff9f714594b0eaaa8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5988,56 +5809,7 @@ "description_width": "" } }, - "7d81d5ebb400493cbbee965c4f1d82c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", - "placeholder": "​", - "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "7dbb1c566226438c82092b5954494254": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "7eb94f5f7a9746bfbb719504013c7326": { + "8529e85178ba4b9db501331d73389535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6090,106 +5862,8 @@ "width": null } }, - "801840cd919742fdbe5c2e8072b678cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "803df58ad8f246a7aa7af05b01bbbdd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "805ea7e6fe75453dab92e83969f8fe93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82fc78533dbc46d08a781919716d2335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", - "placeholder": "​", - "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "8381331e81c54cd79cb929ba488eab91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", - "placeholder": "​", - "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "85ab7c6aa7b341d69b9dc923ebdfa7c4": { - "model_module": "@jupyter-widgets/base", + "853320bb529648f68c8cc0c06a820896": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -6241,25 +5915,7 @@ "width": null } }, - "8689ad17b83c46c1ab297ec243208f64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8739c6ff8d994ba4be0b2287de3e0173": { + "8611e8b2533a4cefb2e310d479729c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6312,57 +5968,7 @@ "width": null } }, - "888473885a6149dd8b3df8549f631e20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8995f1250ad74a90bfc13b5eff00a2fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8acff64b052e48dc9e676ca2f1f20446": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8c5b91a2c962426c9d74153961b3f44d": { + "8859f4a2e8e2406581bd2251781b8058": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6377,15 +5983,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "layout": "IPY_MODEL_98730b67542b4f69b11359c7f1a64c70", "placeholder": "​", - "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "style": "IPY_MODEL_b52d3ef6a130403ab7171de161dbf9fa", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.73it/s]" + "value": "100%" } }, - "8df85e649d6248f69af1b8b2c06dc535": { + "896a6d7c46d8468b8cf89808bd7364ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6438,7 +6044,7 @@ "width": null } }, - "9141cd35031b41548bc5618a17448a0e": { + "8c0d18e3209f4b6aa0ba48cb242c72c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6491,30 +6097,63 @@ "width": null } }, - "91cb9b53980c47cd817c545014defd09": { + "8f962de488484a47ae549740480bf6d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8fdd228ffdc24801aabe411eff39c5b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8feed751446c42d6aaa2dbd4806dfb02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", - "placeholder": "​", - "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58847b2de41a4bcd9199eddbc7aaf2b5", + "IPY_MODEL_9f89f63d57814e728163a56953badaa4", + "IPY_MODEL_b7688d725a604d1daccbc087448952da" + ], + "layout": "IPY_MODEL_619d785cf16a4e7ab1e4b525ebb8d86d", "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" + "tooltip": null } }, - "9266dd3df82b430c88bf828066284aab": { + "9009b03fdd284be69f45fdc6d0f0376b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6532,83 +6171,145 @@ "text_color": null } }, - "94f306cf8ec749379c45de871b0e7b5e": { + "912e7d110e334e919b6827334ee5f2d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", - "placeholder": "​", - "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", + "layout": "IPY_MODEL_46cfd6f189cc4f07b2b2af64de8cbb06", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12ad7eb3f7dc49e3b17fae9c08ecd71b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "9954def9bc864f319508e65fe36fe98b": { - "model_module": "@jupyter-widgets/base", + "935acf77ea1341eaa37c7d81df57f7a6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4426a498f2b9412891a930b9471e91cf", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f962de488484a47ae549740480bf6d3", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "94f045cbe27743848e23223a5e393ea1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_584eaeb79032435f9251cdf0ecff372e", + "IPY_MODEL_09702eab3cb44acfbe4f11faf746f8a9", + "IPY_MODEL_1a97309cf5c04d2cb1c2413785fee022" + ], + "layout": "IPY_MODEL_3727b797cbb14095b33538fc6339d83d", + "tabbable": null, + "tooltip": null + } + }, + "96b987bf97fe4387bd0308d045f0d171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9793e9af67a04e4681b8db74cdf4ce03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "979c1027824541ad8bd55b423cda60f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3fa1ce5ef68a415084e6e086c80d5396", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84eac790167642ff9f714594b0eaaa8a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "9afd660dbeb04470a375320dc78c044c": { + "98730b67542b4f69b11359c7f1a64c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6661,7 +6362,7 @@ "width": null } }, - "9d2d50b86148485fb3e3884e2b2bbf34": { + "9a7583d8f246421fbeab990ddb98d10b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6714,23 +6415,97 @@ "width": null } }, - "9d6e31ccf4dd4aceabf442d6436fa02c": { + "9eb6842cc53548818b04c897c4d757d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfd628d2a7d849c08ab87079cb996a11", + "placeholder": "​", + "style": "IPY_MODEL_bb396f4d71c24420a755dbd1b2d4e0c5", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.07it/s]" + } + }, + "9f5a21d10cb04916a2ac3a5615e8f67c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9f89f63d57814e728163a56953badaa4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8611e8b2533a4cefb2e310d479729c4c", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a57c2248d68145d5befc304e11c6f87b", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "a07f036423be4569aadef006b5a4249a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f39fed2f6adb4a41833c4217a9579fb4", + "placeholder": "​", + "style": "IPY_MODEL_4ad9b300f0984f42b357aa5bd08c0652", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "9fa40d4368164452af5dec4576e541a7": { + "a1d124fad6cd4866b4e10abe1489a35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6783,7 +6558,7 @@ "width": null } }, - "a035588db59040fda6d47042d64418a5": { + "a265ceea88ae41879cf17e37402d8c12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6836,7 +6611,63 @@ "width": null } }, - "a07fabe6cd554c4281f06c189fb7f17a": { + "a4a49a7010fb49c2aadb9b4f5f220a30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4b03cc20f664072a2d629ca64828dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_068798076ab44c168b827d553cc68eaf", + "IPY_MODEL_0528e5ed9e1245b09aaa992f72e251f0", + "IPY_MODEL_7aae530ecab241d097d2628f6caf2dd6" + ], + "layout": "IPY_MODEL_a64f01237abd49808c56ca182f2ac1a0", + "tabbable": null, + "tooltip": null + } + }, + "a57c2248d68145d5befc304e11c6f87b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a64f01237abd49808c56ca182f2ac1a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6889,7 +6720,7 @@ "width": null } }, - "a7643f32743c4af6897aa249c9d0be2f": { + "a7ab4c6f0a0a4061a37620d7d5669e40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6942,46 +6773,100 @@ "width": null } }, - "a81bc963e07b4ca2a4b8dde6b946165b": { + "a7d3ac3f022843baac6a27b9c3a70626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a99e55aa41f14516be50bd70062d4f9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_face9b5af5d04b5b925545e0e3657b1d", + "IPY_MODEL_1b172141357248b38823f60e93db8028", + "IPY_MODEL_b8dcfa37b46843bb8eced502383d7a98" + ], + "layout": "IPY_MODEL_271d7e992cb94173aa35d87754411c6d", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "a859e810938d4055a256a729f8d389ce": { - "model_module": "@jupyter-widgets/base", + "aaf5fd6d0075441fb10fe6943d44a670": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ac420dd4eaa64f0f9e30fd199e80bc08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4eeccbea00404c6a85522a8c6f6fe80f", + "IPY_MODEL_6cd53e4e272f4fbc9ebfe9f12d13f648", + "IPY_MODEL_4e121e737f3b473e816b1dff94dda3a8" + ], + "layout": "IPY_MODEL_1c66f852cc344a53861daa78eef80ac4", + "tabbable": null, + "tooltip": null + } + }, + "ad32bc96480549fca6a2a10b0c1770ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, @@ -7021,7 +6906,7 @@ "width": null } }, - "a8ef0954dcca4870a833eda0e973e2a0": { + "ae73f1ffd0204f44b97f38a819470a40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7074,7 +6959,7 @@ "width": null } }, - "b0b21430f5b9446195933039b4632b6f": { + "aef2eac0f01e45e5935b1fd1e35927a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7092,7 +6977,7 @@ "text_color": null } }, - "b391fb64df85406aa863198b38de27eb": { + "b0107ac6a2bb49b9a38c702fb3000023": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7145,7 +7030,7 @@ "width": null } }, - "b587a2728e9640d8a9ca1b92d99742fb": { + "b29a38c567754ff0bcc7fa7cb17fc671": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7160,16 +7045,52 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", - "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", - "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + "IPY_MODEL_d2c107583b3446f1a71d596da3a8ea0a", + "IPY_MODEL_7bec2361f70741578f0f2908e1a5e75f", + "IPY_MODEL_e6a6b4d1379844fea66b5dbacdc8e014" ], - "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", + "layout": "IPY_MODEL_c322893705e344fab0a85ba8906b13d3", "tabbable": null, "tooltip": null } }, - "b6ef56fd6db2466da0273fed8540bed9": { + "b306409d6d8c446483ac51cf9f4740b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b35ea1dfe6c9484a867f70cf435d0af4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b417b89d5465454dbff9b438a2bb83b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7222,7 +7143,151 @@ "width": null } }, - "b75b2dcda03043c19e92f21428536acc": { + "b52d3ef6a130403ab7171de161dbf9fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b6829f808da441189739e1a1d12f33db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c7e12067d0ff47968ecd2026352a0ff1", + "placeholder": "​", + "style": "IPY_MODEL_9009b03fdd284be69f45fdc6d0f0376b", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.51MB/s]" + } + }, + "b7688d725a604d1daccbc087448952da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbef86f69c5948d385e6b5323dac5063", + "placeholder": "​", + "style": "IPY_MODEL_c707b8fae19748b2b7f04d1824f16160", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 629kB/s]" + } + }, + "b7c46fdef0164329ac3e7125fb1a3810": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8dcfa37b46843bb8eced502383d7a98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc4142d60d774dd2ad99ecd36603d468", + "placeholder": "​", + "style": "IPY_MODEL_50c5f1c85c3f4ca680697dbe2009569b", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8696.63 examples/s]" + } + }, + "ba2572654c6f4be7b70ade5b31c3a926": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a7583d8f246421fbeab990ddb98d10b", + "placeholder": "​", + "style": "IPY_MODEL_cbceec901578495581de6dedb04df05f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bb396f4d71c24420a755dbd1b2d4e0c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbef86f69c5948d385e6b5323dac5063": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7275,30 +7340,7 @@ "width": null } }, - "bbad93a33def4b229788aa20849516bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", - "placeholder": "​", - "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" - } - }, - "bc0cfa74fd9b478baa3776548265f98f": { + "be423c827bce42888c6733e74c7e56e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7351,25 +7393,7 @@ "width": null } }, - "bcdb721a85b449cd9eaf7819dc3550dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bf1ddb949cc4482ba290bb117f55ea82": { + "c01405278baf4bdba44934ff23dd1bd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7422,7 +7446,7 @@ "width": null } }, - "c1a678c9161a478e8d2196917db2dad8": { + "c322893705e344fab0a85ba8906b13d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7475,7 +7499,7 @@ "width": null } }, - "c25be99949354d9b93261eb01cd7f371": { + "c35a9e6279d64076af35d2f27bb3c1f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7491,52 +7515,26 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", - "max": 10000.0, + "layout": "IPY_MODEL_548235e599424738a67de3f79cfb7b70", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", + "style": "IPY_MODEL_e1204b89093c43c2bbef0f5bc7f321d5", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": 4422102.0 } }, - "c5e5cf9a26c0498cbbbc47b2b513a358": { - "model_module": "@jupyter-widgets/controls", + "c4d0d567861b4daaa22849bd0c72c717": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "c670dd237db04ca9a6e63e4d35cecdb4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -7580,7 +7578,25 @@ "width": null } }, - "cad3cae7738f47d5bf0f64d262df886c": { + "c707b8fae19748b2b7f04d1824f16160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c7e12067d0ff47968ecd2026352a0ff1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7633,7 +7649,7 @@ "width": null } }, - "cf54f0b1ea01482a8a59acd889c89c88": { + "cbceec901578495581de6dedb04df05f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7651,7 +7667,7 @@ "text_color": null } }, - "d2d061b68a1d431fa7d7e4082cdce543": { + "cbd94a256dec4e5481adfcd29f1febef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7667,35 +7683,110 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", - "max": 4422102.0, + "layout": "IPY_MODEL_79a12aba6ce74534a31585a1e5b7629a", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "style": "IPY_MODEL_7f3c5e524a2a4b62923593cb7d0f0bcd", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 5148.0 } }, - "d5a9c110896c475face60d8f33b9046c": { + "d08f5452094f47d08dbbe2a74ea43ec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e385b0671e9242808e2dd7641de8b129", + "IPY_MODEL_77fb0e31218f415f9b83fd1e7f033313", + "IPY_MODEL_e3fd6717d3014816b85eb2aea2670988" + ], + "layout": "IPY_MODEL_8529e85178ba4b9db501331d73389535", + "tabbable": null, + "tooltip": null + } + }, + "d2c107583b3446f1a71d596da3a8ea0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3bd8c12086754778a39426082fb4c712", + "placeholder": "​", + "style": "IPY_MODEL_d8e32fbbd29849109ebc95aa56af2320", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "d39985dd9bc642ef97f827f54bdaf785": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6004d8783e4340c78f2c17615163809f", + "placeholder": "​", + "style": "IPY_MODEL_5ad43172c3614811b3be77c668f4260b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 57.51it/s]" + } + }, + "d4b1e6f30b00448bb7aded7c95574668": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_792a85e6758f4d2abda66bd7012cb17f", + "placeholder": "​", + "style": "IPY_MODEL_1d3bad97d2e140858259c15ce675275c", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 119MB/s]" } }, - "d5aee2c22e48477b9f398e4ad03d9e34": { + "d5373916cf394a83bf107ccba42ad98e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7748,7 +7839,43 @@ "width": null } }, - "d83e3a00a6514bd7867d7bbbe2edf9f5": { + "d8e32fbbd29849109ebc95aa56af2320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc076da2e7464386b800e6b39aac828f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc97a95f31ef435d8eb93a17114e71b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7801,134 +7928,113 @@ "width": null } }, - "d9809a0d4cae4531973e9be895c2f08e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc05e2e419574abb89ddec85c5fcc81d": { - "model_module": "@jupyter-widgets/controls", + "dea1d9a6979f4894972e169fdc8b3ca2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dd31c22f11524a368f9eb1cd18be16f2": { - "model_module": "@jupyter-widgets/controls", + "dfd628d2a7d849c08ab87079cb996a11": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dde263477419437a9af2ca03171dadcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "de21539b01914576913a0b51a048b56f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", - "IPY_MODEL_4586a50b001c47b39290a335d19b949d", - "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" - ], - "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", - "tabbable": null, - "tooltip": null - } - }, - "df295f854e794a6dacc9fe1281979049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", - "placeholder": "​", - "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dfc1a61d6aca4ccca4fce1f46c9b016e": { + "e0ba2cdd12b047a9b432e07b8392d868": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7981,53 +8087,47 @@ "width": null } }, - "e31270e184e04922b08349a65c597693": { + "e111fc31bef446589348e8914c03ecff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", - "placeholder": "​", - "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16c45a85bb494cb0b0d17b9f37c3ccb5", + "IPY_MODEL_2d510cb5255c4d4bb4c84a7b07e5986a", + "IPY_MODEL_3af7fd032af047acba161cd73629c9b1" + ], + "layout": "IPY_MODEL_4a664740c44d4888bd592863ec449cda", "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" + "tooltip": null } }, - "e40aeb47074d4ecb90098770f4839946": { + "e1204b89093c43c2bbef0f5bc7f321d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", - "placeholder": "​", - "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e716b663d19a4155af04eb17f142c03c": { + "e231f7427a77418b8220b39132ec4fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8045,71 +8145,76 @@ "text_color": null } }, - "e73b799b5ff64804a99810863c6f0533": { + "e2c5a70587e24fab9bc9dfe7e0c32902": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6187fcfebb524fefa3300e2f931ce991", + "placeholder": "​", + "style": "IPY_MODEL_dc076da2e7464386b800e6b39aac828f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.21it/s]" } }, - "e74d0f623f774aa5a1554c10228f1654": { + "e385b0671e9242808e2dd7641de8b129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", - "IPY_MODEL_3cf5000751a1413faba426291a215dff", - "IPY_MODEL_e31270e184e04922b08349a65c597693" - ], - "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0107ac6a2bb49b9a38c702fb3000023", + "placeholder": "​", + "style": "IPY_MODEL_9f5a21d10cb04916a2ac3a5615e8f67c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "e85162633bd84b0c8065890dd355820b": { + "e3fd6717d3014816b85eb2aea2670988": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", - "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", - "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" - ], - "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_896a6d7c46d8468b8cf89808bd7364ba", + "placeholder": "​", + "style": "IPY_MODEL_05910fb228344f99b6fb2421fcb03eda", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1342.93it/s]" } }, - "e89a1ca0e0b746b0b9349efd7a426e3f": { + "e6a6b4d1379844fea66b5dbacdc8e014": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8124,15 +8229,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "layout": "IPY_MODEL_2123725a1625491ab9fff799e36dba17", "placeholder": "​", - "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "style": "IPY_MODEL_632a67ce80d14619bf344f000fa764ba", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 56.80it/s]" } }, - "e9632dad724b4651afed5367d50e22c4": { + "e9761a93b0b141bd91044f4c22289e6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8147,39 +8252,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", - "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", - "IPY_MODEL_df295f854e794a6dacc9fe1281979049" + "IPY_MODEL_6934e24734464b1786dabefa21e5fa56", + "IPY_MODEL_2f7281d7325640838be06198153b490c", + "IPY_MODEL_d39985dd9bc642ef97f827f54bdaf785" ], - "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", + "layout": "IPY_MODEL_ad32bc96480549fca6a2a10b0c1770ee", "tabbable": null, "tooltip": null } }, - "ea9573c409424d8a8bac15fff0b2b7d0": { + "e9e67c495e4b40cbabbec5b57e585be4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", - "placeholder": "​", - "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.52it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ec3cdb9f36064f85ac05856111e8b6e8": { + "f1dad2b81ff94f19b1bd3b351f6eb7cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8232,33 +8332,7 @@ "width": null } }, - "ed241b0fef474a6687201441ac67dd74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "ed9503bde9bc41e0912e3c94c2a43266": { + "f24f3a724da14aa4ad45979b4f8cae62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8311,30 +8385,33 @@ "width": null } }, - "f01a831193cb480fa8538ccac1625826": { + "f2f9e0d3456a47608e8a1ac91e8ed935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", - "placeholder": "​", - "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "layout": "IPY_MODEL_ae73f1ffd0204f44b97f38a819470a40", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a7d3ac3f022843baac6a27b9c3a70626", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 } }, - "f061db9de67c4b4c92b189d2906d780c": { + "f39fed2f6adb4a41833c4217a9579fb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8387,30 +8464,47 @@ "width": null } }, - "f512ea72b63a45489078a0f45d052131": { + "f41398ae64bc4316a9315c7c675f66bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", - "placeholder": "​", - "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8859f4a2e8e2406581bd2251781b8058", + "IPY_MODEL_81dc9c6d441b4bc3961e80692ab894fb", + "IPY_MODEL_e2c5a70587e24fab9bc9dfe7e0c32902" + ], + "layout": "IPY_MODEL_a7ab4c6f0a0a4061a37620d7d5669e40", "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" + "tooltip": null + } + }, + "f428e3dd24eb47a5957a9a52dc7d490a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f74501f2cd3a424a9fd976bc8add6990": { + "f4ef71b0de2d42ed8dc7ddb5625e5f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8463,31 +8557,7 @@ "width": null } }, - "f85257acca8547839184b5f056eac10e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", - "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", - "IPY_MODEL_f512ea72b63a45489078a0f45d052131" - ], - "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", - "tabbable": null, - "tooltip": null - } - }, - "f8b91b2b5043498da2181511d46d09c8": { + "face9b5af5d04b5b925545e0e3657b1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8502,15 +8572,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "layout": "IPY_MODEL_252c74ac926949bca01f866ddfb93402", "placeholder": "​", - "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "style": "IPY_MODEL_83a18f69aed54dd5b886fc463424c44d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + "value": "Generating test split: 100%" } }, - "f9b540e1a55a4d16ad1b5a90f594ee47": { + "fb2d63ced790495d9043be01f6120f18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8525,42 +8595,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_82fc78533dbc46d08a781919716d2335", - "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", - "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + "IPY_MODEL_5611f48bfe5649669d6cf95001a05bbf", + "IPY_MODEL_c35a9e6279d64076af35d2f27bb3c1f1", + "IPY_MODEL_783d27ea5d684732aa739d3bdc700756" ], - "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "layout": "IPY_MODEL_4b84e2df5a2d4d578c1505f884fe5ec0", "tabbable": null, "tooltip": null } }, - "fa1df74fd9f543a1bcb1d473ae793b1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "fa87a07117a74232955cb6e2e8b66aa9": { + "fb2d8e3fda1543c993ce88eebbd09da9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8613,25 +8657,7 @@ "width": null } }, - "fd5d6bff1fad4857abafef9b11b3dfe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fd9234c25dae4c37a35f1e4d52af48c6": { + "fc4142d60d774dd2ad99ecd36603d468": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8683,32 +8709,6 @@ "visibility": null, "width": null } - }, - "fe504683f63741bdac7f7f37aacf03d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 49189d5a3..095bdca3d 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:43.397675Z", - "iopub.status.busy": "2024-07-09T06:25:43.397521Z", - "iopub.status.idle": "2024-07-09T06:25:44.500416Z", - "shell.execute_reply": "2024-07-09T06:25:44.499930Z" + "iopub.execute_input": "2024-07-11T23:29:10.824057Z", + "iopub.status.busy": "2024-07-11T23:29:10.823887Z", + "iopub.status.idle": "2024-07-11T23:29:12.031031Z", + "shell.execute_reply": "2024-07-11T23:29:12.030498Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.503054Z", - "iopub.status.busy": "2024-07-09T06:25:44.502594Z", - "iopub.status.idle": "2024-07-09T06:25:44.520286Z", - "shell.execute_reply": "2024-07-09T06:25:44.519788Z" + "iopub.execute_input": "2024-07-11T23:29:12.033639Z", + "iopub.status.busy": "2024-07-11T23:29:12.033155Z", + "iopub.status.idle": "2024-07-11T23:29:12.052163Z", + "shell.execute_reply": "2024-07-11T23:29:12.051686Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.522768Z", - "iopub.status.busy": "2024-07-09T06:25:44.522335Z", - "iopub.status.idle": "2024-07-09T06:25:44.561412Z", - "shell.execute_reply": "2024-07-09T06:25:44.560787Z" + "iopub.execute_input": "2024-07-11T23:29:12.054816Z", + "iopub.status.busy": "2024-07-11T23:29:12.054264Z", + "iopub.status.idle": "2024-07-11T23:29:12.079654Z", + "shell.execute_reply": "2024-07-11T23:29:12.079070Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.563603Z", - "iopub.status.busy": "2024-07-09T06:25:44.563330Z", - "iopub.status.idle": "2024-07-09T06:25:44.566773Z", - "shell.execute_reply": "2024-07-09T06:25:44.566347Z" + "iopub.execute_input": "2024-07-11T23:29:12.081929Z", + "iopub.status.busy": "2024-07-11T23:29:12.081563Z", + "iopub.status.idle": "2024-07-11T23:29:12.085107Z", + "shell.execute_reply": "2024-07-11T23:29:12.084660Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.568882Z", - "iopub.status.busy": "2024-07-09T06:25:44.568557Z", - "iopub.status.idle": "2024-07-09T06:25:44.576133Z", - "shell.execute_reply": "2024-07-09T06:25:44.575666Z" + "iopub.execute_input": "2024-07-11T23:29:12.087283Z", + "iopub.status.busy": "2024-07-11T23:29:12.086948Z", + "iopub.status.idle": "2024-07-11T23:29:12.094469Z", + "shell.execute_reply": "2024-07-11T23:29:12.093973Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.578213Z", - "iopub.status.busy": "2024-07-09T06:25:44.577888Z", - "iopub.status.idle": "2024-07-09T06:25:44.580359Z", - "shell.execute_reply": "2024-07-09T06:25:44.579938Z" + "iopub.execute_input": "2024-07-11T23:29:12.096716Z", + "iopub.status.busy": "2024-07-11T23:29:12.096370Z", + "iopub.status.idle": "2024-07-11T23:29:12.098921Z", + "shell.execute_reply": "2024-07-11T23:29:12.098460Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:44.582404Z", - "iopub.status.busy": "2024-07-09T06:25:44.582006Z", - "iopub.status.idle": "2024-07-09T06:25:47.496435Z", - "shell.execute_reply": "2024-07-09T06:25:47.495884Z" + "iopub.execute_input": "2024-07-11T23:29:12.100927Z", + "iopub.status.busy": "2024-07-11T23:29:12.100586Z", + "iopub.status.idle": "2024-07-11T23:29:15.157298Z", + "shell.execute_reply": "2024-07-11T23:29:15.156748Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:47.499186Z", - "iopub.status.busy": "2024-07-09T06:25:47.498702Z", - "iopub.status.idle": "2024-07-09T06:25:47.508351Z", - "shell.execute_reply": "2024-07-09T06:25:47.507924Z" + "iopub.execute_input": "2024-07-11T23:29:15.160076Z", + "iopub.status.busy": "2024-07-11T23:29:15.159676Z", + "iopub.status.idle": "2024-07-11T23:29:15.169455Z", + "shell.execute_reply": "2024-07-11T23:29:15.168985Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:47.510494Z", - "iopub.status.busy": "2024-07-09T06:25:47.510083Z", - "iopub.status.idle": "2024-07-09T06:25:49.420464Z", - "shell.execute_reply": "2024-07-09T06:25:49.419867Z" + "iopub.execute_input": "2024-07-11T23:29:15.171458Z", + "iopub.status.busy": "2024-07-11T23:29:15.171270Z", + "iopub.status.idle": "2024-07-11T23:29:17.248432Z", + "shell.execute_reply": "2024-07-11T23:29:17.247803Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.423063Z", - "iopub.status.busy": "2024-07-09T06:25:49.422479Z", - "iopub.status.idle": "2024-07-09T06:25:49.441395Z", - "shell.execute_reply": "2024-07-09T06:25:49.440922Z" + "iopub.execute_input": "2024-07-11T23:29:17.251042Z", + "iopub.status.busy": "2024-07-11T23:29:17.250497Z", + "iopub.status.idle": "2024-07-11T23:29:17.269626Z", + "shell.execute_reply": "2024-07-11T23:29:17.269154Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.443532Z", - "iopub.status.busy": "2024-07-09T06:25:49.443194Z", - "iopub.status.idle": "2024-07-09T06:25:49.451051Z", - "shell.execute_reply": "2024-07-09T06:25:49.450614Z" + "iopub.execute_input": "2024-07-11T23:29:17.271760Z", + "iopub.status.busy": "2024-07-11T23:29:17.271471Z", + "iopub.status.idle": "2024-07-11T23:29:17.279607Z", + "shell.execute_reply": "2024-07-11T23:29:17.279150Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.453099Z", - "iopub.status.busy": "2024-07-09T06:25:49.452774Z", - "iopub.status.idle": "2024-07-09T06:25:49.461948Z", - "shell.execute_reply": "2024-07-09T06:25:49.461497Z" + "iopub.execute_input": "2024-07-11T23:29:17.281504Z", + "iopub.status.busy": "2024-07-11T23:29:17.281328Z", + "iopub.status.idle": "2024-07-11T23:29:17.290707Z", + "shell.execute_reply": "2024-07-11T23:29:17.290143Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.463968Z", - "iopub.status.busy": "2024-07-09T06:25:49.463653Z", - "iopub.status.idle": "2024-07-09T06:25:49.471593Z", - "shell.execute_reply": "2024-07-09T06:25:49.471011Z" + "iopub.execute_input": "2024-07-11T23:29:17.292917Z", + "iopub.status.busy": "2024-07-11T23:29:17.292506Z", + "iopub.status.idle": "2024-07-11T23:29:17.301043Z", + "shell.execute_reply": "2024-07-11T23:29:17.300462Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.473529Z", - "iopub.status.busy": "2024-07-09T06:25:49.473356Z", - "iopub.status.idle": "2024-07-09T06:25:49.482335Z", - "shell.execute_reply": "2024-07-09T06:25:49.481895Z" + "iopub.execute_input": "2024-07-11T23:29:17.303192Z", + "iopub.status.busy": "2024-07-11T23:29:17.302849Z", + "iopub.status.idle": "2024-07-11T23:29:17.311637Z", + "shell.execute_reply": "2024-07-11T23:29:17.311131Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.484408Z", - "iopub.status.busy": "2024-07-09T06:25:49.484080Z", - "iopub.status.idle": "2024-07-09T06:25:49.491499Z", - "shell.execute_reply": "2024-07-09T06:25:49.491016Z" + "iopub.execute_input": "2024-07-11T23:29:17.313719Z", + "iopub.status.busy": "2024-07-11T23:29:17.313369Z", + "iopub.status.idle": "2024-07-11T23:29:17.321018Z", + "shell.execute_reply": "2024-07-11T23:29:17.320556Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.493531Z", - "iopub.status.busy": "2024-07-09T06:25:49.493203Z", - "iopub.status.idle": "2024-07-09T06:25:49.500767Z", - "shell.execute_reply": "2024-07-09T06:25:49.500318Z" + "iopub.execute_input": "2024-07-11T23:29:17.323211Z", + "iopub.status.busy": "2024-07-11T23:29:17.322859Z", + "iopub.status.idle": "2024-07-11T23:29:17.330611Z", + "shell.execute_reply": "2024-07-11T23:29:17.330145Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:49.502816Z", - "iopub.status.busy": "2024-07-09T06:25:49.502476Z", - "iopub.status.idle": "2024-07-09T06:25:49.511060Z", - "shell.execute_reply": "2024-07-09T06:25:49.510478Z" + "iopub.execute_input": "2024-07-11T23:29:17.332743Z", + "iopub.status.busy": "2024-07-11T23:29:17.332399Z", + "iopub.status.idle": "2024-07-11T23:29:17.340578Z", + "shell.execute_reply": "2024-07-11T23:29:17.340099Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 854b57cf2..6b0931ebb 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
+Classes: {'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'change_pin'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 007861577..07f3d4c80 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:52.110367Z", - "iopub.status.busy": "2024-07-09T06:25:52.110187Z", - "iopub.status.idle": "2024-07-09T06:25:54.784149Z", - "shell.execute_reply": "2024-07-09T06:25:54.783592Z" + "iopub.execute_input": "2024-07-11T23:29:20.296872Z", + "iopub.status.busy": "2024-07-11T23:29:20.296343Z", + "iopub.status.idle": "2024-07-11T23:29:23.099118Z", + "shell.execute_reply": "2024-07-11T23:29:23.098548Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.786763Z", - "iopub.status.busy": "2024-07-09T06:25:54.786450Z", - "iopub.status.idle": "2024-07-09T06:25:54.790234Z", - "shell.execute_reply": "2024-07-09T06:25:54.789808Z" + "iopub.execute_input": "2024-07-11T23:29:23.101716Z", + "iopub.status.busy": "2024-07-11T23:29:23.101242Z", + "iopub.status.idle": "2024-07-11T23:29:23.104460Z", + "shell.execute_reply": "2024-07-11T23:29:23.104010Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.792282Z", - "iopub.status.busy": "2024-07-09T06:25:54.791960Z", - "iopub.status.idle": "2024-07-09T06:25:54.795130Z", - "shell.execute_reply": "2024-07-09T06:25:54.794637Z" + "iopub.execute_input": "2024-07-11T23:29:23.106552Z", + "iopub.status.busy": "2024-07-11T23:29:23.106212Z", + "iopub.status.idle": "2024-07-11T23:29:23.109383Z", + "shell.execute_reply": "2024-07-11T23:29:23.108910Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.797237Z", - "iopub.status.busy": "2024-07-09T06:25:54.796891Z", - "iopub.status.idle": "2024-07-09T06:25:54.839838Z", - "shell.execute_reply": "2024-07-09T06:25:54.839268Z" + "iopub.execute_input": "2024-07-11T23:29:23.111437Z", + "iopub.status.busy": "2024-07-11T23:29:23.111099Z", + "iopub.status.idle": "2024-07-11T23:29:23.137658Z", + "shell.execute_reply": "2024-07-11T23:29:23.137132Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.842013Z", - "iopub.status.busy": "2024-07-09T06:25:54.841618Z", - "iopub.status.idle": "2024-07-09T06:25:54.845269Z", - "shell.execute_reply": "2024-07-09T06:25:54.844799Z" + "iopub.execute_input": "2024-07-11T23:29:23.139775Z", + "iopub.status.busy": "2024-07-11T23:29:23.139424Z", + "iopub.status.idle": "2024-07-11T23:29:23.143084Z", + "shell.execute_reply": "2024-07-11T23:29:23.142550Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.847533Z", - "iopub.status.busy": "2024-07-09T06:25:54.847103Z", - "iopub.status.idle": "2024-07-09T06:25:54.850442Z", - "shell.execute_reply": "2024-07-09T06:25:54.849920Z" + "iopub.execute_input": "2024-07-11T23:29:23.145114Z", + "iopub.status.busy": "2024-07-11T23:29:23.144786Z", + "iopub.status.idle": "2024-07-11T23:29:23.147838Z", + "shell.execute_reply": "2024-07-11T23:29:23.147307Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:54.852582Z", - "iopub.status.busy": "2024-07-09T06:25:54.852188Z", - "iopub.status.idle": "2024-07-09T06:25:59.138875Z", - "shell.execute_reply": "2024-07-09T06:25:59.138241Z" + "iopub.execute_input": "2024-07-11T23:29:23.150007Z", + "iopub.status.busy": "2024-07-11T23:29:23.149602Z", + "iopub.status.idle": "2024-07-11T23:29:26.928577Z", + "shell.execute_reply": "2024-07-11T23:29:26.928014Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:25:59.141607Z", - "iopub.status.busy": "2024-07-09T06:25:59.141219Z", - "iopub.status.idle": "2024-07-09T06:26:00.038840Z", - "shell.execute_reply": "2024-07-09T06:26:00.038252Z" + "iopub.execute_input": "2024-07-11T23:29:26.931127Z", + "iopub.status.busy": "2024-07-11T23:29:26.930936Z", + "iopub.status.idle": "2024-07-11T23:29:27.847526Z", + "shell.execute_reply": "2024-07-11T23:29:27.846929Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:00.041846Z", - "iopub.status.busy": "2024-07-09T06:26:00.041473Z", - "iopub.status.idle": "2024-07-09T06:26:00.044333Z", - "shell.execute_reply": "2024-07-09T06:26:00.043847Z" + "iopub.execute_input": "2024-07-11T23:29:27.850537Z", + "iopub.status.busy": "2024-07-11T23:29:27.850133Z", + "iopub.status.idle": "2024-07-11T23:29:27.853085Z", + "shell.execute_reply": "2024-07-11T23:29:27.852592Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:00.046828Z", - "iopub.status.busy": "2024-07-09T06:26:00.046455Z", - "iopub.status.idle": "2024-07-09T06:26:02.001666Z", - "shell.execute_reply": "2024-07-09T06:26:02.000979Z" + "iopub.execute_input": "2024-07-11T23:29:27.856213Z", + "iopub.status.busy": "2024-07-11T23:29:27.855272Z", + "iopub.status.idle": "2024-07-11T23:29:29.866823Z", + "shell.execute_reply": "2024-07-11T23:29:29.866126Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.005648Z", - "iopub.status.busy": "2024-07-09T06:26:02.004357Z", - "iopub.status.idle": "2024-07-09T06:26:02.029990Z", - "shell.execute_reply": "2024-07-09T06:26:02.029487Z" + "iopub.execute_input": "2024-07-11T23:29:29.870725Z", + "iopub.status.busy": "2024-07-11T23:29:29.869329Z", + "iopub.status.idle": "2024-07-11T23:29:29.895368Z", + "shell.execute_reply": "2024-07-11T23:29:29.894852Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.033668Z", - "iopub.status.busy": "2024-07-09T06:26:02.032688Z", - "iopub.status.idle": "2024-07-09T06:26:02.043061Z", - "shell.execute_reply": "2024-07-09T06:26:02.042510Z" + "iopub.execute_input": "2024-07-11T23:29:29.899017Z", + "iopub.status.busy": "2024-07-11T23:29:29.898072Z", + "iopub.status.idle": "2024-07-11T23:29:29.908832Z", + "shell.execute_reply": "2024-07-11T23:29:29.908409Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.045235Z", - "iopub.status.busy": "2024-07-09T06:26:02.044844Z", - "iopub.status.idle": "2024-07-09T06:26:02.049066Z", - "shell.execute_reply": "2024-07-09T06:26:02.048544Z" + "iopub.execute_input": "2024-07-11T23:29:29.911226Z", + "iopub.status.busy": "2024-07-11T23:29:29.910867Z", + "iopub.status.idle": "2024-07-11T23:29:29.915028Z", + "shell.execute_reply": "2024-07-11T23:29:29.914487Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.050976Z", - "iopub.status.busy": "2024-07-09T06:26:02.050656Z", - "iopub.status.idle": "2024-07-09T06:26:02.056885Z", - "shell.execute_reply": "2024-07-09T06:26:02.056368Z" + "iopub.execute_input": "2024-07-11T23:29:29.917195Z", + "iopub.status.busy": "2024-07-11T23:29:29.916869Z", + "iopub.status.idle": "2024-07-11T23:29:29.923739Z", + "shell.execute_reply": "2024-07-11T23:29:29.923264Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.058842Z", - "iopub.status.busy": "2024-07-09T06:26:02.058553Z", - "iopub.status.idle": "2024-07-09T06:26:02.064989Z", - "shell.execute_reply": "2024-07-09T06:26:02.064469Z" + "iopub.execute_input": "2024-07-11T23:29:29.925794Z", + "iopub.status.busy": "2024-07-11T23:29:29.925460Z", + "iopub.status.idle": "2024-07-11T23:29:29.932321Z", + "shell.execute_reply": "2024-07-11T23:29:29.931877Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.067209Z", - "iopub.status.busy": "2024-07-09T06:26:02.066773Z", - "iopub.status.idle": "2024-07-09T06:26:02.072793Z", - "shell.execute_reply": "2024-07-09T06:26:02.072374Z" + "iopub.execute_input": "2024-07-11T23:29:29.934353Z", + "iopub.status.busy": "2024-07-11T23:29:29.934032Z", + "iopub.status.idle": "2024-07-11T23:29:29.940266Z", + "shell.execute_reply": "2024-07-11T23:29:29.939810Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.074940Z", - "iopub.status.busy": "2024-07-09T06:26:02.074490Z", - "iopub.status.idle": "2024-07-09T06:26:02.083051Z", - "shell.execute_reply": "2024-07-09T06:26:02.082510Z" + "iopub.execute_input": "2024-07-11T23:29:29.942354Z", + "iopub.status.busy": "2024-07-11T23:29:29.941996Z", + "iopub.status.idle": "2024-07-11T23:29:29.950445Z", + "shell.execute_reply": "2024-07-11T23:29:29.949967Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.085157Z", - "iopub.status.busy": "2024-07-09T06:26:02.084826Z", - "iopub.status.idle": "2024-07-09T06:26:02.090319Z", - "shell.execute_reply": "2024-07-09T06:26:02.089787Z" + "iopub.execute_input": "2024-07-11T23:29:29.952513Z", + "iopub.status.busy": "2024-07-11T23:29:29.952188Z", + "iopub.status.idle": "2024-07-11T23:29:29.957603Z", + "shell.execute_reply": "2024-07-11T23:29:29.957060Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.092426Z", - "iopub.status.busy": "2024-07-09T06:26:02.092121Z", - "iopub.status.idle": "2024-07-09T06:26:02.097472Z", - "shell.execute_reply": "2024-07-09T06:26:02.096931Z" + "iopub.execute_input": "2024-07-11T23:29:29.959629Z", + "iopub.status.busy": "2024-07-11T23:29:29.959314Z", + "iopub.status.idle": "2024-07-11T23:29:29.964736Z", + "shell.execute_reply": "2024-07-11T23:29:29.964255Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.099674Z", - "iopub.status.busy": "2024-07-09T06:26:02.099271Z", - "iopub.status.idle": "2024-07-09T06:26:02.103221Z", - "shell.execute_reply": "2024-07-09T06:26:02.102687Z" + "iopub.execute_input": "2024-07-11T23:29:29.966832Z", + "iopub.status.busy": "2024-07-11T23:29:29.966514Z", + "iopub.status.idle": "2024-07-11T23:29:29.970167Z", + "shell.execute_reply": "2024-07-11T23:29:29.969608Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:02.105280Z", - "iopub.status.busy": "2024-07-09T06:26:02.104977Z", - "iopub.status.idle": "2024-07-09T06:26:02.110409Z", - "shell.execute_reply": "2024-07-09T06:26:02.109860Z" + "iopub.execute_input": "2024-07-11T23:29:29.972238Z", + "iopub.status.busy": "2024-07-11T23:29:29.971925Z", + "iopub.status.idle": "2024-07-11T23:29:29.977206Z", + "shell.execute_reply": "2024-07-11T23:29:29.976760Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 0f8301dba..5db3340d1 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -879,7 +879,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3564,7 +3564,7 @@

1. Load the Dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 98318168.93it/s]
 
-
+
@@ -3896,7 +3896,7 @@

Image-specific property scores in the transformed dataset -{"state": {"59f5cfbd0629486ba546f97d01ea7fed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75e04c762f744d54adf55d90a052c562": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e56f4d7332994f4e8edf32b758ca794d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0}}, "294a1c481a4c46e5bc9df718d9565bc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b6cc201cb424f5298894e3085cf6d74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "43460e1d74ff44b6bdf8b3639d60c64c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "\u200b", "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%"}}, "4550b40c93134694b00bc701007e4553": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3b4bdc005f14648a26d1a16f3cf9fbf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df74cf1241974d8dba64d522788976ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", "placeholder": "\u200b", "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007800.04it/s]"}}, "f9df9fb0ad7f4fe6b179e8db8621c60f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "716f2c676ad44e9fb6218d0b8625a9c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", "IPY_MODEL_df74cf1241974d8dba64d522788976ea"], "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", "tabbable": null, "tooltip": null}}, "cdbb5130f8d045468526e3f842f2ee28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58c201af515141f191ad32c13265a546": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "37549aa8f96049628f56685e9b488f6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, "tooltip": null, "value": 200.0}}, "75f430393fb34cad87ddab50d62eb686": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d12154805bed4fff8e2d01bf4f786af1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31bd0ebee4be4b6995b1299029dfd4ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "\u200b", "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%"}}, "0f799df441bb4d05a6a28c61f333f046": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dee7e34112e0456e8e72f2a3ac0efa77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a58aa13dc64e47faa0cc93bb6652151b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", "placeholder": "\u200b", "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007681.83it/s]"}}, "ef0ce0626f2f42ccab835c3082d23f11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea4f3639cd404344b740181a60e6dfe1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b"], "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"756874159a5f4e59a3cec73032e792f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28363288b46145ac826217aa4b9fc129": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b3715480365745f09fda9c8cb652a538": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_756874159a5f4e59a3cec73032e792f9", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_28363288b46145ac826217aa4b9fc129", "tabbable": null, "tooltip": null, "value": 200.0}}, "29ec8c96537842dda2eee61d045980d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7716b3c7d54a4b74b576940fa9abe6f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7d6d49ce25f0419788eb3168606f568d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_29ec8c96537842dda2eee61d045980d9", "placeholder": "\u200b", "style": "IPY_MODEL_7716b3c7d54a4b74b576940fa9abe6f8", "tabbable": null, "tooltip": null, "value": "100%"}}, "9fcb8065af8840cbb001d2651ea73403": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7f294d203864e0e9c5f6c2b4e5fb3d0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e817c3d82cd42f2812de96ecc4a20b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9fcb8065af8840cbb001d2651ea73403", "placeholder": "\u200b", "style": "IPY_MODEL_e7f294d203864e0e9c5f6c2b4e5fb3d0", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007678.33it/s]"}}, "64b6b27f928d436ba4403ed9f9c61077": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebd7ac91367148e2afe6a27320bdd648": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7d6d49ce25f0419788eb3168606f568d", "IPY_MODEL_b3715480365745f09fda9c8cb652a538", "IPY_MODEL_8e817c3d82cd42f2812de96ecc4a20b5"], "layout": "IPY_MODEL_64b6b27f928d436ba4403ed9f9c61077", "tabbable": null, "tooltip": null}}, "71c5f03c40414ebeba748d478ef6ffc1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85e722e3d05e47ab92a2075cb222a274": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b044b60111e04eaca5eb81d3ecb06ed0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71c5f03c40414ebeba748d478ef6ffc1", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_85e722e3d05e47ab92a2075cb222a274", "tabbable": null, "tooltip": null, "value": 200.0}}, "dc8144a4608441f5baad14d16d57786b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a9eba41d6f74ab3b9a89d65ca44485e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5aba43e968e4b2ea8b352bd6ce4b411": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc8144a4608441f5baad14d16d57786b", "placeholder": "\u200b", "style": "IPY_MODEL_0a9eba41d6f74ab3b9a89d65ca44485e", "tabbable": null, "tooltip": null, "value": "100%"}}, "2f972b063cb24efebbee277aff900e69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8cbd637e03ab4440bd7d7ca81683dd9a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "59db922cdf5f4031937b8c911ca0b1f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f972b063cb24efebbee277aff900e69", "placeholder": "\u200b", "style": "IPY_MODEL_8cbd637e03ab4440bd7d7ca81683dd9a", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007673.18it/s]"}}, "c66bba991f14433797a8e6e861762595": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37431b2c574746939c76ac10cb8dedef": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5aba43e968e4b2ea8b352bd6ce4b411", "IPY_MODEL_b044b60111e04eaca5eb81d3ecb06ed0", "IPY_MODEL_59db922cdf5f4031937b8c911ca0b1f4"], "layout": "IPY_MODEL_c66bba991f14433797a8e6e861762595", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 8fba9ce06..ddaeab7a0 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.359120Z", - "iopub.status.busy": "2024-07-09T06:26:06.358944Z", - "iopub.status.idle": "2024-07-09T06:26:06.770440Z", - "shell.execute_reply": "2024-07-09T06:26:06.769872Z" + "iopub.execute_input": "2024-07-11T23:29:34.388693Z", + "iopub.status.busy": "2024-07-11T23:29:34.388243Z", + "iopub.status.idle": "2024-07-11T23:29:34.820244Z", + "shell.execute_reply": "2024-07-11T23:29:34.819732Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.772937Z", - "iopub.status.busy": "2024-07-09T06:26:06.772696Z", - "iopub.status.idle": "2024-07-09T06:26:06.900862Z", - "shell.execute_reply": "2024-07-09T06:26:06.900374Z" + "iopub.execute_input": "2024-07-11T23:29:34.822803Z", + "iopub.status.busy": "2024-07-11T23:29:34.822517Z", + "iopub.status.idle": "2024-07-11T23:29:34.952962Z", + "shell.execute_reply": "2024-07-11T23:29:34.952397Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.903167Z", - "iopub.status.busy": "2024-07-09T06:26:06.902756Z", - "iopub.status.idle": "2024-07-09T06:26:06.925318Z", - "shell.execute_reply": "2024-07-09T06:26:06.924766Z" + "iopub.execute_input": "2024-07-11T23:29:34.955366Z", + "iopub.status.busy": "2024-07-11T23:29:34.954953Z", + "iopub.status.idle": "2024-07-11T23:29:34.978058Z", + "shell.execute_reply": "2024-07-11T23:29:34.977499Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:06.927949Z", - "iopub.status.busy": "2024-07-09T06:26:06.927455Z", - "iopub.status.idle": "2024-07-09T06:26:09.660674Z", - "shell.execute_reply": "2024-07-09T06:26:09.660045Z" + "iopub.execute_input": "2024-07-11T23:29:34.981010Z", + "iopub.status.busy": "2024-07-11T23:29:34.980418Z", + "iopub.status.idle": "2024-07-11T23:29:37.818083Z", + "shell.execute_reply": "2024-07-11T23:29:37.817473Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356959\n", + " 0.356958\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356959 362\n", + "2 outlier 0.356958 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:09.663103Z", - "iopub.status.busy": "2024-07-09T06:26:09.662695Z", - "iopub.status.idle": "2024-07-09T06:26:17.697818Z", - "shell.execute_reply": "2024-07-09T06:26:17.697224Z" + "iopub.execute_input": "2024-07-11T23:29:37.820720Z", + "iopub.status.busy": "2024-07-11T23:29:37.820301Z", + "iopub.status.idle": "2024-07-11T23:29:46.721138Z", + "shell.execute_reply": "2024-07-11T23:29:46.720568Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:17.700276Z", - "iopub.status.busy": "2024-07-09T06:26:17.699925Z", - "iopub.status.idle": "2024-07-09T06:26:17.841746Z", - "shell.execute_reply": "2024-07-09T06:26:17.841256Z" + "iopub.execute_input": "2024-07-11T23:29:46.723367Z", + "iopub.status.busy": "2024-07-11T23:29:46.723076Z", + "iopub.status.idle": "2024-07-11T23:29:46.891124Z", + "shell.execute_reply": "2024-07-11T23:29:46.890449Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:17.844287Z", - "iopub.status.busy": "2024-07-09T06:26:17.843913Z", - "iopub.status.idle": "2024-07-09T06:26:19.164893Z", - "shell.execute_reply": "2024-07-09T06:26:19.164379Z" + "iopub.execute_input": "2024-07-11T23:29:46.893627Z", + "iopub.status.busy": "2024-07-11T23:29:46.893433Z", + "iopub.status.idle": "2024-07-11T23:29:48.221557Z", + "shell.execute_reply": "2024-07-11T23:29:48.220967Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.167019Z", - "iopub.status.busy": "2024-07-09T06:26:19.166813Z", - "iopub.status.idle": "2024-07-09T06:26:19.597782Z", - "shell.execute_reply": "2024-07-09T06:26:19.597208Z" + "iopub.execute_input": "2024-07-11T23:29:48.224013Z", + "iopub.status.busy": "2024-07-11T23:29:48.223550Z", + "iopub.status.idle": "2024-07-11T23:29:48.654330Z", + "shell.execute_reply": "2024-07-11T23:29:48.653634Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.600017Z", - "iopub.status.busy": "2024-07-09T06:26:19.599671Z", - "iopub.status.idle": "2024-07-09T06:26:19.608754Z", - "shell.execute_reply": "2024-07-09T06:26:19.608320Z" + "iopub.execute_input": "2024-07-11T23:29:48.657912Z", + "iopub.status.busy": "2024-07-11T23:29:48.656773Z", + "iopub.status.idle": "2024-07-11T23:29:48.671443Z", + "shell.execute_reply": "2024-07-11T23:29:48.670980Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.610758Z", - "iopub.status.busy": "2024-07-09T06:26:19.610582Z", - "iopub.status.idle": "2024-07-09T06:26:19.629174Z", - "shell.execute_reply": "2024-07-09T06:26:19.628714Z" + "iopub.execute_input": "2024-07-11T23:29:48.673923Z", + "iopub.status.busy": "2024-07-11T23:29:48.673416Z", + "iopub.status.idle": "2024-07-11T23:29:48.696644Z", + "shell.execute_reply": "2024-07-11T23:29:48.696128Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.631274Z", - "iopub.status.busy": "2024-07-09T06:26:19.630949Z", - "iopub.status.idle": "2024-07-09T06:26:19.855473Z", - "shell.execute_reply": "2024-07-09T06:26:19.854937Z" + "iopub.execute_input": "2024-07-11T23:29:48.699194Z", + "iopub.status.busy": "2024-07-11T23:29:48.698804Z", + "iopub.status.idle": "2024-07-11T23:29:48.914081Z", + "shell.execute_reply": "2024-07-11T23:29:48.913445Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.857897Z", - "iopub.status.busy": "2024-07-09T06:26:19.857717Z", - "iopub.status.idle": "2024-07-09T06:26:19.876254Z", - "shell.execute_reply": "2024-07-09T06:26:19.875785Z" + "iopub.execute_input": "2024-07-11T23:29:48.916790Z", + "iopub.status.busy": "2024-07-11T23:29:48.916597Z", + "iopub.status.idle": "2024-07-11T23:29:48.936552Z", + "shell.execute_reply": "2024-07-11T23:29:48.935965Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:19.878330Z", - "iopub.status.busy": "2024-07-09T06:26:19.878123Z", - "iopub.status.idle": "2024-07-09T06:26:20.020972Z", - "shell.execute_reply": "2024-07-09T06:26:20.020418Z" + "iopub.execute_input": "2024-07-11T23:29:48.938784Z", + "iopub.status.busy": "2024-07-11T23:29:48.938602Z", + "iopub.status.idle": "2024-07-11T23:29:49.079693Z", + "shell.execute_reply": "2024-07-11T23:29:49.079099Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.023234Z", - "iopub.status.busy": "2024-07-09T06:26:20.023054Z", - "iopub.status.idle": "2024-07-09T06:26:20.033881Z", - "shell.execute_reply": "2024-07-09T06:26:20.033455Z" + "iopub.execute_input": "2024-07-11T23:29:49.082200Z", + "iopub.status.busy": "2024-07-11T23:29:49.081832Z", + "iopub.status.idle": "2024-07-11T23:29:49.092133Z", + "shell.execute_reply": "2024-07-11T23:29:49.091672Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.036017Z", - "iopub.status.busy": "2024-07-09T06:26:20.035683Z", - "iopub.status.idle": "2024-07-09T06:26:20.045307Z", - "shell.execute_reply": "2024-07-09T06:26:20.044756Z" + "iopub.execute_input": "2024-07-11T23:29:49.094406Z", + "iopub.status.busy": "2024-07-11T23:29:49.093977Z", + "iopub.status.idle": "2024-07-11T23:29:49.103812Z", + "shell.execute_reply": "2024-07-11T23:29:49.103299Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.047404Z", - "iopub.status.busy": "2024-07-09T06:26:20.047075Z", - "iopub.status.idle": "2024-07-09T06:26:20.077571Z", - "shell.execute_reply": "2024-07-09T06:26:20.077104Z" + "iopub.execute_input": "2024-07-11T23:29:49.106037Z", + "iopub.status.busy": "2024-07-11T23:29:49.105658Z", + "iopub.status.idle": "2024-07-11T23:29:49.131276Z", + "shell.execute_reply": "2024-07-11T23:29:49.130801Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.079806Z", - "iopub.status.busy": "2024-07-09T06:26:20.079460Z", - "iopub.status.idle": "2024-07-09T06:26:20.082272Z", - "shell.execute_reply": "2024-07-09T06:26:20.081824Z" + "iopub.execute_input": "2024-07-11T23:29:49.133375Z", + "iopub.status.busy": "2024-07-11T23:29:49.133028Z", + "iopub.status.idle": "2024-07-11T23:29:49.135659Z", + "shell.execute_reply": "2024-07-11T23:29:49.135214Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.084214Z", - "iopub.status.busy": "2024-07-09T06:26:20.083951Z", - "iopub.status.idle": "2024-07-09T06:26:20.103369Z", - "shell.execute_reply": "2024-07-09T06:26:20.102920Z" + "iopub.execute_input": "2024-07-11T23:29:49.137850Z", + "iopub.status.busy": "2024-07-11T23:29:49.137522Z", + "iopub.status.idle": "2024-07-11T23:29:49.156578Z", + "shell.execute_reply": "2024-07-11T23:29:49.156118Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.105637Z", - "iopub.status.busy": "2024-07-09T06:26:20.105313Z", - "iopub.status.idle": "2024-07-09T06:26:20.109592Z", - "shell.execute_reply": "2024-07-09T06:26:20.109129Z" + "iopub.execute_input": "2024-07-11T23:29:49.158760Z", + "iopub.status.busy": "2024-07-11T23:29:49.158427Z", + "iopub.status.idle": "2024-07-11T23:29:49.162423Z", + "shell.execute_reply": "2024-07-11T23:29:49.161916Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.111735Z", - "iopub.status.busy": "2024-07-09T06:26:20.111418Z", - "iopub.status.idle": "2024-07-09T06:26:20.140670Z", - "shell.execute_reply": "2024-07-09T06:26:20.140161Z" + "iopub.execute_input": "2024-07-11T23:29:49.164478Z", + "iopub.status.busy": "2024-07-11T23:29:49.164146Z", + "iopub.status.idle": "2024-07-11T23:29:49.192739Z", + "shell.execute_reply": "2024-07-11T23:29:49.192148Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.143010Z", - "iopub.status.busy": "2024-07-09T06:26:20.142558Z", - "iopub.status.idle": "2024-07-09T06:26:20.467470Z", - "shell.execute_reply": "2024-07-09T06:26:20.466812Z" + "iopub.execute_input": "2024-07-11T23:29:49.195027Z", + "iopub.status.busy": "2024-07-11T23:29:49.194661Z", + "iopub.status.idle": "2024-07-11T23:29:49.516815Z", + "shell.execute_reply": "2024-07-11T23:29:49.516256Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.469860Z", - "iopub.status.busy": "2024-07-09T06:26:20.469461Z", - "iopub.status.idle": "2024-07-09T06:26:20.472834Z", - "shell.execute_reply": "2024-07-09T06:26:20.472304Z" + "iopub.execute_input": "2024-07-11T23:29:49.519151Z", + "iopub.status.busy": "2024-07-11T23:29:49.518813Z", + "iopub.status.idle": "2024-07-11T23:29:49.522168Z", + "shell.execute_reply": "2024-07-11T23:29:49.521578Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.474846Z", - "iopub.status.busy": "2024-07-09T06:26:20.474545Z", - "iopub.status.idle": "2024-07-09T06:26:20.487539Z", - "shell.execute_reply": "2024-07-09T06:26:20.487103Z" + "iopub.execute_input": "2024-07-11T23:29:49.524223Z", + "iopub.status.busy": "2024-07-11T23:29:49.523940Z", + "iopub.status.idle": "2024-07-11T23:29:49.536864Z", + "shell.execute_reply": "2024-07-11T23:29:49.536400Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.489598Z", - "iopub.status.busy": "2024-07-09T06:26:20.489254Z", - "iopub.status.idle": "2024-07-09T06:26:20.502494Z", - "shell.execute_reply": "2024-07-09T06:26:20.502059Z" + "iopub.execute_input": "2024-07-11T23:29:49.538963Z", + "iopub.status.busy": "2024-07-11T23:29:49.538622Z", + "iopub.status.idle": "2024-07-11T23:29:49.551843Z", + "shell.execute_reply": "2024-07-11T23:29:49.551377Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.504650Z", - "iopub.status.busy": "2024-07-09T06:26:20.504262Z", - "iopub.status.idle": "2024-07-09T06:26:20.514526Z", - "shell.execute_reply": "2024-07-09T06:26:20.513953Z" + "iopub.execute_input": "2024-07-11T23:29:49.554109Z", + "iopub.status.busy": "2024-07-11T23:29:49.553563Z", + "iopub.status.idle": "2024-07-11T23:29:49.563951Z", + "shell.execute_reply": "2024-07-11T23:29:49.563386Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.516777Z", - "iopub.status.busy": "2024-07-09T06:26:20.516378Z", - "iopub.status.idle": "2024-07-09T06:26:20.525636Z", - "shell.execute_reply": "2024-07-09T06:26:20.525158Z" + "iopub.execute_input": "2024-07-11T23:29:49.566174Z", + "iopub.status.busy": "2024-07-11T23:29:49.565737Z", + "iopub.status.idle": "2024-07-11T23:29:49.575288Z", + "shell.execute_reply": "2024-07-11T23:29:49.574713Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.527730Z", - "iopub.status.busy": "2024-07-09T06:26:20.527427Z", - "iopub.status.idle": "2024-07-09T06:26:20.531215Z", - "shell.execute_reply": "2024-07-09T06:26:20.530643Z" + "iopub.execute_input": "2024-07-11T23:29:49.577281Z", + "iopub.status.busy": "2024-07-11T23:29:49.577106Z", + "iopub.status.idle": "2024-07-11T23:29:49.580982Z", + "shell.execute_reply": "2024-07-11T23:29:49.580413Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.533369Z", - "iopub.status.busy": "2024-07-09T06:26:20.532978Z", - "iopub.status.idle": "2024-07-09T06:26:20.584716Z", - "shell.execute_reply": "2024-07-09T06:26:20.584160Z" + "iopub.execute_input": "2024-07-11T23:29:49.583231Z", + "iopub.status.busy": "2024-07-11T23:29:49.582752Z", + "iopub.status.idle": "2024-07-11T23:29:49.634748Z", + "shell.execute_reply": "2024-07-11T23:29:49.634176Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.587026Z", - "iopub.status.busy": "2024-07-09T06:26:20.586732Z", - "iopub.status.idle": "2024-07-09T06:26:20.592456Z", - "shell.execute_reply": "2024-07-09T06:26:20.592020Z" + "iopub.execute_input": "2024-07-11T23:29:49.636976Z", + "iopub.status.busy": "2024-07-11T23:29:49.636539Z", + "iopub.status.idle": "2024-07-11T23:29:49.642182Z", + "shell.execute_reply": "2024-07-11T23:29:49.641717Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.594421Z", - "iopub.status.busy": "2024-07-09T06:26:20.594113Z", - "iopub.status.idle": "2024-07-09T06:26:20.604649Z", - "shell.execute_reply": "2024-07-09T06:26:20.604215Z" + "iopub.execute_input": "2024-07-11T23:29:49.644252Z", + "iopub.status.busy": "2024-07-11T23:29:49.643919Z", + "iopub.status.idle": "2024-07-11T23:29:49.654684Z", + "shell.execute_reply": "2024-07-11T23:29:49.654237Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.606620Z", - "iopub.status.busy": "2024-07-09T06:26:20.606292Z", - "iopub.status.idle": "2024-07-09T06:26:20.783133Z", - "shell.execute_reply": "2024-07-09T06:26:20.782497Z" + "iopub.execute_input": "2024-07-11T23:29:49.656716Z", + "iopub.status.busy": "2024-07-11T23:29:49.656373Z", + "iopub.status.idle": "2024-07-11T23:29:49.843043Z", + "shell.execute_reply": "2024-07-11T23:29:49.842369Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.785456Z", - "iopub.status.busy": "2024-07-09T06:26:20.785275Z", - "iopub.status.idle": "2024-07-09T06:26:20.793330Z", - "shell.execute_reply": "2024-07-09T06:26:20.792773Z" + "iopub.execute_input": "2024-07-11T23:29:49.846082Z", + "iopub.status.busy": "2024-07-11T23:29:49.845550Z", + "iopub.status.idle": "2024-07-11T23:29:49.853221Z", + "shell.execute_reply": "2024-07-11T23:29:49.852796Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:20.795475Z", - "iopub.status.busy": "2024-07-09T06:26:20.795196Z", - "iopub.status.idle": "2024-07-09T06:26:26.499101Z", - "shell.execute_reply": "2024-07-09T06:26:26.498454Z" + "iopub.execute_input": "2024-07-11T23:29:49.855530Z", + "iopub.status.busy": "2024-07-11T23:29:49.855103Z", + "iopub.status.idle": "2024-07-11T23:29:55.548333Z", + "shell.execute_reply": "2024-07-11T23:29:55.547826Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" + " 1%|▏ | 2195456/170498071 [00:00<00:07, 21936066.84it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" + " 8%|▊ | 13762560/170498071 [00:00<00:02, 77040074.49it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" + " 13%|█▎ | 22937600/170498071 [00:00<00:01, 83657296.61it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" + " 20%|█▉ | 33914880/170498071 [00:00<00:01, 93816439.09it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" + " 26%|██▌ | 44171264/170498071 [00:00<00:01, 96676047.74it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" + " 32%|███▏ | 54296576/170498071 [00:00<00:01, 98210892.42it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" + " 38%|███▊ | 65306624/170498071 [00:00<00:01, 102028223.71it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" + " 44%|████▍ | 75530240/170498071 [00:00<00:00, 99472321.16it/s] " ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" + " 51%|█████ | 87228416/170498071 [00:00<00:00, 104758850.35it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" + " 57%|█████▋ | 97746944/170498071 [00:01<00:00, 97567089.57it/s] " ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" + " 64%|██████▍ | 109740032/170498071 [00:01<00:00, 103924610.82it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" + " 71%|███████ | 120258560/170498071 [00:01<00:00, 100132631.87it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" + " 77%|███████▋ | 131792896/170498071 [00:01<00:00, 104452552.87it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" + " 83%|████████▎ | 142344192/170498071 [00:01<00:00, 100064070.08it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" + " 90%|█████████ | 154009600/170498071 [00:01<00:00, 104591011.15it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" + " 97%|█████████▋| 164560896/170498071 [00:01<00:00, 100094350.16it/s]" ] }, { @@ -3915,15 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 98318168.93it/s] " ] }, { @@ -3997,10 +3989,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.501872Z", - "iopub.status.busy": "2024-07-09T06:26:26.501334Z", - "iopub.status.idle": "2024-07-09T06:26:26.568877Z", - "shell.execute_reply": "2024-07-09T06:26:26.568264Z" + "iopub.execute_input": "2024-07-11T23:29:55.551094Z", + "iopub.status.busy": "2024-07-11T23:29:55.550447Z", + "iopub.status.idle": "2024-07-11T23:29:55.618507Z", + "shell.execute_reply": "2024-07-11T23:29:55.617890Z" } }, "outputs": [], @@ -4022,10 +4014,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.571436Z", - "iopub.status.busy": "2024-07-09T06:26:26.571213Z", - "iopub.status.idle": "2024-07-09T06:26:26.612980Z", - "shell.execute_reply": "2024-07-09T06:26:26.612387Z" + "iopub.execute_input": "2024-07-11T23:29:55.620876Z", + "iopub.status.busy": "2024-07-11T23:29:55.620695Z", + "iopub.status.idle": "2024-07-11T23:29:55.662030Z", + "shell.execute_reply": "2024-07-11T23:29:55.661591Z" } }, "outputs": [], @@ -4059,10 +4051,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:26.615590Z", - "iopub.status.busy": "2024-07-09T06:26:26.615223Z", - "iopub.status.idle": "2024-07-09T06:26:28.007434Z", - "shell.execute_reply": "2024-07-09T06:26:28.006820Z" + "iopub.execute_input": "2024-07-11T23:29:55.663943Z", + "iopub.status.busy": "2024-07-11T23:29:55.663770Z", + "iopub.status.idle": "2024-07-11T23:29:57.154881Z", + "shell.execute_reply": "2024-07-11T23:29:57.154308Z" } }, "outputs": [ @@ -4136,10 +4128,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:28.009673Z", - "iopub.status.busy": "2024-07-09T06:26:28.009331Z", - "iopub.status.idle": "2024-07-09T06:26:28.820192Z", - "shell.execute_reply": "2024-07-09T06:26:28.819683Z" + "iopub.execute_input": "2024-07-11T23:29:57.157275Z", + "iopub.status.busy": "2024-07-11T23:29:57.156920Z", + "iopub.status.idle": "2024-07-11T23:29:58.045399Z", + "shell.execute_reply": "2024-07-11T23:29:58.044761Z" } }, "outputs": [ @@ -4154,7 +4146,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", + "model_id": "ebd7ac91367148e2afe6a27320bdd648", "version_major": 2, "version_minor": 0 }, @@ -4178,7 +4170,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea4f3639cd404344b740181a60e6dfe1", + "model_id": "37431b2c574746939c76ac10cb8dedef", "version_major": 2, "version_minor": 0 }, @@ -4428,7 +4420,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f799df441bb4d05a6a28c61f333f046": { + "0a9eba41d6f74ab3b9a89d65ca44485e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "28363288b46145ac826217aa4b9fc129": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29ec8c96537842dda2eee61d045980d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4481,7 +4507,7 @@ "width": null } }, - "294a1c481a4c46e5bc9df718d9565bc7": { + "2f972b063cb24efebbee277aff900e69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4534,74 +4560,31 @@ "width": null } }, - "2b6cc201cb424f5298894e3085cf6d74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31bd0ebee4be4b6995b1299029dfd4ba": { + "37431b2c574746939c76ac10cb8dedef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", - "placeholder": "​", - "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "37549aa8f96049628f56685e9b488f6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5aba43e968e4b2ea8b352bd6ce4b411", + "IPY_MODEL_b044b60111e04eaca5eb81d3ecb06ed0", + "IPY_MODEL_59db922cdf5f4031937b8c911ca0b1f4" + ], + "layout": "IPY_MODEL_c66bba991f14433797a8e6e861762595", "tabbable": null, - "tooltip": null, - "value": 200.0 + "tooltip": null } }, - "43460e1d74ff44b6bdf8b3639d60c64c": { + "59db922cdf5f4031937b8c911ca0b1f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4616,15 +4599,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", + "layout": "IPY_MODEL_2f972b063cb24efebbee277aff900e69", "placeholder": "​", - "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", + "style": "IPY_MODEL_8cbd637e03ab4440bd7d7ca81683dd9a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 673.18it/s]" } }, - "4550b40c93134694b00bc701007e4553": { + "64b6b27f928d436ba4403ed9f9c61077": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4677,23 +4660,7 @@ "width": null } }, - "58c201af515141f191ad32c13265a546": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "59f5cfbd0629486ba546f97d01ea7fed": { + "71c5f03c40414ebeba748d478ef6ffc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4746,47 +4713,7 @@ "width": null } }, - "716f2c676ad44e9fb6218d0b8625a9c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", - "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", - "IPY_MODEL_df74cf1241974d8dba64d522788976ea" - ], - "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", - "tabbable": null, - "tooltip": null - } - }, - "75e04c762f744d54adf55d90a052c562": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "75f430393fb34cad87ddab50d62eb686": { + "756874159a5f4e59a3cec73032e792f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4839,7 +4766,25 @@ "width": null } }, - "a58aa13dc64e47faa0cc93bb6652151b": { + "7716b3c7d54a4b74b576940fa9abe6f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7d6d49ce25f0419788eb3168606f568d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4854,15 +4799,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "layout": "IPY_MODEL_29ec8c96537842dda2eee61d045980d9", "placeholder": "​", - "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "style": "IPY_MODEL_7716b3c7d54a4b74b576940fa9abe6f8", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 681.83it/s]" + "value": "100%" } }, - "b3b4bdc005f14648a26d1a16f3cf9fbf": { + "85e722e3d05e47ab92a2075cb222a274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cbd637e03ab4440bd7d7ca81683dd9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4880,7 +4841,30 @@ "text_color": null } }, - "cdbb5130f8d045468526e3f842f2ee28": { + "8e817c3d82cd42f2812de96ecc4a20b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9fcb8065af8840cbb001d2651ea73403", + "placeholder": "​", + "style": "IPY_MODEL_e7f294d203864e0e9c5f6c2b4e5fb3d0", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 678.33it/s]" + } + }, + "9fcb8065af8840cbb001d2651ea73403": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4933,66 +4917,33 @@ "width": null } }, - "d12154805bed4fff8e2d01bf4f786af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dee7e34112e0456e8e72f2a3ac0efa77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df74cf1241974d8dba64d522788976ea": { + "b044b60111e04eaca5eb81d3ecb06ed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", - "placeholder": "​", - "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "layout": "IPY_MODEL_71c5f03c40414ebeba748d478ef6ffc1", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_85e722e3d05e47ab92a2075cb222a274", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 800.04it/s]" + "value": 200.0 } }, - "e56f4d7332994f4e8edf32b758ca794d": { + "b3715480365745f09fda9c8cb652a538": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5008,41 +4959,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", + "layout": "IPY_MODEL_756874159a5f4e59a3cec73032e792f9", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", + "style": "IPY_MODEL_28363288b46145ac826217aa4b9fc129", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "ea4f3639cd404344b740181a60e6dfe1": { + "b5aba43e968e4b2ea8b352bd6ce4b411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", - "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", - "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" - ], - "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc8144a4608441f5baad14d16d57786b", + "placeholder": "​", + "style": "IPY_MODEL_0a9eba41d6f74ab3b9a89d65ca44485e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "ef0ce0626f2f42ccab835c3082d23f11": { + "c66bba991f14433797a8e6e861762595": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5095,7 +5045,7 @@ "width": null } }, - "f9df9fb0ad7f4fe6b179e8db8621c60f": { + "dc8144a4608441f5baad14d16d57786b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5147,6 +5097,48 @@ "visibility": null, "width": null } + }, + "e7f294d203864e0e9c5f6c2b4e5fb3d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ebd7ac91367148e2afe6a27320bdd648": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d6d49ce25f0419788eb3168606f568d", + "IPY_MODEL_b3715480365745f09fda9c8cb652a538", + "IPY_MODEL_8e817c3d82cd42f2812de96ecc4a20b5" + ], + "layout": "IPY_MODEL_64b6b27f928d436ba4403ed9f9c61077", + "tabbable": null, + "tooltip": null + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index b7c82c939..25a1a7095 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:32.925528Z", - "iopub.status.busy": "2024-07-09T06:26:32.925364Z", - "iopub.status.idle": "2024-07-09T06:26:34.040278Z", - "shell.execute_reply": "2024-07-09T06:26:34.039721Z" + "iopub.execute_input": "2024-07-11T23:30:03.202811Z", + "iopub.status.busy": "2024-07-11T23:30:03.202303Z", + "iopub.status.idle": "2024-07-11T23:30:04.351501Z", + "shell.execute_reply": "2024-07-11T23:30:04.350951Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.042937Z", - "iopub.status.busy": "2024-07-09T06:26:34.042544Z", - "iopub.status.idle": "2024-07-09T06:26:34.045384Z", - "shell.execute_reply": "2024-07-09T06:26:34.044944Z" + "iopub.execute_input": "2024-07-11T23:30:04.354210Z", + "iopub.status.busy": "2024-07-11T23:30:04.353666Z", + "iopub.status.idle": "2024-07-11T23:30:04.356586Z", + "shell.execute_reply": "2024-07-11T23:30:04.356113Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.047662Z", - "iopub.status.busy": "2024-07-09T06:26:34.047230Z", - "iopub.status.idle": "2024-07-09T06:26:34.058799Z", - "shell.execute_reply": "2024-07-09T06:26:34.058355Z" + "iopub.execute_input": "2024-07-11T23:30:04.358687Z", + "iopub.status.busy": "2024-07-11T23:30:04.358503Z", + "iopub.status.idle": "2024-07-11T23:30:04.370267Z", + "shell.execute_reply": "2024-07-11T23:30:04.369774Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:34.060975Z", - "iopub.status.busy": "2024-07-09T06:26:34.060630Z", - "iopub.status.idle": "2024-07-09T06:26:39.033668Z", - "shell.execute_reply": "2024-07-09T06:26:39.033084Z" + "iopub.execute_input": "2024-07-11T23:30:04.372297Z", + "iopub.status.busy": "2024-07-11T23:30:04.371969Z", + "iopub.status.idle": "2024-07-11T23:30:09.431431Z", + "shell.execute_reply": "2024-07-11T23:30:09.430933Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 830ac8885..417684eca 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 593067553..c2e042b26 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:41.303187Z", - "iopub.status.busy": "2024-07-09T06:26:41.302823Z", - "iopub.status.idle": "2024-07-09T06:26:42.450257Z", - "shell.execute_reply": "2024-07-09T06:26:42.449747Z" + "iopub.execute_input": "2024-07-11T23:30:11.597225Z", + "iopub.status.busy": "2024-07-11T23:30:11.597046Z", + "iopub.status.idle": "2024-07-11T23:30:12.748736Z", + "shell.execute_reply": "2024-07-11T23:30:12.748108Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:42.453168Z", - "iopub.status.busy": "2024-07-09T06:26:42.452624Z", - "iopub.status.idle": "2024-07-09T06:26:42.456109Z", - "shell.execute_reply": "2024-07-09T06:26:42.455577Z" + "iopub.execute_input": "2024-07-11T23:30:12.751671Z", + "iopub.status.busy": "2024-07-11T23:30:12.751390Z", + "iopub.status.idle": "2024-07-11T23:30:12.754832Z", + "shell.execute_reply": "2024-07-11T23:30:12.754358Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:42.458324Z", - "iopub.status.busy": "2024-07-09T06:26:42.457999Z", - "iopub.status.idle": "2024-07-09T06:26:45.758135Z", - "shell.execute_reply": "2024-07-09T06:26:45.757518Z" + "iopub.execute_input": "2024-07-11T23:30:12.756788Z", + "iopub.status.busy": "2024-07-11T23:30:12.756605Z", + "iopub.status.idle": "2024-07-11T23:30:16.158299Z", + "shell.execute_reply": "2024-07-11T23:30:16.157575Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.761341Z", - "iopub.status.busy": "2024-07-09T06:26:45.760502Z", - "iopub.status.idle": "2024-07-09T06:26:45.799809Z", - "shell.execute_reply": "2024-07-09T06:26:45.799118Z" + "iopub.execute_input": "2024-07-11T23:30:16.161420Z", + "iopub.status.busy": "2024-07-11T23:30:16.160692Z", + "iopub.status.idle": "2024-07-11T23:30:16.206630Z", + "shell.execute_reply": "2024-07-11T23:30:16.205967Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.802392Z", - "iopub.status.busy": "2024-07-09T06:26:45.802142Z", - "iopub.status.idle": "2024-07-09T06:26:45.837536Z", - "shell.execute_reply": "2024-07-09T06:26:45.836818Z" + "iopub.execute_input": "2024-07-11T23:30:16.209182Z", + "iopub.status.busy": "2024-07-11T23:30:16.208927Z", + "iopub.status.idle": "2024-07-11T23:30:16.250637Z", + "shell.execute_reply": "2024-07-11T23:30:16.249848Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.840174Z", - "iopub.status.busy": "2024-07-09T06:26:45.839915Z", - "iopub.status.idle": "2024-07-09T06:26:45.842992Z", - "shell.execute_reply": "2024-07-09T06:26:45.842523Z" + "iopub.execute_input": "2024-07-11T23:30:16.253766Z", + "iopub.status.busy": "2024-07-11T23:30:16.253295Z", + "iopub.status.idle": "2024-07-11T23:30:16.256871Z", + "shell.execute_reply": "2024-07-11T23:30:16.256317Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.845075Z", - "iopub.status.busy": "2024-07-09T06:26:45.844811Z", - "iopub.status.idle": "2024-07-09T06:26:45.847393Z", - "shell.execute_reply": "2024-07-09T06:26:45.846951Z" + "iopub.execute_input": "2024-07-11T23:30:16.259302Z", + "iopub.status.busy": "2024-07-11T23:30:16.258796Z", + "iopub.status.idle": "2024-07-11T23:30:16.261782Z", + "shell.execute_reply": "2024-07-11T23:30:16.261321Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.849512Z", - "iopub.status.busy": "2024-07-09T06:26:45.849230Z", - "iopub.status.idle": "2024-07-09T06:26:45.873850Z", - "shell.execute_reply": "2024-07-09T06:26:45.873252Z" + "iopub.execute_input": "2024-07-11T23:30:16.264031Z", + "iopub.status.busy": "2024-07-11T23:30:16.263690Z", + "iopub.status.idle": "2024-07-11T23:30:16.291128Z", + "shell.execute_reply": "2024-07-11T23:30:16.290558Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", + "model_id": "251a33187aa94b1aa4699b49955d8a68", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "684088a7b56b4b3aa39b109dfa860ac6", + "model_id": "691c357de3a04b04a6a63d1b80ba4600", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.880372Z", - "iopub.status.busy": "2024-07-09T06:26:45.879962Z", - "iopub.status.idle": "2024-07-09T06:26:45.886615Z", - "shell.execute_reply": "2024-07-09T06:26:45.886081Z" + "iopub.execute_input": "2024-07-11T23:30:16.295999Z", + "iopub.status.busy": "2024-07-11T23:30:16.295544Z", + "iopub.status.idle": "2024-07-11T23:30:16.302377Z", + "shell.execute_reply": "2024-07-11T23:30:16.301810Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.888785Z", - "iopub.status.busy": "2024-07-09T06:26:45.888399Z", - "iopub.status.idle": "2024-07-09T06:26:45.891884Z", - "shell.execute_reply": "2024-07-09T06:26:45.891348Z" + "iopub.execute_input": "2024-07-11T23:30:16.304391Z", + "iopub.status.busy": "2024-07-11T23:30:16.304088Z", + "iopub.status.idle": "2024-07-11T23:30:16.307642Z", + "shell.execute_reply": "2024-07-11T23:30:16.307168Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.893965Z", - "iopub.status.busy": "2024-07-09T06:26:45.893580Z", - "iopub.status.idle": "2024-07-09T06:26:45.899933Z", - "shell.execute_reply": "2024-07-09T06:26:45.899439Z" + "iopub.execute_input": "2024-07-11T23:30:16.309629Z", + "iopub.status.busy": "2024-07-11T23:30:16.309352Z", + "iopub.status.idle": "2024-07-11T23:30:16.316308Z", + "shell.execute_reply": "2024-07-11T23:30:16.315839Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.901957Z", - "iopub.status.busy": "2024-07-09T06:26:45.901564Z", - "iopub.status.idle": "2024-07-09T06:26:45.938412Z", - "shell.execute_reply": "2024-07-09T06:26:45.937735Z" + "iopub.execute_input": "2024-07-11T23:30:16.318494Z", + "iopub.status.busy": "2024-07-11T23:30:16.318066Z", + "iopub.status.idle": "2024-07-11T23:30:16.360691Z", + "shell.execute_reply": "2024-07-11T23:30:16.359941Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.941344Z", - "iopub.status.busy": "2024-07-09T06:26:45.940842Z", - "iopub.status.idle": "2024-07-09T06:26:45.977181Z", - "shell.execute_reply": "2024-07-09T06:26:45.976594Z" + "iopub.execute_input": "2024-07-11T23:30:16.363298Z", + "iopub.status.busy": "2024-07-11T23:30:16.363052Z", + "iopub.status.idle": "2024-07-11T23:30:16.405028Z", + "shell.execute_reply": "2024-07-11T23:30:16.404381Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:45.979821Z", - "iopub.status.busy": "2024-07-09T06:26:45.979575Z", - "iopub.status.idle": "2024-07-09T06:26:46.104854Z", - "shell.execute_reply": "2024-07-09T06:26:46.104267Z" + "iopub.execute_input": "2024-07-11T23:30:16.407917Z", + "iopub.status.busy": "2024-07-11T23:30:16.407590Z", + "iopub.status.idle": "2024-07-11T23:30:16.542286Z", + "shell.execute_reply": "2024-07-11T23:30:16.541583Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:46.107771Z", - "iopub.status.busy": "2024-07-09T06:26:46.106984Z", - "iopub.status.idle": "2024-07-09T06:26:49.148445Z", - "shell.execute_reply": "2024-07-09T06:26:49.147812Z" + "iopub.execute_input": "2024-07-11T23:30:16.544989Z", + "iopub.status.busy": "2024-07-11T23:30:16.544395Z", + "iopub.status.idle": "2024-07-11T23:30:19.643394Z", + "shell.execute_reply": "2024-07-11T23:30:19.642687Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.150871Z", - "iopub.status.busy": "2024-07-09T06:26:49.150502Z", - "iopub.status.idle": "2024-07-09T06:26:49.209147Z", - "shell.execute_reply": "2024-07-09T06:26:49.208576Z" + "iopub.execute_input": "2024-07-11T23:30:19.645683Z", + "iopub.status.busy": "2024-07-11T23:30:19.645485Z", + "iopub.status.idle": "2024-07-11T23:30:19.704541Z", + "shell.execute_reply": "2024-07-11T23:30:19.703920Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.211500Z", - "iopub.status.busy": "2024-07-09T06:26:49.211164Z", - "iopub.status.idle": "2024-07-09T06:26:49.251723Z", - "shell.execute_reply": "2024-07-09T06:26:49.251225Z" + "iopub.execute_input": "2024-07-11T23:30:19.706625Z", + "iopub.status.busy": "2024-07-11T23:30:19.706436Z", + "iopub.status.idle": "2024-07-11T23:30:19.747422Z", + "shell.execute_reply": "2024-07-11T23:30:19.746814Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "a54c40cb", + "id": "6a908f9e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "bab2f717", + "id": "b3be3fac", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "4a53b370", + "id": "7f19d55a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "209659fa", + "id": "b4d3770f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.253937Z", - "iopub.status.busy": "2024-07-09T06:26:49.253593Z", - "iopub.status.idle": "2024-07-09T06:26:49.261348Z", - "shell.execute_reply": "2024-07-09T06:26:49.260803Z" + "iopub.execute_input": "2024-07-11T23:30:19.749595Z", + "iopub.status.busy": "2024-07-11T23:30:19.749399Z", + "iopub.status.idle": "2024-07-11T23:30:19.757264Z", + "shell.execute_reply": "2024-07-11T23:30:19.756681Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "c433c793", + "id": "6e8928b8", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "74646b5a", + "id": "d3d07254", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.263459Z", - "iopub.status.busy": "2024-07-09T06:26:49.263127Z", - "iopub.status.idle": "2024-07-09T06:26:49.282109Z", - "shell.execute_reply": "2024-07-09T06:26:49.281556Z" + "iopub.execute_input": "2024-07-11T23:30:19.759479Z", + "iopub.status.busy": "2024-07-11T23:30:19.759147Z", + "iopub.status.idle": "2024-07-11T23:30:19.778475Z", + "shell.execute_reply": "2024-07-11T23:30:19.777978Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "9a0f1590", + "id": "a8c210b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:49.284265Z", - "iopub.status.busy": "2024-07-09T06:26:49.283854Z", - "iopub.status.idle": "2024-07-09T06:26:49.287329Z", - "shell.execute_reply": "2024-07-09T06:26:49.286782Z" + "iopub.execute_input": "2024-07-11T23:30:19.780727Z", + "iopub.status.busy": "2024-07-11T23:30:19.780285Z", + "iopub.status.idle": "2024-07-11T23:30:19.783595Z", + "shell.execute_reply": "2024-07-11T23:30:19.783124Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06e039af78aa4922a7a5727f3929196b": { + "0591fd4eb5cd45ef8d6531b43eb0049a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1675,48 @@ "width": null } }, - "24abf0a07e174ecfb6ec768926bd9a35": { + "0ca1df28d2f54974acc1c60aa2f6f0c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d24b3d0a5d4148aab16f7c5041edcc34", + "placeholder": "​", + "style": "IPY_MODEL_1e47d5846da9416f9663e5b531ee591b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "1d3f528bc6b24baa82e1fbd36df70215": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1e47d5846da9416f9663e5b531ee591b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1693,7 +1734,127 @@ "text_color": null } }, - "2b835234c6594eaa9d659e33328d4ec6": { + "251a33187aa94b1aa4699b49955d8a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0ca1df28d2f54974acc1c60aa2f6f0c4", + "IPY_MODEL_c4a6d9097c5d406884257c785cb32651", + "IPY_MODEL_29c365a7f7b14ecfa29f403bea0f1a68" + ], + "layout": "IPY_MODEL_ef07231bab74412c90b67fa685b78748", + "tabbable": null, + "tooltip": null + } + }, + "29c365a7f7b14ecfa29f403bea0f1a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5674f7be42a41deb9cb07e4a84a2b29", + "placeholder": "​", + "style": "IPY_MODEL_2d5009b0ae9d4048aeb908da37f082d2", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1018306.83it/s]" + } + }, + "2d5009b0ae9d4048aeb908da37f082d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3fda85302ee1491199f4f4c65e4bcf91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4f89245d109e4e77af953572b3feb551": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54bec5aadcd74d59a9ff64eb0659ec9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e26cc178077645dd939cef214bcc45a7", + "placeholder": "​", + "style": "IPY_MODEL_d2f171bdcd77465fa33736e170b60bc1", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "567474096a2e4f01adcc1ae4ef797a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1746,80 +1907,57 @@ "width": null } }, - "3e1a0cbaae1e45e19806d88ecdce7389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", - "IPY_MODEL_d3065c15065244f0a790856a85909914", - "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" - ], - "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", - "tabbable": null, - "tooltip": null - } - }, - "49c52b91517445ea95a2cdd6bcf7b607": { + "5ef34e95b4074e0f8379225c0d5cee90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", - "placeholder": "​", - "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", + "layout": "IPY_MODEL_567474096a2e4f01adcc1ae4ef797a0e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3fda85302ee1491199f4f4c65e4bcf91", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1540041.86it/s]" + "value": 50.0 } }, - "4a2ecebbfc494ed9b2bada7d47085eaa": { + "691c357de3a04b04a6a63d1b80ba4600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54bec5aadcd74d59a9ff64eb0659ec9b", + "IPY_MODEL_5ef34e95b4074e0f8379225c0d5cee90", + "IPY_MODEL_ed0422d63c8d4d59ac6a32a29a729370" + ], + "layout": "IPY_MODEL_73aecd6fd93c4da9943de0f869686b56", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "4fbbfa9cd03647f4813a04fc8a4abc42": { + "73aecd6fd93c4da9943de0f869686b56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,7 +2010,33 @@ "width": null } }, - "5fcc8c6298f24a3fbf1ca1a58c292bd3": { + "c4a6d9097c5d406884257c785cb32651": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff046e1328004b7fb6c1d7656c1bb099", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f89245d109e4e77af953572b3feb551", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "d24b3d0a5d4148aab16f7c5041edcc34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,7 +2089,25 @@ "width": null } }, - "66c7a500b9334da2b1849d287af9b402": { + "d2f171bdcd77465fa33736e170b60bc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e26cc178077645dd939cef214bcc45a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,49 +2160,7 @@ "width": null } }, - "684088a7b56b4b3aa39b109dfa860ac6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", - "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", - "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" - ], - "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", - "tabbable": null, - "tooltip": null - } - }, - "6a7594e4ad2a4a2f97e56b5e1a6a9890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7420a4a93f6b475c9704a92f12d85f23": { + "ed0422d63c8d4d59ac6a32a29a729370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2035,15 +2175,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", + "layout": "IPY_MODEL_0591fd4eb5cd45ef8d6531b43eb0049a", "placeholder": "​", - "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", + "style": "IPY_MODEL_1d3f528bc6b24baa82e1fbd36df70215", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1046300.30it/s]" + "value": " 10000/? [00:00<00:00, 1353044.94it/s]" } }, - "7ec4490b5e064efd8d912a372922e930": { + "ef07231bab74412c90b67fa685b78748": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2096,23 +2236,7 @@ "width": null } }, - "8d038adf74b94c00ba237beeafd03a45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b618cbdb66e74802ac612b08fdd271ca": { + "f5674f7be42a41deb9cb07e4a84a2b29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2165,7 +2289,7 @@ "width": null } }, - "bf6180ca73df49bea8de92466f822aab": { + "ff046e1328004b7fb6c1d7656c1bb099": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2217,130 +2341,6 @@ "visibility": null, "width": null } - }, - "c26ba877617a46b5983aa98f97f6f4e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d3065c15065244f0a790856a85909914": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "e22f6064eadd4807ae9f756d8590121c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e2ae6b9df4f8490b96524164e46e65fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", - "placeholder": "​", - "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ea0eb1e345874ebda4377832a5d148a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", - "placeholder": "​", - "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "ecb5b9b407b34ccdac02fdba74200b01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 1a1804c33..5bc7a9322 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:53.572917Z", - "iopub.status.busy": "2024-07-09T06:26:53.572738Z", - "iopub.status.idle": "2024-07-09T06:26:54.710376Z", - "shell.execute_reply": "2024-07-09T06:26:54.709717Z" + "iopub.execute_input": "2024-07-11T23:30:23.188652Z", + "iopub.status.busy": "2024-07-11T23:30:23.188483Z", + "iopub.status.idle": "2024-07-11T23:30:24.378195Z", + "shell.execute_reply": "2024-07-11T23:30:24.377594Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.713150Z", - "iopub.status.busy": "2024-07-09T06:26:54.712711Z", - "iopub.status.idle": "2024-07-09T06:26:54.717207Z", - "shell.execute_reply": "2024-07-09T06:26:54.716666Z" + "iopub.execute_input": "2024-07-11T23:30:24.380776Z", + "iopub.status.busy": "2024-07-11T23:30:24.380375Z", + "iopub.status.idle": "2024-07-11T23:30:24.384076Z", + "shell.execute_reply": "2024-07-11T23:30:24.383621Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.719478Z", - "iopub.status.busy": "2024-07-09T06:26:54.719131Z", - "iopub.status.idle": "2024-07-09T06:26:54.915038Z", - "shell.execute_reply": "2024-07-09T06:26:54.914515Z" + "iopub.execute_input": "2024-07-11T23:30:24.386255Z", + "iopub.status.busy": "2024-07-11T23:30:24.385894Z", + "iopub.status.idle": "2024-07-11T23:30:24.661502Z", + "shell.execute_reply": "2024-07-11T23:30:24.660982Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.917264Z", - "iopub.status.busy": "2024-07-09T06:26:54.916924Z", - "iopub.status.idle": "2024-07-09T06:26:54.922778Z", - "shell.execute_reply": "2024-07-09T06:26:54.922239Z" + "iopub.execute_input": "2024-07-11T23:30:24.663704Z", + "iopub.status.busy": "2024-07-11T23:30:24.663405Z", + "iopub.status.idle": "2024-07-11T23:30:24.669218Z", + "shell.execute_reply": "2024-07-11T23:30:24.668753Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.925001Z", - "iopub.status.busy": "2024-07-09T06:26:54.924597Z", - "iopub.status.idle": "2024-07-09T06:26:54.931679Z", - "shell.execute_reply": "2024-07-09T06:26:54.931113Z" + "iopub.execute_input": "2024-07-11T23:30:24.671444Z", + "iopub.status.busy": "2024-07-11T23:30:24.671086Z", + "iopub.status.idle": "2024-07-11T23:30:24.677899Z", + "shell.execute_reply": "2024-07-11T23:30:24.677433Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.933695Z", - "iopub.status.busy": "2024-07-09T06:26:54.933374Z", - "iopub.status.idle": "2024-07-09T06:26:54.937844Z", - "shell.execute_reply": "2024-07-09T06:26:54.937411Z" + "iopub.execute_input": "2024-07-11T23:30:24.679931Z", + "iopub.status.busy": "2024-07-11T23:30:24.679592Z", + "iopub.status.idle": "2024-07-11T23:30:24.684402Z", + "shell.execute_reply": "2024-07-11T23:30:24.683875Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.939828Z", - "iopub.status.busy": "2024-07-09T06:26:54.939504Z", - "iopub.status.idle": "2024-07-09T06:26:54.945245Z", - "shell.execute_reply": "2024-07-09T06:26:54.944792Z" + "iopub.execute_input": "2024-07-11T23:30:24.686431Z", + "iopub.status.busy": "2024-07-11T23:30:24.686096Z", + "iopub.status.idle": "2024-07-11T23:30:24.691640Z", + "shell.execute_reply": "2024-07-11T23:30:24.691191Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.947250Z", - "iopub.status.busy": "2024-07-09T06:26:54.946896Z", - "iopub.status.idle": "2024-07-09T06:26:54.950932Z", - "shell.execute_reply": "2024-07-09T06:26:54.950488Z" + "iopub.execute_input": "2024-07-11T23:30:24.693642Z", + "iopub.status.busy": "2024-07-11T23:30:24.693369Z", + "iopub.status.idle": "2024-07-11T23:30:24.697249Z", + "shell.execute_reply": "2024-07-11T23:30:24.696802Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:54.952888Z", - "iopub.status.busy": "2024-07-09T06:26:54.952594Z", - "iopub.status.idle": "2024-07-09T06:26:55.016618Z", - "shell.execute_reply": "2024-07-09T06:26:55.015980Z" + "iopub.execute_input": "2024-07-11T23:30:24.699250Z", + "iopub.status.busy": "2024-07-11T23:30:24.698915Z", + "iopub.status.idle": "2024-07-11T23:30:24.764580Z", + "shell.execute_reply": "2024-07-11T23:30:24.763955Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.019431Z", - "iopub.status.busy": "2024-07-09T06:26:55.018865Z", - "iopub.status.idle": "2024-07-09T06:26:55.029533Z", - "shell.execute_reply": "2024-07-09T06:26:55.029057Z" + "iopub.execute_input": "2024-07-11T23:30:24.767272Z", + "iopub.status.busy": "2024-07-11T23:30:24.767059Z", + "iopub.status.idle": "2024-07-11T23:30:24.779673Z", + "shell.execute_reply": "2024-07-11T23:30:24.779172Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.032677Z", - "iopub.status.busy": "2024-07-09T06:26:55.031768Z", - "iopub.status.idle": "2024-07-09T06:26:55.053007Z", - "shell.execute_reply": "2024-07-09T06:26:55.052525Z" + "iopub.execute_input": "2024-07-11T23:30:24.783317Z", + "iopub.status.busy": "2024-07-11T23:30:24.782169Z", + "iopub.status.idle": "2024-07-11T23:30:24.804583Z", + "shell.execute_reply": "2024-07-11T23:30:24.803960Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.056439Z", - "iopub.status.busy": "2024-07-09T06:26:55.055527Z", - "iopub.status.idle": "2024-07-09T06:26:55.061337Z", - "shell.execute_reply": "2024-07-09T06:26:55.060850Z" + "iopub.execute_input": "2024-07-11T23:30:24.807330Z", + "iopub.status.busy": "2024-07-11T23:30:24.806950Z", + "iopub.status.idle": "2024-07-11T23:30:24.812849Z", + "shell.execute_reply": "2024-07-11T23:30:24.812354Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.064742Z", - "iopub.status.busy": "2024-07-09T06:26:55.063844Z", - "iopub.status.idle": "2024-07-09T06:26:55.069832Z", - "shell.execute_reply": "2024-07-09T06:26:55.069351Z" + "iopub.execute_input": "2024-07-11T23:30:24.815713Z", + "iopub.status.busy": "2024-07-11T23:30:24.815334Z", + "iopub.status.idle": "2024-07-11T23:30:24.821427Z", + "shell.execute_reply": "2024-07-11T23:30:24.820928Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.073279Z", - "iopub.status.busy": "2024-07-09T06:26:55.072375Z", - "iopub.status.idle": "2024-07-09T06:26:55.083605Z", - "shell.execute_reply": "2024-07-09T06:26:55.083211Z" + "iopub.execute_input": "2024-07-11T23:30:24.824377Z", + "iopub.status.busy": "2024-07-11T23:30:24.823898Z", + "iopub.status.idle": "2024-07-11T23:30:24.833236Z", + "shell.execute_reply": "2024-07-11T23:30:24.832804Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.086287Z", - "iopub.status.busy": "2024-07-09T06:26:55.085572Z", - "iopub.status.idle": "2024-07-09T06:26:55.090541Z", - "shell.execute_reply": "2024-07-09T06:26:55.090006Z" + "iopub.execute_input": "2024-07-11T23:30:24.835400Z", + "iopub.status.busy": "2024-07-11T23:30:24.835046Z", + "iopub.status.idle": "2024-07-11T23:30:24.839604Z", + "shell.execute_reply": "2024-07-11T23:30:24.839197Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.092949Z", - "iopub.status.busy": "2024-07-09T06:26:55.092629Z", - "iopub.status.idle": "2024-07-09T06:26:55.197433Z", - "shell.execute_reply": "2024-07-09T06:26:55.196909Z" + "iopub.execute_input": "2024-07-11T23:30:24.841836Z", + "iopub.status.busy": "2024-07-11T23:30:24.841401Z", + "iopub.status.idle": "2024-07-11T23:30:24.954300Z", + "shell.execute_reply": "2024-07-11T23:30:24.953648Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.199599Z", - "iopub.status.busy": "2024-07-09T06:26:55.199328Z", - "iopub.status.idle": "2024-07-09T06:26:55.205311Z", - "shell.execute_reply": "2024-07-09T06:26:55.204815Z" + "iopub.execute_input": "2024-07-11T23:30:24.957030Z", + "iopub.status.busy": "2024-07-11T23:30:24.956636Z", + "iopub.status.idle": "2024-07-11T23:30:24.963863Z", + "shell.execute_reply": "2024-07-11T23:30:24.963368Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:55.207624Z", - "iopub.status.busy": "2024-07-09T06:26:55.207315Z", - "iopub.status.idle": "2024-07-09T06:26:57.128251Z", - "shell.execute_reply": "2024-07-09T06:26:57.127642Z" + "iopub.execute_input": "2024-07-11T23:30:24.966401Z", + "iopub.status.busy": "2024-07-11T23:30:24.966004Z", + "iopub.status.idle": "2024-07-11T23:30:27.020806Z", + "shell.execute_reply": "2024-07-11T23:30:27.020161Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.131390Z", - "iopub.status.busy": "2024-07-09T06:26:57.130806Z", - "iopub.status.idle": "2024-07-09T06:26:57.144118Z", - "shell.execute_reply": "2024-07-09T06:26:57.143599Z" + "iopub.execute_input": "2024-07-11T23:30:27.024340Z", + "iopub.status.busy": "2024-07-11T23:30:27.023084Z", + "iopub.status.idle": "2024-07-11T23:30:27.038209Z", + "shell.execute_reply": "2024-07-11T23:30:27.037679Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.146831Z", - "iopub.status.busy": "2024-07-09T06:26:57.146463Z", - "iopub.status.idle": "2024-07-09T06:26:57.149377Z", - "shell.execute_reply": "2024-07-09T06:26:57.148891Z" + "iopub.execute_input": "2024-07-11T23:30:27.041739Z", + "iopub.status.busy": "2024-07-11T23:30:27.040786Z", + "iopub.status.idle": "2024-07-11T23:30:27.044827Z", + "shell.execute_reply": "2024-07-11T23:30:27.044330Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.151654Z", - "iopub.status.busy": "2024-07-09T06:26:57.151283Z", - "iopub.status.idle": "2024-07-09T06:26:57.155840Z", - "shell.execute_reply": "2024-07-09T06:26:57.155317Z" + "iopub.execute_input": "2024-07-11T23:30:27.048287Z", + "iopub.status.busy": "2024-07-11T23:30:27.047359Z", + "iopub.status.idle": "2024-07-11T23:30:27.052926Z", + "shell.execute_reply": "2024-07-11T23:30:27.052408Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.158157Z", - "iopub.status.busy": "2024-07-09T06:26:57.157788Z", - "iopub.status.idle": "2024-07-09T06:26:57.167772Z", - "shell.execute_reply": "2024-07-09T06:26:57.167300Z" + "iopub.execute_input": "2024-07-11T23:30:27.056436Z", + "iopub.status.busy": "2024-07-11T23:30:27.055503Z", + "iopub.status.idle": "2024-07-11T23:30:27.067420Z", + "shell.execute_reply": "2024-07-11T23:30:27.066930Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.170046Z", - "iopub.status.busy": "2024-07-09T06:26:57.169694Z", - "iopub.status.idle": "2024-07-09T06:26:57.642079Z", - "shell.execute_reply": "2024-07-09T06:26:57.641537Z" + "iopub.execute_input": "2024-07-11T23:30:27.070842Z", + "iopub.status.busy": "2024-07-11T23:30:27.069889Z", + "iopub.status.idle": "2024-07-11T23:30:27.609004Z", + "shell.execute_reply": "2024-07-11T23:30:27.608435Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.644886Z", - "iopub.status.busy": "2024-07-09T06:26:57.644506Z", - "iopub.status.idle": "2024-07-09T06:26:57.765208Z", - "shell.execute_reply": "2024-07-09T06:26:57.764592Z" + "iopub.execute_input": "2024-07-11T23:30:27.612582Z", + "iopub.status.busy": "2024-07-11T23:30:27.611508Z", + "iopub.status.idle": "2024-07-11T23:30:27.747332Z", + "shell.execute_reply": "2024-07-11T23:30:27.746630Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.767934Z", - "iopub.status.busy": "2024-07-09T06:26:57.767539Z", - "iopub.status.idle": "2024-07-09T06:26:57.774227Z", - "shell.execute_reply": "2024-07-09T06:26:57.773733Z" + "iopub.execute_input": "2024-07-11T23:30:27.751147Z", + "iopub.status.busy": "2024-07-11T23:30:27.750174Z", + "iopub.status.idle": "2024-07-11T23:30:27.758952Z", + "shell.execute_reply": "2024-07-11T23:30:27.758433Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.777381Z", - "iopub.status.busy": "2024-07-09T06:26:57.776332Z", - "iopub.status.idle": "2024-07-09T06:26:57.784838Z", - "shell.execute_reply": "2024-07-09T06:26:57.784346Z" + "iopub.execute_input": "2024-07-11T23:30:27.762558Z", + "iopub.status.busy": "2024-07-11T23:30:27.761599Z", + "iopub.status.idle": "2024-07-11T23:30:27.769609Z", + "shell.execute_reply": "2024-07-11T23:30:27.769099Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.788740Z", - "iopub.status.busy": "2024-07-09T06:26:57.787559Z", - "iopub.status.idle": "2024-07-09T06:26:57.795543Z", - "shell.execute_reply": "2024-07-09T06:26:57.795055Z" + "iopub.execute_input": "2024-07-11T23:30:27.773109Z", + "iopub.status.busy": "2024-07-11T23:30:27.772177Z", + "iopub.status.idle": "2024-07-11T23:30:27.779528Z", + "shell.execute_reply": "2024-07-11T23:30:27.779029Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.799183Z", - "iopub.status.busy": "2024-07-09T06:26:57.798006Z", - "iopub.status.idle": "2024-07-09T06:26:57.804472Z", - "shell.execute_reply": "2024-07-09T06:26:57.803989Z" + "iopub.execute_input": "2024-07-11T23:30:27.783001Z", + "iopub.status.busy": "2024-07-11T23:30:27.782081Z", + "iopub.status.idle": "2024-07-11T23:30:27.788134Z", + "shell.execute_reply": "2024-07-11T23:30:27.787639Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.808096Z", - "iopub.status.busy": "2024-07-09T06:26:57.807195Z", - "iopub.status.idle": "2024-07-09T06:26:57.812308Z", - "shell.execute_reply": "2024-07-09T06:26:57.811777Z" + "iopub.execute_input": "2024-07-11T23:30:27.790681Z", + "iopub.status.busy": "2024-07-11T23:30:27.790503Z", + "iopub.status.idle": "2024-07-11T23:30:27.796116Z", + "shell.execute_reply": "2024-07-11T23:30:27.795499Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.814541Z", - "iopub.status.busy": "2024-07-09T06:26:57.814291Z", - "iopub.status.idle": "2024-07-09T06:26:57.894429Z", - "shell.execute_reply": "2024-07-09T06:26:57.893893Z" + "iopub.execute_input": "2024-07-11T23:30:27.798287Z", + "iopub.status.busy": "2024-07-11T23:30:27.798109Z", + "iopub.status.idle": "2024-07-11T23:30:27.878742Z", + "shell.execute_reply": "2024-07-11T23:30:27.878179Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.896631Z", - "iopub.status.busy": "2024-07-09T06:26:57.896354Z", - "iopub.status.idle": "2024-07-09T06:26:57.906205Z", - "shell.execute_reply": "2024-07-09T06:26:57.905633Z" + "iopub.execute_input": "2024-07-11T23:30:27.881131Z", + "iopub.status.busy": "2024-07-11T23:30:27.880774Z", + "iopub.status.idle": "2024-07-11T23:30:27.890590Z", + "shell.execute_reply": "2024-07-11T23:30:27.890042Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.910159Z", - "iopub.status.busy": "2024-07-09T06:26:57.909684Z", - "iopub.status.idle": "2024-07-09T06:26:57.912488Z", - "shell.execute_reply": "2024-07-09T06:26:57.912033Z" + "iopub.execute_input": "2024-07-11T23:30:27.893705Z", + "iopub.status.busy": "2024-07-11T23:30:27.892918Z", + "iopub.status.idle": "2024-07-11T23:30:27.896299Z", + "shell.execute_reply": "2024-07-11T23:30:27.895855Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.914998Z", - "iopub.status.busy": "2024-07-09T06:26:57.914575Z", - "iopub.status.idle": "2024-07-09T06:26:57.923907Z", - "shell.execute_reply": "2024-07-09T06:26:57.923469Z" + "iopub.execute_input": "2024-07-11T23:30:27.898408Z", + "iopub.status.busy": "2024-07-11T23:30:27.898077Z", + "iopub.status.idle": "2024-07-11T23:30:27.908114Z", + "shell.execute_reply": "2024-07-11T23:30:27.907670Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.925928Z", - "iopub.status.busy": "2024-07-09T06:26:57.925621Z", - "iopub.status.idle": "2024-07-09T06:26:57.932179Z", - "shell.execute_reply": "2024-07-09T06:26:57.931737Z" + "iopub.execute_input": "2024-07-11T23:30:27.910112Z", + "iopub.status.busy": "2024-07-11T23:30:27.909895Z", + "iopub.status.idle": "2024-07-11T23:30:27.916369Z", + "shell.execute_reply": "2024-07-11T23:30:27.915911Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.934245Z", - "iopub.status.busy": "2024-07-09T06:26:57.933861Z", - "iopub.status.idle": "2024-07-09T06:26:57.937104Z", - "shell.execute_reply": "2024-07-09T06:26:57.936671Z" + "iopub.execute_input": "2024-07-11T23:30:27.918412Z", + "iopub.status.busy": "2024-07-11T23:30:27.918060Z", + "iopub.status.idle": "2024-07-11T23:30:27.921488Z", + "shell.execute_reply": "2024-07-11T23:30:27.921009Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:26:57.938975Z", - "iopub.status.busy": "2024-07-09T06:26:57.938647Z", - "iopub.status.idle": "2024-07-09T06:27:01.641872Z", - "shell.execute_reply": "2024-07-09T06:27:01.641360Z" + "iopub.execute_input": "2024-07-11T23:30:27.923536Z", + "iopub.status.busy": "2024-07-11T23:30:27.923220Z", + "iopub.status.idle": "2024-07-11T23:30:31.984648Z", + "shell.execute_reply": "2024-07-11T23:30:31.984103Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:01.644959Z", - "iopub.status.busy": "2024-07-09T06:27:01.644089Z", - "iopub.status.idle": "2024-07-09T06:27:01.648019Z", - "shell.execute_reply": "2024-07-09T06:27:01.647564Z" + "iopub.execute_input": "2024-07-11T23:30:31.988318Z", + "iopub.status.busy": "2024-07-11T23:30:31.987392Z", + "iopub.status.idle": "2024-07-11T23:30:31.991474Z", + "shell.execute_reply": "2024-07-11T23:30:31.991025Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:01.649958Z", - "iopub.status.busy": "2024-07-09T06:27:01.649677Z", - "iopub.status.idle": "2024-07-09T06:27:01.652295Z", - "shell.execute_reply": "2024-07-09T06:27:01.651802Z" + "iopub.execute_input": "2024-07-11T23:30:31.993646Z", + "iopub.status.busy": "2024-07-11T23:30:31.993285Z", + "iopub.status.idle": "2024-07-11T23:30:31.997047Z", + "shell.execute_reply": "2024-07-11T23:30:31.996453Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index e7571dfc6..bbdde88ee 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:04.830463Z", - "iopub.status.busy": "2024-07-09T06:27:04.830294Z", - "iopub.status.idle": "2024-07-09T06:27:06.025206Z", - "shell.execute_reply": "2024-07-09T06:27:06.024596Z" + "iopub.execute_input": "2024-07-11T23:30:35.264803Z", + "iopub.status.busy": "2024-07-11T23:30:35.264307Z", + "iopub.status.idle": "2024-07-11T23:30:36.493496Z", + "shell.execute_reply": "2024-07-11T23:30:36.492965Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.027800Z", - "iopub.status.busy": "2024-07-09T06:27:06.027471Z", - "iopub.status.idle": "2024-07-09T06:27:06.212766Z", - "shell.execute_reply": "2024-07-09T06:27:06.212206Z" + "iopub.execute_input": "2024-07-11T23:30:36.496092Z", + "iopub.status.busy": "2024-07-11T23:30:36.495634Z", + "iopub.status.idle": "2024-07-11T23:30:36.685025Z", + "shell.execute_reply": "2024-07-11T23:30:36.684501Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.215365Z", - "iopub.status.busy": "2024-07-09T06:27:06.215033Z", - "iopub.status.idle": "2024-07-09T06:27:06.226517Z", - "shell.execute_reply": "2024-07-09T06:27:06.226088Z" + "iopub.execute_input": "2024-07-11T23:30:36.687632Z", + "iopub.status.busy": "2024-07-11T23:30:36.687336Z", + "iopub.status.idle": "2024-07-11T23:30:36.699138Z", + "shell.execute_reply": "2024-07-11T23:30:36.698702Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.228721Z", - "iopub.status.busy": "2024-07-09T06:27:06.228284Z", - "iopub.status.idle": "2024-07-09T06:27:06.463202Z", - "shell.execute_reply": "2024-07-09T06:27:06.462603Z" + "iopub.execute_input": "2024-07-11T23:30:36.701167Z", + "iopub.status.busy": "2024-07-11T23:30:36.700820Z", + "iopub.status.idle": "2024-07-11T23:30:36.942197Z", + "shell.execute_reply": "2024-07-11T23:30:36.941542Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.465737Z", - "iopub.status.busy": "2024-07-09T06:27:06.465380Z", - "iopub.status.idle": "2024-07-09T06:27:06.491353Z", - "shell.execute_reply": "2024-07-09T06:27:06.490841Z" + "iopub.execute_input": "2024-07-11T23:30:36.944497Z", + "iopub.status.busy": "2024-07-11T23:30:36.944303Z", + "iopub.status.idle": "2024-07-11T23:30:36.970585Z", + "shell.execute_reply": "2024-07-11T23:30:36.970080Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:06.493408Z", - "iopub.status.busy": "2024-07-09T06:27:06.493075Z", - "iopub.status.idle": "2024-07-09T06:27:08.559484Z", - "shell.execute_reply": "2024-07-09T06:27:08.558857Z" + "iopub.execute_input": "2024-07-11T23:30:36.972931Z", + "iopub.status.busy": "2024-07-11T23:30:36.972732Z", + "iopub.status.idle": "2024-07-11T23:30:39.218576Z", + "shell.execute_reply": "2024-07-11T23:30:39.217861Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:08.561982Z", - "iopub.status.busy": "2024-07-09T06:27:08.561454Z", - "iopub.status.idle": "2024-07-09T06:27:08.579506Z", - "shell.execute_reply": "2024-07-09T06:27:08.578938Z" + "iopub.execute_input": "2024-07-11T23:30:39.221370Z", + "iopub.status.busy": "2024-07-11T23:30:39.220809Z", + "iopub.status.idle": "2024-07-11T23:30:39.239032Z", + "shell.execute_reply": "2024-07-11T23:30:39.238501Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:08.581768Z", - "iopub.status.busy": "2024-07-09T06:27:08.581433Z", - "iopub.status.idle": "2024-07-09T06:27:10.041147Z", - "shell.execute_reply": "2024-07-09T06:27:10.040535Z" + "iopub.execute_input": "2024-07-11T23:30:39.241335Z", + "iopub.status.busy": "2024-07-11T23:30:39.240848Z", + "iopub.status.idle": "2024-07-11T23:30:40.875594Z", + "shell.execute_reply": "2024-07-11T23:30:40.874942Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.043766Z", - "iopub.status.busy": "2024-07-09T06:27:10.043148Z", - "iopub.status.idle": "2024-07-09T06:27:10.056923Z", - "shell.execute_reply": "2024-07-09T06:27:10.056388Z" + "iopub.execute_input": "2024-07-11T23:30:40.878730Z", + "iopub.status.busy": "2024-07-11T23:30:40.877863Z", + "iopub.status.idle": "2024-07-11T23:30:40.891772Z", + "shell.execute_reply": "2024-07-11T23:30:40.891273Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.059184Z", - "iopub.status.busy": "2024-07-09T06:27:10.058724Z", - "iopub.status.idle": "2024-07-09T06:27:10.131352Z", - "shell.execute_reply": "2024-07-09T06:27:10.130748Z" + "iopub.execute_input": "2024-07-11T23:30:40.894007Z", + "iopub.status.busy": "2024-07-11T23:30:40.893665Z", + "iopub.status.idle": "2024-07-11T23:30:40.981651Z", + "shell.execute_reply": "2024-07-11T23:30:40.981069Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.133987Z", - "iopub.status.busy": "2024-07-09T06:27:10.133447Z", - "iopub.status.idle": "2024-07-09T06:27:10.342019Z", - "shell.execute_reply": "2024-07-09T06:27:10.341476Z" + "iopub.execute_input": "2024-07-11T23:30:40.984135Z", + "iopub.status.busy": "2024-07-11T23:30:40.983728Z", + "iopub.status.idle": "2024-07-11T23:30:41.195885Z", + "shell.execute_reply": "2024-07-11T23:30:41.195212Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.344306Z", - "iopub.status.busy": "2024-07-09T06:27:10.343957Z", - "iopub.status.idle": "2024-07-09T06:27:10.361242Z", - "shell.execute_reply": "2024-07-09T06:27:10.360779Z" + "iopub.execute_input": "2024-07-11T23:30:41.198369Z", + "iopub.status.busy": "2024-07-11T23:30:41.197997Z", + "iopub.status.idle": "2024-07-11T23:30:41.215862Z", + "shell.execute_reply": "2024-07-11T23:30:41.215283Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.363517Z", - "iopub.status.busy": "2024-07-09T06:27:10.363117Z", - "iopub.status.idle": "2024-07-09T06:27:10.372893Z", - "shell.execute_reply": "2024-07-09T06:27:10.372453Z" + "iopub.execute_input": "2024-07-11T23:30:41.218216Z", + "iopub.status.busy": "2024-07-11T23:30:41.217763Z", + "iopub.status.idle": "2024-07-11T23:30:41.227794Z", + "shell.execute_reply": "2024-07-11T23:30:41.227344Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.375119Z", - "iopub.status.busy": "2024-07-09T06:27:10.374773Z", - "iopub.status.idle": "2024-07-09T06:27:10.461355Z", - "shell.execute_reply": "2024-07-09T06:27:10.460793Z" + "iopub.execute_input": "2024-07-11T23:30:41.229840Z", + "iopub.status.busy": "2024-07-11T23:30:41.229567Z", + "iopub.status.idle": "2024-07-11T23:30:41.328903Z", + "shell.execute_reply": "2024-07-11T23:30:41.328287Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.463772Z", - "iopub.status.busy": "2024-07-09T06:27:10.463410Z", - "iopub.status.idle": "2024-07-09T06:27:10.595934Z", - "shell.execute_reply": "2024-07-09T06:27:10.595287Z" + "iopub.execute_input": "2024-07-11T23:30:41.331534Z", + "iopub.status.busy": "2024-07-11T23:30:41.331213Z", + "iopub.status.idle": "2024-07-11T23:30:41.475505Z", + "shell.execute_reply": "2024-07-11T23:30:41.474914Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.598470Z", - "iopub.status.busy": "2024-07-09T06:27:10.598089Z", - "iopub.status.idle": "2024-07-09T06:27:10.601819Z", - "shell.execute_reply": "2024-07-09T06:27:10.601299Z" + "iopub.execute_input": "2024-07-11T23:30:41.478006Z", + "iopub.status.busy": "2024-07-11T23:30:41.477608Z", + "iopub.status.idle": "2024-07-11T23:30:41.481745Z", + "shell.execute_reply": "2024-07-11T23:30:41.481221Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.603912Z", - "iopub.status.busy": "2024-07-09T06:27:10.603638Z", - "iopub.status.idle": "2024-07-09T06:27:10.607432Z", - "shell.execute_reply": "2024-07-09T06:27:10.606860Z" + "iopub.execute_input": "2024-07-11T23:30:41.483979Z", + "iopub.status.busy": "2024-07-11T23:30:41.483636Z", + "iopub.status.idle": "2024-07-11T23:30:41.487356Z", + "shell.execute_reply": "2024-07-11T23:30:41.486793Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.609489Z", - "iopub.status.busy": "2024-07-09T06:27:10.609167Z", - "iopub.status.idle": "2024-07-09T06:27:10.645674Z", - "shell.execute_reply": "2024-07-09T06:27:10.645104Z" + "iopub.execute_input": "2024-07-11T23:30:41.489482Z", + "iopub.status.busy": "2024-07-11T23:30:41.489145Z", + "iopub.status.idle": "2024-07-11T23:30:41.525559Z", + "shell.execute_reply": "2024-07-11T23:30:41.525078Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.647737Z", - "iopub.status.busy": "2024-07-09T06:27:10.647426Z", - "iopub.status.idle": "2024-07-09T06:27:10.688357Z", - "shell.execute_reply": "2024-07-09T06:27:10.687867Z" + "iopub.execute_input": "2024-07-11T23:30:41.527582Z", + "iopub.status.busy": "2024-07-11T23:30:41.527331Z", + "iopub.status.idle": "2024-07-11T23:30:41.568384Z", + "shell.execute_reply": "2024-07-11T23:30:41.567799Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.690497Z", - "iopub.status.busy": "2024-07-09T06:27:10.690152Z", - "iopub.status.idle": "2024-07-09T06:27:10.784906Z", - "shell.execute_reply": "2024-07-09T06:27:10.784195Z" + "iopub.execute_input": "2024-07-11T23:30:41.570470Z", + "iopub.status.busy": "2024-07-11T23:30:41.570127Z", + "iopub.status.idle": "2024-07-11T23:30:41.675540Z", + "shell.execute_reply": "2024-07-11T23:30:41.674905Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.787438Z", - "iopub.status.busy": "2024-07-09T06:27:10.787205Z", - "iopub.status.idle": "2024-07-09T06:27:10.875324Z", - "shell.execute_reply": "2024-07-09T06:27:10.874533Z" + "iopub.execute_input": "2024-07-11T23:30:41.678360Z", + "iopub.status.busy": "2024-07-11T23:30:41.677952Z", + "iopub.status.idle": "2024-07-11T23:30:41.789805Z", + "shell.execute_reply": "2024-07-11T23:30:41.789236Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:10.877938Z", - "iopub.status.busy": "2024-07-09T06:27:10.877489Z", - "iopub.status.idle": "2024-07-09T06:27:11.089399Z", - "shell.execute_reply": "2024-07-09T06:27:11.088722Z" + "iopub.execute_input": "2024-07-11T23:30:41.792356Z", + "iopub.status.busy": "2024-07-11T23:30:41.791985Z", + "iopub.status.idle": "2024-07-11T23:30:42.004049Z", + "shell.execute_reply": "2024-07-11T23:30:42.003388Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.091873Z", - "iopub.status.busy": "2024-07-09T06:27:11.091658Z", - "iopub.status.idle": "2024-07-09T06:27:11.278736Z", - "shell.execute_reply": "2024-07-09T06:27:11.278122Z" + "iopub.execute_input": "2024-07-11T23:30:42.006376Z", + "iopub.status.busy": "2024-07-11T23:30:42.006024Z", + "iopub.status.idle": "2024-07-11T23:30:42.245802Z", + "shell.execute_reply": "2024-07-11T23:30:42.245141Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.281105Z", - "iopub.status.busy": "2024-07-09T06:27:11.280730Z", - "iopub.status.idle": "2024-07-09T06:27:11.286566Z", - "shell.execute_reply": "2024-07-09T06:27:11.286117Z" + "iopub.execute_input": "2024-07-11T23:30:42.248377Z", + "iopub.status.busy": "2024-07-11T23:30:42.248113Z", + "iopub.status.idle": "2024-07-11T23:30:42.254532Z", + "shell.execute_reply": "2024-07-11T23:30:42.254003Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.288560Z", - "iopub.status.busy": "2024-07-09T06:27:11.288235Z", - "iopub.status.idle": "2024-07-09T06:27:11.502240Z", - "shell.execute_reply": "2024-07-09T06:27:11.501640Z" + "iopub.execute_input": "2024-07-11T23:30:42.256644Z", + "iopub.status.busy": "2024-07-11T23:30:42.256283Z", + "iopub.status.idle": "2024-07-11T23:30:42.476429Z", + "shell.execute_reply": "2024-07-11T23:30:42.475835Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:11.504499Z", - "iopub.status.busy": "2024-07-09T06:27:11.504154Z", - "iopub.status.idle": "2024-07-09T06:27:12.558282Z", - "shell.execute_reply": "2024-07-09T06:27:12.557776Z" + "iopub.execute_input": "2024-07-11T23:30:42.478972Z", + "iopub.status.busy": "2024-07-11T23:30:42.478563Z", + "iopub.status.idle": "2024-07-11T23:30:43.537855Z", + "shell.execute_reply": "2024-07-11T23:30:43.537283Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 345a175cf..88b42a00a 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:15.909512Z", - "iopub.status.busy": "2024-07-09T06:27:15.909333Z", - "iopub.status.idle": "2024-07-09T06:27:17.025416Z", - "shell.execute_reply": "2024-07-09T06:27:17.024860Z" + "iopub.execute_input": "2024-07-11T23:30:47.295987Z", + "iopub.status.busy": "2024-07-11T23:30:47.295827Z", + "iopub.status.idle": "2024-07-11T23:30:48.446213Z", + "shell.execute_reply": "2024-07-11T23:30:48.445550Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.028078Z", - "iopub.status.busy": "2024-07-09T06:27:17.027788Z", - "iopub.status.idle": "2024-07-09T06:27:17.031022Z", - "shell.execute_reply": "2024-07-09T06:27:17.030547Z" + "iopub.execute_input": "2024-07-11T23:30:48.448907Z", + "iopub.status.busy": "2024-07-11T23:30:48.448611Z", + "iopub.status.idle": "2024-07-11T23:30:48.451812Z", + "shell.execute_reply": "2024-07-11T23:30:48.451267Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.033112Z", - "iopub.status.busy": "2024-07-09T06:27:17.032789Z", - "iopub.status.idle": "2024-07-09T06:27:17.040343Z", - "shell.execute_reply": "2024-07-09T06:27:17.039908Z" + "iopub.execute_input": "2024-07-11T23:30:48.454124Z", + "iopub.status.busy": "2024-07-11T23:30:48.453781Z", + "iopub.status.idle": "2024-07-11T23:30:48.461885Z", + "shell.execute_reply": "2024-07-11T23:30:48.461345Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.042282Z", - "iopub.status.busy": "2024-07-09T06:27:17.041970Z", - "iopub.status.idle": "2024-07-09T06:27:17.094153Z", - "shell.execute_reply": "2024-07-09T06:27:17.093528Z" + "iopub.execute_input": "2024-07-11T23:30:48.463883Z", + "iopub.status.busy": "2024-07-11T23:30:48.463526Z", + "iopub.status.idle": "2024-07-11T23:30:48.511286Z", + "shell.execute_reply": "2024-07-11T23:30:48.510676Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.096794Z", - "iopub.status.busy": "2024-07-09T06:27:17.096411Z", - "iopub.status.idle": "2024-07-09T06:27:17.113492Z", - "shell.execute_reply": "2024-07-09T06:27:17.113050Z" + "iopub.execute_input": "2024-07-11T23:30:48.513540Z", + "iopub.status.busy": "2024-07-11T23:30:48.513347Z", + "iopub.status.idle": "2024-07-11T23:30:48.530401Z", + "shell.execute_reply": "2024-07-11T23:30:48.529804Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.115656Z", - "iopub.status.busy": "2024-07-09T06:27:17.115325Z", - "iopub.status.idle": "2024-07-09T06:27:17.119055Z", - "shell.execute_reply": "2024-07-09T06:27:17.118574Z" + "iopub.execute_input": "2024-07-11T23:30:48.532498Z", + "iopub.status.busy": "2024-07-11T23:30:48.532194Z", + "iopub.status.idle": "2024-07-11T23:30:48.536102Z", + "shell.execute_reply": "2024-07-11T23:30:48.535541Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.121058Z", - "iopub.status.busy": "2024-07-09T06:27:17.120762Z", - "iopub.status.idle": "2024-07-09T06:27:17.134516Z", - "shell.execute_reply": "2024-07-09T06:27:17.134084Z" + "iopub.execute_input": "2024-07-11T23:30:48.538306Z", + "iopub.status.busy": "2024-07-11T23:30:48.537881Z", + "iopub.status.idle": "2024-07-11T23:30:48.554526Z", + "shell.execute_reply": "2024-07-11T23:30:48.553922Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.136707Z", - "iopub.status.busy": "2024-07-09T06:27:17.136279Z", - "iopub.status.idle": "2024-07-09T06:27:17.162081Z", - "shell.execute_reply": "2024-07-09T06:27:17.161647Z" + "iopub.execute_input": "2024-07-11T23:30:48.556499Z", + "iopub.status.busy": "2024-07-11T23:30:48.556180Z", + "iopub.status.idle": "2024-07-11T23:30:48.581772Z", + "shell.execute_reply": "2024-07-11T23:30:48.581203Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:17.164409Z", - "iopub.status.busy": "2024-07-09T06:27:17.163994Z", - "iopub.status.idle": "2024-07-09T06:27:19.093254Z", - "shell.execute_reply": "2024-07-09T06:27:19.092676Z" + "iopub.execute_input": "2024-07-11T23:30:48.583928Z", + "iopub.status.busy": "2024-07-11T23:30:48.583750Z", + "iopub.status.idle": "2024-07-11T23:30:50.576132Z", + "shell.execute_reply": "2024-07-11T23:30:50.575469Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.095800Z", - "iopub.status.busy": "2024-07-09T06:27:19.095336Z", - "iopub.status.idle": "2024-07-09T06:27:19.102192Z", - "shell.execute_reply": "2024-07-09T06:27:19.101750Z" + "iopub.execute_input": "2024-07-11T23:30:50.578713Z", + "iopub.status.busy": "2024-07-11T23:30:50.578434Z", + "iopub.status.idle": "2024-07-11T23:30:50.585273Z", + "shell.execute_reply": "2024-07-11T23:30:50.584817Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.104190Z", - "iopub.status.busy": "2024-07-09T06:27:19.103866Z", - "iopub.status.idle": "2024-07-09T06:27:19.116533Z", - "shell.execute_reply": "2024-07-09T06:27:19.116058Z" + "iopub.execute_input": "2024-07-11T23:30:50.587265Z", + "iopub.status.busy": "2024-07-11T23:30:50.586948Z", + "iopub.status.idle": "2024-07-11T23:30:50.599514Z", + "shell.execute_reply": "2024-07-11T23:30:50.598967Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.118619Z", - "iopub.status.busy": "2024-07-09T06:27:19.118287Z", - "iopub.status.idle": "2024-07-09T06:27:19.124788Z", - "shell.execute_reply": "2024-07-09T06:27:19.124346Z" + "iopub.execute_input": "2024-07-11T23:30:50.601450Z", + "iopub.status.busy": "2024-07-11T23:30:50.601274Z", + "iopub.status.idle": "2024-07-11T23:30:50.607789Z", + "shell.execute_reply": "2024-07-11T23:30:50.607325Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.126835Z", - "iopub.status.busy": "2024-07-09T06:27:19.126514Z", - "iopub.status.idle": "2024-07-09T06:27:19.129039Z", - "shell.execute_reply": "2024-07-09T06:27:19.128622Z" + "iopub.execute_input": "2024-07-11T23:30:50.609671Z", + "iopub.status.busy": "2024-07-11T23:30:50.609501Z", + "iopub.status.idle": "2024-07-11T23:30:50.612205Z", + "shell.execute_reply": "2024-07-11T23:30:50.611751Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.131096Z", - "iopub.status.busy": "2024-07-09T06:27:19.130774Z", - "iopub.status.idle": "2024-07-09T06:27:19.134005Z", - "shell.execute_reply": "2024-07-09T06:27:19.133516Z" + "iopub.execute_input": "2024-07-11T23:30:50.614165Z", + "iopub.status.busy": "2024-07-11T23:30:50.613975Z", + "iopub.status.idle": "2024-07-11T23:30:50.617541Z", + "shell.execute_reply": "2024-07-11T23:30:50.616991Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.136079Z", - "iopub.status.busy": "2024-07-09T06:27:19.135766Z", - "iopub.status.idle": "2024-07-09T06:27:19.138223Z", - "shell.execute_reply": "2024-07-09T06:27:19.137811Z" + "iopub.execute_input": "2024-07-11T23:30:50.619656Z", + "iopub.status.busy": "2024-07-11T23:30:50.619341Z", + "iopub.status.idle": "2024-07-11T23:30:50.622025Z", + "shell.execute_reply": "2024-07-11T23:30:50.621552Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.140207Z", - "iopub.status.busy": "2024-07-09T06:27:19.139883Z", - "iopub.status.idle": "2024-07-09T06:27:19.144100Z", - "shell.execute_reply": "2024-07-09T06:27:19.143647Z" + "iopub.execute_input": "2024-07-11T23:30:50.623893Z", + "iopub.status.busy": "2024-07-11T23:30:50.623722Z", + "iopub.status.idle": "2024-07-11T23:30:50.627585Z", + "shell.execute_reply": "2024-07-11T23:30:50.627067Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.146159Z", - "iopub.status.busy": "2024-07-09T06:27:19.145854Z", - "iopub.status.idle": "2024-07-09T06:27:19.174449Z", - "shell.execute_reply": "2024-07-09T06:27:19.173890Z" + "iopub.execute_input": "2024-07-11T23:30:50.629785Z", + "iopub.status.busy": "2024-07-11T23:30:50.629309Z", + "iopub.status.idle": "2024-07-11T23:30:50.657785Z", + "shell.execute_reply": "2024-07-11T23:30:50.657301Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:19.177021Z", - "iopub.status.busy": "2024-07-09T06:27:19.176539Z", - "iopub.status.idle": "2024-07-09T06:27:19.181309Z", - "shell.execute_reply": "2024-07-09T06:27:19.180812Z" + "iopub.execute_input": "2024-07-11T23:30:50.659942Z", + "iopub.status.busy": "2024-07-11T23:30:50.659763Z", + "iopub.status.idle": "2024-07-11T23:30:50.664651Z", + "shell.execute_reply": "2024-07-11T23:30:50.664188Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9c34ac22c..5b9d1aa9c 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:22.153886Z", - "iopub.status.busy": "2024-07-09T06:27:22.153426Z", - "iopub.status.idle": "2024-07-09T06:27:23.311889Z", - "shell.execute_reply": "2024-07-09T06:27:23.311338Z" + "iopub.execute_input": "2024-07-11T23:30:53.499408Z", + "iopub.status.busy": "2024-07-11T23:30:53.498925Z", + "iopub.status.idle": "2024-07-11T23:30:54.713257Z", + "shell.execute_reply": "2024-07-11T23:30:54.712684Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.314428Z", - "iopub.status.busy": "2024-07-09T06:27:23.313980Z", - "iopub.status.idle": "2024-07-09T06:27:23.508688Z", - "shell.execute_reply": "2024-07-09T06:27:23.508123Z" + "iopub.execute_input": "2024-07-11T23:30:54.715960Z", + "iopub.status.busy": "2024-07-11T23:30:54.715494Z", + "iopub.status.idle": "2024-07-11T23:30:54.911110Z", + "shell.execute_reply": "2024-07-11T23:30:54.910538Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.511393Z", - "iopub.status.busy": "2024-07-09T06:27:23.510929Z", - "iopub.status.idle": "2024-07-09T06:27:23.524862Z", - "shell.execute_reply": "2024-07-09T06:27:23.524396Z" + "iopub.execute_input": "2024-07-11T23:30:54.913779Z", + "iopub.status.busy": "2024-07-11T23:30:54.913342Z", + "iopub.status.idle": "2024-07-11T23:30:54.927108Z", + "shell.execute_reply": "2024-07-11T23:30:54.926525Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:23.527208Z", - "iopub.status.busy": "2024-07-09T06:27:23.526603Z", - "iopub.status.idle": "2024-07-09T06:27:26.126394Z", - "shell.execute_reply": "2024-07-09T06:27:26.125810Z" + "iopub.execute_input": "2024-07-11T23:30:54.929300Z", + "iopub.status.busy": "2024-07-11T23:30:54.928956Z", + "iopub.status.idle": "2024-07-11T23:30:57.569640Z", + "shell.execute_reply": "2024-07-11T23:30:57.569023Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:26.128599Z", - "iopub.status.busy": "2024-07-09T06:27:26.128270Z", - "iopub.status.idle": "2024-07-09T06:27:27.468768Z", - "shell.execute_reply": "2024-07-09T06:27:27.468127Z" + "iopub.execute_input": "2024-07-11T23:30:57.571786Z", + "iopub.status.busy": "2024-07-11T23:30:57.571597Z", + "iopub.status.idle": "2024-07-11T23:30:58.927539Z", + "shell.execute_reply": "2024-07-11T23:30:58.926898Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:27.471344Z", - "iopub.status.busy": "2024-07-09T06:27:27.471010Z", - "iopub.status.idle": "2024-07-09T06:27:27.475004Z", - "shell.execute_reply": "2024-07-09T06:27:27.474434Z" + "iopub.execute_input": "2024-07-11T23:30:58.930226Z", + "iopub.status.busy": "2024-07-11T23:30:58.929895Z", + "iopub.status.idle": "2024-07-11T23:30:58.933999Z", + "shell.execute_reply": "2024-07-11T23:30:58.933407Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:27.477072Z", - "iopub.status.busy": "2024-07-09T06:27:27.476759Z", - "iopub.status.idle": "2024-07-09T06:27:29.490391Z", - "shell.execute_reply": "2024-07-09T06:27:29.489818Z" + "iopub.execute_input": "2024-07-11T23:30:58.936264Z", + "iopub.status.busy": "2024-07-11T23:30:58.935810Z", + "iopub.status.idle": "2024-07-11T23:31:01.051497Z", + "shell.execute_reply": "2024-07-11T23:31:01.050800Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:29.492995Z", - "iopub.status.busy": "2024-07-09T06:27:29.492468Z", - "iopub.status.idle": "2024-07-09T06:27:29.500292Z", - "shell.execute_reply": "2024-07-09T06:27:29.499734Z" + "iopub.execute_input": "2024-07-11T23:31:01.054451Z", + "iopub.status.busy": "2024-07-11T23:31:01.053799Z", + "iopub.status.idle": "2024-07-11T23:31:01.062436Z", + "shell.execute_reply": "2024-07-11T23:31:01.061749Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:29.502433Z", - "iopub.status.busy": "2024-07-09T06:27:29.502113Z", - "iopub.status.idle": "2024-07-09T06:27:32.049416Z", - "shell.execute_reply": "2024-07-09T06:27:32.048812Z" + "iopub.execute_input": "2024-07-11T23:31:01.064674Z", + "iopub.status.busy": "2024-07-11T23:31:01.064363Z", + "iopub.status.idle": "2024-07-11T23:31:03.653908Z", + "shell.execute_reply": "2024-07-11T23:31:03.653305Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.051592Z", - "iopub.status.busy": "2024-07-09T06:27:32.051401Z", - "iopub.status.idle": "2024-07-09T06:27:32.055077Z", - "shell.execute_reply": "2024-07-09T06:27:32.054480Z" + "iopub.execute_input": "2024-07-11T23:31:03.656129Z", + "iopub.status.busy": "2024-07-11T23:31:03.655803Z", + "iopub.status.idle": "2024-07-11T23:31:03.659489Z", + "shell.execute_reply": "2024-07-11T23:31:03.659017Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.057199Z", - "iopub.status.busy": "2024-07-09T06:27:32.056870Z", - "iopub.status.idle": "2024-07-09T06:27:32.060234Z", - "shell.execute_reply": "2024-07-09T06:27:32.059802Z" + "iopub.execute_input": "2024-07-11T23:31:03.661468Z", + "iopub.status.busy": "2024-07-11T23:31:03.661288Z", + "iopub.status.idle": "2024-07-11T23:31:03.664735Z", + "shell.execute_reply": "2024-07-11T23:31:03.664289Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:32.062198Z", - "iopub.status.busy": "2024-07-09T06:27:32.061876Z", - "iopub.status.idle": "2024-07-09T06:27:32.065020Z", - "shell.execute_reply": "2024-07-09T06:27:32.064573Z" + "iopub.execute_input": "2024-07-11T23:31:03.666866Z", + "iopub.status.busy": "2024-07-11T23:31:03.666465Z", + "iopub.status.idle": "2024-07-11T23:31:03.669568Z", + "shell.execute_reply": "2024-07-11T23:31:03.669121Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 949e5b545..5c31a3f55 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:34.654632Z", - "iopub.status.busy": "2024-07-09T06:27:34.654465Z", - "iopub.status.idle": "2024-07-09T06:27:35.815092Z", - "shell.execute_reply": "2024-07-09T06:27:35.814455Z" + "iopub.execute_input": "2024-07-11T23:31:06.312535Z", + "iopub.status.busy": "2024-07-11T23:31:06.312371Z", + "iopub.status.idle": "2024-07-11T23:31:07.505288Z", + "shell.execute_reply": "2024-07-11T23:31:07.504669Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:35.817596Z", - "iopub.status.busy": "2024-07-09T06:27:35.817178Z", - "iopub.status.idle": "2024-07-09T06:27:37.096670Z", - "shell.execute_reply": "2024-07-09T06:27:37.095921Z" + "iopub.execute_input": "2024-07-11T23:31:07.507848Z", + "iopub.status.busy": "2024-07-11T23:31:07.507594Z", + "iopub.status.idle": "2024-07-11T23:31:08.894177Z", + "shell.execute_reply": "2024-07-11T23:31:08.893325Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.099444Z", - "iopub.status.busy": "2024-07-09T06:27:37.099077Z", - "iopub.status.idle": "2024-07-09T06:27:37.102193Z", - "shell.execute_reply": "2024-07-09T06:27:37.101773Z" + "iopub.execute_input": "2024-07-11T23:31:08.896775Z", + "iopub.status.busy": "2024-07-11T23:31:08.896559Z", + "iopub.status.idle": "2024-07-11T23:31:08.900126Z", + "shell.execute_reply": "2024-07-11T23:31:08.899524Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.104293Z", - "iopub.status.busy": "2024-07-09T06:27:37.103979Z", - "iopub.status.idle": "2024-07-09T06:27:37.110147Z", - "shell.execute_reply": "2024-07-09T06:27:37.109740Z" + "iopub.execute_input": "2024-07-11T23:31:08.902112Z", + "iopub.status.busy": "2024-07-11T23:31:08.901832Z", + "iopub.status.idle": "2024-07-11T23:31:08.908384Z", + "shell.execute_reply": "2024-07-11T23:31:08.907838Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.112184Z", - "iopub.status.busy": "2024-07-09T06:27:37.111923Z", - "iopub.status.idle": "2024-07-09T06:27:37.598528Z", - "shell.execute_reply": "2024-07-09T06:27:37.597913Z" + "iopub.execute_input": "2024-07-11T23:31:08.910605Z", + "iopub.status.busy": "2024-07-11T23:31:08.910249Z", + "iopub.status.idle": "2024-07-11T23:31:09.411283Z", + "shell.execute_reply": "2024-07-11T23:31:09.410695Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.601014Z", - "iopub.status.busy": "2024-07-09T06:27:37.600572Z", - "iopub.status.idle": "2024-07-09T06:27:37.605747Z", - "shell.execute_reply": "2024-07-09T06:27:37.605308Z" + "iopub.execute_input": "2024-07-11T23:31:09.414368Z", + "iopub.status.busy": "2024-07-11T23:31:09.413981Z", + "iopub.status.idle": "2024-07-11T23:31:09.419788Z", + "shell.execute_reply": "2024-07-11T23:31:09.419317Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.607641Z", - "iopub.status.busy": "2024-07-09T06:27:37.607468Z", - "iopub.status.idle": "2024-07-09T06:27:37.611290Z", - "shell.execute_reply": "2024-07-09T06:27:37.610844Z" + "iopub.execute_input": "2024-07-11T23:31:09.421817Z", + "iopub.status.busy": "2024-07-11T23:31:09.421488Z", + "iopub.status.idle": "2024-07-11T23:31:09.425424Z", + "shell.execute_reply": "2024-07-11T23:31:09.424966Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:37.613342Z", - "iopub.status.busy": "2024-07-09T06:27:37.613034Z", - "iopub.status.idle": "2024-07-09T06:27:38.555539Z", - "shell.execute_reply": "2024-07-09T06:27:38.555016Z" + "iopub.execute_input": "2024-07-11T23:31:09.427593Z", + "iopub.status.busy": "2024-07-11T23:31:09.427260Z", + "iopub.status.idle": "2024-07-11T23:31:10.294541Z", + "shell.execute_reply": "2024-07-11T23:31:10.293893Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.557847Z", - "iopub.status.busy": "2024-07-09T06:27:38.557649Z", - "iopub.status.idle": "2024-07-09T06:27:38.851691Z", - "shell.execute_reply": "2024-07-09T06:27:38.851100Z" + "iopub.execute_input": "2024-07-11T23:31:10.296927Z", + "iopub.status.busy": "2024-07-11T23:31:10.296730Z", + "iopub.status.idle": "2024-07-11T23:31:10.506079Z", + "shell.execute_reply": "2024-07-11T23:31:10.505564Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.853964Z", - "iopub.status.busy": "2024-07-09T06:27:38.853618Z", - "iopub.status.idle": "2024-07-09T06:27:38.858060Z", - "shell.execute_reply": "2024-07-09T06:27:38.857615Z" + "iopub.execute_input": "2024-07-11T23:31:10.508127Z", + "iopub.status.busy": "2024-07-11T23:31:10.507934Z", + "iopub.status.idle": "2024-07-11T23:31:10.512343Z", + "shell.execute_reply": "2024-07-11T23:31:10.511877Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:38.860047Z", - "iopub.status.busy": "2024-07-09T06:27:38.859765Z", - "iopub.status.idle": "2024-07-09T06:27:39.310110Z", - "shell.execute_reply": "2024-07-09T06:27:39.309501Z" + "iopub.execute_input": "2024-07-11T23:31:10.514467Z", + "iopub.status.busy": "2024-07-11T23:31:10.514054Z", + "iopub.status.idle": "2024-07-11T23:31:10.975021Z", + "shell.execute_reply": "2024-07-11T23:31:10.974401Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:39.312865Z", - "iopub.status.busy": "2024-07-09T06:27:39.312462Z", - "iopub.status.idle": "2024-07-09T06:27:39.647092Z", - "shell.execute_reply": "2024-07-09T06:27:39.646475Z" + "iopub.execute_input": "2024-07-11T23:31:10.977943Z", + "iopub.status.busy": "2024-07-11T23:31:10.977756Z", + "iopub.status.idle": "2024-07-11T23:31:11.308934Z", + "shell.execute_reply": "2024-07-11T23:31:11.308366Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:39.649619Z", - "iopub.status.busy": "2024-07-09T06:27:39.649296Z", - "iopub.status.idle": "2024-07-09T06:27:40.011855Z", - "shell.execute_reply": "2024-07-09T06:27:40.011238Z" + "iopub.execute_input": "2024-07-11T23:31:11.311627Z", + "iopub.status.busy": "2024-07-11T23:31:11.311442Z", + "iopub.status.idle": "2024-07-11T23:31:11.651748Z", + "shell.execute_reply": "2024-07-11T23:31:11.651180Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.014685Z", - "iopub.status.busy": "2024-07-09T06:27:40.014328Z", - "iopub.status.idle": "2024-07-09T06:27:40.429827Z", - "shell.execute_reply": "2024-07-09T06:27:40.429292Z" + "iopub.execute_input": "2024-07-11T23:31:11.655199Z", + "iopub.status.busy": "2024-07-11T23:31:11.654833Z", + "iopub.status.idle": "2024-07-11T23:31:12.095624Z", + "shell.execute_reply": "2024-07-11T23:31:12.095061Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.434217Z", - "iopub.status.busy": "2024-07-09T06:27:40.433815Z", - "iopub.status.idle": "2024-07-09T06:27:40.880331Z", - "shell.execute_reply": "2024-07-09T06:27:40.879705Z" + "iopub.execute_input": "2024-07-11T23:31:12.100128Z", + "iopub.status.busy": "2024-07-11T23:31:12.099760Z", + "iopub.status.idle": "2024-07-11T23:31:12.553957Z", + "shell.execute_reply": "2024-07-11T23:31:12.553312Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:40.882426Z", - "iopub.status.busy": "2024-07-09T06:27:40.882229Z", - "iopub.status.idle": "2024-07-09T06:27:41.097056Z", - "shell.execute_reply": "2024-07-09T06:27:41.096510Z" + "iopub.execute_input": "2024-07-11T23:31:12.556857Z", + "iopub.status.busy": "2024-07-11T23:31:12.556678Z", + "iopub.status.idle": "2024-07-11T23:31:12.770401Z", + "shell.execute_reply": "2024-07-11T23:31:12.769832Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.099352Z", - "iopub.status.busy": "2024-07-09T06:27:41.098978Z", - "iopub.status.idle": "2024-07-09T06:27:41.279647Z", - "shell.execute_reply": "2024-07-09T06:27:41.279135Z" + "iopub.execute_input": "2024-07-11T23:31:12.772555Z", + "iopub.status.busy": "2024-07-11T23:31:12.772363Z", + "iopub.status.idle": "2024-07-11T23:31:12.952525Z", + "shell.execute_reply": "2024-07-11T23:31:12.951899Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.282138Z", - "iopub.status.busy": "2024-07-09T06:27:41.281802Z", - "iopub.status.idle": "2024-07-09T06:27:41.284795Z", - "shell.execute_reply": "2024-07-09T06:27:41.284347Z" + "iopub.execute_input": "2024-07-11T23:31:12.954790Z", + "iopub.status.busy": "2024-07-11T23:31:12.954455Z", + "iopub.status.idle": "2024-07-11T23:31:12.957485Z", + "shell.execute_reply": "2024-07-11T23:31:12.956926Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:41.286727Z", - "iopub.status.busy": "2024-07-09T06:27:41.286354Z", - "iopub.status.idle": "2024-07-09T06:27:42.233918Z", - "shell.execute_reply": "2024-07-09T06:27:42.233305Z" + "iopub.execute_input": "2024-07-11T23:31:12.959627Z", + "iopub.status.busy": "2024-07-11T23:31:12.959311Z", + "iopub.status.idle": "2024-07-11T23:31:14.006845Z", + "shell.execute_reply": "2024-07-11T23:31:14.006365Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.236357Z", - "iopub.status.busy": "2024-07-09T06:27:42.236129Z", - "iopub.status.idle": "2024-07-09T06:27:42.414922Z", - "shell.execute_reply": "2024-07-09T06:27:42.414319Z" + "iopub.execute_input": "2024-07-11T23:31:14.008900Z", + "iopub.status.busy": "2024-07-11T23:31:14.008713Z", + "iopub.status.idle": "2024-07-11T23:31:14.146793Z", + "shell.execute_reply": "2024-07-11T23:31:14.146295Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.417052Z", - "iopub.status.busy": "2024-07-09T06:27:42.416742Z", - "iopub.status.idle": "2024-07-09T06:27:42.567516Z", - "shell.execute_reply": "2024-07-09T06:27:42.566950Z" + "iopub.execute_input": "2024-07-11T23:31:14.148900Z", + "iopub.status.busy": "2024-07-11T23:31:14.148723Z", + "iopub.status.idle": "2024-07-11T23:31:14.290758Z", + "shell.execute_reply": "2024-07-11T23:31:14.290274Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:42.569723Z", - "iopub.status.busy": "2024-07-09T06:27:42.569386Z", - "iopub.status.idle": "2024-07-09T06:27:43.238504Z", - "shell.execute_reply": "2024-07-09T06:27:43.237885Z" + "iopub.execute_input": "2024-07-11T23:31:14.292854Z", + "iopub.status.busy": "2024-07-11T23:31:14.292679Z", + "iopub.status.idle": "2024-07-11T23:31:15.038674Z", + "shell.execute_reply": "2024-07-11T23:31:15.038182Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:43.240966Z", - "iopub.status.busy": "2024-07-09T06:27:43.240541Z", - "iopub.status.idle": "2024-07-09T06:27:43.244348Z", - "shell.execute_reply": "2024-07-09T06:27:43.243899Z" + "iopub.execute_input": "2024-07-11T23:31:15.040887Z", + "iopub.status.busy": "2024-07-11T23:31:15.040533Z", + "iopub.status.idle": "2024-07-11T23:31:15.044365Z", + "shell.execute_reply": "2024-07-11T23:31:15.043812Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 7d4e1d2ac..2313a9559 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 110818033.91it/s]
 

-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 5a34daff0..a03640684 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:45.444339Z", - "iopub.status.busy": "2024-07-09T06:27:45.443934Z", - "iopub.status.idle": "2024-07-09T06:27:48.220490Z", - "shell.execute_reply": "2024-07-09T06:27:48.219850Z" + "iopub.execute_input": "2024-07-11T23:31:17.291877Z", + "iopub.status.busy": "2024-07-11T23:31:17.291695Z", + "iopub.status.idle": "2024-07-11T23:31:20.167105Z", + "shell.execute_reply": "2024-07-11T23:31:20.166523Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.223134Z", - "iopub.status.busy": "2024-07-09T06:27:48.222782Z", - "iopub.status.idle": "2024-07-09T06:27:48.551328Z", - "shell.execute_reply": "2024-07-09T06:27:48.550787Z" + "iopub.execute_input": "2024-07-11T23:31:20.169867Z", + "iopub.status.busy": "2024-07-11T23:31:20.169350Z", + "iopub.status.idle": "2024-07-11T23:31:20.495262Z", + "shell.execute_reply": "2024-07-11T23:31:20.494703Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.553939Z", - "iopub.status.busy": "2024-07-09T06:27:48.553405Z", - "iopub.status.idle": "2024-07-09T06:27:48.557550Z", - "shell.execute_reply": "2024-07-09T06:27:48.557027Z" + "iopub.execute_input": "2024-07-11T23:31:20.497961Z", + "iopub.status.busy": "2024-07-11T23:31:20.497489Z", + "iopub.status.idle": "2024-07-11T23:31:20.501762Z", + "shell.execute_reply": "2024-07-11T23:31:20.501353Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:48.559562Z", - "iopub.status.busy": "2024-07-09T06:27:48.559266Z", - "iopub.status.idle": "2024-07-09T06:27:53.022684Z", - "shell.execute_reply": "2024-07-09T06:27:53.022093Z" + "iopub.execute_input": "2024-07-11T23:31:20.503814Z", + "iopub.status.busy": "2024-07-11T23:31:20.503635Z", + "iopub.status.idle": "2024-07-11T23:31:24.734562Z", + "shell.execute_reply": "2024-07-11T23:31:24.734040Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" + " 1%|▏ | 2260992/170498071 [00:00<00:07, 22563462.22it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" + " 8%|▊ | 13991936/170498071 [00:00<00:02, 78087497.12it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" + " 15%|█▌ | 25722880/170498071 [00:00<00:01, 95869318.12it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" + " 22%|██▏ | 37453824/170498071 [00:00<00:01, 104208415.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" + " 29%|██▉ | 49119232/170498071 [00:00<00:01, 108625049.70it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" + " 36%|███▌ | 60686336/170498071 [00:00<00:00, 111010192.90it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" + " 42%|████▏ | 72417280/170498071 [00:00<00:00, 113042160.30it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" + " 49%|████▉ | 84148224/170498071 [00:00<00:00, 114381724.94it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" + " 56%|█████▌ | 95846400/170498071 [00:00<00:00, 115176752.10it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" + " 63%|██████▎ | 107610112/170498071 [00:01<00:00, 115879216.59it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" + " 70%|██████▉ | 119341056/170498071 [00:01<00:00, 116271034.09it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" + " 77%|███████▋ | 131072000/170498071 [00:01<00:00, 116543973.46it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" + " 84%|████████▍ | 142835712/170498071 [00:01<00:00, 116782185.73it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" + " 91%|█████████ | 154566656/170498071 [00:01<00:00, 116899168.76it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" + " 98%|█████████▊| 166297600/170498071 [00:01<00:00, 116976973.61it/s]" ] }, { @@ -372,23 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 110818033.91it/s]" ] }, { @@ -506,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.024946Z", - "iopub.status.busy": "2024-07-09T06:27:53.024611Z", - "iopub.status.idle": "2024-07-09T06:27:53.029364Z", - "shell.execute_reply": "2024-07-09T06:27:53.028817Z" + "iopub.execute_input": "2024-07-11T23:31:24.736791Z", + "iopub.status.busy": "2024-07-11T23:31:24.736473Z", + "iopub.status.idle": "2024-07-11T23:31:24.741181Z", + "shell.execute_reply": "2024-07-11T23:31:24.740735Z" }, "nbsphinx": "hidden" }, @@ -560,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.031408Z", - "iopub.status.busy": "2024-07-09T06:27:53.031096Z", - "iopub.status.idle": "2024-07-09T06:27:53.577241Z", - "shell.execute_reply": "2024-07-09T06:27:53.576593Z" + "iopub.execute_input": "2024-07-11T23:31:24.743449Z", + "iopub.status.busy": "2024-07-11T23:31:24.742931Z", + "iopub.status.idle": "2024-07-11T23:31:25.284399Z", + "shell.execute_reply": "2024-07-11T23:31:25.283756Z" } }, "outputs": [ @@ -596,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:53.579601Z", - "iopub.status.busy": "2024-07-09T06:27:53.579322Z", - "iopub.status.idle": "2024-07-09T06:27:54.102985Z", - "shell.execute_reply": "2024-07-09T06:27:54.102360Z" + "iopub.execute_input": "2024-07-11T23:31:25.286696Z", + "iopub.status.busy": "2024-07-11T23:31:25.286313Z", + "iopub.status.idle": "2024-07-11T23:31:25.808458Z", + "shell.execute_reply": "2024-07-11T23:31:25.807874Z" } }, "outputs": [ @@ -637,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:54.105484Z", - "iopub.status.busy": "2024-07-09T06:27:54.105073Z", - "iopub.status.idle": "2024-07-09T06:27:54.108602Z", - "shell.execute_reply": "2024-07-09T06:27:54.108156Z" + "iopub.execute_input": "2024-07-11T23:31:25.810731Z", + "iopub.status.busy": "2024-07-11T23:31:25.810369Z", + "iopub.status.idle": "2024-07-11T23:31:25.813893Z", + "shell.execute_reply": "2024-07-11T23:31:25.813436Z" } }, "outputs": [], @@ -663,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:27:54.110579Z", - "iopub.status.busy": "2024-07-09T06:27:54.110395Z", - "iopub.status.idle": "2024-07-09T06:28:06.643708Z", - "shell.execute_reply": "2024-07-09T06:28:06.643176Z" + "iopub.execute_input": "2024-07-11T23:31:25.815970Z", + "iopub.status.busy": "2024-07-11T23:31:25.815628Z", + "iopub.status.idle": "2024-07-11T23:31:38.427676Z", + "shell.execute_reply": "2024-07-11T23:31:38.427081Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", + "model_id": "e178963db0b140cebcc986e7a95dfca1", "version_major": 2, "version_minor": 0 }, @@ -732,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:06.646239Z", - "iopub.status.busy": "2024-07-09T06:28:06.645832Z", - "iopub.status.idle": "2024-07-09T06:28:08.702608Z", - "shell.execute_reply": "2024-07-09T06:28:08.701924Z" + "iopub.execute_input": "2024-07-11T23:31:38.429964Z", + "iopub.status.busy": "2024-07-11T23:31:38.429776Z", + "iopub.status.idle": "2024-07-11T23:31:40.476211Z", + "shell.execute_reply": "2024-07-11T23:31:40.475587Z" } }, "outputs": [ @@ -779,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:08.705102Z", - "iopub.status.busy": "2024-07-09T06:28:08.704635Z", - "iopub.status.idle": "2024-07-09T06:28:08.961907Z", - "shell.execute_reply": "2024-07-09T06:28:08.960875Z" + "iopub.execute_input": "2024-07-11T23:31:40.478752Z", + "iopub.status.busy": "2024-07-11T23:31:40.478522Z", + "iopub.status.idle": "2024-07-11T23:31:40.733860Z", + "shell.execute_reply": "2024-07-11T23:31:40.733234Z" } }, "outputs": [ @@ -818,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:08.965548Z", - "iopub.status.busy": "2024-07-09T06:28:08.964610Z", - "iopub.status.idle": "2024-07-09T06:28:09.623328Z", - "shell.execute_reply": "2024-07-09T06:28:09.622779Z" + "iopub.execute_input": "2024-07-11T23:31:40.736521Z", + "iopub.status.busy": "2024-07-11T23:31:40.736095Z", + "iopub.status.idle": "2024-07-11T23:31:41.401207Z", + "shell.execute_reply": "2024-07-11T23:31:41.400662Z" } }, "outputs": [ @@ -871,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:09.627057Z", - "iopub.status.busy": "2024-07-09T06:28:09.626207Z", - "iopub.status.idle": "2024-07-09T06:28:09.967511Z", - "shell.execute_reply": "2024-07-09T06:28:09.966954Z" + "iopub.execute_input": "2024-07-11T23:31:41.404101Z", + "iopub.status.busy": "2024-07-11T23:31:41.403501Z", + "iopub.status.idle": "2024-07-11T23:31:41.741361Z", + "shell.execute_reply": "2024-07-11T23:31:41.740846Z" } }, "outputs": [ @@ -922,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:09.969885Z", - "iopub.status.busy": "2024-07-09T06:28:09.969463Z", - "iopub.status.idle": "2024-07-09T06:28:10.214869Z", - "shell.execute_reply": "2024-07-09T06:28:10.214223Z" + "iopub.execute_input": "2024-07-11T23:31:41.743489Z", + "iopub.status.busy": "2024-07-11T23:31:41.743295Z", + "iopub.status.idle": "2024-07-11T23:31:41.971390Z", + "shell.execute_reply": "2024-07-11T23:31:41.970787Z" } }, "outputs": [ @@ -981,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:10.217596Z", - "iopub.status.busy": "2024-07-09T06:28:10.217139Z", - "iopub.status.idle": "2024-07-09T06:28:10.308655Z", - "shell.execute_reply": "2024-07-09T06:28:10.308107Z" + "iopub.execute_input": "2024-07-11T23:31:41.973865Z", + "iopub.status.busy": "2024-07-11T23:31:41.973521Z", + "iopub.status.idle": "2024-07-11T23:31:42.050609Z", + "shell.execute_reply": "2024-07-11T23:31:42.050111Z" } }, "outputs": [], @@ -1005,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:10.310977Z", - "iopub.status.busy": "2024-07-09T06:28:10.310791Z", - "iopub.status.idle": "2024-07-09T06:28:20.594421Z", - "shell.execute_reply": "2024-07-09T06:28:20.593788Z" + "iopub.execute_input": "2024-07-11T23:31:42.053107Z", + "iopub.status.busy": "2024-07-11T23:31:42.052926Z", + "iopub.status.idle": "2024-07-11T23:31:52.419235Z", + "shell.execute_reply": "2024-07-11T23:31:52.418555Z" } }, "outputs": [ @@ -1045,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:20.596810Z", - "iopub.status.busy": "2024-07-09T06:28:20.596554Z", - "iopub.status.idle": "2024-07-09T06:28:22.741544Z", - "shell.execute_reply": "2024-07-09T06:28:22.741042Z" + "iopub.execute_input": "2024-07-11T23:31:52.421797Z", + "iopub.status.busy": "2024-07-11T23:31:52.421373Z", + "iopub.status.idle": "2024-07-11T23:31:54.688468Z", + "shell.execute_reply": "2024-07-11T23:31:54.687905Z" } }, "outputs": [ @@ -1079,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.744305Z", - "iopub.status.busy": "2024-07-09T06:28:22.743745Z", - "iopub.status.idle": "2024-07-09T06:28:22.953993Z", - "shell.execute_reply": "2024-07-09T06:28:22.953376Z" + "iopub.execute_input": "2024-07-11T23:31:54.691137Z", + "iopub.status.busy": "2024-07-11T23:31:54.690628Z", + "iopub.status.idle": "2024-07-11T23:31:54.893218Z", + "shell.execute_reply": "2024-07-11T23:31:54.892555Z" } }, "outputs": [], @@ -1096,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.956589Z", - "iopub.status.busy": "2024-07-09T06:28:22.956213Z", - "iopub.status.idle": "2024-07-09T06:28:22.959468Z", - "shell.execute_reply": "2024-07-09T06:28:22.958900Z" + "iopub.execute_input": "2024-07-11T23:31:54.895817Z", + "iopub.status.busy": "2024-07-11T23:31:54.895362Z", + "iopub.status.idle": "2024-07-11T23:31:54.898542Z", + "shell.execute_reply": "2024-07-11T23:31:54.898105Z" } }, "outputs": [], @@ -1121,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:22.961611Z", - "iopub.status.busy": "2024-07-09T06:28:22.961200Z", - "iopub.status.idle": "2024-07-09T06:28:22.969422Z", - "shell.execute_reply": "2024-07-09T06:28:22.968855Z" + "iopub.execute_input": "2024-07-11T23:31:54.900492Z", + "iopub.status.busy": "2024-07-11T23:31:54.900316Z", + "iopub.status.idle": "2024-07-11T23:31:54.908457Z", + "shell.execute_reply": "2024-07-11T23:31:54.908040Z" }, "nbsphinx": "hidden" }, @@ -1169,54 +1153,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", - "placeholder": "​", - "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 287MB/s]" - } - }, - "17e3dce4b40a4cb8a2b240ec353e0eae": { + "06030500f3c04fd99fa242a1568dcb8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", - "IPY_MODEL_f925fed948884b0e9a39e8a060169585", - "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" - ], - "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "64e12728195f4391b6280124850b845f": { + "24045c69f1514aeabfe0f4094eb09204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1269,7 +1222,56 @@ "width": null } }, - "83246a4b1973465e91e701740cd527e6": { + "24d49b137c8d43549f4f0bd82e7e5dbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24045c69f1514aeabfe0f4094eb09204", + "placeholder": "​", + "style": "IPY_MODEL_f3a9a8cdcf8941b289c7a7a5e37c34ec", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 290MB/s]" + } + }, + "4de70e8fec2444dea22f3f7943d23a4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a49628ed5744400d82018a4e57ed8afe", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_06030500f3c04fd99fa242a1568dcb8b", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "5239d07277434b87a8dbe5da68b57b75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,7 +1324,7 @@ "width": null } }, - "847a0080121d45e79b430fce2ac8676d": { + "a49628ed5744400d82018a4e57ed8afe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1375,41 +1377,7 @@ "width": null } }, - "aaff29c1d12b464a90fcdf95eeb1a265": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afec228371694b259b4beb453ed5662e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ce4ca1db437c42df9608894483bf3780": { + "ac2f6c5cef9d4fa193d7e2508a3b60aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1424,33 +1392,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", + "layout": "IPY_MODEL_d555a250e7774596a1baa43603ab3ebd", "placeholder": "​", - "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", + "style": "IPY_MODEL_f02e8e68fc3946e495bf0e0139fc3eb8", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f68e78a7cc7d408cb71b2a049145349d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f839052ce8de441fa54a98bf191b0352": { + "d555a250e7774596a1baa43603ab3ebd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,30 +1453,64 @@ "width": null } }, - "f925fed948884b0e9a39e8a060169585": { + "e178963db0b140cebcc986e7a95dfca1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac2f6c5cef9d4fa193d7e2508a3b60aa", + "IPY_MODEL_4de70e8fec2444dea22f3f7943d23a4f", + "IPY_MODEL_24d49b137c8d43549f4f0bd82e7e5dbd" + ], + "layout": "IPY_MODEL_5239d07277434b87a8dbe5da68b57b75", "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "tooltip": null + } + }, + "f02e8e68fc3946e495bf0e0139fc3eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f3a9a8cdcf8941b289c7a7a5e37c34ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 9a21f3bf0..3292abadb 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:27.147640Z", - "iopub.status.busy": "2024-07-09T06:28:27.147460Z", - "iopub.status.idle": "2024-07-09T06:28:28.302447Z", - "shell.execute_reply": "2024-07-09T06:28:28.301888Z" + "iopub.execute_input": "2024-07-11T23:31:59.264178Z", + "iopub.status.busy": "2024-07-11T23:31:59.263998Z", + "iopub.status.idle": "2024-07-11T23:32:00.476568Z", + "shell.execute_reply": "2024-07-11T23:32:00.475998Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.304997Z", - "iopub.status.busy": "2024-07-09T06:28:28.304730Z", - "iopub.status.idle": "2024-07-09T06:28:28.321957Z", - "shell.execute_reply": "2024-07-09T06:28:28.321531Z" + "iopub.execute_input": "2024-07-11T23:32:00.479192Z", + "iopub.status.busy": "2024-07-11T23:32:00.478744Z", + "iopub.status.idle": "2024-07-11T23:32:00.496820Z", + "shell.execute_reply": "2024-07-11T23:32:00.496353Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.324137Z", - "iopub.status.busy": "2024-07-09T06:28:28.323717Z", - "iopub.status.idle": "2024-07-09T06:28:28.326748Z", - "shell.execute_reply": "2024-07-09T06:28:28.326302Z" + "iopub.execute_input": "2024-07-11T23:32:00.499201Z", + "iopub.status.busy": "2024-07-11T23:32:00.498752Z", + "iopub.status.idle": "2024-07-11T23:32:00.501927Z", + "shell.execute_reply": "2024-07-11T23:32:00.501454Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.328783Z", - "iopub.status.busy": "2024-07-09T06:28:28.328478Z", - "iopub.status.idle": "2024-07-09T06:28:28.398404Z", - "shell.execute_reply": "2024-07-09T06:28:28.397873Z" + "iopub.execute_input": "2024-07-11T23:32:00.504107Z", + "iopub.status.busy": "2024-07-11T23:32:00.503713Z", + "iopub.status.idle": "2024-07-11T23:32:00.598232Z", + "shell.execute_reply": "2024-07-11T23:32:00.597650Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.400685Z", - "iopub.status.busy": "2024-07-09T06:28:28.400280Z", - "iopub.status.idle": "2024-07-09T06:28:28.580610Z", - "shell.execute_reply": "2024-07-09T06:28:28.580004Z" + "iopub.execute_input": "2024-07-11T23:32:00.600456Z", + "iopub.status.busy": "2024-07-11T23:32:00.600139Z", + "iopub.status.idle": "2024-07-11T23:32:00.780908Z", + "shell.execute_reply": "2024-07-11T23:32:00.780266Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.583196Z", - "iopub.status.busy": "2024-07-09T06:28:28.582842Z", - "iopub.status.idle": "2024-07-09T06:28:28.825147Z", - "shell.execute_reply": "2024-07-09T06:28:28.824546Z" + "iopub.execute_input": "2024-07-11T23:32:00.783410Z", + "iopub.status.busy": "2024-07-11T23:32:00.783226Z", + "iopub.status.idle": "2024-07-11T23:32:00.997850Z", + "shell.execute_reply": "2024-07-11T23:32:00.997211Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.827512Z", - "iopub.status.busy": "2024-07-09T06:28:28.827171Z", - "iopub.status.idle": "2024-07-09T06:28:28.831561Z", - "shell.execute_reply": "2024-07-09T06:28:28.831115Z" + "iopub.execute_input": "2024-07-11T23:32:01.000308Z", + "iopub.status.busy": "2024-07-11T23:32:00.999922Z", + "iopub.status.idle": "2024-07-11T23:32:01.004657Z", + "shell.execute_reply": "2024-07-11T23:32:01.004188Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.833597Z", - "iopub.status.busy": "2024-07-09T06:28:28.833194Z", - "iopub.status.idle": "2024-07-09T06:28:28.839457Z", - "shell.execute_reply": "2024-07-09T06:28:28.838888Z" + "iopub.execute_input": "2024-07-11T23:32:01.006873Z", + "iopub.status.busy": "2024-07-11T23:32:01.006436Z", + "iopub.status.idle": "2024-07-11T23:32:01.012230Z", + "shell.execute_reply": "2024-07-11T23:32:01.011792Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.841676Z", - "iopub.status.busy": "2024-07-09T06:28:28.841286Z", - "iopub.status.idle": "2024-07-09T06:28:28.843833Z", - "shell.execute_reply": "2024-07-09T06:28:28.843413Z" + "iopub.execute_input": "2024-07-11T23:32:01.014340Z", + "iopub.status.busy": "2024-07-11T23:32:01.013970Z", + "iopub.status.idle": "2024-07-11T23:32:01.016728Z", + "shell.execute_reply": "2024-07-11T23:32:01.016248Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:28.845847Z", - "iopub.status.busy": "2024-07-09T06:28:28.845459Z", - "iopub.status.idle": "2024-07-09T06:28:37.416310Z", - "shell.execute_reply": "2024-07-09T06:28:37.415785Z" + "iopub.execute_input": "2024-07-11T23:32:01.018748Z", + "iopub.status.busy": "2024-07-11T23:32:01.018423Z", + "iopub.status.idle": "2024-07-11T23:32:10.134726Z", + "shell.execute_reply": "2024-07-11T23:32:10.134136Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.419117Z", - "iopub.status.busy": "2024-07-09T06:28:37.418506Z", - "iopub.status.idle": "2024-07-09T06:28:37.425880Z", - "shell.execute_reply": "2024-07-09T06:28:37.425420Z" + "iopub.execute_input": "2024-07-11T23:32:10.137831Z", + "iopub.status.busy": "2024-07-11T23:32:10.137187Z", + "iopub.status.idle": "2024-07-11T23:32:10.144868Z", + "shell.execute_reply": "2024-07-11T23:32:10.144299Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.427928Z", - "iopub.status.busy": "2024-07-09T06:28:37.427621Z", - "iopub.status.idle": "2024-07-09T06:28:37.431159Z", - "shell.execute_reply": "2024-07-09T06:28:37.430715Z" + "iopub.execute_input": "2024-07-11T23:32:10.147066Z", + "iopub.status.busy": "2024-07-11T23:32:10.146779Z", + "iopub.status.idle": "2024-07-11T23:32:10.150508Z", + "shell.execute_reply": "2024-07-11T23:32:10.149995Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.433108Z", - "iopub.status.busy": "2024-07-09T06:28:37.432812Z", - "iopub.status.idle": "2024-07-09T06:28:37.436103Z", - "shell.execute_reply": "2024-07-09T06:28:37.435676Z" + "iopub.execute_input": "2024-07-11T23:32:10.152588Z", + "iopub.status.busy": "2024-07-11T23:32:10.152251Z", + "iopub.status.idle": "2024-07-11T23:32:10.155433Z", + "shell.execute_reply": "2024-07-11T23:32:10.154903Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.437855Z", - "iopub.status.busy": "2024-07-09T06:28:37.437689Z", - "iopub.status.idle": "2024-07-09T06:28:37.440738Z", - "shell.execute_reply": "2024-07-09T06:28:37.440200Z" + "iopub.execute_input": "2024-07-11T23:32:10.157807Z", + "iopub.status.busy": "2024-07-11T23:32:10.157420Z", + "iopub.status.idle": "2024-07-11T23:32:10.163881Z", + "shell.execute_reply": "2024-07-11T23:32:10.163328Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.442722Z", - "iopub.status.busy": "2024-07-09T06:28:37.442340Z", - "iopub.status.idle": "2024-07-09T06:28:37.450065Z", - "shell.execute_reply": "2024-07-09T06:28:37.449543Z" + "iopub.execute_input": "2024-07-11T23:32:10.166173Z", + "iopub.status.busy": "2024-07-11T23:32:10.165714Z", + "iopub.status.idle": "2024-07-11T23:32:10.176486Z", + "shell.execute_reply": "2024-07-11T23:32:10.175893Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.452147Z", - "iopub.status.busy": "2024-07-09T06:28:37.451829Z", - "iopub.status.idle": "2024-07-09T06:28:37.454273Z", - "shell.execute_reply": "2024-07-09T06:28:37.453859Z" + "iopub.execute_input": "2024-07-11T23:32:10.179010Z", + "iopub.status.busy": "2024-07-11T23:32:10.178674Z", + "iopub.status.idle": "2024-07-11T23:32:10.181620Z", + "shell.execute_reply": "2024-07-11T23:32:10.181036Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.456308Z", - "iopub.status.busy": "2024-07-09T06:28:37.455998Z", - "iopub.status.idle": "2024-07-09T06:28:37.574042Z", - "shell.execute_reply": "2024-07-09T06:28:37.573412Z" + "iopub.execute_input": "2024-07-11T23:32:10.183941Z", + "iopub.status.busy": "2024-07-11T23:32:10.183608Z", + "iopub.status.idle": "2024-07-11T23:32:10.311815Z", + "shell.execute_reply": "2024-07-11T23:32:10.311090Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.576401Z", - "iopub.status.busy": "2024-07-09T06:28:37.576035Z", - "iopub.status.idle": "2024-07-09T06:28:37.676628Z", - "shell.execute_reply": "2024-07-09T06:28:37.676092Z" + "iopub.execute_input": "2024-07-11T23:32:10.314495Z", + "iopub.status.busy": "2024-07-11T23:32:10.313960Z", + "iopub.status.idle": "2024-07-11T23:32:10.424888Z", + "shell.execute_reply": "2024-07-11T23:32:10.424268Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:37.678829Z", - "iopub.status.busy": "2024-07-09T06:28:37.678655Z", - "iopub.status.idle": "2024-07-09T06:28:38.159157Z", - "shell.execute_reply": "2024-07-09T06:28:38.158544Z" + "iopub.execute_input": "2024-07-11T23:32:10.427478Z", + "iopub.status.busy": "2024-07-11T23:32:10.427113Z", + "iopub.status.idle": "2024-07-11T23:32:10.938948Z", + "shell.execute_reply": "2024-07-11T23:32:10.938269Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.161651Z", - "iopub.status.busy": "2024-07-09T06:28:38.161475Z", - "iopub.status.idle": "2024-07-09T06:28:38.250789Z", - "shell.execute_reply": "2024-07-09T06:28:38.250230Z" + "iopub.execute_input": "2024-07-11T23:32:10.941874Z", + "iopub.status.busy": "2024-07-11T23:32:10.941302Z", + "iopub.status.idle": "2024-07-11T23:32:11.038384Z", + "shell.execute_reply": "2024-07-11T23:32:11.037782Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.252951Z", - "iopub.status.busy": "2024-07-09T06:28:38.252776Z", - "iopub.status.idle": "2024-07-09T06:28:38.261091Z", - "shell.execute_reply": "2024-07-09T06:28:38.260672Z" + "iopub.execute_input": "2024-07-11T23:32:11.040785Z", + "iopub.status.busy": "2024-07-11T23:32:11.040438Z", + "iopub.status.idle": "2024-07-11T23:32:11.049535Z", + "shell.execute_reply": "2024-07-11T23:32:11.049074Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.262975Z", - "iopub.status.busy": "2024-07-09T06:28:38.262781Z", - "iopub.status.idle": "2024-07-09T06:28:38.265296Z", - "shell.execute_reply": "2024-07-09T06:28:38.264887Z" + "iopub.execute_input": "2024-07-11T23:32:11.051530Z", + "iopub.status.busy": "2024-07-11T23:32:11.051349Z", + "iopub.status.idle": "2024-07-11T23:32:11.054237Z", + "shell.execute_reply": "2024-07-11T23:32:11.053732Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:38.267254Z", - "iopub.status.busy": "2024-07-09T06:28:38.266967Z", - "iopub.status.idle": "2024-07-09T06:28:43.570047Z", - "shell.execute_reply": "2024-07-09T06:28:43.569491Z" + "iopub.execute_input": "2024-07-11T23:32:11.056147Z", + "iopub.status.busy": "2024-07-11T23:32:11.055971Z", + "iopub.status.idle": "2024-07-11T23:32:16.798486Z", + "shell.execute_reply": "2024-07-11T23:32:16.797837Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:43.572470Z", - "iopub.status.busy": "2024-07-09T06:28:43.572094Z", - "iopub.status.idle": "2024-07-09T06:28:43.580386Z", - "shell.execute_reply": "2024-07-09T06:28:43.579870Z" + "iopub.execute_input": "2024-07-11T23:32:16.801050Z", + "iopub.status.busy": "2024-07-11T23:32:16.800587Z", + "iopub.status.idle": "2024-07-11T23:32:16.809241Z", + "shell.execute_reply": "2024-07-11T23:32:16.808773Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:43.582347Z", - "iopub.status.busy": "2024-07-09T06:28:43.582046Z", - "iopub.status.idle": "2024-07-09T06:28:43.650473Z", - "shell.execute_reply": "2024-07-09T06:28:43.649884Z" + "iopub.execute_input": "2024-07-11T23:32:16.811373Z", + "iopub.status.busy": "2024-07-11T23:32:16.811029Z", + "iopub.status.idle": "2024-07-11T23:32:16.875258Z", + "shell.execute_reply": "2024-07-11T23:32:16.874659Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index bc0ea3273..aa5028deb 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"97c988acb93f44548e72b7e6785373ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9af440153d4e4cdf94b2cf7fabd36183": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6483735a58b043b6b18bce9fcea7af01": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, "value": 30.0}}, "c498db02e0b04391a5861cb923082075": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f51ef64ff6b45ebb8b941ba2ee62b5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf3b18d1306748afa8e938ecd97912de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "\u200b", "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "0dd5218cedde49baa055e8096ed30926": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6584bb27a7154628a8d459aca88dc035": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "403d955a5e56429185a7d79c76b3f942": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "\u200b", "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007810.84it/s]"}}, "95f6f8f5058e4a999e52cf9ee97471a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cc3388bab2643c8b90c9272aea123fd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", "IPY_MODEL_403d955a5e56429185a7d79c76b3f942"], "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", "tabbable": null, "tooltip": null}}, "2abe5ecefb664d2bafb6bfe15ea93d0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d504401538154719844d7826ee272589": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "176760f869904a7fa39445bdd88719b2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d504401538154719844d7826ee272589", "tabbable": null, "tooltip": null, "value": 30.0}}, "ce1dd22f0d6b4012a51c48ad29dcaa8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2897f5daefd4d14a83b5100fa9e108f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6e063e50c2b4445910ce5e867fbd918": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "\u200b", "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "0b2d6256d1c542d285214e15fc92fe65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57f13be2c99544fb9cc14d43a41b2771": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02d9a746ed0046739aa78a6ce0085ff9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", "placeholder": "\u200b", "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:20<00:00,\u2007\u20071.44it/s]"}}, "0c20fddef0b54b239fafa2cc41c63236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c10054699f0e464a82009f0a5e0c578c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", "IPY_MODEL_176760f869904a7fa39445bdd88719b2", "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9"], "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", "tabbable": null, "tooltip": null}}, "855c64f84945411a9db3c53deb7492c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db6c02d349084e498c97e2e6ed714f28": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ae57c0974e774c6890338ba8b17d0191": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "d1f1c3debd3a4626adf70f52c88e15f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14896ca89fcc44339c2b6527f1f9f9dc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d8a1c7ffaa334c438eb48081a604d215": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "\u200b", "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, "value": "100%"}}, "5330888ec41a4abab567527c6e1ffd41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce3e640376574f9e8d585bcb85603e1d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f68c4f29617499499ee2c05c5a6a108": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", "placeholder": "\u200b", "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157127.94it/s]"}}, "c9163ef783e742f3acc05346e5afcb64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7019068b213142edb33e86d2e73ee210": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108"], "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", "tabbable": null, "tooltip": null}}, "83e9f786fc2e45a789ee9639166df7d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b9e311328344481b090157819e78c90": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a35e0222d4f14c66bf3c3a5aa2572142": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, "tooltip": null, "value": 30.0}}, "22fe02c2e99045d8821cfc15a94e4936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32a85d515d9e4eaba06dcc77490cad82": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fade87555302435dbdddd0ecd183f382": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", "placeholder": "\u200b", "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "44a6a6e2aca946a1a5360a07e3b508d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "228b0d40b0924b7a97e4d0957e103746": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b951463c2014d63996109b04919b6f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", "placeholder": "\u200b", "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.76it/s]"}}, "279d7517839d43c89b15e2c5c84c7be9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd89a714f4bd4881ac3bcdde2e818698": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fade87555302435dbdddd0ecd183f382", "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", "IPY_MODEL_7b951463c2014d63996109b04919b6f0"], "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f8343ca1756540558b403dbea1296694": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad64269f32284260a3633079e160dc92": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c7cb1c20b1a40868e755caadb218eb8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8343ca1756540558b403dbea1296694", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ad64269f32284260a3633079e160dc92", "tabbable": null, "tooltip": null, "value": 30.0}}, "dcb4d54354254228bc7b456431069d7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6189bc160d14416d82f0032eb0215494": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5fe05351b274eb6ae456d2b92b5e926": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcb4d54354254228bc7b456431069d7b", "placeholder": "\u200b", "style": "IPY_MODEL_6189bc160d14416d82f0032eb0215494", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "59cf3a2e31724441b3c7fde2dde98df3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e1959d4bb5a46e68d56612b7c1106be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eccd1de9afa64ec1aa6568f416e20820": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59cf3a2e31724441b3c7fde2dde98df3", "placeholder": "\u200b", "style": "IPY_MODEL_1e1959d4bb5a46e68d56612b7c1106be", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007771.56it/s]"}}, "188d4e1710a14a4a825950556de3ccaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0584b24721d43d2868ec02247f84455": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5fe05351b274eb6ae456d2b92b5e926", "IPY_MODEL_3c7cb1c20b1a40868e755caadb218eb8", "IPY_MODEL_eccd1de9afa64ec1aa6568f416e20820"], "layout": "IPY_MODEL_188d4e1710a14a4a825950556de3ccaf", "tabbable": null, "tooltip": null}}, "71257a600c5b4613a422b3144f6c0434": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49958122122847feb297f878a5b28da9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2a466e8aba1f4a8e827e3e8e11685a21": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71257a600c5b4613a422b3144f6c0434", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_49958122122847feb297f878a5b28da9", "tabbable": null, "tooltip": null, "value": 30.0}}, "a8069702950941be8203dbf7f4221c96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fed8e007e194b8bb590f88491499d1e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e616626d69c47bfa1a9ce0674300814": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8069702950941be8203dbf7f4221c96", "placeholder": "\u200b", "style": "IPY_MODEL_7fed8e007e194b8bb590f88491499d1e", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "57b5c254f1a8481da67c7db8837475af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7d66facd9064239833d88bbebac16a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "531ec4ced94645a9b3fa12942e97ca0b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57b5c254f1a8481da67c7db8837475af", "placeholder": "\u200b", "style": "IPY_MODEL_c7d66facd9064239833d88bbebac16a2", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.22it/s]"}}, "2ba0dfdc96fe4a5ca755b26d8afb58ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8938d4cb96f420fac56cae5ee37daf5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1e616626d69c47bfa1a9ce0674300814", "IPY_MODEL_2a466e8aba1f4a8e827e3e8e11685a21", "IPY_MODEL_531ec4ced94645a9b3fa12942e97ca0b"], "layout": "IPY_MODEL_2ba0dfdc96fe4a5ca755b26d8afb58ef", "tabbable": null, "tooltip": null}}, "25a343b31b704caa9a29636ff50a07a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6201c8a3f3d45d1a37056a8da401a54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3bcac2630f48440fa0c5eb289e75e61e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25a343b31b704caa9a29636ff50a07a1", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e6201c8a3f3d45d1a37056a8da401a54", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "53d315fb6b2d4760aeaf263428cde929": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7599052b7ce24755bf23b007aadc307a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2f3778ea55bb4391bad28e2a4c2d9199": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53d315fb6b2d4760aeaf263428cde929", "placeholder": "\u200b", "style": "IPY_MODEL_7599052b7ce24755bf23b007aadc307a", "tabbable": null, "tooltip": null, "value": "100%"}}, "e5830c0d91db46f0adaa38dda98a2a5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90ab3820a0694de5a8b9fa82e6bfe783": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "33f89b940d65475c80bd183856bdb9b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5830c0d91db46f0adaa38dda98a2a5b", "placeholder": "\u200b", "style": "IPY_MODEL_90ab3820a0694de5a8b9fa82e6bfe783", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007150797.61it/s]"}}, "7a95c08c82304c2b875e75cd4ed33abf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3da6e0e6f80242a69eed899f7f003b6b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2f3778ea55bb4391bad28e2a4c2d9199", "IPY_MODEL_3bcac2630f48440fa0c5eb289e75e61e", "IPY_MODEL_33f89b940d65475c80bd183856bdb9b2"], "layout": "IPY_MODEL_7a95c08c82304c2b875e75cd4ed33abf", "tabbable": null, "tooltip": null}}, "d773831d8d4c4daebf9ad8f0083cb435": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e955cf8e1a924724a672f8b877d6526f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "581af7bb921b4603bc3521d0c4926f9a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d773831d8d4c4daebf9ad8f0083cb435", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e955cf8e1a924724a672f8b877d6526f", "tabbable": null, "tooltip": null, "value": 30.0}}, "c6a3d9a0e69f42b895a23ab7bbd9057d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1fd01202172453c871f3ff8ec81caff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2a275f8d7fff42a78662b93bdf128c04": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6a3d9a0e69f42b895a23ab7bbd9057d", "placeholder": "\u200b", "style": "IPY_MODEL_c1fd01202172453c871f3ff8ec81caff", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "60deca07abc34cb3811a667941e2f2bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1857b1f1c6794842b42cf4631af6f405": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0044b9b331cd444eb439a799eba62326": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60deca07abc34cb3811a667941e2f2bd", "placeholder": "\u200b", "style": "IPY_MODEL_1857b1f1c6794842b42cf4631af6f405", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.57it/s]"}}, "11b5ab5708304b01964b5005e9d49fa2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6133c732ab34f69926d67ba61ff195d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2a275f8d7fff42a78662b93bdf128c04", "IPY_MODEL_581af7bb921b4603bc3521d0c4926f9a", "IPY_MODEL_0044b9b331cd444eb439a799eba62326"], "layout": "IPY_MODEL_11b5ab5708304b01964b5005e9d49fa2", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index ae5ebc560..de6875959 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:46.574289Z", - "iopub.status.busy": "2024-07-09T06:28:46.574108Z", - "iopub.status.idle": "2024-07-09T06:28:48.491596Z", - "shell.execute_reply": "2024-07-09T06:28:48.490918Z" + "iopub.execute_input": "2024-07-11T23:32:19.906876Z", + "iopub.status.busy": "2024-07-11T23:32:19.906713Z", + "iopub.status.idle": "2024-07-11T23:32:22.252981Z", + "shell.execute_reply": "2024-07-11T23:32:22.252336Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:28:48.494276Z", - "iopub.status.busy": "2024-07-09T06:28:48.493843Z", - "iopub.status.idle": "2024-07-09T06:29:39.569009Z", - "shell.execute_reply": "2024-07-09T06:29:39.568435Z" + "iopub.execute_input": "2024-07-11T23:32:22.255955Z", + "iopub.status.busy": "2024-07-11T23:32:22.255551Z", + "iopub.status.idle": "2024-07-11T23:33:17.312408Z", + "shell.execute_reply": "2024-07-11T23:33:17.311778Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:39.571515Z", - "iopub.status.busy": "2024-07-09T06:29:39.571138Z", - "iopub.status.idle": "2024-07-09T06:29:40.663339Z", - "shell.execute_reply": "2024-07-09T06:29:40.662734Z" + "iopub.execute_input": "2024-07-11T23:33:17.314965Z", + "iopub.status.busy": "2024-07-11T23:33:17.314582Z", + "iopub.status.idle": "2024-07-11T23:33:18.467232Z", + "shell.execute_reply": "2024-07-11T23:33:18.466671Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.665937Z", - "iopub.status.busy": "2024-07-09T06:29:40.665611Z", - "iopub.status.idle": "2024-07-09T06:29:40.669025Z", - "shell.execute_reply": "2024-07-09T06:29:40.668588Z" + "iopub.execute_input": "2024-07-11T23:33:18.469889Z", + "iopub.status.busy": "2024-07-11T23:33:18.469482Z", + "iopub.status.idle": "2024-07-11T23:33:18.472673Z", + "shell.execute_reply": "2024-07-11T23:33:18.472250Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.671153Z", - "iopub.status.busy": "2024-07-09T06:29:40.670839Z", - "iopub.status.idle": "2024-07-09T06:29:40.674594Z", - "shell.execute_reply": "2024-07-09T06:29:40.674175Z" + "iopub.execute_input": "2024-07-11T23:33:18.474860Z", + "iopub.status.busy": "2024-07-11T23:33:18.474466Z", + "iopub.status.idle": "2024-07-11T23:33:18.478384Z", + "shell.execute_reply": "2024-07-11T23:33:18.477916Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.676662Z", - "iopub.status.busy": "2024-07-09T06:29:40.676404Z", - "iopub.status.idle": "2024-07-09T06:29:40.679978Z", - "shell.execute_reply": "2024-07-09T06:29:40.679552Z" + "iopub.execute_input": "2024-07-11T23:33:18.480501Z", + "iopub.status.busy": "2024-07-11T23:33:18.480162Z", + "iopub.status.idle": "2024-07-11T23:33:18.483793Z", + "shell.execute_reply": "2024-07-11T23:33:18.483337Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.681969Z", - "iopub.status.busy": "2024-07-09T06:29:40.681683Z", - "iopub.status.idle": "2024-07-09T06:29:40.684443Z", - "shell.execute_reply": "2024-07-09T06:29:40.684006Z" + "iopub.execute_input": "2024-07-11T23:33:18.485739Z", + "iopub.status.busy": "2024-07-11T23:33:18.485418Z", + "iopub.status.idle": "2024-07-11T23:33:18.488095Z", + "shell.execute_reply": "2024-07-11T23:33:18.487656Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:29:40.686418Z", - "iopub.status.busy": "2024-07-09T06:29:40.686015Z", - "iopub.status.idle": "2024-07-09T06:30:13.548442Z", - "shell.execute_reply": "2024-07-09T06:30:13.547829Z" + "iopub.execute_input": "2024-07-11T23:33:18.490061Z", + "iopub.status.busy": "2024-07-11T23:33:18.489698Z", + "iopub.status.idle": "2024-07-11T23:33:56.175531Z", + "shell.execute_reply": "2024-07-11T23:33:56.174794Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6cc3388bab2643c8b90c9272aea123fd", + "model_id": "c0584b24721d43d2868ec02247f84455", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c10054699f0e464a82009f0a5e0c578c", + "model_id": "f8938d4cb96f420fac56cae5ee37daf5", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:13.551052Z", - "iopub.status.busy": "2024-07-09T06:30:13.550744Z", - "iopub.status.idle": "2024-07-09T06:30:14.218934Z", - "shell.execute_reply": "2024-07-09T06:30:14.218385Z" + "iopub.execute_input": "2024-07-11T23:33:56.178473Z", + "iopub.status.busy": "2024-07-11T23:33:56.178219Z", + "iopub.status.idle": "2024-07-11T23:33:56.861174Z", + "shell.execute_reply": "2024-07-11T23:33:56.860565Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:14.221301Z", - "iopub.status.busy": "2024-07-09T06:30:14.220857Z", - "iopub.status.idle": "2024-07-09T06:30:17.059729Z", - "shell.execute_reply": "2024-07-09T06:30:17.059140Z" + "iopub.execute_input": "2024-07-11T23:33:56.863706Z", + "iopub.status.busy": "2024-07-11T23:33:56.863259Z", + "iopub.status.idle": "2024-07-11T23:33:59.837303Z", + "shell.execute_reply": "2024-07-11T23:33:59.836696Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:17.061913Z", - "iopub.status.busy": "2024-07-09T06:30:17.061694Z", - "iopub.status.idle": "2024-07-09T06:30:49.094226Z", - "shell.execute_reply": "2024-07-09T06:30:49.093651Z" + "iopub.execute_input": "2024-07-11T23:33:59.839536Z", + "iopub.status.busy": "2024-07-11T23:33:59.839257Z", + "iopub.status.idle": "2024-07-11T23:34:32.571789Z", + "shell.execute_reply": "2024-07-11T23:34:32.571226Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7019068b213142edb33e86d2e73ee210", + "model_id": "3da6e0e6f80242a69eed899f7f003b6b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:30:49.096361Z", - "iopub.status.busy": "2024-07-09T06:30:49.096022Z", - "iopub.status.idle": "2024-07-09T06:31:03.308031Z", - "shell.execute_reply": "2024-07-09T06:31:03.307471Z" + "iopub.execute_input": "2024-07-11T23:34:32.573937Z", + "iopub.status.busy": "2024-07-11T23:34:32.573624Z", + "iopub.status.idle": "2024-07-11T23:34:47.329710Z", + "shell.execute_reply": "2024-07-11T23:34:47.329133Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:03.310669Z", - "iopub.status.busy": "2024-07-09T06:31:03.310203Z", - "iopub.status.idle": "2024-07-09T06:31:07.123611Z", - "shell.execute_reply": "2024-07-09T06:31:07.123110Z" + "iopub.execute_input": "2024-07-11T23:34:47.332205Z", + "iopub.status.busy": "2024-07-11T23:34:47.331825Z", + "iopub.status.idle": "2024-07-11T23:34:51.162469Z", + "shell.execute_reply": "2024-07-11T23:34:51.161813Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:07.125567Z", - "iopub.status.busy": "2024-07-09T06:31:07.125390Z", - "iopub.status.idle": "2024-07-09T06:31:08.517470Z", - "shell.execute_reply": "2024-07-09T06:31:08.516908Z" + "iopub.execute_input": "2024-07-11T23:34:51.164843Z", + "iopub.status.busy": "2024-07-11T23:34:51.164441Z", + "iopub.status.idle": "2024-07-11T23:34:52.633372Z", + "shell.execute_reply": "2024-07-11T23:34:52.632812Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd89a714f4bd4881ac3bcdde2e818698", + "model_id": "c6133c732ab34f69926d67ba61ff195d", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:08.519948Z", - "iopub.status.busy": "2024-07-09T06:31:08.519605Z", - "iopub.status.idle": "2024-07-09T06:31:08.546961Z", - "shell.execute_reply": "2024-07-09T06:31:08.546404Z" + "iopub.execute_input": "2024-07-11T23:34:52.635841Z", + "iopub.status.busy": "2024-07-11T23:34:52.635556Z", + "iopub.status.idle": "2024-07-11T23:34:52.666054Z", + "shell.execute_reply": "2024-07-11T23:34:52.665470Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:08.549370Z", - "iopub.status.busy": "2024-07-09T06:31:08.549025Z", - "iopub.status.idle": "2024-07-09T06:31:14.598098Z", - "shell.execute_reply": "2024-07-09T06:31:14.597530Z" + "iopub.execute_input": "2024-07-11T23:34:52.668535Z", + "iopub.status.busy": "2024-07-11T23:34:52.668149Z", + "iopub.status.idle": "2024-07-11T23:34:58.869472Z", + "shell.execute_reply": "2024-07-11T23:34:58.868947Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:14.600337Z", - "iopub.status.busy": "2024-07-09T06:31:14.600147Z", - "iopub.status.idle": "2024-07-09T06:31:14.656339Z", - "shell.execute_reply": "2024-07-09T06:31:14.655805Z" + "iopub.execute_input": "2024-07-11T23:34:58.871708Z", + "iopub.status.busy": "2024-07-11T23:34:58.871342Z", + "iopub.status.idle": "2024-07-11T23:34:58.927260Z", + "shell.execute_reply": "2024-07-11T23:34:58.926706Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02d9a746ed0046739aa78a6ce0085ff9": { + "0044b9b331cd444eb439a799eba62326": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1053,15 +1053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "layout": "IPY_MODEL_60deca07abc34cb3811a667941e2f2bd", "placeholder": "​", - "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", + "style": "IPY_MODEL_1857b1f1c6794842b42cf4631af6f405", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00,  1.44it/s]" + "value": " 30/30 [00:01<00:00, 20.57it/s]" } }, - "0b2d6256d1c542d285214e15fc92fe65": { + "11b5ab5708304b01964b5005e9d49fa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1114,60 +1114,25 @@ "width": null } }, - "0c20fddef0b54b239fafa2cc41c63236": { - "model_module": "@jupyter-widgets/base", + "1857b1f1c6794842b42cf4631af6f405": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0dd5218cedde49baa055e8096ed30926": { + "188d4e1710a14a4a825950556de3ccaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1220,7 +1185,7 @@ "width": null } }, - "14896ca89fcc44339c2b6527f1f9f9dc": { + "1e1959d4bb5a46e68d56612b7c1106be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1238,51 +1203,30 @@ "text_color": null } }, - "176760f869904a7fa39445bdd88719b2": { + "1e616626d69c47bfa1a9ce0674300814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "layout": "IPY_MODEL_a8069702950941be8203dbf7f4221c96", + "placeholder": "​", + "style": "IPY_MODEL_7fed8e007e194b8bb590f88491499d1e", "tabbable": null, "tooltip": null, - "value": 30.0 - } - }, - "228b0d40b0924b7a97e4d0957e103746": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "number of examples processed for checking labels: 100%" } }, - "22fe02c2e99045d8821cfc15a94e4936": { + "25a343b31b704caa9a29636ff50a07a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1335,60 +1279,56 @@ "width": null } }, - "279d7517839d43c89b15e2c5c84c7be9": { - "model_module": "@jupyter-widgets/base", + "2a275f8d7fff42a78662b93bdf128c04": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6a3d9a0e69f42b895a23ab7bbd9057d", + "placeholder": "​", + "style": "IPY_MODEL_c1fd01202172453c871f3ff8ec81caff", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "2abe5ecefb664d2bafb6bfe15ea93d0d": { + "2a466e8aba1f4a8e827e3e8e11685a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71257a600c5b4613a422b3144f6c0434", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_49958122122847feb297f878a5b28da9", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "2ba0dfdc96fe4a5ca755b26d8afb58ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1441,43 +1381,145 @@ "width": null } }, - "32a85d515d9e4eaba06dcc77490cad82": { + "2f3778ea55bb4391bad28e2a4c2d9199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53d315fb6b2d4760aeaf263428cde929", + "placeholder": "​", + "style": "IPY_MODEL_7599052b7ce24755bf23b007aadc307a", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "3f51ef64ff6b45ebb8b941ba2ee62b5d": { + "33f89b940d65475c80bd183856bdb9b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5830c0d91db46f0adaa38dda98a2a5b", + "placeholder": "​", + "style": "IPY_MODEL_90ab3820a0694de5a8b9fa82e6bfe783", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 150797.61it/s]" + } + }, + "3bcac2630f48440fa0c5eb289e75e61e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_25a343b31b704caa9a29636ff50a07a1", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6201c8a3f3d45d1a37056a8da401a54", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "3c7cb1c20b1a40868e755caadb218eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8343ca1756540558b403dbea1296694", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad64269f32284260a3633079e160dc92", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "3da6e0e6f80242a69eed899f7f003b6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2f3778ea55bb4391bad28e2a4c2d9199", + "IPY_MODEL_3bcac2630f48440fa0c5eb289e75e61e", + "IPY_MODEL_33f89b940d65475c80bd183856bdb9b2" + ], + "layout": "IPY_MODEL_7a95c08c82304c2b875e75cd4ed33abf", + "tabbable": null, + "tooltip": null + } + }, + "49958122122847feb297f878a5b28da9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "403d955a5e56429185a7d79c76b3f942": { + "531ec4ced94645a9b3fa12942e97ca0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1492,15 +1534,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", + "layout": "IPY_MODEL_57b5c254f1a8481da67c7db8837475af", "placeholder": "​", - "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", + "style": "IPY_MODEL_c7d66facd9064239833d88bbebac16a2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 810.84it/s]" + "value": " 30/30 [00:25<00:00,  1.22it/s]" } }, - "44a6a6e2aca946a1a5360a07e3b508d2": { + "53d315fb6b2d4760aeaf263428cde929": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1595,7 @@ "width": null } }, - "5330888ec41a4abab567527c6e1ffd41": { + "57b5c254f1a8481da67c7db8837475af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,41 +1648,7 @@ "width": null } }, - "57f13be2c99544fb9cc14d43a41b2771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b9e311328344481b090157819e78c90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6483735a58b043b6b18bce9fcea7af01": { + "581af7bb921b4603bc3521d0c4926f9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1656,129 +1664,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "layout": "IPY_MODEL_d773831d8d4c4daebf9ad8f0083cb435", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", + "style": "IPY_MODEL_e955cf8e1a924724a672f8b877d6526f", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "6584bb27a7154628a8d459aca88dc035": { - "model_module": "@jupyter-widgets/controls", + "59cf3a2e31724441b3c7fde2dde98df3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6cc3388bab2643c8b90c9272aea123fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", - "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", - "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" - ], - "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", - "tabbable": null, - "tooltip": null - } - }, - "7019068b213142edb33e86d2e73ee210": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", - "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", - "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" - ], - "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", - "tabbable": null, - "tooltip": null - } - }, - "7b951463c2014d63996109b04919b6f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", - "placeholder": "​", - "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.76it/s]" - } - }, - "7f68c4f29617499499ee2c05c5a6a108": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", - "placeholder": "​", - "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "83e9f786fc2e45a789ee9639166df7d8": { + "60deca07abc34cb3811a667941e2f2bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1831,7 +1780,25 @@ "width": null } }, - "855c64f84945411a9db3c53deb7492c1": { + "6189bc160d14416d82f0032eb0215494": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71257a600c5b4613a422b3144f6c0434": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1884,7 +1851,25 @@ "width": null } }, - "95f6f8f5058e4a999e52cf9ee97471a8": { + "7599052b7ce24755bf23b007aadc307a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a95c08c82304c2b875e75cd4ed33abf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1937,7 +1922,43 @@ "width": null } }, - "97c988acb93f44548e72b7e6785373ba": { + "7fed8e007e194b8bb590f88491499d1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "90ab3820a0694de5a8b9fa82e6bfe783": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a8069702950941be8203dbf7f4221c96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1990,7 +2011,7 @@ "width": null } }, - "9af440153d4e4cdf94b2cf7fabd36183": { + "ad64269f32284260a3633079e160dc92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2006,82 +2027,49 @@ "description_width": "" } }, - "a35e0222d4f14c66bf3c3a5aa2572142": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ae57c0974e774c6890338ba8b17d0191": { + "c0584b24721d43d2868ec02247f84455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5fe05351b274eb6ae456d2b92b5e926", + "IPY_MODEL_3c7cb1c20b1a40868e755caadb218eb8", + "IPY_MODEL_eccd1de9afa64ec1aa6568f416e20820" + ], + "layout": "IPY_MODEL_188d4e1710a14a4a825950556de3ccaf", "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "tooltip": null } }, - "b6e063e50c2b4445910ce5e867fbd918": { + "c1fd01202172453c871f3ff8ec81caff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", - "placeholder": "​", - "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c10054699f0e464a82009f0a5e0c578c": { + "c6133c732ab34f69926d67ba61ff195d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2096,16 +2084,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", - "IPY_MODEL_176760f869904a7fa39445bdd88719b2", - "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + "IPY_MODEL_2a275f8d7fff42a78662b93bdf128c04", + "IPY_MODEL_581af7bb921b4603bc3521d0c4926f9a", + "IPY_MODEL_0044b9b331cd444eb439a799eba62326" ], - "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "layout": "IPY_MODEL_11b5ab5708304b01964b5005e9d49fa2", "tabbable": null, "tooltip": null } }, - "c498db02e0b04391a5861cb923082075": { + "c6a3d9a0e69f42b895a23ab7bbd9057d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2146,25 @@ "width": null } }, - "c9163ef783e742f3acc05346e5afcb64": { + "c7d66facd9064239833d88bbebac16a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d773831d8d4c4daebf9ad8f0083cb435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,7 +2217,7 @@ "width": null } }, - "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "dcb4d54354254228bc7b456431069d7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2264,48 +2270,7 @@ "width": null } }, - "ce3e640376574f9e8d585bcb85603e1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf3b18d1306748afa8e938ecd97912de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", - "placeholder": "​", - "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "d1f1c3debd3a4626adf70f52c88e15f0": { + "e5830c0d91db46f0adaa38dda98a2a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2358,7 +2323,7 @@ "width": null } }, - "d504401538154719844d7826ee272589": { + "e6201c8a3f3d45d1a37056a8da401a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2374,30 +2339,7 @@ "description_width": "" } }, - "d8a1c7ffaa334c438eb48081a604d215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", - "placeholder": "​", - "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "db6c02d349084e498c97e2e6ed714f28": { + "e955cf8e1a924724a672f8b877d6526f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2413,25 +2355,30 @@ "description_width": "" } }, - "e2897f5daefd4d14a83b5100fa9e108f": { + "eccd1de9afa64ec1aa6568f416e20820": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59cf3a2e31724441b3c7fde2dde98df3", + "placeholder": "​", + "style": "IPY_MODEL_1e1959d4bb5a46e68d56612b7c1106be", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 771.56it/s]" } }, - "fade87555302435dbdddd0ecd183f382": { + "f5fe05351b274eb6ae456d2b92b5e926": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2446,15 +2393,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "layout": "IPY_MODEL_dcb4d54354254228bc7b456431069d7b", "placeholder": "​", - "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", + "style": "IPY_MODEL_6189bc160d14416d82f0032eb0215494", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "f8343ca1756540558b403dbea1296694": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fd89a714f4bd4881ac3bcdde2e818698": { + "f8938d4cb96f420fac56cae5ee37daf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2469,11 +2469,11 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fade87555302435dbdddd0ecd183f382", - "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", - "IPY_MODEL_7b951463c2014d63996109b04919b6f0" + "IPY_MODEL_1e616626d69c47bfa1a9ce0674300814", + "IPY_MODEL_2a466e8aba1f4a8e827e3e8e11685a21", + "IPY_MODEL_531ec4ced94645a9b3fa12942e97ca0b" ], - "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", + "layout": "IPY_MODEL_2ba0dfdc96fe4a5ca755b26d8afb58ef", "tabbable": null, "tooltip": null } diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 703cfe1a3..30ee5fd20 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index f95fb9e96..c35a52f3d 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:16.799869Z", - "iopub.status.busy": "2024-07-09T06:31:16.799691Z", - "iopub.status.idle": "2024-07-09T06:31:17.988936Z", - "shell.execute_reply": "2024-07-09T06:31:17.988319Z" + "iopub.execute_input": "2024-07-11T23:35:01.258463Z", + "iopub.status.busy": "2024-07-11T23:35:01.258298Z", + "iopub.status.idle": "2024-07-11T23:35:02.186338Z", + "shell.execute_reply": "2024-07-11T23:35:02.185630Z" } }, "outputs": [ @@ -86,31 +86,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "--2024-07-11 23:35:01-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... 169.150.236.97, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -123,9 +102,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", "\r\n", - "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-11 23:35:01 (73.9 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +124,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", + "--2024-07-11 23:35:01-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.65, 52.217.235.193, 3.5.1.160, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.65|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -168,9 +153,17 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", + "pred_probs.npz 72%[=============> ] 11.85M 59.2MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 70.5MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-11 23:35:02 (70.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +180,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:17.991436Z", - "iopub.status.busy": "2024-07-09T06:31:17.991070Z", - "iopub.status.idle": "2024-07-09T06:31:19.289852Z", - "shell.execute_reply": "2024-07-09T06:31:19.289351Z" + "iopub.execute_input": "2024-07-11T23:35:02.189111Z", + "iopub.status.busy": "2024-07-11T23:35:02.188690Z", + "iopub.status.idle": "2024-07-11T23:35:03.496983Z", + "shell.execute_reply": "2024-07-11T23:35:03.496414Z" }, "nbsphinx": "hidden" }, @@ -201,7 +194,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +220,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.292366Z", - "iopub.status.busy": "2024-07-09T06:31:19.291931Z", - "iopub.status.idle": "2024-07-09T06:31:19.295209Z", - "shell.execute_reply": "2024-07-09T06:31:19.294745Z" + "iopub.execute_input": "2024-07-11T23:35:03.499628Z", + "iopub.status.busy": "2024-07-11T23:35:03.499335Z", + "iopub.status.idle": "2024-07-11T23:35:03.502749Z", + "shell.execute_reply": "2024-07-11T23:35:03.502297Z" } }, "outputs": [], @@ -280,10 +273,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.297359Z", - "iopub.status.busy": "2024-07-09T06:31:19.297049Z", - "iopub.status.idle": "2024-07-09T06:31:19.300013Z", - "shell.execute_reply": "2024-07-09T06:31:19.299557Z" + "iopub.execute_input": "2024-07-11T23:35:03.504801Z", + "iopub.status.busy": "2024-07-11T23:35:03.504477Z", + "iopub.status.idle": "2024-07-11T23:35:03.507452Z", + "shell.execute_reply": "2024-07-11T23:35:03.506988Z" }, "nbsphinx": "hidden" }, @@ -301,10 +294,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:19.302022Z", - "iopub.status.busy": "2024-07-09T06:31:19.301697Z", - "iopub.status.idle": "2024-07-09T06:31:28.335757Z", - "shell.execute_reply": "2024-07-09T06:31:28.335203Z" + "iopub.execute_input": "2024-07-11T23:35:03.509461Z", + "iopub.status.busy": "2024-07-11T23:35:03.509119Z", + "iopub.status.idle": "2024-07-11T23:35:12.662798Z", + "shell.execute_reply": "2024-07-11T23:35:12.662214Z" } }, "outputs": [], @@ -378,10 +371,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.338200Z", - "iopub.status.busy": "2024-07-09T06:31:28.337845Z", - "iopub.status.idle": "2024-07-09T06:31:28.343280Z", - "shell.execute_reply": "2024-07-09T06:31:28.342837Z" + "iopub.execute_input": "2024-07-11T23:35:12.665425Z", + "iopub.status.busy": "2024-07-11T23:35:12.665028Z", + "iopub.status.idle": "2024-07-11T23:35:12.670584Z", + "shell.execute_reply": "2024-07-11T23:35:12.670111Z" }, "nbsphinx": "hidden" }, @@ -421,10 +414,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.345254Z", - "iopub.status.busy": "2024-07-09T06:31:28.344923Z", - "iopub.status.idle": "2024-07-09T06:31:28.685882Z", - "shell.execute_reply": "2024-07-09T06:31:28.685329Z" + "iopub.execute_input": "2024-07-11T23:35:12.672749Z", + "iopub.status.busy": "2024-07-11T23:35:12.672341Z", + "iopub.status.idle": "2024-07-11T23:35:13.029090Z", + "shell.execute_reply": "2024-07-11T23:35:13.028516Z" } }, "outputs": [], @@ -461,10 +454,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.688450Z", - "iopub.status.busy": "2024-07-09T06:31:28.688108Z", - "iopub.status.idle": "2024-07-09T06:31:28.692422Z", - "shell.execute_reply": "2024-07-09T06:31:28.691913Z" + "iopub.execute_input": "2024-07-11T23:35:13.031558Z", + "iopub.status.busy": "2024-07-11T23:35:13.031368Z", + "iopub.status.idle": "2024-07-11T23:35:13.035967Z", + "shell.execute_reply": "2024-07-11T23:35:13.035483Z" } }, "outputs": [ @@ -536,10 +529,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:28.694566Z", - "iopub.status.busy": "2024-07-09T06:31:28.694154Z", - "iopub.status.idle": "2024-07-09T06:31:31.218610Z", - "shell.execute_reply": "2024-07-09T06:31:31.217915Z" + "iopub.execute_input": "2024-07-11T23:35:13.037865Z", + "iopub.status.busy": "2024-07-11T23:35:13.037691Z", + "iopub.status.idle": "2024-07-11T23:35:15.710595Z", + "shell.execute_reply": "2024-07-11T23:35:15.709845Z" } }, "outputs": [], @@ -561,10 +554,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.221635Z", - "iopub.status.busy": "2024-07-09T06:31:31.220890Z", - "iopub.status.idle": "2024-07-09T06:31:31.224904Z", - "shell.execute_reply": "2024-07-09T06:31:31.224377Z" + "iopub.execute_input": "2024-07-11T23:35:15.713638Z", + "iopub.status.busy": "2024-07-11T23:35:15.713039Z", + "iopub.status.idle": "2024-07-11T23:35:15.717454Z", + "shell.execute_reply": "2024-07-11T23:35:15.716971Z" } }, "outputs": [ @@ -600,10 +593,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.226850Z", - "iopub.status.busy": "2024-07-09T06:31:31.226675Z", - "iopub.status.idle": "2024-07-09T06:31:31.232224Z", - "shell.execute_reply": "2024-07-09T06:31:31.231711Z" + "iopub.execute_input": "2024-07-11T23:35:15.719371Z", + "iopub.status.busy": "2024-07-11T23:35:15.719198Z", + "iopub.status.idle": "2024-07-11T23:35:15.725101Z", + "shell.execute_reply": "2024-07-11T23:35:15.724613Z" } }, "outputs": [ @@ -781,10 +774,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.234195Z", - "iopub.status.busy": "2024-07-09T06:31:31.233868Z", - "iopub.status.idle": "2024-07-09T06:31:31.260501Z", - "shell.execute_reply": "2024-07-09T06:31:31.260037Z" + "iopub.execute_input": "2024-07-11T23:35:15.727225Z", + "iopub.status.busy": "2024-07-11T23:35:15.726814Z", + "iopub.status.idle": "2024-07-11T23:35:15.754333Z", + "shell.execute_reply": "2024-07-11T23:35:15.753814Z" } }, "outputs": [ @@ -886,10 +879,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.262698Z", - "iopub.status.busy": "2024-07-09T06:31:31.262368Z", - "iopub.status.idle": "2024-07-09T06:31:31.266471Z", - "shell.execute_reply": "2024-07-09T06:31:31.265953Z" + "iopub.execute_input": "2024-07-11T23:35:15.756419Z", + "iopub.status.busy": "2024-07-11T23:35:15.756236Z", + "iopub.status.idle": "2024-07-11T23:35:15.760750Z", + "shell.execute_reply": "2024-07-11T23:35:15.760207Z" } }, "outputs": [ @@ -963,10 +956,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:31.268473Z", - "iopub.status.busy": "2024-07-09T06:31:31.268157Z", - "iopub.status.idle": "2024-07-09T06:31:32.664554Z", - "shell.execute_reply": "2024-07-09T06:31:32.664039Z" + "iopub.execute_input": "2024-07-11T23:35:15.762649Z", + "iopub.status.busy": "2024-07-11T23:35:15.762472Z", + "iopub.status.idle": "2024-07-11T23:35:17.199732Z", + "shell.execute_reply": "2024-07-11T23:35:17.199171Z" } }, "outputs": [ @@ -1138,10 +1131,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:31:32.666738Z", - "iopub.status.busy": "2024-07-09T06:31:32.666392Z", - "iopub.status.idle": "2024-07-09T06:31:32.670504Z", - "shell.execute_reply": "2024-07-09T06:31:32.670046Z" + "iopub.execute_input": "2024-07-11T23:35:17.201976Z", + "iopub.status.busy": "2024-07-11T23:35:17.201566Z", + "iopub.status.idle": "2024-07-11T23:35:17.205791Z", + "shell.execute_reply": "2024-07-11T23:35:17.205192Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 3e028ec24..8e99970d8 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "e4be990d65e77f5fed23f796725f09cd114a37d7", + commit_hash: "a8cb2839f0be3d312ddab7c799760a9c4939025f", }; \ No newline at end of file

Here each image can have multiple objects, each with its own bounding box and class label. """ from multiprocessing import Pool -from typing import Optional, Any, Dict, Tuple, Union, List, TYPE_CHECKING, TypeVar, DefaultDict +from typing import ( + Optional, + Any, + Dict, + Tuple, + Union, + List, + TYPE_CHECKING, + TypeVar, + DefaultDict, + cast, +) import numpy as np import collections @@ -1007,6 +1018,7 @@

Source code for cleanlab.object_detection.summary

""" try: import matplotlib.pyplot as plt + from matplotlib.axes import Axes except ImportError as e: raise ImportError( "This functionality requires matplotlib. Install it via: `pip install matplotlib`" @@ -1044,6 +1056,7 @@

Source code for cleanlab.object_detection.summary

else: figsize = (14, 10) if figsize is None else figsize fig, axes = plt.subplots(nrows=1, ncols=2, frameon=False, figsize=figsize) + axes = cast(Tuple[Axes, Axes], axes) axes[0].axis("off") axes[0].imshow(image) axes[1].axis("off") diff --git a/master/_modules/cleanlab/segmentation/summary.html b/master/_modules/cleanlab/segmentation/summary.html index 23b346b23..474bb02a1 100644 --- a/master/_modules/cleanlab/segmentation/summary.html +++ b/master/_modules/cleanlab/segmentation/summary.html @@ -632,12 +632,13 @@

Source code for cleanlab.segmentation.summary

Methods to display images and their label issues in a semantic segmentation dataset, as well as summarize the overall types of issues identified. """ -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List, Optional, cast import numpy as np import pandas as pd from tqdm.auto import tqdm + from cleanlab.internal.segmentation_utils import _get_summary_optional_params @@ -716,6 +717,7 @@

Source code for cleanlab.segmentation.summary

try: import matplotlib.pyplot as plt import matplotlib.patches as mpatches + from matplotlib.axes import Axes from matplotlib.colors import ListedColormap except ImportError: raise ImportError('try "pip install matplotlib"') @@ -749,32 +751,36 @@

Source code for cleanlab.segmentation.summary

for i in correct_ordering: # Show images - fig, axes = plt.subplots(1, output_plots, figsize=(5 * output_plots, 5)) + _, axes = plt.subplots(1, output_plots, figsize=(5 * output_plots, 5)) plot_index = 0 + # Handle the different possible types of axes + if output_plots == 1: + axes_list = [cast(Axes, axes)] + else: + axes_list = cast(List[Axes], axes) if isinstance(axes, np.ndarray) else [axes] + # First image - Given truth labels - if labels is not None: - axes[plot_index].imshow(cmap[labels[i]]) - axes[plot_index].set_title("Given Labels") + if labels is not None and plot_index < len(axes_list): + axes_list[plot_index].imshow(cmap[labels[i]]) + axes_list[plot_index].set_title("Given Labels") plot_index += 1 # Second image - Argmaxed pred_probs - if pred_probs is not None: - axes[plot_index].imshow(cmap[np.argmax(pred_probs[i], axis=0)]) - axes[plot_index].set_title("Argmaxed Prediction Probabilities") + if pred_probs is not None and plot_index < len(axes_list): + axes_list[plot_index].imshow(cmap[np.argmax(pred_probs[i], axis=0)]) + axes_list[plot_index].set_title("Argmaxed Prediction Probabilities") plot_index += 1 # Third image - Errors - if output_plots == 1: - ax = axes - else: - ax = axes[plot_index] + if plot_index < len(axes_list): + ax = axes_list[plot_index] + mask = np.full((h, w), True) + if labels is not None and len(exclude) != 0: + mask = ~np.isin(labels[i], exclude) + ax.imshow(issues[i] & mask, cmap=error_cmap, vmin=0, vmax=1) + ax.set_title(f"Image {i}: Suggested Errors (in Red)") - mask = np.full((h, w), True) - if labels is not None and len(exclude) != 0: - mask = ~np.isin(labels[i], exclude) - ax.imshow(issues[i] & mask, cmap=error_cmap, vmin=0, vmax=1) - ax.set_title(f"Image {i}: Suggested Errors (in Red)") plt.show(**kwargs) return None
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 15c5dbe31..047e03106 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 6537a391b..4f25d0c44 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 9d8c490e7..16446921f 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 353b90c7f..aa6073b49 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index b6aa5b6be..730413e99 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 6c92a4647..637fd89ce 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index a8ff70845..8d374e248 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index cb9b315db..5c4805ee6 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index dcadf17c5..363ca8eff 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -69,7 +69,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 519a9fac7..dcd1c15d2 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 7f887265c..346cdb511 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 411006923..ab7c8953e 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index f29a7bca5..bae4a6669 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 8bc9378d4..0b9916bd0 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 0b1327d70..13b61ae15 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index ec451ac65..5def9a684 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index ac75f390c..fde14bf7a 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index a51677165..de7fe169e 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_payment_fee_charg": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 91, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90, 108], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "752": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "660": 91, "493": 91, "060": 91, "676": 91, "330": [91, 98, 103], "505": 91, "476": [91, 98], "340": [91, 98], "705": 91, "328": [91, 103], "310": 91, "374": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103, 108], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356959": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "95733745": 95, "71it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": [102, 108], "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "99299872": 104, "36it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "1029": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "22mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "179": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98, 108], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103, 108], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104, 108], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103, 108], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103, 108], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "lost_or_stolen_phon": [87, 94], "getting_spare_card": [87, 94], "card_payment_fee_charg": [87, 94], "change_pin": [87, 94], "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "beneficiary_not_allow": [87, 94], "card_about_to_expir": [87, 94], "supported_cards_and_curr": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106, 108], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "938": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "933": 91, "493": 91, "060": 91, "330": [91, 98, 103], "505": 91, "728": 91, "476": [91, 98], "340": [91, 98], "057": 91, "328": [91, 103], "310": 91, "815": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106, 108], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106, 108], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "98318168": 95, "93it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99, 108], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": [103, 108], "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "110818033": 104, "91it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "871": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "5mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 26fc7a6f6..0d1c2b8df 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:39.342775Z", - "iopub.status.busy": "2024-07-09T06:21:39.342610Z", - "iopub.status.idle": "2024-07-09T06:21:40.557607Z", - "shell.execute_reply": "2024-07-09T06:21:40.556995Z" + "iopub.execute_input": "2024-07-11T23:24:57.041245Z", + "iopub.status.busy": "2024-07-11T23:24:57.041068Z", + "iopub.status.idle": "2024-07-11T23:24:58.274854Z", + "shell.execute_reply": "2024-07-11T23:24:58.274278Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a8cb2839f0be3d312ddab7c799760a9c4939025f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.560493Z", - "iopub.status.busy": "2024-07-09T06:21:40.560042Z", - "iopub.status.idle": "2024-07-09T06:21:40.577948Z", - "shell.execute_reply": "2024-07-09T06:21:40.577491Z" + "iopub.execute_input": "2024-07-11T23:24:58.277844Z", + "iopub.status.busy": "2024-07-11T23:24:58.277197Z", + "iopub.status.idle": "2024-07-11T23:24:58.295762Z", + "shell.execute_reply": "2024-07-11T23:24:58.295306Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.580339Z", - "iopub.status.busy": "2024-07-09T06:21:40.579867Z", - "iopub.status.idle": "2024-07-09T06:21:40.741573Z", - "shell.execute_reply": "2024-07-09T06:21:40.741011Z" + "iopub.execute_input": "2024-07-11T23:24:58.298157Z", + "iopub.status.busy": "2024-07-11T23:24:58.297701Z", + "iopub.status.idle": "2024-07-11T23:24:58.515009Z", + "shell.execute_reply": "2024-07-11T23:24:58.514416Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.772745Z", - "iopub.status.busy": "2024-07-09T06:21:40.772251Z", - "iopub.status.idle": "2024-07-09T06:21:40.776261Z", - "shell.execute_reply": "2024-07-09T06:21:40.775690Z" + "iopub.execute_input": "2024-07-11T23:24:58.546676Z", + "iopub.status.busy": "2024-07-11T23:24:58.546458Z", + "iopub.status.idle": "2024-07-11T23:24:58.550407Z", + "shell.execute_reply": "2024-07-11T23:24:58.549926Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.778286Z", - "iopub.status.busy": "2024-07-09T06:21:40.777978Z", - "iopub.status.idle": "2024-07-09T06:21:40.786779Z", - "shell.execute_reply": "2024-07-09T06:21:40.786361Z" + "iopub.execute_input": "2024-07-11T23:24:58.552558Z", + "iopub.status.busy": "2024-07-11T23:24:58.552209Z", + "iopub.status.idle": "2024-07-11T23:24:58.560889Z", + "shell.execute_reply": "2024-07-11T23:24:58.560451Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.789179Z", - "iopub.status.busy": "2024-07-09T06:21:40.788741Z", - "iopub.status.idle": "2024-07-09T06:21:40.791702Z", - "shell.execute_reply": "2024-07-09T06:21:40.791239Z" + "iopub.execute_input": "2024-07-11T23:24:58.563113Z", + "iopub.status.busy": "2024-07-11T23:24:58.562768Z", + "iopub.status.idle": "2024-07-11T23:24:58.565244Z", + "shell.execute_reply": "2024-07-11T23:24:58.564790Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:40.793718Z", - "iopub.status.busy": "2024-07-09T06:21:40.793392Z", - "iopub.status.idle": "2024-07-09T06:21:41.315603Z", - "shell.execute_reply": "2024-07-09T06:21:41.314985Z" + "iopub.execute_input": "2024-07-11T23:24:58.567334Z", + "iopub.status.busy": "2024-07-11T23:24:58.567004Z", + "iopub.status.idle": "2024-07-11T23:24:59.095648Z", + "shell.execute_reply": "2024-07-11T23:24:59.095054Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:41.318231Z", - "iopub.status.busy": "2024-07-09T06:21:41.317889Z", - "iopub.status.idle": "2024-07-09T06:21:43.227263Z", - "shell.execute_reply": "2024-07-09T06:21:43.226653Z" + "iopub.execute_input": "2024-07-11T23:24:59.098323Z", + "iopub.status.busy": "2024-07-11T23:24:59.097837Z", + "iopub.status.idle": "2024-07-11T23:25:01.058221Z", + "shell.execute_reply": "2024-07-11T23:25:01.057522Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.229927Z", - "iopub.status.busy": "2024-07-09T06:21:43.229282Z", - "iopub.status.idle": "2024-07-09T06:21:43.240181Z", - "shell.execute_reply": "2024-07-09T06:21:43.239728Z" + "iopub.execute_input": "2024-07-11T23:25:01.061166Z", + "iopub.status.busy": "2024-07-11T23:25:01.060388Z", + "iopub.status.idle": "2024-07-11T23:25:01.070904Z", + "shell.execute_reply": "2024-07-11T23:25:01.070394Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.242259Z", - "iopub.status.busy": "2024-07-09T06:21:43.241975Z", - "iopub.status.idle": "2024-07-09T06:21:43.246137Z", - "shell.execute_reply": "2024-07-09T06:21:43.245712Z" + "iopub.execute_input": "2024-07-11T23:25:01.073108Z", + "iopub.status.busy": "2024-07-11T23:25:01.072834Z", + "iopub.status.idle": "2024-07-11T23:25:01.076917Z", + "shell.execute_reply": "2024-07-11T23:25:01.076450Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.248251Z", - "iopub.status.busy": "2024-07-09T06:21:43.247934Z", - "iopub.status.idle": "2024-07-09T06:21:43.255132Z", - "shell.execute_reply": "2024-07-09T06:21:43.254674Z" + "iopub.execute_input": "2024-07-11T23:25:01.079007Z", + "iopub.status.busy": "2024-07-11T23:25:01.078676Z", + "iopub.status.idle": "2024-07-11T23:25:01.086053Z", + "shell.execute_reply": "2024-07-11T23:25:01.085492Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.257227Z", - "iopub.status.busy": "2024-07-09T06:21:43.256904Z", - "iopub.status.idle": "2024-07-09T06:21:43.368112Z", - "shell.execute_reply": "2024-07-09T06:21:43.367612Z" + "iopub.execute_input": "2024-07-11T23:25:01.088200Z", + "iopub.status.busy": "2024-07-11T23:25:01.087896Z", + "iopub.status.idle": "2024-07-11T23:25:01.202770Z", + "shell.execute_reply": "2024-07-11T23:25:01.202168Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.370406Z", - "iopub.status.busy": "2024-07-09T06:21:43.370066Z", - "iopub.status.idle": "2024-07-09T06:21:43.372782Z", - "shell.execute_reply": "2024-07-09T06:21:43.372354Z" + "iopub.execute_input": "2024-07-11T23:25:01.205064Z", + "iopub.status.busy": "2024-07-11T23:25:01.204644Z", + "iopub.status.idle": "2024-07-11T23:25:01.207691Z", + "shell.execute_reply": "2024-07-11T23:25:01.207117Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:43.374828Z", - "iopub.status.busy": "2024-07-09T06:21:43.374407Z", - "iopub.status.idle": "2024-07-09T06:21:45.339078Z", - "shell.execute_reply": "2024-07-09T06:21:45.338438Z" + "iopub.execute_input": "2024-07-11T23:25:01.210036Z", + "iopub.status.busy": "2024-07-11T23:25:01.209685Z", + "iopub.status.idle": "2024-07-11T23:25:03.346068Z", + "shell.execute_reply": "2024-07-11T23:25:03.345235Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:45.342064Z", - "iopub.status.busy": "2024-07-09T06:21:45.341327Z", - "iopub.status.idle": "2024-07-09T06:21:45.352590Z", - "shell.execute_reply": "2024-07-09T06:21:45.352125Z" + "iopub.execute_input": "2024-07-11T23:25:03.349549Z", + "iopub.status.busy": "2024-07-11T23:25:03.348625Z", + "iopub.status.idle": "2024-07-11T23:25:03.361106Z", + "shell.execute_reply": "2024-07-11T23:25:03.360645Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:21:45.354672Z", - "iopub.status.busy": "2024-07-09T06:21:45.354342Z", - "iopub.status.idle": "2024-07-09T06:21:45.396625Z", - "shell.execute_reply": "2024-07-09T06:21:45.396172Z" + "iopub.execute_input": "2024-07-11T23:25:03.363272Z", + "iopub.status.busy": "2024-07-11T23:25:03.362928Z", + "iopub.status.idle": "2024-07-11T23:25:03.442341Z", + "shell.execute_reply": "2024-07-11T23:25:03.441848Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 480d4d2ea..a076c61d1 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}
+Classes: {'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset

-
+