From a886e43f1f5b29dd5dab39a32425df8ee6668904 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Tue, 17 Oct 2023 19:58:20 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@18fab35bb933761934d1f67349c8c3783663eabf --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 298656 -> 298656 bytes master/.doctrees/cleanlab/count.doctree | Bin 297542 -> 297542 bytes .../cleanlab/datalab/datalab.doctree | Bin 164193 -> 164193 bytes .../guide/custom_issue_manager.doctree | Bin 28223 -> 28223 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 72704 -> 72704 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 70527 -> 70527 bytes .../datalab/internal/data_issues.doctree | Bin 69760 -> 69760 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 28921 -> 28921 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 62637 -> 62637 bytes .../internal/issue_manager/duplicate.doctree | Bin 73417 -> 73417 bytes .../internal/issue_manager/imbalance.doctree | Bin 71121 -> 71121 bytes .../internal/issue_manager/index.doctree | Bin 3926 -> 3926 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 89720 -> 89720 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../cleanlab/datalab/internal/report.doctree | Bin 31311 -> 31311 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 103244 -> 103244 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 99001 -> 99001 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162815 -> 162815 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 172727 -> 172727 bytes .../multilabel_classification/dataset.doctree | Bin 68153 -> 68153 bytes .../multilabel_classification/filter.doctree | Bin 90121 -> 90121 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46635 -> 46635 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 118771 -> 118771 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117993 -> 117993 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53700 -> 53700 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 67499 -> 67499 bytes .../token_classification/summary.doctree | Bin 85041 -> 85041 bytes master/.doctrees/environment.pickle | Bin 1643473 -> 1643533 bytes master/.doctrees/index.doctree | Bin 41788 -> 41836 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1278 +++---- .../tutorials/datalab/datalab_advanced.ipynb | 310 +- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1922 +++++----- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 506 +-- .../.doctrees/nbsphinx/tutorials/image.ipynb | 3100 ++++++++--------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 408 +-- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1880 ++++------ .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 166 +- .../tutorials/token_classification.ipynb | 171 +- master/.doctrees/tutorials/audio.doctree | Bin 326242 -> 326242 bytes .../datalab/datalab_advanced.doctree | Bin 198038 -> 198038 bytes .../datalab/datalab_quickstart.doctree | Bin 128787 -> 128787 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 107861 -> 107861 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 295168 -> 295170 bytes .../tutorials/dataset_health.doctree | Bin 404314 -> 404314 bytes master/.doctrees/tutorials/faq.doctree | Bin 146230 -> 146232 bytes master/.doctrees/tutorials/image.doctree | Bin 463181 -> 463183 bytes .../tutorials/indepth_overview.doctree | Bin 202107 -> 202107 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110976 -> 110976 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104010 -> 104012 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1976752 -> 1976752 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59881 -> 59881 bytes master/.doctrees/tutorials/text.doctree | Bin 95043 -> 95043 bytes .../tutorials/token_classification.doctree | Bin 170852 -> 170786 bytes master/_sources/index.rst | 4 +- master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/index.html | 4 +- master/objects.inv | Bin 22240 -> 22256 bytes master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1278 +++---- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 310 +- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/index.html | 2 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 20 +- master/tutorials/datalab/text.ipynb | 1922 +++++----- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 506 +-- master/tutorials/image.html | 64 +- master/tutorials/image.ipynb | 3100 ++++++++--------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 408 +-- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1880 ++++------ master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 4 +- master/tutorials/text.ipynb | 166 +- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 171 +- versioning.js | 2 +- 157 files changed, 10644 insertions(+), 11394 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index a3b3038fb..d31a760d4 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: f14b6139d1098ee27686f3e2342ae9f6 +config: 40237fb9ba7df4641d46b15cc2dc3d18 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index e0c5b4c0b32c9ce2976c1306b238051d098f39c6..d989fb9e0ebbef5300756f53d889921a5d8f162b 100644 GIT binary patch delta 175 zcmew?`B`#9IHO^)rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ kvZcADVXC3U{YeXq;@E hk_ePEF`C@Lc!P9Znu!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~dD2jI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*eC^#K delta 1655 zcmdno!@9YLbwfO(VPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%BgJb{sw3~kdLT^N%$Ycfw^Cf!Pq-rUL2>>J3{x{{-iJgsq)6Zph7@8=X? zr$GPY{hY#+j9E5!3pz4U!I%yaR#u9QVcqN{)j_#ySU2~})^kw7HK)}&S*T!)piT*y z=?fgwkeFiK>}0@3Y1nKsUP%oPrCE5BoAfq2IK*(08>S8p(wp799Hq$Cugg8TK$2&( zZt4TF6RQK%jLq4W%9OYxt4D0}oc;$Al$xQl@`fw5iXBaCiEwa*4)OpBDbFqi<5+PHF5H=+S z`CuM$_mH67gfNH>w0sj0dh@{uNe!Y4hCzf8VHDDyF?v7CKj8O$>sx2-wf7kxvy6{f zo}B}=$L%VO^mJS-Dk(nXbo-r-P>D-b+g+v3vY`J$NxV^w3iYNynVnIhQ!4VSWCKm+U+J^(~n#T2CX_y!b;W`|jUpC9~PT zhbSjQj#d~e0Ul6}MjVcExJj)VA0@3W%L~usg?G)-* z;t3mg2&S>E8^)|m=p@J8XNSWCXS|&SCURW&9{5Bs-HJP%1Ks4fv$;@3cAm(CM`Y*s z1<*oV0rfcRfcv{>JH8%QtD)aRfd5^sMWP|9Wa8;T7`Sd+1tFCUmKx_`-@0~WElGG! zvIOzc0cPRwu}18zU|wPyV{$0vj-(UI(Y)VGX!o%w@o`og7bs|D%hU?QW+zL+TitAx zTEdpXMug4UXvAyrfYL^YD`ebjc+jIPQ4WmE9Koljl-@$)!8Q5Mj+0lEU$(!*2+8jN delta 4202 zcmbuCT}TvB7=}4##-G&9br%+E70MDtGIv`wWv#HZ$VyjH_ac89cP-ddh_G0Muq`pj z3v8nd1 z-fp~JzMOzrhl~#&2RX`GK4*iwG-S+u@xi`RU*E!P!CDGj^TH1U_T9VQ0<)RF2auB? zw^oQM7<-5ujTjtJ*e$eb8jojjuybW13&PG7$*d1{4qDhf*jZTFBH&E2+ezrQq~i|e z1x%w;H$)lftOJg_$H@)>&U7b(S>U*(yVxhdbTjT$7VCoJ&SbMn*m*36jl<6G^H?)D z0_teS#UAXyW_%s3RIy$!0ROvM3q*ZHO{Y`+tnY?-6=KP}zsNinUF({m)db-?!Q;eB z7qbeNpEpprocq8wM&(G#9Zm(y(S6@68@8fhTJ>$KmiE+Pj;X6~k^C)IGi`QWMzG%62%(6 diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 6ab24cfa1b9c36af828b04c5d6ee7c9919b1462c..b6a90d2ce98f395bb014ae1d87e290f89e27c453 100644 GIT binary patch delta 3732 zcmX>$Md;WRp$(plhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8B~n826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT|F;v;O3IJ>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I4y z<8U(dZ@zc!JSUlYC*Qj!w^{pPyEnP|6?{0iOY1UjBHIB#1EvEF;M(qB&N$tYOlM3l z;A0Zs?pMfIAV84`rcI1tZWNiobdqt4HJK(%28P8X8}{vLtW4+0PE1fUQiYg;OvrXe zIL~A|7uD(gbC_AT`?@o+@KM1ej_t2Pne-(|H)%VtfpddtyHXL;Dr3@hLz*Wae6^?R zh%t+7&tArKQS{Y)7M>Q7TA8`Dsv>+sToxAf=!wAl39+NfB^d8 z!}goMn5D@H0C1*W{+E+QpS)0T-(G6TlFCM|<{$?adv($^PcD?O-TptF#a#&iG;mX^ delta 3732 zcmX>$Md;WRp$(plhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`auwrVGISM67;m1<#6*sTg%Wm~d00$D$g*`K>AI#L^kdeaT(76Rd8y<+ zF7owjY<{gWkqi&R?AO@LqTazoiTxs4+$?13-(0U(O_AMAhM^Sck2k5ONPn97HHyOi zh-C;x_AjtmL2lRs)1JoW3yxoy$&5R&ejm5F6uH09b2mlq-{RLsk^2t?&7sKtXW{25 zvfnml3q|@X6TVQC{=OzPP!xZEQ*9~Ie<&k`BLA<;c|}3|32f#ly39j<`WM*jU2hyt zrvA>dD z;@kZS84Cm`GQqToG0cr36PQjiZm}lQgvr3Lm}JAgU5%CLJlTl}YDTIMQ;-SS?g;0Z zZ0Djny?+if>vmsvCKf&_n8dODRVb6bBVVp?TPx^77GT{k2Y6vB1414F?}i~<9u z0|S74JC`nVFc~e}=^s}xf81X0#4Jcg5Q0Krg$>zG_u-n%A14V;)6;=zT3|b44>LEp z#RV{{f{oh_%p!*5_yrgcaXRGtg>(A4%gh4XPh4e=Bs(>ON?x!jvtBaGkrNO=KYZAJ x^B1!;IROC9)XV>Jvgnf+3hvuWEm>08$kiO=z+$gXy5`A+61Lm_r?a>#0RYwNn2P`a diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 8aba568572a065e3b0ee99b32b721604226ffbc6..d9efc008f6d4e52d712ac003e11d778c6bfd9d30 100644 GIT binary patch delta 4414 zcmbuDUr19?9LG6lQ#a?@oU)XVxuDiVWcy>=BFYTD5gB=PPMdBhnM#4=Ux=*O zILO5;F*G6dAvx%IG2DabL(_UGdYt&?OF{KmbXPs}+IJ84@$>uqe!ug(zjL`;1NmD6 z`LAn;r!yF+?CNZ5ukd+~c!CX{!%e<`+Z_&6di?WFhrHfU&>wV%-GK^r zDYuMS?FKeY7Ty1ivqWz-Pf;@gQCWW~7ekq>w=$cl1ESBfq*BDK1x7uLm+*P3GY7-@ zS-Z&uqMOc5H0e#JfjeBE4q|4e;mqMOvDvN@M_I+4SV!hTCgxA~>uOJ`Vn3|@eWOP?u84xAtF3FGXz+<^OX&) zb7TGyl5FA9)v5FXK=Q&R9k5Td4>pO%m)Ec|B^F<{@U7$^_TeM(^jZ&yvhMJR zpcO2!s@?+C7A3`e-v=chkHO99fe{QBrYJcMs#T3OiTB+kPzuV2;=}-qS!P~@VU%p3 z$9AC2EN+gI7SPQy{Dn#K-3ZpbGE30&RyEcrrWc8`5R9*U1&IdZ7hKm0@zG zJhrLz<0MZljS{n}tdkD$bBB1rR5Ibj%4hP!4yMzWFo>!=`W4+g8n0@6j#xI)7Ay%_ zOzx$7umogPW6MPCe!5_VIv}g@a;j&2&x^&lpY~(N@K2D1V^p$0nMkVRGBv99D6xu! tOl{ybBD5&yus1_izcgwmxzj{_*k1V?V6v5dD}s7Zt^Gf+2>X31(O(51I*0%O delta 4414 zcmbuDT}V@57{__vP2HSp$0dSv!PpVWkq{=Z!E0`;ftRHyr})JQ?WE#{4np2hG3ho(R`xWADACWMdDsb!KC4i@nIkK62+| zHul)vK?5{0A=cQiiw}3a1y&tTbSqfW5#HJJ07ZxTTd+$fJ~B_Qb%H2MuStA6HIoOe zV42l+7ijh$p(6C z2X0%%%~8?{x><(5FiyUk!Mayw33}d|&YH#4B5@UBa;-c?Y~tcNxdK)%^Z=NxS&DL%d)rnQ&s|Gx^~F)9Fc=L~S1Zif$gA*K|HdEL&(RmV_e4 z_tHIB0*a=yWujp}U67y-C|bOn8d=ZFVli4nd$D8qC&IepdQre-w$lU@sP^&7eoS%*Z=?k diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 217523c227c142216d62163f0776843da0d2113d..323bb2013e4dea6b7a832390a87ea8f6cfd43543 100644 GIT binary patch delta 64 zcmdmghjITM#ti|ChQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ U#>UB(=9Y%3h8CL}8TaJ?0JFIiXaE2J delta 64 zcmdmghjITM#ti|ChKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI RvT;fxP}0O`b0g!v901rb6_@}3 diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 8df5ae9ddfbd3d1386c4cda9ab18250f8e5d8f3b..b26355c89968b4b29cde258011e4294d3488d1ba 100644 GIT binary patch delta 67 zcmbQOH(PH*G^0_mrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ XvZcADVXC2p{^avwx|??~CW-<8uYMFK delta 67 zcmbQOH(PH*G^0^sVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Uk_ePEG18xWUQBoMF2+Pr0NLdgR{#J2 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index ccd53cd4cbbd250a058e48d0c84d8fe642a6b3d0..2a7806e21b9dd1614dbd1b961a184d64996147c0 100644 GIT binary patch delta 68 zcmZqJ!P2mUWkV{XVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG Xv2n7cxus#Mp+)mF#_iJ>8MCAS*-I2l delta 68 zcmZqJ!P2mUWkV{XVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl VY@Ct^lr%AFp2oO+8Y5$t6aWH|6?*^x diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 97c59dab6c33934aa0500115de9ea0747d575aef..b51b5cce40d29ee83297cb00c9dd1738d26b0ebe 100644 GIT binary patch delta 175 zcmeyT^-pVqFQZ|xrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ jvZcADVXC3U4LpwQim-e4h~jM3OX= delta 175 zcmeyT^-pVqFQZ{%VoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E hk_ePEF`8V*c#;fV^MxHY?_k;{K)Tk=^M&s-0swwSI3xf7 diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 91a4bafab5cd8868960f5a96c60a89bb8e2defc4..7490f37f76c4b5646d966dbb213bf26b23e88e24 100644 GIT binary patch delta 3622 zcmbuC-%C>g6vvs~-DK|S)P#gANvXH?>uzo&MS~oMm0_4sb6(eklxR580-?Ps1)JwV ze6WWKK?CjHlSqX)DMEwb;zQY+q=X7W_*4X~-A$qAuYbVje81;=zV~u(WiI(v&(L;%dfZ`w`HHx8TENw^%138?(!=US66++?T+~C{m!Vp-%sNb?1dVw7LoIsrveq$p37_oAvVD+db! z!zsCgMyo4$x#}E<^Jw)WWZ%5<5uQKpM|R%F$4`tQ)i7|~Zst#?bTb&6ZZBfzX&bmZ z>-I?u4O7w~a;fVo5F4lDc1$(K!`>Dws@4&k#Jvqx>`pnl=zJMwJ4a6i8nAL_X)E_P z27#n0B^xwdYWf59YY#5x?TaBWc1m zz!MlQNLR{6JSS;E`GB2be+UhEoA_?zD7X?!cYceQ10IeQp?Bz+t{^>TVRzp%@CoD_ z15dn|aq5}A36QGRN6S?u+&^Oho?KS7G?JF8#kq2}3b~Q04e*zDok+l{7UqxXHB2?k z-lZ)}^%{-8v5c&ksczTC?>|oiL6fTGrf4h0i2am&g%W?woLn6`1e9bCr{t=cp06R_ zv;R*Bt(Q>U_n8Cw2(7ol6GW=nJeI3{bi;#OBfpNwHJcBS`tRXc7quMNzJQm}a* z#0Pt*5H!$sPa+kPQp5~`;X~P*q=X7W_*4Yh?*2f}-#w1;Ip6R3p6|VE`%}{Xl=L#7 z^9T_Up26F9T|OZ^Zg05zmRqh@{81$;!kLe!B1+gVydH1Z8xff=KQTU+Ahesmm0kmqWno>^LyA#;WeWj{B&<=Mspv&jUsMj20EQEC z7mZgrc*S`Z#Cg2xA+m2y`4BH2tw(k);FHHDkZNdn+GXHRC(;HmwzSK{o|86kcTT&e zF*HbVw~@>1t^l!dLhis+V?3&~Vo|k?*{s~#V8QN`rA_DTnC&b*)7XHOJ40KzzbODD zO$k|}>0fO?FOoxxo`? zE+{SRW4`0`PJF;lQ5ZraN;BUJ9|l)q>z&_5%mI(aOz0hYW*wA{nc3U-6np~t`oLoa zGfq9THvlrJ_R)&7jQi)zz>~{KbqPr;sov+xc_(tCq&mP~-iDBXlWLGZF0Es#K~_@R znCexUd~F_EHBjxIjo*Ks1%jrenw_GqmLm2O@?{$SYvB0W$N``vd7R>F270!R{GR=P zLgz*q)qbBV(nse;J3PTi)mulhwU2K4kZa`DF>>|RAX5K4o^esbjXO87H?DS3ZIK!d z>;{lx7F^hVS}C=3hJ$-;*!wo;Br}H3|60cT<(Qw)t>V`>xUetj-k5<>Xn)gMr1FJ; IP3JH92mVHwTL1t6 diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index e4b847fd3136fe545d6371215d066803bf3ae07a..d233b7ac92961e6c98a03a08ac249789c5800a4b 100644 GIT binary patch delta 2717 zcmZoz$kMQoWkV>VVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~dDlMkX?}O?I@7*(}ODiHUR@!CFn&4sejCb#fzr19>_(_X+H0CQs|+ zJ^|s${E@7iKZ$%M&xrKRwUUKoYMopw39)^i>_!%{Jdm^bjnaKqvb5%J&en7zFNIWX zj?v!2PnNAG$kLS#3@Me(M{Tqy4e0p}S>zgVAe(z~gRk)936cVv&%3N3FVNE`LyVEw zY~;O~yub$=vAMzb8hKe1;R3-xW=f4XAKXEy5klea6odmXMkF?iL>{Kp6_aA3D0Rj1 zI9bY)mc-`zq!X07f+=++rD2hlafiIZ2$ZyVCu@Bd-ux?9ke$qo4m4u(hSJ02RU+w= z4LrFwi`6e7*8?E!u`QVrWIEo!lWX#aMZB9!=iVgW1zejyEb0>^(*+lH@=Y$C+pu}b z)+uDB#?2RY){<+x!YR?szfOCTY4c=|_D|VVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%Bg+{Va6hPKI$)-jt!nI|!kZX;N$3EKe<^0ZEF@ zSCbd`U?Vm+_+BF~iy~Yg7|2Yi5$A(DC^bST+?|4O0LF;KW|7Fll)7S4OcbTASRN-! zS<;f&T%UA;QdcmguB0?9(lYLlR~Uhk7Vl)O@4}mZDJQ-Vy#8+dX}{;-I5bLrfhT9ZC5xYy7|{>Z!&G34ATDTya^APexH!2y!qjsljPbC(w_P-fr~ubH^;tN uL~hQDeIvGc?fYA7WZ3-iSLtTm?~}>!^X8Ag+=R)n5!gW7euR&44UB(=9Y%3h8COa7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Q-uy~dfQ3x$_q91UFHv$O*LI-x$xD=kH!oA0L8c2f-`8FsOP=F5D|r1O*Wn6Y We49`Ei7Sw0Gbp8SZJv~$&IkaqSKK84 delta 736 zcmezQkn!h3#tpuVhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`a~-1)Iob{~y(L52*QH^;Mj36bttsP;OtbQWyRlRUvpp4Q2E zlERx`$qKNLsr|k-=jJ6!uH@Pd)INEMlJMqbYBR`m!RGtg3uMW2{ALBOKjb=G!HaM6 TX+LoVvTO#W6t2ya^3xdsq=xEc diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 353b349fbeae68bb4bdd86170116bb6ad89c50b0..dc689a32341c469595b2066368e721fc151bd97f 100644 GIT binary patch delta 185 zcmcbld`WqOKciu>rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ nvZcADVXC3U<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&dpcgc) delta 185 zcmcbld`WqOKcit{VoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E kk_ePEG1}a~IEUGYWNrGB1=yt~XRw|nU#t1%9c)tE0Q(C#Jpcdz diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index eb3c40a439ff47068d8ead6d6968e9c2a0c34d60..c91bcbf2e81688900bef61a38b9efc594e69d8e4 100644 GIT binary patch delta 1640 zcmZ4cl6mb*<_+PDhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8CMU7$w-r&~}l7jSSl+U*t&MoXz!}JgsS)fAYw4lkQlctp$^JN)(cz z^I$^OI^GrDjHuAJi_BUkR9H@GUjQE)ha=5=C$L3?Y@0iH5eY3w| zwJ>>Ffi??GE_V$jOLynyHaBxtvb6SXuJL(HPTD${(6?F6|0#JP)wlUjkT1Emo(s88 zuB|x{yU5l0GqY$YAuWNFQw{9&*3&1y$J@{p~ab#lXb(amQsP9Y=2f!P@335XHm*PoIXgxQl1Je1zN`H=v5i4>x} I>WQ%c0Hcxq3IG5A delta 1640 zcmZ4cl6mb*<_+PDhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`a|fdYI~m$8aFOd;HlR*ymH{{rSO!plVdA4u%H>?&W zPb<)7p~>a0p=9aq+}!47&PtZnzRfj0kI6|}2NU`>%lSVgFQoc59}4m%*Vc0(_sO+2 zCt?@5TAxO*CL=j-KA7N0URo^MyfR}O7g=#ywwbM@!<#Iv*^@u)m7aX|qVVR31LDl& z8?jmK$VVQswX;rcI4`>S?8PZ$gg7u8gFFE-Lj3wu@`5mX@_~oan>RlaATNUB(=9Y%3h8FrM`N_rl#rdU0$*GeS^^GSVWPEN&vMJLGWf&_b2Qlv4PX47NJh?}4J=waW$Fn9H+SczzCfIkSH(qW}N^ delta 2563 zcmX@Pm*wPMmJNZ7wuy-;iH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0OmKP5l8Sid;Gv?w`svZB86VmdJ>+R^o_vUEUim7&*!#aB};4H=4pb7yku(KCeOl1p4Q2~l!PbuD6S`4cQjc#7j9Np zxkg?XFWY=Yvw=L{F59fFbCij62X9u?HzGqDFfA?HtY!3)T&=H6SCH$^OpC|l+Nx}` zjG6QxntU*3*5te4!kd>nOd%&;A=)K2%eiHf<7b%m9FGU&_#38O-zSa|+Y9_|Q)0Vb zkRBzr+lO2x)Ar4G!#9%=X`2tmJme%jsZ1~AVw|!$Jw20)biJDyi~jPHt__$v`#0}v zI?q9#*2!|NJd+PhV%Z$qGo75$9cVkqh|LEkwR4l{f(dhZHVejv^}p1DVf93LPXQGehX4;f(yF+y##_&I4Z zwQoLm%T$eYn?d0>VQK**>-Lk3jOAn`!0kW-1ldTp7?kF>I|(xWBO}tb1KVB^OaKu@ BH-i8G diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 69e337231670bf8ee46f050227d4c02f4aed65e4..33f3128b33f49a668849f464e6f9e4f5b0c5294c 100644 GIT binary patch delta 2539 zcmcb(n&skZmJNZ7w#AkfrlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8FrM`N_rl#rdU0$*Ge+wi-`9$oSllWK)1TOD6j=A0$ub^zXuq{F4u{ z6q2RAe{wIk@Mbo)<1FN9-`vY>$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDk2FuA}-Zu1S7F7o0Uq+NNln^z`z{+_V8z~>Kn{)X5b5D-eH z&0vRj2Hm5?cJDAfN^FmfxJHTX;xY5cjI>F*Je!*m4ah57CQP=^l%I6%n}IbDd0t+y*{nN`n{*q2b>4)@`)3JmPMbc1%(&XTf0jEhnKswk@^8Mj zqME#r&YA3RNow-@?Sh*nx5$%MI)IJX{C@j29{iqC?+BZ8~5>q3~<_Vj{ nf98-^YfqS5Z_B#flZi2vyavOB?fD#xkI9R&lI_4&(k(^+kli4Q delta 2539 zcmcb(n&skZmJNZ7wuy-;iH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0OmKP5l8Sid;Gv?w`s^2b)=$p;yq874#un2~?-A(le2 zwD(W$AJnfr%xh+}A)Y>Nal!HvI+R|){I4S# z?U zk!kB>ke`DcmNAnRWD_PA_{eR(;nGE3T!XYLZ+7#_B+uUyHW&E(A$9V{$V_ng^@5vM zmx=O|u6;AG1|rYP3pSf|$8nQxBe2e!FnRwh!OdyYXOJ0JoA=Lh=OxqTdRzX@*H%=M z7t%SC9WF^te!pFCv*Z?e@=6D=5u4v{zs5tB2SD0YH@6>^AyfNihf88=WZ67nv-r;( l@@nk~lk06+w|g=%rjplSn6N#cgYhwWQC6}Y*h;#^2mlItQ9A$t diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 86f6b303f72ba5cb9b78d9364f37ce23fee2d015..9d44ec62e76239a6aed9f36f1aa8da201bff25d5 100644 GIT binary patch delta 62 zcmca6cTH|XB%@)mrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ RvZcADVXC3U<}SuFyZ~Y~64?L% delta 62 zcmca6cTH|XB%@(sVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Pk_ePEG1}b4c!n1MhO86` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 90dd103f011cfb49a8faa38ac7a4898f81c51a5d..03b324a7ed568a99c1e636c074d10463a518b5ca 100644 GIT binary patch delta 2596 zcmey`!uqv^bwebhVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~dDdMk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24giUxJjDP2 delta 2596 zcmey`!uqv^bwebhVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%Bg+{I`_hPKHI&(%!MWIjl`g0pV($~wkj5~wF_^~i)+vZ0T(mBZ1F0@%}7TMbC7Yc9oUi^ZO zJli+F+Z0N^!&x^o?+GQZGU}SV`vB)=nL|Ix(>`nSgA)_T(7JiyITju=gDTu!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~dDZMkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1bV99jd delta 2852 zcmZoz!`iThb%Q6PVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%BgT*W9whPKHI19B$!v#?G!W8Oo$rBK}sWa*r^`66o^3t3vHZvM(8#7dUd zy3N}J_VSXab+VHD6Y_L!-m2grO`g`tTNQ*SOGnsS9oH|(EdXJX(*`h_CT>1xyNSHO zp0?S_xq-Z-HEnaF>p~{7{5@^+OOGCMZME?}O0KOZ{8o@*>*j?4q0D6Zb8pBp^0d}X z-Vi6h*)Z|~dGT7ec|%+#8GZ$(CXmf4o8KfnBrlX9+83lmQ)2tMv=fxro|#3F-O zAhY6}eBdho9!V(?Asq$GU}3>?jO8h+kVK2(Ui=z cGyR_%BiHr~9*jrHi#t#om4CZp2;+T506R6SeEUB(=9Y%3h8CM^7-h-OHaT!Y-ee2rqoi91);Wizfjpg?ce8$AAy4b%-K@fs8%kL= zCvrD4lVwEyqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfdcowK{JfhtbQh439ySL~5FpRtOE;TOK0~h7o6}Os3-P6!MP}|L*Vg58^vJb! z^}MZQ*t&V*LRIog*WS$~%kOcJmAjfI%U5!3=HDp6MW*)rT|%4R?Eb|^rgqyt?#)Y1 z_mk)ErpX}fA1}solVQ8#lgXQf?)@Xf=FN^zX7Q3?W8ef(XtPb$`N+L_{wD|WLOf$~ zK(N&G5=KU$%}f5ul2-YT&EzkP8G<5flg469vu delta 2806 zcmeydhxNxE)(zf_hKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`a}A>`8QLZXPRN^V!F-f-3&A?)ur!dTbMtQ24=m(qoxGb>cydE2%jQJx zW@fUC$e;X+U1{?&{xuY6pS+A8r%0Ce#>ood ztef*(Tm;D0&apWsl!?4F*SJ|BTu_{Bn}sHKb~#v`(l5y^0AZ3d3oz|AZvK#en!FU) zIQc`q@aBfnRxvMGSb85zzG86Ieh76^T}t()p~PUDtRHkbhF6Jz2w@ue2yNuwyvJH zl?+=qPh6-|X0I(U`foAOFAfm)q&SopUuj$ypY2mpv;lIQ>c diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index fe1a73ea1ac3b749fdb91bd8927f2938b0cb7ddf..5e3cbb382626f554d8428f899cdb8addb478a350 100644 GIT binary patch delta 2831 zcmex+p5^a(mJPm)hQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8COa7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*090s4JOBUy delta 2831 zcmex+p5^a(mJPm)hKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`a~-1s8QLZrvXoACVctW!g+QGj$j~Jy+cJ5+q44IHtP@zs)-Jx;m0O0D zEbX0}r3IO|$kN)g`Ia;r8DYFxP}YqMZIcCMr%#rb_aMuykU-W~_)C5uOKkqB+CZMW zLAFb5cGFnPM7HB4HXqRLp~QAcy^CbpzIndk0ZMGvF}X{o&ER0WW^O}??e{HDlWF_r zc-wuTBOsOko z`yVDVHbAb}EFVl}$G;j(*Q)W7Y4e1Gf}3~m_8=#|4OucLpL-%b`P31f$qP=gZa#TT zjGO`u$(YRxP95YS!y^zQ)HW;L5GGUm=5tTv)yS|J*ua|pkCTyo`$}#`YYy@Zm^|Si i+xGb)jLu|6|8yN$M$YXEq!`bU7mM}V<UB(=9Y%3h8CM^81J!>u5I!|!Jx@^ITn$rlZop)nL6)s2u$wbUQM=cp~+`>^2pMi zxA`XTb!O7FZhk0e%1*jAU5)8r%hEd`(%%4g;ReGlQ(i d41>+_VU`?Z+ME@~JJ~S)3HiD=uS-}c2>=?WU{(MC delta 1164 zcmX^Ah4K6s#tq(#hKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`a}DD?Hqy0Cekd3;`7XyIGIcU>eJ4}rT@HcCJ>09w)-5#o3{M_ey7M;Q z+;#y=rn_vUp83nc+}D0b!m diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 1791aba58e95d3892c794d63988de6ede11d073e..354f4a4662d150fe7ba0e8f948f28642e5ab99e7 100644 GIT binary patch delta 62 zcmdlhwO49G3zK27rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ RvZcADVXC3U=B-Q}TmW8L60iUO delta 62 zcmdlhwO49G3zK1DVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Pk_ePEG1|P9se=mug3%M; diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 83b2178907d484b53f4373866b7e2bb870c5cda9..1a5d6822dd5135ff1ecd1662e641b807d9613299 100644 GIT binary patch delta 1283 zcmX@JjP1-awhg|FhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8C0S7!Q-7t5L*g@_R1U%`2I8uWAiEYLri3AZy-x&@@8h939Mvk z&Dg9Xq(X*!H#dshAVb^aMv;uopTyh9iB*tRL8*E&Y~6fNMu`klqvYm8rEDUU=y&aU-a?-K?GyMJ|B>fy zN$JJ1j|2eR~o${_yj$0stjG6DeS CnRfaB delta 1283 zcmX@JjP1-awhg|FhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`avkGgGITYH7)^f9#kzSV(>4~ewR3Df#eRs1Z0!wX=}g|t%rk+NEUg)v zb%a#NaPQ_uksD-ao7^apvH6pD8#%EG(kdubPlm0V56UQ!p$+WV8hKZ8wMHpDCodrd zO#WcSy7{>J3L&!MG+^@wt57Slv>HzjFk+P4e5jO7gcAL(UC&#{)4zQJKjT00ylp%k zs8@cwpfckHN%Ab8tfs&>-9M0#b$f&@W2-RvhHM8K!sbAheoz_2zy0_`##TlE;hc}^ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index bc78e45ddfda0de7e7649eebe44da169107757ac..d8adbc2eea350f7a53844132055ca5608e7e91a7 100644 GIT binary patch delta 12247 zcmbuFX-rgC7>0B1y~8@J!wA*5AU4ISg#nQzq7nf?#jsOwV;Dhc2L(Y>EMj753M#ma zc(m4Nt%|X=F1Pkm39YSGZEZ+t#JV+VYFvxOXsx7Hd*-5&_TRkogP-sFeB1fXnH%bD z#(JA^e+G-MjE#v}RQdLTu+foYB4W)E;d4gEm`uenQ4!G=bIItUShFRfDB2PkX^D-F zH5Hp;!saZnREAY9ShUbmY%?ptwteil$zd0v%uydpG0btPYF0uN$7O<8XfwK(L&|j3 z#p6>MliFN747Q(26*blSk_1?oEE%>oPgh&5(V!mli$bD!ZlTs1+mOl$x!Tr$m@5=~ zwpuduwkIe(`$jl0AvTjGTWtsr@WZIKhHwM_VFDW;wcovPI^Bcz-j{=Tpx*2?>CrH>L05T0IF(k+6NHTgtbM0Oe@cX^>a~aBKJY1 z-J6!7QvH@vpt4%7{#&b2YUp+&D!sS^rgpc$)a`rV6H~MI0a{`G{sgp4cMif!>FO68 zr3M^sM5W_ePodK7U*(_`UVrQZlzRC1S(G~bBs|08zrTc1>C8qn*WcU!MyYijn^5Y} zvo`>$+HvkYN=&{u6(DNcFzoVPlv;fSx!p8s-nA_#b?x=>K&~pgVL;!_2W~^e;JYJG z;_Z8rkQ~k3(I_$MA>2#Dqd(DJ?(FeLrP)tb0aDfP*-k)apIOS1SU0M@s$*k-j%r-h zm90d%mpoV#%60K#btv~WU$z<5&Ni@#*ykQAjSpgZC^vEdYelsy2eDmfo!f`7M3lQP zguRJ!cf869QSQf~Y$M7&_d1(`a62l?=<88zG|F8Q#*z`P{p?ppuv}DI62;b|S{}oY z_b`cH+UR3~HpH_U;2PoPSuBT#=Q3B?n!vK0b6A$db^|r*i-8M=Ao?+d&C@ylHTC~C z7pAeX&g7$~mP{t24lSalZjL8Gq966Zw{Kpti>33oO4x13nJ=|oJiDFw(}THeqzh<6 z+vc-Gq-I+DLhM6T3)v^YC;Z+lR@E^Np4-lR>0m9(N2bUg2nm}?;7htah74Y_iRr0v z11m$$g580HLkBQCcKi&wxSf>%9Uvi2^99?^*BoJ9G?mzKV9#rvBjL~r=A6!bzGH4$ z+ihv%#!&y`tO|}pShb;XP+B{-g+=Ytxe&Wk*3WFZH`;|E*O@29U1P=I0F+PYGPqSQc~h*1bO0c8y8{V_Iv{xp zHb}@TmJ3}0&Fv?(BR#vHB4yLj!BPsaEx29Gh1iqUg-H4UpyZmv%CVAfU)QT+q((Ft z5>`=q$KxOo$8Hc>L?hFr8*uXFC6c$6JYSkBdGYd8DTO>N(lzAtYRwdeDZ?BufwqA8 zkS58!uNCzxr9dPO`z9k{bp)A6O?wJOOPIi9kY; z8&W%7JxOvcdN#Qb`;hBoIT3kT-w#tVd3u%XW?S;Bp08+@izso19E1$Uf2`=iEO`cU zW?s1XYde!3&X+F$-@mxshD2UFh5&Q%A_iBgZI<72rWUSTIQY>=8|5tMI(yz7&Bo0( zxXYbZ?3I^09Z|1U%YHc<8QGWR;oDBhfqZqdJd=7($OD}Ui-cFFbIp2oOJ0baqP~2D z!ytO4OFlionW^Cey%kSd?5+$%C)a)=T}jw9Ap7WLJ`^6Hn4GJKaPX#{K*b6UiiLVc zD5roJNMtd>2(&?4s9TbhGNkz0oiD@zv~{xbtp|wb@%f5h-)WN7lqDNbm;v`!XaX$<7FVfMr9BJ6}lWc)TC6TIu7MRoXJ1Cta$d`9VgB!#lYlg zHY99DA&(moLk17Or}V!0sp^gr2gZ;=!lobc+_T4U=(MgG247Khf1$%qdA>UQhel?A zZXNnVg9i=Qd2{h~*_ZDQ(FM|nA-aFiB|yUKFz~sQSd^{@D4qDv_Sv*zg6^r?zacp1ym)Usis5fi0RCr3rYa5R(2w6iZNQ{VQ#AN=4r|Nrl~o#&i= z$2z;I&TcxG!4fQ%xfXMEsVy?rVlhX>SWAkcMvjh)FODm=SjAsQ&5g6hTVl*H)|j~# z@sA^;Bj+x#Rz_AXczcnx*ltlm?FZN?v(qj@nWH|I;+gYO)uMzc&dUU`&~EaqfRyQ~ zo7bl@CbheH8SOunDQc?WiUe4gtr_+c-tP7qlTkhCAB#ls+(NA}oj@uly4P>!XbPhY4)_m~D|&#h#ZG=d0l;bl99kEHQt#JWQ0gD669KAfX*>WB)x>p0fJ`gTgbk&rG>QA7 z((WzGQK^1g8Bkd**MRNSC^dYi36);n1yj45VCv3&@QGQv{{dQI{lP@EOm~{$rF88J zj#2}UG@#OP$IqhDonPgk72a_21C)B?)CH6}>_ty@s) zu?sf=s@i(-5=xwOc^W{}wqaz)ew12$6}jCsYTos2D0SV9@j$LByJ@zI}XFL(C@pwjFos{yI%|7yUemESpraaB zb!V$k?iDZAh;rS0SS`wZ&5vzGwR4PYBKEn*M&pB79?Fdwz>cHZRfE_bw9YLdED7Zv z2xD)e++DA-LX`V)INOYJFTT#EBHY%>a{77%8;Nq)MzTo=*KzhMqggJhEs13tP%V#V z$a|Q?FKzTOL7NiTQs5flmf0+aN98hi+MdX=Tyt2S%=Q8`>x+R4hhX|Kh0W7B|26gh zHto~dSXc7VQ&T3BQHLf`QxE5pAkmLH;M+G}xQC_lw@O&2^URl8AD-R90_Z_0i*N&N zXvch(gw#xnUxZ^xH#&6idDgJ2&)rl9F*3AZDCRSbS}i6l=U;4VL-bOa)Wu(nCq+DE>?|f56dH#-`B$Shb#|hAqkfhBTzn}%iuP>WT4Sr(jkD%9S$TMYJub_ z)F>gZST1x0RN7B!L3(ySMargQgQXN;TX2V%3$Zt?50mtPK*=?SRbwT;zOGltOATl+ zB&=ff&c{I_j=dnXh$7OYn{e_KC6Yl)o-a$4e0W8wltNxs={jK>5?!CPdY?2FIK92)6XHOcbx7I~ z1~!0d+N2g_^Jtfc5bLS^7ip<4i0A3ivKw{WlA6(1ljgvMgPua~NnHW11j64@WFIab z6qD#SlReQ%>`h8|75KOmO}A0@B5Q!`2KPs+uCQqgav=~CzkN%3m)1nc6VN7+2qYZ2 zA+_VxlPuSuXOj!DFS$>VlaQD7{YWK~r&q}y_9egS`O1xQ5hcx(gOS1bj}<+bEzd;G z%nO$QZD-QM`Eon({fj$nNaVFE1el8#F}PFBM)^HgYT?d>gFk(=SY&`6P zyF6*-etCt<5%pR%9h9??k$qVnzT>PM#Mf+;XHm~-d7w*Sk??ABty#}*%Zrdx)R&KN z7(}mh$>#>RGBtdlLGh-=p2|RUavdkqorFz2vX5ToLs5Z>*|mxY2Lts4DK>CWtkg4H zISa%S?etd73E{Hx1)BS@k0TNzEfX}7GVs$-0>BRqRpF=Ar=$?A~3&;`+ ArT_o{ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index b8ae13dd24ccfc25277a6ce32d442a0613767fbb..794ddfba31317fa864d69b70a25746c22fb7fa18 100644 GIT binary patch delta 1771 zcmdn`gK6szrVYW2w#AkfrlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8FrM`N_rl#rdU0$*GekvMWvA#CX(@WK)1T!#DqDN@O8j>*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgW9+1jGOU delta 1771 zcmdn`gK6szrVYW2wuy-;iH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0OmKP5l8Sid;Gv?w`s@z>>rDY02uWFt9#hx!0yLcMqu z`EJqtFeOO1%`ip-?59LN^qvJ5uO|c+F%A-H@weNk#^o z3`|Xv1*}9i+Zpx<^V@hmGHe9} z)#mw$-`L5tIU!Sgvq6>-nKn-bY5$vT#!05_>x$Vo?<@UDZm@y0J2eLCkZF7D8m`G( X6NNXMtb4#sh7l9l6E`p0)z1h3a*QSf diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 424ebf79baed84e41d87458cfaa968544fe172ab..497a836128a9b0c767f5ccb18997e9c28741b5f9 100644 GIT binary patch delta 175 zcmZqEYSY>f&S+R{X<=GgoSm<4Vr*t)nP_B?Vq#%vm}+5aWS*RuW|Cx?m~50}o@{KK gY-w(3m}+RTxr5Pwopf!JUvk_bOPAMX2d-mW0AW%yL;wH) delta 175 zcmZqEYSY>f&S;pJn38B%nVzF>nwV&4V4R$mWME=xW|3-^nwSjanx~j0TO=AA8Ydg4 eBmyN(j5c>L8nBbDZSqTwJ7nqd+U&q}j0*ssmNwJ? diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index c703a6f5baea3c3d1f7f63912711d7827d903812..0291d694d6874d1621402894e42d615502f398b9 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!;T^M~d`sALoO zunWbZQz(2uuTEb_lHWhP!IA9nrxa%R)%pNaW)vJ+*0+AXhw59_&(x;vlT59zLsn(c zue&w-iH#8`MON})3ZjAoeqlfS#*UzwKbQr72A@yk!*Cpj)9e(axJuzZ=8iY+08_As z&pv@m$m`1ztR00`M*{ClIOj-ka11s(5@f1y(~;oWD_G-5aQ8L5b0pY434f4}n6-_| z?_m-*!x}dZl8kK6+djezPi(dldd#&M$)p`Kwr6-nvOM-{B=c9d&6~z68kQ zR@@GmT?E=4A#L<_4Oa0?n3S-m#Z+-awQmKoOEy8a@SY^O=652f>?Q5EFDQ-P=_CQ( fdyG87Zc0Niev-@t5KH*?zeFDqn)s$}vK06W?zIk0 delta 3415 zcmbuCO=uHA6vug!FVa-k5{p4aYt(8el5UfxNe&thLHs1(rKm-x`B;RY)q_&hng*&M zMU=&kSVfU)JQNxnVLVt+p;VdRhz z*;~~>r8Gy?L9H0>rc~{WWDEVB(L^kskL79Bc_)l&`^Kkk|INXW;P63%^)&-kem*(VCT`w_#4LR@Y7)1ouE$6NLiF(Lwf4!!hm*e?nr1W~af^#hyP3hr_M-~GpXH)Lt z7Yn0jQ1W5DI(rSN{Qlt$PRWmcN@9ke)`xjwE`gJl^_`#ZqVksYv$a|KN>1yWkWqQ~ z>t4;iV`BtLp|!%Fgs>u^UpffCu_I{uk7U4`#{0AA7@Wk(S!M>3f-<;=Ipd8pzy$0Q z^N-;Y^7yg<8z-Pu3gCVL=cE9KCt{;xl2}=SUgWLJQqRE8j!l6gj659M3jZk=R>6hb6)VeICutUY+~lWJmImdEk34F{ zRmjYuuwsa`v0F7*C(=Pu!gh;^5(etP8f2DCH`yW1_mHbz89-$}X~%s*Y3z0{@ri*G dl>uK$;~Af@>2sVQR`W3?J0x;^*aT4(xge|}(wFTcnC zasKDrbMNkMkKNrK+f~96>RoBc4fQ{+jZaEUak`c`A6lA}mXJ`9mh4O|Us9P==2}wj zEK4mM$CfAqj$Nw5gRRSW%{?7 zKSGoR)O&u;S3v9rvLbgsjI{H{e3m|=GybWc)ER$)kFu7w2BX14^grZP-3|Hh=*QiU zAPwHq=Ftb9XapMEYe27-O-EIaE?onwE}M_4eqD_$W;51*F5iV3&Zt|8Li6kWXsq8g zRHLe)tFlp5zXy&rw5bSH4Qgp|MpZL^6NW-ZUw;9GChx39W6gcD z9aUYuI|_x)?1EKmbyziiFT8T5?7NI+xcB{hG))H&prc9u-*cIW-k7CD1vJ|kqbR&vwL3K0lWiJ4_#9~+o zTHAfG>^ao$HxpSFb}i$f&!?~)RQIE4>_ZfrJ)P|Ua%?>E5RYe%pt_r!tQggOC5hFd zx_eUDE2!?jUFTP5D z#{{lS0{myBSp=?>f;g)HuF$!WD}KF`g^+(ITZuHg!9arH6!7B1k}uuI#!_`Rs{>PB zNP=M`Ebx@`o-?9erw+5vfH7`@xd4x)oIds@61^$kc$^(U<>~MV_5q+wLU|C$w!pb* z+TU4aD3EQlQzEZ058P(dXeY_&P@Z`rT5Wx^!)sd5teF&e-mL%}!_ud~6tcE^0Uk^1FG!8Z zj%}_;$2eJ|=dMeKz~fROHyMVQd=#0+w>;SS@L`rs?NPEF=|qEugpsrmunbld=N^#n z!E0e;vTdroC;Co2a7VTrM*ZpXofX69Y-wh(ANGZgZlkdgaeD-Qx3P3b4)#b{M%`lt+T zMP~j4IJUb;>5TzCyo}6n!#a7UDnEdhz0t}797+XoN(or?MSM$^ za<_E|YD`zg@n^ePD2e~Jf|eGMAp9M&4$OUIs932&%3$tg0vt)F+{(6KpbJcf$Cq2l z$flBN1$n1!oht-Q8PX4?hcop`2<5L(#-O_)35JXZ(G>W%D=P2YrW^waND$1(1;PB- zMG^dw3(8ug{mc#$3~}g5gx20rkWZAY1EBzGRK-*qdKjZCb`^gnW8+jAxUaK1cKsx^ z4Nm#Ssp_lnb3o-xHPo6v*HYAI8ctEaMF#*0uJ@1>nD@MI=cv`lW61Vp>Jr+uK#jNu zXnFx&O8J$l16b@Nz?*6?(OTo9=Oi9HpdzFCqjRdq{NkBD8BqI>NhcWA(!xPC6^NUg zVAqhk962YM;G)xN7Ob3eRz<$zB%wSDc6{)>`Zx?eGOW&p!##9C-3Tk&E~*2t@`g() z@`B##kB_gY$XiVdyzi>o497e?qOL$@so9xhZmQ?dgmrgl$j5Y6$deTf`AL-p{*$I5 zAJ<#p3BlSM$jEQ8Ys>jMhZasxhH0mPjFVufMy@eMrQG~Qo2K$@leJ(H9-aZ@jp!{J z5;VsUBMFIGIhUQMlPvYyI(C(!fZcPVP>i<|su%sbRDz^$?qrw{Pc{GcTEL$$URIgQh zKkz!5F$jWrl>uK$;~kFM*+jXpFd31WF^C z=eW_6YC|*+S3^vQH~5W>)zV^9BUMsjOc0~i)RZxev04ogrRUyT>rDRJpMNkT!~7oK z<9z4bbFaHwV|KU3bQH08kEhHNziMesT(ZX#KP|DeqGVc9ifcx>tK3s6ew|+CDxKj; zj8800Ec1vzCMEbbuwej|<}BRowW)f9{BK0mf`{sDYLW!2hx)36p1{z)28TmmdDl_} zhDYfQ_E<1wO>vLJ^%=Wk^e_m(&1U|}|T2>eh9-{v-r}A#dhgU!Dei&)+ zrWUW>_jo zs%;w+QPtHi)uF1Kr=hC9`pqI#weh!CQPuIUK832LzZQx@hu?S}g(mN;LSxN-s})sU zy*mu zDVOyCI4*E&e7$a!>IzsBkgVGTZxpg3;4=I+K}Rt|UL6<&)zn+U27uXRg1G>zG{2IK z*aE+pH5f|ibRCs*}}$DbFXt zFccbi%6ZorQLj^n+2_C*H^E$hM^jc0dkcx)l&?R|j-c{%_yqe9P$r?=k7Qfm+%)AM ztildt+w7ExE6fYGnd2J!3JBMnNBp##g>-I}{K!;@A14*?8+S=T)N7OcNVyCK5)AK$ z1DO-xQocDy%A{xRmsSAsBpAL#0yk^6WscP#$wgwByC)N*FzTKytuqTF|VS5P06L0Gxx;XTTJ)wtE2{P3td6^~jEG zu1Mz?S)*sKONYSYQa(2s2AF&lnZ~y~IQZaUmPxIVvIFTvgNB5W86jX9tSHVsAm4-6 z!pLOHWO+~2op|8ROgWT#Q{_7=h+oh+0{20AMe+bLkp-@ly4>;{Q90}N0va>I=PZwX_hYo&vqohzjFqjV=m0P`M7R5h+p)}8qXS*m(a>x@;D&y zA8=8^+j0`JIp4ArX_cX(OO8d|kcey%(0XPlG;%^l?tiU32yhgoo|KoMRiUZFGPD($ z`4ixn&H|-78te)3k5wiBjc8@AaJ=#oGQ$n)kw3*s*K^!bTT`Me{BUVEha(udt@D$`^Z3{Qi+to+{*+wf=;=WZNWenm<*5ASjotw zqACS>r)`}p1WgIj52lAR%astyU8amecS8~kX%C_)7}>6kHGi(T)F>Ksso$XkfCSh3ND9n*-gmOpD&#R_`%=|IyB4b9_W(^V zz-5$Mp*n%ZP6E8C8WXKGK6*~#!F?(+sy{xbdd)AM>C-;72bpw&VJ$7{SEmDUa}%60 zpw=MgBokb4TFro!v(Bo>SDYl2XTy#Uo>w1(!AAzwd2qOgE~pz}W!puy4_4lANkv}J zTmA9L6%~1_X@U1$RU6@$2Zz*U$SgHGbJR`s9GbAsHVyfh&I);=q9OmK$^!pc(~ytr zE%3Nt?M-ClH#xK#zRszI(G#KCX&~by7^;wKOi?K}f5E1yeA`4Vn1qL?0eK^Oi-rWv zF~mrGqE^b~1noxPy8sDn7ouspZk(h2GjL5SVu20bo36bB++6z7oXPymLTw%u=V)Vr zrZEUe5cq+}Z;2=Ib&qTJ(oDCe11t6aEF@TFAWtf{3SguBYVA2Ri_Q#NHodr9EB|re zbu?oT1oO$?rlqFi1le3T2%|U8YO{fxyW2K44QX@Y@6-ktHr}O-2W=~Xlbqp&L`oiU NK{g8adTmpK{|kw%0^k4u diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index d044f3c29e2005545869eeb71005869ba1eadf9e..be2bd21b0dc559ee402f19790a45d2871a1867ed 100644 GIT binary patch delta 1188 zcmdnl%C@tWZG$(XVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~d7H#sj45ntsuq(O~mjrU&d~>YaR#Yb*I$1vazrBrubw-*EDJQMJu) z_!C*l)W3PX=nFCe8Wdz8yR|o~NGxC?({8Z-KMoClhG#dc(IsbN(M#fe~0Ph!IGynhq delta 1188 zcmdnl%C@tWZG$(XVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%A#T*G*PbY0Ug+A|t#p3C%rolL!x?{RG9nk&4n-etn zImz{Zl!4^tSB4d2>UWwH%DVZM^=1k3tasWJdigMUTFoZUkrLVNC&|diL5Ts^6&X*; ml5W6uVA^xxCS4yW&8BW&?ae4@N}gr|U_R&HZqmru$_N1Imv+Pe diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index aec99534860091990e82a758059c5fb1923c8425..d82a0fdbdda19c5de2cd5d71de9aa07e1d8e871f 100644 GIT binary patch delta 175 zcmX@6d`x+RKciu>rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ jvZcADVXC3U<_5+tX417ywqbLcT+7-=y3WluY+c*{mOL^= delta 175 zcmX@6d`x+RKcit{VoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E hk_ePEG1}a~*u_k`w#hbZPLpd{`$*Th*@mr)8vxG0HPrwB diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 7d5ee66210181d27f1dcf2fbe3e454d148d10731..aefc184457c75cff1398b4afa9dcdc55113fd256 100644 GIT binary patch delta 545 zcmbO?i*ep8#to^AhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8CNrF*1>%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)WUB(=9Y%3h8B~17(bJ)Yr0`1WB6uv<~(-t^hRyswj#r^AZrsRpW!Ja-PXw)by_xm z;+@P!me$VA_M+}gWNLMgI7Y741Jc!G1QXD&otwYP?j+aN48 zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!N_qmL delta 1740 zcmZ3ujdkHR)(z2&hKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`au4HY(sfNYjARVo%+8$0PM+SVP25&wI2L4W;^Z?tg{0d$d81Ct=1;tn z*~rq`x!GRSorz4X4id-6)p|g>nv7rq`n7ZOSJ|E9+M1!*L$0mslwXo-YoIzSxmpFZ z3dqp9d83XG3z>1c-B6cYt@F$TILWfLaC3lzCVA<%aB_eH>t+RaRdKRxj+rbkDFifv zeX>j?-{zljv&r*2%ox_q7AcM*WVocUpUB(=9Y%3h8CM=FtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-PvFs;Xr@-VNtOaE0p0Zh&U5JA$tur@s z3Ye1-PMZq_-I>X-@u14g%}t_{$gpuTNb5cE!%Sq_nl1gAT&)`N$H>*XL+J(?e%*Xf z#h2XBy`iy#EE}~v$hGmZo;kU}bH#8exmuk~U0BIT3Wb7=n=P#sc*xYs?NQ4@me!of za{j!VjePydh#X+ilCxRPznz;bo8u=3M9OUrj($L1a6z;`Onf6mrtJ+1vYV?)%h@Q< zKCh;XT*uGrke?hDEwK4=lQo$}Y@XL~gG{ZHXU~+{tkD0OlRUp~o;|aa44XGQ&Obzk cw#kn3D>tuQ>cvHtW8)^zV&UIBb;C?X0MI&ePXGV_ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 1781d9dadf4f17b8f79c127f4ae39dee495fa457..04e0d8f7d9f7fe6349c8aed36867834c44dc907b 100644 GIT binary patch delta 4890 zcmbuD+e=hY6vkP{#%9Xvj2VR$T@1_0IpcMVN=nNt2c-*{XpG0v#(}1BGO@dXDN?2# z@t6b=Srk+X`(alUWzhvJONi(tf(W9ph>9eLYM;~|d^?|i!0-Fkw`Q%q_nAM#mOsOm zUN@}>Ix|vhf2}!5Q!-@PlacC3SKJjTWlp!^C`(t8lND#WQ})OiN#%Ye zm=yHaR4X2JFgjknPyMoC6|JpKDq(RUD+yyO)vuGTplDiXz&I+h`q-MuJ53PkXB)zI z09l2rpXEhvm5jTx!RQ-qCbL6U8;m!haAxdV-QH8m^*8jE`7bDFV<@T$GJ zCT3mr1;@>-J0}*)th?LP%5^e3XQOr73?1bQ8n_!EcUAL0gA75TUb_m4|-$>T+M1XF|F&61_65XMzP*eM`s>*mI$f4{WFIyoYZ}BVPp2Isun!VcBHn#X0l>I30ESQH3XY z)EN%caIS&8+S$Wo;vq%!0XW~ZF$FVk@lZQ5#A6CpK2S;N((k4k1Dk6B(64BoXqUh*pd#KcOEaLGDpzXYU2CN@p!-~;-XR+g K%f(+(yQIIer>#!_ delta 4890 zcmbuDTS!z<6oy&H#%9V(&QwxZ(Z#T=oa5+tiA+k%EC-_tnP?o(Ogb7)qm|gr3`~)- z%aKk=5TQmvrLZ4%MNt`*U|B*$FA+o#g+){(L1g=+_0Ze-eH@1G|M$OUt+mgb;UU}b zkgZ#xWs2feF0UfKOiE1f2Gr_= z>cH+Q)u#Mkg@K^H>g=o~#Kb^q#I;<4`>2&)$$B@ge zt!Q;6{wmBwXmP%?;8M7E%Mk5_OkH-if1S`mf6~ct_*=|nXMM4w;i;B*}FPw z!FJHPI>K20#l)%Rotb>Q6LFPq?_me-q%Se=DCVF*J24c-@;=?LVmLc7lxa7Qa+*NB zq2@VVaAmwCimHK1jlh)-T0aSN)&(4{{U}P-+vd?^OhnbK3&>$SX@&EWSh55A&j_M& zA@dDbHoD@Z#u58_izootbD@w2OsC^J?df|a-Us1<4AzY2EVUrH&_V@Lr!+!*I?;G%c$0zUv3 za0}A0f@|ghNdydjau-MJ~dkfisF)?b@%x|8e3J|X1y{9P#Ja(111E=tFXXsKK z)*|Kn^*u^Q#$4ns*99EGdmd5EbkJUZdXi@GuWu*^tU&o61^rs6G@k!_OOdmIgHVoC zr1dSD!i5S4o+k8v0@f($>`e0~Fs^7G@07rQKn1){mZm{BRgToa+g3?#p!!^--X@z5 K%f&0HO6fOZ2n#L% diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 42541ff58d513c5932d443acdd9c1bace00e69d2..ca0df4235d2ff440c29cd535bcd6d9f4ee7759f3 100644 GIT binary patch delta 1312 zcmey>!St(xX+u1tVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~d70j6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+=yZaS delta 1312 zcmey>!St(xX+u1tVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%A#Jc02i8M+kh!zK$bldE$A%YHKLoWLS5`59{gS-Qg~ujdii{EqE0EBV?d zzhe{LT*F&PPDm@-gIxeNVg~;bCJJ5gT&ROmS4fG5Q0fXviDXKRP?t_)rZ6lly=b$7{YeXq;@E zk_ePEF`8V*c#jNSj@&MjFETwRQ>QM=ezJ86OfFxMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@k?2{yg} delta 1864 zcmaFZ%<{0AWkWHeZDL|dqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%BYPsvX%)-TR4ElN(E?08pi@;%18h9sK;)R{FojQKU0I`6RTCtIh$WH+_~ zvUF!pR?y{{yg@;Db0NDP8%0KlZ;s=uWTeoDX#!K3C^AA~^K0Q|%3L9_Sx>BkQdg8o z`cvwPR_O#vU9nUynF3dA-k{J+sSExp=TP7RV9J!(tf|&TsVj;#Z!(jetoSy6(+wft z6MUP$=z9v2X*-{@;O1A(#^l-#)INF7UE$4lT_v^2bU}Wxz~)7ThGe>6bAEA_9GNzs zk>%K2J4umDn3Jex`QAo^U zoG=`_)Nw=y%^)MQ>{dt3(PDNoMV+bW2c`&Zrf5nTr&lC|&b>_3ulw~6_anNUEoBy))I`1pRJC!L@)=r)0EJX)2{?yAh0-9M);RDyQc<=Kl;8_PDJ)Vhjxl*+17 zP-;bWIZCbG>_n+~b>RD@MozC!La9NG^=Pdz&6OxMzU4Sdt$VH$pvsmV34ly}3{33I zMx`U|PhoXd$)mfv1Hf0>g3gsFb!tx`O1<9oDn_l5V_7@e;jI0)Q0mBmCs68e&q}ak1@BW5L)8$%Jn)eYr!)+&vQEKbQ-8$%~uakRx zivlsJ)Z^321(!NZklZ1ii#EzdSMAugn3bDm1U&mx_~AP4^G!}_Ph(8|u4 z+h!~V8@-np`B^hL0rI&pI1-D)^^)NMGrQm>W}e_A7BGcUhU&zBUP=12{>R~;t|l)6 zOM(gAT7Jn*z7O#qD(+^d)Rtl3Nt?(GYz$RB6M7x*EhAcN7@aJ38(GMgHIOY}3N8$W zFt~#i?-o%H)3Cf?wn4*^~O z&xI$ipzgc;&%s5Gevn+izj=g40i9Eq)~c;xyy-F8d?$KuF)alaj>=Eo9?hEfQ8RDw z(j!0z{x#vfP4sGz|DB)H8(*NN`Iw&RJ82l(wvU?lsXg>CScU4szwM%t8Z3r%xx>sw zFFyeTsQR-9=@j<9sX*e5ni&xa}Al-p>L2=>VeMQYcjM*-bXh=PWNU%AC?sYv zO&E@S)Nw=yFF{6T*;gGkM~m6X6m_PeKbRu4nW8CWoUTX+o$q6!{@uqvcfNU^-}Aob zJ(roC9M(+^>)vw^i_2B!vNUhmn*6ZKWieab6{Y5s^whNS)N+?w{9IO+>P~Z6EmpU+ z%q2diER~wb*MQ0!pCzBAMF>zxrIvv67*r_r(i!bDkh)6t&2tzaX^s3=Q~_3Pjofu# z0fnd@xh-}Cqk812g)0H7?2Y%K#Gys&0HWlL_sE|w&O@c|KX4Y6h9td;O0z86Q0a!0 zK2&;OSve{_w0sx3t^*kirB2xPqg2ZZcqF2;>rm=L4kub`Ol~VmP0O!Gsdott(k>gl9+TrZ|w^8cIfu~UFaL*}}YCckp zQqz0;QR?$=!qkrbV<`2@Y307@!oQx#fH(&;v93^+}S=rUytE zpY)Lyo&RP0&*ASc$c+fpVf-hNVe1&tA=^Nyf(wV6^FX|`aYF>F8Y7A9m0RSmyD;IQ zzY+s*qbO}$%PMb?1a|Q@8S_5@7Y4cL`E@6VMzRVU)$;)j9Yi;RaLEB?m>Ep;aeg6` zE&x`K3vnhg_$Lc!4qIcPLHx=R8jQqN9Jp|JJ;eXjVk-V>CJmB)|HH@|Z1fSJ>;JiM z^GfQx$NwB$>P~&_|&vczMoNeDnjr{Z;dKj!ib>ZK3(I^cTL%Pyo;-Z(I zfB{tfxr1~Hd;iw9)+F2Q&+SD-Xa& zS=?vhmf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S2w2+6bn delta 1562 zcmbQ%!8EOdX+tohZDL|dqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%BYPsvX%)-TR4ElN(E%orp$c^%_kLy}Da>hzlYjOikoI&)YBCOfgLCtG&| zSvrFzUyzgE+{gBim2BqQGSGwX1ACEu2Y-_S<4*lxY7Usl-UO-&Hmr zlpF diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 7645e0dc9daf5d9d52d2da1fc8b47212236a014e..8f007ed96424ade5c3eb3c7f5def6f6194eb3559 100644 GIT binary patch delta 62 zcmaDX^jK(vAERNhrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ RvZcADVXC3U=6c2_>;Pa=64w9# delta 62 zcmaDX^jK(vAERMnVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Pk_ePEG1^?u_=Ft*gvk^K diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index a58b2d9ed23fb40f44302c3b1148320d4133c322..2b8eb91f17c9b8e309ea04d9349c3abe01003774 100644 GIT binary patch delta 175 zcmX@2enfqPH=|*(rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ gvZcADVXC3U<{HLDY@}{YeXq;@E ek_ePEG1^?ixQLB(ZIk^uPLZX{ZgU5x4Hp3AjW!Md diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index efc65159a3f3756c535f69cb213f4ec2d4507794..585f611474f4170ca7772dea6dba7688449178d1 100644 GIT binary patch delta 4036 zcmbuC-%FEG7{_^Rx*ysPOKVY5EsV;bz5CJjW`#s#is(ui)kU&RMKT<^X;uWL5s_rV zfnJ4J3etsF#;FeLsx0~;gr2ipXAfN2DdZ+vVKjkOK~TgUc&Pjb69I6ACoBf^s0_2zo+JXGr$QQlsQ$=V=;H z1zPs;c-CD5CRO?e$i(N22W+^0B^%lqh2+)D=Uu~ZmkeR)({d|M*t?g(bSqD~zGPu? z?(=RjLDE{DDm!6@q<;Rcay52dKX0v`*a%VY1FDgU8kT4)QbzMBpFcg*htyd0;EA>{ z(oGuP#y>`)NPYjv7dy-K(C4};^w1|SY}G@*aZ%Ajf6;wQ4?U;1Ne_L+l?FZZf~!G2 zbZcJ~(q-DSv9Ry`U*VRqu(gAQ{MFcdiV(ZDGJTIjMtOYd#adS8QJ4-sxBqte|>xojyO5exNX07q(_lC~16)h~;VFlKgos$MijX%=`$ qT4B{3W-;AGXMxqGIc(~o%yRpT9wcobDlgLvveVU%v`~M;^M>Cm2FK_C delta 4036 zcmbuCT}YE*6vsI>otySyX)Q{sg;5!_wYg?iNJOTHu9Q(-B=0ttlsMF7S_GyMkz~RH zy&J?*7+!c)Jk`Uxsug_*X&K>7xw>e(=u3zR-AM2DQeF3dFJE5%|KB;!dCoaJ>507b zMBbfRvPzOqvi6;7-&r9^R*TK+_gL(e4ri;QRq`sIyL}F?Q?glYUYk!+e%g1j^E3mf zq%(VYEa$Eclgh&*l+P3T{bpRhoQ1asA$bFHIal%9$fi3>G`N!@cQr|!Fg`OHM^h9s17W(9c&06R;F3MWyFZyq3q2~?ywa}Mc@oAwKU-f9A zn}+Io|Kk$oTj3b%}rtqzs&zL7{SXi*qiDo<8X8GCv231-0yL(f1uKN^Xm(w^u- zF%+=G7h_$(EaqeJ>H>)9=514Zu#x8G+ujC{>7Th=9q$eD>;P?HH6I>AfoCoFwYdZO z|Ch^`)=?98CGP=8oz*f|GM8WfaTsW=fBKU@W55>stCvStkO#}XQz*;q0Z{b}yhqR) zDg#EEDt=|6L13T>g&c;Vk4xzo097M?w2>-d@~D}{Ve+>!LN=Egwq+}wg~|2hglsMG zX$PfXXuv{Nprgba8#Mw25=Sa11&sL2@ixnmwPci^SJ6Dyf~tWyw2xlHAtY)kpPh*K zg#I8kp)Nvk(U+h}1iDBs_qS02Ta0y!`4-ZFBehx1SP8}Imr+A726lR?Mfig>2V5kz puu2>TG1E)ufYqitY#5;Ia{G)Xk}(iB>V|D6ip^?l;b-6(;}y diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index aef9ac2cb86ef14ee2233650159df498fee84c7a..b286ce402fa0758619f4be45f48c9fe6aa400366 100644 GIT binary patch delta 1786 zcmdmflxzD@t_{(QhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8B~17;liF%hA+f^HnBhax4UDo&I|P6aVCHA+F6yERW>KvmRo`5#KgI`)$F1#-3e z*gqh{pOYO;D>q+roKCK-;;whdwRNuhB64kg>1EA9R^%jZ-WF^lMyA%5tf*t;Y2996 z$hbz3JiXI_dil2Rac10?N0tGu+dph#?B*m-?{uJE>Fqpw8RNalH$ZF}I}`WxYC}fh z?V_Aa8WcDMY|{2CLQLN+$#c$R4;PW`p}tHn$ScEK!TOJfGHp~N%YMh{y46f_+c|2P YoY*Ka;8ru!1{typaM%v4L-sHN02!SS4*&oF delta 1786 zcmdmflxzD@t_{(QhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`au4GTGITkbI&8km#7vHbK&{h%FJR)I+%3elIf>KQ*G!`97?rozl*+W5~xi(JQEvc5pBRv-HZ zWcYKkqiN;lYmU>&wN>2p4!O3@bzelTtuMW-Imn8f#Le4+ZN$jb+L9G@j6AK|3k(_8 z2$H9FI#4g)_C3yw`|`*#z;*kFO^n@~rvOUz7=>>UZm@8QS@ld9XYGm2(I9<1zNp3qwEt3-) VB?jDTX4)V_mH`gifpy3pMgZ1MGJgO7 diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 38550301ef8bfccdd5b0e523f95dfd9a554bd1f1..26d6efdee45489fbe4d0487a0d575dcb5008222d 100644 GIT binary patch delta 1249 zcmdlvg=OaymJPm)hQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8COa7zN4DHaSr#ZTfl+M%K;R%&(Y8w-%N&9;FO?SdSIWNDwY*_AVh zjV!IxHpdA}CojyVZQdjFgS_CHzPUzh7kRc$-~3PFHMzEKl=(oet(o%2$*^^EqS9_w zvLdE_^BIjs4l=d=HFS0)UF+t;;tRZ_YnxnH+_$Nz)`$$93lDa0w%lsYL%P<@3lBcz kBV8LXtENwmdmy*j;$k0}+Be5N*riUE&1u_#g-jPC0HsfizW@LL diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 8a74d0f8b1784e5af6cc8cb5058d79ab13fa5cfb..aed40d3c5165d6f602aba715e92c610422d9da92 100644 GIT binary patch delta 821 zcmeA?z}k6$b%QsfVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~dDJMm{pMO`gb}xmktz1rzBu0=1S*-pIC|ES*ot(v>p3z=lz1@?R0* z&H9|$tdyA{zFC5QHhDn?cZc}qLcyoxg&o9<&3{D<*eLMF<}1>-Bq`A!Y9`Q3p8m-W iLW+|oTxH#?uxpnT`9^G>a5b-kEbYbH7sWBAGXelG)bmCF delta 821 zcmeA?z}k6$b%QsfVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%BgT*JsmhPKHQ*)un*Fu!0T-A16+lF1v{){~|430b;QrWe>S3QhhiBD`6j zQ=64CGsHJb@XsbM$l&e}-&`p8l)SKmn6deAI_#&kvil!gMu diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 36fdc56a363f630e63b634b270ffa53496bc16a4..bcd800b0f5821be5c1f3632fd84b39ce95c147ff 100644 GIT binary patch delta 195 zcmbQJK2d!`A){@vrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ zvZcADVXC2peoB6Fv3_xWX;E_O{YeXq;@E zk_ePEG15=TPcGIk&Mz%WPMsXUp)y&YlXdfTMiEv+l8pjtPnq1nKA&`*n*%r;xdB&L BJQe@| diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 0f28a0cc7c5ff091a69d13b7b37c6bc812f73d9b..f4568704e2b4735ebf38477e347b049ee83a6b75 100644 GIT binary patch delta 774 zcmZ4ehH3R1rVZ|lhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8CME7&*w%wvow|nRMGGZ)8fH+{3nuOr3YwtI5zQDA==EgfokkEUgna zJMb?cCx8S6tH}up8K!khqiGmz5 XZ3b(9S!C@^*fpkOsQ0VF6mVY9EOEDKqVt=udk^^^?9P8Jlb+`L$(AecN`Cl`otZ$43wL#EAO V?JtY09m%jAlAgFWAK8-52mlJn@1+0$ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 9b1bcba9a2dc205ea53e341906ce4e9bf5e56b72..f63b4b0fdba38c9a8b8b75574bd8da14c08c4022 100644 GIT binary patch delta 540 zcmdlmlW7AGc{3UoTUwZw7H8+{n;4rJStc48q?lM38m3y98kr|2rkNyJCMFvtnI{_? zCtI3Z8m1arOs-+vNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0|3EInxp^# delta 540 zcmdlmlW7AGc{3U&CZ;4BR;K6Zn{YeXq;@E kk_ePEG1@$Vv6s<^WNrGB1zDvgXEL89U#t1%ohUB(=9Y%3h8B}67~hhi>wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!sn7M5fjiLiOZntzUdyluVtQ+a(T=tM$8dK6%kwzgbLf1-Z87DJqhob@Ksb zX=bwGrG9g_dNLU{PClSqzj>b4T5`4i)?LR+mV?tbJDTM1kg3(x@rXNFTKy--3kz+Y z-T9Y|0_|E8BSc8oKHXq8WB6nRX|c@;%c6NH&_7vW8OvtbEg!PUG-JAfKBL(7)e4M% z$#uncpb6*6uzou*2v!P^=j`n5rE3^-$SW%SCoAYmZLgMNy2eGi<-i;Q(f?YLX|fVo M`u(;8D~frH08M-^oB#j- diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index ed550641356a1c7f70c1f7f235dd5ae2b090dd20..8c38f87541bf802ded0cbb38f95f83cccf113de5 100644 GIT binary patch delta 2134 zcmex7pZ)WE_6@#_hQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8C0S7&nuyYx)CE#*oQ*>_U@IFij*=`{sMh$H{Oo%xZzjR&49Zv>NF0 z2J*CqP7YWtKKZ|%@aB0O?i`evA-;L0U_Y550CR`<<~zbinJ9CI#O5&Z4-~pXV)Jjw zWt6&OahNQnMr`I**haA#Wy+5z4h~+mQxv*=Igedv@(HGiWNP1hkNG$m4u)ARFxiT2J(*SmUEV;R z*3iiTtHme(*Aw16kHejVGBd+Dj;L$L9Zf5|ro%W)+FeXADy* zHshH|2P*~1d^5MTBo`(654tA!k*R<4@+m32Wa^!~e2VhsEsH|+$kl(~uI%PD7yG!$ z)W7+_-Mw05>YaX)k5PWR5+|b~xiPmLXhOUMdDbUPf1}PQvi+<&V+xt&G}MG^28=h! raKmUB(=9Y%3h8C0S7!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~!(fq16BY delta 1385 zcmcaNm+jtMwhg|FhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`avkGgGIT9mYqWU@Q!_ah0<}(-;}F<9i$#%{Jez^q8_3e>GP#dec(WSk zXYwp|+1$sgz)F_Qo|`psO{We=3%j6UB(=9Y%3h8B}67);NZ&HYTJEaYjO+|R_iIgPzjfPC%KZB8?CO^%i*AU)U@?bM7j#+erN9Ni#0^ZDwmp=(;=TO`N?nob z%*aY!;-0R+!N|V(smDf6O7!yvs|S;%KX~(wWj6##*Sh)O4y7Q{wM{;_Lw9nFmcVoi zJw}o3soacd9ON6a-BN_HPm(BFbZm(`;TuFutfN=*mgmwGs4#u@|qp|iQ4sg#90t&{tiSU0D!cM6cNeY(wQMy|=x5+!6AVL$o8 zX|~A;7Q&k&B;T`9WQ4@#s|s1<1pL7rFjq)yKC85vi9%Pfsm-9&6*?M$l)8djdkv*V zxayUVm#h%M>291tX;@gAZlu5?n-eVNQ0js%tGyJs0GPOeDbu!xQdhjU|3IlLa-A7j z$xGbR6*w5#H$U~*$VrKQ-eC1$vh)XU-m&b4An95+AKal7M7p-g2Y2XBj?ogBZlT90 zvOSfXF^z+KL$+IrF!o83r+<2^1*7l+N4{){b4fWUotZPbfCVF z?a7&pjpX^*aB`Hj!gPZaM$zrn&5SF_Z~-vx;D)enU){mDR*rP{YeXq;@E mk_ePEG1}b1*iMGF$rBhwCr7XtPHtkJK)R(M-J2s=8o2A*>t`f~zBeFRar=XTR;av;43U-UwVpn}dFLa*=FKj8EIJm)#*Ip^M)3G2*+ zHP%3sZkJjX>Td7c=5x*EZuQSKO0W zlYP9mswCOCkxluihv(O*#l~4par?Bzz6OAdMuPlHzcUp=JNVJI7J$+=H9wo~Dm~ zKnw1B(=d5WVEFOSc6XF)fiSBuY^`NGouAcWVl{u3lk ztn-p$;9-{Yvl1|Unvis?0#V&gGE*>?N!B8MbdkvdD4>oVs3bPAf0PtvtR~>sT~g&U z9>AvZXgv$h5-XD>WV2(fv|JPrnh(5+|Fgs=GaUmqLr*xz&N!$|6y?w$a2|wA_`M$O zL)=bt*cBHw3t7Vm+yXsD$e3-|K-IE~9%^BSJaobMLJ|X^^CEVXZUVj>^-tZ9=<(8x z!1{%RKdv=iwJvQCTU+T{;KEG6Ov1V1dK;~<7}tx;5Pb;TxlD3(;@}0US&d8evOQXU zO(9F(V9FLlgS5l3iWD*Wj1E)+0dfr$BAjAc0-ia&0ToQb8G@`aHA5r6(gh*Au)LZ! Xifh|Vp%UW_kpE|ie{Z3AO_Sz-Na)=e delta 4150 zcmbuCUr19?9LG6l&OfW^W=fb*qLqb>yl%}|L`5Y`SBd7V5!r2TR;av(i~4?PGGRM5FY==pwq9OLu-{Lb&(-#PbAjajG0 ztfTcrQPq&Dbe=xDZM&)}#m->EsbW`|+Y@$&)u8-Y8gd6cs#9?Wogr2J=_=785dCxc9Ew`5sL1BT zqAlDKX#lJ|7X1!jnr_@OSdj#_DD!47YV{1QM}|!=_-CvNwSK#E7`4tkxP|U%`p5^g z;I2mj)Y>uH3|P6HFQUfbCqsZS@eszxKBLy7Pw%1D+s}8R){8G%QET7JU8ptmY5=ve zH`Ay!b+Qe$=Ds@sSoyX0Ip~~vXKct-9EnbQ1ct_^g@FE!=N{@EX>Agrtd8 zeo_Qn%yNE~0w#|Wl8#j%s?HF53dSPS;GL_0zF2^m`&I~)v!xGYGM0)bk6uf5(A<0V)P(g2fR7zue$A`%}>_? z>lYIKxYBsly0l(wY@~0212X|L3Fn9#&9vNNTrceH^dWHOGRf77y`5CE8kg#2`?S33 z0+zhSlqLFlX^U$aDPr&$?Wq6)zhsO4&x1w-)D($Z=v~3UB(=9Y%3h8C0i7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5WwSN0-3> delta 522 zcmZ2HlX3A(#tpHIhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`av$SuGISO2xo>{R)I*Mi1$;r9Kd|_7l4a{5(sfM|$=iI9{~t5yIyZ^v ku#m26l1TLC9TL%G1Pw^%d?{4}((RmFz!$jL%{!J60DTLhaR2}S diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 42ce66e433e9a824abee679ad2af887f26752fe4..8bd664c103318b39546d43b8db2ba24d0a076713 100644 GIT binary patch delta 524 zcmbRCm~q-;#tq(#hQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8B}+7*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYB+ZUX* delta 524 zcmbRCm~q-;#tq(#hKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`at-53GIUL3i0Nm@RWdHyG diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index db306b4bf129df1fdfc2745baf01107266fb0376..087767ca1a8cedd8beff4d1ad7bda862eac50d5d 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S+R{X<=GgoSm<4Vr*t)nP_B?Vq#%vm}+5aWS*RuW|Cx?m~50}o@{KK mY-w(3m}+RTxr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2Ob6*Kk# delta 185 zcmeB|>zCUQ&S;pJn38B%nVzF>nwV&4V4R$mWME=xW|3-^nwSjanx~j0TO=AA8Ydg4 kBmyN(j5c>L)-oEAtWAHiAgkD9U*@CaYc<~7%hJRJ0D%cNh5!Hn diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index a6e3fea74921f21bc5f10a2b25c8d0c5def66539..fdeeee0aa4ee2991f6a26e8164e01abc90a82f38 100644 GIT binary patch delta 797 zcmX@InEA+J<_+$QhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8B}67$1_MYXPhG=BrF87hok% z`{oHe)#UjUWV7Ms&3t)Guzm|2gO~-6^vRn|lIrc(2BLJ2C?O*@^ delta 797 zcmX@InEA+J<_+$QhKY$OiH4QwIr^rFiG~Ko$!SRjCYELvsb;B($w01oidnKnqOqZI zvT;fxP}0O`as}fQ+`O4DkBK~+f!Yl=pAg*1Nv8G!QK`*BGM0Q4XuqRX8APV``~1S2@7JCq b*YQB@lkeBEZno)|?M{{pLN~`=NM{59Mqm8U diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index fdb37725d855306074c7efa16318bb475b7b7cfe..1e85e6a37d79d04e4976c90ba2046f30f86e31ef 100644 GIT binary patch delta 1042 zcmaFY%kr+5WrHuHVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~d7n##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E07Tz3bN~PV delta 1042 zcmaFY%kr+5WrHuHVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%A#T*vr|3|$Xd12?~7>LSO&hpaJ^8ClnpW$78RboorS=U3Y7!>-6mws!T+ zg1j5a^R3Tjd;T>{WZJx5TzzxDP&=76PX=k>}q z=D*q#+{x6=QzW)op+t_C0__(YuX~fJT|iuLv)MUub_%rLzAC0qmiFlFwXBSVi~uz( BNTdJ& diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a2fbeeb10bf91bc0de7d19927e7a6390104909b1..16d84587b670165194fcf20849ef4466540e7415 100644 GIT binary patch delta 542 zcmdn+lyL(Pc{3UoTUwZw7H8+{n;4rJStc48q?lM38m3y98kr|2rkNyJCMFvtnI{_? zCtI3Z8m1arOs--4Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4omQ^lZi delta 542 zcmdn+lyL(Pc{3U&CZ;4BR;K6Zn)2Z?E;hUa1@ZGJ7@Dt&PEpU pv`&7>DZE*Ve=-^F-h5AppNVu^H_M4mk0xE)WMCj~b|@@h1OS%lt0DjZ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 4a84f3ff9f75b9f54ba32d6f5579c485c9931491..5a84c5ca2d96092a53beeea4b6e3c7c30e2d8bb4 100644 GIT binary patch delta 185 zcmdlezfpceI-_B+rG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ qvZcADVXC3U<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr7nW;Tuh delta 185 zcmdlezfpceI-_A?VoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E ok_ePEG1@$XaXq6E$=dWM`?JbT-os)&`4aOiGPQ5s!}662041q99smFU diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 26e85275fec731bcd3fd75526434f54cdd03e509..0f92d2e60812de67aeced685f1eab0603c1d025e 100644 GIT binary patch delta 779 zcmZ48&$7CoWrI7TVX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG zv2n7cxus#Mp~d71#-C*9`XCy%`3F-iITnJn{$Vj?CePN%e^>-2pWrAUOLx=e*PI(z z$a1i7c({o8^TUkfC++2T^xUGHkq{ShV?;{82LEX7dF_#~Lzh{2&@W`Tksy e&1>h`l40v)nD({>Dyd}I9tKJk+a1{$vls#F@$5$c delta 779 zcmZ48&$7CoWrI7TVPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl zY@Ct^lr%A#T*3I03|${Y!#4k5swKxlkk&serp)BoI{6Qaz~mDg1!U=N+WeYx11nit z+cpOYh%%9-wSBX^@B%WlZvG(Z&Pj%i7Zi&&-;zH{M%-+^py*gbhK(OY!zbULE3$d* cJXD7EZf6Csbae$8)FtD0L(=Dw*UYD diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 7991bd06e06d745a4f9495e61141c3e0a42a267c..3be62b77ac19a7bd719734cb18f6f4c77a74c48a 100644 GIT binary patch delta 1079 zcmdlugLUH!)(yUlhQ*c^rlrN%`T8ctW=58YMg}P+7KVnY7N$n#$%$zuNtTJpMoH$$ z#>UB(=9Y%3h8COa7@5e?wvp*O8QLaqWJ;WD#kz}hcS3b?PoBtDK$h;9$qq97o9D9U zvy!iU@?3V|&AWMzkmqx-3&2L`2`pry&=qyUU6i_FyJ!ccu6QRQNPch%Zk{XmpO5Tt z5Zr8~_bZk>?UQ=MHec^4CNl&Bev5dih^QbYg% diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index e061f31810f484cd7de47e988bb991de09c2137e..c4141440380a2c81d2244d6a20a453a2e2a4356a 100644 GIT binary patch delta 71273 zcmeEP2VB)v`|o$T_cuV63q%xfZ-$B@f`E!LL{!9uECJ;wGGw>~7lERp7kNy}nOdf$ zSzaqMZJXw3Sy_&TIdWw=()9m5=XdW#-s=B0-nVzz=abJm<2lcH&V0`OadcDK!Y9)7 zC5C0gmgv{}<_C1|T9`jR$Gb~sf4_hfKcBQN-F)*p z6VNTdH{G}Ul8@75OQs!tgavN$*z^fw)3e8??KswWrmJl?Pv3wZUHp3Zb~7e*XHp!6?6maBRTb^&>OR?poL-Xaqmb6* zHDA}-Xb5U$^vvxbG&U}o)sRXa(;Fc3G|pP$X*{L62`~^_q_9(A;=6qbZ%N zPz*v9d8&qH#?at4#wFQ3jZX)77+=e7OKTKEQ{$`I^(bVRt^sniTIQu|1=tX()T2}5 z40>HfJEQPkJK8hG(AYS0oU8F@*Tznc1%(AU6Ejn?^1U;ezQ)Rc`a*NsPC|2JcA@Q8 zbuPwUnXQd=$2B(^d$y=XvyBb9)uX+2b?!*f)F@OpHU1dfUg)-?Rj*C0m-cLLEFR|~ zxRLW&#SO~leW7oovot$7ubr`%zneqt&NMFR*~%E2*^Nrxklm4GmWrmhb@vn+(yVut zhQ@(eO_^ou|GcNQzOk63UC(CD&Nb~RNJ%ZsN?AIgsc>Hx7!QqYQ`h0XMCp?Yswz6t zk}{#A(P>;u;eLDZZZJA!x2t!*nI@!+O|P+U3!1f8X~ErTuzv?~3>7_TN1CCo@nohS z4bCvQ>daQ8)9D6R<7u^#P}7+(V2uYTa53HoRa7Y(8qvN!1`p%apiY7pUA?FCLRwc^ z@}A<#tWHPWY?}hHI!H67h8wNkrO2!cjbXv9nfD8>lxMJYHTvebz)R|K=P(}b+Js6n z4DJ^9MLEr>vW_k5aqhW#?g`KM`?B8FX?_VKvtdQAj4`(!0DO0@?p0m+mDS*K^w|Q*NBA4wvCt;B)l$ow5+PQ-|pIQvajj8 zjFh}8&8K1hCOfX@`P&qa)Iao4ztB&jcAag}rhz)yN_D)QrAAq)p(pdyA}ci~t3vH# zrD$`B+Sf`wQglKswo)tHhN=Np>anZN8`DbE|j)B-EjHu+g~VhwfFO%1V9J^S@n`|FF%tv@&5=;Laf zRX8g3VRfdJ8k^r-onocNKR-^LZl$uEpH*jAslv9I>TD~u;h}+Qgq7OTr&8@VTs8}=pxp#jWsuo&==aq}Et7%rsW#m4!tCeycQcvw-rQ9}dR`aY>bIkw77QWKh8 zRfpG5pJb_%tkhHrQ{%1Fy49`KL@Tw;!A70NsAA@N=XZS>qk3C~FC2ANJ6owe?|-eP zTB+BrG*LsX)ayH6R7YS)E;vpO}}DhwNOS{-Gj`nq>jeXP`|=Xwscn@?KE)vg30;M5#*Isc8P6AI8b3PJh{k`QYevWR z>70z7Pq-N~N>vKkXX9i%RpD-Yb8~Z}|8h5KctHTXJ(?`xi$}hSQg+HN7{|$b`*7LvH z?%$*W>9z`O>4?A1tClbSRz=uW!m3F8S3%YR$p_KKd(92}|H=BZL&G1^zuH*{`L)U9uXdvTf4ULW%1+4og=z7h)RK^Hf;-!I{o;^dN3}oK zC4a6pbEfG=@qJ>69X5KuvM!nD{o14a|7{jKbFyZoD?3sDwze84ZG(;L zV59o4Z*;ox_xCEhE%@JPDZ2^zZ)$0W>UlPGesvOJH$DFzt@ZyBceZbN+GsnE-!OK6 z-HokHrjJyi;%9picAxdf+gvnJNY(b*H#cMBn0ys;nC1LRe{Sab>rB8d@qVuf&N%7X z-8XyvSJ(m9mk;cK+Y)wf``7rx&gr@_^meCT+=abart_wnt=KQD?SI_}VRzU6<`y}7 zNY|KlhuEah-!luvUlh91t{)Mivs|HR*ABn75%@bZD7(u4FEvgVYL%{QRQ;7;Plvz6 zZE5U2S9at0r_9A-9e=U8XsUxv=uK`)~_JL7<}|#a^ZxEV=5L)6*khN!%)H%{WzEc& zs7B}ad;BlCF?&Yzm)ZG$Zx(WZZy-&;_#aLkP?ti5huAIa($Vv|zH)E@3{4J0F{@%*_A2c4$bhPR6 z|GkF!OS_|NsVB@S6zka91>up*QZX~mfQx}+Ddx{Td67S7c zB|-=56j$>Yovag+vPM;H5v*MlDWPnr+e z&+s1f*nd)wv7bt6Jr<-av$Nb*4=NkZE?53t_Z|Pm^CRBYbmz}ge#7pA{jT*NHrnvQ zyAd4;(Kq<#ZW;ef*HwRPldkO^{Xey7`ER_1tm(wGcWg2!;2r#?=>OeEvfm{Cm-Xb! zlh`|}*KO?RRCm2X|L=+5zqe!A&&wZlEY5rX{v);x#U8V1L#6IEzVsW1E&E)+gWmlQ z?p^+C`fX`8c>Zg7?)6K@eD)!T|B!x;Z?11ub3yZWR@?v9Ir^7}@^9>H_MMM^R%ds4 z-=^(9`ZkXD_*Wm=40+J)zc_>c#%^aHboqyMJGE+#&qG~2hkNwo8#Ya~E%k%Wr+?O+ zEjHYLYRt3m_x#6nzQ2>+kJ!}Bz6?VThCjcx|Fa&zzS;D^11vvyzb{(zuR5DiX+wRd z-yOX9vu?n?)%Cy)e#H%p)z3Q78YjKizv2?+U*iw#Yi$qw;ekI`0>12feg8H7FkV^q zkmVyE+v_5_&A)p0OA*K4dr72L zRFZ8gYJy#iJknY}k%qU{7uN66CCR5#ZuZ!!O8)Im=6*An`=!yMc6w)8)m~phP5D0^ z^h$MaeFozC1E#rIZ(@pIO(po7KD67hajXI2;~z zudn_FUGJ-(MfY-TWxCfJK6$;5zC`isp5)8j5w3Qf*5uhLa5eThSeCVwG)YQN}*iUoRsQ`)KR~|9s$|+&}So-(jRA>t_o?sUlfF zg-+zdcP^!2mAy1Zf0OQ}=%}LEgYvmBuu8Y zCHm%6oT(p8_%?8Jx|gX>pr;oDo2lxD&=a}(=G7ArOIOD0L+JQq@V9NyccK-HT*I>d zG#(i)766-`rB9*fa(ITJlrc@;f~HK+52DYrAiOw1KZ25{0L#qQ52Ym&fkjJ(hIAtv zC2gz#x$fR#_v52kahrFW-6-Te;(+uayuUOXL%M=S!F z-vnBTGe8E;1erMlMjJm5*vT1Cgw;!O*m4e}II ziYI=FkvCZ4rgPA$q)EUYnWImn9jpazbK$&Wptq*v({quyTMoQ$WN-Yzh4%CGAwn?C z%GWp33R?pPRnO9QC)ZM7kE8dsjEfoh>3ERo(dg0o4}-kTI*#j5&d7MyNnBx}3}iSO zD>NhD6H0x$G{n%D${2Sz^MVUySYW(n0b4xH5JHE_AvnsMr+cZPCry|Sa=8)Yk@Sk3z@^fTxt>$SsgBin|B$QHpg+kFsf3&ir!)VRcDF5l)h$T<%txr7k$43NuFa~ zKWwRf0e#4Psl#*>HQWgE4b#l`k`dET=`x7QD#TD)R)suq%)?4nh%pqt45S;zwdu)a z`c4A>qYY|k157!S*}OB7VeF4JsACz%zC*4SFpPaST%E-*_C;@X5yRNGw$+skV_(5m zpI{jKKDGKh!`Mfo)mItDzTK=IW*GZ;vicdr*e8nBa}DrE6ZjusP_Hv4`?{`b(-8l# z@6@VJ3}at>Rhux3eLGcc$1wH*Qneey*vC87J`7{uyHp1;jC~DKO=KARTB16hVeD&y z>STtoFYT%G7{}PdqIm6hGywqxjv7a2N>lwy=_M&cM82jmk z`ZB}VTYvQ(hOw9A>M?OgE>d;X=mGK@VR zQd=^Ny*E+)7{=ZvsJ$4*qStCP!&qoj9l{mj9q=Gn;15PVb3v){fPo~AHxPR>=47)X;(eYuvrW{%P{sQ3Dh4Lmdr3+Bm6U$ zVU7%A=ONXdVZQ8-cBpL`%8n?iKf~Cc9#DHTjBQiZScb6;sXCfrY=5b$3}c%{brQpd zF>EfwhB9mk!`NRJP**XG{bd35DTWPZ*e+m&75W1F*`}%)RW@zZk)|Ol^d16TGZ

z^-BG2tolP9)qnE)|DF>)V{2$=w3}wn{;JVQ@|HAaG41;s^ zT75klwp#xtW!o6C*9ART&M?@uK+ z^+9xRJtq3r7ch%YdmMr`j;Qg-DSZIjeiT(Z8CsYkH|kvkV9utAoAkLFcI^p$q=v<8 z*5_&1k*D+p8a8yR{yPmD{tTql#@mp?_Al-fw;gKyJC}ag@^Tmj=ni#R-A7N>%IrQpZf-S&wNkcNMNY5>52E5-V7y| z5A_FxNc!?a{o8-g=Li;*sp&hiVzN1=A80Oj%*XooQ10qLgFC6O>l{rfpXeLu=qnfW z=egt9Xl`+Zzh!&|$60g~3UgP*4zv;N_#7IKd=GBraRSowPHEES-7cJumd*4*@+-n{} zUT2_!e<*arCfJ3tzR~xu4ufhRe*^x@(<~zh`{E>OJX6%h-Qsf)zL_KDunlr!I(Z%q za++!uMqNMyCYtVC(6`h5sRlTGCZ$Bl0E$ z*pAnu4Oby(a0>$G?;uEi+tOle(d*NQYmlx!WN!8w*N~#g8f3*La5PFkf`K0YUapn0`*))wiRPqk0F*ysXcLWAdH+aO!ad`2%htS!HWWt=Q8i zQFa^H^2(18yiOJYcK5E-^A6N``Z2RQPuxL@Pu9W_JbN2@(21Y0UthNlWsbQEWA-rB zzXwPEgT^$DKWA%-S&vb|vtJNIPJ$&uzBSz8anz&sR(H6nn1{2nfJ zzCMa8&NrusZ-5lv-+)(~YHx^T2ctIhY(qnTA&0h~#7?!T3*?O|m^&Ru3G=66mP&I) z3452AN6Habr05WDaX1{KT*=)HDPl+S6!odx&F}{88wBIyWR*x2gVB^=cjQVvi}?q~ zs{~r}J=Tv?O$@II!|Cy+hI4<^OXl~eL#I3pA5-fVs18T9dKBOVUA}99IyZQs&g0<_ z;N<2`KQx12eLo0NnnU2;&|n=4PPDlNgg-WfuwhFG{We;ne@3w}}Kj=RV=|DTf4XSPgg>j-9Noj5<_vsF(aC|fHxF**- zLX)885Ttg3Aj{sO3C@ri6zl+jmk%@vCCtU{rb|8s+dr&MFF(U2ITCwoK9T)NsztY=!^#~}S-(~mE*v8TIzp={DB7?B^aNA*M1omZopxB8*#lU)pR z$SDH6&0V3+^a$`;Tt#B|2`-$jBArhZc>A~E>JGCeocaF)Txh8gAq;sVD|-_&!2VLfA>8fkcy!SxA-XBZrkXjshPmq~_f zKpLE4I0@jFYIx-j_(`)dhRG;wJsWRVyT_Z;u7aB6m=+YuXsu?v*Hk6pr>M3Y2 zb?j^@755@#^h0M97&zVFD=^gAG-HOL*o@j2qwN}ZYl-1?Gdg>=VY`M>+vf}crWtb$ z(E?Sh*S2c`?0RJ`4SO70(o>}dKY^jnrsidaGBdin+_2J&j$2@O%#1c%Xy~ZZ(#9<| zbT^}qEinX{(F;aH4>RgtZCE5w(buyhF+%W zD-2^b+VsOp!wY6~?_;bLER|`_YQs8?);9&LHKduj&#W_GXU>b6vdhrcl>E5iJ%RSm z!*q;$A`jZT5tZ&Ph2M49gfW?K`h1h&vp?eP=btp(p^)nq^Wo}gBt7#K3b(xh8#dlz zXeTh#ncmuM=xSQ9)qp)XqfHl{HtaN`&u%m9Goy2#HB^~VbdM!%`SZ*nc(yw`4LG!L zbn-649f7L+Ee?Upt|0P!33VrRgI83%#Oem>Y(m`&G?aWQMbVVG$6zvxeD@mmn?{(CbIetNI-6cOkNHPK z^S?DLH>2*C3@gm&TbEfE^R$m#H9T!bhhJlM7J#*YRZOL;Ed5#B!;+M7k=?=tUTqGglC;m*qh^8*j{19ssN-C)^i@f;VM zjtin*E8ld*Mnri5DdWR;pxj)qxZ=NY_!6@bQfou6Xbh{tIY{oc!_UtZhg~F z&BdYS1Zl0ro8|=BZN#4D5_Y#2KQeP4?Ol(I62+ zAKdz;217)w4LrfdII&cq4xd}6ttI+!Ivo#HZhsEX9xzPoAu!b0w0yX@!HmX?6yeT{ zOV8{O15ADiVpFpyWwf};j5;NWZFMx@2xeN`j6X~sA7BCsNfj}d0j*1O7K!1eZ^nr5 zc1{l*DTbO>q>IDN^tK(CCwh(*y)@dCGfs5U@ua3DDr*4CWonisE;FP1CorFVwY{aM zZ~-4hCAnzJ{0^7~zs+Ty3)I=vexisKk)sFlMcfE+G`dg>)oJLeN#aB^>NQowoaDR$ zBLVmLD{1d)^GLWbUGxzcS=ZEYrdVM{4-`W+-19GKjZF>i`TgngENC!sC9FAWw%Crz zOuG$zO$X+{62dT3<9Xs<20tqm-(&EZGVv7#bLNYi1^V=H)QccNIX(S^x!$e|#hzHv zo?uJfBBmQq7n6Ubh)n_G5;vUfQn7_ORfv&|L!RMOmAKT5&aD<_m@~k#9ZbEJqkeLX zwO9|Kh-x|(3&ZtT3AGt&Ub{9w%KDJgSi5{pfvd!MW*Q6FSX1{k;xLUity#-Fg(Wpb zt!Fkr_8lzZv_X81)?R}}&Te29>BlXC*wWR_Vwh>=Cb1slc~*)I2@8~;>BbY{9B@q2 zHe)bD@=TdH#I#|H__QOBjYJ7NFap4$A^I)S04x|1CGki|lnoDqL^<*pNR*xj zK#+t*KLA+h1AxUn0N7tX1YiLV02b{4V4)5G7Uuxy&te0BEW`o8;u`=gxB=$E0AOJW02Y$~U;zmL7L5R4p$GsLhX7zf2!JFFu;>FQ z7J2|c+@Y937Igq%AqM~!ZvbGy1^^am0AOJT02X5aU;zdI7F_^fkp%!2R)|t~Od(3- z0R;dSO#qXH5~5@tM?gvzL;#aT5R$-U@dI=v3m!z-^Tzgl1x z@3%y@5AjdB>P@F!5ncMR9$=D5ts$Ah{+Wh<(s{Ut@eA94H3|Qub7M1Bcw4agvwtG- zPdYa=g~k}_8Mt}Lb*y0sJ-Js*(6f*X)p^q3s>3^m=KI8nd?Z!!R^gcqZ)GKKUJb>X z$0!~@WZhNC8*5=z@>bVSDV|z#Hk|MnvKEzIiy8~6m}S(GX4VppuSErVX@xSIR;od@ zs9v?G&{|aQT2$X!)c4I$W-+Q~qq0)H&PXeDvljJZEoy&rEhX#DO7%c3>fKt@;ab$u zTGacTDsICEex>?hE#a|R6mt@$8XMF|S&KT{N|UkCT&W(dMZI5(Vh+VhVGdTwJquK^ znPfgzBV<0tC=7KZWzJSZF=t~G8|jtY>uMCCW2Q8`Q zUWWT9K9(z0`R6RVpR*i(&T{@atNwkgVsrT}_wmdux1Y0`{G8?ab5`@8vs(R})t0l+ z|E$gCDm(l7L{C! zO07ku)uJ*qDxNnVj{|E7)mqddU(Gq#@QFVgiYTGGBU zsXnbqmg|~A4v1F-VI=v!i|muDe-J$=@`%{PwC`P(%8UO(rh@>T7i~WQ!(3d6J%%8>PMwOoe)IFS4rOpIi}ZEOJ{6^1k>jAlH!0rDDHdGk~(>YVrx3HU3y+; z&-Q9CEt}TSZ^!4N-}XHxwU*ef4eL6U#DVkaE_6x#=cPuH5O0DPt+NplO=xi!8)2GB zd`)^4@$ok$i4MOmr3;-+UEh%27V!5M(E%4kZ7-pDM3c89CvtsTYA=)!{Ktd9a3-hy zlHN4=ZE2>BkYu`XKpLwTdYO`rNLK`U;k4vn8vUM>ZG)TjgC9z4B%pO3wDKd#$rSOC zWG@R-nfHEzKM{`h9mmZ!x@M3NY)U#MjTGqm0Tl4oY3WTtNT)?#O1DKe*`uX}3gnuLkC5fb9>#WRFPz*!~cJ?GFJ`G%&1z2H6G?T(&_3=toV@ zN%4H|RL&0}<@^j%#*ZN7`~*_Y4KW&ur!$vvZ)s*w2Mmaxe zl=Fi|Ip1!S^J7LiKV_8jLq<72W0dhDMmc{FRmRU3<@|V2&QBNR{BTju{k0rNi(*zi zJ6e?UlSMf{Sd{Z~ML9oKl=D+XIp1QG^D{*`KT?$Q_e|ydKvB*&8Rh&mQO*w&<@_vB z&Nmq4{3KD%4-)1498u19x8>{YI9a(-ec;|B(%jQc|w++oTE48DP9Wkf`iWf!&vG^MFe$S%^Xfe$^@Mx9K>-%5#iHhkh+DN{>&t3L^y}dyeQ;5 zDS)Qpca9o^<4# z=;&annem@ASGnRRsWp?@(zx@YBOSTJYx(xB)El+<+>>GeitkCWw0A0;^n-g+m{#qs z2s+h4ZcnGaMb=f{iuTKrWJ%<@zr^gmtVHf1ge`kX4sl+lx7?g-E%zfELGEjD2R|Ai z$RkBRrqtWK$KDm>K7t?B)yb(6XCE>fzuoORK34nr(P5oD2I)H6$P)oJ+Q=zd@=wjl z-}z4TwX~U+^SQ2S_%^ zfkHMtYLLV5>E)9KIR>DUD31oH5ald@TcSK(WcOd{ZCWDA;j~SXy(G@K8$ql6(V=$d z?AuzJo<%KWc`SC86|!6;vI{d+rhWC~2Gm56lfa*$$i)CZDe`Q95?gsHz-?Q3GC+Zy zJPqKA2D0kF2w8Npj+_e+YcCgS<+akvJ7q5?fFI-_$2qVYIkjUX{+SI&B(Em2H+hOu z3#!2WQz)R@4)P?CC+e(aUg#(%gMZ0UE&<4KLcIla!AYJ1knSu`*AjWW%g!h!v?1)xlcj6Pwt85S zxqHZUG|@P74J|FAt@UIFWUh3PCji`ak@Em@UF95rQyPeEBxg#z;HfxkumK#@)}dv! zn=A=<-{K~Z0!YJ52yoa9#o(z)V>usSdt-SzKqq%O8{jc_^d=t9HGx<4rx{I9MSr@e zfzeIn42i!IUmZyYVo}9>SIM6md&u@8XRp)rE@&!;5>r{@Zm>2q7G>S_kOv8I6zd5c z;%JX222va~^FnoTwAc&P#nC-4_)r`(^-E?$G{Z26qchE*VjK-^F6U|D*EMm|*09r& zHrSYs_LCg!&2tSe;4N}&4;SFVg>59+GAOz5ok$XTpcONl${t!0-V`o-S1Y=COL>r1 z*AcTSE#<))<9&^>ZG>e+=XR7DPzQLj#BP<P zwuMP&lBq3515fdtImKAnw%Q&I=9MJ+;V57>*i2g84*oHdY}?D@v^=-9JPX^)L$p%A zZqHN1c947Hq*&EK?hEi~2YDbsyN+@kKygReN0>p|I?9m%w>!#F_`wbA(Wtr;)|uo^ zau%CFnY`WwP|Cvo8KB#jx zRr+8qoJ}WvDgJ10x0V&$7ou_(?w|E zkdc*>Qc#o0s|!~)w~IVPOO`~d{N--dUF8NEoob==6x3U?rR1)b2BhDw%D9xQjG9un zca{60@>^ZyApisXxhjwNb1Pl&mj{Cx+>KL}-Q+l}q8YTXGpsbTA11DsV=a}GL}}Z| z=yV*%k3>o?G~QEjG;cy@)8g*(5X~^9QQDT|=`h)x@aYIiCZ7Pg4r&Vuz``_}Rt8`p znT>};a)wsvQo7p}mF9Mr724E8cF@XN7Dc_TNR8?6P)k|2dtj!VP4DA(5tT+3TgFTWtAAU!E9bIg6Fj_WChGaY)$(Ew+A$`M*^Tko?YWe0J6rv+I$ zdVTwdG@;<`8o^Kue{;gAuuj!_YGIT)J<79CPw<6b+ammI9oZ*uyj zUUDxayWLCfudxq;-L%?QcA(@qsh(xnMNnmk+zodlZ-+qVdE^+1S(b&F)K8>z0ojU(zj7G zUeY*SDN*O-WbV{?`U(z35#0znW zw)T8Wa*IIA3aNdBJQQG7gdDGB_N49c$lNqiw$pMokEW~savSnVkz6S^5cV~&0~b=qD0!$>oVTV+afW19BmOK3L#L2@qUGUQs_qmUhe{7e%Ptxtkba5* zqvHUKRIYol#wZ5^Iad$BqQLomxVp}nxrLSi%Gv$20_VqA3XCM52o!iWMs`I0n=#yE zaRaecDx~cLIb|P#md70-iVdcv?`LcvT_H>F5s69!U9@I-wwiVu8`se%b5Us z24gQ)NZvy*5DRJH5Nx6f@gqH6dQ_Y|TC>&E8e6rb%W)W0T-O~&2fOaMmMc?*97igof0q= zVpITVS>K4hZvy7Vah+W=qZCr7(Y&u0jJ6p5STt?1L7P_0mD-bcqQ#9rWp0cqwFIl> zp1G3sAYDjn6J>89jgBT_4of5FBrL&cG%QK(C8n_n;Jh{gY)g`THO57aaXSf<9ZzvZ zV~kFg-Ee<9Iav-By3mWs7-C&m0k<`=;}TfA@j_IeJW_F>0V&u$vG}=qFPa?OV6z?z zBu~l=batgZg|aAenT`gfWA-_a0;TfEITgbtk0zvIfN-&$CUz>o#SBVyvCExe8H{=4 zIRGrB!-I9*)@<5H# zZ2j&>I23Bt7m2Q#q(g_B;D6ScCV&9z}Pgg~%I#nc{7 z^~S@k!YOw=W~OjDJYLS%QjZ!yBL_m00l8S(JtyE^$#JFBz+$g(T9bt}oY$A4)n`8e z(+Ov!X^d5q&{?>Qcg5}elN02D;vi>3m4on8i=aI03V6ar8lPWfy_6^S(6~!9uH!`6Lr5U+iE<=j z`>1z00r8*7YBT561oE*fLA#z-uX12x80jj^LZ?xZocX-ZwsSL&K~3<=bsP>$B5JGJC9 zi)7d8LPex)g;+y)-7jd86NP9sXYBr)q_IVoq_0>deo%jV5#|q`;|-19bPC#C{8Y_y zoj}2pKQbjQhM2S z4P-8KN6U~n9sS7}_pFSTO(M4vockwHUI~^lu3m>23jGe1oiD-a z1o#mWNDps5UE&x zNOHH#fIP(}Ed{m~7+wo;#^T(~8kesPO&4Kp;M}bmH+K={IL_FnG4?Ey8%e#GGS9`( z$(7hxL_XfI5jiZzy<;zOSqvxT(idZBWKXPQkT$W}r59~pjO{`%y0%#EDEO0Cr5q;u zv%=oeN{6R(*BI|;3`9p-X^eL@2KG5^HO3K*F?fj_fTAjvz$g9b^b)M7{uHuQ?uvkI z5d)>PWhv}fN>`R*V_ZssMhuWrT401{l+q_gd4yETRJamD9s5J$>HmX;Bi|Q%V(8 zatgpD4a6?P>4c}fLnn;54ZHH8Sl8mXrS#J>IYBE*H&7eO3qQlHD2p1QjIGredpxsT zBlVyu-$`{fw%tIs741PmC#3rdeU{|zh%jFud4R-T8LABiYH_2%%jK4cIZs|LM@sxV z2kvIUXUnl;%B9=OWq&D{erG=-ZmbCX#Y>#;Ac4irm zOGS-#Z9wi7avf^80vGxjG-?GLI)k2B0UKt}y%jiUr&IV!Y^T#%Rl)aX-n~+G7e>%0 zE9GDbkxG1a0*aJEkrj`+`jO9aShzdoJ_@sNX|y@-=||;G2!lI4hOJ&Sr96gBX*9k3 z7)EY1HCQDFd9Wvm>V^IfJv7dDoNswS)vPLY9&W+aDZ{kjV%{pb38H$787QKy4D_J` z3`Ej72Es^MEjJ0`@q||+?l0%rSZg`vNW%TnmusZil!77xCgg#-Q zKivQb;+LRXa8+NU?U_N=T4u7g9IGYu8f=wLp+Rd<(hSOBU^XpeAcCG^pa<<|0M``& zLHzV|FY5kUrp8&z;pd3c(f3Q2)JVHh=vtK2g_0P^qZtgu&`Jiv=>-M`(J_D^zW19v z;Qn%Y47Jw6_iDwpq(f_@3FNyDB?Zzz28PoF2C%F#5Km7skVtO<1WjW$NsYO`mehD_ zE!u=#OPXFI?MzEI?TpOdN4 z6Y}IbJPLmeBSpQ|pS+%sN6_AHB^O8?o|H=gmOUvi0cgEhUI_5~W^84mNdFXKWKk6I z6pqSKWPC~<0dVmt+<-(;)E0RR<-{rm+OY)#GK%cB;<_Y?^0&$v0H1Ef@h^%3pXSW< zPvb@`iX5Kd%$#TBbjlrqte-rC!%r0XZ{w*}ZNomYh>mZQ+X5K2W2!Eqi0znPis+H; zm~@Kh#CA;8MbzP0ESg0$@mb_6qEDYiu|*WP16OxNv}y;`ETWq`c*^kS(2^or_8g{= zK6K_etO9+={dq9^(D>)&;dVSsoPeQ^7*y;oIoy6+N`6vSN@{vmewEsXymq3seW+Li zpYO!QQ6KU*aj@8g+t@yI*@PWc9}3@vw)CO(yRa4NL(&WKNUiLttn8`eaY$}dZIV0E zvoFYvk>Jn^Fi9T@c#&tW)WA0{%4tGhihc=!!oGCyC8*h#8t;}104jIO^8gyYjId!} zTJo|ySL_Q1sHji(UdEk{&mJsyeQEI?p6A3KtX6#~N$O8n72T zieg&47k9|TtN<7KY%kkS??cB0(A0hMScN^XgJ-=xoGu-KsN@aVi<-YGw}8C=tMYn) zZ(o%k1}Jz9hy4Kh^fg?L1yI!Mh$05i8?Pgn#EPhBKpt=4*%bKl~(;eBXheL{iZ^2)TvPxp(C5j$vA38jj$@WH1Q_<-s;pY8cHsfZD?7$^qCn zjM5LH{b6+QpgbO+`@6Wj4Wp;u<;(_$ICIt^&b)C5ealK!pJ9Fb4CNe@V`%eX#1q5l zg~PB&7SJt?oXEGk`} zgtM{_d7hR>lJ_~7D2vXVk~aWUoR-%Ccz+>33UKfXc?H1OFFB?EN`9;kFQhFiq-`W^ zKaRk*Q@M>To%sq!wE}ASH8d)qqOWBmfbAI+RzO?NK(PWE_>H^?;Knzcx#BEbwt#}q zLCpgC`W&aq&&!X2YJEXoX;;AdGKy7%IqEBD%j=0bBM+irM}G2z(MA2q?FOds{pGMum;OtLl@4!p?Q~pnks=kZH z_oqd75%!KFyL)n^!Ztf_$;%_i`A61sHcAh&Z6-C>sd4n}J-JMXTUMwT?Uu=w*CcUd zD=15uc$1(!f?`5-N)^CII%OF^mW{I9j_;seXG*@#l$=2wet<{C(Mr9t7@)mDSqSig zfm0EpQVHr)QJIMV>Ig4@_h z2?0oOQj!36J1Lm}t(=t!b*3=qbHIKL|5SgBGqOirMW&aWl}6a@edw%o1hA>A!~qPi zs|*Hsic{6~l>Q(h>M4oX4?a;(307F-6*liblAK+YXo~U1zIrzGsjrLzSW{ma1E6o9 z1OkLKfCjT^a|0y}z_Fo{0Z`OXNdfq{A!i1;@C<8RI3>D5^VyW)sw4xv<*K9tv}>e{ zvtzZYv8(~Hct4@U)=e);$*R&mUpIuYhu}e8w9=&7Me(B;H-*JBN4Y5}b$G@REX9bL z6fR@a3zAX`GcwXAn#)LFDH7;NGbNU0Hda_1v$8SQ{zm|<`gE2Cn+jA}TorGuz%*PThiuDVf<-{K>6)kfk_CM{A{^;t<&u z1-Z0`UOi}dd!--1n)XVb9S@EkL#B%QMqy=re8ofYR~VD+L`Kp!A0>s3bWpr-(D|-| zG7TWRqf!iTsiX2RKv5@UI>5C~m@np0xwo@bDuzaB{rZQ;Seia*76QS>AwN)9@;kiP4z zOhwuWUEnH(bgT>9p^zfF!Vd~*Usq+K9Y2jZ1;I3v~8rMRSjeY@j^ci;#GtP^CWwNVScXZ09NP#>KLM=(VAXxq(a){I=eiCThEmY_76E^D02b}O=nsCB6xe(L@4>FzJ4UP`oobJ^@VgHlAB~CeoP7KjVNwz|7eUt zs2z>LUr4qCFhUEdXaGhiI%a^9uj#RkRkbaejy5wp$CZJK-Zm|zASFK?FDKAzF}%=r z1C_B_ju%*t7i#CQN11mAau3Lj<+_~IK+GVl9fh<=1BV7-mMNq@gSqWq9?WGw4dyM% z8=}mB?D7!aNn_)bV1yPo#wqOq-iyORkw%S&Dgyz=4^<)no*$~j0*LX-Sb*$!r8^>u zo8qxHbfqsDvkOHHQ(^#C3`3b+sP1sgCwY`VT|HF=Fx+>Aaa4HTP*sWUbMG5Q!svh4H#) z6fH_uhS2I1#R*&ea6CRo+2ItLf(paw^%VFd!gQ%{zi>LBfxctl*+@ACjSr_bX^Lvc zN>d}477-RL>?k)y@umssiXGiaQ|cnAV>-GZoaUs%al+~QbY5t71~2Vg2Bx2InlcuB z7Ea%dg%^fX@;Id&;QTn)X%G#}ME4A$<(Y7?K?oOOU=5-vDm-lveW8J<@mTkRXw`Vd zAK=6BaLpjMs?3JEIb@rI4#7|Cb6}<%QgX3ZN}%{$#YbVG6_iy6A0eBn1klKdawCYo z$W`J20`inW01NVdRXFJ4oJ7V0N$2BO$wFa07V)&T&N5M)v^e#1ZI&k1mK+_u7dj{p0aQf z_9Y4URxz)}dop%DP;WBN@Y!S~0aU;gUdrMrJi}QHgihs!Et{&0Mv`k&x#}^~kR*^c zO;dUTd^HV42U5T3=%+y1F&%9Uq{cHim@@;745Y7TC;@^>9y5_arG%LZ3j{5isdNQ+ zeI{1ANmQp;@c{@bhQ%gPWigsLiLPp3a0v`IiMEtrTAD;ov!Kf)%GSWaSx{*bwVsVZ zHHj8#;M#2L5hl^#IdGOq^wJzCIEk9heKikB z;;COLni5YtO0k=Wr+N>=9ph>8!*IYvy7(~EO{A`67@CN{lwrY4q{wotqKWizIo8`m zN}i8VKaJj>uk;0Iv;Yo2jj9%4XiX!p3aIN%(r5_- zl=%Sb7GWMsr7sp?Kafhz7o#buRIwOiB9uN{j9v+)ww16;3C*d*BvnGYD^XYpwON9c zCA4G-244vomSW{Ap~9ug1UoH!f(tvfiX4|Jk+f$4Zd^)eh!NE%(K4gLLMfjZFc0vz7mqGnV>Y-(zN?kN1OeEtM}1RCT@Tk9O&ixk-O=>rdbsjv>hn0P zluPp-hx_ExyN|;l!Q`<)=>ib90gfF^yEY(YFg4l;7s;T4jW8C%2pdsm203oRc*>wj zn~*Ytj&DLAr&FINP-Z&KdjdU{PS>AMV)-xUaPzgVqb;7lJ_%cnpiNK07~M(P40XCw z_+~V;JH5CWdAd{kr?3o1Q}t6y7{Dh_!C9gyVha|wXxg_$$9ngm0-u5-1O{@`8kCX$E0^m%NbKRAw3)KBr|ic<7Gd~t7!Hc zQdXG1?_Rl8@xVvZwry2f0(`U;EA}XA@U)U3@}lq)*rydwqNmY}QDpawvKQdsGdOjQ zqH)_Wb&sO6+hG4u)M7i@=0l6OV^Q&;M$ak{BKvV*g$IQ`ixSG7h2QzmiDzML9}3uk zS;2?OcEBt?bZdvQ*^d2$u);62FfB8OLQg6U=(Xoi;1KHcJdzHf8P6+o0dzYtXopbA zPURDTktXE>0PkJOGr|};xeEvNF;wt^k}9!ZB387Cply4VHe`5F$rm{X;qP)oBcd0T zQlxD9lCmG*>`OR(kD=n-%1Z!&FDq|pi969HqrscH?NJti|K=X$gfNgcyrLX*9Ej4f z7|DsekMMb!*Od;mWiLkLK&o>}Nu{3q;5Y+m%|7L{ElXSx+__W7esuap>>S>FRap&L z#%szxfHtoy+eMzljkd4D%K78#@c4n0^aeaIpWb>y8354WO*DHJ8Q)ai0vPoc+<6wg z(#kfPZoLJkoJBp}R$c_S(b{$!ZX%T^;8*u6>i}S!I6C_dru$h4!YVB&=z!t}JoftgxO&ovgP0F{(pLvz_MTcD#qVOXg|GX!w;fCk55W_9()>fpJq8Zr zkkgZuI|KklwxLIlV0X~dT5g7rOrwsX$YeTm6q+nJrwpaV?m#!};ocz*th{Ee%xjqS+9eDI>I+k5EBv0-9 zj=mN1_>E*)cgEG;!Ee9Pd028Yq_)~}hPE|N{d0zH4yel2S=ThD z&W`J)_MUacso&1hA)BM7o}N3}dp*WVoFKkr&aA^Rs+z>&ibfW%V7C)xJMm*D2$jKk0~}81y&o7>f5@ zr(1H0@858(r>M$q(&0nlmg_Pm&sCe+JGw2}Wc73{nzS(JF8*6|&8ijjxJn4JT2km8 zWcjMuW7Jnc*5RNrYHc-Z2nBt%6;`);)A)a?Tjzqt1YQod+5|cHC1QV9wfBBUu1a%Q z^C*9d!`e?_g46ngLQ$yoDuoD_HJ!q~Ec`+%>Gm)KaqbIOoS$3xme0#WB_^6z-0-dOP?n zXg@U)UGAu>w#QmU5&EGt#Uxv?-nT%mCFX!x}+> z_RN1m2JnO`dOK~)W3{XjV!d~|)TRXtP}6H$&rt}kW4%UUdmU>g1=?kFnW<|H4eF{6 z)wR}AsLZr_QlNF4O+l~LQ}t+WUHM{o$-%FN(;l1msVhOHzvYTho-Au3G+Xt4)zL)l z%CgF-8LR9DG*Nf;as%sL3VKtUHniH)I9>O4IlA+F9#HcR(^INmsq`VuXk;x5>K>p? zUGC7Yoa+hza~9gk^nXwr{}ZKDDyOR6J-+KMf(!#=b0}5Yr0D;lI=imG?|^y&e*v-t zZU7n%qF27Lj9ZY#TtvStT%GVQg#vv5V+8sE ziWqYF|EKmqNU;_Iy=^5XWe-MnnE?N@nLf610WV;pz(~L(fkMC|0%HNbsUqVb(*#NY zj|ofw%n+Cem?bb7Fk68CcTKB0M_@YOsVbmOS!O_Ia8BSn;1_`lfJ*|G0apdCG0^$KS4WPcjdO!n#O@KxMT$g}$PPV{yKvRJ?0L=v6@;kkB*aK+8Ahq0RG3^ZK{nNpu?DtT3?hjU85 z)9*$0NCP^1lu6lFFuTzL*Q&mM$BO)kBDTPFK(WA0Kna7c-cXJHw@m9a!GK<9g-O{V z$gUI!1xyC;`5y+EB1Iwrj|#W}(*?L<1})Sl5D%CskOX*KAO-M*Ksp1R|4)k4Mv

    nGfxdtZ4CQ?IZKN@p=5+&lW4Cfj*8&-c@;eOZ z>^Drx9*pdOz)%7o&2OiO7e#gnj0Ef!Ck7z@}hFb?pp09Q_-rMxFF0dSDPr`LQU zphid@t}K;IzOpz!?Cae=8v8q{u6Pp9Ee5{35Up@GFC^(!!O3X}OmT z=-u&~N!eSFeNA9H;17KU>p8pu`Adqt1-LG-3-FJ?9>6Vu{eYl{&1!K?8(OXE0tW#h z27LBM5T_CQ5WppH1P~_he}D)Esq{>Xi8i3O-eXesHz*$?Z~_qbFn|B*Ih=$fNRb}^ zNdjj8$pYsAsRCTfht?up;3A-wz!g9pfoncUrpTXw`U2Mh4Fqli8VLkZ-2+-~HiNDU z)P%+eni0`wDT0(elM8DOA*uO(!VNE^Vz z0_^}p1v&zT3v>aD5Xc3L6zC2ZC2${Lv`-`tGFE^qMA2tp3vg8^f?|PzfD!?&3PmN# z1i0oCLAihzFwua|9toLb#O9h%G|eLdTnUO`ssPu2BA6yn0(eYd0$_%~M8GV8$pGJM zk*Sb50@DFc3CsXIBk(xDFE9u2oWRq7=LP(L1yw-j|2)V-DY5{tSYQ!giNF%TQh}EM z%LJAKmJ6%`tQ1(S!DqiBvKB>F3v2+a5!eh^C$JT;L0|`9lK@xjqR;Aeft`S@3_W$H zpt~VEAXSea-Y_Yf>wD200s`*>b_%=?*d@SKyJ(W#0$h`eV6VWZfc^UTZ_76~2Plt< zyvIct^x1!qQ@Vl`SL>qej|}MSPfUth<jEi&e+1G2w*+bff~aN* zZ!4XDnULyLLUpwPAp(s6P64jDMyu))Xa)!qXbFfAXak56Xs5wvyG1&pNDYB5fLMWC zK)gVAK%&5XfSLkaAC6WvMc@HI8i4Qr`a?3L$Us1Cfx&>f0z(1y1iXMOfsufQ0)>Fa z0%IBI_-`UI4n=YVN&w9TCIDIrOa!zRm<+gEU@D-Uz;r+d4f^=!+IqB)I!Teo0bK;R zx*nD2D!^6r2)YUQ0o?`W0eT870NgLIh=70p_1U{kpZ2p zOv=8F>=zky8z{E`%M4I?TK;mAw5w57Hd@?Dfe^qe0-=D_0%3qP0+E1q0&c(t23;vK z7O+_ZpMQF_w@7{h^0x`p1ndw<1-v1U0SE}x0qhjunwYd{y962le7jk6HOXwqJ_CBS z4w#gkgY5qbv;e#>&>HZ8KwH2^0v!OK2z2IGOliFii*yAX5x5udnE+Skq)Cnm^a6Y# z&;%*ocn8oxU@xH2 zP`>}t`{Mv4TZ+5~Xe#glpqaqOfEEIW0j&g%0@?^11GE+Rvg&APFY*nFbQCxN=qzv& zaF4(bfLwtyfO`eb19}Mj0=RD|pMQD>T!i$JB3A&t8FafXzXSRj&__&vld}Ip_5gt! zfQJNb0R{_H>y7hoh)4)kxTMc=7z1}^U=OD;f_wvdp#_{8#Mz^eJ;s2}F5=W=&W^u4EE4DePy+V@ zUKHpJc!^;+e<=L`%QeXN?@GxZfc#ek1_4$J3<0bW7!Fv+AT1uyVYAVI{@^#8lwFAO zTlD#_Cm0La#zmU&T5hK?n!_6g^c(`5(yiH)q5RthboM(YWmh13kH93rK8BGz|NS&Z z^Y{JNh@QjyCS^~@1RpSPuN(GFU}~p!`t-I{W`j%6%r z9OP?(`GEfkECieoP=N0kyu6YpX^gh&2LpO7el#h2Im(|ESmlG97g-JXSzs;Tg1`pA zMS;zL%K}>gzcF;;)%p+McLRF0{^XQT=LeAgx5>BP2HX(X4Y(<=4{+Bonu#=jL7QIP zfL=z3N!bTc-YM{r2A}N`IfNo%0!IK50{;hy68Hk(7Wf)agF&~u5kq6NTJZ+-Y9(?? z*Kqfp!UV}ibbhKy*{6}6E^ro5OW-F!9f1pgOo2;)`T|_7p4O=Wfe)+kJEV~m`3sOO za0Ad(;1-~nKsBm&PIGM`5CUi=5DI7`5Y`9xA8kb;)Pj&+ zXjcZ^a!@Xf(OPsjpv(6(DLWbE?`J5Z`TOi%n4pglJwabib>!vO!2}N)(Afh`%C3j( zK>`f`4>OGB8Ds;78PGHEnv~DZL4Ljwy9J;?pf#Y7p^#_EZLrWbjy0fXX`2)^T%@y$ z83uFt@ia!|%M9r9<(z86*MDluNat5-A<+4gP0H?x>?s1h0FN^0_YNKaJZ3=8V1`NA z{gFLOU?5=jFuwnjHy3CX=Wr2zeZYQ_#t5Dn1FRER57@-OFDclY0b32|_1tb!_6}sfDG&g>T?MrLyC8d{$X>t! zfp-D#Gw{m}_Cdf$2J}KdF)8~HvX2NH1soIj9PrgJzW>y-{2FpxiktwPWZ*X->{Ec# z2J}MDn3R1M**^*V4ER;xBH)U^Z~Xbw2k^VdA1Ly-z;(b)fm?uT^a2G|t2&L*JRA)C zHiYd2SO)ZZhMSZff$V4iZ@(K7BSm5X2?B|LWPubwxNeTE8Ntt>zz1A4Wx zeVpWeuIwhrZ)QN}w=gNYC9>NH+zn_i&;ig{pbH>Zpc|lvK+oa0{`L~dLy-pr`T`zg zXwU0805HgaUeAY3${vF3;R0U3NPz;tXbt-MGX`Qyk#T?$fl@%ZKm}kD1HTSpPXIa8BSn;1_`lfJ*|G z0apdC0sf@m!`A-=xgkaV0o>&^`zMIT=z|Jo;1_1>5J0E_y~8Y%vcr%aDG&wl2-IMp z-+yr;@hFlcP!o_UkOrtFP#cgbP!G^Rpdlbzpb4Ov27UfDhqRI+tpRNX+5tKWbOPKX z&=qj6KzG1>0`~)Y3-qBe{{HPJ(jP?z3OodOSYQZXxPTWhlHqawTnYfA4d~BhET{Oz z9=izH#Z}-@%qeqJqvkGip&En zVBpt_>=yuw4d@M9Vp8^t$X+J!GGL{^D!^)i*St9Y)`_e~kxdNzVv)TWu+@NG=ysE` zcOd&sfdJrbfn9(-0($`m06tpAyO8%G1P1{h349DV%)l=)*`ESFGoV-Nm`T~6Bl|0X zuK~veP5@5wM}=9Qf}9rk5pa%yUwpF91AZ}}7y7G7*%y(0Mc_BU?*e}S{$}8JpX}@W z`O_J2(}5RLIgM<4_cD&PWy3q$~-1>Arbh5@|LSU`dXKL7PXlO(?;@>2!U z0JQ{a12P5b0U8K21Y`>|0W=e64)C>N;a9Ef){wRa^lG&?DZ2x*I}3CHS3W54-lxDXR#4y<3Mg=WdyCj@>5L`ctEd>r}V3I%?IK!KkOP~ac@ z6!>>N1^#tTfqzj`;2+8q+92?6QcCeJQ40J+j{^TrqQF0fDDZC$3Vd%*fp6g{@Ex+3 zBHxly;M+(Fd_P5jZyPA^w-g2bHlo0nb_#s4rN9?A3VgYtz}E;0eAZInlY~Nd)uY(z zL9dn1FQ)e``>0Qgt=6u4V$h>@o^qF1ak0&tdULYNO2#ati${k$veX0Pt#H@fciN+D zUGKCtiR#vP%jN2FyVY{FyFHocX>KO%bcd@MB{XTr+bv$L zFR{X0?Qgd@RgxL(^3YcFsAArS&(oXF^GdCn)H7LdXfS1VQ(Y!l3950aRafy&<{%VA#k z4p+`eR)lZ*DEg*p$%8x|Y~{h5JXp(vW;}SD2NQYV zd63J4r+M%a4<6vb93Hge!CoHB8%5V+dlirF+>u!Db%J;6Z;L zbmzfX9t`EdJ3J`l!AKrV;K6DhwBbP)9xUO(KpH$h((fEqJi4g3P+#JXB$yPF& z$EdGn?xTLoR=nkk48?`i-+-wBwRAO8-I#1;I`~5BPgXMzxss^}Urzn0YW`=gR4OuC zjeo>SLK_IN)LN@69xVZ+EB859Iu#hB4n1Pk#Y_2F>iKXhi{`;sSbw^jIXWas?TfM; zRBo*5HN{G!qq%sBl|k=_KR3myjTgM*RmUtVo{Dr=N2gc?KECu%$EBYFU-~KVHJ<{n zDg|Cg3Vg|@z?Xaqe7T~)*Ln(kt*5|iLV>UK6!;=ffiLnD_##iCJ3>DlD*bB5R4Xox zXN_ApeGklwz#}kTJG*`0+*E7Lz0~&gy!}>k@FQgE$UdtM#%}GinmE|}_0*~(j(XIM z0jDbcnX1bXM`mE;0qgoPYRG!H3QM4ndNn>-_ZjW4sU}=>rUc*5v&+5`ACIxVSK@19 zY{r%NS~Nk>wfMB4`=9KzBrMQrNqDTsF^QLzsOEp|NJ`K*KmN$Viit(zxmP~Bw5Ws{ zmz$*g8^Tjlbjc{mET$4VmuHZp+{Ixz^y%qB4b-Kp&PLQ2cH@oV%_-z>4Cn5s{Tstm zgSmh@xjsBOXj0(gjp5a~UF%P+h@|*jo=;>hwP;5T;AEEm_L|jhTA@WNH1=;8;MFj;?Fr!1MAvGRBNI;B&O!5 zyIcy7b>Qw$<&2F;r{~zn41*{?;G`ZE#0pqHHse8&lyjL3g6zVnH5n9@K`mo zzcVgPvp?jv=1%>g-0W>7oqjY;VA{ke@7!emG2oBX2W8Kain79jiKW!2t=4)ft1C5g z|Afk@7F~zJz15=YQz)$#ovC|?q)YmV+|WkBTzJv8=*$E?m8+txxM-p`zr1QTl~im( z*U$!m=GCJQqJKVW2#{JRP4-msvR(a)#+MZr_C{lr*&U)2aF&f3E=wCbg$`!w zr7kwG>M{2{BdK-A(vDaHwI6AMgcw!MhhT1qHmsNr6q-9OX+xlAk|ENCG`!gxZ*xELBupM%#QU_oV66Uz(oN6~Rh^f5l56O>TLl&6 z-bwVmRWOb>qjae!B?arp=X6QscyB>*eno}sHjg^G#aW{o72UJclNg6Jq{}7k3F#qY zsJgJ!lS*3~{*tGrlZ#aP<5bRiXIvonCC|gPs8!4ryFKX?_U-m0Q#e5(p&frvQP@ga zW4@r}(>`byaPRT_)>L;tMz^m)Z#q+)`Z)*R%Tl76Jz3>l^dzG|n##D~NmTO!PA6x~ zzetPGAztnFg}P8EPR;zt6GvaO)XL^XPkkytAz9tL;0Z?oYB!Y%sNt794nQ5ij7y$q zp4}x+U4HH$j6pZw&BOP;`qOEn6LskO{5!(y81Ud-qsv1*Sqi7rY5dE07ps!la~ zpxQeuCY1_)J1nNQld~%6t7Y4Rj`%>@@R-Y;sToc8ikK|jQ5m(^w{5>Ojb_0QbLjL5 zS`<@5^`1lBcQWv`e*X(G4FWq>#5lW!Jj!KMbXiOW-HdXg(x0W=!LeBZ&yO+H>g!(1 z=$HPs_oz$X*Po)UW19y$Ma16h88kA`@uApP|4R*G&ih|NB83|@=W>C>SZfwjqTf8|p{n5!O(s~gOZk5uIJxMbZW7;Sxr+&JEPc7KZ6 zf7qEqJKd|YeQ~KCjjl;W6_xqLMN{bu(i<4=i`!F5ZDpohjH^YV^ToJi3d1hOr3Q5h zOuHDjWh}LX*=SIF{e)IL$EeZN93vemW!|ES3VmX?QpJPf6LtSzw3+$ysdJK6YU`l* zh7^tuiff#&_b#ef>&&L*2I*-R!3? zqA%$=xIdp0$ha2&eTwdTtAf6Sw!Pv?4AicXkeV7YjOJRQ`Ys7g3l!!gyxfqQx70hg zV<2T%!V7JvDa&n(5|WZfS8Yo1#KLm#$SFA8@F=ZPbsmpQ547U#_sY60LpLR*@ zk`uu6ZM*oBWW}0kM>k=)Eo&S!H>r8cZXz$V1JD_b_{AY^uty5qX{l(>% z6sft{t(v{oA~SdXe#n^r!Pkus+vMh)G)ba z)upy&hE^u$jHV{BqnoM8sK!EdD%_@4HmAz(wa9b2 zT`i%6%F;wPlXs{3LTl6F-OWww+BY)|%<^@qVk;^&J!33tqU;rh=0Xu276ot9H)#Q; zwH+FoUQcgg8q>*DaMxSmv0jx>WcK$4Z@Eb1jW*rPMCTva)j;~_PYn(1iabohVh>Q) zy+u#EqL$?Hs?xGr`MxD5j7`W*8EcxVF>Rb0Sd zjfAQWZV<9HkLekDYt9wyTvGHm4P2Aifa_|9zq_Eu0n0r;A#{(!9g;u?$DUqyq(1o zkw>2^KpL2C?rmUNKeEn_JEPm%7YsH$^;D10Ps3Bc$bapk*4akQ-MLJgYNPfvveN== z)a^!vT9TFevQjUTHq%BqEh^DsY*dw`joL^XRW0?t*49Q*{DWg9kppTs(I!JE&B;|Az15aqkOM-)q-tQc671U(MBzd z@2KV5s72{tXvv1B3UuXPTEC^A7H(r+TN0uTwNYga?rXEH)K^c%L~Ao_lzr!~v``yW zdG~g$yN#-8Y_0j*D4%s#wOKZ*{rfYu5ughA*nicr&mJw-#_W<5qII!RaSx|!?QB%R z?aEpo8&z0*NQ%gf3RDZeVyjQe18?(dJBU+@53L4_9W!R`Lb|dZ# zI%_<%u~zbV_b-FBepYJBje?rma4U7K)zMeA1S@r0dS`$($V%Nk=iF55Z>7pIr+j95 zII*+L7Pmzu%}f_}w6HJMI-4>lH8&kBXhDmVE9;p)n$-X$vZdA9BJ-O#aPp%*Q0Y=!GI1nl?~6Yqja4;zoMQn=IB)4_mbV9rdv7 z;NMXX+i3nB^{_4Mch|G)8F-st*#FZ(3ezhipClobYLyCIxsCl}vk1GDK<4p+v&ngp z+yBo#erf$|OGan^<@M9n?P&CkuRTp4FZsLH%DjPp+K~H6B%QYlFx~wk$W&{(K2iR@ zMs~g2k!ppaN=)~^nL1Y0(9Rq7fu<%$JDH>x+pvlBq>URkh0@&!y9kODggSq3ZZU7= z&)HgPdeqLDR=e8O`+MzXe$}6}-KoLCa8u1U+Wfs{GY9bB)9mPFSf6gKejit&d**m zT`6i|`v0t_zoJWNo^}~e$q8_Ew5j(>$y4*_8e&I^Mj-S7;U!{tW zV{-#ozb4U*bo)xQDb?-|9IsL8($-H2PqF`TANcQdlu8fTHKsX5g4;h{_}KaSKcTzK zJj)Me=@y}tZA5=bN7>cE|3pXGt;oNwqg1*VH^(i>?jO2wzkb>IUE|8GeSUv;sc@Q* z&;9nlnXrGizi-;N{2Sl(-`r_-yY*ku={qMdjhmbo5`WcPX4iRtRQEm7a3`_#IMzsZ zs{cP5{oket++_Zx2zIB!?r{I_ErJle@Op9=^!pZtk0uC7FuVwhNvn{Zf|&gZ|RfKi3lrll^`@#go6c0k>(N3Jq`ycK&tCQ~Qnf zP5$QGY<1}P67}bqgcU4|g%tmEnrq+0K9r996ZO&fH?S@K!rME`RYdtS!5s&?SLjA{ z`?|k*JFK8c7LEN&k-yEasGvv|$o@-_e}E#{CjkFmMQYUJJG)q#UEAKB-%IJo+@G(E z|7Y_%?5tgfU+ME!uub+I#a}9|uw?#Tm9mdf{z#R2s!N+#Z!j;e6c*4wIA8qN+ba96 z=Z{qEKlh3L>s87=j{471DRu6Ki>N{myXqCrfBy>K>Gv)K>|3)xRJqjTJ3G&R>d60I zqx}!kF#CS*U!!3JrdpKtw-YIHmAw;u%lRPJeFA2a>J)9&wGvDrty|II2dEwOL+uh=O!l-T*x z=ia~XD8jy}{!96muMB^M(f=XJXP>bDT=^-l+YdBdS*g)441kooZzR6Hf3(sbaZ8KW z@;es!Z|!`^JjKqPe)-Y+AFcG(IS@=II~&~o;On+OWGvVZ2rw3=&{?C{=hVE9;*uv z!r>dvHl{oCS)EPj@>0Ra^wIqw9y{alGMh!{7t*E4g5}d6+eZ`leB4GRM-z{{u-4(!>ITzwQo() z4~0a`752lXzeeTHHY)4~W`B*!pK4U97B8)4x!dKx_$xm=_(_*DdEc>jB`+UClfN7Q z78w0^I{@VuHTDzC|CRA6?QWm)b1zM!%QNg7>(Q|P3s;SfB-p1?ZGZgKkpC>Iywf&2 z)xM4C)0yd1e#qGGWdC=E48E{4-N>-7PVlh*`GVLH)G!r{=-Aj&*$8K z_5iXUqW|3iei=k2TX;|Y83UogV# z$(HgXoLXkz7PhXR8vieM*}tZ+^>?9f3UCjPXY)3 zYfJVooYm~DrGGfy)cGwukFoWdy{BpLIsD}5|Hg~{NAvrykuP=o9W$N1tM%8&|2LhG zf9V>}-cbAR8u<{rr9Mj!+sBm)6#uo}|NIb!ci(d9LZ~5w>SQ`N)71=zsz~ZZZ#x;5 z$n1r@|1PWe*~bHa*~HIn0s&O^s3At45}Fz^?0kLcL{r0f8r{V3HO*>l7)xuK8^%#9 z_UFB(h6&`HA7z$}sOM{9!*<*=+S=;~I?&Da@pTfk*7tN+qPKIRa)5YLM*SZ)~yP{dP z6!!8Xdn8l0p*wW98!RVhw1ZmO9d>k9o3=w4St0UghAUx3H3l~Nbx*?;8rc&T90C$K*h8Ctnc)AN31Y|VM{2xbI=s zf^@?OT090=S-N33rHunNRWl4Aw|Rz!rJ05rq>eI#(9H!%&lqLMq7$=$JsJgB-(q0- z8HNNpmdRxYQT#+CO~^F#rym*fYNjEEnv4b(cOE58%|b~j3qcN%#hP@Nk=JG#8qu(9 z$eqgo0+CUy`>Q3o)nZU`~91 zx;Ha2hBeB09Apbwwe!arhSJyLfhpq+iF7s{*n;tfVZu3`IeEnV?p*UFpQ*-CBPQWGE}8+3czT=s^xO= zg&;p;9eTZxwcBWwi=GC?g;|CUbev(^i@@L=3Y!ixj*T=g?^Q+)WbLju1KKW~2JGn> zDC!{_5Vx7I(pR#9@!DRV3E|gfx)@X2IDmAGtah& zk#GeX(yiIh`o$7GM^!S;0V6tJ&o+p@fEBAXt^ZU3O`MC@q;I|k=^}%PhOsGeZV~2+%FMD&Hz}5O z7DMFBWRR|l4YSF>EbdT(6kNIl>6>yu_05sO>19T?VPv;_X#gdgK<>d@r?*U4U{YEB z_!7f3y2gfj*)viE^JLQRy)fu_O7e; zO$|I7&!3>z?yyAm`lx1K6MxwAotiVl*!!1SU52p-B()X{V~;Ot{tRP}7HZuX#-91p zq8P?rz|&$G#-51NMlp=Np{7k>7<*n!o5e8p=2n5WgrV&HDQy+Q*aJ-3OAKQ#5NUfD z#@^h~jxdb9FQa|HF!qd!c7b8+p%CpV!`M?8+5?8MryVr87XGle3AE}AV?VCfJQ>D* z9j>)uSQqvMwbqHD?8mrTPloaJeGtRgj~=x|hOuAhY1s^8za-Q08ODC;q!}5;et@Hu zGK~E$L|ex&_9F#tE5q0q^V)uf@!F0tjC~`leOwFA=JS`{wM#6KeGIAHWElGZPkYQT z_PV>~=!!q=t0K*nVeDfStue#crw>|NhOrpB7R)dfe%1Ogj0Nqq7>2P3kCw_X775UD z8OCmlwSq#1vWrA*0mInElJ*S4*hPc3kzwqicI_3088(n%cD3<`y~VCoVHi8IXzmP)HzeV2bB3}rh1Q;76B*W(VVxKj$uQSXAJd(!REMU4D|)-H(hE(YnL1L zVegJxVfggd|5G<~xCJ)cf|Z8v=}MTGMN`ua_2}-ihMu&ghuDacRvC^E{eayaPJlb@ zSPe$vkJw@AuK{DyBSU+Nd=pDJ9D{0g*xlO%$|>ZDRLEL z=d6cB%1JSs_C1Hy<-%nP!yLWAP)lHRRdc~cL$;3Ydfw2>k~r)ILyiSK_o5-!f+lV@ z+_a!6TbO`d9~2E|#GT@|q2e=r#75?Kw;9|7hPu$*?S|8|rLX8rXLcBl{Z_R-{>Y%1 zJVrZG@gc=vw%=)pu@s-V%W#$#Z;mk=-0kRKS1Fr0M4lw>MQd7zNxB-$qxTwG3yiL6 z-ukLxgaxg?pLLw4u0CLhv!E`A44MU9aM+M$LFLyC=@xYQ8-~#qR6Jt%$%0lpYUpc0 z$GmMAXF=~DGfcFgGvBqLRgPQH(&r5Z^Rp*dDILyXluw>Al#=|pp^2Qm7spaPo7 zU^>Ldp`~zYYt!McQ1M$`(T&!Z(V}NgLCF`sHgu#?a1xY`Js=B4$UZ z0M2h5Ev$rW%fCU|vUU2{bYyOD5+$ui4+npTK6EoH-y2%k{hp?i^Orague@gXgre_3 zhuqPAd>sw*ypL+M8>l~`H`)XrdlhA??v1&7A1(Xo0n*0pvDWSVlOdjR-mvQTm7fepO7CIi z^XMZ+F<;(|>>nF?;?d8;SK#bqKZZv0%^qbi_ur^dljG#druZ~bZZjr#Y{^n#>F45S z(QzsedQp&PpO@)1B>&D zCxul)BYcA~u-hx45x!p5p(~hxW!KILT-6&b$#Md>?{ikw<6P5#-lzg@y`3R) z^K*0>XPuF>?>u^T-34j81!xEdo_Z8o4LOSKP~PThU~~xugImy@>R?pr0!CsDFxoW& z11F(obf6{}j~ju}q81pl&)}vI2csB@IE&)Xx+3j(O9#5Fy8PGZF9kyb~OTX zfhU*^8iP427`gaqM{5GckPt9FY66Di0}Ktf9-QQwQrl+We)0e+dbSxlH{IN?xfuEz zOvnt+qOw4rXIqVipXMT3q4WzmFq*xsQ1^n`l-)28G>3pF0HGSuc!NsY#9u4TsYW73f2Rox?Il$U3oRnc$A>e)# z0B(K=xVJB3%0ctP>ChDnxOW$%O{k0hx)a1g3;Oazah^b5fuSzurBhhvIoh~DTx3DtEEM0cpwCPfw^`8PGsRf~_1*v<5H~b4 z$zvm$d2cq1grP3xPIJY%7WA}HTy8-N=Zh;XXqyFMYdc*wW0Bawg6>=_23b)15;4Gn zMwE&R1$ynFwF|fe8cb`Kp$o-7p$kq=i+%z_U8r-I6k;xUMjWZr=1MEXy%zN2m2AM7 zl=+!e;yMc&vBoBQWUZK|r&955v4wfUdhvaMzHW>$Dcm5grtM8&irqG1I!reIxKTVS z1pdZIw{*E8tziWtY>;+^6cK)UgU*v{;47JD*c^c&a=Jsyco z&3kvVu66v%s!-gP%_8+Obh-XjRLM{m^Z9+^d<#1HfVkg+_BtfKZ9yBpCgQNhWf#28 zOpl?v-V{gan6AYQM_5%~-a=J{tHl8N`Y3jU&9_n2qPN910z+NQ$B&673p(aqvAdm~ zdh|H6mZ$`r`%a&P&k>hmJ@Q4JVul8~s(I=A;#v#Z>$G^lg4X_s87&vM{;_z-f*$@9 zgQus?I0H{mM~9sgtJvvi{(145B{lz|_^|~|`BFS?LA!s&Y?+sP>oT)&=en2yxI~;u zXX;|a7JtJ`5vau!Ykems>9l$N_u?`O>U&Lm#)6)|E*`d^+ir?4ThN@_7%^Uq`RyM> zoalIoP_n0a*d5W=!diV-RO~pb^i8p$`RskMfrV4$q4>y>iJNkdM`BA0YsO;{=TTPP z(qd@{#lLQFa9rBQ`b)ys$m0Pzlp#pt_3Cd6l0mP-tQaH|I^ihzxF#JyZ%I;5+J6j_ z-9wf_1%~!Ezo0>L6iSBekkIv69r!g1+t~Ewl(EIZK~eQu|etUa_Rss3G08 zq}Fqlc3V=vt}O}ndSMUUrKuKy`Sm5N+`NiFPw7odYPCkvU<;bxM7n1YnB7bYw3KkV zrSy>{bzf`gk|lM!kF?Z+#`sB(EduHO(t8%PXGbZ`BJf(Ev|gaE)>tPHZi{Qt_no1T zm)F7x7!oXP6~>#@5NYvmIX=GAMf!pI+_4sp3+N40^Dd^$y>1fB3#f}3E8Vje^lA^* z9iDo+mvr5VhD)<7sMc39ThO-sq~3PA?1Ct%$dcM(fHd8L?jI=45om2~>uQAS?l8I^ zjh^MW!N5}nO928yUCdjDNYCjg<)lbm%$tTvLo9Tiky1x<@8MECi|E7=tg$>-vpA`_ z9f=YqHSW*nP-G?Rq#l(h1qzI=O3N2YVdk0KBLXy0Hv304#(LNU!FnQ#gMeZ&5C9ec0btP&02cZHU~vxs7W4pM z5f1#UdL3EUW>*Vj2J}paH<582~Jl0l?xI z04#_Bz#kwgg_#TK!hti`~XQ7dq5%!Jj5ZDg&i=IEanhi znFk!gUHFGh;k9_A0XbNhA>4t-7*Hq+Fd!d`E`Va81=t0PD}Z7_1@Krz0n{KmazN_s zIT+N463x!-sizXS9gQeyrnPoQydf8VQna?@b5N>@q4@tFZu`m&1 zk81`_9{!|oZIfqrv07cOT*j^40^B<6PhI>;;rb=-k>UV4d`KEDOs0B=C3j&wbvi7K z;nS#?cL^Wb@GjyDMD*EuvWaumbbr3KTOCRy~{1kgPy4OJO`V zm5aH_JfWEFJfZTM>J*#b#o9!jD&W(-Sesmd$?S_|WcF6f4ebdP)?DYYXSO0Gbq>QprEezBHTfvHuX7W(MM!D7(G z+TsdSNd=0mlzGw-2}kCs6meAYpa*YB19W^G^*t)dbgG@&h^`&QryWnopf`zjlUo}(Sjnms(Igg(sp~= z(?WJK=bw^-WFf%3_Yg%73?%II$&RVfND$6 ze9j;6dYG9V*hLT?vz=7s8y7; z5sO?@$voFjUM(ohGeR*v&EEd9WJlvqLOtC&%2#R$9nHv)YLCE@X`mb>B-1wsk$?CI zxiUEqk*k{<50YysLby3-guJDxFw}f?raa9~m`&Mp#H_TzXQ*)smk%?R|N&J?_^peJJ;>!p!_hpFHX2 zhjJYX`COLF2_MOo6(N$D?59Eop=(il27@nS8{*+BlKq2bTzvIwhBUD z?0Xb|2|8d-ASmVp0(~ zPZUP}VU>})D@J~tF!Ixcksl_E+^aD1qlA&4B#itZVdUqCx%?Pm(u;%TEb& zxqZy#=3(U4F_#<1Ty7h4xoOPhmNAzf4(9UB*2v9bF1L!g+$iSqbHQA05=MS1n9C0Z z>RfIQb72mPzmrq2)ZhJ14#UU5oxhid$eqzL?RHNJ{XwoqTfdjP>nV3EDOIk@kr0i) zDv#9}KUo;puF8Y;lrl?7+%?$)yHw#dITYZvYjRHj$Ln%mnH_GmO1-EsK&eBMuFGw~ z*nC|M2e^M-9t;q5LynfXm@93&DR-oT4<$!Mo7V5CrPb5S2oP;q6nYks_tgPl1^!Pf8+)7GqWc%rs+(rnXmbc|j5<6~dzBKIz z%<010vX7qNuP3~7TW+E!1n3E?lN1L!w$ZV!leKuBKS<{e{6TJta`S(X69LZuAP>_s zhgsM^%H8yYUV6g*#VBpxkFpP>ul*?Z)S3NsX5<~&8|l;T$N|`J_uY{L0q)y82M=Erqf6mQcUPat-SL z6Z#lNi++;h0dD*x_X7xd1S8{8t9y~Bs#K?akL9Lx;%iBz=dMW3*5-uKgGW3=@5j~* z&p*ik2ZRh|a#w(!WpadG?RKVzCX`bKv;VM6uBxZ*{zOO*NcLSq4ySdq`GuXRM@}jh#UF{fG|lJA+x(8?Z;kpp(}>? zSy^d8*CoXhTo+jx1u#WcG624nl_;S%1uDu&fc1(pUSiivnnF?4(Q%JvN^{*GyWyxv z6mbuKoEs>TF65{SZBdmJJ;6y&@N!Vn^aK|@;khb$G2T?@s>rCQnxirSpvX~~tP8s7 zf?Y+q`O-+)hvI81vdmjjw>L%EE3HZ&No|=^=!9%{D=9g8wuXAPM>WbdQ>5!H6%}Hi zSGM-1xh|INqy)f+e8EXc1E^L-$&-9pXWQ9Y8Lua_*AqOPl~g^Uqn?1~MNpZ8QVrSd zU6hFcQ(TmMU8ajJQ@tvzz?br>D!BmPRaHgGQQNOx-vwVLeEuK zVgU>_luUfvj}{HrrHX1`{CPs0o`8-H(-RW)gnO0I^Q}(s^)j8Y3{IhwH5E;lNYf=Y zHnvKH)Wqm9-RS&LI{&$rR(_}IinGqjBG0BuXG^*Lot)@pcSS&UZt*Qdr++ma7-CI0w{G8tJS#IxD*l zW(k*_rzb$C%~`ozwkkDpS3Gt80-Yc4t_-BD%N5bC*kUcUu?AGGtGLO$7*lWCJg7zS zbroMdcPTA!RXW)UcBS_kDlR(fX}#e3^^`$+!U{UrsGMw7Dys)?_j)Cma|)fUrz8V} z)>qPX>F4z9-`1?q?!f9w6`j9H=X-l7{z4B*^H4Hn{w@2K-ui}p-9zaOMu4Z1A#uh| zTYH+*>c$xEXH~iUeB?sAbs;_*xKLRm*@X(6(Z(LMpn;MD@VJ4J1(4YgcG-i@>maHT zW<(F#+ek?T@NA3~0vQ@xEB`<*m#hZE(aoa1O_VsCvNktCsafRS6s6*Gk*1hg z?CM$jQqPHHgh>@PgAMTXZ}fDrIm|zcVwSgm8W5DejE@x~P>>A7{gt zS}ENDZnaYSN$k#CbEM7wiaTXJh8}TTl&P{m8nUQ0+Axi%wc;)Gq@%5s-V*kI^wkC)O_3T8DlVR@?4s#LVXDNLzMIU#aon}UPs zRWFpzCB5jPui{T#ypt!?N_r#hj;;C4!Ny$z9; zHe|I^d?2~H9d@8#y55dg)zMdp&e0k^K_*kL86smvO=rk^438se~lo-8uBd%NqSc`Y=12u+pR1}KqB`f6yV@F3NPM2R4 zPKO#{XFbzf?o7c0c%731c+-yuDABsmvhrmC=CVAxgMj-w9ppFs2V~S}uerVYq2& z8j9s8nHGjB(EwkC!q-ZskS7#^aL;R9HfNSPMI)vOhVk4l$|9x` zk~l6kHRVYMX>}Al`*1S!htC{N8U5h}@tQ{Up+}WaQ}0~44ZScL*J7OqD2iTQ)|2w+ z{1|u+E7_V6PR|Wc;&q9!G`b&Z>@yI{1TQX6&$43dlVu{D4iCgE2q*VJR@*4V@ZEqN zPK`m$7+ME9uz;sYF5kjboeq3RIdXJe(Q9(YW0+y?4&f?d7XFYSzYk> z5G4o&REoi3#nad8>0@J*j!1twM(GbA48zs( z41qB?S(sQ?& zazna*RH{Vbx8zDxHiFyQh*)l9dtwzYe9!+)ET-pBY90q)VJKzCacWB(wn!E(*RJaG z|JVYkqi(#?88XA;m3FuiE{@0EKZD+nSB6M4m?%~nwwQEFP@3aXI4c3h&w}e%WLz?l z9+Ik5qeU@lE1H^!BNu0hItz=Q1NBK%I_Rm2p89Me)>AI#s3$ZVtCvulypmvvoP|Y( z749*`%9@gd69H$r=qxPOUP5;|nS^6qch(+PJspc)4?Urdp0G6;u0(fwl#F8%7xdKA z;k`Q0)kV0QIh2BF&smLh7W&kT)KsOep4!xw+Feg*p(kMRZ6)~AyQ$a|{i*IqOgP-$ zj8xJAz8i^?l|RL$De(Y@(lA8+R4*MTD1Vxg4x?h9BxqrJL6_3uVf&N2#@UlKWvI;A z{ra+1uMX8&0(;liI6K=`Xn$%sN*Rtkb4T$!S4Q#bhGk%d;aOw#lKah597@M4D#e>{ zRljAq>||Xy{i#wW&Po21pQ&^cX3^nH*y${C$$}NlqRcE#?bku&Y^9Shf_i0RZjPXp z*)Z%_`aT;L%|4;frrY#Wjf&TysTpgYtOl{PCI>BzrN=p#qg;NzE?=07!R7KRM&qy= zOIt@nOR?lMM(H54NP)JrFCA|UxA9s!dVny2h)?|0+LiSC2QINpFA6tSu;Xz`6$&1$ zx>znKy3pA%=vo)@%vHKeTzrkK=1@HWvzpo2h;fQ5ZQdYPw`!*gRT&G9xC@OKi;a-y z-K>kgGgfJ%Cv2@)cN0BzhpohR$i8?SJj5<^ZX7h%g?z?yY6^fZ{F*KdTdt<}ujP2v zrF{S1)CF4RDJ}FINA(2n<;-|rl--{+cx9f_O_w>Y%fwAWr;fcOS9>DUW&*~H_vW-N zV^th}@bog)nmrSg>S*Wj2^irnRCl7%6(C_EY@rKnn+Si7=l!x=`7I|YZhGovTWVW9 z;Tt`{+Egc6IZ3TjzH{H}0w6gRi4S`>~FC%)mOzSzUA% zS8MnT9J&%|$_!k^E^1JTx_A9ildDK z9h$Gyq>y76{4>Yos#YuJVvBXL5%Xci18C)ZIKDic^mMEe4pgT|@eooeun04qeSW4r zt219LQhMnLYxD%C1vuSviS>GdwM{M*QlcufZ~=OkiWef31YPU}U98nY9A#1|dm+}x zRNB8#X^ZgajfLou$Y!W3J@^yy#2>W>40dp{W1(}BtPA#yu4tM#?1g?<|}Y()|D=-z|Da`>t|s{(iF6D}52R#G6HV8D;AGSGn>*8{{+a|R-*2S5<}C|IkFIP?=6 zYY+3X*w|>s^{Bw@_=FoxYgkF`=^z8%bdG^>^pJtBRQovq&Fuf2Vqo821#aYKK4~Kk zFP-VqMjV+slg}o^zdF+ko0Q1_O`ca~18ja?Squ>Tg0cYMy%*pqP9^sjaX^?#LtezR zoJudgi1lPDi7&yOpGrwD;aoJ8-g*fKi>cIbGwvg%()`Uzs-qrq#~i`g&3lW|n;ciG zmB1YEGM9PvW!#HRr6yZ&gqliowkRn8S9L04D;L?dRS86-`u0|A&;e9;8@BNPO4tT} zHGsBlgYzFiceY_U3!rY>aS#rmdE1dMfNpI^nE^Cl2clpBv}*_28$iylaLL$L(4_#{ z{0dHWN%Z&?#Sg%DrxM}F=X4BfZw!^~Qo_`Xgv68#TpuLS*`075lBnY@bUBGg2S4sY z;2?=2%p7bq!=Xtcc{g0MB#Pb5GrYPR%1NU7dvJk}M3eR)rjbOK_n_lR6t$O2Zqh;7 zUflZ3#E2JpQ0S|QC(U~mt)5AjUPW_fQoDW1Sb$CYlvx06_A8TgVOKi;BA$hKYd>x& zk$wOpI+HdY;Cb#GK)81%4LOK@&!i0paW@%5u7@!8F_dx$*8nlJ@euOiZMVb93}GZK zISlQMqz8vF6eB7AHD#T|zO^f=OP>4j8{wv}BfvD0ieBgJTdylQ_;w2H>RIIZNUTQr zZ$RrK>D(KrXe9M}Q<(;E>P@tGBn>{I%yZ<@HMv%4@ll)#%8tMuM^gG*N)f=Fx0Ho? zg*fXUN3Yf$RkHL1H(GH5&lBW*h5=dcnqQL zFcRLuW*0^Q@4y1WXyrT5co-?~LWyBCr;qc* zDkm^*VWgelyi+I8@i6i~2}=(n(@7{Rj2@m;(j56$1P7Sq9H1L}l-i|Jg&MTt6kMlF zI&lj3$eC30eH5HY)89wHHj{qR!T1l9LQr=PeWswbn~=Q3^4serNEI#=|5uy ze@4P-WeAnslB(NjnKbDmM5{vRyN|Fn;@z~5;YEkgGasYxAyoMjB?Q~d!D!W;v`>_# zRamS(%|{y=^VCywN{Twr;bNf~UHD8f(7T@?1d&5$KEcG!p*Ei?SpX|PRi*&c`AnG) zu<IH_d*xYBu2*rk??xF{G3wpu=v8G7 zg3poHc*y+uYgi?xkpFcwa|)flj_gw?=LY&bg0Zh8h zGt~M)S?S1Q*JD{1#**g`$}D=ivg)L#=CRZ~ic(Z>x^PVy=+Fk2+}UHs;!{)l?nh-3 zw*J&Rh+C!5mOD^Q3bnnfEUuJ-VbNx?tTTJlwrh$P#hTpD;~RN*}=p?9Ab&2EBX4a2adeA{ZeHvL}?9>u~ zYj!HK&`f)E89-eFr*;_BMWDKh>H>gMBBv50wHVYbNu3I3XSA&L0l?Rya{+qb9tq&Q zqLw=H`053wh6@z+1x#bBswRS2%|U%uXI^H^%e3DB^@17coSmIqqCevH4Pzlbtf+<5 z_X4abi#~Hym+ASgGv;;r{JLIfBprW?lsg-07Gh^hG2TFhMEk}w5FO0u&}0@ z0C1xwPaIT>XV_DVQ}tZYvS6C(s>TDHcZKGHsY`7&4dBJvJh76Sn(D|M%V@ZcS~Rt3 zqDIntZmO)O#<0{F@~MebuR7THgDJ3%ItpM@9W}iY&zZ<%62qz3SFKAY>!|H1$6aMX z#C&&N$2oW2jG($a-}7~O6D!x_oyn`GYI-Sotdu-UDHp1%Z7Hz6S_P%_sjp@L?5WTD z>*1k}(VI4dWtc&28lh=dJyaLSlzFJ50Y-bO;{dLBs(Ao$4Paxz^mzkbeeZ^97N|W9 zRSlp~Bc52?i0kBjBVI*(V?H7W8*?Q#YQhyfy9w{hl_tC|J({X1$iBI$nyfcw4{OXG zDsH0Ir&TlUa6!;qHBhf+DvOThHd8}X=AUDo-8NL$(}nYbBNJ*&*E_@RI#QkHXnRLm z&>ZdSNIx}KvjH+%pt_FqZVL=uNAhY3qsph8mTC``{e}m{y*`vYdqC|ut?g>it(K}k zT>KWTU~S1%&`O;L;Luu~3^2R3S^yxmQRe_GY@_A_IC^1*Ces=(bv{6AZ%oZ(+V72t znoQw7m?1?sG5Ii^n|ev}C&47PZgtY=+j;u3vjqS`itnOKSq}aVBBy5(cH)*QXNRe zom2;^)In7tQL_WjX6%4z7EX6N@On}^syU!O?x>CjhzQ_``vZ8%Z9A#idXavtNI&xE zp~jL!AZ$6DY6Yqj0Tu`HCaFOjObg=qZv^owVmot@Pdf9)_YUSFuLY|Ukgrn+r*?$! zZng>K6|M_a3-t=)ScP%q8HfstyQx^YEaAU!dbSIOBb@4WRc8RK?W)cKXx2?F(sO39 zoN&l&IWx19$7Q6HXyN459YYsRFLhTZ=(2fCHcyvb5QcexPX)rbB5L;F4VvEr6DXYS z_28Nt)st)bOi$j)-o1DyclT0rA=0Wh7g^O?P14I=#>!qsLXD-W+Wenxskm2cXf~&g#|gBHt67T z6sA9-yZx;iI>o9!MLAJwTPI&j<4?1+(jdx+iHV7&>Y`9suh04Il_ zOQ94N!@<573{xn14aLk3r5A@{oeCxAVOWwvY5XuXL$;jKX;l@mHrWkVeGppn9S$4o zPJ4%=lijJq2z5HZt0Q24-6=R$Ed)3eivqh-U>pa#<1m8$R6kzr4WPxtQ2gnWcu4wF zOaij|)7b>I2p~NXQ^cRX)WL`(%mzp%K`Z_gl8iz0rx%k^rav`J!2tWy@)XzzVq2*^ z-|SSLK^TeU$DbCD#MJU9hcsT_gf!I%$}U|^mS-`eOY2J>)$n@r^mOd3vuJBNtYQ{| za z3zIUIHf5n%vD6?Nnu?{>+30aBdFH@H=|WjKsyD!@9CawbgB&#)AZoN41+Z>3>gz&x zMx*0hD0Yk*1F(Axm#mhHU8D<*%f-^%g^uO&e4b;u$mFr=5G0-+tHwL>(9J&FuW0)a z%TWU;{&{@zP%ut)g2cjcT=2>`br7ha@vuH5j#pXK>WlGel%D%I%Y9tW%>qkyS{GW7 zhYh3)-N@th_LuXUKr4i9htV5_@HU1~vuWtTFq*A{OVcnW!zg$*mo7BlhP!nlKMDd=h;(PwfuiGanOV61_AZvuzS}EJEw2Q%Mn4!0BYa02QTC z_5w8&VA}%NY#Mnj#MYlidlzC^^r8dnR9C9HNNonZ(<00eFIv9{%UJ;e>lohx3N41N z2GH_iEMNoZbTLXCKp~4EIe?yDj2SzC>Mp^qF@P2RO7zQpsEjjipjuf;$sPv4oi%NJWGu1=5EE zGYq7b%dpTQMzIVtE0Eq>rUu{&PI+2w3gG=TR$o7w^fV;>=;YI=-H)n21INRUhCKrd z_oMC4z<&M6aXALVkFu7-hVanZax}LCU0sf%<0xnaloLl&Rv<$hon8S0iKDhFVS8~@ zvJ%4o#c;$X)r3~3y>uI3^$S7R{Z==N%!IAjf6<2YvK z3hw>zhYqY#BdE?=c*SwlbS=+fTB}CN>{$V=YCmiOcqHTTTD4&nmV(_OXaqmy_ao1a z_BH6nG<%VHuY-3NNz>QC>N41%1_C@>2W!uu;p?Hw(X?_sENe7q?S zy~*i$EEeM^?s;SwM+cvWp1P9f3ur`FihThp=}Pav0LiY@^+l*lqnBS)y8zsL5r(5t z!b{jxHTv`=HFr3_!H;2@VSjL!;pvs0m7Fqxy^h(?`o4PWaj&VB(Wdk6*Z^h z!||4=|5i0aPiRR~W5rf@dk_;miW+T$s-y6TFgg@O?`*?X6hwoz!}@|~)pnS95V`Gu zI)iB34rBZb0Xpx(T%ADscB!9A z?8ksb-D%}?F^n#nx$wzj@O%&M#!8(_b@t$Ror~WTs)!QU9Yw9r0NA6wZ;NiD@+vz5}i`#RT+pPF^4C_ za_jC!qd!2|k?*TbB*rOfM2B~(P3ZPFYIAz$eYLkEPi-2O0{@ykSBMR%>jzlr2hzz8 z)K$VL$~lcwOw~S9FAJm04?a_a1exdie{J1&d{o8yKX4b)_9UA|Iw2$>B-B9Y z(nCjS0l`q0BnFa08Yxs^!Gh>rK@c23s$Wz@P>`!DHj2G~;KgeLDT07fMX;dqd!G4Z z9^k%y`Qtoi-ZQ6{J-eAR)BaxNI84u>yN^(n_>9BOFjaNf`4W{$J>m>-&^(%c@7zdX zKZRg^`P7>^urzOSp*nhocJb1qbcfAVSC7(1a4t@j&BvT~1?YmU)uMC$S*rPQx-aCa z)yL`T%T?`9I1gGnyMO!4mc7-U6V5*Bo*$eK2Wm{}DEmA>{rv+yd*-SEC+VXhmv?r2iL0yT`H{|{fHd5*YDSJ6aY@-K8lqS*5a-Ti4! zgMM|sMM>vXryq0ZHF|8IIPW*QK~ntvcRDjEcKegInc{-$bO*tbR;aP<16KOh|BV@K z`Nw&K=C|dB^Ri>&^0n5JsKCO%_l8G6g;9jR>n7jaM|bsN;=DYbcF>9BI83z^_AlJF2cF0iD#l^{koX-J+~z zj!N}Kl=TdSnrLf?#cxY{)3P#K4pbYWtrT@3+A5~J+!$*Og=;a^XDHIUE$@%{v9v!z z;;apn_fnj7!BMT MDs7?WU)4yfjtHCEgGtaNoW!Kwt%3r+Q{WHr4$t!K4*wZ65* zF;wLzTC*q|Nwfx0(08Y44XiFSuJ3@?8qn^dQc2cj3Zq+EMe41FRxXW4CtF`o??Gph zY2S=fvs0{z6lmZ4o5GS*OL5>mI;RoMZ5;jLWi6sGAkBJ~!i6+zJ_XuWE2uLeT3PCj zRI(_GQc0ZZPAU5$vQrG`>_#REAfC7Of5Fg|;y%I{?}31e|~l0wI7-0%3s80+9phg>YI% zSCMEG=`Iil=qXSi&`Tf*&_^Hz&`%%@FhC#!a2J6G8`}&rNQ$%s3}KL}6||~32K4S2 zVN!NGlpiV35pb_SXTWHIZVaAf_E?dgC^BB4H^42>50ED?5Ktg62v8_66fjv}IG~uJ zKvx{#iXpUZC0fksS7uT+|BsonD+I;?Dh1qtYJq&fG=W0E41pqmXO_qm$o&FkfVl!w z0rLc^0S^dF2RtM&3$Q?74q#y|P;V~tAdg9r2LWDz1%O2i{6BAdF^$n4S!zI^49iT) zUXJV)0xJQl1=ax8>+4U?asyLIDv5Ja!}`nnnL(ehJRDI0Jf?2_|JPLw2Ho0wf8n0wfEp0i+77 z2c(VW-i-7@{|}NbMVzOo3Mbtp#2Mv=MmS18FDnCZK}=*HfTf z-ibliFW3v{VnFYoZYE{FkL(@-9|5ujJ_Yn<@aS3YhxC;q2Lb&B4gm%Vdrqh*XUpf`O2r*zW=Ze-^h z(AoEyl>G~4H%Z`X?dNZi$nPj(3tR`32>b&mW02Z_v`$kE=!I69l6fj#L0x(A)3g8il1{?MR#VgaN(vOHIn=x*n9hOrR~`DFYt617w8}`%b_rfv$kn0zCk01$qJ23-kp% zBQOB4QQ&TX=Q)ufkWB(PfXxhjcw=9rG1{7!4CsyB#wlGZWE9HpFrc$vH7R>EvV8*M z2s|{uog!`&c~c-C@U}o9V3$A_Y-v!-eMfUx7z7c`xQ)3I@vH`t2u9%elGP17PygKG8yLc$Q^elUrlpTZYY=L+{Z-GQWUx9`iJa&H;UA>2E zoYQLGWk4@ukV)C;$Q~ll6fjJn1z@;9E5JPhZ2+SLJnbR5BAozZ1iApm33LZc5Xc5h z6zBuU7w8YTPv9=VB#+2oNRhxWfGscrP$IxJsc46l32-GUf(n6gfJy;3pxS_k>Qm`y zrWvsd0W$=O0J8+90PYtk1I!he3YaHQ4R}C+Yhlr=gI_@TS1WfVTxc1MCv`9I!{9|6Ik)-b;D37VmQr)H$Qnhn&)t!oI=; zpBT_LhtEvP{ubH$1&#m?2pj`^A@BnOJ%1h&`4L6_D{vO@wZJ*Rw*nUdhXsBCd@pbn za7^HLzzGfd_n+&KlPtOl(+$9B1A1f6nv`9KD*DjQ`B}gpa9$t?a8V!_a9JP};JG3a z0l6v=1^7)M7Vw7v*PWvkxh~KE@V7uR;D$gWfMYDSm9D>ZNZneY-faQ?0xbZ60<8c} zfi{3(0j`2aYvvN@1PBx8qQPTFh;&DhdIH&iXn{U}Sb_e4c!9eB^#uk48VC#nGz9SV zHv*C(MMeP{35*6b78nP}5a1esw7pFQ@&U~S3IQzziWunpZzVDXMY06Ab|B5Qt-w@3 zdx2^|M**%RNR!+tFbmK{U=E<027Ug|gY=Lh4+63U765t+JPPP5;05#-SPU2_uoQ5& z0Cno4zyAyt;aZ5a@0viGM3UGZyn#X8?&495C9(}!Ug^ZUX z+W>BX9e_N6*8l|qI{}3PZviF?>;e=E>>Y&P|EGw&k0PZ49|6h*J_Sq_*bk@@;7X9R zy)^<{1Cn66z*m5o1RmV*zJ<(|B1Zso7{>6&!*Reo1NxTufJxaWk^PXsX}|)3p8yL5 z&NI;Y|Cq=n6!9`F;DtU;W3=W^7|;t{$|@U6f|z~Qlc|JPfe3;AA( zj0GGMm;g8-kOw#^a3A1DhT1x;`cR)Wpm*udCS^|JL8PLo4-K6Z<$o`W-H}_Jz$NvV<_Uj35Nd5zuz%kBD@GzjRz(Rn(z`p>20*e4n zfhB-o23_-YIUv+yM6X4-N!crqA1UxOAWC2@AVy#VAWmQ-AVJ`HK%&6r!Lb}>CvX-pK;RtUu5o<* z=^bzpGDwPW)nnReLl|^T;%k5$1Nw{^VN&)V$Q~*17vNrj8-URQb%x;j8!O^ZRe@=t z;~BWu1A79E5#$-r3oYQ3ezE;NWKTArvx_+;Z?@CaB?feMnMv6Zwac#%iNf+L1!4i! z0ttX=0u2B&1d;)>1R4SE7f1)pCGcQHn?mMEkrsdl1X=+e65v|Xv~3Fn+5;8}bOJoa zkk31_E8uYhv^(hYcd<#@J&?adpcmjtfxdv{0s{a_;BLT5fgymW8FX7U!vSkG$mj2R z$sdXQX9RKq8wJJ!o)ee=*uj7T5;3!l2vT`8VL2 z0liwkbIPOheaQdQjtLTt==>y;qE>4(0JIUPLv`F~OWO(f z13C!sO9E7)lR)rLJb!c+2}O~v47KkJ=xKTw(EBIbr0i&v@6Di_C+S0Dw2b}+boqfM zWhbKi-3;7diN_v<35FWc6XbA8Hyf0O3GOkVvqzZ}wK${~mn+Z=For?56_g1WZ$Qt$ zZBiaP3;B6Q>~??xfsTMehSq%2bO96@(6h8n%I=Qr5(e&)%`T-e+9wqTbook7_13qx zewd&}3r(Q&r<)YDU!*6WDKH2yn?b+hFbpu)fS$oTlcKhb^b8&l7zKD}JU{=*TN1R2 z3%Cfsv0y(!V+4;G(6jWKl>IoepAc9ASSGL>utH!ZV70&+8sq;zuNT>XA{zys1#A*{ z0kDOE-+!>T0=5~@>-maF**lQ^nt%`RMlI0xzX^FqitGaH6?hl$0mBSl=!bw$4CsY^ zW>WS(WFHVX2skA0CE)Av{QRkB`3>Z-6gdJo#=x&!*vA1U4d{jbXj1lRWd9`aGvI>2 zMZhltSNQnT0k|ge8;blXa2@cEzzskhdgTDCRhPzS9svyeriL8|ung$+3^6I&h3s$u zZ+`?NN{U1S;soLWi2@A($pR^WG=au|CJeKAwVDE27|^Sg>EYx&&TobMHU@NlJCm~8 zBfFEpoq(p8}x?6Jt6 zAm9e%3lsn*Y0&qd$q-wLOaYV$lmjXSssPg%_^lFqI$)Loy;}F1lsyO8^91GtJP(OH z3|Yv)FO1la0=x$FEEk!Sy%^a`1)c;vC7=MS1fB-06pk1 zUJ`g2@QT0=z-t0Nz#9T@0^Z@{ue;N-cR}`Y5q>{KZ|r*}WxtQ?j|4sjd?v6Da6sT7 z;E=$VfUgC>me>(Sh<~;J06Fe?X7{y~8Y%vV)NwDi8*U6sX5Q-~VDnVo@YPpgtf;pdlbt zpb;QlAOp}$pgAB@pcSBv27Udtg>;Z29RZyMx&XQh^Z@h{=nd#6&>wJ@z}tUMBhF$gdQr z0!$N_4wxk{8!%VE19(8-LBIlmM*xqxJ!ZZB1z99T76XjgFdHVQoJ#`U*J|6leu# zBhVJ$>A=EoSlJyRoek*K>S|JUH)Qt|$OiNg=nEJiFc2_EU@%}91HX}F=hVtQM)X2Q znUsAmCKw|y7BE4;4anD^Mi*NL^ebJ|<0!wnMS)+YqQEZ^QQ$@!Dex;F6!@JC3jAUP z1%9D`0@ufYB@SM#R86|X694P**jH;+=;-IUZ@DycA>!k7pB1f`=r4CjikW;b)>-mOr*g7&7;8oKBB?qW38UNl! zDgMEW0{?(Sfg5I~K)<kvdp!mIc20r6QB&YA$`pDd@OM&5 z@i$Ql{6&ufe@~*oUxp~~cMS^sY)^q7;VJMFvYR45l2YKuNDBNsMS&k1DDbBg1^zUm zz_)e^e6yv%H#Z7=yP?4M2nu}FQs9e(!btT{i8X*;YTs8vZ&waf!KGG5XSXPHtDUPh zlv=S-t=(Cf6=jo`(Y>SBZ8_@kQY+Zm^;S!D-g#>>Mx7|NqUhyeno*2$m02Oq-nZv> zV(WgpwP@<+456iUzMU6w(d^r8CtHu(ZC?f^?{Yhbm0KZUeQS;P-V@$bE_DPJKGnicl*ntYF70Du=;6)rwS~Gi<*JA?#u5+c@UTMXvo|Uw3eYaa#B^^$kpP<%MTJT#+ag~+f%!tMbH%{eMTMeSK?sT^{XI%1aS?Wk3 z_IBE>oU9sDTTW-A+w7@)zW_d{jc?Va&eU6zNl_hdE-C$gbL6Z~`rn*3X6+jOZ%$j2 z(^PUU*U-z$vukJto7`?&*-~z|qil({T2p6(Ta(G2cD0MBS-h-?z2iRm-0|{YG!HiN zz|DhUJeb0R{ydn+gUvkX#DfQUP{xC;JZQy(aXe_xgXKKf#)CdQ$mc;J4<4m~$6m^# zukoOo2iZL6&Vv;^n975@cWx<0PC28gDW-|)_zWupFXShw9)VU8 zVHeeErq!BWgr7Lm%Aiw!;Y_Px0N+==32JvDtq*#c#-(Aju(e7uH$@Zv#sa22kTGwSc!i8%%MW|SZM^| zd#yGB4BiaY<6uCO0R2Q#qt?x~n)=r5wf;Or4OnOY8XHGp%&)PD6b`81)Wo?wNxj}B zg?VLz3iB$;$ZrwUZ1s}OA<2oId4{2dRn^6%dDVq(yS%uJ+Jw~_s~jhSV-spqVN#}q3hF}Y zpUokiba&8nnk@P*pcx%@J!K13@r~7j4q0cl=Eaa^w5*R_3`s)CIOSLy632PIz%3zl z-MUj|Z#@7no={&+xNPf zQ#i8M)k62KT;okwDc1theI4F)J=fTepJP?))2^nvXJX2mdOaXPeg02?D?mTv);tvy z)XrCN*7Z@a?g^MmY!9LyX{bA47l67u4+^AHn;(U_bTc(9DA4KKchz;OjUPV|t4kT7 ziMoegZ@k(S6qpdGACxI^JVO%o)b6C9XvZ91>!zXUO?7v()QWgc{lKI;)NRZC!$X_< z74p2^&IwI*6#DiL4_(xs8ucB&Dl}eqHA@#mRvPWU#j8SHt?r%9ws0q2U;Z(3pJ@Ij9hCe@{*I-X`N3p*1ABRT7QOmkFj)%th&F96I z9S@Cl%=cxT2z_LN?lqOpr0_Ojada*4%Q18-Thcl#A-*;hT2z=! zMP!G?g*WcOW$X4HGGv*4-^CkDqnVS+E2rmG(kaThHMD-&odX;CN^`=#Ol`zp47{<$ zWyRISc_q{wrn{ulT~$z2$SrhI-+r8}-mVIZqZV7|R)-~`yg&7BSWN9$>4}31r{$H@ z(8Y{2-P5vj0#kiQtHU}y9?Rb}yrKFGA6QmZQCLu2PIJ9aW!4GLqy|~X*9lM4T~B&b zRCaG_e!X=c>T6j~L~F^grcY2Ppqbh?Hn6$B{_?W?e0X}KF6OMNC@HRX=T-7-eLd=i z|8}SD^p1Aeo_;}zxp(slI7bwhR+JPDDWrRnh6sV1J4a_=*Xhwfz3Yn2BzjL)R2JS> zT)?EZbqkM+)dfSjAYY9Yd6jvk)Hwg$>S(uc^j%4N<6v87nlGt)_<qJcLOzmB+?;4Tnm(9EUQkRHC-T55tnBDn7jnY}YRzZ1b zMGf6wE9j7G3BD;ahE27uRo;+us2zOVrPUh0jZ-e5vvXvK8O zq7R@pP8F6F&DRZ&@9P*_#vt}dTaNL#Kkur#ltf<8uTlfk8hm6Pc>RhH+| z3871b7L=Ei-!?N}PHJS(w7$J~S>XjG#TD+d^5UvOcO_j+G?n&X?RR_#RL1?6Rv zYO1J#IyZfWR~FOx)QkGviA<=kCyK17q&-)=hBpg%Rz{{!bDA4gM#fWklR}9u9;R;* zZdz5hzCvpkVpY}TSJ9=C>!veU7j)H%KGJ4$f@|?U{V|E<>poQr_+y$b!9v>mlXwMt zu8M3FuM311^AV|}W_@`oS_o&~zbZ1Zp3b%ksw&;ns;ct}rf|lKt0Ei3>5MSGbjxZ= z-329iRaJT~t7EGoU$L`+=jUgoAT~V*SSQd@|4L5*IE;#_EpT>eyoyC6Z~X zuuG8*P$=a>WV{N#5E&xL#+2{5M8|Nf+HfhdIfZ?fA{i+p>fYFNCv7#ntXBi0A8B_v z(%0^Cy#XcE1n8XcQLQPwG(IYY!h!Ko&2+bF-dGj!2kAHSj6?0;epbgad z$Elk@R@%00BVuCX@Y9snIjy*=Mt^PsYE-y4D9yLm6Z2GgKvynbUoCkiCR)98J|@VI zLG3;t6Hl#xuDnQV($)9+#h90is8!FR+}I`*mgL69__gO^^Y4v~(H)P`&mqSbM5NNL zXs^!Y#y0ooY_CdQN`2h5_YD~x`^ze7hf_b}yY(}EqMHl+{~zw%c(~UkY9H?1>gcbr znKTOuv5LC~qj7%Tces7yug0FBo`HNl>&10Ta+LVyX2tDpPVH{;9@af>)zHVm_G5wd zeY3{LRd({@pW9SUz4+KT9+UfL{!Cn3^n0AI;Zt#aqx|^?xhmD_>7WeX6Px2YXHiR= ydY-+>YiNseexxS|*WtLQJNog@bb6kNJa+3mYj3~IwBHZMH3_I*R#TIo`TqdW?;q;` diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index e37190ee451173a880ad265ddf196ae5e162d32d..2f40af81a994cfb91779b05e1a3dd6b63c2d0350 100644 GIT binary patch delta 192 zcmdmUjOooWCYA=)sfiO=x$v89D+ zX>oSGzKOA!k!7NhL5himp<$|psgZedVwy>kWn!{Xl6kVRak8bkrD3X}#pbz;6F8jV s7U?2cq??kTT$-DjSCUwgnV&Z$F+(|aN``9elpeThWM^%T;CeCx0NM^kkN^Mx delta 171 zcmaEJjA_p?CYA=)sfH6-x(vmVb5axYauSmiQu32ab5rw55=%1k^QL65$4<%M>|qH> zttgo?c}fpl-Nfr_4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa nWaE@Xprnb>=B4U4 diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 767ecd50e7393a5c9b30854b8081e28f8868fef3..3b6ef17a23de8ece1d5bd88dc90d0e41048e4ba8 100644 GIT binary patch delta 64 zcmbPsn{nE0#tn-Z4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih Ujg6Bn%`FX64J|fbVLX%#0J8@ay#N3J delta 64 zcmbPsn{nE0#tn-Z4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa RWaE@Xprnb><|~YcvH{nA73}~3 diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index d458fbd63..b3ae138cc 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:51.748225Z", - "iopub.status.busy": "2023-10-16T20:22:51.747674Z", - "iopub.status.idle": "2023-10-16T20:22:56.934414Z", - "shell.execute_reply": "2023-10-16T20:22:56.933296Z" + "iopub.execute_input": "2023-10-17T19:42:38.711519Z", + "iopub.status.busy": "2023-10-17T19:42:38.711060Z", + "iopub.status.idle": "2023-10-17T19:42:42.707828Z", + "shell.execute_reply": "2023-10-17T19:42:42.707108Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.939089Z", - "iopub.status.busy": "2023-10-16T20:22:56.938265Z", - "iopub.status.idle": "2023-10-16T20:22:56.942811Z", - "shell.execute_reply": "2023-10-16T20:22:56.942153Z" + "iopub.execute_input": "2023-10-17T19:42:42.711965Z", + "iopub.status.busy": "2023-10-17T19:42:42.711245Z", + "iopub.status.idle": "2023-10-17T19:42:42.716604Z", + "shell.execute_reply": "2023-10-17T19:42:42.715769Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.946700Z", - "iopub.status.busy": "2023-10-16T20:22:56.946214Z", - "iopub.status.idle": "2023-10-16T20:22:56.953557Z", - "shell.execute_reply": "2023-10-16T20:22:56.952762Z" + "iopub.execute_input": "2023-10-17T19:42:42.719684Z", + "iopub.status.busy": "2023-10-17T19:42:42.719294Z", + "iopub.status.idle": "2023-10-17T19:42:42.725228Z", + "shell.execute_reply": "2023-10-17T19:42:42.724567Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.957414Z", - "iopub.status.busy": "2023-10-16T20:22:56.957121Z", - "iopub.status.idle": "2023-10-16T20:22:59.063903Z", - "shell.execute_reply": "2023-10-16T20:22:59.062221Z" + "iopub.execute_input": "2023-10-17T19:42:42.728461Z", + "iopub.status.busy": "2023-10-17T19:42:42.728017Z", + "iopub.status.idle": "2023-10-17T19:42:44.715201Z", + "shell.execute_reply": "2023-10-17T19:42:44.714188Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.068825Z", - "iopub.status.busy": "2023-10-16T20:22:59.068241Z", - "iopub.status.idle": "2023-10-16T20:22:59.094784Z", - "shell.execute_reply": "2023-10-16T20:22:59.093734Z" + "iopub.execute_input": "2023-10-17T19:42:44.719459Z", + "iopub.status.busy": "2023-10-17T19:42:44.718834Z", + "iopub.status.idle": "2023-10-17T19:42:44.738446Z", + "shell.execute_reply": "2023-10-17T19:42:44.733964Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.144890Z", - "iopub.status.busy": "2023-10-16T20:22:59.143920Z", - "iopub.status.idle": "2023-10-16T20:22:59.152756Z", - "shell.execute_reply": "2023-10-16T20:22:59.151840Z" + "iopub.execute_input": "2023-10-17T19:42:44.773305Z", + "iopub.status.busy": "2023-10-17T19:42:44.772596Z", + "iopub.status.idle": "2023-10-17T19:42:44.779592Z", + "shell.execute_reply": "2023-10-17T19:42:44.778966Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.157022Z", - "iopub.status.busy": "2023-10-16T20:22:59.156239Z", - "iopub.status.idle": "2023-10-16T20:23:00.314108Z", - "shell.execute_reply": "2023-10-16T20:23:00.312905Z" + "iopub.execute_input": "2023-10-17T19:42:44.782621Z", + "iopub.status.busy": "2023-10-17T19:42:44.782017Z", + "iopub.status.idle": "2023-10-17T19:42:45.647626Z", + "shell.execute_reply": "2023-10-17T19:42:45.646847Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:00.318368Z", - "iopub.status.busy": "2023-10-16T20:23:00.317874Z", - "iopub.status.idle": "2023-10-16T20:23:02.234425Z", - "shell.execute_reply": "2023-10-16T20:23:02.233389Z" + "iopub.execute_input": "2023-10-17T19:42:45.650915Z", + "iopub.status.busy": "2023-10-17T19:42:45.650523Z", + "iopub.status.idle": "2023-10-17T19:42:47.301821Z", + "shell.execute_reply": "2023-10-17T19:42:47.301109Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.241316Z", - "iopub.status.busy": "2023-10-16T20:23:02.239450Z", - "iopub.status.idle": "2023-10-16T20:23:02.290418Z", - "shell.execute_reply": "2023-10-16T20:23:02.289177Z" + "iopub.execute_input": "2023-10-17T19:42:47.305488Z", + "iopub.status.busy": "2023-10-17T19:42:47.305031Z", + "iopub.status.idle": "2023-10-17T19:42:47.342788Z", + "shell.execute_reply": "2023-10-17T19:42:47.342147Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.296635Z", - "iopub.status.busy": "2023-10-16T20:23:02.295698Z", - "iopub.status.idle": "2023-10-16T20:23:02.302555Z", - "shell.execute_reply": "2023-10-16T20:23:02.301424Z" + "iopub.execute_input": "2023-10-17T19:42:47.345731Z", + "iopub.status.busy": "2023-10-17T19:42:47.345481Z", + "iopub.status.idle": "2023-10-17T19:42:47.349208Z", + "shell.execute_reply": "2023-10-17T19:42:47.348520Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.306839Z", - "iopub.status.busy": "2023-10-16T20:23:02.306025Z", - "iopub.status.idle": "2023-10-16T20:23:19.424314Z", - "shell.execute_reply": "2023-10-16T20:23:19.423502Z" + "iopub.execute_input": "2023-10-17T19:42:47.352093Z", + "iopub.status.busy": "2023-10-17T19:42:47.351659Z", + "iopub.status.idle": "2023-10-17T19:43:01.172081Z", + "shell.execute_reply": "2023-10-17T19:43:01.171455Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:19.429156Z", - "iopub.status.busy": "2023-10-16T20:23:19.428232Z", - "iopub.status.idle": "2023-10-16T20:23:19.434069Z", - "shell.execute_reply": "2023-10-16T20:23:19.433361Z" + "iopub.execute_input": "2023-10-17T19:43:01.175986Z", + "iopub.status.busy": "2023-10-17T19:43:01.175041Z", + "iopub.status.idle": "2023-10-17T19:43:01.180256Z", + "shell.execute_reply": "2023-10-17T19:43:01.179543Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:19.437818Z", - "iopub.status.busy": "2023-10-16T20:23:19.437237Z", - "iopub.status.idle": "2023-10-16T20:23:27.579902Z", - "shell.execute_reply": "2023-10-16T20:23:27.579089Z" + "iopub.execute_input": "2023-10-17T19:43:01.183980Z", + "iopub.status.busy": "2023-10-17T19:43:01.183722Z", + "iopub.status.idle": "2023-10-17T19:43:07.883304Z", + "shell.execute_reply": "2023-10-17T19:43:07.882656Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.584554Z", - "iopub.status.busy": "2023-10-16T20:23:27.583618Z", - "iopub.status.idle": "2023-10-16T20:23:27.591520Z", - "shell.execute_reply": "2023-10-16T20:23:27.590810Z" + "iopub.execute_input": "2023-10-17T19:43:07.887143Z", + "iopub.status.busy": "2023-10-17T19:43:07.886433Z", + "iopub.status.idle": "2023-10-17T19:43:07.891522Z", + "shell.execute_reply": "2023-10-17T19:43:07.890997Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.597295Z", - "iopub.status.busy": "2023-10-16T20:23:27.595838Z", - "iopub.status.idle": "2023-10-16T20:23:27.728288Z", - "shell.execute_reply": "2023-10-16T20:23:27.727335Z" + "iopub.execute_input": "2023-10-17T19:43:07.894450Z", + "iopub.status.busy": "2023-10-17T19:43:07.894014Z", + "iopub.status.idle": "2023-10-17T19:43:07.997262Z", + "shell.execute_reply": "2023-10-17T19:43:07.996402Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.732853Z", - "iopub.status.busy": "2023-10-16T20:23:27.732181Z", - "iopub.status.idle": "2023-10-16T20:23:27.749192Z", - "shell.execute_reply": "2023-10-16T20:23:27.748240Z" + "iopub.execute_input": "2023-10-17T19:43:08.000836Z", + "iopub.status.busy": "2023-10-17T19:43:08.000230Z", + "iopub.status.idle": "2023-10-17T19:43:08.012711Z", + "shell.execute_reply": "2023-10-17T19:43:08.012014Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.753492Z", - "iopub.status.busy": "2023-10-16T20:23:27.752717Z", - "iopub.status.idle": "2023-10-16T20:23:27.765903Z", - "shell.execute_reply": "2023-10-16T20:23:27.764942Z" + "iopub.execute_input": "2023-10-17T19:43:08.015950Z", + "iopub.status.busy": "2023-10-17T19:43:08.015367Z", + "iopub.status.idle": "2023-10-17T19:43:08.025386Z", + "shell.execute_reply": "2023-10-17T19:43:08.024662Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.770566Z", - "iopub.status.busy": "2023-10-16T20:23:27.769942Z", - "iopub.status.idle": "2023-10-16T20:23:27.778849Z", - "shell.execute_reply": "2023-10-16T20:23:27.778007Z" + "iopub.execute_input": "2023-10-17T19:43:08.031126Z", + "iopub.status.busy": "2023-10-17T19:43:08.030641Z", + "iopub.status.idle": "2023-10-17T19:43:08.036694Z", + "shell.execute_reply": "2023-10-17T19:43:08.035971Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.782921Z", - "iopub.status.busy": "2023-10-16T20:23:27.782342Z", - "iopub.status.idle": "2023-10-16T20:23:27.791430Z", - "shell.execute_reply": "2023-10-16T20:23:27.790590Z" + "iopub.execute_input": "2023-10-17T19:43:08.046931Z", + "iopub.status.busy": "2023-10-17T19:43:08.046636Z", + "iopub.status.idle": "2023-10-17T19:43:08.055963Z", + "shell.execute_reply": "2023-10-17T19:43:08.055330Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.796915Z", - "iopub.status.busy": "2023-10-16T20:23:27.796096Z", - "iopub.status.idle": "2023-10-16T20:23:27.984793Z", - "shell.execute_reply": "2023-10-16T20:23:27.983939Z" + "iopub.execute_input": "2023-10-17T19:43:08.059290Z", + "iopub.status.busy": "2023-10-17T19:43:08.058800Z", + "iopub.status.idle": "2023-10-17T19:43:08.207067Z", + "shell.execute_reply": "2023-10-17T19:43:08.206331Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.989299Z", - "iopub.status.busy": "2023-10-16T20:23:27.988642Z", - "iopub.status.idle": "2023-10-16T20:23:28.166155Z", - "shell.execute_reply": "2023-10-16T20:23:28.165297Z" + "iopub.execute_input": "2023-10-17T19:43:08.210976Z", + "iopub.status.busy": "2023-10-17T19:43:08.210525Z", + "iopub.status.idle": "2023-10-17T19:43:08.347555Z", + "shell.execute_reply": "2023-10-17T19:43:08.346831Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.179798Z", - "iopub.status.busy": "2023-10-16T20:23:28.178707Z", - "iopub.status.idle": "2023-10-16T20:23:28.360680Z", - "shell.execute_reply": "2023-10-16T20:23:28.359420Z" + "iopub.execute_input": "2023-10-17T19:43:08.351325Z", + "iopub.status.busy": "2023-10-17T19:43:08.350851Z", + "iopub.status.idle": "2023-10-17T19:43:08.490126Z", + "shell.execute_reply": "2023-10-17T19:43:08.489392Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.364949Z", - "iopub.status.busy": "2023-10-16T20:23:28.364452Z", - "iopub.status.idle": "2023-10-16T20:23:28.540862Z", - "shell.execute_reply": "2023-10-16T20:23:28.540025Z" + "iopub.execute_input": "2023-10-17T19:43:08.493928Z", + "iopub.status.busy": "2023-10-17T19:43:08.493450Z", + "iopub.status.idle": "2023-10-17T19:43:08.629414Z", + "shell.execute_reply": "2023-10-17T19:43:08.628704Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.545220Z", - "iopub.status.busy": "2023-10-16T20:23:28.544592Z", - "iopub.status.idle": "2023-10-16T20:23:28.550924Z", - "shell.execute_reply": "2023-10-16T20:23:28.550088Z" + "iopub.execute_input": "2023-10-17T19:43:08.633315Z", + "iopub.status.busy": "2023-10-17T19:43:08.632841Z", + "iopub.status.idle": "2023-10-17T19:43:08.637247Z", + "shell.execute_reply": "2023-10-17T19:43:08.636586Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,88 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0027c119b27346b5a9122908121790de": { + "03b6e9cad1f841e69c4598f2d484ac3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a35437942bf648f0a5fa6d6f23bbd710", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d76c6731bd3a4e4786045ba2c8265abc", + "value": 16887676.0 + } + }, + "04f9656a8e914272898f673b9dead023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba5ed3d97f154beea1f5f4fbf8b0005f", + "placeholder": "​", + "style": "IPY_MODEL_e9325184194e4b88b52e54c0167ff1aa", + "value": " 129k/129k [00:00<00:00, 4.33MB/s]" + } + }, + "0a41cc5549114dadb20a04fcc73dc5f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d7613fe0642492dbc32b2715f27b36a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5678a0453d640e08d331c4e53e509cb", + "placeholder": "​", + "style": "IPY_MODEL_d0f5a15413774243936dce7eaadd5e25", + "value": " 15.9M/15.9M [00:00<00:00, 77.4MB/s]" + } + }, + "14a10514e3b54360b215831842f0f1e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,7 +1510,23 @@ "width": null } }, - "01b99be9202344afa2fca7b9097b4f6a": { + "17433ef373ac4b23bccf79e7c10147ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "18d4b8273b5845f3b6936211ed23ceb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1481,50 +1578,7 @@ "width": null } }, - "053f03c0670d4b3d89756894ea44f71e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01b99be9202344afa2fca7b9097b4f6a", - "placeholder": "​", - "style": "IPY_MODEL_b614a6ebaef9450f81881ef735d0f145", - "value": " 16.9M/16.9M [00:00<00:00, 62.9MB/s]" - } - }, - "1d017622fc604d82bf83ce808c23bf91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f1a8c6c6afc4c83b57b8d29f3d34403", - "IPY_MODEL_3b888c35c73a47419808620d0c82ae82", - "IPY_MODEL_96a776fbac844290bebd662cf1ee6fba" - ], - "layout": "IPY_MODEL_6a51e6163af54ca7ac1ea2677eb66bec" - } - }, - "1d091ab6b62046dc8d93506bfa9e2878": { + "1b727cd149574d658f0a75195b91073c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1576,7 +1630,109 @@ "width": null } }, - "20bf7e64f4d141779c20a29d383370e9": { + "1bc078cf3a604086ace5370dbca46fed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20d5911c0b484656968eaadecdeedb64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be289196036c4019b7109c16fad6fa90", + "IPY_MODEL_87dc2e870b2d49d6adde851a273d92c7", + "IPY_MODEL_04f9656a8e914272898f673b9dead023" + ], + "layout": "IPY_MODEL_f88dac1d3efe4714945a5927a2a827b5" + } + }, + "2d852b5509014b099bd6c1cbefe71662": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b2284a1a0f247e38a1579b28f1e2860", + "placeholder": "​", + "style": "IPY_MODEL_0a41cc5549114dadb20a04fcc73dc5f5", + "value": "Downloading: 100%" + } + }, + "348ef23e945542b8b16068eb3f736267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4659666580ab4a958d240efda4bcb3e3", + "IPY_MODEL_60f31913cc714deaa44c6711fc150f7f", + "IPY_MODEL_0d7613fe0642492dbc32b2715f27b36a" + ], + "layout": "IPY_MODEL_14a10514e3b54360b215831842f0f1e1" + } + }, + "35a6f52e1d2c486e99b1bb3e86b2acda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3fbec498294468ca4d9f1e3ef036b4f", + "placeholder": "​", + "style": "IPY_MODEL_484476708a6849aa8f3057f19eff95e8", + "value": " 2.04k/2.04k [00:00<00:00, 296kB/s]" + } + }, + "3d58735d2326416b9bb69389ebaca261": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1591,31 +1747,28 @@ "description_width": "" } }, - "27c01147d6204293aa04429cb37a7591": { + "4659666580ab4a958d240efda4bcb3e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0027c119b27346b5a9122908121790de", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e146121261044c668db0425f7bb45662", - "value": 16887676.0 + "layout": "IPY_MODEL_18d4b8273b5845f3b6936211ed23ceb5", + "placeholder": "​", + "style": "IPY_MODEL_73a39d745ef445319dee295558549b21", + "value": "Downloading: 100%" } }, - "2a045c8b730544fe94dd1ae09e787ebe": { + "484476708a6849aa8f3057f19eff95e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1630,7 +1783,81 @@ "description_width": "" } }, - "2a327dc5aa514ff89c5980210fd0b7e0": { + "4dd6d80d303d479d87fd948585644ed5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d852b5509014b099bd6c1cbefe71662", + "IPY_MODEL_744e829c5b4146109bebd02c36730ab5", + "IPY_MODEL_5f03ef3fbf3c47f18518dfe1843dfbaf" + ], + "layout": "IPY_MODEL_d9186b48d0154d2a84fbe302ae7f4014" + } + }, + "5d83576d3dbb4ae390b923a35778eda2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f03ef3fbf3c47f18518dfe1843dfbaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1645,13 +1872,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2efd27290bd49fda4a695050c09d651", + "layout": "IPY_MODEL_89c37b88ff1d4db885c172e1a5b39d41", "placeholder": "​", - "style": "IPY_MODEL_2a045c8b730544fe94dd1ae09e787ebe", - "value": "Downloading: 100%" + "style": "IPY_MODEL_d867d0f2f79740c3beec1fa772368e35", + "value": " 3.20k/3.20k [00:00<00:00, 478kB/s]" } }, - "2f1366cc0649404d9bac4348ccd8f762": { + "5fe9972d78d845609c798e0a6ca2a1dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1703,7 +1930,46 @@ "width": null } }, - "2f1a8c6c6afc4c83b57b8d29f3d34403": { + "60f31913cc714deaa44c6711fc150f7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db62335881b845638bc47c8692113ce7", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_17433ef373ac4b23bccf79e7c10147ae", + "value": 15856877.0 + } + }, + "63cfe10fa42e4c0da9c587f163e3ccef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c66f59e75c4428eaf6b6f533acf4a80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1718,37 +1984,74 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e08f6767ee984da9a662aba844df0773", + "layout": "IPY_MODEL_5fe9972d78d845609c798e0a6ca2a1dc", "placeholder": "​", - "style": "IPY_MODEL_6fb68318eb4a41a78b0c5b027c56b14a", + "style": "IPY_MODEL_aca4676e13ae4a0584a23c89e5e21eec", "value": "Downloading: 100%" } }, - "3b888c35c73a47419808620d0c82ae82": { + "73a39d745ef445319dee295558549b21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "744e829c5b4146109bebd02c36730ab5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8159405dc854bc2b1226dadf5fd49ca", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1bc078cf3a604086ace5370dbca46fed", + "value": 3201.0 + } + }, + "770289629b03453cb0bd252b5e0a452a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1d091ab6b62046dc8d93506bfa9e2878", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83a6368700a64f529740e6340dde33bc", - "value": 15856877.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b84be24872bb4ee29633cc4fb8ae5ca9", + "IPY_MODEL_03b6e9cad1f841e69c4598f2d484ac3f", + "IPY_MODEL_b0c4a39f621c49988cbf66b1a6f78124" + ], + "layout": "IPY_MODEL_1b727cd149574d658f0a75195b91073c" } }, - "4ccbde05f5884eed94b1402492ccb002": { + "87dc2e870b2d49d6adde851a273d92c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1764,15 +2067,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c48331fcf8384ca6859bca48ab3434ec", - "max": 2041.0, + "layout": "IPY_MODEL_ed3246b994084945bebe55e52f547779", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6185d3bc54c94812a3cbc663dfc89b28", - "value": 2041.0 + "style": "IPY_MODEL_d23fe058d20a49f49e061a79298e4795", + "value": 128619.0 } }, - "542668a8e07a42289a45b395299549f9": { + "89c37b88ff1d4db885c172e1a5b39d41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1824,44 +2127,7 @@ "width": null } }, - "5b0ae73079c040ceae91c08c51346bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_542668a8e07a42289a45b395299549f9", - "placeholder": "​", - "style": "IPY_MODEL_824119667e2c424d979efa77fd425333", - "value": " 129k/129k [00:00<00:00, 8.24MB/s]" - } - }, - "6185d3bc54c94812a3cbc663dfc89b28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "675a8e3fbcfe45c5b334630cf0ff9a3a": { + "8b2284a1a0f247e38a1579b28f1e2860": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1913,7 +2179,22 @@ "width": null } }, - "6a51e6163af54ca7ac1ea2677eb66bec": { + "8d2e35d73cbb41d19d77ea523b8ef719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a35437942bf648f0a5fa6d6f23bbd710": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1965,7 +2246,7 @@ "width": null } }, - "6fb68318eb4a41a78b0c5b027c56b14a": { + "aca4676e13ae4a0584a23c89e5e21eec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1980,7 +2261,28 @@ "description_width": "" } }, - "7713457012f34cfdaeb25c9898669943": { + "b0c4a39f621c49988cbf66b1a6f78124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b875d884823e4d82b383030822b22cb3", + "placeholder": "​", + "style": "IPY_MODEL_63cfe10fa42e4c0da9c587f163e3ccef", + "value": " 16.9M/16.9M [00:00<00:00, 74.4MB/s]" + } + }, + "b3fbec498294468ca4d9f1e3ef036b4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2032,53 +2334,7 @@ "width": null } }, - "824119667e2c424d979efa77fd425333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "83a6368700a64f529740e6340dde33bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8508b05deaed4a69b3878b8efdedd135": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "892e0cfb5b09428f870d64f014530c00": { + "b5678a0453d640e08d331c4e53e509cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2130,45 +2386,28 @@ "width": null } }, - "8c22933a4383477a8b8bfbd64da7ccdb": { + "b84be24872bb4ee29633cc4fb8ae5ca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7561f0c498841e985c64fefed22720e", - "IPY_MODEL_4ccbde05f5884eed94b1402492ccb002", - "IPY_MODEL_ba25e66cff5f431c9fa1a8bebbe8f1fc" - ], - "layout": "IPY_MODEL_2f1366cc0649404d9bac4348ccd8f762" - } - }, - "8d1fc7fbbc2f414b83f3506c458a49a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec6a872fbce848bbbba4963320eafa03", + "placeholder": "​", + "style": "IPY_MODEL_8d2e35d73cbb41d19d77ea523b8ef719", + "value": "Downloading: 100%" } }, - "9423006e795a4e30a15e78bc64993dbf": { + "b875d884823e4d82b383030822b22cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2220,29 +2459,7 @@ "width": null } }, - "959119ababa045aa99d2630800ccf261": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e9881d0ecf84c7eb298547526b8b457", - "IPY_MODEL_bdf9fe688faf4e408dc9c7482b2f3e9d", - "IPY_MODEL_d3e6d15adb75469f97d02f0a96dd4924" - ], - "layout": "IPY_MODEL_7713457012f34cfdaeb25c9898669943" - } - }, - "965bebb5ed6a4acf80128eb6781ebb9d": { + "ba5ed3d97f154beea1f5f4fbf8b0005f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2294,7 +2511,23 @@ "width": null } }, - "96a776fbac844290bebd662cf1ee6fba": { + "bcba2c73708e4672982371ec07148dc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be289196036c4019b7109c16fad6fa90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2309,13 +2542,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9423006e795a4e30a15e78bc64993dbf", + "layout": "IPY_MODEL_ffdbeccf1d5a4422922702d8dde89c7e", "placeholder": "​", - "style": "IPY_MODEL_fbcf72fb7ad74787885ce5330c556176", - "value": " 15.9M/15.9M [00:00<00:00, 70.9MB/s]" + "style": "IPY_MODEL_3d58735d2326416b9bb69389ebaca261", + "value": "Downloading: 100%" } }, - "98b46cc9bfbb4472a7316e2cf1457463": { + "d0f5a15413774243936dce7eaadd5e25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2330,80 +2563,54 @@ "description_width": "" } }, - "9e9881d0ecf84c7eb298547526b8b457": { + "d23fe058d20a49f49e061a79298e4795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dfa39c12fab143cf9f284fade365bd44", - "placeholder": "​", - "style": "IPY_MODEL_f0d7733f4a2c4a759537115739a8ee72", - "value": "Downloading: 100%" - } - }, - "9ebfd11429364a3c8b339d347809ff59": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d76c6731bd3a4e4786045ba2c8265abc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d867d0f2f79740c3beec1fa772368e35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a17976dbcb9648ce9cd9c5422a8bf851": { + "d9186b48d0154d2a84fbe302ae7f4014": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2455,7 +2662,7 @@ "width": null } }, - "a2efd27290bd49fda4a695050c09d651": { + "db62335881b845638bc47c8692113ce7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2507,64 +2714,68 @@ "width": null } }, - "a853924c9a474d1fb4629c67b40ac74b": { + "e07577453bb046e28404149d75e7e0b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9ebfd11429364a3c8b339d347809ff59", - "placeholder": "​", - "style": "IPY_MODEL_98b46cc9bfbb4472a7316e2cf1457463", - "value": "Downloading: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c66f59e75c4428eaf6b6f533acf4a80", + "IPY_MODEL_e20dccb2d7f844f485ab4eac6125f270", + "IPY_MODEL_35a6f52e1d2c486e99b1bb3e86b2acda" + ], + "layout": "IPY_MODEL_5d83576d3dbb4ae390b923a35778eda2" } }, - "b614a6ebaef9450f81881ef735d0f145": { + "e20dccb2d7f844f485ab4eac6125f270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edf5d4ff54c94b198e147394a7df6d4b", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcba2c73708e4672982371ec07148dc2", + "value": 2041.0 } }, - "ba25e66cff5f431c9fa1a8bebbe8f1fc": { + "e9325184194e4b88b52e54c0167ff1aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_675a8e3fbcfe45c5b334630cf0ff9a3a", - "placeholder": "​", - "style": "IPY_MODEL_8508b05deaed4a69b3878b8efdedd135", - "value": " 2.04k/2.04k [00:00<00:00, 214kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bb26aed67e9046b296136b89d3415f4b": { + "ec6a872fbce848bbbba4963320eafa03": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2616,55 +2827,7 @@ "width": null } }, - "bc9b97a0e45a424daffad8fe42566be2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_965bebb5ed6a4acf80128eb6781ebb9d", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fcbb944e88f14262a1f9ac5e11df8a87", - "value": 128619.0 - } - }, - "bdf9fe688faf4e408dc9c7482b2f3e9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eb0b8b8f07314b5286dbba758ec095a8", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d1fc7fbbc2f414b83f3506c458a49a7", - "value": 3201.0 - } - }, - "c48331fcf8384ca6859bca48ab3434ec": { + "ed3246b994084945bebe55e52f547779": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2716,65 +2879,7 @@ "width": null } }, - "c5479135914d4952a413613ce0fb3e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "caa8308edaea489da086533325e26bf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a853924c9a474d1fb4629c67b40ac74b", - "IPY_MODEL_bc9b97a0e45a424daffad8fe42566be2", - "IPY_MODEL_5b0ae73079c040ceae91c08c51346bc6" - ], - "layout": "IPY_MODEL_892e0cfb5b09428f870d64f014530c00" - } - }, - "d3e6d15adb75469f97d02f0a96dd4924": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a17976dbcb9648ce9cd9c5422a8bf851", - "placeholder": "​", - "style": "IPY_MODEL_c5479135914d4952a413613ce0fb3e97", - "value": " 3.20k/3.20k [00:00<00:00, 352kB/s]" - } - }, - "dfa39c12fab143cf9f284fade365bd44": { + "edf5d4ff54c94b198e147394a7df6d4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2826,29 +2931,7 @@ "width": null } }, - "dfd6b878569944d4bf366d34e7b5e0fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a327dc5aa514ff89c5980210fd0b7e0", - "IPY_MODEL_27c01147d6204293aa04429cb37a7591", - "IPY_MODEL_053f03c0670d4b3d89756894ea44f71e" - ], - "layout": "IPY_MODEL_f5e2468ab3aa4efdbf463f216898d425" - } - }, - "e08f6767ee984da9a662aba844df0773": { + "f8159405dc854bc2b1226dadf5fd49ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2900,44 +2983,7 @@ "width": null } }, - "e146121261044c668db0425f7bb45662": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7561f0c498841e985c64fefed22720e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bb26aed67e9046b296136b89d3415f4b", - "placeholder": "​", - "style": "IPY_MODEL_20bf7e64f4d141779c20a29d383370e9", - "value": "Downloading: 100%" - } - }, - "eb0b8b8f07314b5286dbba758ec095a8": { + "f88dac1d3efe4714945a5927a2a827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2989,22 +3035,7 @@ "width": null } }, - "f0d7733f4a2c4a759537115739a8ee72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f5e2468ab3aa4efdbf463f216898d425": { + "ffdbeccf1d5a4422922702d8dde89c7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3055,37 +3086,6 @@ "visibility": null, "width": null } - }, - "fbcf72fb7ad74787885ce5330c556176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fcbb944e88f14262a1f9ac5e11df8a87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 060d80c1f..50f554448 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:34.512644Z", - "iopub.status.busy": "2023-10-16T20:23:34.512334Z", - "iopub.status.idle": "2023-10-16T20:23:36.127365Z", - "shell.execute_reply": "2023-10-16T20:23:36.126316Z" + "iopub.execute_input": "2023-10-17T19:43:13.829001Z", + "iopub.status.busy": "2023-10-17T19:43:13.828768Z", + "iopub.status.idle": "2023-10-17T19:43:15.045676Z", + "shell.execute_reply": "2023-10-17T19:43:15.045014Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.134811Z", - "iopub.status.busy": "2023-10-16T20:23:36.131136Z", - "iopub.status.idle": "2023-10-16T20:23:36.140636Z", - "shell.execute_reply": "2023-10-16T20:23:36.139530Z" + "iopub.execute_input": "2023-10-17T19:43:15.049470Z", + "iopub.status.busy": "2023-10-17T19:43:15.048979Z", + "iopub.status.idle": "2023-10-17T19:43:15.053755Z", + "shell.execute_reply": "2023-10-17T19:43:15.053131Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.145538Z", - "iopub.status.busy": "2023-10-16T20:23:36.144994Z", - "iopub.status.idle": "2023-10-16T20:23:36.166273Z", - "shell.execute_reply": "2023-10-16T20:23:36.165165Z" + "iopub.execute_input": "2023-10-17T19:43:15.057199Z", + "iopub.status.busy": "2023-10-17T19:43:15.056958Z", + "iopub.status.idle": "2023-10-17T19:43:15.069665Z", + "shell.execute_reply": "2023-10-17T19:43:15.069054Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.170219Z", - "iopub.status.busy": "2023-10-16T20:23:36.169856Z", - "iopub.status.idle": "2023-10-16T20:23:36.177837Z", - "shell.execute_reply": "2023-10-16T20:23:36.177049Z" + "iopub.execute_input": "2023-10-17T19:43:15.072790Z", + "iopub.status.busy": "2023-10-17T19:43:15.072457Z", + "iopub.status.idle": "2023-10-17T19:43:15.079654Z", + "shell.execute_reply": "2023-10-17T19:43:15.079080Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.182155Z", - "iopub.status.busy": "2023-10-16T20:23:36.181820Z", - "iopub.status.idle": "2023-10-16T20:23:36.625551Z", - "shell.execute_reply": "2023-10-16T20:23:36.624586Z" + "iopub.execute_input": "2023-10-17T19:43:15.083027Z", + "iopub.status.busy": "2023-10-17T19:43:15.082785Z", + "iopub.status.idle": "2023-10-17T19:43:15.424045Z", + "shell.execute_reply": "2023-10-17T19:43:15.423347Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.630469Z", - "iopub.status.busy": "2023-10-16T20:23:36.629802Z", - "iopub.status.idle": "2023-10-16T20:23:37.118367Z", - "shell.execute_reply": "2023-10-16T20:23:37.117604Z" + "iopub.execute_input": "2023-10-17T19:43:15.427222Z", + "iopub.status.busy": "2023-10-17T19:43:15.426837Z", + "iopub.status.idle": "2023-10-17T19:43:15.805501Z", + "shell.execute_reply": "2023-10-17T19:43:15.804843Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.122507Z", - "iopub.status.busy": "2023-10-16T20:23:37.121884Z", - "iopub.status.idle": "2023-10-16T20:23:37.160418Z", - "shell.execute_reply": "2023-10-16T20:23:37.159108Z" + "iopub.execute_input": "2023-10-17T19:43:15.808674Z", + "iopub.status.busy": "2023-10-17T19:43:15.808427Z", + "iopub.status.idle": "2023-10-17T19:43:15.836149Z", + "shell.execute_reply": "2023-10-17T19:43:15.835473Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.166344Z", - "iopub.status.busy": "2023-10-16T20:23:37.165996Z", - "iopub.status.idle": "2023-10-16T20:23:37.184995Z", - "shell.execute_reply": "2023-10-16T20:23:37.184077Z" + "iopub.execute_input": "2023-10-17T19:43:15.839609Z", + "iopub.status.busy": "2023-10-17T19:43:15.839058Z", + "iopub.status.idle": "2023-10-17T19:43:15.853064Z", + "shell.execute_reply": "2023-10-17T19:43:15.852428Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.189612Z", - "iopub.status.busy": "2023-10-16T20:23:37.188985Z", - "iopub.status.idle": "2023-10-16T20:23:39.261226Z", - "shell.execute_reply": "2023-10-16T20:23:39.260069Z" + "iopub.execute_input": "2023-10-17T19:43:15.856038Z", + "iopub.status.busy": "2023-10-17T19:43:15.855658Z", + "iopub.status.idle": "2023-10-17T19:43:17.455041Z", + "shell.execute_reply": "2023-10-17T19:43:17.454289Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.266708Z", - "iopub.status.busy": "2023-10-16T20:23:39.265897Z", - "iopub.status.idle": "2023-10-16T20:23:39.308683Z", - "shell.execute_reply": "2023-10-16T20:23:39.307685Z" + "iopub.execute_input": "2023-10-17T19:43:17.458689Z", + "iopub.status.busy": "2023-10-17T19:43:17.458122Z", + "iopub.status.idle": "2023-10-17T19:43:17.488677Z", + "shell.execute_reply": "2023-10-17T19:43:17.487773Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.313380Z", - "iopub.status.busy": "2023-10-16T20:23:39.312770Z", - "iopub.status.idle": "2023-10-16T20:23:39.346608Z", - "shell.execute_reply": "2023-10-16T20:23:39.345851Z" + "iopub.execute_input": "2023-10-17T19:43:17.491765Z", + "iopub.status.busy": "2023-10-17T19:43:17.491313Z", + "iopub.status.idle": "2023-10-17T19:43:17.515957Z", + "shell.execute_reply": "2023-10-17T19:43:17.515394Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:249: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.350655Z", - "iopub.status.busy": "2023-10-16T20:23:39.350068Z", - "iopub.status.idle": "2023-10-16T20:23:39.374575Z", - "shell.execute_reply": "2023-10-16T20:23:39.373738Z" + "iopub.execute_input": "2023-10-17T19:43:17.519269Z", + "iopub.status.busy": "2023-10-17T19:43:17.518672Z", + "iopub.status.idle": "2023-10-17T19:43:17.537263Z", + "shell.execute_reply": "2023-10-17T19:43:17.536538Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.379269Z", - "iopub.status.busy": "2023-10-16T20:23:39.378570Z", - "iopub.status.idle": "2023-10-16T20:23:39.429863Z", - "shell.execute_reply": "2023-10-16T20:23:39.428780Z" + "iopub.execute_input": "2023-10-17T19:43:17.540692Z", + "iopub.status.busy": "2023-10-17T19:43:17.540331Z", + "iopub.status.idle": "2023-10-17T19:43:17.572988Z", + "shell.execute_reply": "2023-10-17T19:43:17.572436Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb6c19c2c9a44c929cda51b2b7987f83", + "model_id": "81e3acc041db4d909137e9f45f5af80a", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.435311Z", - "iopub.status.busy": "2023-10-16T20:23:39.434795Z", - "iopub.status.idle": "2023-10-16T20:23:39.462423Z", - "shell.execute_reply": "2023-10-16T20:23:39.461478Z" + "iopub.execute_input": "2023-10-17T19:43:17.575720Z", + "iopub.status.busy": "2023-10-17T19:43:17.575335Z", + "iopub.status.idle": "2023-10-17T19:43:17.593352Z", + "shell.execute_reply": "2023-10-17T19:43:17.592783Z" } }, "outputs": [ @@ -1125,13 +1125,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Datalab loaded from folder: datalab-files\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Datalab loaded from folder: datalab-files\n", "Here is a summary of the different kinds of issues found in the data:\n", "\n", " issue_type num_issues\n", @@ -1241,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.466385Z", - "iopub.status.busy": "2023-10-16T20:23:39.465777Z", - "iopub.status.idle": "2023-10-16T20:23:39.475374Z", - "shell.execute_reply": "2023-10-16T20:23:39.474574Z" + "iopub.execute_input": "2023-10-17T19:43:17.596466Z", + "iopub.status.busy": "2023-10-17T19:43:17.595877Z", + "iopub.status.idle": "2023-10-17T19:43:17.603712Z", + "shell.execute_reply": "2023-10-17T19:43:17.603000Z" } }, "outputs": [], @@ -1301,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.479338Z", - "iopub.status.busy": "2023-10-16T20:23:39.478759Z", - "iopub.status.idle": "2023-10-16T20:23:39.508771Z", - "shell.execute_reply": "2023-10-16T20:23:39.507675Z" + "iopub.execute_input": "2023-10-17T19:43:17.606739Z", + "iopub.status.busy": "2023-10-17T19:43:17.606492Z", + "iopub.status.idle": "2023-10-17T19:43:17.629912Z", + "shell.execute_reply": "2023-10-17T19:43:17.629183Z" } }, "outputs": [ @@ -1436,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0051c1428b664a2586e2e96de896294a": { + "2ca1aefc961a4e22bead719ec30e195c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1488,59 +1482,7 @@ "width": null } }, - "172695041de644c0a37d495b493cbc19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4d76793254214b98a49cb9d2967f768f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b844a9d7757499aaadd893bc2ccb360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0051c1428b664a2586e2e96de896294a", - "placeholder": "​", - "style": "IPY_MODEL_be98d1056e0e4b2da5596f66b51766d6", - "value": " 132/132 [00:00<00:00, 4938.52 examples/s]" - } - }, - "a152924ab077414294a5576606645b60": { + "5ccbb63dbbe84cc6b223dd67c8b7493f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1592,31 +1534,66 @@ "width": null } }, - "a3067d3d1dab4198a819cb0145611f40": { + "6079bd2d5ca34dd2af59db4419fda67b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a152924ab077414294a5576606645b60", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_172695041de644c0a37d495b493cbc19", - "value": 132.0 + "layout": "IPY_MODEL_ad2b12a3518a4c8a896470b8a9ebe9ba", + "placeholder": "​", + "style": "IPY_MODEL_d4a69ba9e4294d8b98eaf99f0d0f27cd", + "value": " 132/132 [00:00<00:00, 7315.07 examples/s]" + } + }, + "7b2b6934647a484d85e6b743a944f0f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6d44761908147c59ed1f88dbff9d5fd": { + "81e3acc041db4d909137e9f45f5af80a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9405fcf805fc4795ae49bd38125b03de", + "IPY_MODEL_9c7996d7ad054a3bbdc322b6e1b5ff67", + "IPY_MODEL_6079bd2d5ca34dd2af59db4419fda67b" + ], + "layout": "IPY_MODEL_f51d96142fd4477996bd5416f96d85e6" + } + }, + "9405fcf805fc4795ae49bd38125b03de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1631,35 +1608,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f95fbb296b2e40efaabcaaa1168f9aae", + "layout": "IPY_MODEL_5ccbb63dbbe84cc6b223dd67c8b7493f", "placeholder": "​", - "style": "IPY_MODEL_4d76793254214b98a49cb9d2967f768f", + "style": "IPY_MODEL_a5dda0ecce36487da855134fa542130e", "value": "Saving the dataset (1/1 shards): 100%" } }, - "bb6c19c2c9a44c929cda51b2b7987f83": { + "9c7996d7ad054a3bbdc322b6e1b5ff67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6d44761908147c59ed1f88dbff9d5fd", - "IPY_MODEL_a3067d3d1dab4198a819cb0145611f40", - "IPY_MODEL_7b844a9d7757499aaadd893bc2ccb360" - ], - "layout": "IPY_MODEL_e677122cb377400b80e75399945f07b3" + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ca1aefc961a4e22bead719ec30e195c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b2b6934647a484d85e6b743a944f0f0", + "value": 132.0 } }, - "be98d1056e0e4b2da5596f66b51766d6": { + "a5dda0ecce36487da855134fa542130e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1674,7 +1653,7 @@ "description_width": "" } }, - "e677122cb377400b80e75399945f07b3": { + "ad2b12a3518a4c8a896470b8a9ebe9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1722,11 +1701,26 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "f95fbb296b2e40efaabcaaa1168f9aae": { + "d4a69ba9e4294d8b98eaf99f0d0f27cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f51d96142fd4477996bd5416f96d85e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1774,7 +1768,7 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } } diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 66ee8c22e..a45c2d2ae 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:45.078978Z", - "iopub.status.busy": "2023-10-16T20:23:45.078376Z", - "iopub.status.idle": "2023-10-16T20:23:46.752896Z", - "shell.execute_reply": "2023-10-16T20:23:46.751718Z" + "iopub.execute_input": "2023-10-17T19:43:23.047262Z", + "iopub.status.busy": "2023-10-17T19:43:23.047015Z", + "iopub.status.idle": "2023-10-17T19:43:24.279652Z", + "shell.execute_reply": "2023-10-17T19:43:24.278958Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.758609Z", - "iopub.status.busy": "2023-10-16T20:23:46.758105Z", - "iopub.status.idle": "2023-10-16T20:23:46.763842Z", - "shell.execute_reply": "2023-10-16T20:23:46.763036Z" + "iopub.execute_input": "2023-10-17T19:43:24.283698Z", + "iopub.status.busy": "2023-10-17T19:43:24.283051Z", + "iopub.status.idle": "2023-10-17T19:43:24.286427Z", + "shell.execute_reply": "2023-10-17T19:43:24.285882Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.767864Z", - "iopub.status.busy": "2023-10-16T20:23:46.767561Z", - "iopub.status.idle": "2023-10-16T20:23:46.784260Z", - "shell.execute_reply": "2023-10-16T20:23:46.783459Z" + "iopub.execute_input": "2023-10-17T19:43:24.289490Z", + "iopub.status.busy": "2023-10-17T19:43:24.289098Z", + "iopub.status.idle": "2023-10-17T19:43:24.302082Z", + "shell.execute_reply": "2023-10-17T19:43:24.301468Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.788570Z", - "iopub.status.busy": "2023-10-16T20:23:46.787871Z", - "iopub.status.idle": "2023-10-16T20:23:46.796834Z", - "shell.execute_reply": "2023-10-16T20:23:46.796023Z" + "iopub.execute_input": "2023-10-17T19:43:24.305674Z", + "iopub.status.busy": "2023-10-17T19:43:24.305235Z", + "iopub.status.idle": "2023-10-17T19:43:24.310241Z", + "shell.execute_reply": "2023-10-17T19:43:24.309679Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.801304Z", - "iopub.status.busy": "2023-10-16T20:23:46.800985Z", - "iopub.status.idle": "2023-10-16T20:23:47.278408Z", - "shell.execute_reply": "2023-10-16T20:23:47.277287Z" + "iopub.execute_input": "2023-10-17T19:43:24.313262Z", + "iopub.status.busy": "2023-10-17T19:43:24.312849Z", + "iopub.status.idle": "2023-10-17T19:43:24.649404Z", + "shell.execute_reply": "2023-10-17T19:43:24.648718Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.284666Z", - "iopub.status.busy": "2023-10-16T20:23:47.283586Z", - "iopub.status.idle": "2023-10-16T20:23:47.750668Z", - "shell.execute_reply": "2023-10-16T20:23:47.749434Z" + "iopub.execute_input": "2023-10-17T19:43:24.653107Z", + "iopub.status.busy": "2023-10-17T19:43:24.652497Z", + "iopub.status.idle": "2023-10-17T19:43:25.017489Z", + "shell.execute_reply": "2023-10-17T19:43:25.016797Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.755133Z", - "iopub.status.busy": "2023-10-16T20:23:47.754388Z", - "iopub.status.idle": "2023-10-16T20:23:47.758503Z", - "shell.execute_reply": "2023-10-16T20:23:47.757616Z" + "iopub.execute_input": "2023-10-17T19:43:25.021053Z", + "iopub.status.busy": "2023-10-17T19:43:25.020668Z", + "iopub.status.idle": "2023-10-17T19:43:25.025013Z", + "shell.execute_reply": "2023-10-17T19:43:25.024418Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.763124Z", - "iopub.status.busy": "2023-10-16T20:23:47.762424Z", - "iopub.status.idle": "2023-10-16T20:23:47.797790Z", - "shell.execute_reply": "2023-10-16T20:23:47.796428Z" + "iopub.execute_input": "2023-10-17T19:43:25.028029Z", + "iopub.status.busy": "2023-10-17T19:43:25.027540Z", + "iopub.status.idle": "2023-10-17T19:43:25.054237Z", + "shell.execute_reply": "2023-10-17T19:43:25.053587Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.803572Z", - "iopub.status.busy": "2023-10-16T20:23:47.803075Z", - "iopub.status.idle": "2023-10-16T20:23:49.879818Z", - "shell.execute_reply": "2023-10-16T20:23:49.878695Z" + "iopub.execute_input": "2023-10-17T19:43:25.057620Z", + "iopub.status.busy": "2023-10-17T19:43:25.057061Z", + "iopub.status.idle": "2023-10-17T19:43:26.680299Z", + "shell.execute_reply": "2023-10-17T19:43:26.679491Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.884967Z", - "iopub.status.busy": "2023-10-16T20:23:49.883766Z", - "iopub.status.idle": "2023-10-16T20:23:49.913549Z", - "shell.execute_reply": "2023-10-16T20:23:49.912605Z" + "iopub.execute_input": "2023-10-17T19:43:26.685050Z", + "iopub.status.busy": "2023-10-17T19:43:26.683458Z", + "iopub.status.idle": "2023-10-17T19:43:26.705934Z", + "shell.execute_reply": "2023-10-17T19:43:26.705282Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.917925Z", - "iopub.status.busy": "2023-10-16T20:23:49.917322Z", - "iopub.status.idle": "2023-10-16T20:23:49.930353Z", - "shell.execute_reply": "2023-10-16T20:23:49.929514Z" + "iopub.execute_input": "2023-10-17T19:43:26.709664Z", + "iopub.status.busy": "2023-10-17T19:43:26.709154Z", + "iopub.status.idle": "2023-10-17T19:43:26.719509Z", + "shell.execute_reply": "2023-10-17T19:43:26.718909Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.935008Z", - "iopub.status.busy": "2023-10-16T20:23:49.934431Z", - "iopub.status.idle": "2023-10-16T20:23:49.946620Z", - "shell.execute_reply": "2023-10-16T20:23:49.945695Z" + "iopub.execute_input": "2023-10-17T19:43:26.722762Z", + "iopub.status.busy": "2023-10-17T19:43:26.722343Z", + "iopub.status.idle": "2023-10-17T19:43:26.731499Z", + "shell.execute_reply": "2023-10-17T19:43:26.730860Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.950436Z", - "iopub.status.busy": "2023-10-16T20:23:49.950106Z", - "iopub.status.idle": "2023-10-16T20:23:49.963423Z", - "shell.execute_reply": "2023-10-16T20:23:49.962623Z" + "iopub.execute_input": "2023-10-17T19:43:26.734597Z", + "iopub.status.busy": "2023-10-17T19:43:26.734244Z", + "iopub.status.idle": "2023-10-17T19:43:26.744033Z", + "shell.execute_reply": "2023-10-17T19:43:26.743491Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.967456Z", - "iopub.status.busy": "2023-10-16T20:23:49.966812Z", - "iopub.status.idle": "2023-10-16T20:23:49.981429Z", - "shell.execute_reply": "2023-10-16T20:23:49.980641Z" + "iopub.execute_input": "2023-10-17T19:43:26.747417Z", + "iopub.status.busy": "2023-10-17T19:43:26.747055Z", + "iopub.status.idle": "2023-10-17T19:43:26.760466Z", + "shell.execute_reply": "2023-10-17T19:43:26.759871Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.985879Z", - "iopub.status.busy": "2023-10-16T20:23:49.985088Z", - "iopub.status.idle": "2023-10-16T20:23:49.996695Z", - "shell.execute_reply": "2023-10-16T20:23:49.995816Z" + "iopub.execute_input": "2023-10-17T19:43:26.763986Z", + "iopub.status.busy": "2023-10-17T19:43:26.763482Z", + "iopub.status.idle": "2023-10-17T19:43:26.774343Z", + "shell.execute_reply": "2023-10-17T19:43:26.773742Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:50.000643Z", - "iopub.status.busy": "2023-10-16T20:23:50.000174Z", - "iopub.status.idle": "2023-10-16T20:23:50.015820Z", - "shell.execute_reply": "2023-10-16T20:23:50.014841Z" + "iopub.execute_input": "2023-10-17T19:43:26.778579Z", + "iopub.status.busy": "2023-10-17T19:43:26.777347Z", + "iopub.status.idle": "2023-10-17T19:43:26.791548Z", + "shell.execute_reply": "2023-10-17T19:43:26.790943Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 30fb529fa..33fd2b411 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:55.306174Z", - "iopub.status.busy": "2023-10-16T20:23:55.305603Z", - "iopub.status.idle": "2023-10-16T20:23:56.806719Z", - "shell.execute_reply": "2023-10-16T20:23:56.805897Z" + "iopub.execute_input": "2023-10-17T19:43:32.441235Z", + "iopub.status.busy": "2023-10-17T19:43:32.440789Z", + "iopub.status.idle": "2023-10-17T19:43:33.588523Z", + "shell.execute_reply": "2023-10-17T19:43:33.587836Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:56.811139Z", - "iopub.status.busy": "2023-10-16T20:23:56.810439Z", - "iopub.status.idle": "2023-10-16T20:23:56.902820Z", - "shell.execute_reply": "2023-10-16T20:23:56.901488Z" + "iopub.execute_input": "2023-10-17T19:43:33.592262Z", + "iopub.status.busy": "2023-10-17T19:43:33.591660Z", + "iopub.status.idle": "2023-10-17T19:43:33.646127Z", + "shell.execute_reply": "2023-10-17T19:43:33.645454Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:56.908830Z", - "iopub.status.busy": "2023-10-16T20:23:56.908266Z", - "iopub.status.idle": "2023-10-16T20:23:57.190901Z", - "shell.execute_reply": "2023-10-16T20:23:57.189920Z" + "iopub.execute_input": "2023-10-17T19:43:33.650367Z", + "iopub.status.busy": "2023-10-17T19:43:33.649789Z", + "iopub.status.idle": "2023-10-17T19:43:33.892693Z", + "shell.execute_reply": "2023-10-17T19:43:33.892013Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.195671Z", - "iopub.status.busy": "2023-10-16T20:23:57.195153Z", - "iopub.status.idle": "2023-10-16T20:23:57.200859Z", - "shell.execute_reply": "2023-10-16T20:23:57.199977Z" + "iopub.execute_input": "2023-10-17T19:43:33.895788Z", + "iopub.status.busy": "2023-10-17T19:43:33.895407Z", + "iopub.status.idle": "2023-10-17T19:43:33.899833Z", + "shell.execute_reply": "2023-10-17T19:43:33.899172Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.208610Z", - "iopub.status.busy": "2023-10-16T20:23:57.208078Z", - "iopub.status.idle": "2023-10-16T20:23:57.225729Z", - "shell.execute_reply": "2023-10-16T20:23:57.224656Z" + "iopub.execute_input": "2023-10-17T19:43:33.902974Z", + "iopub.status.busy": "2023-10-17T19:43:33.902583Z", + "iopub.status.idle": "2023-10-17T19:43:33.912475Z", + "shell.execute_reply": "2023-10-17T19:43:33.911799Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.231643Z", - "iopub.status.busy": "2023-10-16T20:23:57.229943Z", - "iopub.status.idle": "2023-10-16T20:23:57.235791Z", - "shell.execute_reply": "2023-10-16T20:23:57.235018Z" + "iopub.execute_input": "2023-10-17T19:43:33.915726Z", + "iopub.status.busy": "2023-10-17T19:43:33.915329Z", + "iopub.status.idle": "2023-10-17T19:43:33.918583Z", + "shell.execute_reply": "2023-10-17T19:43:33.917882Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.239691Z", - "iopub.status.busy": "2023-10-16T20:23:57.239116Z", - "iopub.status.idle": "2023-10-16T20:24:03.600459Z", - "shell.execute_reply": "2023-10-16T20:24:03.599636Z" + "iopub.execute_input": "2023-10-17T19:43:33.921585Z", + "iopub.status.busy": "2023-10-17T19:43:33.921220Z", + "iopub.status.idle": "2023-10-17T19:43:39.157254Z", + "shell.execute_reply": "2023-10-17T19:43:39.156630Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:03.605792Z", - "iopub.status.busy": "2023-10-16T20:24:03.605209Z", - "iopub.status.idle": "2023-10-16T20:24:03.621638Z", - "shell.execute_reply": "2023-10-16T20:24:03.620874Z" + "iopub.execute_input": "2023-10-17T19:43:39.161458Z", + "iopub.status.busy": "2023-10-17T19:43:39.160972Z", + "iopub.status.idle": "2023-10-17T19:43:39.172728Z", + "shell.execute_reply": "2023-10-17T19:43:39.172173Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:03.626735Z", - "iopub.status.busy": "2023-10-16T20:24:03.626063Z", - "iopub.status.idle": "2023-10-16T20:24:05.689125Z", - "shell.execute_reply": "2023-10-16T20:24:05.683325Z" + "iopub.execute_input": "2023-10-17T19:43:39.175705Z", + "iopub.status.busy": "2023-10-17T19:43:39.175284Z", + "iopub.status.idle": "2023-10-17T19:43:40.774398Z", + "shell.execute_reply": "2023-10-17T19:43:40.773617Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.695139Z", - "iopub.status.busy": "2023-10-16T20:24:05.693862Z", - "iopub.status.idle": "2023-10-16T20:24:05.718858Z", - "shell.execute_reply": "2023-10-16T20:24:05.717912Z" + "iopub.execute_input": "2023-10-17T19:43:40.778496Z", + "iopub.status.busy": "2023-10-17T19:43:40.777838Z", + "iopub.status.idle": "2023-10-17T19:43:40.798292Z", + "shell.execute_reply": "2023-10-17T19:43:40.797618Z" }, "scrolled": true }, @@ -577,10 +577,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.723302Z", - "iopub.status.busy": "2023-10-16T20:24:05.722517Z", - "iopub.status.idle": "2023-10-16T20:24:05.735957Z", - "shell.execute_reply": "2023-10-16T20:24:05.735126Z" + "iopub.execute_input": "2023-10-17T19:43:40.801784Z", + "iopub.status.busy": "2023-10-17T19:43:40.801397Z", + "iopub.status.idle": "2023-10-17T19:43:40.813269Z", + "shell.execute_reply": "2023-10-17T19:43:40.812653Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.740103Z", - "iopub.status.busy": "2023-10-16T20:24:05.739330Z", - "iopub.status.idle": "2023-10-16T20:24:05.758087Z", - "shell.execute_reply": "2023-10-16T20:24:05.757130Z" + "iopub.execute_input": "2023-10-17T19:43:40.816122Z", + "iopub.status.busy": "2023-10-17T19:43:40.815878Z", + "iopub.status.idle": "2023-10-17T19:43:40.828745Z", + "shell.execute_reply": "2023-10-17T19:43:40.828132Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.764478Z", - "iopub.status.busy": "2023-10-16T20:24:05.762776Z", - "iopub.status.idle": "2023-10-16T20:24:05.778495Z", - "shell.execute_reply": "2023-10-16T20:24:05.777604Z" + "iopub.execute_input": "2023-10-17T19:43:40.832162Z", + "iopub.status.busy": "2023-10-17T19:43:40.831771Z", + "iopub.status.idle": "2023-10-17T19:43:40.844700Z", + "shell.execute_reply": "2023-10-17T19:43:40.844039Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.783466Z", - "iopub.status.busy": "2023-10-16T20:24:05.782642Z", - "iopub.status.idle": "2023-10-16T20:24:05.799574Z", - "shell.execute_reply": "2023-10-16T20:24:05.798766Z" + "iopub.execute_input": "2023-10-17T19:43:40.848375Z", + "iopub.status.busy": "2023-10-17T19:43:40.847829Z", + "iopub.status.idle": "2023-10-17T19:43:40.862231Z", + "shell.execute_reply": "2023-10-17T19:43:40.861546Z" } }, "outputs": [ @@ -1047,10 +1047,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.804104Z", - "iopub.status.busy": "2023-10-16T20:24:05.803375Z", - "iopub.status.idle": "2023-10-16T20:24:05.815720Z", - "shell.execute_reply": "2023-10-16T20:24:05.814940Z" + "iopub.execute_input": "2023-10-17T19:43:40.865920Z", + "iopub.status.busy": "2023-10-17T19:43:40.865513Z", + "iopub.status.idle": "2023-10-17T19:43:40.875511Z", + "shell.execute_reply": "2023-10-17T19:43:40.874827Z" } }, "outputs": [ @@ -1134,10 +1134,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.820194Z", - "iopub.status.busy": "2023-10-16T20:24:05.819484Z", - "iopub.status.idle": "2023-10-16T20:24:05.829612Z", - "shell.execute_reply": "2023-10-16T20:24:05.828884Z" + "iopub.execute_input": "2023-10-17T19:43:40.878307Z", + "iopub.status.busy": "2023-10-17T19:43:40.878075Z", + "iopub.status.idle": "2023-10-17T19:43:40.885953Z", + "shell.execute_reply": "2023-10-17T19:43:40.885404Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.833524Z", - "iopub.status.busy": "2023-10-16T20:24:05.832788Z", - "iopub.status.idle": "2023-10-16T20:24:05.845749Z", - "shell.execute_reply": "2023-10-16T20:24:05.844899Z" + "iopub.execute_input": "2023-10-17T19:43:40.889078Z", + "iopub.status.busy": "2023-10-17T19:43:40.888500Z", + "iopub.status.idle": "2023-10-17T19:43:40.897951Z", + "shell.execute_reply": "2023-10-17T19:43:40.897349Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index aa91e39aa..a8fc1ff0c 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:11.726929Z", - "iopub.status.busy": "2023-10-16T20:24:11.726602Z", - "iopub.status.idle": "2023-10-16T20:24:15.580546Z", - "shell.execute_reply": "2023-10-16T20:24:15.579429Z" + "iopub.execute_input": "2023-10-17T19:43:46.444984Z", + "iopub.status.busy": "2023-10-17T19:43:46.444617Z", + "iopub.status.idle": "2023-10-17T19:43:49.281821Z", + "shell.execute_reply": "2023-10-17T19:43:49.281132Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd480a50df2d47ccb740466346c0cba1", + "model_id": "f194256422d04eda9aafe3848ab98800", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.586194Z", - "iopub.status.busy": "2023-10-16T20:24:15.585637Z", - "iopub.status.idle": "2023-10-16T20:24:15.592011Z", - "shell.execute_reply": "2023-10-16T20:24:15.591217Z" + "iopub.execute_input": "2023-10-17T19:43:49.285577Z", + "iopub.status.busy": "2023-10-17T19:43:49.284847Z", + "iopub.status.idle": "2023-10-17T19:43:49.288789Z", + "shell.execute_reply": "2023-10-17T19:43:49.288128Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.595764Z", - "iopub.status.busy": "2023-10-16T20:24:15.595182Z", - "iopub.status.idle": "2023-10-16T20:24:15.599807Z", - "shell.execute_reply": "2023-10-16T20:24:15.598973Z" + "iopub.execute_input": "2023-10-17T19:43:49.291973Z", + "iopub.status.busy": "2023-10-17T19:43:49.291438Z", + "iopub.status.idle": "2023-10-17T19:43:49.295152Z", + "shell.execute_reply": "2023-10-17T19:43:49.294483Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.604237Z", - "iopub.status.busy": "2023-10-16T20:24:15.603405Z", - "iopub.status.idle": "2023-10-16T20:24:15.732613Z", - "shell.execute_reply": "2023-10-16T20:24:15.731430Z" + "iopub.execute_input": "2023-10-17T19:43:49.298062Z", + "iopub.status.busy": "2023-10-17T19:43:49.297671Z", + "iopub.status.idle": "2023-10-17T19:43:49.422383Z", + "shell.execute_reply": "2023-10-17T19:43:49.421632Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.740043Z", - "iopub.status.busy": "2023-10-16T20:24:15.739259Z", - "iopub.status.idle": "2023-10-16T20:24:15.745199Z", - "shell.execute_reply": "2023-10-16T20:24:15.744315Z" + "iopub.execute_input": "2023-10-17T19:43:49.425657Z", + "iopub.status.busy": "2023-10-17T19:43:49.425267Z", + "iopub.status.idle": "2023-10-17T19:43:49.429997Z", + "shell.execute_reply": "2023-10-17T19:43:49.429296Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer'}\n" + "Classes: {'cancel_transfer', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.750551Z", - "iopub.status.busy": "2023-10-16T20:24:15.749774Z", - "iopub.status.idle": "2023-10-16T20:24:15.754685Z", - "shell.execute_reply": "2023-10-16T20:24:15.753834Z" + "iopub.execute_input": "2023-10-17T19:43:49.433795Z", + "iopub.status.busy": "2023-10-17T19:43:49.433418Z", + "iopub.status.idle": "2023-10-17T19:43:49.437346Z", + "shell.execute_reply": "2023-10-17T19:43:49.436693Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.759162Z", - "iopub.status.busy": "2023-10-16T20:24:15.758498Z", - "iopub.status.idle": "2023-10-16T20:24:21.892772Z", - "shell.execute_reply": "2023-10-16T20:24:21.891864Z" + "iopub.execute_input": "2023-10-17T19:43:49.441201Z", + "iopub.status.busy": "2023-10-17T19:43:49.440664Z", + "iopub.status.idle": "2023-10-17T19:43:54.821957Z", + "shell.execute_reply": "2023-10-17T19:43:54.821333Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c157699046a47f78d33e0d50a29f9a8", + "model_id": "81c48d5732a740e2b143cf9bab71a7cf", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd93fb501e0f4d64abf94fa1bd420fee", + "model_id": "28df087be4494804a7e100f82945afb9", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a61fb3851e1f450a87d974fdf9c3e9d8", + "model_id": "5a86491fcd574e9185967b2b664f2b65", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa105bf9378a40afb5d953bdfd505dbe", + "model_id": "71443e20c72f4c6f9f93dfc1a155a03e", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c590b3ee86934c3d9043c5c3ee93b1c4", + "model_id": "880dfd43f4784a639b02df0a2cb0f44d", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32e8c5f826e446088315eb2742c88033", + "model_id": "72f8ed7b4ff040a6b5acd385375f10bf", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49b2317b8eb84bddadc8ee97d07e543b", + "model_id": "05137f251072409f97be0367f091f6c2", "version_major": 2, "version_minor": 0 }, @@ -503,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -544,10 +544,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:21.898894Z", - "iopub.status.busy": "2023-10-16T20:24:21.898115Z", - "iopub.status.idle": "2023-10-16T20:24:23.448253Z", - "shell.execute_reply": "2023-10-16T20:24:23.447359Z" + "iopub.execute_input": "2023-10-17T19:43:54.825742Z", + "iopub.status.busy": "2023-10-17T19:43:54.824976Z", + "iopub.status.idle": "2023-10-17T19:43:56.152347Z", + "shell.execute_reply": "2023-10-17T19:43:56.151730Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:23.453504Z", - "iopub.status.busy": "2023-10-16T20:24:23.452571Z", - "iopub.status.idle": "2023-10-16T20:24:23.456546Z", - "shell.execute_reply": "2023-10-16T20:24:23.455837Z" + "iopub.execute_input": "2023-10-17T19:43:56.155994Z", + "iopub.status.busy": "2023-10-17T19:43:56.155413Z", + "iopub.status.idle": "2023-10-17T19:43:56.158605Z", + "shell.execute_reply": "2023-10-17T19:43:56.158077Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:23.460339Z", - "iopub.status.busy": "2023-10-16T20:24:23.459723Z", - "iopub.status.idle": "2023-10-16T20:24:25.516638Z", - "shell.execute_reply": "2023-10-16T20:24:25.515674Z" + "iopub.execute_input": "2023-10-17T19:43:56.161571Z", + "iopub.status.busy": "2023-10-17T19:43:56.160980Z", + "iopub.status.idle": "2023-10-17T19:43:57.781774Z", + "shell.execute_reply": "2023-10-17T19:43:57.780888Z" }, "scrolled": true }, @@ -647,10 +647,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.521068Z", - "iopub.status.busy": "2023-10-16T20:24:25.520186Z", - "iopub.status.idle": "2023-10-16T20:24:25.549426Z", - "shell.execute_reply": "2023-10-16T20:24:25.547917Z" + "iopub.execute_input": "2023-10-17T19:43:57.786114Z", + "iopub.status.busy": "2023-10-17T19:43:57.785501Z", + "iopub.status.idle": "2023-10-17T19:43:57.810196Z", + "shell.execute_reply": "2023-10-17T19:43:57.809439Z" }, "scrolled": true }, @@ -775,10 +775,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.553157Z", - "iopub.status.busy": "2023-10-16T20:24:25.552837Z", - "iopub.status.idle": "2023-10-16T20:24:25.566570Z", - "shell.execute_reply": "2023-10-16T20:24:25.565652Z" + "iopub.execute_input": "2023-10-17T19:43:57.813703Z", + "iopub.status.busy": "2023-10-17T19:43:57.813337Z", + "iopub.status.idle": "2023-10-17T19:43:57.826688Z", + "shell.execute_reply": "2023-10-17T19:43:57.825973Z" }, "scrolled": true }, @@ -888,10 +888,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.571175Z", - "iopub.status.busy": "2023-10-16T20:24:25.570539Z", - "iopub.status.idle": "2023-10-16T20:24:25.577711Z", - "shell.execute_reply": "2023-10-16T20:24:25.576810Z" + "iopub.execute_input": "2023-10-17T19:43:57.830268Z", + "iopub.status.busy": "2023-10-17T19:43:57.829779Z", + "iopub.status.idle": "2023-10-17T19:43:57.837008Z", + "shell.execute_reply": "2023-10-17T19:43:57.836369Z" } }, "outputs": [ @@ -929,10 +929,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.582172Z", - "iopub.status.busy": "2023-10-16T20:24:25.581750Z", - "iopub.status.idle": "2023-10-16T20:24:25.593935Z", - "shell.execute_reply": "2023-10-16T20:24:25.593193Z" + "iopub.execute_input": "2023-10-17T19:43:57.841324Z", + "iopub.status.busy": "2023-10-17T19:43:57.840129Z", + "iopub.status.idle": "2023-10-17T19:43:57.850703Z", + "shell.execute_reply": "2023-10-17T19:43:57.850009Z" } }, "outputs": [ @@ -1049,10 +1049,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.597939Z", - "iopub.status.busy": "2023-10-16T20:24:25.597141Z", - "iopub.status.idle": "2023-10-16T20:24:25.606847Z", - "shell.execute_reply": "2023-10-16T20:24:25.606139Z" + "iopub.execute_input": "2023-10-17T19:43:57.854165Z", + "iopub.status.busy": "2023-10-17T19:43:57.853688Z", + "iopub.status.idle": "2023-10-17T19:43:57.863401Z", + "shell.execute_reply": "2023-10-17T19:43:57.862828Z" } }, "outputs": [ @@ -1135,10 +1135,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.610480Z", - "iopub.status.busy": "2023-10-16T20:24:25.609880Z", - "iopub.status.idle": "2023-10-16T20:24:25.618812Z", - "shell.execute_reply": "2023-10-16T20:24:25.618094Z" + "iopub.execute_input": "2023-10-17T19:43:57.866204Z", + "iopub.status.busy": "2023-10-17T19:43:57.865778Z", + "iopub.status.idle": "2023-10-17T19:43:57.873029Z", + "shell.execute_reply": "2023-10-17T19:43:57.872465Z" } }, "outputs": [ @@ -1246,10 +1246,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.622509Z", - "iopub.status.busy": "2023-10-16T20:24:25.621921Z", - "iopub.status.idle": "2023-10-16T20:24:25.635535Z", - "shell.execute_reply": "2023-10-16T20:24:25.634748Z" + "iopub.execute_input": "2023-10-17T19:43:57.875967Z", + "iopub.status.busy": "2023-10-17T19:43:57.875560Z", + "iopub.status.idle": "2023-10-17T19:43:57.886195Z", + "shell.execute_reply": "2023-10-17T19:43:57.885633Z" } }, "outputs": [ @@ -1360,10 +1360,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.639294Z", - "iopub.status.busy": "2023-10-16T20:24:25.638699Z", - "iopub.status.idle": "2023-10-16T20:24:25.647320Z", - "shell.execute_reply": "2023-10-16T20:24:25.646609Z" + "iopub.execute_input": "2023-10-17T19:43:57.888959Z", + "iopub.status.busy": "2023-10-17T19:43:57.888571Z", + "iopub.status.idle": "2023-10-17T19:43:57.894832Z", + "shell.execute_reply": "2023-10-17T19:43:57.894297Z" } }, "outputs": [ @@ -1431,10 +1431,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.651454Z", - "iopub.status.busy": "2023-10-16T20:24:25.650868Z", - "iopub.status.idle": "2023-10-16T20:24:25.658838Z", - "shell.execute_reply": "2023-10-16T20:24:25.658137Z" + "iopub.execute_input": "2023-10-17T19:43:57.897585Z", + "iopub.status.busy": "2023-10-17T19:43:57.897173Z", + "iopub.status.idle": "2023-10-17T19:43:57.903292Z", + "shell.execute_reply": "2023-10-17T19:43:57.902770Z" } }, "outputs": [ @@ -1512,10 +1512,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.662524Z", - "iopub.status.busy": "2023-10-16T20:24:25.661942Z", - "iopub.status.idle": "2023-10-16T20:24:25.669776Z", - "shell.execute_reply": "2023-10-16T20:24:25.669082Z" + "iopub.execute_input": "2023-10-17T19:43:57.906111Z", + "iopub.status.busy": "2023-10-17T19:43:57.905703Z", + "iopub.status.idle": "2023-10-17T19:43:57.911631Z", + "shell.execute_reply": "2023-10-17T19:43:57.911091Z" }, "nbsphinx": "hidden" }, @@ -1565,125 +1565,99 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "044412fd93294f9d8b1243b0d2e85be7": { + "00fee9aa197e44f4b8444d4e7566b85e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a191b1d30f444f098810eb3a3d44d8bb", - "placeholder": "​", - "style": "IPY_MODEL_187591ce52714d88b220a3a190352c69", - "value": "Downloading: 100%" + "layout": "IPY_MODEL_1491bfa93a784d5b81f1dba3b6c5b047", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dd5918302d644eb91e33b93a8d52898", + "value": 29.0 } }, - "0a08e8da5e264fd2a3c3804d01419320": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "024cd14ac8414f79932720b710699bc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "0e7f1d7fba3a4b269af3427750012335": { + "0394a37262214974b25c1c38f05e1dc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f78595fb99c45419fb3c0fb010d1583", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1801b37f0d3b4c9ca079d62d1f4887fc", - "value": 0.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "10ec4fe832ca4dcfb79928686bbc8d80": { + "05137f251072409f97be0367f091f6c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5251a6376c0e4eb7b4a6c4946098e5a4", - "placeholder": "​", - "style": "IPY_MODEL_98cea86c64b94ce689027bc854f05de4", - "value": " 391/391 [00:00<00:00, 24.5kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa4eb2ddc03e4fa1a934d298ac94c48e", + "IPY_MODEL_068501ce030847b3bcd56ecb6c436626", + "IPY_MODEL_8abe0ad2329246c6bc6140910e7b14fa" + ], + "layout": "IPY_MODEL_2d2cfcef9bac4afcb67176107551aaab" + } + }, + "067e575defb1480ca0d0fc47575bbcc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "144dded57a4f4152aa26a123e9743959": { + "068501ce030847b3bcd56ecb6c436626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1699,15 +1673,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d70d9ecb368a4b2ba1660f571f1e31b9", - "max": 466062.0, + "layout": "IPY_MODEL_2a8471b342fa4cab9b5b048b2fd2fb26", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5b3b8385d0864067ba3298b55c57d2c7", - "value": 466062.0 + "style": "IPY_MODEL_ad22139ef854479e809a210fb9e96991", + "value": 231508.0 + } + }, + "06f8ca67b67c4d81b4c4a1d390d81a82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "150acb7c4e3f4bb38e65b584dc3c9e21": { + "0c849c9f7218450d933a79e2de015549": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1759,137 +1749,7 @@ "width": null } }, - "15de82d55e7f40d9ac4bd7da8e36c1e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "177e6f27c68b466eb81f9fdbbe238ea4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_330dc2c56b474215851937398170ccdf", - "placeholder": "​", - "style": "IPY_MODEL_2180cafdf702487c8ba9b9d97d4f6749", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "17dae8723de94ea3ac7cec3ef6ff55ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_75b825fc1b5c46268b1249b647447b96", - "placeholder": "​", - "style": "IPY_MODEL_8da630d6d266443eb341181b83b3c1c0", - "value": "Downloading: 100%" - } - }, - "1801b37f0d3b4c9ca079d62d1f4887fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "187591ce52714d88b220a3a190352c69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1a0673d3c2ef4058a535d539eee60da8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_922a71dc4655476ca28fd5e096c17961", - "placeholder": "​", - "style": "IPY_MODEL_2ce0c9e381ac4d0587e2801a2d826591", - "value": " 466k/466k [00:00<00:00, 844kB/s]" - } - }, - "1e0eb893a064478fa5f7389d7f825040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d2715220cda44b2c8945858c34e570a5", - "placeholder": "​", - "style": "IPY_MODEL_2b43ab9a8587490fbd7a049b384211c9", - "value": " 232k/232k [00:00<00:00, 3.81MB/s]" - } - }, - "1e8e41df345a431d916c70b503284b7e": { + "0caee2b3fa2f4a3babe89c881f0ba02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1904,13 +1764,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3e28fb8953704f148e1c63799d6f3c08", + "layout": "IPY_MODEL_b6a49299ab884400993f7be303857166", "placeholder": "​", - "style": "IPY_MODEL_d228ec0326154f3987727d9177f051d2", - "value": "Downloading: 100%" + "style": "IPY_MODEL_7ea6bf3653394f8fa83760d9a42d80ad", + "value": "" } }, - "1f12e1a6525348a9b4400409edb3ae82": { + "0cfb178df251433fbf0716b1259cca1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1962,110 +1822,10 @@ "width": null } }, - "2180cafdf702487c8ba9b9d97d4f6749": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "26777d3195d54fee8999477bf2ce32e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2b43ab9a8587490fbd7a049b384211c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2c1ca851e64a4415bd115cfc7907e1c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_783e9c2ed3e247c79c97ff6793846ed5", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a948abf8758f429e973c32b9b01ab242", - "value": 2211.0 - } - }, - "2ce0c9e381ac4d0587e2801a2d826591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f52710da52f40e7baafc8d7ce1602bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f78595fb99c45419fb3c0fb010d1583": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1491bfa93a784d5b81f1dba3b6c5b047": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2111,10 +1871,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "32e8c5f826e446088315eb2742c88033": { + "28df087be4494804a7e100f82945afb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2129,14 +1889,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_593d17c52cca4b8a8ad952c5e3c23f57", - "IPY_MODEL_4cc68b35c73d4b75ada7065d6a8531e9", - "IPY_MODEL_98deaf6912d04123a3d98feacf9028fe" + "IPY_MODEL_294b75c80c554e5e8e8bb69f13b1e608", + "IPY_MODEL_a0eb09e56a0e4e27b073a1866d86f914", + "IPY_MODEL_d2acd22d0cb245db9883946214feb341" ], - "layout": "IPY_MODEL_7b7ea4293a7c474d8e23b96a2e9434ca" + "layout": "IPY_MODEL_a2f284da700246718f0e1c4535676095" } }, - "330dc2c56b474215851937398170ccdf": { + "2941fb46731b4d21ac3134fa0e6a23ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2188,23 +1948,7 @@ "width": null } }, - "348f7b8567074e5abbe05e2b7e6c3929": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3507bc7287964a789739ff89055ab868": { + "294b75c80c554e5e8e8bb69f13b1e608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2219,13 +1963,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff9c3a60c2064d34baf6dab70f4f9c57", + "layout": "IPY_MODEL_f3943e4741cb4f7bbfec0d1d4cae67f9", "placeholder": "​", - "style": "IPY_MODEL_2f52710da52f40e7baafc8d7ce1602bc", - "value": " 665/665 [00:00<00:00, 42.0kB/s]" + "style": "IPY_MODEL_bebc1804c03b490983b6ce3ad49347c2", + "value": "Downloading: 100%" + } + }, + "2a8471b342fa4cab9b5b048b2fd2fb26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3cd2657e03cc406a911e26ffb057df22": { + "2d2cfcef9bac4afcb67176107551aaab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2277,7 +2073,23 @@ "width": null } }, - "3e28fb8953704f148e1c63799d6f3c08": { + "2dd5918302d644eb91e33b93a8d52898": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "333459cf0bc04370b062361ad40a8738": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2329,7 +2141,7 @@ "width": null } }, - "3f7c22f335664018a5c55d525798e258": { + "37cff2bd6e2b4534a92e84991f51dcb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2381,7 +2193,7 @@ "width": null } }, - "4378314d1e8d4a8db203a8a3901f84ca": { + "3c5c3664f0b74ea180e0abffcd5c7e1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2397,61 +2209,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca6a947d86494127aee19d225bc6e8d9", - "max": 391.0, + "layout": "IPY_MODEL_d5924b82ac214d78bf7a23c7b998503e", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_348f7b8567074e5abbe05e2b7e6c3929", - "value": 391.0 - } - }, - "49b2317b8eb84bddadc8ee97d07e543b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db2f666b978a4ee7a7f4b90c2f8ba493", - "IPY_MODEL_a5383e93c97b46edb15526061b0c0943", - "IPY_MODEL_1e0eb893a064478fa5f7389d7f825040" - ], - "layout": "IPY_MODEL_b78ee0ed16854a28bc9434afe67c5826" + "style": "IPY_MODEL_68d1898e5ddd44c2a50a9b684b8fae5a", + "value": 466062.0 } }, - "4cc68b35c73d4b75ada7065d6a8531e9": { + "3d421143c1dd47bd997217162ae9fdfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a08e8da5e264fd2a3c3804d01419320", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8ad428a31291476498dfaf06de635bf1", - "value": 29.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5251a6376c0e4eb7b4a6c4946098e5a4": { + "3fe4b770971742d49ba55347eea4bef6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2503,7 +2284,7 @@ "width": null } }, - "55cf0ab13b0f408789589bd22b4ce48d": { + "400d74a5e6c54e2a8ed7d59d8b18f775": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2555,7 +2336,7 @@ "width": null } }, - "59035e73cbd74a57a98fb2d4840f18b3": { + "4605067a7e6e43ea916d164ff5775306": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2607,44 +2388,44 @@ "width": null } }, - "593d17c52cca4b8a8ad952c5e3c23f57": { + "4ab8f5cd1edb41f6a7c581ed4a71738d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3f7c22f335664018a5c55d525798e258", - "placeholder": "​", - "style": "IPY_MODEL_bedf81b02e2c4f4c8a9a7c2b15b65c5c", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5b3b8385d0864067ba3298b55c57d2c7": { + "5a86491fcd574e9185967b2b664f2b65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f0b467505b34ca9ae083b4186ffcbeb", + "IPY_MODEL_fc68f8c4ad8a4bbcad0282c224941bb3", + "IPY_MODEL_9a7a702003914b439c697d72d2af7b4b" + ], + "layout": "IPY_MODEL_333459cf0bc04370b062361ad40a8738" } }, - "6464758658604a06809bedf707a2b992": { + "6511652d476a437b98bddd2e704d3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2696,83 +2477,140 @@ "width": null } }, - "66e91167295d42b7b0050631727606d4": { + "653da65d71764faf9f4b76c037574b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da85fca276d644c68873fc4001387a74", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b90337585ce14bc19287f05e3048ca00", - "value": 665.0 - } + "layout": "IPY_MODEL_3fe4b770971742d49ba55347eea4bef6", + "placeholder": "​", + "style": "IPY_MODEL_a83d350b4ad04fc3a28b54ac9b21a6b2", + "value": "Downloading: 100%" + } }, - "698d8763c736423882692af8f381b772": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "68d1898e5ddd44c2a50a9b684b8fae5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bd93fb0d47448a2845779b3f10e87f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "74f76e09352f4b72a527f87488e3775c": { + "71443e20c72f4c6f9f93dfc1a155a03e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4d4cc07bd2f46a182ad597cf7cb733c", + "IPY_MODEL_9cc3d6d64c5f4411b3d5dea59b3dc331", + "IPY_MODEL_c958de51e8b5405d830078f4c796b812" + ], + "layout": "IPY_MODEL_da08fecb508d4c38b13756b724b65037" + } + }, + "72f8ed7b4ff040a6b5acd385375f10bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_653da65d71764faf9f4b76c037574b32", + "IPY_MODEL_00fee9aa197e44f4b8444d4e7566b85e", + "IPY_MODEL_cd45abf12b924aadaa4ca168fb342b32" + ], + "layout": "IPY_MODEL_e32a9b21d20e4c7ab7154b83fa704c3c" + } + }, + "758ca14ecd3041f5b7cc0bb4ba2e53ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e15aee7358cf438795b74fe73d5965f0", + "placeholder": "​", + "style": "IPY_MODEL_a337884066234400b250e0106f5d2763", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "78a77f1f288c4706bdf77e8eea4251ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7ea6bf3653394f8fa83760d9a42d80ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2787,7 +2625,7 @@ "description_width": "" } }, - "75b825fc1b5c46268b1249b647447b96": { + "7f2b77ab39c6498daef5f1d747585a10": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2839,7 +2677,50 @@ "width": null } }, - "761759e156924ef8a405f9f2e99cf14e": { + "7f39460dd5cd4e7cbab6c631e058f3ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4605067a7e6e43ea916d164ff5775306", + "placeholder": "​", + "style": "IPY_MODEL_922455f6179e43acb7543e7d18598bb6", + "value": " 466k/466k [00:00<00:00, 5.71MB/s]" + } + }, + "81c48d5732a740e2b143cf9bab71a7cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_925694d9722549a19852537221319045", + "IPY_MODEL_99ccfd8bb9164efa845a660fa1eb8a2f", + "IPY_MODEL_d51bec43027b428c8606e547d863294c" + ], + "layout": "IPY_MODEL_c7f79c3d51514b609a6b2a89d1e556c5" + } + }, + "85e3974cdd3b40e29c87a33b18c4b9ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2891,7 +2772,101 @@ "width": null } }, - "783e9c2ed3e247c79c97ff6793846ed5": { + "880dfd43f4784a639b02df0a2cb0f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9fbc61411d9141798661295ee4ca77ff", + "IPY_MODEL_3c5c3664f0b74ea180e0abffcd5c7e1a", + "IPY_MODEL_7f39460dd5cd4e7cbab6c631e058f3ac" + ], + "layout": "IPY_MODEL_37cff2bd6e2b4534a92e84991f51dcb3" + } + }, + "8abe0ad2329246c6bc6140910e7b14fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9c2ad429c344aba961a64b69e2a33fe", + "placeholder": "​", + "style": "IPY_MODEL_3d421143c1dd47bd997217162ae9fdfc", + "value": " 232k/232k [00:00<00:00, 4.79MB/s]" + } + }, + "8c886cbc2e434c0eb49a31005017d73b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8dfb6b88699f4713966597811b191716": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f0b467505b34ca9ae083b4186ffcbeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2941fb46731b4d21ac3134fa0e6a23ce", + "placeholder": "​", + "style": "IPY_MODEL_0394a37262214974b25c1c38f05e1dc9", + "value": "Downloading: 100%" + } + }, + "8fa4f3924bf84124a48aa1f912b66fd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2943,7 +2918,157 @@ "width": null } }, - "7b7ea4293a7c474d8e23b96a2e9434ca": { + "922455f6179e43acb7543e7d18598bb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "925694d9722549a19852537221319045": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c53c105255554ee4af98caf7badff571", + "placeholder": "​", + "style": "IPY_MODEL_78a77f1f288c4706bdf77e8eea4251ba", + "value": "Downloading: 100%" + } + }, + "99ccfd8bb9164efa845a660fa1eb8a2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cfb178df251433fbf0716b1259cca1a", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c66650a2acf74100aa658e539460aa27", + "value": 391.0 + } + }, + "9a7a702003914b439c697d72d2af7b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf844df012ce4d8788f0b8307d6a2a52", + "placeholder": "​", + "style": "IPY_MODEL_4ab8f5cd1edb41f6a7c581ed4a71738d", + "value": " 665/665 [00:00<00:00, 59.0kB/s]" + } + }, + "9cc3d6d64c5f4411b3d5dea59b3dc331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b090c95bacd8438cb58bde95987c90eb", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3960dbe609f4837a8b36d5aa7f059bf", + "value": 54245363.0 + } + }, + "9fbc61411d9141798661295ee4ca77ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85e3974cdd3b40e29c87a33b18c4b9ee", + "placeholder": "​", + "style": "IPY_MODEL_f8308e27fe8a44bea4a6973841405162", + "value": "Downloading: 100%" + } + }, + "a0eb09e56a0e4e27b073a1866d86f914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c849c9f7218450d933a79e2de015549", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_06f8ca67b67c4d81b4c4a1d390d81a82", + "value": 2211.0 + } + }, + "a2f284da700246718f0e1c4535676095": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2995,61 +3120,68 @@ "width": null } }, - "86a3dc805a0d42e28e7fdcb2f85371ab": { + "a337884066234400b250e0106f5d2763": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8ad428a31291476498dfaf06de635bf1": { + "a83d350b4ad04fc3a28b54ac9b21a6b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8c157699046a47f78d33e0d50a29f9a8": { + "abd52090cbb24fea81f9ed56c1c89930": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e8e41df345a431d916c70b503284b7e", - "IPY_MODEL_4378314d1e8d4a8db203a8a3901f84ca", - "IPY_MODEL_10ec4fe832ca4dcfb79928686bbc8d80" - ], - "layout": "IPY_MODEL_a0f148e3bda3447c86a870affbefaeb0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ad22139ef854479e809a210fb9e96991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c165fadb72b492095938608dba95ab8": { + "b090c95bacd8438cb58bde95987c90eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3101,22 +3233,7 @@ "width": null } }, - "8da630d6d266443eb341181b83b3c1c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "922a71dc4655476ca28fd5e096c17961": { + "b6a49299ab884400993f7be303857166": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3168,7 +3285,7 @@ "width": null } }, - "982b918feea9400b88173b7df82cb385": { + "b78155c7cece442a84f24adf3a554d90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3220,7 +3337,31 @@ "width": null } }, - "98cea86c64b94ce689027bc854f05de4": { + "bb5a1248bd6c4506960e4ee8150c5256": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f014b981a64048a3819b61196fd10427", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_067e575defb1480ca0d0fc47575bbcc1", + "value": 0.0 + } + }, + "be0335d44e18413db95e3366dc493e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3235,28 +3376,22 @@ "description_width": "" } }, - "98deaf6912d04123a3d98feacf9028fe": { + "bebc1804c03b490983b6ce3ad49347c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_59035e73cbd74a57a98fb2d4840f18b3", - "placeholder": "​", - "style": "IPY_MODEL_15de82d55e7f40d9ac4bd7da8e36c1e5", - "value": " 29.0/29.0 [00:00<00:00, 1.83kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a0f148e3bda3447c86a870affbefaeb0": { + "bf844df012ce4d8788f0b8307d6a2a52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3308,7 +3443,28 @@ "width": null } }, - "a191b1d30f444f098810eb3a3d44d8bb": { + "c4d4cc07bd2f46a182ad597cf7cb733c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6511652d476a437b98bddd2e704d3291", + "placeholder": "​", + "style": "IPY_MODEL_024cd14ac8414f79932720b710699bc6", + "value": "Downloading: 100%" + } + }, + "c53c105255554ee4af98caf7badff571": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3360,68 +3516,7 @@ "width": null } }, - "a5383e93c97b46edb15526061b0c0943": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed8764668cc64d0dab34895ca627cb5e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86a3dc805a0d42e28e7fdcb2f85371ab", - "value": 231508.0 - } - }, - "a61fb3851e1f450a87d974fdf9c3e9d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_044412fd93294f9d8b1243b0d2e85be7", - "IPY_MODEL_66e91167295d42b7b0050631727606d4", - "IPY_MODEL_3507bc7287964a789739ff89055ab868" - ], - "layout": "IPY_MODEL_698d8763c736423882692af8f381b772" - } - }, - "a6fef748b933448381f05292db676b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a948abf8758f429e973c32b9b01ab242": { + "c66650a2acf74100aa658e539460aa27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3437,29 +3532,7 @@ "description_width": "" } }, - "aa105bf9378a40afb5d953bdfd505dbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17dae8723de94ea3ac7cec3ef6ff55ec", - "IPY_MODEL_bca4ba1c8b76457aa35da26f138de632", - "IPY_MODEL_e59cd018a7d14fc493a3a85bd158a030" - ], - "layout": "IPY_MODEL_55cf0ab13b0f408789589bd22b4ce48d" - } - }, - "b78ee0ed16854a28bc9434afe67c5826": { + "c7f79c3d51514b609a6b2a89d1e556c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3511,47 +3584,28 @@ "width": null } }, - "b90337585ce14bc19287f05e3048ca00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bca4ba1c8b76457aa35da26f138de632": { + "c958de51e8b5405d830078f4c796b812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_982b918feea9400b88173b7df82cb385", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26777d3195d54fee8999477bf2ce32e3", - "value": 54245363.0 + "layout": "IPY_MODEL_b78155c7cece442a84f24adf3a554d90", + "placeholder": "​", + "style": "IPY_MODEL_be0335d44e18413db95e3366dc493e3a", + "value": " 54.2M/54.2M [00:00<00:00, 98.0MB/s]" } }, - "bcaa8998de3646f9a53d832918a594d7": { + "cd45abf12b924aadaa4ca168fb342b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3566,35 +3620,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6464758658604a06809bedf707a2b992", + "layout": "IPY_MODEL_cf202ab7aa274e00bddc503f7d0934c3", "placeholder": "​", - "style": "IPY_MODEL_fb4d2e82667f4d9e9c1af6cd496b73ca", - "value": "Downloading: 100%" - } - }, - "bd93fb501e0f4d64abf94fa1bd420fee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_be7cbe6ce0db43a981559c7b1f73223e", - "IPY_MODEL_2c1ca851e64a4415bd115cfc7907e1c3", - "IPY_MODEL_f55c43f62da64bb7a5c03ef2167b786c" - ], - "layout": "IPY_MODEL_150acb7c4e3f4bb38e65b584dc3c9e21" + "style": "IPY_MODEL_8dfb6b88699f4713966597811b191716", + "value": " 29.0/29.0 [00:00<00:00, 2.50kB/s]" } }, - "be3eb4375ffe4ecdb62b0b75a8a6d2f9": { + "cf202ab7aa274e00bddc503f7d0934c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3646,7 +3678,7 @@ "width": null } }, - "be7cbe6ce0db43a981559c7b1f73223e": { + "d2acd22d0cb245db9883946214feb341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3661,50 +3693,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d998aac1acd84ee789684d0fe03a8f70", + "layout": "IPY_MODEL_8fa4f3924bf84124a48aa1f912b66fd6", "placeholder": "​", - "style": "IPY_MODEL_e168f3d7a3014b07a0b985026901ad72", - "value": "Downloading: 100%" - } - }, - "bedf81b02e2c4f4c8a9a7c2b15b65c5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_8c886cbc2e434c0eb49a31005017d73b", + "value": " 2.21k/2.21k [00:00<00:00, 188kB/s]" } }, - "c590b3ee86934c3d9043c5c3ee93b1c4": { + "d3960dbe609f4837a8b36d5aa7f059bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bcaa8998de3646f9a53d832918a594d7", - "IPY_MODEL_144dded57a4f4152aa26a123e9743959", - "IPY_MODEL_1a0673d3c2ef4058a535d539eee60da8" - ], - "layout": "IPY_MODEL_3cd2657e03cc406a911e26ffb057df22" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c7d8daa53cbf4fadab9d794e82d6148d": { + "d51bec43027b428c8606e547d863294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3719,13 +3730,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_761759e156924ef8a405f9f2e99cf14e", + "layout": "IPY_MODEL_e837dfccff794308a27f62e443fab8da", "placeholder": "​", - "style": "IPY_MODEL_74f76e09352f4b72a527f87488e3775c", - "value": "" + "style": "IPY_MODEL_abd52090cbb24fea81f9ed56c1c89930", + "value": " 391/391 [00:00<00:00, 36.4kB/s]" } }, - "ca6a947d86494127aee19d225bc6e8d9": { + "d5924b82ac214d78bf7a23c7b998503e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3777,44 +3788,7 @@ "width": null } }, - "cd480a50df2d47ccb740466346c0cba1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c7d8daa53cbf4fadab9d794e82d6148d", - "IPY_MODEL_0e7f1d7fba3a4b269af3427750012335", - "IPY_MODEL_177e6f27c68b466eb81f9fdbbe238ea4" - ], - "layout": "IPY_MODEL_d78828e6064d4378b05757780f100727" - } - }, - "d228ec0326154f3987727d9177f051d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d2715220cda44b2c8945858c34e570a5": { + "d9c2ad429c344aba961a64b69e2a33fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3866,22 +3840,7 @@ "width": null } }, - "d51afa1788e0465d869b373305cbd57b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d70d9ecb368a4b2ba1660f571f1e31b9": { + "da08fecb508d4c38b13756b724b65037": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3933,7 +3892,7 @@ "width": null } }, - "d78828e6064d4378b05757780f100727": { + "e15aee7358cf438795b74fe73d5965f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3985,7 +3944,7 @@ "width": null } }, - "d998aac1acd84ee789684d0fe03a8f70": { + "e32a9b21d20e4c7ab7154b83fa704c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4037,7 +3996,7 @@ "width": null } }, - "da85fca276d644c68873fc4001387a74": { + "e837dfccff794308a27f62e443fab8da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4089,79 +4048,59 @@ "width": null } }, - "db2f666b978a4ee7a7f4b90c2f8ba493": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f12e1a6525348a9b4400409edb3ae82", - "placeholder": "​", - "style": "IPY_MODEL_d51afa1788e0465d869b373305cbd57b", - "value": "Downloading: 100%" - } - }, - "e1376afbb0a64c2faea5938f3a924aee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e168f3d7a3014b07a0b985026901ad72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "ea75a7e1c95141e1a48f373e55cd81b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e59cd018a7d14fc493a3a85bd158a030": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8c165fadb72b492095938608dba95ab8", - "placeholder": "​", - "style": "IPY_MODEL_e1376afbb0a64c2faea5938f3a924aee", - "value": " 54.2M/54.2M [00:00<00:00, 83.3MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ed8764668cc64d0dab34895ca627cb5e": { + "f014b981a64048a3819b61196fd10427": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4210,46 +4149,32 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "f55c43f62da64bb7a5c03ef2167b786c": { + "f194256422d04eda9aafe3848ab98800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_be3eb4375ffe4ecdb62b0b75a8a6d2f9", - "placeholder": "​", - "style": "IPY_MODEL_a6fef748b933448381f05292db676b8b", - "value": " 2.21k/2.21k [00:00<00:00, 126kB/s]" - } - }, - "fb4d2e82667f4d9e9c1af6cd496b73ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0caee2b3fa2f4a3babe89c881f0ba02c", + "IPY_MODEL_bb5a1248bd6c4506960e4ee8150c5256", + "IPY_MODEL_758ca14ecd3041f5b7cc0bb4ba2e53ba" + ], + "layout": "IPY_MODEL_400d74a5e6c54e2a8ed7d59d8b18f775" } }, - "ff9c3a60c2064d34baf6dab70f4f9c57": { + "f3943e4741cb4f7bbfec0d1d4cae67f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4300,6 +4225,81 @@ "visibility": null, "width": null } + }, + "f5c1874b31ed47f493755712b71b4e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f8308e27fe8a44bea4a6973841405162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa4eb2ddc03e4fa1a934d298ac94c48e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f2b77ab39c6498daef5f1d747585a10", + "placeholder": "​", + "style": "IPY_MODEL_f5c1874b31ed47f493755712b71b4e8a", + "value": "Downloading: 100%" + } + }, + "fc68f8c4ad8a4bbcad0282c224941bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea75a7e1c95141e1a48f373e55cd81b6", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bd93fb0d47448a2845779b3f10e87f0", + "value": 665.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 2d79518ec..d5c615f03 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:31.270346Z", - "iopub.status.busy": "2023-10-16T20:24:31.269747Z", - "iopub.status.idle": "2023-10-16T20:24:32.775771Z", - "shell.execute_reply": "2023-10-16T20:24:32.774732Z" + "iopub.execute_input": "2023-10-17T19:44:02.741468Z", + "iopub.status.busy": "2023-10-17T19:44:02.741237Z", + "iopub.status.idle": "2023-10-17T19:44:03.879184Z", + "shell.execute_reply": "2023-10-17T19:44:03.878472Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.780490Z", - "iopub.status.busy": "2023-10-16T20:24:32.779760Z", - "iopub.status.idle": "2023-10-16T20:24:32.785541Z", - "shell.execute_reply": "2023-10-16T20:24:32.784681Z" + "iopub.execute_input": "2023-10-17T19:44:03.882963Z", + "iopub.status.busy": "2023-10-17T19:44:03.882346Z", + "iopub.status.idle": "2023-10-17T19:44:03.886745Z", + "shell.execute_reply": "2023-10-17T19:44:03.886127Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.791276Z", - "iopub.status.busy": "2023-10-16T20:24:32.789802Z", - "iopub.status.idle": "2023-10-16T20:24:32.851109Z", - "shell.execute_reply": "2023-10-16T20:24:32.849775Z" + "iopub.execute_input": "2023-10-17T19:44:03.890144Z", + "iopub.status.busy": "2023-10-17T19:44:03.889886Z", + "iopub.status.idle": "2023-10-17T19:44:03.934814Z", + "shell.execute_reply": "2023-10-17T19:44:03.934166Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.855466Z", - "iopub.status.busy": "2023-10-16T20:24:32.854847Z", - "iopub.status.idle": "2023-10-16T20:25:54.201993Z", - "shell.execute_reply": "2023-10-16T20:25:54.201164Z" + "iopub.execute_input": "2023-10-17T19:44:03.938156Z", + "iopub.status.busy": "2023-10-17T19:44:03.937577Z", + "iopub.status.idle": "2023-10-17T19:44:29.417590Z", + "shell.execute_reply": "2023-10-17T19:44:29.416920Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 59d12336e..c00076109 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:25:59.451912Z", - "iopub.status.busy": "2023-10-16T20:25:59.451598Z", - "iopub.status.idle": "2023-10-16T20:26:00.930794Z", - "shell.execute_reply": "2023-10-16T20:26:00.929613Z" + "iopub.execute_input": "2023-10-17T19:44:31.538972Z", + "iopub.status.busy": "2023-10-17T19:44:31.538752Z", + "iopub.status.idle": "2023-10-17T19:44:32.658021Z", + "shell.execute_reply": "2023-10-17T19:44:32.657339Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:00.936303Z", - "iopub.status.busy": "2023-10-16T20:26:00.935796Z", - "iopub.status.idle": "2023-10-16T20:26:00.941289Z", - "shell.execute_reply": "2023-10-16T20:26:00.939898Z" + "iopub.execute_input": "2023-10-17T19:44:32.661740Z", + "iopub.status.busy": "2023-10-17T19:44:32.661134Z", + "iopub.status.idle": "2023-10-17T19:44:32.666449Z", + "shell.execute_reply": "2023-10-17T19:44:32.665847Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:00.945332Z", - "iopub.status.busy": "2023-10-16T20:26:00.944535Z", - "iopub.status.idle": "2023-10-16T20:26:04.129603Z", - "shell.execute_reply": "2023-10-16T20:26:04.128396Z" + "iopub.execute_input": "2023-10-17T19:44:32.669748Z", + "iopub.status.busy": "2023-10-17T19:44:32.669389Z", + "iopub.status.idle": "2023-10-17T19:44:35.173730Z", + "shell.execute_reply": "2023-10-17T19:44:35.172788Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.134852Z", - "iopub.status.busy": "2023-10-16T20:26:04.133548Z", - "iopub.status.idle": "2023-10-16T20:26:04.187442Z", - "shell.execute_reply": "2023-10-16T20:26:04.186297Z" + "iopub.execute_input": "2023-10-17T19:44:35.178363Z", + "iopub.status.busy": "2023-10-17T19:44:35.177165Z", + "iopub.status.idle": "2023-10-17T19:44:35.215407Z", + "shell.execute_reply": "2023-10-17T19:44:35.214508Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.192200Z", - "iopub.status.busy": "2023-10-16T20:26:04.191580Z", - "iopub.status.idle": "2023-10-16T20:26:04.238734Z", - "shell.execute_reply": "2023-10-16T20:26:04.237557Z" + "iopub.execute_input": "2023-10-17T19:44:35.219219Z", + "iopub.status.busy": "2023-10-17T19:44:35.218814Z", + "iopub.status.idle": "2023-10-17T19:44:35.262586Z", + "shell.execute_reply": "2023-10-17T19:44:35.261679Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.243759Z", - "iopub.status.busy": "2023-10-16T20:26:04.242930Z", - "iopub.status.idle": "2023-10-16T20:26:04.249330Z", - "shell.execute_reply": "2023-10-16T20:26:04.248192Z" + "iopub.execute_input": "2023-10-17T19:44:35.266219Z", + "iopub.status.busy": "2023-10-17T19:44:35.265697Z", + "iopub.status.idle": "2023-10-17T19:44:35.270691Z", + "shell.execute_reply": "2023-10-17T19:44:35.270079Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.253146Z", - "iopub.status.busy": "2023-10-16T20:26:04.252422Z", - "iopub.status.idle": "2023-10-16T20:26:04.257399Z", - "shell.execute_reply": "2023-10-16T20:26:04.256639Z" + "iopub.execute_input": "2023-10-17T19:44:35.273502Z", + "iopub.status.busy": "2023-10-17T19:44:35.273147Z", + "iopub.status.idle": "2023-10-17T19:44:35.276466Z", + "shell.execute_reply": "2023-10-17T19:44:35.275834Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.261471Z", - "iopub.status.busy": "2023-10-16T20:26:04.260944Z", - "iopub.status.idle": "2023-10-16T20:26:04.308336Z", - "shell.execute_reply": "2023-10-16T20:26:04.307576Z" + "iopub.execute_input": "2023-10-17T19:44:35.279398Z", + "iopub.status.busy": "2023-10-17T19:44:35.279029Z", + "iopub.status.idle": "2023-10-17T19:44:35.309394Z", + "shell.execute_reply": "2023-10-17T19:44:35.308855Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d8220d3b2c814c5fbe911f780faf2a1c", + "model_id": "756fbae403f74ed6920048c0ba73cd0f", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7d3037ae05c24a73ae1bbe9519bd24e1", + "model_id": "11fd7ee3fdc34abfa910a859df2d054a", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.312040Z", - "iopub.status.busy": "2023-10-16T20:26:04.311400Z", - "iopub.status.idle": "2023-10-16T20:26:04.321064Z", - "shell.execute_reply": "2023-10-16T20:26:04.320314Z" + "iopub.execute_input": "2023-10-17T19:44:35.319630Z", + "iopub.status.busy": "2023-10-17T19:44:35.319188Z", + "iopub.status.idle": "2023-10-17T19:44:35.326456Z", + "shell.execute_reply": "2023-10-17T19:44:35.325877Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.324967Z", - "iopub.status.busy": "2023-10-16T20:26:04.324105Z", - "iopub.status.idle": "2023-10-16T20:26:04.329224Z", - "shell.execute_reply": "2023-10-16T20:26:04.328513Z" + "iopub.execute_input": "2023-10-17T19:44:35.329255Z", + "iopub.status.busy": "2023-10-17T19:44:35.328825Z", + "iopub.status.idle": "2023-10-17T19:44:35.332765Z", + "shell.execute_reply": "2023-10-17T19:44:35.332226Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.334097Z", - "iopub.status.busy": "2023-10-16T20:26:04.333153Z", - "iopub.status.idle": "2023-10-16T20:26:04.347901Z", - "shell.execute_reply": "2023-10-16T20:26:04.347018Z" + "iopub.execute_input": "2023-10-17T19:44:35.335532Z", + "iopub.status.busy": "2023-10-17T19:44:35.335088Z", + "iopub.status.idle": "2023-10-17T19:44:35.342985Z", + "shell.execute_reply": "2023-10-17T19:44:35.342452Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.352421Z", - "iopub.status.busy": "2023-10-16T20:26:04.351382Z", - "iopub.status.idle": "2023-10-16T20:26:04.399277Z", - "shell.execute_reply": "2023-10-16T20:26:04.398139Z" + "iopub.execute_input": "2023-10-17T19:44:35.345620Z", + "iopub.status.busy": "2023-10-17T19:44:35.345197Z", + "iopub.status.idle": "2023-10-17T19:44:35.383885Z", + "shell.execute_reply": "2023-10-17T19:44:35.382886Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.403928Z", - "iopub.status.busy": "2023-10-16T20:26:04.403382Z", - "iopub.status.idle": "2023-10-16T20:26:04.461790Z", - "shell.execute_reply": "2023-10-16T20:26:04.460633Z" + "iopub.execute_input": "2023-10-17T19:44:35.387936Z", + "iopub.status.busy": "2023-10-17T19:44:35.387306Z", + "iopub.status.idle": "2023-10-17T19:44:35.427482Z", + "shell.execute_reply": "2023-10-17T19:44:35.426549Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.466812Z", - "iopub.status.busy": "2023-10-16T20:26:04.466200Z", - "iopub.status.idle": "2023-10-16T20:26:04.655764Z", - "shell.execute_reply": "2023-10-16T20:26:04.653459Z" + "iopub.execute_input": "2023-10-17T19:44:35.431578Z", + "iopub.status.busy": "2023-10-17T19:44:35.431058Z", + "iopub.status.idle": "2023-10-17T19:44:35.572571Z", + "shell.execute_reply": "2023-10-17T19:44:35.571671Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.660266Z", - "iopub.status.busy": "2023-10-16T20:26:04.659457Z", - "iopub.status.idle": "2023-10-16T20:26:08.770251Z", - "shell.execute_reply": "2023-10-16T20:26:08.769328Z" + "iopub.execute_input": "2023-10-17T19:44:35.576467Z", + "iopub.status.busy": "2023-10-17T19:44:35.575795Z", + "iopub.status.idle": "2023-10-17T19:44:38.622272Z", + "shell.execute_reply": "2023-10-17T19:44:38.621545Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:08.774979Z", - "iopub.status.busy": "2023-10-16T20:26:08.774217Z", - "iopub.status.idle": "2023-10-16T20:26:08.869747Z", - "shell.execute_reply": "2023-10-16T20:26:08.868908Z" + "iopub.execute_input": "2023-10-17T19:44:38.626205Z", + "iopub.status.busy": "2023-10-17T19:44:38.625630Z", + "iopub.status.idle": "2023-10-17T19:44:38.699606Z", + "shell.execute_reply": "2023-10-17T19:44:38.698857Z" } }, "outputs": [ @@ -874,7 +874,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08d0646d4c69407793150546cd78aad2": { + "11fd7ee3fdc34abfa910a859df2d054a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ecc8e19a851240b2969d29e06fc36130", + "IPY_MODEL_8561962eb98144fa87e075b80118c0a7", + "IPY_MODEL_e2762ac596ab43eab4a52a44b8397452" + ], + "layout": "IPY_MODEL_8ce21929da4a46748a3a0697ab760483" + } + }, + "18eaa5434d2649049100a57e93687630": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a63762a4ec34ddea459fa86cf513f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3c292969ab664a0b94b1b05e938b20a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -889,7 +942,7 @@ "description_width": "" } }, - "111fb87108784d5a89bc7d72c978fe90": { + "40c465ea5c8e45e9979df002c7a4610c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -941,7 +994,66 @@ "width": null } }, - "157ded92336f4bc79ef43f6c91a6a616": { + "586422e6da354ca987b26c42e8a03eac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93c15d33af2d469fa052eb4c7a29b147", + "placeholder": "​", + "style": "IPY_MODEL_a21eb78be7fc46d3a8d9b212bde01212", + "value": "number of examples processed for estimating thresholds: " + } + }, + "756fbae403f74ed6920048c0ba73cd0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_586422e6da354ca987b26c42e8a03eac", + "IPY_MODEL_9f1efe099f4541c1ab6677beed9d18ee", + "IPY_MODEL_a203069a1434459082bdd8a80bd99f37" + ], + "layout": "IPY_MODEL_845b0d57c82d41dfaf2fc982eec6732e" + } + }, + "7ef0fcaa70424732a38c6d8cf54101db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "81f96a5c347f4fe6af8eb0600bcff5b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -993,43 +1105,7 @@ "width": null } }, - "28daa5e2b78f477b9bddcf4ed9d4a357": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e3240c13beae4a8d802028d32fbecfac", - "placeholder": "​", - "style": "IPY_MODEL_08d0646d4c69407793150546cd78aad2", - "value": "number of examples processed for checking labels: " - } - }, - "42bc53d96832405dbcd4e0ca6ebbd7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6cd85045958744b5974862f36a62ac9f": { + "845b0d57c82d41dfaf2fc982eec6732e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1081,29 +1157,31 @@ "width": null } }, - "7d3037ae05c24a73ae1bbe9519bd24e1": { + "8561962eb98144fa87e075b80118c0a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28daa5e2b78f477b9bddcf4ed9d4a357", - "IPY_MODEL_a756717e52a54697987f4dc1fd2923e4", - "IPY_MODEL_a341fe9d405449a780b968648a6ad0c2" - ], - "layout": "IPY_MODEL_fd1068cac9c446618a48c42069b18d40" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_904786c2f7d24970aa1ce2434e0392e1", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a63762a4ec34ddea459fa86cf513f94", + "value": 50.0 } }, - "7f96f406c30d4994b72a099f2c7dfec6": { + "8ce21929da4a46748a3a0697ab760483": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1155,31 +1233,7 @@ "width": null } }, - "873594486f3a4ced8e4e9c977b6168f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6cd85045958744b5974862f36a62ac9f", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d4d59999a3ce41e396ec4e762fb7948e", - "value": 50.0 - } - }, - "8bddd3b38b8f42abbc742bcc4a52c0f6": { + "904786c2f7d24970aa1ce2434e0392e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1231,7 +1285,7 @@ "width": null } }, - "9084c9b6be4d49369e514ce4050f86be": { + "93c15d33af2d469fa052eb4c7a29b147": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1283,28 +1337,7 @@ "width": null } }, - "a341fe9d405449a780b968648a6ad0c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_157ded92336f4bc79ef43f6c91a6a616", - "placeholder": "​", - "style": "IPY_MODEL_42bc53d96832405dbcd4e0ca6ebbd7ce", - "value": " 10000/? [00:00<00:00, 733603.39it/s]" - } - }, - "a756717e52a54697987f4dc1fd2923e4": { + "9f1efe099f4541c1ab6677beed9d18ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1320,30 +1353,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8bddd3b38b8f42abbc742bcc4a52c0f6", + "layout": "IPY_MODEL_bfe3a3c7ae9f4b609c3f9bf9e353aa3c", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e05eb33c5a4245c9bbfa56cd0d9e02dc", + "style": "IPY_MODEL_7ef0fcaa70424732a38c6d8cf54101db", "value": 50.0 } }, - "b458c7d285764cd4993b534ad7b0a83e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bfd0ddab4d124c65909ea5617ae1fd13": { + "a203069a1434459082bdd8a80bd99f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1358,13 +1376,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7f96f406c30d4994b72a099f2c7dfec6", + "layout": "IPY_MODEL_40c465ea5c8e45e9979df002c7a4610c", "placeholder": "​", - "style": "IPY_MODEL_c916f04cfc744c09b22beb4b2f3d0d40", - "value": " 10000/? [00:00<00:00, 549352.19it/s]" + "style": "IPY_MODEL_3c292969ab664a0b94b1b05e938b20a2", + "value": " 10000/? [00:00<00:00, 872758.75it/s]" } }, - "c916f04cfc744c09b22beb4b2f3d0d40": { + "a21eb78be7fc46d3a8d9b212bde01212": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1379,61 +1397,22 @@ "description_width": "" } }, - "d4d59999a3ce41e396ec4e762fb7948e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d8220d3b2c814c5fbe911f780faf2a1c": { + "a87c0c9333674bd9960b16f2fc7f6855": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb74e6768f00493280e02754e1de3b81", - "IPY_MODEL_873594486f3a4ced8e4e9c977b6168f3", - "IPY_MODEL_bfd0ddab4d124c65909ea5617ae1fd13" - ], - "layout": "IPY_MODEL_111fb87108784d5a89bc7d72c978fe90" - } - }, - "e05eb33c5a4245c9bbfa56cd0d9e02dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e3240c13beae4a8d802028d32fbecfac": { + "b351cdfebee94168bee98acb2ea73e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1485,28 +1464,7 @@ "width": null } }, - "fb74e6768f00493280e02754e1de3b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9084c9b6be4d49369e514ce4050f86be", - "placeholder": "​", - "style": "IPY_MODEL_b458c7d285764cd4993b534ad7b0a83e", - "value": "number of examples processed for estimating thresholds: " - } - }, - "fd1068cac9c446618a48c42069b18d40": { + "bfe3a3c7ae9f4b609c3f9bf9e353aa3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1557,6 +1515,48 @@ "visibility": null, "width": null } + }, + "e2762ac596ab43eab4a52a44b8397452": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b351cdfebee94168bee98acb2ea73e5b", + "placeholder": "​", + "style": "IPY_MODEL_a87c0c9333674bd9960b16f2fc7f6855", + "value": " 10000/? [00:00<00:00, 1080588.43it/s]" + } + }, + "ecc8e19a851240b2969d29e06fc36130": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81f96a5c347f4fe6af8eb0600bcff5b0", + "placeholder": "​", + "style": "IPY_MODEL_18eaa5434d2649049100a57e93687630", + "value": "number of examples processed for checking labels: " + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 79603576e..8f857176c 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:15.042512Z", - "iopub.status.busy": "2023-10-16T20:26:15.042188Z", - "iopub.status.idle": "2023-10-16T20:26:18.307912Z", - "shell.execute_reply": "2023-10-16T20:26:18.306538Z" + "iopub.execute_input": "2023-10-17T19:44:43.852226Z", + "iopub.status.busy": "2023-10-17T19:44:43.851987Z", + "iopub.status.idle": "2023-10-17T19:44:46.377210Z", + "shell.execute_reply": "2023-10-17T19:44:46.376537Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:18.313567Z", - "iopub.status.busy": "2023-10-16T20:26:18.313021Z", - "iopub.status.idle": "2023-10-16T20:26:18.319703Z", - "shell.execute_reply": "2023-10-16T20:26:18.318938Z" + "iopub.execute_input": "2023-10-17T19:44:46.380744Z", + "iopub.status.busy": "2023-10-17T19:44:46.380368Z", + "iopub.status.idle": "2023-10-17T19:44:46.385423Z", + "shell.execute_reply": "2023-10-17T19:44:46.384840Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:18.323415Z", - "iopub.status.busy": "2023-10-16T20:26:18.322921Z", - "iopub.status.idle": "2023-10-16T20:26:40.448372Z", - "shell.execute_reply": "2023-10-16T20:26:40.447417Z" + "iopub.execute_input": "2023-10-17T19:44:46.388461Z", + "iopub.status.busy": "2023-10-17T19:44:46.387864Z", + "iopub.status.idle": "2023-10-17T19:45:02.528281Z", + "shell.execute_reply": "2023-10-17T19:45:02.527560Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "787e5a7038bc4960a390b93f6a34f154", + "model_id": "97248df699bc45e6bbe741bcbe36d76f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e442180dcef84210bf16aa84140d1f63", + "model_id": "26f6dfae73804d2fa0047c683b7635af", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e878083485642d0a0093c1afb10f85f", + "model_id": "20fe4cec32c54e3591c27868cf342127", "version_major": 2, "version_minor": 0 }, @@ -211,7 +211,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d577b00c40ea49a18e1f02dc41f37490", + "model_id": "591e41fa3ea040c8a705f4307abfd2ae", "version_major": 2, "version_minor": 0 }, @@ -225,7 +225,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "028db2d980d0458e9807e4c1a05eeb8f", + "model_id": "81efecb36c164cb2b11be34203509ba3", "version_major": 2, "version_minor": 0 }, @@ -239,7 +239,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eae7eec6a08a44e2aceb8f1869c47d44", + "model_id": "4e04b76196194354b4e5bccfb0201724", "version_major": 2, "version_minor": 0 }, @@ -253,7 +253,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1fdeb94e5fa49b8a656f7ef47a08165", + "model_id": "d38073d3ca994198af28656d2f0c5807", "version_major": 2, "version_minor": 0 }, @@ -267,7 +267,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17842d9b268a478e9d1a09abfb969ba4", + "model_id": "3ce1edabfe0f437c987dbf3b5ec45ee9", "version_major": 2, "version_minor": 0 }, @@ -281,7 +281,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0abc91fbced04079b7f536d453f4bf67", + "model_id": "422885663a3c41c0af9e6d44ac0ce863", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45c4b98a6ba64ea995251a7702602c8b", + "model_id": "9983c1dc92b64131a9f2b4b854d74e07", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e744c279fed142889b0486cde9b77238", + "model_id": "54953e296f0f4c579439dca58706404b", "version_major": 2, "version_minor": 0 }, @@ -358,10 +358,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:40.453556Z", - "iopub.status.busy": "2023-10-16T20:26:40.453011Z", - "iopub.status.idle": "2023-10-16T20:26:40.459044Z", - "shell.execute_reply": "2023-10-16T20:26:40.458161Z" + "iopub.execute_input": "2023-10-17T19:45:02.531919Z", + "iopub.status.busy": "2023-10-17T19:45:02.531453Z", + "iopub.status.idle": "2023-10-17T19:45:02.535991Z", + "shell.execute_reply": "2023-10-17T19:45:02.535324Z" } }, "outputs": [ @@ -386,17 +386,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:40.463682Z", - "iopub.status.busy": "2023-10-16T20:26:40.463191Z", - "iopub.status.idle": "2023-10-16T20:27:02.519914Z", - "shell.execute_reply": "2023-10-16T20:27:02.518811Z" + "iopub.execute_input": "2023-10-17T19:45:02.539474Z", + "iopub.status.busy": "2023-10-17T19:45:02.539028Z", + "iopub.status.idle": "2023-10-17T19:45:18.389091Z", + "shell.execute_reply": "2023-10-17T19:45:18.388325Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fff81bd228894710a3864b437210b422", + "model_id": "a3a15abe08e543d49ea829f91cc19330", "version_major": 2, "version_minor": 0 }, @@ -434,10 +434,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:02.525059Z", - "iopub.status.busy": "2023-10-16T20:27:02.524465Z", - "iopub.status.idle": "2023-10-16T20:27:37.435196Z", - "shell.execute_reply": "2023-10-16T20:27:37.434333Z" + "iopub.execute_input": "2023-10-17T19:45:18.392969Z", + "iopub.status.busy": "2023-10-17T19:45:18.392448Z", + "iopub.status.idle": "2023-10-17T19:45:47.813621Z", + "shell.execute_reply": "2023-10-17T19:45:47.812931Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.441483Z", - "iopub.status.busy": "2023-10-16T20:27:37.440729Z", - "iopub.status.idle": "2023-10-16T20:27:37.450421Z", - "shell.execute_reply": "2023-10-16T20:27:37.449463Z" + "iopub.execute_input": "2023-10-17T19:45:47.817753Z", + "iopub.status.busy": "2023-10-17T19:45:47.817471Z", + "iopub.status.idle": "2023-10-17T19:45:47.823555Z", + "shell.execute_reply": "2023-10-17T19:45:47.822883Z" } }, "outputs": [], @@ -511,10 +511,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.455037Z", - "iopub.status.busy": "2023-10-16T20:27:37.454317Z", - "iopub.status.idle": "2023-10-16T20:27:37.461106Z", - "shell.execute_reply": "2023-10-16T20:27:37.460310Z" + "iopub.execute_input": "2023-10-17T19:45:47.826949Z", + "iopub.status.busy": "2023-10-17T19:45:47.826572Z", + "iopub.status.idle": "2023-10-17T19:45:47.831366Z", + "shell.execute_reply": "2023-10-17T19:45:47.830837Z" }, "nbsphinx": "hidden" }, @@ -651,10 +651,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.469018Z", - "iopub.status.busy": "2023-10-16T20:27:37.464524Z", - "iopub.status.idle": "2023-10-16T20:27:37.497124Z", - "shell.execute_reply": "2023-10-16T20:27:37.494523Z" + "iopub.execute_input": "2023-10-17T19:45:47.834394Z", + "iopub.status.busy": "2023-10-17T19:45:47.833922Z", + "iopub.status.idle": "2023-10-17T19:45:47.845287Z", + "shell.execute_reply": "2023-10-17T19:45:47.844756Z" }, "nbsphinx": "hidden" }, @@ -779,10 +779,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.507442Z", - "iopub.status.busy": "2023-10-16T20:27:37.504846Z", - "iopub.status.idle": "2023-10-16T20:27:37.585870Z", - "shell.execute_reply": "2023-10-16T20:27:37.584428Z" + "iopub.execute_input": "2023-10-17T19:45:47.848273Z", + "iopub.status.busy": "2023-10-17T19:45:47.847620Z", + "iopub.status.idle": "2023-10-17T19:45:47.881866Z", + "shell.execute_reply": "2023-10-17T19:45:47.881247Z" } }, "outputs": [], @@ -819,10 +819,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.591283Z", - "iopub.status.busy": "2023-10-16T20:27:37.590931Z", - "iopub.status.idle": "2023-10-16T20:28:27.673349Z", - "shell.execute_reply": "2023-10-16T20:28:27.672151Z" + "iopub.execute_input": "2023-10-17T19:45:47.885239Z", + "iopub.status.busy": "2023-10-17T19:45:47.884623Z", + "iopub.status.idle": "2023-10-17T19:46:29.513107Z", + "shell.execute_reply": "2023-10-17T19:46:29.512246Z" } }, "outputs": [ @@ -838,14 +838,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 7.517\n" + "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.233\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 7.118\n", + "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.796\n", "Computing feature embeddings ...\n" ] }, @@ -862,7 +862,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.01it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.07it/s]" ] }, { @@ -870,7 +870,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 24.99it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 31.66it/s]" ] }, { @@ -878,7 +878,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 33.83it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 35.20it/s]" ] }, { @@ -886,7 +886,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 37.15it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 40.24it/s]" ] }, { @@ -894,7 +894,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 39.37it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 43.50it/s]" ] }, { @@ -902,7 +902,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 37.88it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 45.25it/s]" ] }, { @@ -910,7 +910,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 40.12it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 46.59it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 41.45it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 47.12it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.86it/s]" + "100%|██████████| 40/40 [00:00<00:00, 43.82it/s]" ] }, { @@ -956,7 +956,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.43it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.71it/s]" ] }, { @@ -964,7 +964,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 28.31it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.79it/s]" ] }, { @@ -972,7 +972,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 35.44it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 40.45it/s]" ] }, { @@ -980,7 +980,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 39.30it/s]" + " 40%|████ | 16/40 [00:00<00:00, 40.67it/s]" ] }, { @@ -988,7 +988,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 40.58it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 43.58it/s]" ] }, { @@ -996,7 +996,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 37.92it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 45.18it/s]" ] }, { @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 39.66it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 46.58it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 41.08it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 49.40it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.83it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.47it/s]" ] }, { @@ -1042,14 +1042,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 7.506\n" + "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.298\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 7.121\n", + "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.934\n", "Computing feature embeddings ...\n" ] }, @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.14it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 25.54it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 33.34it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 34.23it/s]" + " 30%|███ | 12/40 [00:00<00:00, 40.17it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 34.15it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 43.30it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 35.65it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 45.23it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 38.52it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 44.45it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 38.66it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 45.50it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 40.25it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 48.87it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.00it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.38it/s]" ] }, { @@ -1160,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 6.91it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" ] }, { @@ -1168,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 23.07it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.15it/s]" ] }, { @@ -1176,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 31.94it/s]" + " 30%|███ | 12/40 [00:00<00:00, 39.62it/s]" ] }, { @@ -1184,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 32.62it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 44.02it/s]" ] }, { @@ -1192,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 36.12it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 46.37it/s]" ] }, { @@ -1200,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 39.03it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 45.39it/s]" ] }, { @@ -1208,7 +1208,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 40.35it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 46.55it/s]" ] }, { @@ -1216,15 +1216,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 40.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:01<00:00, 37.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.71it/s]" ] }, { @@ -1246,14 +1238,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 7.577\n" + "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.181\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 6.876\n", + "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.696\n", "Computing feature embeddings ...\n" ] }, @@ -1270,15 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 23.50it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.98it/s]" ] }, { @@ -1286,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 32.81it/s]" + " 12%|█▎ | 5/40 [00:00<00:01, 26.34it/s]" ] }, { @@ -1294,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 37.19it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 31.13it/s]" ] }, { @@ -1302,7 +1286,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 34.70it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 37.96it/s]" ] }, { @@ -1310,7 +1294,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 37.16it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 42.97it/s]" ] }, { @@ -1318,7 +1302,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 39.73it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 45.13it/s]" ] }, { @@ -1326,7 +1310,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 41.26it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 47.03it/s]" ] }, { @@ -1334,7 +1318,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:01<00:00, 42.73it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 49.56it/s]" ] }, { @@ -1342,7 +1326,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 37.36it/s]" + "100%|██████████| 40/40 [00:00<00:00, 43.44it/s]" ] }, { @@ -1372,15 +1356,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 28.12it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.88it/s]" ] }, { @@ -1388,7 +1364,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 33.02it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.78it/s]" ] }, { @@ -1396,7 +1372,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 34.60it/s]" + " 30%|███ | 12/40 [00:00<00:00, 41.50it/s]" ] }, { @@ -1404,7 +1380,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 36.91it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 41.26it/s]" ] }, { @@ -1412,7 +1388,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 39.69it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 44.11it/s]" ] }, { @@ -1420,7 +1396,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 41.30it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 46.44it/s]" ] }, { @@ -1428,7 +1404,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 41.36it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 46.85it/s]" ] }, { @@ -1436,7 +1412,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.80it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.99it/s]" ] }, { @@ -1513,10 +1489,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:27.677450Z", - "iopub.status.busy": "2023-10-16T20:28:27.676716Z", - "iopub.status.idle": "2023-10-16T20:28:27.700100Z", - "shell.execute_reply": "2023-10-16T20:28:27.699219Z" + "iopub.execute_input": "2023-10-17T19:46:29.517092Z", + "iopub.status.busy": "2023-10-17T19:46:29.516812Z", + "iopub.status.idle": "2023-10-17T19:46:29.534918Z", + "shell.execute_reply": "2023-10-17T19:46:29.534282Z" } }, "outputs": [], @@ -1541,10 +1517,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:27.704320Z", - "iopub.status.busy": "2023-10-16T20:28:27.703722Z", - "iopub.status.idle": "2023-10-16T20:28:28.494410Z", - "shell.execute_reply": "2023-10-16T20:28:28.493497Z" + "iopub.execute_input": "2023-10-17T19:46:29.538294Z", + "iopub.status.busy": "2023-10-17T19:46:29.538036Z", + "iopub.status.idle": "2023-10-17T19:46:30.184880Z", + "shell.execute_reply": "2023-10-17T19:46:30.184192Z" } }, "outputs": [], @@ -1564,10 +1540,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:28.500570Z", - "iopub.status.busy": "2023-10-16T20:28:28.498726Z", - "iopub.status.idle": "2023-10-16T20:32:58.142317Z", - "shell.execute_reply": "2023-10-16T20:32:58.140044Z" + "iopub.execute_input": "2023-10-17T19:46:30.188709Z", + "iopub.status.busy": "2023-10-17T19:46:30.188066Z", + "iopub.status.idle": "2023-10-17T19:50:30.786789Z", + "shell.execute_reply": "2023-10-17T19:50:30.786026Z" } }, "outputs": [ @@ -1604,7 +1580,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eff274ebfa614f09814bef0567c583c5", + "model_id": "6053beefe5384ed2bf12688bc3c18f64", "version_major": 2, "version_minor": 0 }, @@ -1643,10 +1619,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.148303Z", - "iopub.status.busy": "2023-10-16T20:32:58.146912Z", - "iopub.status.idle": "2023-10-16T20:32:58.817007Z", - "shell.execute_reply": "2023-10-16T20:32:58.816083Z" + "iopub.execute_input": "2023-10-17T19:50:30.790875Z", + "iopub.status.busy": "2023-10-17T19:50:30.789801Z", + "iopub.status.idle": "2023-10-17T19:50:31.309312Z", + "shell.execute_reply": "2023-10-17T19:50:31.308157Z" } }, "outputs": [ @@ -1818,10 +1794,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.821398Z", - "iopub.status.busy": "2023-10-16T20:32:58.820637Z", - "iopub.status.idle": "2023-10-16T20:32:58.888092Z", - "shell.execute_reply": "2023-10-16T20:32:58.887325Z" + "iopub.execute_input": "2023-10-17T19:50:31.312182Z", + "iopub.status.busy": "2023-10-17T19:50:31.311939Z", + "iopub.status.idle": "2023-10-17T19:50:31.365506Z", + "shell.execute_reply": "2023-10-17T19:50:31.364840Z" } }, "outputs": [ @@ -1925,10 +1901,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.892932Z", - "iopub.status.busy": "2023-10-16T20:32:58.892464Z", - "iopub.status.idle": "2023-10-16T20:32:58.909967Z", - "shell.execute_reply": "2023-10-16T20:32:58.908930Z" + "iopub.execute_input": "2023-10-17T19:50:31.369002Z", + "iopub.status.busy": "2023-10-17T19:50:31.368404Z", + "iopub.status.idle": "2023-10-17T19:50:31.379378Z", + "shell.execute_reply": "2023-10-17T19:50:31.378698Z" } }, "outputs": [ @@ -2058,10 +2034,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.917240Z", - "iopub.status.busy": "2023-10-16T20:32:58.916874Z", - "iopub.status.idle": "2023-10-16T20:32:58.925653Z", - "shell.execute_reply": "2023-10-16T20:32:58.924786Z" + "iopub.execute_input": "2023-10-17T19:50:31.382584Z", + "iopub.status.busy": "2023-10-17T19:50:31.381965Z", + "iopub.status.idle": "2023-10-17T19:50:31.387811Z", + "shell.execute_reply": "2023-10-17T19:50:31.387139Z" }, "nbsphinx": "hidden" }, @@ -2107,10 +2083,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.929888Z", - "iopub.status.busy": "2023-10-16T20:32:58.929543Z", - "iopub.status.idle": "2023-10-16T20:32:59.978263Z", - "shell.execute_reply": "2023-10-16T20:32:59.977405Z" + "iopub.execute_input": "2023-10-17T19:50:31.390584Z", + "iopub.status.busy": "2023-10-17T19:50:31.390341Z", + "iopub.status.idle": "2023-10-17T19:50:32.151375Z", + "shell.execute_reply": "2023-10-17T19:50:32.150679Z" } }, "outputs": [ @@ -2145,10 +2121,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:59.984055Z", - "iopub.status.busy": "2023-10-16T20:32:59.983182Z", - "iopub.status.idle": "2023-10-16T20:33:00.000194Z", - "shell.execute_reply": "2023-10-16T20:32:59.999241Z" + "iopub.execute_input": "2023-10-17T19:50:32.154981Z", + "iopub.status.busy": "2023-10-17T19:50:32.154441Z", + "iopub.status.idle": "2023-10-17T19:50:32.166753Z", + "shell.execute_reply": "2023-10-17T19:50:32.166125Z" } }, "outputs": [ @@ -2315,10 +2291,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.005879Z", - "iopub.status.busy": "2023-10-16T20:33:00.005351Z", - "iopub.status.idle": "2023-10-16T20:33:00.020278Z", - "shell.execute_reply": "2023-10-16T20:33:00.019521Z" + "iopub.execute_input": "2023-10-17T19:50:32.171211Z", + "iopub.status.busy": "2023-10-17T19:50:32.170074Z", + "iopub.status.idle": "2023-10-17T19:50:32.181030Z", + "shell.execute_reply": "2023-10-17T19:50:32.180420Z" }, "nbsphinx": "hidden" }, @@ -2394,10 +2370,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.025014Z", - "iopub.status.busy": "2023-10-16T20:33:00.024429Z", - "iopub.status.idle": "2023-10-16T20:33:00.722489Z", - "shell.execute_reply": "2023-10-16T20:33:00.721458Z" + "iopub.execute_input": "2023-10-17T19:50:32.184539Z", + "iopub.status.busy": "2023-10-17T19:50:32.184043Z", + "iopub.status.idle": "2023-10-17T19:50:32.723252Z", + "shell.execute_reply": "2023-10-17T19:50:32.722657Z" } }, "outputs": [ @@ -2434,10 +2410,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.727641Z", - "iopub.status.busy": "2023-10-16T20:33:00.727104Z", - "iopub.status.idle": "2023-10-16T20:33:00.758692Z", - "shell.execute_reply": "2023-10-16T20:33:00.757603Z" + "iopub.execute_input": "2023-10-17T19:50:32.726242Z", + "iopub.status.busy": "2023-10-17T19:50:32.725802Z", + "iopub.status.idle": "2023-10-17T19:50:32.745776Z", + "shell.execute_reply": "2023-10-17T19:50:32.745092Z" } }, "outputs": [ @@ -2594,10 +2570,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.763156Z", - "iopub.status.busy": "2023-10-16T20:33:00.762378Z", - "iopub.status.idle": "2023-10-16T20:33:00.771493Z", - "shell.execute_reply": "2023-10-16T20:33:00.770596Z" + "iopub.execute_input": "2023-10-17T19:50:32.748726Z", + "iopub.status.busy": "2023-10-17T19:50:32.748353Z", + "iopub.status.idle": "2023-10-17T19:50:32.755323Z", + "shell.execute_reply": "2023-10-17T19:50:32.754666Z" }, "nbsphinx": "hidden" }, @@ -2642,10 +2618,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.775746Z", - "iopub.status.busy": "2023-10-16T20:33:00.774959Z", - "iopub.status.idle": "2023-10-16T20:33:01.333698Z", - "shell.execute_reply": "2023-10-16T20:33:01.332939Z" + "iopub.execute_input": "2023-10-17T19:50:32.758074Z", + "iopub.status.busy": "2023-10-17T19:50:32.757706Z", + "iopub.status.idle": "2023-10-17T19:50:33.207433Z", + "shell.execute_reply": "2023-10-17T19:50:33.206860Z" } }, "outputs": [ @@ -2720,10 +2696,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.337767Z", - "iopub.status.busy": "2023-10-16T20:33:01.336907Z", - "iopub.status.idle": "2023-10-16T20:33:01.358702Z", - "shell.execute_reply": "2023-10-16T20:33:01.357961Z" + "iopub.execute_input": "2023-10-17T19:50:33.210654Z", + "iopub.status.busy": "2023-10-17T19:50:33.210266Z", + "iopub.status.idle": "2023-10-17T19:50:33.219917Z", + "shell.execute_reply": "2023-10-17T19:50:33.219396Z" } }, "outputs": [ @@ -2748,47 +2724,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2851,10 +2827,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.363296Z", - "iopub.status.busy": "2023-10-16T20:33:01.362595Z", - "iopub.status.idle": "2023-10-16T20:33:01.372708Z", - "shell.execute_reply": "2023-10-16T20:33:01.371934Z" + "iopub.execute_input": "2023-10-17T19:50:33.223036Z", + "iopub.status.busy": "2023-10-17T19:50:33.222679Z", + "iopub.status.idle": "2023-10-17T19:50:33.228149Z", + "shell.execute_reply": "2023-10-17T19:50:33.227625Z" }, "nbsphinx": "hidden" }, @@ -2891,10 +2867,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.378541Z", - "iopub.status.busy": "2023-10-16T20:33:01.376900Z", - "iopub.status.idle": "2023-10-16T20:33:01.689219Z", - "shell.execute_reply": "2023-10-16T20:33:01.688362Z" + "iopub.execute_input": "2023-10-17T19:50:33.231068Z", + "iopub.status.busy": "2023-10-17T19:50:33.230715Z", + "iopub.status.idle": "2023-10-17T19:50:33.419995Z", + "shell.execute_reply": "2023-10-17T19:50:33.419218Z" } }, "outputs": [ @@ -2936,10 +2912,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.695608Z", - "iopub.status.busy": "2023-10-16T20:33:01.694487Z", - "iopub.status.idle": "2023-10-16T20:33:01.709506Z", - "shell.execute_reply": "2023-10-16T20:33:01.708789Z" + "iopub.execute_input": "2023-10-17T19:50:33.423308Z", + "iopub.status.busy": "2023-10-17T19:50:33.422831Z", + "iopub.status.idle": "2023-10-17T19:50:33.432381Z", + "shell.execute_reply": "2023-10-17T19:50:33.431750Z" } }, "outputs": [ @@ -3025,10 +3001,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.713492Z", - "iopub.status.busy": "2023-10-16T20:33:01.712843Z", - "iopub.status.idle": "2023-10-16T20:33:01.988345Z", - "shell.execute_reply": "2023-10-16T20:33:01.987517Z" + "iopub.execute_input": "2023-10-17T19:50:33.435056Z", + "iopub.status.busy": "2023-10-17T19:50:33.434825Z", + "iopub.status.idle": "2023-10-17T19:50:33.625599Z", + "shell.execute_reply": "2023-10-17T19:50:33.624950Z" } }, "outputs": [ @@ -3059,10 +3035,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.993119Z", - "iopub.status.busy": "2023-10-16T20:33:01.992460Z", - "iopub.status.idle": "2023-10-16T20:33:01.999544Z", - "shell.execute_reply": "2023-10-16T20:33:01.998604Z" + "iopub.execute_input": "2023-10-17T19:50:33.628484Z", + "iopub.status.busy": "2023-10-17T19:50:33.628238Z", + "iopub.status.idle": "2023-10-17T19:50:33.634796Z", + "shell.execute_reply": "2023-10-17T19:50:33.634191Z" }, "nbsphinx": "hidden" }, @@ -3099,71 +3075,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0258a21ae0874580969461d8cc244062": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_06c8152b5f614f1f906f618aba288723", - "placeholder": "​", - "style": "IPY_MODEL_4d9b3d0956654525ba3b7e90b5383fb9", - "value": "Extracting data files: 100%" - } - }, - "028db2d980d0458e9807e4c1a05eeb8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1f6d141cb04645aeb38ca2e191f0b7bd", - "IPY_MODEL_8eb114175334407481f6349654bed01c", - "IPY_MODEL_8a3b140c2f9c4b20abdad2258b79bd11" - ], - "layout": "IPY_MODEL_05da681b6a374470ada9aab6acdac158" - } - }, - "033f96e60442407ca255da1f5c6e83b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_faa02cd1d3d64d619a2c4d7dce2af25f", - "placeholder": "​", - "style": "IPY_MODEL_d8dc0fb24c004d7cac179c25cc997d8c", - "value": "Generating test split: 99%" - } - }, - "0543d31b592143adade3e68e05292175": { + "019d165b01d2429cacbe4f7813ac85c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3211,11 +3123,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "05da681b6a374470ada9aab6acdac158": { + "022cfe30452e46fbb2150ee67593c88b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3267,7 +3179,7 @@ "width": null } }, - "06c8152b5f614f1f906f618aba288723": { + "072b56f48ff04360b4ec5b188d3ededf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3319,44 +3231,7 @@ "width": null } }, - "0abc91fbced04079b7f536d453f4bf67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0258a21ae0874580969461d8cc244062", - "IPY_MODEL_2bbccae7e483413d9d0f5620de0f54dd", - "IPY_MODEL_3e820b78f6254017a3b0997874adbe68" - ], - "layout": "IPY_MODEL_114a5742a1114f3ab56348ca52b15045" - } - }, - "0bb2cb9ef7dd456a99e26a4f97dc84c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "114a5742a1114f3ab56348ca52b15045": { + "08cec6fa60054d4da2dd9719a53bd337": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3408,7 +3283,7 @@ "width": null } }, - "137d2be1f8e54c1db168a2ca97cdb1c6": { + "0a628001e0254efc84dcb71a22677b14": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3460,7 +3335,22 @@ "width": null } }, - "13f27119ac314866a58d0f56f96aa224": { + "0a762e426c3d42e9afc4b64be10421ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ef7407a50d14109ba70341a2c375fbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3512,37 +3402,28 @@ "width": null } }, - "13f3a27fee9449e6a92695cb74d3e55a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "165d242331874e4d8e5d224bcc161bb2": { + "0f29d0be1ee943b79519a22594819e69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_317972a9647b494c8127802b9090e026", + "placeholder": "​", + "style": "IPY_MODEL_6fda5032f4bd4c54a86bd89dfc536e95", + "value": "100%" } }, - "172f5e5c9a3f4d7ca5af0fdaf2269757": { + "0f99d27725d04f35bd37d6436a82a1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3594,7 +3475,108 @@ "width": null } }, - "1771b683bf584f0aa32e037e3fb28624": { + "106eccb5e6354a37a0b3cddc71b87994": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13f6f9a1a9ee4b2c95f8c5fe12aeeff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40aa77ce732442d99f3766835d50ef15", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7808d0d7fda4a05b3c83ef0920bbed0", + "value": 60000.0 + } + }, + "147fd734f38e42dc99f8ec4e3ded5015": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_70ae0856d08948348ac01d1256247395", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b039540ba0140478c4043d61961442d", + "value": 8845.0 + } + }, + "1631e9496f1c4879aff4f7a60f812087": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_480ca9e6cb554748b1447a5c369b6776", + "placeholder": "​", + "style": "IPY_MODEL_2a630b4cd5cd4b64be6f1e03cb151832", + "value": " 9956/10000 [00:01<00:00, 6222.86 examples/s]" + } + }, + "198fe596b8344f48a48f197feef84abe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19977bca5ecf4ea5a50e673707fa2ae2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3646,7 +3628,7 @@ "width": null } }, - "17842d9b268a478e9d1a09abfb969ba4": { + "20fe4cec32c54e3591c27868cf342127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3661,64 +3643,22 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7cc3ff21f4324355816cbb7b1c02e407", - "IPY_MODEL_2a5f253254df41c6af1fbd118e46a610", - "IPY_MODEL_1e84937a15c641868df4087895685194" + "IPY_MODEL_5333647b032645e7803390e5d3686484", + "IPY_MODEL_147fd734f38e42dc99f8ec4e3ded5015", + "IPY_MODEL_25d1ef00a11f43dca5c5438aca73da5d" ], - "layout": "IPY_MODEL_13f27119ac314866a58d0f56f96aa224" + "layout": "IPY_MODEL_0a628001e0254efc84dcb71a22677b14" } }, - "181d950b1ff648f09dd2c13ddb17a202": { + "2305570999a44300ba405fa553d66951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f70ed9da2d854667a7885753681f800a", - "placeholder": "​", - "style": "IPY_MODEL_3131c8765cf242c487979455916e7e2c", - "value": "Computing checksums: 100%" - } - }, - "19e62619815c4f1fa0018ead85e11dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_137d2be1f8e54c1db168a2ca97cdb1c6", - "placeholder": "​", - "style": "IPY_MODEL_6133d506ff354f9f9e86a983423a5f8a", - "value": " 4.42M/4.42M [00:00<00:00, 65.0MB/s]" - } - }, - "1a10b48b86c6408194de5897770587a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", @@ -3726,67 +3666,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57ab07390f724a5d8e16586809836234", - "max": 3126.0, + "layout": "IPY_MODEL_8736f610ce2b43f0aa481a01ee87cc3a", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_38492a4972bd494893aba324ba916d0a", - "value": 3126.0 - } - }, - "1e7ed85ac36e45a99380c7e6f9329975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_d7255ebad04544d3a82a4cc388d47a6e", + "value": 4.0 } }, - "1e84937a15c641868df4087895685194": { + "236f10ffe7084936a8e0795e8cea320a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3801,37 +3689,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e62c3a504d6f4673aecf2f497ddfa294", + "layout": "IPY_MODEL_696a2adb310f4381ab5235e458276b2b", "placeholder": "​", - "style": "IPY_MODEL_230813a6faa642cdbfc120bb0b4b8a70", - "value": " 5.15k/5.15k [00:00<00:00, 290kB/s]" + "style": "IPY_MODEL_3608eb412b76457cbc46a6f68516588d", + "value": " 59980/60000 [00:15<00:00, 4398.38 examples/s]" } }, - "1f1c3856f53e452294229402927b998b": { + "248a6c65d4044cf79862c35c09284eb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8bf8cb55d51d4695bedb38d095be6f59", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e181b73508444fffbb8495cb8e241918", - "value": 60000.0 + "layout": "IPY_MODEL_4c0f987ab09b48e1b27a4d423ba21118", + "placeholder": "​", + "style": "IPY_MODEL_e778c45cc4b5494b8a6749f3ea5a049f", + "value": " 29.5k/29.5k [00:00<00:00, 2.22MB/s]" } }, - "1f6d141cb04645aeb38ca2e191f0b7bd": { + "24fb647adef44dc28832ce83097207f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3846,13 +3731,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da5a2c529fab4a6396f70f85a99da978", + "layout": "IPY_MODEL_f820166ea37d4391937e7a28ab9e7aca", "placeholder": "​", - "style": "IPY_MODEL_6647da606ac64e5faf50d29dcabd6e6d", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_256caf42630246ad98408be1337fa8d4", + "value": " 3.13k/3.13k [00:00<00:00, 328kB/s]" } }, - "230813a6faa642cdbfc120bb0b4b8a70": { + "256caf42630246ad98408be1337fa8d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3867,7 +3752,7 @@ "description_width": "" } }, - "234b4f59cde245d68f73a73fa3ca0b36": { + "25d1ef00a11f43dca5c5438aca73da5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3882,68 +3767,50 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3f5cc7fa9713475d86e437260fd8d912", + "layout": "IPY_MODEL_3a99f87095044dd1b9ecd10ceb2ca9c3", "placeholder": "​", - "style": "IPY_MODEL_e0e3eddd07ef4b3fa0c5750360e7ee2f", - "value": " 29.5k/29.5k [00:00<00:00, 1.91MB/s]" - } - }, - "2407e1f0174e4bffbeac6beddc32ff73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_e21e4ffbc43e4d51a1c7d9e797cd4c86", + "value": " 8.85k/8.85k [00:00<00:00, 994kB/s]" } }, - "2412fd7f7293416a8ab91956799fdccd": { + "26f6dfae73804d2fa0047c683b7635af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b2621bde93f4a5585c19a7c01f5ccdd", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71757e8923bc4ad88aa6953e6ec249af", - "value": 4422102.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93c670b2f439428d81cb09521e181c89", + "IPY_MODEL_4c6963e4105542d6b010d762fd47b6d1", + "IPY_MODEL_24fb647adef44dc28832ce83097207f4" + ], + "layout": "IPY_MODEL_4da09f2f55ad41d39467c39c40672ecf" } }, - "254f1e6d92014d459e928f8eba3dbbef": { + "2a630b4cd5cd4b64be6f1e03cb151832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "26f18a6d891b4ef9a88d89ffc478d85e": { + "2af6841fe82b48e1a353918d957a0cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3995,86 +3862,74 @@ "width": null } }, - "2a5f253254df41c6af1fbd118e46a610": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73c9aa2761274dbea8685e3134962bb2", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4b1f22c7eb1c4fdf8519174539430273", - "value": 5148.0 - } - }, - "2b4072ace9ca451abc7882810a6e95a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "2ed7dc1fb882441f9d0acbbd955afd13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2bbccae7e483413d9d0f5620de0f54dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7466a4bdb8c42ed8e9571f1764d884b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b96fcc9e4cdf43038d9f9f48f0cfcc4b", - "value": 4.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2d61b1e30b2f4f8ea676d42071f0af97": { + "2f7736f98a584887890e9b7955d03088": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "2d61d6bdbe6743c084e74901a0461031": { + "317972a9647b494c8127802b9090e026": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4126,7 +3981,7 @@ "width": null } }, - "2dad158353bc466eab1c6457d749889b": { + "332e64d98f5e459b956d806c1d13f6a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4178,7 +4033,28 @@ "width": null } }, - "30bbebbb9716430cb9d986799f488d69": { + "33688730cf7d495881ce4b679eada595": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d196b561a10743b2aa19a58d6e640275", + "placeholder": "​", + "style": "IPY_MODEL_8f34684271154426a41cdaa28b4a8556", + "value": " 59403/60000 [00:09<00:00, 6192.76 examples/s]" + } + }, + "3459dc816d4d4031be869f6fe2165ca7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4230,89 +4106,7 @@ "width": null } }, - "3131c8765cf242c487979455916e7e2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3534d3abf4a247f1ab536b69035719ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3636e89ad6b44a7ca58808df5a49085d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_768522dcfe15419db3658186433d513a", - "placeholder": "​", - "style": "IPY_MODEL_fc68fb4b7a89444d945bd6c12d1c2c46", - "value": "Downloading metadata: 100%" - } - }, - "37335c6e1385415990b82d1fee8b5f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38492a4972bd494893aba324ba916d0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3b22924b90db4846b8af4dcbeeefe92c": { + "347c8c436d0f4dd5a4c327acf87fa233": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4364,7 +4158,22 @@ "width": null } }, - "3dc68583162846b3985c0734b206fbfa": { + "3608eb412b76457cbc46a6f68516588d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3a99f87095044dd1b9ecd10ceb2ca9c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4416,7 +4225,7 @@ "width": null } }, - "3e820b78f6254017a3b0997874adbe68": { + "3ac2452754c143738f8ee95e440bce85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4431,13 +4240,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4cb4004215ba4979a1893ec16e617561", + "layout": "IPY_MODEL_9c90e0bbfb0a4f29bd2c849d68507294", "placeholder": "​", - "style": "IPY_MODEL_c40b2c2bd5a84ed3a310e49c56fc2499", - "value": " 4/4 [00:00<00:00, 2.56it/s]" + "style": "IPY_MODEL_f4f15e77fa90469d817fd059753fe5b6", + "value": "Downloading data: 100%" + } + }, + "3b039540ba0140478c4043d61961442d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f5cc7fa9713475d86e437260fd8d912": { + "3b1a7833aa75411fbe02690fec4ed20f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4489,7 +4314,46 @@ "width": null } }, - "45c4b98a6ba64ea995251a7702602c8b": { + "3b8c5122999044998860603f3fc073c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3cdf55e334944f73983b789b6a11a0f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9f8d712d71c45a3b0e42028c443610f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67815fc73566414d88e0a9a3f3ae4ae2", + "value": 60000.0 + } + }, + "3ce1edabfe0f437c987dbf3b5ec45ee9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4504,14 +4368,38 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f5b393ca71154dc387d5e533e9f08f46", - "IPY_MODEL_1f1c3856f53e452294229402927b998b", - "IPY_MODEL_4a2fabe4a6434a2e8b3d6a350e51c641" + "IPY_MODEL_3ac2452754c143738f8ee95e440bce85", + "IPY_MODEL_759cee69c4c1468a866dac8faf92299b", + "IPY_MODEL_79a9fb54ab3a40eb9fe3390f181dbd7c" ], - "layout": "IPY_MODEL_961ba36b6cd84a3f8dd7bb7e6bca5182" + "layout": "IPY_MODEL_a23595be90b84ea58ff99548c495e776" + } + }, + "3f22c8ae1ab54a538f98954c8b8ac383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e28aad57ba1b49ec89dea323faf0e0cb", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_caf7392ce9e14f4aa8bbafb0e65cffe8", + "value": 29515.0 } }, - "482d65abacd74a66b4d277c62def9031": { + "40aa77ce732442d99f3766835d50ef15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4563,28 +4451,44 @@ "width": null } }, - "4a2fabe4a6434a2e8b3d6a350e51c641": { + "422885663a3c41c0af9e6d44ac0ce863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85246c7bfb9a46ae8d7a7f662ec59a4a", - "placeholder": "​", - "style": "IPY_MODEL_13f3a27fee9449e6a92695cb74d3e55a", - "value": " 59526/60000 [00:12<00:00, 4753.77 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4692a28af0743c58b9cdf9efaa515ea", + "IPY_MODEL_2305570999a44300ba405fa553d66951", + "IPY_MODEL_776d70f768d741cea5cedd03f9079a7b" + ], + "layout": "IPY_MODEL_3b1a7833aa75411fbe02690fec4ed20f" + } + }, + "45ff25849f2e4609834ee1c804dc3390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4a3c634bd4fe4b8997418336f9948d8f": { + "46cd7b397ffa480ea8d14c66a0985429": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4636,28 +4540,23 @@ "width": null } }, - "4a707367235e4ba1867e1d35b3b745ea": { + "472b0a043ae84aedbf18e6dbf6cc1e6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4a3c634bd4fe4b8997418336f9948d8f", - "placeholder": "​", - "style": "IPY_MODEL_0bb2cb9ef7dd456a99e26a4f97dc84c7", - "value": "Downloading data: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4ad3025d077b4228823874cd25bd670d": { + "480ca9e6cb554748b1447a5c369b6776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4709,23 +4608,28 @@ "width": null } }, - "4b1f22c7eb1c4fdf8519174539430273": { + "4888046b31504da2a0a23b4bfad772ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ef7407a50d14109ba70341a2c375fbc", + "placeholder": "​", + "style": "IPY_MODEL_714ec990445241a5a2d95926a759691b", + "value": "Downloading builder script: 100%" } }, - "4c9f42ea65434e55bd08b5c2bfa83197": { + "4c0f987ab09b48e1b27a4d423ba21118": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4777,7 +4681,7 @@ "width": null } }, - "4cb4004215ba4979a1893ec16e617561": { + "4c406e2ee74a4d009dd11a33c735eebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4829,91 +4733,34 @@ "width": null } }, - "4d9b3d0956654525ba3b7e90b5383fb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4e41cdaac37d40ff80567503cb52f808": { + "4c6963e4105542d6b010d762fd47b6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_69e24d46c9cc4fe4ab1e0993fbbaca59", - "placeholder": "​", - "style": "IPY_MODEL_2407e1f0174e4bffbeac6beddc32ff73", - "value": "Map (num_proc=2): 100%" + "layout": "IPY_MODEL_d6f0aa50cf5e4f25bea3fca81b0c97a9", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_886931a1576f40858f3408246dde08ad", + "value": 3126.0 } }, - "4e45952280b74d75b11331999e645dad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_482d65abacd74a66b4d277c62def9031", - "placeholder": "​", - "style": "IPY_MODEL_61d4098e90c94382b004bc0644bcfcf5", - "value": " 59780/60000 [00:21<00:00, 3420.51 examples/s]" - } - }, - "4f1219b7e98345c6ba126db4bd32f044": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3dc68583162846b3985c0734b206fbfa", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4fa59cba1dc4b0ebbbd759fb3deb6b3", - "value": 4833.0 - } - }, - "50821ad3594f48edb5ec9a4edff2249f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4da09f2f55ad41d39467c39c40672ecf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4962,44 +4809,77 @@ "width": null } }, - "527a6a2d3baa4b989dfc13f7720392bf": { + "4db4d76ab31848d59041218744251e4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aac2b7e701d240f9b2bd7965d5410c5c", - "placeholder": "​", - "style": "IPY_MODEL_8889138156ab43d88d810c0ecb8b484f", - "value": " 8.85k/8.85k [00:00<00:00, 577kB/s]" + "layout": "IPY_MODEL_19977bca5ecf4ea5a50e673707fa2ae2", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee02d606b7824ddebceb7031f6887f6a", + "value": 4422102.0 } }, - "532386f35f864457af8ab55fc066c8e4": { + "4e04b76196194354b4e5bccfb0201724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aad26a4731d476b85a669f866c81799", + "IPY_MODEL_3f22c8ae1ab54a538f98954c8b8ac383", + "IPY_MODEL_248a6c65d4044cf79862c35c09284eb6" + ], + "layout": "IPY_MODEL_8cf3711c5de3405cb219d24229e3633a" + } + }, + "51911da6bae647dfbc86762e8a398d17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_65b25af159ca48cdae7d6b80672b57a8", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe01f88233804e058e05cd52125775a8", + "value": 4833.0 } }, - "565f54a2b6794a7bb5485e3b86dc5670": { + "5333647b032645e7803390e5d3686484": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5014,13 +4894,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_26f18a6d891b4ef9a88d89ffc478d85e", + "layout": "IPY_MODEL_56dc730c4e9c42018f3bdaacd3942c31", "placeholder": "​", - "style": "IPY_MODEL_37335c6e1385415990b82d1fee8b5f96", - "value": "100%" + "style": "IPY_MODEL_f4cc015eaf7d4839a03a9fa886cc4bad", + "value": "Downloading readme: 100%" } }, - "569460658d9e4369b9e526153bf35f8b": { + "5409da599e5b4b6b9eafe463384b2e80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5035,7 +4915,29 @@ "description_width": "" } }, - "57ab07390f724a5d8e16586809836234": { + "54953e296f0f4c579439dca58706404b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e17c02b33ca48738d58e864c1d9aa70", + "IPY_MODEL_888b64f8845b41ecb4dc7fb2db3ef9bc", + "IPY_MODEL_1631e9496f1c4879aff4f7a60f812087" + ], + "layout": "IPY_MODEL_019d165b01d2429cacbe4f7813ac85c3" + } + }, + "54cd4f61f9ac4823ad1a291a5c83044d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5087,23 +4989,7 @@ "width": null } }, - "58a429f8b1d549978ea7f80a8eb60e0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fd72aca2a224e22a1ac57e9aa2f6fe5": { + "56dc730c4e9c42018f3bdaacd3942c31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5155,58 +5041,7 @@ "width": null } }, - "6133d506ff354f9f9e86a983423a5f8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6134b8f53ada40528440dd5908efa45e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a2b4d5f077fd45a186f58e3df41d69d5", - "placeholder": "​", - "style": "IPY_MODEL_165d242331874e4d8e5d224bcc161bb2", - "value": "Downloading readme: 100%" - } - }, - "61d4098e90c94382b004bc0644bcfcf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6245639120b0483aa611089003eef510": { + "56df5f0afd084f92bf02497e3c102cfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5258,46 +5093,44 @@ "width": null } }, - "642474d896014495a314b6c00cb77413": { + "5876f44043c744899a59078a628faf07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7f7f6609eb0442d583585ec877071c86", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9208db7b7aa4f3b84cf542e2039aff5", - "value": 10000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6647da606ac64e5faf50d29dcabd6e6d": { + "591e41fa3ea040c8a705f4307abfd2ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d12f5d3dc3e84996a3ee898dae525955", + "IPY_MODEL_7ddc64f41ef348bab5491cc2d2e74512", + "IPY_MODEL_a5971c7bb5be4514a67654690cf9f66e" + ], + "layout": "IPY_MODEL_6bd40464a3ac4d009eb978e40ec47d87" } }, - "6968644c8b774b0dbe4c244586ac49a3": { + "5ae98d025b634902a73fbe2579dad0be": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5349,7 +5182,29 @@ "width": null } }, - "69e24d46c9cc4fe4ab1e0993fbbaca59": { + "6053beefe5384ed2bf12688bc3c18f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f29d0be1ee943b79519a22594819e69", + "IPY_MODEL_7dfedd884b7645dabf9969ae793b7af6", + "IPY_MODEL_c11f5038837c4f2db8e886ed7f154147" + ], + "layout": "IPY_MODEL_9f6b4a8fdcc14cffa0979831efc2b7e4" + } + }, + "65b25af159ca48cdae7d6b80672b57a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5401,7 +5256,23 @@ "width": null } }, - "6df5536e3791482eb99c22331cee2b09": { + "67815fc73566414d88e0a9a3f3ae4ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "696a2adb310f4381ab5235e458276b2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5453,7 +5324,7 @@ "width": null } }, - "701696342d8e4b6dbb4dc2e3612da341": { + "6bd40464a3ac4d009eb978e40ec47d87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5505,44 +5376,22 @@ "width": null } }, - "71757e8923bc4ad88aa6953e6ec249af": { + "6fda5032f4bd4c54a86bd89dfc536e95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "72f0cb41ae434a448da25b88d16cc771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5fd72aca2a224e22a1ac57e9aa2f6fe5", - "placeholder": "​", - "style": "IPY_MODEL_cf72a2b568c44589a367992c7de5824d", - "value": "Downloading builder script: 100%" - } - }, - "73c9aa2761274dbea8685e3134962bb2": { + "70ae0856d08948348ac01d1256247395": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5594,7 +5443,7 @@ "width": null } }, - "743eb12abdb14b85b8b9cd9a46177d7b": { + "70ae94336b394094aecb02e213ded254": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5646,11 +5495,138 @@ "width": null } }, - "768522dcfe15419db3658186433d513a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { + "714ec990445241a5a2d95926a759691b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7202c3cc1ae64c93bfed3ee023701355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7218ee2960494c5a9c0ba90ce4fe7300": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "759cee69c4c1468a866dac8faf92299b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46cd7b397ffa480ea8d14c66a0985429", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_106eccb5e6354a37a0b3cddc71b87994", + "value": 5148.0 + } + }, + "776d70f768d741cea5cedd03f9079a7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54cd4f61f9ac4823ad1a291a5c83044d", + "placeholder": "​", + "style": "IPY_MODEL_c91678e4a81e4f39a98c66a17f4aa3c0", + "value": " 4/4 [00:00<00:00, 2.78it/s]" + } + }, + "79a9fb54ab3a40eb9fe3390f181dbd7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aaa287f9be84485a955394a61d59745e", + "placeholder": "​", + "style": "IPY_MODEL_da87c56641b14a93b42be5ceb6441b0c", + "value": " 5.15k/5.15k [00:00<00:00, 460kB/s]" + } + }, + "7b2a576efcd2435cb06181caa5deb935": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7bd5a377dc10484d85b8b91afd8e7d59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", @@ -5698,29 +5674,31 @@ "width": null } }, - "787e5a7038bc4960a390b93f6a34f154": { + "7ddc64f41ef348bab5491cc2d2e74512": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72f0cb41ae434a448da25b88d16cc771", - "IPY_MODEL_4f1219b7e98345c6ba126db4bd32f044", - "IPY_MODEL_f9afb966d39547ffbb9d6ed4703312fb" - ], - "layout": "IPY_MODEL_3b22924b90db4846b8af4dcbeeefe92c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f99d27725d04f35bd37d6436a82a1bf", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_472b0a043ae84aedbf18e6dbf6cc1e6d", + "value": 4.0 } }, - "7ab1bd10a19b4366953d86aa78081ed6": { + "7dfedd884b7645dabf9969ae793b7af6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5733,18 +5711,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_172f5e5c9a3f4d7ca5af0fdaf2269757", + "layout": "IPY_MODEL_2ed7dc1fb882441f9d0acbbd955afd13", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2d61b1e30b2f4f8ea676d42071f0af97", + "style": "IPY_MODEL_7b2a576efcd2435cb06181caa5deb935", "value": 60000.0 } }, - "7b2621bde93f4a5585c19a7c01f5ccdd": { + "8028351f2e8043af8734e73f26c855ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5796,28 +5774,81 @@ "width": null } }, - "7cc3ff21f4324355816cbb7b1c02e407": { + "81efecb36c164cb2b11be34203509ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_93faf8bedd5a4c08b8adbab43406d184", - "placeholder": "​", - "style": "IPY_MODEL_a5c40c29f5da4efa8efa47046b484d83", - "value": "Downloading data: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_88c514f6dc214486bbf5e29794385d8c", + "IPY_MODEL_fdb426ebc44744b98c41060ae9622a9f", + "IPY_MODEL_88cedd5f00424c25bd6c1af7c932add6" + ], + "layout": "IPY_MODEL_d0e3d861616e46e7911083819d199ec7" } }, - "7cda4b187c524ede81bf7275c38fb18f": { + "850394b058b44ee1b4d3b281097d50d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86aadd681ee643ed8b4315c0698ba57d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5832,7 +5863,59 @@ "description_width": "" } }, - "7f7f6609eb0442d583585ec877071c86": { + "86b18db49a2d4e988856013873443b00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "8736f610ce2b43f0aa481a01ee87cc3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5884,22 +5967,23 @@ "width": null } }, - "7ff49bb3b830426796c6bf3dc628df54": { + "886931a1576f40858f3408246dde08ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "82f4d43c1d894b2a871e4455cfce5d2c": { + "888b64f8845b41ecb4dc7fb2db3ef9bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5912,18 +5996,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_701696342d8e4b6dbb4dc2e3612da341", - "max": 60000.0, + "layout": "IPY_MODEL_347c8c436d0f4dd5a4c327acf87fa233", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_254f1e6d92014d459e928f8eba3dbbef", - "value": 60000.0 + "style": "IPY_MODEL_9ff2c6da3fdb490fb9d20cab77f0b513", + "value": 10000.0 } }, - "84070e95d85c4c378491b7a150a534ce": { + "88c514f6dc214486bbf5e29794385d8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5938,13 +6022,50 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c13dcacb07c743c59f66ec2634ee7b68", + "layout": "IPY_MODEL_2af6841fe82b48e1a353918d957a0cf6", "placeholder": "​", - "style": "IPY_MODEL_569460658d9e4369b9e526153bf35f8b", - "value": " 9937/10000 [00:02<00:00, 4863.82 examples/s]" + "style": "IPY_MODEL_ad00bf755ae84f37ab8b753bdb834d61", + "value": "Downloading data: 100%" + } + }, + "88cedd5f00424c25bd6c1af7c932add6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3e8b48a4689415d8f1af55cc9ce80ce", + "placeholder": "​", + "style": "IPY_MODEL_7202c3cc1ae64c93bfed3ee023701355", + "value": " 26.4M/26.4M [00:00<00:00, 83.7MB/s]" + } + }, + "8b9abaf439804f53b33c14b27f0aa7e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "85246c7bfb9a46ae8d7a7f662ec59a4a": { + "8cf3711c5de3405cb219d24229e3633a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5996,7 +6117,52 @@ "width": null } }, - "8889138156ab43d88d810c0ecb8b484f": { + "8d8407f8cc5749f182258cd91bf05989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebdb56c3fff44dfa9495b59ed6827c1e", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_198fe596b8344f48a48f197feef84abe", + "value": 4.0 + } + }, + "8e17c02b33ca48738d58e864c1d9aa70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56df5f0afd084f92bf02497e3c102cfc", + "placeholder": "​", + "style": "IPY_MODEL_0a762e426c3d42e9afc4b64be10421ed", + "value": "Generating test split: 100%" + } + }, + "8f34684271154426a41cdaa28b4a8556": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6011,7 +6177,7 @@ "description_width": "" } }, - "899e396ab1ce4086b96b19f25b54c76f": { + "93514b61d58b499f8f7c25a5ccb5e50c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6026,7 +6192,7 @@ "description_width": "" } }, - "8a3b140c2f9c4b20abdad2258b79bd11": { + "93c670b2f439428d81cb09521e181c89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6041,13 +6207,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ad3025d077b4228823874cd25bd670d", + "layout": "IPY_MODEL_4c406e2ee74a4d009dd11a33c735eebe", "placeholder": "​", - "style": "IPY_MODEL_7cda4b187c524ede81bf7275c38fb18f", - "value": " 26.4M/26.4M [00:00<00:00, 78.0MB/s]" + "style": "IPY_MODEL_3b8c5122999044998860603f3fc073c2", + "value": "Downloading metadata: 100%" } }, - "8bf8cb55d51d4695bedb38d095be6f59": { + "94f6e1ffe6424540b2ee3d6b6a870c6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6099,7 +6265,7 @@ "width": null } }, - "8e878083485642d0a0093c1afb10f85f": { + "9514eab67e674c3ebbad3eb33cb35e35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -6114,38 +6280,79 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6134b8f53ada40528440dd5908efa45e", - "IPY_MODEL_c7e9bb2f8002414db1552d880834a8d2", - "IPY_MODEL_527a6a2d3baa4b989dfc13f7720392bf" + "IPY_MODEL_cab5be801ad7401dae4fa5ae6ffd2d5b", + "IPY_MODEL_8d8407f8cc5749f182258cd91bf05989", + "IPY_MODEL_d44dfad94303426393cdfc758b373cc4" ], - "layout": "IPY_MODEL_e4014efe2e7c44a7a7038620d5af925c" + "layout": "IPY_MODEL_9db3bb480bc040ceb0dff927a7ae2f48" } }, - "8eb114175334407481f6349654bed01c": { + "97248df699bc45e6bbe741bcbe36d76f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4888046b31504da2a0a23b4bfad772ad", + "IPY_MODEL_51911da6bae647dfbc86762e8a398d17", + "IPY_MODEL_d5e4fa6955f34662a7eb48c7f4f191e1" + ], + "layout": "IPY_MODEL_70ae94336b394094aecb02e213ded254" + } + }, + "9983c1dc92b64131a9f2b4b854d74e07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d17360babfea4e738cef757cd9978d69", + "IPY_MODEL_13f6f9a1a9ee4b2c95f8c5fe12aeeff6", + "IPY_MODEL_33688730cf7d495881ce4b679eada595" + ], + "layout": "IPY_MODEL_332e64d98f5e459b956d806c1d13f6a1" + } + }, + "9aad26a4731d476b85a669f866c81799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30bbebbb9716430cb9d986799f488d69", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0d911032d3e44e39f8d0e16edd866c9", - "value": 26421880.0 + "layout": "IPY_MODEL_e6b671e63eb24a11931a89c1415dbffe", + "placeholder": "​", + "style": "IPY_MODEL_5409da599e5b4b6b9eafe463384b2e80", + "value": "Downloading data: 100%" } }, - "93beadcf27ad400dafd12739ff788219": { + "9c90e0bbfb0a4f29bd2c849d68507294": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6197,7 +6404,7 @@ "width": null } }, - "93faf8bedd5a4c08b8adbab43406d184": { + "9db3bb480bc040ceb0dff927a7ae2f48": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6249,7 +6456,7 @@ "width": null } }, - "96149419a3834898aa7a239d8cc92ff4": { + "9f6b4a8fdcc14cffa0979831efc2b7e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6301,7 +6508,23 @@ "width": null } }, - "961ba36b6cd84a3f8dd7bb7e6bca5182": { + "9ff2c6da3fdb490fb9d20cab77f0b513": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a0e2686fed9b478c8f656fe680850fa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6349,11 +6572,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "98020cf0a9cb47d3910886d94e275a38": { + "a23595be90b84ea58ff99548c495e776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6405,49 +6628,29 @@ "width": null } }, - "9ac8dbc5c90343baa5be2ebdfea28cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7d4195f659c4d999ea32f53a5e3b1bb", - "placeholder": "​", - "style": "IPY_MODEL_d19b2e9b2b7a4899be10d620800fcd22", - "value": "Downloading data: 100%" - } - }, - "9b09a707dd0147aab0fe541a0810d4c8": { + "a3a15abe08e543d49ea829f91cc19330": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_93beadcf27ad400dafd12739ff788219", - "placeholder": "​", - "style": "IPY_MODEL_7ff49bb3b830426796c6bf3dc628df54", - "value": " 4/4 [00:00<00:00, 517.11it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f7b4a4fe36084e0d870d4e5921d2e08f", + "IPY_MODEL_3cdf55e334944f73983b789b6a11a0f3", + "IPY_MODEL_236f10ffe7084936a8e0795e8cea320a" + ], + "layout": "IPY_MODEL_86b18db49a2d4e988856013873443b00" } }, - "9c6b759342544baebf332586bef22365": { + "a3e8b48a4689415d8f1af55cc9ce80ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6499,29 +6702,28 @@ "width": null } }, - "9cce69b734d7471091b99818ba175177": { + "a5971c7bb5be4514a67654690cf9f66e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_181d950b1ff648f09dd2c13ddb17a202", - "IPY_MODEL_a0203286fd7f416a8bdcf4472dfee61d", - "IPY_MODEL_9b09a707dd0147aab0fe541a0810d4c8" - ], - "layout": "IPY_MODEL_9c6b759342544baebf332586bef22365" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_022cfe30452e46fbb2150ee67593c88b", + "placeholder": "​", + "style": "IPY_MODEL_bcbcc5ab2d394963a8ca2b7d0cd6bf65", + "value": " 4/4 [00:03<00:00, 1.31it/s]" } }, - "9ef3770a7bb0451b9ab2be53321fc418": { + "aa396543f32b46e581e2d583c2643e84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6536,31 +6738,7 @@ "description_width": "" } }, - "a0203286fd7f416a8bdcf4472dfee61d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1771b683bf584f0aa32e037e3fb28624", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dd21b5477dc74afc9631f6cb016c81b3", - "value": 4.0 - } - }, - "a2b4d5f077fd45a186f58e3df41d69d5": { + "aaa287f9be84485a955394a61d59745e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6612,22 +6790,7 @@ "width": null } }, - "a39ec2d73c184ff19b62a66ce5df99a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a5c40c29f5da4efa8efa47046b484d83": { + "ad00bf755ae84f37ab8b753bdb834d61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6642,71 +6805,28 @@ "description_width": "" } }, - "a61de5b8a6f24153ba4d6810f25dd82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e7ed85ac36e45a99380c7e6f9329975", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_532386f35f864457af8ab55fc066c8e4", - "value": 4.0 - } - }, - "a9208db7b7aa4f3b84cf542e2039aff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9c78f14cac74bacbc3e68ed1c79de24": { + "b60d399f1a75481788bd11a8967cf030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6968644c8b774b0dbe4c244586ac49a3", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_58a429f8b1d549978ea7f80a8eb60e0c", - "value": 29515.0 + "layout": "IPY_MODEL_94f6e1ffe6424540b2ee3d6b6a870c6c", + "placeholder": "​", + "style": "IPY_MODEL_2f7736f98a584887890e9b7955d03088", + "value": "Downloading data: 100%" } }, - "aac2b7e701d240f9b2bd7965d5410c5c": { + "b9f8d712d71c45a3b0e42028c443610f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6758,7 +6878,64 @@ "width": null } }, - "ae05e4054f3d43f1a90b447efc96ce37": { + "bcbcc5ab2d394963a8ca2b7d0cd6bf65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "be2eb5aab4f74575b3957f3db67c7fe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_850394b058b44ee1b4d3b281097d50d3", + "placeholder": "​", + "style": "IPY_MODEL_aa396543f32b46e581e2d583c2643e84", + "value": " 4.42M/4.42M [00:00<00:00, 30.8MB/s]" + } + }, + "c11f5038837c4f2db8e886ed7f154147": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8028351f2e8043af8734e73f26c855ca", + "placeholder": "​", + "style": "IPY_MODEL_45ff25849f2e4609834ee1c804dc3390", + "value": " 60000/60000 [00:48<00:00, 1185.87it/s]" + } + }, + "c2bf7bab27e64439bf2d020dc145208b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6806,11 +6983,99 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "b0d911032d3e44e39f8d0e16edd866c9": { + "c4692a28af0743c58b9cdf9efaa515ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7bd5a377dc10484d85b8b91afd8e7d59", + "placeholder": "​", + "style": "IPY_MODEL_d9e6ac7d0c814764963f8fac0953fa3f", + "value": "Extracting data files: 100%" + } + }, + "c7808d0d7fda4a05b3c83ef0920bbed0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c7931e902b3842a7b28b8db4e0042d7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c91678e4a81e4f39a98c66a17f4aa3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cab5be801ad7401dae4fa5ae6ffd2d5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2bf7bab27e64439bf2d020dc145208b", + "placeholder": "​", + "style": "IPY_MODEL_86aadd681ee643ed8b4315c0698ba57d", + "value": "Computing checksums: 100%" + } + }, + "caf7392ce9e14f4aa8bbafb0e65cffe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6826,7 +7091,7 @@ "description_width": "" } }, - "b3fdb0983bfd48109baf9e34b1435dee": { + "d07e49bb6aa14766b2947f15a212089e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6878,28 +7143,7 @@ "width": null } }, - "b5ea62fc18734dc390ab5f6d7e7d7bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_743eb12abdb14b85b8b9cd9a46177d7b", - "placeholder": "​", - "style": "IPY_MODEL_a39ec2d73c184ff19b62a66ce5df99a8", - "value": " 60000/60000 [01:04<00:00, 917.68it/s]" - } - }, - "b8d3185892fb4fd18aaf97a9be2fb0ad": { + "d0e3d861616e46e7911083819d199ec7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6951,23 +7195,28 @@ "width": null } }, - "b96fcc9e4cdf43038d9f9f48f0cfcc4b": { + "d12f5d3dc3e84996a3ee898dae525955": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ae98d025b634902a73fbe2579dad0be", + "placeholder": "​", + "style": "IPY_MODEL_c7931e902b3842a7b28b8db4e0042d7e", + "value": "Downloading data files: 100%" } }, - "bbdea4357ae64e62aac2a09377932011": { + "d17360babfea4e738cef757cd9978d69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6982,13 +7231,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_98020cf0a9cb47d3910886d94e275a38", + "layout": "IPY_MODEL_08cec6fa60054d4da2dd9719a53bd337", "placeholder": "​", - "style": "IPY_MODEL_2b4072ace9ca451abc7882810a6e95a3", - "value": " 3.13k/3.13k [00:00<00:00, 235kB/s]" + "style": "IPY_MODEL_93514b61d58b499f8f7c25a5ccb5e50c", + "value": "Generating train split: 99%" } }, - "c13dcacb07c743c59f66ec2634ee7b68": { + "d196b561a10743b2aa19a58d6e640275": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7040,129 +7289,71 @@ "width": null } }, - "c40b2c2bd5a84ed3a310e49c56fc2499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c752b95488964f508f5fe027bbfde3e5": { + "d38073d3ca994198af28656d2f0c5807": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b60d399f1a75481788bd11a8967cf030", + "IPY_MODEL_4db4d76ab31848d59041218744251e4e", + "IPY_MODEL_be2eb5aab4f74575b3957f3db67c7fe8" + ], + "layout": "IPY_MODEL_3459dc816d4d4031be869f6fe2165ca7" } }, - "c7e9bb2f8002414db1552d880834a8d2": { + "d44dfad94303426393cdfc758b373cc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4c9f42ea65434e55bd08b5c2bfa83197", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c752b95488964f508f5fe027bbfde3e5", - "value": 8845.0 - } - }, - "cf72a2b568c44589a367992c7de5824d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d11ef6b8b7cf425ebb2e5dcd0ad6bb90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d19b2e9b2b7a4899be10d620800fcd22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_d07e49bb6aa14766b2947f15a212089e", + "placeholder": "​", + "style": "IPY_MODEL_eee0e10800a041c3abb7e87ff783701a", + "value": " 4/4 [00:00<00:00, 632.74it/s]" } }, - "d577b00c40ea49a18e1f02dc41f37490": { + "d5e4fa6955f34662a7eb48c7f4f191e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea1a133501004ad8bc5b9199d4db8229", - "IPY_MODEL_a61de5b8a6f24153ba4d6810f25dd82e", - "IPY_MODEL_f810bd4a1be24f7592f2e0753246bf1a" - ], - "layout": "IPY_MODEL_96149419a3834898aa7a239d8cc92ff4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0e2686fed9b478c8f656fe680850fa1", + "placeholder": "​", + "style": "IPY_MODEL_5876f44043c744899a59078a628faf07", + "value": " 4.83k/4.83k [00:00<00:00, 402kB/s]" } }, - "d7d4195f659c4d999ea32f53a5e3b1bb": { + "d6bccc5f9b9446aeb8776e0d5dd04bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7211,25 +7402,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "d8dc0fb24c004d7cac179c25cc997d8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "width": null } }, - "da5a2c529fab4a6396f70f85a99da978": { + "d6f0aa50cf5e4f25bea3fca81b0c97a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7281,7 +7457,7 @@ "width": null } }, - "dd21b5477dc74afc9631f6cb016c81b3": { + "d7255ebad04544d3a82a4cc388d47a6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7297,7 +7473,7 @@ "description_width": "" } }, - "e0e3eddd07ef4b3fa0c5750360e7ee2f": { + "d9e6ac7d0c814764963f8fac0953fa3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7312,45 +7488,37 @@ "description_width": "" } }, - "e181b73508444fffbb8495cb8e241918": { + "da87c56641b14a93b42be5ceb6441b0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e1fdeb94e5fa49b8a656f7ef47a08165": { + "e21e4ffbc43e4d51a1c7d9e797cd4c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a707367235e4ba1867e1d35b3b745ea", - "IPY_MODEL_2412fd7f7293416a8ab91956799fdccd", - "IPY_MODEL_19e62619815c4f1fa0018ead85e11dd0" - ], - "layout": "IPY_MODEL_b3fdb0983bfd48109baf9e34b1435dee" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e4014efe2e7c44a7a7038620d5af925c": { + "e28aad57ba1b49ec89dea323faf0e0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7402,29 +7570,7 @@ "width": null } }, - "e442180dcef84210bf16aa84140d1f63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3636e89ad6b44a7ca58808df5a49085d", - "IPY_MODEL_1a10b48b86c6408194de5897770587a9", - "IPY_MODEL_bbdea4357ae64e62aac2a09377932011" - ], - "layout": "IPY_MODEL_0543d31b592143adade3e68e05292175" - } - }, - "e62c3a504d6f4673aecf2f497ddfa294": { + "e6b671e63eb24a11931a89c1415dbffe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7476,29 +7622,22 @@ "width": null } }, - "e744c279fed142889b0486cde9b77238": { + "e778c45cc4b5494b8a6749f3ea5a049f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_033f96e60442407ca255da1f5c6e83b1", - "IPY_MODEL_642474d896014495a314b6c00cb77413", - "IPY_MODEL_84070e95d85c4c378491b7a150a534ce" - ], - "layout": "IPY_MODEL_2dad158353bc466eab1c6457d749889b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e7466a4bdb8c42ed8e9571f1764d884b": { + "ebdb56c3fff44dfa9495b59ed6827c1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7550,140 +7689,68 @@ "width": null } }, - "ea1a133501004ad8bc5b9199d4db8229": { + "ee02d606b7824ddebceb7031f6887f6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2d61d6bdbe6743c084e74901a0461031", - "placeholder": "​", - "style": "IPY_MODEL_899e396ab1ce4086b96b19f25b54c76f", - "value": "Downloading data files: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eae7eec6a08a44e2aceb8f1869c47d44": { + "eee0e10800a041c3abb7e87ff783701a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ac8dbc5c90343baa5be2ebdfea28cd0", - "IPY_MODEL_a9c78f14cac74bacbc3e68ed1c79de24", - "IPY_MODEL_234b4f59cde245d68f73a73fa3ca0b36" - ], - "layout": "IPY_MODEL_50821ad3594f48edb5ec9a4edff2249f" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "eff274ebfa614f09814bef0567c583c5": { + "f4cc015eaf7d4839a03a9fa886cc4bad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_565f54a2b6794a7bb5485e3b86dc5670", - "IPY_MODEL_82f4d43c1d894b2a871e4455cfce5d2c", - "IPY_MODEL_b5ea62fc18734dc390ab5f6d7e7d7bc6" - ], - "layout": "IPY_MODEL_6245639120b0483aa611089003eef510" - } - }, - "f46735b37d824f1ca365f5c187aeebec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "f4fa59cba1dc4b0ebbbd759fb3deb6b3": { + "f4f15e77fa90469d817fd059753fe5b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f5b393ca71154dc387d5e533e9f08f46": { + "f7b4a4fe36084e0d870d4e5921d2e08f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7698,13 +7765,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b8d3185892fb4fd18aaf97a9be2fb0ad", + "layout": "IPY_MODEL_d6bccc5f9b9446aeb8776e0d5dd04bb4", "placeholder": "​", - "style": "IPY_MODEL_3534d3abf4a247f1ab536b69035719ef", - "value": "Generating train split: 99%" + "style": "IPY_MODEL_7218ee2960494c5a9c0ba90ce4fe7300", + "value": "Map (num_proc=2): 100%" } }, - "f70ed9da2d854667a7885753681f800a": { + "f820166ea37d4391937e7a28ab9e7aca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7756,136 +7823,45 @@ "width": null } }, - "f810bd4a1be24f7592f2e0753246bf1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6df5536e3791482eb99c22331cee2b09", - "placeholder": "​", - "style": "IPY_MODEL_d11ef6b8b7cf425ebb2e5dcd0ad6bb90", - "value": " 4/4 [00:05<00:00, 1.29s/it]" - } - }, - "f9afb966d39547ffbb9d6ed4703312fb": { + "fdb426ebc44744b98c41060ae9622a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f46735b37d824f1ca365f5c187aeebec", - "placeholder": "​", - "style": "IPY_MODEL_9ef3770a7bb0451b9ab2be53321fc418", - "value": " 4.83k/4.83k [00:00<00:00, 271kB/s]" - } - }, - "faa02cd1d3d64d619a2c4d7dce2af25f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_072b56f48ff04360b4ec5b188d3ededf", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b9abaf439804f53b33c14b27f0aa7e9", + "value": 26421880.0 } }, - "fc68fb4b7a89444d945bd6c12d1c2c46": { + "fe01f88233804e058e05cd52125775a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } - }, - "fff81bd228894710a3864b437210b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4e41cdaac37d40ff80567503cb52f808", - "IPY_MODEL_7ab1bd10a19b4366953d86aa78081ed6", - "IPY_MODEL_4e45952280b74d75b11331999e645dad" - ], - "layout": "IPY_MODEL_ae05e4054f3d43f1a90b447efc96ce37" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 4a3bedc12..ceb4ad5ca 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:08.127201Z", - "iopub.status.busy": "2023-10-16T20:33:08.126898Z", - "iopub.status.idle": "2023-10-16T20:33:09.751103Z", - "shell.execute_reply": "2023-10-16T20:33:09.750189Z" + "iopub.execute_input": "2023-10-17T19:50:39.751593Z", + "iopub.status.busy": "2023-10-17T19:50:39.751375Z", + "iopub.status.idle": "2023-10-17T19:50:40.954776Z", + "shell.execute_reply": "2023-10-17T19:50:40.954088Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:09.756108Z", - "iopub.status.busy": "2023-10-16T20:33:09.755400Z", - "iopub.status.idle": "2023-10-16T20:33:10.078201Z", - "shell.execute_reply": "2023-10-16T20:33:10.076927Z" + "iopub.execute_input": "2023-10-17T19:50:40.959545Z", + "iopub.status.busy": "2023-10-17T19:50:40.958149Z", + "iopub.status.idle": "2023-10-17T19:50:41.210024Z", + "shell.execute_reply": "2023-10-17T19:50:41.209336Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.084405Z", - "iopub.status.busy": "2023-10-16T20:33:10.084072Z", - "iopub.status.idle": "2023-10-16T20:33:10.219492Z", - "shell.execute_reply": "2023-10-16T20:33:10.218611Z" + "iopub.execute_input": "2023-10-17T19:50:41.213457Z", + "iopub.status.busy": "2023-10-17T19:50:41.213196Z", + "iopub.status.idle": "2023-10-17T19:50:41.302582Z", + "shell.execute_reply": "2023-10-17T19:50:41.301916Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.223526Z", - "iopub.status.busy": "2023-10-16T20:33:10.223022Z", - "iopub.status.idle": "2023-10-16T20:33:10.530046Z", - "shell.execute_reply": "2023-10-16T20:33:10.529297Z" + "iopub.execute_input": "2023-10-17T19:50:41.305538Z", + "iopub.status.busy": "2023-10-17T19:50:41.305291Z", + "iopub.status.idle": "2023-10-17T19:50:41.546391Z", + "shell.execute_reply": "2023-10-17T19:50:41.545763Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.535044Z", - "iopub.status.busy": "2023-10-16T20:33:10.534196Z", - "iopub.status.idle": "2023-10-16T20:33:10.571783Z", - "shell.execute_reply": "2023-10-16T20:33:10.570838Z" + "iopub.execute_input": "2023-10-17T19:50:41.550075Z", + "iopub.status.busy": "2023-10-17T19:50:41.549499Z", + "iopub.status.idle": "2023-10-17T19:50:41.578378Z", + "shell.execute_reply": "2023-10-17T19:50:41.577099Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.576476Z", - "iopub.status.busy": "2023-10-16T20:33:10.575910Z", - "iopub.status.idle": "2023-10-16T20:33:12.677129Z", - "shell.execute_reply": "2023-10-16T20:33:12.675951Z" + "iopub.execute_input": "2023-10-17T19:50:41.581387Z", + "iopub.status.busy": "2023-10-17T19:50:41.581160Z", + "iopub.status.idle": "2023-10-17T19:50:43.185463Z", + "shell.execute_reply": "2023-10-17T19:50:43.184703Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:12.682621Z", - "iopub.status.busy": "2023-10-16T20:33:12.681472Z", - "iopub.status.idle": "2023-10-16T20:33:12.707854Z", - "shell.execute_reply": "2023-10-16T20:33:12.707036Z" + "iopub.execute_input": "2023-10-17T19:50:43.189102Z", + "iopub.status.busy": "2023-10-17T19:50:43.188534Z", + "iopub.status.idle": "2023-10-17T19:50:43.209472Z", + "shell.execute_reply": "2023-10-17T19:50:43.208647Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:12.711964Z", - "iopub.status.busy": "2023-10-16T20:33:12.711354Z", - "iopub.status.idle": "2023-10-16T20:33:14.196600Z", - "shell.execute_reply": "2023-10-16T20:33:14.195485Z" + "iopub.execute_input": "2023-10-17T19:50:43.212519Z", + "iopub.status.busy": "2023-10-17T19:50:43.212134Z", + "iopub.status.idle": "2023-10-17T19:50:44.322598Z", + "shell.execute_reply": "2023-10-17T19:50:44.321743Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.201857Z", - "iopub.status.busy": "2023-10-16T20:33:14.201282Z", - "iopub.status.idle": "2023-10-16T20:33:14.225403Z", - "shell.execute_reply": "2023-10-16T20:33:14.224411Z" + "iopub.execute_input": "2023-10-17T19:50:44.325976Z", + "iopub.status.busy": "2023-10-17T19:50:44.325608Z", + "iopub.status.idle": "2023-10-17T19:50:44.343308Z", + "shell.execute_reply": "2023-10-17T19:50:44.342613Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.230985Z", - "iopub.status.busy": "2023-10-16T20:33:14.229409Z", - "iopub.status.idle": "2023-10-16T20:33:14.364517Z", - "shell.execute_reply": "2023-10-16T20:33:14.363346Z" + "iopub.execute_input": "2023-10-17T19:50:44.346691Z", + "iopub.status.busy": "2023-10-17T19:50:44.346317Z", + "iopub.status.idle": "2023-10-17T19:50:44.435468Z", + "shell.execute_reply": "2023-10-17T19:50:44.434694Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.370330Z", - "iopub.status.busy": "2023-10-16T20:33:14.369748Z", - "iopub.status.idle": "2023-10-16T20:33:14.641057Z", - "shell.execute_reply": "2023-10-16T20:33:14.640153Z" + "iopub.execute_input": "2023-10-17T19:50:44.438641Z", + "iopub.status.busy": "2023-10-17T19:50:44.438267Z", + "iopub.status.idle": "2023-10-17T19:50:44.651386Z", + "shell.execute_reply": "2023-10-17T19:50:44.650661Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.645956Z", - "iopub.status.busy": "2023-10-16T20:33:14.645078Z", - "iopub.status.idle": "2023-10-16T20:33:14.674255Z", - "shell.execute_reply": "2023-10-16T20:33:14.673073Z" + "iopub.execute_input": "2023-10-17T19:50:44.654472Z", + "iopub.status.busy": "2023-10-17T19:50:44.654101Z", + "iopub.status.idle": "2023-10-17T19:50:44.679217Z", + "shell.execute_reply": "2023-10-17T19:50:44.678570Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.681395Z", - "iopub.status.busy": "2023-10-16T20:33:14.680600Z", - "iopub.status.idle": "2023-10-16T20:33:14.699856Z", - "shell.execute_reply": "2023-10-16T20:33:14.698860Z" + "iopub.execute_input": "2023-10-17T19:50:44.682788Z", + "iopub.status.busy": "2023-10-17T19:50:44.682251Z", + "iopub.status.idle": "2023-10-17T19:50:44.696273Z", + "shell.execute_reply": "2023-10-17T19:50:44.695681Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.704149Z", - "iopub.status.busy": "2023-10-16T20:33:14.703410Z", - "iopub.status.idle": "2023-10-16T20:33:14.838657Z", - "shell.execute_reply": "2023-10-16T20:33:14.837088Z" + "iopub.execute_input": "2023-10-17T19:50:44.699638Z", + "iopub.status.busy": "2023-10-17T19:50:44.699050Z", + "iopub.status.idle": "2023-10-17T19:50:44.800713Z", + "shell.execute_reply": "2023-10-17T19:50:44.799914Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.843631Z", - "iopub.status.busy": "2023-10-16T20:33:14.842890Z", - "iopub.status.idle": "2023-10-16T20:33:15.048937Z", - "shell.execute_reply": "2023-10-16T20:33:15.047879Z" + "iopub.execute_input": "2023-10-17T19:50:44.805605Z", + "iopub.status.busy": "2023-10-17T19:50:44.804279Z", + "iopub.status.idle": "2023-10-17T19:50:44.963157Z", + "shell.execute_reply": "2023-10-17T19:50:44.962417Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.053962Z", - "iopub.status.busy": "2023-10-16T20:33:15.053250Z", - "iopub.status.idle": "2023-10-16T20:33:15.061136Z", - "shell.execute_reply": "2023-10-16T20:33:15.060288Z" + "iopub.execute_input": "2023-10-17T19:50:44.966714Z", + "iopub.status.busy": "2023-10-17T19:50:44.966037Z", + "iopub.status.idle": "2023-10-17T19:50:44.972615Z", + "shell.execute_reply": "2023-10-17T19:50:44.971934Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.065369Z", - "iopub.status.busy": "2023-10-16T20:33:15.064886Z", - "iopub.status.idle": "2023-10-16T20:33:15.072899Z", - "shell.execute_reply": "2023-10-16T20:33:15.071999Z" + "iopub.execute_input": "2023-10-17T19:50:44.976557Z", + "iopub.status.busy": "2023-10-17T19:50:44.975972Z", + "iopub.status.idle": "2023-10-17T19:50:44.981729Z", + "shell.execute_reply": "2023-10-17T19:50:44.981039Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.076842Z", - "iopub.status.busy": "2023-10-16T20:33:15.076332Z", - "iopub.status.idle": "2023-10-16T20:33:15.134739Z", - "shell.execute_reply": "2023-10-16T20:33:15.133793Z" + "iopub.execute_input": "2023-10-17T19:50:44.984665Z", + "iopub.status.busy": "2023-10-17T19:50:44.984434Z", + "iopub.status.idle": "2023-10-17T19:50:45.027371Z", + "shell.execute_reply": "2023-10-17T19:50:45.026663Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.140036Z", - "iopub.status.busy": "2023-10-16T20:33:15.139205Z", - "iopub.status.idle": "2023-10-16T20:33:15.213893Z", - "shell.execute_reply": "2023-10-16T20:33:15.212824Z" + "iopub.execute_input": "2023-10-17T19:50:45.030329Z", + "iopub.status.busy": "2023-10-17T19:50:45.030097Z", + "iopub.status.idle": "2023-10-17T19:50:45.080056Z", + "shell.execute_reply": "2023-10-17T19:50:45.079383Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.218171Z", - "iopub.status.busy": "2023-10-16T20:33:15.217551Z", - "iopub.status.idle": "2023-10-16T20:33:15.353107Z", - "shell.execute_reply": "2023-10-16T20:33:15.347145Z" + "iopub.execute_input": "2023-10-17T19:50:45.083634Z", + "iopub.status.busy": "2023-10-17T19:50:45.083072Z", + "iopub.status.idle": "2023-10-17T19:50:45.178393Z", + "shell.execute_reply": "2023-10-17T19:50:45.177464Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.359640Z", - "iopub.status.busy": "2023-10-16T20:33:15.358170Z", - "iopub.status.idle": "2023-10-16T20:33:15.498654Z", - "shell.execute_reply": "2023-10-16T20:33:15.497624Z" + "iopub.execute_input": "2023-10-17T19:50:45.182233Z", + "iopub.status.busy": "2023-10-17T19:50:45.181592Z", + "iopub.status.idle": "2023-10-17T19:50:45.293459Z", + "shell.execute_reply": "2023-10-17T19:50:45.292669Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.502925Z", - "iopub.status.busy": "2023-10-16T20:33:15.502366Z", - "iopub.status.idle": "2023-10-16T20:33:15.766712Z", - "shell.execute_reply": "2023-10-16T20:33:15.765944Z" + "iopub.execute_input": "2023-10-17T19:50:45.297460Z", + "iopub.status.busy": "2023-10-17T19:50:45.296876Z", + "iopub.status.idle": "2023-10-17T19:50:45.507264Z", + "shell.execute_reply": "2023-10-17T19:50:45.506665Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.772912Z", - "iopub.status.busy": "2023-10-16T20:33:15.772259Z", - "iopub.status.idle": "2023-10-16T20:33:16.065241Z", - "shell.execute_reply": "2023-10-16T20:33:16.063704Z" + "iopub.execute_input": "2023-10-17T19:50:45.510403Z", + "iopub.status.busy": "2023-10-17T19:50:45.509937Z", + "iopub.status.idle": "2023-10-17T19:50:45.739414Z", + "shell.execute_reply": "2023-10-17T19:50:45.738652Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.070221Z", - "iopub.status.busy": "2023-10-16T20:33:16.069528Z", - "iopub.status.idle": "2023-10-16T20:33:16.079863Z", - "shell.execute_reply": "2023-10-16T20:33:16.079007Z" + "iopub.execute_input": "2023-10-17T19:50:45.742735Z", + "iopub.status.busy": "2023-10-17T19:50:45.742323Z", + "iopub.status.idle": "2023-10-17T19:50:45.751451Z", + "shell.execute_reply": "2023-10-17T19:50:45.750815Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.083795Z", - "iopub.status.busy": "2023-10-16T20:33:16.083000Z", - "iopub.status.idle": "2023-10-16T20:33:16.378486Z", - "shell.execute_reply": "2023-10-16T20:33:16.377505Z" + "iopub.execute_input": "2023-10-17T19:50:45.754435Z", + "iopub.status.busy": "2023-10-17T19:50:45.754082Z", + "iopub.status.idle": "2023-10-17T19:50:45.974814Z", + "shell.execute_reply": "2023-10-17T19:50:45.974166Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.382680Z", - "iopub.status.busy": "2023-10-16T20:33:16.382340Z", - "iopub.status.idle": "2023-10-16T20:33:18.175983Z", - "shell.execute_reply": "2023-10-16T20:33:18.174655Z" + "iopub.execute_input": "2023-10-17T19:50:45.977912Z", + "iopub.status.busy": "2023-10-17T19:50:45.977664Z", + "iopub.status.idle": "2023-10-17T19:50:47.283377Z", + "shell.execute_reply": "2023-10-17T19:50:47.282703Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 604884702..cf626c03a 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:24.202065Z", - "iopub.status.busy": "2023-10-16T20:33:24.201542Z", - "iopub.status.idle": "2023-10-16T20:33:25.701795Z", - "shell.execute_reply": "2023-10-16T20:33:25.700667Z" + "iopub.execute_input": "2023-10-17T19:50:53.308157Z", + "iopub.status.busy": "2023-10-17T19:50:53.307725Z", + "iopub.status.idle": "2023-10-17T19:50:54.433542Z", + "shell.execute_reply": "2023-10-17T19:50:54.432845Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.707560Z", - "iopub.status.busy": "2023-10-16T20:33:25.706839Z", - "iopub.status.idle": "2023-10-16T20:33:25.712975Z", - "shell.execute_reply": "2023-10-16T20:33:25.712191Z" + "iopub.execute_input": "2023-10-17T19:50:54.436993Z", + "iopub.status.busy": "2023-10-17T19:50:54.436392Z", + "iopub.status.idle": "2023-10-17T19:50:54.441188Z", + "shell.execute_reply": "2023-10-17T19:50:54.440579Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.716913Z", - "iopub.status.busy": "2023-10-16T20:33:25.716238Z", - "iopub.status.idle": "2023-10-16T20:33:25.728621Z", - "shell.execute_reply": "2023-10-16T20:33:25.727774Z" + "iopub.execute_input": "2023-10-17T19:50:54.444333Z", + "iopub.status.busy": "2023-10-17T19:50:54.443893Z", + "iopub.status.idle": "2023-10-17T19:50:54.453820Z", + "shell.execute_reply": "2023-10-17T19:50:54.453144Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.732479Z", - "iopub.status.busy": "2023-10-16T20:33:25.731817Z", - "iopub.status.idle": "2023-10-16T20:33:25.804723Z", - "shell.execute_reply": "2023-10-16T20:33:25.803382Z" + "iopub.execute_input": "2023-10-17T19:50:54.456735Z", + "iopub.status.busy": "2023-10-17T19:50:54.456371Z", + "iopub.status.idle": "2023-10-17T19:50:54.514315Z", + "shell.execute_reply": "2023-10-17T19:50:54.513630Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.809875Z", - "iopub.status.busy": "2023-10-16T20:33:25.809148Z", - "iopub.status.idle": "2023-10-16T20:33:25.838287Z", - "shell.execute_reply": "2023-10-16T20:33:25.837395Z" + "iopub.execute_input": "2023-10-17T19:50:54.518548Z", + "iopub.status.busy": "2023-10-17T19:50:54.517901Z", + "iopub.status.idle": "2023-10-17T19:50:54.543520Z", + "shell.execute_reply": "2023-10-17T19:50:54.542852Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.842741Z", - "iopub.status.busy": "2023-10-16T20:33:25.842021Z", - "iopub.status.idle": "2023-10-16T20:33:25.847708Z", - "shell.execute_reply": "2023-10-16T20:33:25.846882Z" + "iopub.execute_input": "2023-10-17T19:50:54.547009Z", + "iopub.status.busy": "2023-10-17T19:50:54.546613Z", + "iopub.status.idle": "2023-10-17T19:50:54.553232Z", + "shell.execute_reply": "2023-10-17T19:50:54.552639Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.852758Z", - "iopub.status.busy": "2023-10-16T20:33:25.852276Z", - "iopub.status.idle": "2023-10-16T20:33:25.894062Z", - "shell.execute_reply": "2023-10-16T20:33:25.892977Z" + "iopub.execute_input": "2023-10-17T19:50:54.556292Z", + "iopub.status.busy": "2023-10-17T19:50:54.555841Z", + "iopub.status.idle": "2023-10-17T19:50:54.586660Z", + "shell.execute_reply": "2023-10-17T19:50:54.585978Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.899145Z", - "iopub.status.busy": "2023-10-16T20:33:25.898485Z", - "iopub.status.idle": "2023-10-16T20:33:25.940197Z", - "shell.execute_reply": "2023-10-16T20:33:25.939208Z" + "iopub.execute_input": "2023-10-17T19:50:54.589838Z", + "iopub.status.busy": "2023-10-17T19:50:54.589221Z", + "iopub.status.idle": "2023-10-17T19:50:54.619746Z", + "shell.execute_reply": "2023-10-17T19:50:54.619090Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.945834Z", - "iopub.status.busy": "2023-10-16T20:33:25.945174Z", - "iopub.status.idle": "2023-10-16T20:33:28.074010Z", - "shell.execute_reply": "2023-10-16T20:33:28.072996Z" + "iopub.execute_input": "2023-10-17T19:50:54.622950Z", + "iopub.status.busy": "2023-10-17T19:50:54.622567Z", + "iopub.status.idle": "2023-10-17T19:50:56.276074Z", + "shell.execute_reply": "2023-10-17T19:50:56.275384Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.080583Z", - "iopub.status.busy": "2023-10-16T20:33:28.078460Z", - "iopub.status.idle": "2023-10-16T20:33:28.092785Z", - "shell.execute_reply": "2023-10-16T20:33:28.091921Z" + "iopub.execute_input": "2023-10-17T19:50:56.279942Z", + "iopub.status.busy": "2023-10-17T19:50:56.279035Z", + "iopub.status.idle": "2023-10-17T19:50:56.289959Z", + "shell.execute_reply": "2023-10-17T19:50:56.289236Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.098187Z", - "iopub.status.busy": "2023-10-16T20:33:28.096547Z", - "iopub.status.idle": "2023-10-16T20:33:28.121793Z", - "shell.execute_reply": "2023-10-16T20:33:28.120890Z" + "iopub.execute_input": "2023-10-17T19:50:56.292826Z", + "iopub.status.busy": "2023-10-17T19:50:56.292460Z", + "iopub.status.idle": "2023-10-17T19:50:56.308037Z", + "shell.execute_reply": "2023-10-17T19:50:56.307339Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.126778Z", - "iopub.status.busy": "2023-10-16T20:33:28.126104Z", - "iopub.status.idle": "2023-10-16T20:33:28.139740Z", - "shell.execute_reply": "2023-10-16T20:33:28.138913Z" + "iopub.execute_input": "2023-10-17T19:50:56.310888Z", + "iopub.status.busy": "2023-10-17T19:50:56.310652Z", + "iopub.status.idle": "2023-10-17T19:50:56.318347Z", + "shell.execute_reply": "2023-10-17T19:50:56.317694Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.144409Z", - "iopub.status.busy": "2023-10-16T20:33:28.143557Z", - "iopub.status.idle": "2023-10-16T20:33:28.148649Z", - "shell.execute_reply": "2023-10-16T20:33:28.147853Z" + "iopub.execute_input": "2023-10-17T19:50:56.321680Z", + "iopub.status.busy": "2023-10-17T19:50:56.321331Z", + "iopub.status.idle": "2023-10-17T19:50:56.324493Z", + "shell.execute_reply": "2023-10-17T19:50:56.323852Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.152931Z", - "iopub.status.busy": "2023-10-16T20:33:28.152173Z", - "iopub.status.idle": "2023-10-16T20:33:28.159698Z", - "shell.execute_reply": "2023-10-16T20:33:28.158941Z" + "iopub.execute_input": "2023-10-17T19:50:56.327210Z", + "iopub.status.busy": "2023-10-17T19:50:56.326858Z", + "iopub.status.idle": "2023-10-17T19:50:56.331252Z", + "shell.execute_reply": "2023-10-17T19:50:56.330588Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.164058Z", - "iopub.status.busy": "2023-10-16T20:33:28.163450Z", - "iopub.status.idle": "2023-10-16T20:33:28.168961Z", - "shell.execute_reply": "2023-10-16T20:33:28.168170Z" + "iopub.execute_input": "2023-10-17T19:50:56.334879Z", + "iopub.status.busy": "2023-10-17T19:50:56.334519Z", + "iopub.status.idle": "2023-10-17T19:50:56.337725Z", + "shell.execute_reply": "2023-10-17T19:50:56.337076Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.173447Z", - "iopub.status.busy": "2023-10-16T20:33:28.172563Z", - "iopub.status.idle": "2023-10-16T20:33:28.180871Z", - "shell.execute_reply": "2023-10-16T20:33:28.180045Z" + "iopub.execute_input": "2023-10-17T19:50:56.340446Z", + "iopub.status.busy": "2023-10-17T19:50:56.340090Z", + "iopub.status.idle": "2023-10-17T19:50:56.345344Z", + "shell.execute_reply": "2023-10-17T19:50:56.344676Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.185413Z", - "iopub.status.busy": "2023-10-16T20:33:28.184694Z", - "iopub.status.idle": "2023-10-16T20:33:28.236976Z", - "shell.execute_reply": "2023-10-16T20:33:28.236049Z" + "iopub.execute_input": "2023-10-17T19:50:56.348515Z", + "iopub.status.busy": "2023-10-17T19:50:56.348167Z", + "iopub.status.idle": "2023-10-17T19:50:56.383911Z", + "shell.execute_reply": "2023-10-17T19:50:56.383248Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.241875Z", - "iopub.status.busy": "2023-10-16T20:33:28.241110Z", - "iopub.status.idle": "2023-10-16T20:33:28.250085Z", - "shell.execute_reply": "2023-10-16T20:33:28.247908Z" + "iopub.execute_input": "2023-10-17T19:50:56.387234Z", + "iopub.status.busy": "2023-10-17T19:50:56.386664Z", + "iopub.status.idle": "2023-10-17T19:50:56.392667Z", + "shell.execute_reply": "2023-10-17T19:50:56.391984Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 49b7326c1..50545376d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:33.802143Z", - "iopub.status.busy": "2023-10-16T20:33:33.801823Z", - "iopub.status.idle": "2023-10-16T20:33:35.408312Z", - "shell.execute_reply": "2023-10-16T20:33:35.407012Z" + "iopub.execute_input": "2023-10-17T19:51:01.637145Z", + "iopub.status.busy": "2023-10-17T19:51:01.636764Z", + "iopub.status.idle": "2023-10-17T19:51:02.825356Z", + "shell.execute_reply": "2023-10-17T19:51:02.824658Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.416095Z", - "iopub.status.busy": "2023-10-16T20:33:35.413791Z", - "iopub.status.idle": "2023-10-16T20:33:35.893858Z", - "shell.execute_reply": "2023-10-16T20:33:35.892616Z" + "iopub.execute_input": "2023-10-17T19:51:02.829262Z", + "iopub.status.busy": "2023-10-17T19:51:02.828759Z", + "iopub.status.idle": "2023-10-17T19:51:03.178273Z", + "shell.execute_reply": "2023-10-17T19:51:03.177569Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.898983Z", - "iopub.status.busy": "2023-10-16T20:33:35.898647Z", - "iopub.status.idle": "2023-10-16T20:33:35.920706Z", - "shell.execute_reply": "2023-10-16T20:33:35.919734Z" + "iopub.execute_input": "2023-10-17T19:51:03.182114Z", + "iopub.status.busy": "2023-10-17T19:51:03.181817Z", + "iopub.status.idle": "2023-10-17T19:51:03.199508Z", + "shell.execute_reply": "2023-10-17T19:51:03.198865Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.924757Z", - "iopub.status.busy": "2023-10-16T20:33:35.924255Z", - "iopub.status.idle": "2023-10-16T20:33:39.595117Z", - "shell.execute_reply": "2023-10-16T20:33:39.594263Z" + "iopub.execute_input": "2023-10-17T19:51:03.203653Z", + "iopub.status.busy": "2023-10-17T19:51:03.202412Z", + "iopub.status.idle": "2023-10-17T19:51:06.041640Z", + "shell.execute_reply": "2023-10-17T19:51:06.040874Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:39.599354Z", - "iopub.status.busy": "2023-10-16T20:33:39.598479Z", - "iopub.status.idle": "2023-10-16T20:33:42.053291Z", - "shell.execute_reply": "2023-10-16T20:33:42.052158Z" + "iopub.execute_input": "2023-10-17T19:51:06.044943Z", + "iopub.status.busy": "2023-10-17T19:51:06.044382Z", + "iopub.status.idle": "2023-10-17T19:51:07.981585Z", + "shell.execute_reply": "2023-10-17T19:51:07.980910Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:42.059225Z", - "iopub.status.busy": "2023-10-16T20:33:42.058528Z", - "iopub.status.idle": "2023-10-16T20:33:42.079906Z", - "shell.execute_reply": "2023-10-16T20:33:42.078913Z" + "iopub.execute_input": "2023-10-17T19:51:07.985407Z", + "iopub.status.busy": "2023-10-17T19:51:07.985026Z", + "iopub.status.idle": "2023-10-17T19:51:08.004381Z", + "shell.execute_reply": "2023-10-17T19:51:08.003677Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:42.084242Z", - "iopub.status.busy": "2023-10-16T20:33:42.083620Z", - "iopub.status.idle": "2023-10-16T20:33:44.205956Z", - "shell.execute_reply": "2023-10-16T20:33:44.204816Z" + "iopub.execute_input": "2023-10-17T19:51:08.007729Z", + "iopub.status.busy": "2023-10-17T19:51:08.007359Z", + "iopub.status.idle": "2023-10-17T19:51:09.631423Z", + "shell.execute_reply": "2023-10-17T19:51:09.630373Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:44.211852Z", - "iopub.status.busy": "2023-10-16T20:33:44.210468Z", - "iopub.status.idle": "2023-10-16T20:33:47.895150Z", - "shell.execute_reply": "2023-10-16T20:33:47.893843Z" + "iopub.execute_input": "2023-10-17T19:51:09.636178Z", + "iopub.status.busy": "2023-10-17T19:51:09.634967Z", + "iopub.status.idle": "2023-10-17T19:51:12.458173Z", + "shell.execute_reply": "2023-10-17T19:51:12.457485Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.899485Z", - "iopub.status.busy": "2023-10-16T20:33:47.898971Z", - "iopub.status.idle": "2023-10-16T20:33:47.907452Z", - "shell.execute_reply": "2023-10-16T20:33:47.906643Z" + "iopub.execute_input": "2023-10-17T19:51:12.461203Z", + "iopub.status.busy": "2023-10-17T19:51:12.460820Z", + "iopub.status.idle": "2023-10-17T19:51:12.467659Z", + "shell.execute_reply": "2023-10-17T19:51:12.467035Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.911790Z", - "iopub.status.busy": "2023-10-16T20:33:47.911173Z", - "iopub.status.idle": "2023-10-16T20:33:47.918851Z", - "shell.execute_reply": "2023-10-16T20:33:47.918034Z" + "iopub.execute_input": "2023-10-17T19:51:12.470982Z", + "iopub.status.busy": "2023-10-17T19:51:12.470479Z", + "iopub.status.idle": "2023-10-17T19:51:12.475478Z", + "shell.execute_reply": "2023-10-17T19:51:12.474823Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.923309Z", - "iopub.status.busy": "2023-10-16T20:33:47.922569Z", - "iopub.status.idle": "2023-10-16T20:33:47.928304Z", - "shell.execute_reply": "2023-10-16T20:33:47.927528Z" + "iopub.execute_input": "2023-10-17T19:51:12.478328Z", + "iopub.status.busy": "2023-10-17T19:51:12.478105Z", + "iopub.status.idle": "2023-10-17T19:51:12.482663Z", + "shell.execute_reply": "2023-10-17T19:51:12.482060Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 6801e5727..001848407 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:52.695229Z", - "iopub.status.busy": "2023-10-16T20:33:52.694919Z", - "iopub.status.idle": "2023-10-16T20:33:54.295228Z", - "shell.execute_reply": "2023-10-16T20:33:54.294358Z" + "iopub.execute_input": "2023-10-17T19:51:17.565474Z", + "iopub.status.busy": "2023-10-17T19:51:17.565097Z", + "iopub.status.idle": "2023-10-17T19:51:18.775691Z", + "shell.execute_reply": "2023-10-17T19:51:18.775022Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:54.299877Z", - "iopub.status.busy": "2023-10-16T20:33:54.299213Z", - "iopub.status.idle": "2023-10-16T20:33:57.250740Z", - "shell.execute_reply": "2023-10-16T20:33:57.248759Z" + "iopub.execute_input": "2023-10-17T19:51:18.779007Z", + "iopub.status.busy": "2023-10-17T19:51:18.778523Z", + "iopub.status.idle": "2023-10-17T19:51:22.404994Z", + "shell.execute_reply": "2023-10-17T19:51:22.403972Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.257644Z", - "iopub.status.busy": "2023-10-16T20:33:57.256665Z", - "iopub.status.idle": "2023-10-16T20:33:57.261705Z", - "shell.execute_reply": "2023-10-16T20:33:57.260842Z" + "iopub.execute_input": "2023-10-17T19:51:22.408584Z", + "iopub.status.busy": "2023-10-17T19:51:22.408130Z", + "iopub.status.idle": "2023-10-17T19:51:22.412049Z", + "shell.execute_reply": "2023-10-17T19:51:22.411388Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.265704Z", - "iopub.status.busy": "2023-10-16T20:33:57.265197Z", - "iopub.status.idle": "2023-10-16T20:33:57.275023Z", - "shell.execute_reply": "2023-10-16T20:33:57.274257Z" + "iopub.execute_input": "2023-10-17T19:51:22.415054Z", + "iopub.status.busy": "2023-10-17T19:51:22.414468Z", + "iopub.status.idle": "2023-10-17T19:51:22.422344Z", + "shell.execute_reply": "2023-10-17T19:51:22.421722Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.279076Z", - "iopub.status.busy": "2023-10-16T20:33:57.278395Z", - "iopub.status.idle": "2023-10-16T20:33:58.222687Z", - "shell.execute_reply": "2023-10-16T20:33:58.221887Z" + "iopub.execute_input": "2023-10-17T19:51:22.425170Z", + "iopub.status.busy": "2023-10-17T19:51:22.424736Z", + "iopub.status.idle": "2023-10-17T19:51:23.148103Z", + "shell.execute_reply": "2023-10-17T19:51:23.147427Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.226949Z", - "iopub.status.busy": "2023-10-16T20:33:58.226161Z", - "iopub.status.idle": "2023-10-16T20:33:58.236105Z", - "shell.execute_reply": "2023-10-16T20:33:58.235197Z" + "iopub.execute_input": "2023-10-17T19:51:23.153005Z", + "iopub.status.busy": "2023-10-17T19:51:23.152518Z", + "iopub.status.idle": "2023-10-17T19:51:23.159331Z", + "shell.execute_reply": "2023-10-17T19:51:23.158706Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.240122Z", - "iopub.status.busy": "2023-10-16T20:33:58.239680Z", - "iopub.status.idle": "2023-10-16T20:33:58.245728Z", - "shell.execute_reply": "2023-10-16T20:33:58.244866Z" + "iopub.execute_input": "2023-10-17T19:51:23.162023Z", + "iopub.status.busy": "2023-10-17T19:51:23.161591Z", + "iopub.status.idle": "2023-10-17T19:51:23.166021Z", + "shell.execute_reply": "2023-10-17T19:51:23.165479Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.250809Z", - "iopub.status.busy": "2023-10-16T20:33:58.250081Z", - "iopub.status.idle": "2023-10-16T20:33:59.121607Z", - "shell.execute_reply": "2023-10-16T20:33:59.120077Z" + "iopub.execute_input": "2023-10-17T19:51:23.169008Z", + "iopub.status.busy": "2023-10-17T19:51:23.168359Z", + "iopub.status.idle": "2023-10-17T19:51:23.854782Z", + "shell.execute_reply": "2023-10-17T19:51:23.853989Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.127191Z", - "iopub.status.busy": "2023-10-16T20:33:59.126286Z", - "iopub.status.idle": "2023-10-16T20:33:59.263013Z", - "shell.execute_reply": "2023-10-16T20:33:59.261943Z" + "iopub.execute_input": "2023-10-17T19:51:23.858413Z", + "iopub.status.busy": "2023-10-17T19:51:23.857979Z", + "iopub.status.idle": "2023-10-17T19:51:23.977196Z", + "shell.execute_reply": "2023-10-17T19:51:23.976563Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.268077Z", - "iopub.status.busy": "2023-10-16T20:33:59.267129Z", - "iopub.status.idle": "2023-10-16T20:33:59.275011Z", - "shell.execute_reply": "2023-10-16T20:33:59.274265Z" + "iopub.execute_input": "2023-10-17T19:51:23.981366Z", + "iopub.status.busy": "2023-10-17T19:51:23.980107Z", + "iopub.status.idle": "2023-10-17T19:51:23.987180Z", + "shell.execute_reply": "2023-10-17T19:51:23.986591Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.279311Z", - "iopub.status.busy": "2023-10-16T20:33:59.278619Z", - "iopub.status.idle": "2023-10-16T20:33:59.822436Z", - "shell.execute_reply": "2023-10-16T20:33:59.821461Z" + "iopub.execute_input": "2023-10-17T19:51:23.990520Z", + "iopub.status.busy": "2023-10-17T19:51:23.989989Z", + "iopub.status.idle": "2023-10-17T19:51:24.421958Z", + "shell.execute_reply": "2023-10-17T19:51:24.421310Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.829138Z", - "iopub.status.busy": "2023-10-16T20:33:59.828575Z", - "iopub.status.idle": "2023-10-16T20:34:00.321257Z", - "shell.execute_reply": "2023-10-16T20:34:00.317939Z" + "iopub.execute_input": "2023-10-17T19:51:24.426331Z", + "iopub.status.busy": "2023-10-17T19:51:24.425793Z", + "iopub.status.idle": "2023-10-17T19:51:24.807146Z", + "shell.execute_reply": "2023-10-17T19:51:24.806544Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:00.325653Z", - "iopub.status.busy": "2023-10-16T20:34:00.324993Z", - "iopub.status.idle": "2023-10-16T20:34:00.886470Z", - "shell.execute_reply": "2023-10-16T20:34:00.885512Z" + "iopub.execute_input": "2023-10-17T19:51:24.810632Z", + "iopub.status.busy": "2023-10-17T19:51:24.809949Z", + "iopub.status.idle": "2023-10-17T19:51:25.247410Z", + "shell.execute_reply": "2023-10-17T19:51:25.246674Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:00.891225Z", - "iopub.status.busy": "2023-10-16T20:34:00.890578Z", - "iopub.status.idle": "2023-10-16T20:34:01.571251Z", - "shell.execute_reply": "2023-10-16T20:34:01.570361Z" + "iopub.execute_input": "2023-10-17T19:51:25.250468Z", + "iopub.status.busy": "2023-10-17T19:51:25.250088Z", + "iopub.status.idle": "2023-10-17T19:51:25.779605Z", + "shell.execute_reply": "2023-10-17T19:51:25.778992Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:01.586353Z", - "iopub.status.busy": "2023-10-16T20:34:01.585771Z", - "iopub.status.idle": "2023-10-16T20:34:02.270394Z", - "shell.execute_reply": "2023-10-16T20:34:02.269487Z" + "iopub.execute_input": "2023-10-17T19:51:25.788646Z", + "iopub.status.busy": "2023-10-17T19:51:25.787996Z", + "iopub.status.idle": "2023-10-17T19:51:26.327271Z", + "shell.execute_reply": "2023-10-17T19:51:26.326673Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.275035Z", - "iopub.status.busy": "2023-10-16T20:34:02.274235Z", - "iopub.status.idle": "2023-10-16T20:34:02.590281Z", - "shell.execute_reply": "2023-10-16T20:34:02.589436Z" + "iopub.execute_input": "2023-10-17T19:51:26.332288Z", + "iopub.status.busy": "2023-10-17T19:51:26.331683Z", + "iopub.status.idle": "2023-10-17T19:51:26.575484Z", + "shell.execute_reply": "2023-10-17T19:51:26.574879Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.594347Z", - "iopub.status.busy": "2023-10-16T20:34:02.593702Z", - "iopub.status.idle": "2023-10-16T20:34:02.870938Z", - "shell.execute_reply": "2023-10-16T20:34:02.870188Z" + "iopub.execute_input": "2023-10-17T19:51:26.578530Z", + "iopub.status.busy": "2023-10-17T19:51:26.578092Z", + "iopub.status.idle": "2023-10-17T19:51:26.806812Z", + "shell.execute_reply": "2023-10-17T19:51:26.806227Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.883079Z", - "iopub.status.busy": "2023-10-16T20:34:02.882378Z", - "iopub.status.idle": "2023-10-16T20:34:02.887668Z", - "shell.execute_reply": "2023-10-16T20:34:02.886964Z" + "iopub.execute_input": "2023-10-17T19:51:26.812091Z", + "iopub.status.busy": "2023-10-17T19:51:26.811455Z", + "iopub.status.idle": "2023-10-17T19:51:26.817040Z", + "shell.execute_reply": "2023-10-17T19:51:26.816421Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 33baa741f..7dda8e19e 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:06.130145Z", - "iopub.status.busy": "2023-10-16T20:34:06.129803Z", - "iopub.status.idle": "2023-10-16T20:34:09.325320Z", - "shell.execute_reply": "2023-10-16T20:34:09.323920Z" + "iopub.execute_input": "2023-10-17T19:51:29.498622Z", + "iopub.status.busy": "2023-10-17T19:51:29.498202Z", + "iopub.status.idle": "2023-10-17T19:51:31.871996Z", + "shell.execute_reply": "2023-10-17T19:51:31.871290Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.331292Z", - "iopub.status.busy": "2023-10-16T20:34:09.330340Z", - "iopub.status.idle": "2023-10-16T20:34:09.843211Z", - "shell.execute_reply": "2023-10-16T20:34:09.841915Z" + "iopub.execute_input": "2023-10-17T19:51:31.875979Z", + "iopub.status.busy": "2023-10-17T19:51:31.875593Z", + "iopub.status.idle": "2023-10-17T19:51:32.256679Z", + "shell.execute_reply": "2023-10-17T19:51:32.256017Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.849422Z", - "iopub.status.busy": "2023-10-16T20:34:09.848799Z", - "iopub.status.idle": "2023-10-16T20:34:09.859557Z", - "shell.execute_reply": "2023-10-16T20:34:09.858639Z" + "iopub.execute_input": "2023-10-17T19:51:32.260279Z", + "iopub.status.busy": "2023-10-17T19:51:32.259711Z", + "iopub.status.idle": "2023-10-17T19:51:32.264855Z", + "shell.execute_reply": "2023-10-17T19:51:32.264280Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.863817Z", - "iopub.status.busy": "2023-10-16T20:34:09.863318Z", - "iopub.status.idle": "2023-10-16T20:34:18.587041Z", - "shell.execute_reply": "2023-10-16T20:34:18.586104Z" + "iopub.execute_input": "2023-10-17T19:51:32.267746Z", + "iopub.status.busy": "2023-10-17T19:51:32.267224Z", + "iopub.status.idle": "2023-10-17T19:51:37.742592Z", + "shell.execute_reply": "2023-10-17T19:51:37.741944Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb71e42e4de04f5e871bc19bc434fedf", + "model_id": "cbb104808a604a4ea5b6fca3bc248b2a", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:18.591567Z", - "iopub.status.busy": "2023-10-16T20:34:18.591013Z", - "iopub.status.idle": "2023-10-16T20:34:18.600166Z", - "shell.execute_reply": "2023-10-16T20:34:18.599364Z" + "iopub.execute_input": "2023-10-17T19:51:37.745818Z", + "iopub.status.busy": "2023-10-17T19:51:37.745436Z", + "iopub.status.idle": "2023-10-17T19:51:37.751386Z", + "shell.execute_reply": "2023-10-17T19:51:37.750693Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:18.604142Z", - "iopub.status.busy": "2023-10-16T20:34:18.603687Z", - "iopub.status.idle": "2023-10-16T20:34:19.349698Z", - "shell.execute_reply": "2023-10-16T20:34:19.348611Z" + "iopub.execute_input": "2023-10-17T19:51:37.754505Z", + "iopub.status.busy": "2023-10-17T19:51:37.753963Z", + "iopub.status.idle": "2023-10-17T19:51:38.361837Z", + "shell.execute_reply": "2023-10-17T19:51:38.361140Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:19.353939Z", - "iopub.status.busy": "2023-10-16T20:34:19.353334Z", - "iopub.status.idle": "2023-10-16T20:34:20.070491Z", - "shell.execute_reply": "2023-10-16T20:34:20.069491Z" + "iopub.execute_input": "2023-10-17T19:51:38.365291Z", + "iopub.status.busy": "2023-10-17T19:51:38.364671Z", + "iopub.status.idle": "2023-10-17T19:51:38.930131Z", + "shell.execute_reply": "2023-10-17T19:51:38.929443Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:20.075177Z", - "iopub.status.busy": "2023-10-16T20:34:20.074580Z", - "iopub.status.idle": "2023-10-16T20:34:20.079796Z", - "shell.execute_reply": "2023-10-16T20:34:20.078950Z" + "iopub.execute_input": "2023-10-17T19:51:38.933153Z", + "iopub.status.busy": "2023-10-17T19:51:38.932770Z", + "iopub.status.idle": "2023-10-17T19:51:38.938005Z", + "shell.execute_reply": "2023-10-17T19:51:38.937421Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:20.083864Z", - "iopub.status.busy": "2023-10-16T20:34:20.083117Z", - "iopub.status.idle": "2023-10-16T20:34:36.508925Z", - "shell.execute_reply": "2023-10-16T20:34:36.507989Z" + "iopub.execute_input": "2023-10-17T19:51:38.940592Z", + "iopub.status.busy": "2023-10-17T19:51:38.940361Z", + "iopub.status.idle": "2023-10-17T19:51:52.391798Z", + "shell.execute_reply": "2023-10-17T19:51:52.391097Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:36.513114Z", - "iopub.status.busy": "2023-10-16T20:34:36.512464Z", - "iopub.status.idle": "2023-10-16T20:34:38.419300Z", - "shell.execute_reply": "2023-10-16T20:34:38.418381Z" + "iopub.execute_input": "2023-10-17T19:51:52.395293Z", + "iopub.status.busy": "2023-10-17T19:51:52.394822Z", + "iopub.status.idle": "2023-10-17T19:51:54.038815Z", + "shell.execute_reply": "2023-10-17T19:51:54.038229Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:38.423556Z", - "iopub.status.busy": "2023-10-16T20:34:38.423103Z", - "iopub.status.idle": "2023-10-16T20:34:38.793911Z", - "shell.execute_reply": "2023-10-16T20:34:38.793124Z" + "iopub.execute_input": "2023-10-17T19:51:54.041924Z", + "iopub.status.busy": "2023-10-17T19:51:54.041310Z", + "iopub.status.idle": "2023-10-17T19:51:54.322771Z", + "shell.execute_reply": "2023-10-17T19:51:54.322103Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:38.799902Z", - "iopub.status.busy": "2023-10-16T20:34:38.798414Z", - "iopub.status.idle": "2023-10-16T20:34:39.806679Z", - "shell.execute_reply": "2023-10-16T20:34:39.805778Z" + "iopub.execute_input": "2023-10-17T19:51:54.326011Z", + "iopub.status.busy": "2023-10-17T19:51:54.325628Z", + "iopub.status.idle": "2023-10-17T19:51:55.141144Z", + "shell.execute_reply": "2023-10-17T19:51:55.140486Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:39.810944Z", - "iopub.status.busy": "2023-10-16T20:34:39.810527Z", - "iopub.status.idle": "2023-10-16T20:34:40.230790Z", - "shell.execute_reply": "2023-10-16T20:34:40.229548Z" + "iopub.execute_input": "2023-10-17T19:51:55.144171Z", + "iopub.status.busy": "2023-10-17T19:51:55.143927Z", + "iopub.status.idle": "2023-10-17T19:51:55.475574Z", + "shell.execute_reply": "2023-10-17T19:51:55.474873Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.235269Z", - "iopub.status.busy": "2023-10-16T20:34:40.234567Z", - "iopub.status.idle": "2023-10-16T20:34:40.594499Z", - "shell.execute_reply": "2023-10-16T20:34:40.593717Z" + "iopub.execute_input": "2023-10-17T19:51:55.478772Z", + "iopub.status.busy": "2023-10-17T19:51:55.478200Z", + "iopub.status.idle": "2023-10-17T19:51:55.757689Z", + "shell.execute_reply": "2023-10-17T19:51:55.757035Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.598428Z", - "iopub.status.busy": "2023-10-16T20:34:40.598035Z", - "iopub.status.idle": "2023-10-16T20:34:40.766350Z", - "shell.execute_reply": "2023-10-16T20:34:40.764969Z" + "iopub.execute_input": "2023-10-17T19:51:55.760940Z", + "iopub.status.busy": "2023-10-17T19:51:55.760567Z", + "iopub.status.idle": "2023-10-17T19:51:55.897659Z", + "shell.execute_reply": "2023-10-17T19:51:55.896991Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.771960Z", - "iopub.status.busy": "2023-10-16T20:34:40.771626Z", - "iopub.status.idle": "2023-10-16T20:35:41.545795Z", - "shell.execute_reply": "2023-10-16T20:35:41.544208Z" + "iopub.execute_input": "2023-10-17T19:51:55.901286Z", + "iopub.status.busy": "2023-10-17T19:51:55.900721Z", + "iopub.status.idle": "2023-10-17T19:52:42.933559Z", + "shell.execute_reply": "2023-10-17T19:52:42.932702Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:41.551777Z", - "iopub.status.busy": "2023-10-16T20:35:41.551081Z", - "iopub.status.idle": "2023-10-16T20:35:43.537048Z", - "shell.execute_reply": "2023-10-16T20:35:43.535729Z" + "iopub.execute_input": "2023-10-17T19:52:42.937117Z", + "iopub.status.busy": "2023-10-17T19:52:42.936574Z", + "iopub.status.idle": "2023-10-17T19:52:44.457331Z", + "shell.execute_reply": "2023-10-17T19:52:44.456654Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.543524Z", - "iopub.status.busy": "2023-10-16T20:35:43.541919Z", - "iopub.status.idle": "2023-10-16T20:35:43.891831Z", - "shell.execute_reply": "2023-10-16T20:35:43.890340Z" + "iopub.execute_input": "2023-10-17T19:52:44.461853Z", + "iopub.status.busy": "2023-10-17T19:52:44.460860Z", + "iopub.status.idle": "2023-10-17T19:52:44.667633Z", + "shell.execute_reply": "2023-10-17T19:52:44.666947Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.899107Z", - "iopub.status.busy": "2023-10-16T20:35:43.897912Z", - "iopub.status.idle": "2023-10-16T20:35:43.903065Z", - "shell.execute_reply": "2023-10-16T20:35:43.902263Z" + "iopub.execute_input": "2023-10-17T19:52:44.671106Z", + "iopub.status.busy": "2023-10-17T19:52:44.670478Z", + "iopub.status.idle": "2023-10-17T19:52:44.674527Z", + "shell.execute_reply": "2023-10-17T19:52:44.673916Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.907136Z", - "iopub.status.busy": "2023-10-16T20:35:43.906465Z", - "iopub.status.idle": "2023-10-16T20:35:43.918802Z", - "shell.execute_reply": "2023-10-16T20:35:43.918045Z" + "iopub.execute_input": "2023-10-17T19:52:44.677927Z", + "iopub.status.busy": "2023-10-17T19:52:44.677429Z", + "iopub.status.idle": "2023-10-17T19:52:44.687017Z", + "shell.execute_reply": "2023-10-17T19:52:44.686417Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,80 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "046f5ab9137c4b80ac06f3cf1936cea4": { + "052f5441d225472091336a5e9b9ac6e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43268e44006b4aa1ac37a98b783e95ed", + "placeholder": "​", + "style": "IPY_MODEL_bc2b27763f8e4f30ba45f30ba9ca613e", + "value": "100%" + } + }, + "2164398d71e84d35b83bdf9d6c514a9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "299bcf23da43486d8102d50d5e76565e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1644c7f5641454fb760250cd4cd7579", + "placeholder": "​", + "style": "IPY_MODEL_3551366a11a142c2afeb0db0196c822e", + "value": " 170498071/170498071 [00:01<00:00, 113614160.66it/s]" + } + }, + "3551366a11a142c2afeb0db0196c822e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43268e44006b4aa1ac37a98b783e95ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,7 +1142,31 @@ "width": null } }, - "16d22b15457a44af9d74df1538fbbb47": { + "5ecf76e2c4ed42098f703918282c37bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e38a292919464a2880035911eef858c4", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2164398d71e84d35b83bdf9d6c514a9f", + "value": 170498071.0 + } + }, + "a1644c7f5641454fb760250cd4cd7579": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1121,44 +1218,44 @@ "width": null } }, - "1a67e1bbbe5b46e09949ce4c79a32d25": { + "bc2b27763f8e4f30ba45f30ba9ca613e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_046f5ab9137c4b80ac06f3cf1936cea4", - "placeholder": "​", - "style": "IPY_MODEL_9c963bcbf1a8440192a16167778757ce", - "value": " 170498071/170498071 [00:04<00:00, 36759259.05it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2a133c730eb24d9ca3f446a87ba0809b": { + "cbb104808a604a4ea5b6fca3bc248b2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_052f5441d225472091336a5e9b9ac6e4", + "IPY_MODEL_5ecf76e2c4ed42098f703918282c37bd", + "IPY_MODEL_299bcf23da43486d8102d50d5e76565e" + ], + "layout": "IPY_MODEL_d97d68b477a74e03a53fe6b14806c767" } }, - "35773d4bd42246199074874a34def1ef": { + "d97d68b477a74e03a53fe6b14806c767": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1210,7 +1307,7 @@ "width": null } }, - "38010b554a16450d8720cf468eef3dfb": { + "e38a292919464a2880035911eef858c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1261,103 +1358,6 @@ "visibility": null, "width": null } - }, - "5b046b3bc507450f96e510c0d9671a47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "85fde215616941d18d3640851d0aff9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_16d22b15457a44af9d74df1538fbbb47", - "placeholder": "​", - "style": "IPY_MODEL_5b046b3bc507450f96e510c0d9671a47", - "value": "100%" - } - }, - "9c963bcbf1a8440192a16167778757ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d2faed25fdec469892d1dab6a88865a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_35773d4bd42246199074874a34def1ef", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a133c730eb24d9ca3f446a87ba0809b", - "value": 170498071.0 - } - }, - "eb71e42e4de04f5e871bc19bc434fedf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_85fde215616941d18d3640851d0aff9f", - "IPY_MODEL_d2faed25fdec469892d1dab6a88865a6", - "IPY_MODEL_1a67e1bbbe5b46e09949ce4c79a32d25" - ], - "layout": "IPY_MODEL_38010b554a16450d8720cf468eef3dfb" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 9c7036301..1791787f3 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:49.722564Z", - "iopub.status.busy": "2023-10-16T20:35:49.721879Z", - "iopub.status.idle": "2023-10-16T20:35:51.293447Z", - "shell.execute_reply": "2023-10-16T20:35:51.292315Z" + "iopub.execute_input": "2023-10-17T19:52:49.572476Z", + "iopub.status.busy": "2023-10-17T19:52:49.572098Z", + "iopub.status.idle": "2023-10-17T19:52:50.788472Z", + "shell.execute_reply": "2023-10-17T19:52:50.787788Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.299012Z", - "iopub.status.busy": "2023-10-16T20:35:51.298516Z", - "iopub.status.idle": "2023-10-16T20:35:51.331572Z", - "shell.execute_reply": "2023-10-16T20:35:51.330562Z" + "iopub.execute_input": "2023-10-17T19:52:50.792170Z", + "iopub.status.busy": "2023-10-17T19:52:50.791583Z", + "iopub.status.idle": "2023-10-17T19:52:50.816825Z", + "shell.execute_reply": "2023-10-17T19:52:50.816143Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.337249Z", - "iopub.status.busy": "2023-10-16T20:35:51.336903Z", - "iopub.status.idle": "2023-10-16T20:35:51.342405Z", - "shell.execute_reply": "2023-10-16T20:35:51.341575Z" + "iopub.execute_input": "2023-10-17T19:52:50.820522Z", + "iopub.status.busy": "2023-10-17T19:52:50.819947Z", + "iopub.status.idle": "2023-10-17T19:52:50.823521Z", + "shell.execute_reply": "2023-10-17T19:52:50.822896Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.346414Z", - "iopub.status.busy": "2023-10-16T20:35:51.345744Z", - "iopub.status.idle": "2023-10-16T20:35:51.589066Z", - "shell.execute_reply": "2023-10-16T20:35:51.587856Z" + "iopub.execute_input": "2023-10-17T19:52:50.826181Z", + "iopub.status.busy": "2023-10-17T19:52:50.825819Z", + "iopub.status.idle": "2023-10-17T19:52:51.022462Z", + "shell.execute_reply": "2023-10-17T19:52:51.021735Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.595687Z", - "iopub.status.busy": "2023-10-16T20:35:51.595199Z", - "iopub.status.idle": "2023-10-16T20:35:52.034878Z", - "shell.execute_reply": "2023-10-16T20:35:52.033808Z" + "iopub.execute_input": "2023-10-17T19:52:51.025907Z", + "iopub.status.busy": "2023-10-17T19:52:51.025375Z", + "iopub.status.idle": "2023-10-17T19:52:51.352333Z", + "shell.execute_reply": "2023-10-17T19:52:51.351662Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.040027Z", - "iopub.status.busy": "2023-10-16T20:35:52.039710Z", - "iopub.status.idle": "2023-10-16T20:35:52.385468Z", - "shell.execute_reply": "2023-10-16T20:35:52.384575Z" + "iopub.execute_input": "2023-10-17T19:52:51.355837Z", + "iopub.status.busy": "2023-10-17T19:52:51.355366Z", + "iopub.status.idle": "2023-10-17T19:52:51.623376Z", + "shell.execute_reply": "2023-10-17T19:52:51.622618Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.390046Z", - "iopub.status.busy": "2023-10-16T20:35:52.389158Z", - "iopub.status.idle": "2023-10-16T20:35:52.395900Z", - "shell.execute_reply": "2023-10-16T20:35:52.395060Z" + "iopub.execute_input": "2023-10-17T19:52:51.627035Z", + "iopub.status.busy": "2023-10-17T19:52:51.626416Z", + "iopub.status.idle": "2023-10-17T19:52:51.631530Z", + "shell.execute_reply": "2023-10-17T19:52:51.631013Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.399517Z", - "iopub.status.busy": "2023-10-16T20:35:52.399067Z", - "iopub.status.idle": "2023-10-16T20:35:52.409243Z", - "shell.execute_reply": "2023-10-16T20:35:52.408386Z" + "iopub.execute_input": "2023-10-17T19:52:51.634169Z", + "iopub.status.busy": "2023-10-17T19:52:51.633632Z", + "iopub.status.idle": "2023-10-17T19:52:51.641121Z", + "shell.execute_reply": "2023-10-17T19:52:51.640477Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.412924Z", - "iopub.status.busy": "2023-10-16T20:35:52.412437Z", - "iopub.status.idle": "2023-10-16T20:35:52.416322Z", - "shell.execute_reply": "2023-10-16T20:35:52.415500Z" + "iopub.execute_input": "2023-10-17T19:52:51.643780Z", + "iopub.status.busy": "2023-10-17T19:52:51.643552Z", + "iopub.status.idle": "2023-10-17T19:52:51.646611Z", + "shell.execute_reply": "2023-10-17T19:52:51.645954Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.420156Z", - "iopub.status.busy": "2023-10-16T20:35:52.419379Z", - "iopub.status.idle": "2023-10-16T20:36:09.965567Z", - "shell.execute_reply": "2023-10-16T20:36:09.964715Z" + "iopub.execute_input": "2023-10-17T19:52:51.649380Z", + "iopub.status.busy": "2023-10-17T19:52:51.649158Z", + "iopub.status.idle": "2023-10-17T19:53:05.766026Z", + "shell.execute_reply": "2023-10-17T19:53:05.765362Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.970277Z", - "iopub.status.busy": "2023-10-16T20:36:09.969476Z", - "iopub.status.idle": "2023-10-16T20:36:09.979403Z", - "shell.execute_reply": "2023-10-16T20:36:09.978719Z" + "iopub.execute_input": "2023-10-17T19:53:05.770356Z", + "iopub.status.busy": "2023-10-17T19:53:05.769607Z", + "iopub.status.idle": "2023-10-17T19:53:05.780380Z", + "shell.execute_reply": "2023-10-17T19:53:05.779850Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.983082Z", - "iopub.status.busy": "2023-10-16T20:36:09.982608Z", - "iopub.status.idle": "2023-10-16T20:36:09.987436Z", - "shell.execute_reply": "2023-10-16T20:36:09.986774Z" + "iopub.execute_input": "2023-10-17T19:53:05.783902Z", + "iopub.status.busy": "2023-10-17T19:53:05.783266Z", + "iopub.status.idle": "2023-10-17T19:53:05.787719Z", + "shell.execute_reply": "2023-10-17T19:53:05.787130Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.990923Z", - "iopub.status.busy": "2023-10-16T20:36:09.990464Z", - "iopub.status.idle": "2023-10-16T20:36:09.994886Z", - "shell.execute_reply": "2023-10-16T20:36:09.994228Z" + "iopub.execute_input": "2023-10-17T19:53:05.790509Z", + "iopub.status.busy": "2023-10-17T19:53:05.790143Z", + "iopub.status.idle": "2023-10-17T19:53:05.794035Z", + "shell.execute_reply": "2023-10-17T19:53:05.793380Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.998390Z", - "iopub.status.busy": "2023-10-16T20:36:09.997935Z", - "iopub.status.idle": "2023-10-16T20:36:10.001927Z", - "shell.execute_reply": "2023-10-16T20:36:10.001263Z" + "iopub.execute_input": "2023-10-17T19:53:05.797715Z", + "iopub.status.busy": "2023-10-17T19:53:05.797208Z", + "iopub.status.idle": "2023-10-17T19:53:05.800884Z", + "shell.execute_reply": "2023-10-17T19:53:05.800221Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.005301Z", - "iopub.status.busy": "2023-10-16T20:36:10.004849Z", - "iopub.status.idle": "2023-10-16T20:36:10.016993Z", - "shell.execute_reply": "2023-10-16T20:36:10.016264Z" + "iopub.execute_input": "2023-10-17T19:53:05.803539Z", + "iopub.status.busy": "2023-10-17T19:53:05.803180Z", + "iopub.status.idle": "2023-10-17T19:53:05.813354Z", + "shell.execute_reply": "2023-10-17T19:53:05.812698Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.020666Z", - "iopub.status.busy": "2023-10-16T20:36:10.020194Z", - "iopub.status.idle": "2023-10-16T20:36:10.268996Z", - "shell.execute_reply": "2023-10-16T20:36:10.268234Z" + "iopub.execute_input": "2023-10-17T19:53:05.816778Z", + "iopub.status.busy": "2023-10-17T19:53:05.816427Z", + "iopub.status.idle": "2023-10-17T19:53:06.044639Z", + "shell.execute_reply": "2023-10-17T19:53:06.044060Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.272974Z", - "iopub.status.busy": "2023-10-16T20:36:10.272447Z", - "iopub.status.idle": "2023-10-16T20:36:10.521219Z", - "shell.execute_reply": "2023-10-16T20:36:10.520455Z" + "iopub.execute_input": "2023-10-17T19:53:06.047724Z", + "iopub.status.busy": "2023-10-17T19:53:06.047080Z", + "iopub.status.idle": "2023-10-17T19:53:06.231949Z", + "shell.execute_reply": "2023-10-17T19:53:06.231345Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.525335Z", - "iopub.status.busy": "2023-10-16T20:36:10.524816Z", - "iopub.status.idle": "2023-10-16T20:36:11.569893Z", - "shell.execute_reply": "2023-10-16T20:36:11.568999Z" + "iopub.execute_input": "2023-10-17T19:53:06.235105Z", + "iopub.status.busy": "2023-10-17T19:53:06.234847Z", + "iopub.status.idle": "2023-10-17T19:53:07.113130Z", + "shell.execute_reply": "2023-10-17T19:53:07.112512Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:11.574722Z", - "iopub.status.busy": "2023-10-16T20:36:11.574114Z", - "iopub.status.idle": "2023-10-16T20:36:11.760892Z", - "shell.execute_reply": "2023-10-16T20:36:11.760128Z" + "iopub.execute_input": "2023-10-17T19:53:07.117970Z", + "iopub.status.busy": "2023-10-17T19:53:07.116798Z", + "iopub.status.idle": "2023-10-17T19:53:07.236453Z", + "shell.execute_reply": "2023-10-17T19:53:07.235870Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:11.764857Z", - "iopub.status.busy": "2023-10-16T20:36:11.764331Z", - "iopub.status.idle": "2023-10-16T20:36:11.778202Z", - "shell.execute_reply": "2023-10-16T20:36:11.777440Z" + "iopub.execute_input": "2023-10-17T19:53:07.239906Z", + "iopub.status.busy": "2023-10-17T19:53:07.239278Z", + "iopub.status.idle": "2023-10-17T19:53:07.252166Z", + "shell.execute_reply": "2023-10-17T19:53:07.251550Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2d9369ee8..60db45bd3 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:17.010815Z", - "iopub.status.busy": "2023-10-16T20:36:17.009718Z", - "iopub.status.idle": "2023-10-16T20:36:19.575020Z", - "shell.execute_reply": "2023-10-16T20:36:19.573161Z" + "iopub.execute_input": "2023-10-17T19:53:12.732918Z", + "iopub.status.busy": "2023-10-17T19:53:12.732684Z", + "iopub.status.idle": "2023-10-17T19:53:14.793619Z", + "shell.execute_reply": "2023-10-17T19:53:14.792711Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:19.580152Z", - "iopub.status.busy": "2023-10-16T20:36:19.579499Z", - "iopub.status.idle": "2023-10-16T20:37:42.794967Z", - "shell.execute_reply": "2023-10-16T20:37:42.793238Z" + "iopub.execute_input": "2023-10-17T19:53:14.797370Z", + "iopub.status.busy": "2023-10-17T19:53:14.796981Z", + "iopub.status.idle": "2023-10-17T19:54:31.729201Z", + "shell.execute_reply": "2023-10-17T19:54:31.728290Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:42.801811Z", - "iopub.status.busy": "2023-10-16T20:37:42.801250Z", - "iopub.status.idle": "2023-10-16T20:37:44.570534Z", - "shell.execute_reply": "2023-10-16T20:37:44.569474Z" + "iopub.execute_input": "2023-10-17T19:54:31.732908Z", + "iopub.status.busy": "2023-10-17T19:54:31.732289Z", + "iopub.status.idle": "2023-10-17T19:54:32.953547Z", + "shell.execute_reply": "2023-10-17T19:54:32.952856Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.575603Z", - "iopub.status.busy": "2023-10-16T20:37:44.574763Z", - "iopub.status.idle": "2023-10-16T20:37:44.581442Z", - "shell.execute_reply": "2023-10-16T20:37:44.580637Z" + "iopub.execute_input": "2023-10-17T19:54:32.957071Z", + "iopub.status.busy": "2023-10-17T19:54:32.956441Z", + "iopub.status.idle": "2023-10-17T19:54:32.961547Z", + "shell.execute_reply": "2023-10-17T19:54:32.960942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.585258Z", - "iopub.status.busy": "2023-10-16T20:37:44.584786Z", - "iopub.status.idle": "2023-10-16T20:37:44.590444Z", - "shell.execute_reply": "2023-10-16T20:37:44.589589Z" + "iopub.execute_input": "2023-10-17T19:54:32.964393Z", + "iopub.status.busy": "2023-10-17T19:54:32.964163Z", + "iopub.status.idle": "2023-10-17T19:54:32.971110Z", + "shell.execute_reply": "2023-10-17T19:54:32.969791Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.594804Z", - "iopub.status.busy": "2023-10-16T20:37:44.594327Z", - "iopub.status.idle": "2023-10-16T20:37:44.599831Z", - "shell.execute_reply": "2023-10-16T20:37:44.598949Z" + "iopub.execute_input": "2023-10-17T19:54:32.974562Z", + "iopub.status.busy": "2023-10-17T19:54:32.974009Z", + "iopub.status.idle": "2023-10-17T19:54:32.979731Z", + "shell.execute_reply": "2023-10-17T19:54:32.979098Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.604567Z", - "iopub.status.busy": "2023-10-16T20:37:44.604110Z", - "iopub.status.idle": "2023-10-16T20:37:44.608564Z", - "shell.execute_reply": "2023-10-16T20:37:44.607714Z" + "iopub.execute_input": "2023-10-17T19:54:32.982772Z", + "iopub.status.busy": "2023-10-17T19:54:32.982263Z", + "iopub.status.idle": "2023-10-17T19:54:32.986568Z", + "shell.execute_reply": "2023-10-17T19:54:32.985931Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.612197Z", - "iopub.status.busy": "2023-10-16T20:37:44.611644Z", - "iopub.status.idle": "2023-10-16T20:38:58.297120Z", - "shell.execute_reply": "2023-10-16T20:38:58.295866Z" + "iopub.execute_input": "2023-10-17T19:54:32.995290Z", + "iopub.status.busy": "2023-10-17T19:54:32.994763Z", + "iopub.status.idle": "2023-10-17T19:55:42.625930Z", + "shell.execute_reply": "2023-10-17T19:55:42.625033Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae8c799f82cd4edebab47074d4591e96", + "model_id": "8b60641c60db4a5baf6f06be909dd4cc", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4470e1e8c8b647a9b52b4f727a1ba62d", + "model_id": "e2968e4eec87426d9ed8bcb0f5844799", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:38:58.302334Z", - "iopub.status.busy": "2023-10-16T20:38:58.301532Z", - "iopub.status.idle": "2023-10-16T20:38:59.493859Z", - "shell.execute_reply": "2023-10-16T20:38:59.492444Z" + "iopub.execute_input": "2023-10-17T19:55:42.629783Z", + "iopub.status.busy": "2023-10-17T19:55:42.629355Z", + "iopub.status.idle": "2023-10-17T19:55:43.597003Z", + "shell.execute_reply": "2023-10-17T19:55:43.595874Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:38:59.499396Z", - "iopub.status.busy": "2023-10-16T20:38:59.498546Z", - "iopub.status.idle": "2023-10-16T20:39:03.017649Z", - "shell.execute_reply": "2023-10-16T20:39:03.016552Z" + "iopub.execute_input": "2023-10-17T19:55:43.600687Z", + "iopub.status.busy": "2023-10-17T19:55:43.599994Z", + "iopub.status.idle": "2023-10-17T19:55:46.381448Z", + "shell.execute_reply": "2023-10-17T19:55:46.380761Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:39:03.021654Z", - "iopub.status.busy": "2023-10-16T20:39:03.021293Z", - "iopub.status.idle": "2023-10-16T20:39:46.610894Z", - "shell.execute_reply": "2023-10-16T20:39:46.610073Z" + "iopub.execute_input": "2023-10-17T19:55:46.384768Z", + "iopub.status.busy": "2023-10-17T19:55:46.384178Z", + "iopub.status.idle": "2023-10-17T19:56:25.482441Z", + "shell.execute_reply": "2023-10-17T19:56:25.481872Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 11391/4997436 [00:00<00:43, 113893.27it/s]" + " 0%| | 12783/4997436 [00:00<00:38, 127824.03it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 23012/4997436 [00:00<00:43, 115251.35it/s]" + " 1%| | 25651/4997436 [00:00<00:38, 128321.48it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34627/4997436 [00:00<00:42, 115656.81it/s]" + " 1%| | 38511/4997436 [00:00<00:38, 128443.96it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46193/4997436 [00:00<00:42, 115623.07it/s]" + " 1%| | 51364/4997436 [00:00<00:38, 128473.62it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 57756/4997436 [00:00<00:42, 115435.10it/s]" + " 1%|▏ | 64231/4997436 [00:00<00:38, 128541.16it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69300/4997436 [00:00<00:42, 114763.73it/s]" + " 2%|▏ | 77086/4997436 [00:00<00:38, 128331.38it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 80778/4997436 [00:00<00:42, 114405.28it/s]" + " 2%|▏ | 89920/4997436 [00:00<00:38, 128198.09it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92220/4997436 [00:00<00:43, 113877.50it/s]" + " 2%|▏ | 102753/4997436 [00:00<00:38, 128235.59it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 103609/4997436 [00:00<00:43, 113484.94it/s]" + " 2%|▏ | 115591/4997436 [00:00<00:38, 128279.29it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 114958/4997436 [00:01<00:43, 113154.45it/s]" + " 3%|▎ | 128419/4997436 [00:01<00:38, 127823.95it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 126274/4997436 [00:01<00:43, 112926.09it/s]" + " 3%|▎ | 141271/4997436 [00:01<00:37, 128033.49it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137567/4997436 [00:01<00:43, 112873.45it/s]" + " 3%|▎ | 154174/4997436 [00:01<00:37, 128333.72it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 149090/4997436 [00:01<00:42, 113579.49it/s]" + " 3%|▎ | 167008/4997436 [00:01<00:37, 128122.58it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 160449/4997436 [00:01<00:42, 113267.18it/s]" + " 4%|▎ | 179840/4997436 [00:01<00:37, 128178.16it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171875/4997436 [00:01<00:42, 113560.16it/s]" + " 4%|▍ | 192757/4997436 [00:01<00:37, 128473.57it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183232/4997436 [00:01<00:42, 112607.53it/s]" + " 4%|▍ | 205736/4997436 [00:01<00:37, 128867.48it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 194806/4997436 [00:01<00:42, 113540.02it/s]" + " 4%|▍ | 218623/4997436 [00:01<00:37, 128668.81it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 206184/4997436 [00:01<00:42, 113607.55it/s]" + " 5%|▍ | 231496/4997436 [00:01<00:37, 128683.89it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 217801/4997436 [00:01<00:41, 114371.45it/s]" + " 5%|▍ | 244444/4997436 [00:01<00:36, 128921.56it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 229340/4997436 [00:02<00:41, 114673.08it/s]" + " 5%|▌ | 257347/4997436 [00:02<00:36, 128950.07it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 240840/4997436 [00:02<00:41, 114768.67it/s]" + " 5%|▌ | 270321/4997436 [00:02<00:36, 129185.41it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 252417/4997436 [00:02<00:41, 115066.09it/s]" + " 6%|▌ | 283255/4997436 [00:02<00:36, 129228.40it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263925/4997436 [00:02<00:41, 115054.34it/s]" + " 6%|▌ | 296252/4997436 [00:02<00:36, 129447.21it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 275431/4997436 [00:02<00:41, 114962.14it/s]" + " 6%|▌ | 309197/4997436 [00:02<00:36, 129335.88it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 286988/4997436 [00:02<00:40, 115139.99it/s]" + " 6%|▋ | 322131/4997436 [00:02<00:36, 129315.43it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298503/4997436 [00:02<00:40, 114826.64it/s]" + " 7%|▋ | 335090/4997436 [00:02<00:36, 129395.38it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 310120/4997436 [00:02<00:40, 115224.59it/s]" + " 7%|▋ | 348030/4997436 [00:02<00:35, 129382.93it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 321643/4997436 [00:02<00:40, 115130.47it/s]" + " 7%|▋ | 360969/4997436 [00:02<00:35, 129259.95it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333157/4997436 [00:02<00:40, 114243.22it/s]" + " 7%|▋ | 373963/4997436 [00:02<00:35, 129459.56it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 344784/4997436 [00:03<00:40, 114845.19it/s]" + " 8%|▊ | 386909/4997436 [00:03<00:35, 129250.57it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 356334/4997436 [00:03<00:40, 115036.81it/s]" + " 8%|▊ | 399863/4997436 [00:03<00:35, 129335.36it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368085/4997436 [00:03<00:39, 115771.39it/s]" + " 8%|▊ | 412797/4997436 [00:03<00:35, 129106.00it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 379777/4997436 [00:03<00:39, 116110.89it/s]" + " 9%|▊ | 425708/4997436 [00:03<00:35, 129032.63it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 391389/4997436 [00:03<00:39, 116060.03it/s]" + " 9%|▉ | 438612/4997436 [00:03<00:35, 129018.30it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 403076/4997436 [00:03<00:39, 116297.87it/s]" + " 9%|▉ | 451522/4997436 [00:03<00:35, 129039.68it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 414707/4997436 [00:03<00:39, 116178.19it/s]" + " 9%|▉ | 464513/4997436 [00:03<00:35, 129296.58it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 426353/4997436 [00:03<00:39, 116260.65it/s]" + " 10%|▉ | 477443/4997436 [00:03<00:35, 129031.21it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 438056/4997436 [00:03<00:39, 116486.67it/s]" + " 10%|▉ | 490371/4997436 [00:03<00:34, 129103.06it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 449705/4997436 [00:03<00:39, 116079.85it/s]" + " 10%|█ | 503282/4997436 [00:03<00:34, 128993.51it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 461314/4997436 [00:04<00:39, 115791.11it/s]" + " 10%|█ | 516183/4997436 [00:04<00:34, 128995.44it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 472894/4997436 [00:04<00:39, 115647.21it/s]" + " 11%|█ | 529083/4997436 [00:04<00:34, 128633.55it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 484555/4997436 [00:04<00:38, 115931.33it/s]" + " 11%|█ | 541975/4997436 [00:04<00:34, 128716.44it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 496219/4997436 [00:04<00:38, 116139.20it/s]" + " 11%|█ | 554868/4997436 [00:04<00:34, 128778.21it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 507839/4997436 [00:04<00:38, 116154.20it/s]" + " 11%|█▏ | 567746/4997436 [00:04<00:34, 128629.67it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519455/4997436 [00:04<00:38, 116099.74it/s]" + " 12%|█▏ | 580610/4997436 [00:04<00:34, 128366.64it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531066/4997436 [00:04<00:38, 115824.26it/s]" + " 12%|█▏ | 593488/4997436 [00:04<00:34, 128488.79it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 542759/4997436 [00:04<00:38, 116152.35it/s]" + " 12%|█▏ | 606338/4997436 [00:04<00:34, 128435.06it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554375/4997436 [00:04<00:38, 116146.47it/s]" + " 12%|█▏ | 619199/4997436 [00:04<00:34, 128484.93it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566028/4997436 [00:04<00:38, 116256.92it/s]" + " 13%|█▎ | 632092/4997436 [00:04<00:33, 128614.47it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 577654/4997436 [00:05<00:38, 115835.40it/s]" + " 13%|█▎ | 644954/4997436 [00:05<00:33, 128572.70it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 589302/4997436 [00:05<00:37, 116025.38it/s]" + " 13%|█▎ | 657816/4997436 [00:05<00:33, 128583.98it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 600905/4997436 [00:05<00:38, 115342.94it/s]" + " 13%|█▎ | 670680/4997436 [00:05<00:33, 128596.95it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 612488/4997436 [00:05<00:37, 115484.89it/s]" + " 14%|█▎ | 683583/4997436 [00:05<00:33, 128725.19it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 624168/4997436 [00:05<00:37, 115872.67it/s]" + " 14%|█▍ | 696456/4997436 [00:05<00:33, 128575.99it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635823/4997436 [00:05<00:37, 116071.10it/s]" + " 14%|█▍ | 709315/4997436 [00:05<00:33, 128577.56it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647431/4997436 [00:05<00:37, 115879.91it/s]" + " 14%|█▍ | 722173/4997436 [00:05<00:33, 128311.64it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659020/4997436 [00:05<00:37, 115727.34it/s]" + " 15%|█▍ | 735005/4997436 [00:05<00:33, 128290.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670719/4997436 [00:05<00:37, 116101.40it/s]" + " 15%|█▍ | 747876/4997436 [00:05<00:33, 128412.21it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 682330/4997436 [00:05<00:37, 116078.24it/s]" + " 15%|█▌ | 760765/4997436 [00:05<00:32, 128553.59it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693939/4997436 [00:06<00:37, 115946.16it/s]" + " 15%|█▌ | 773763/4997436 [00:06<00:32, 128977.63it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705534/4997436 [00:06<00:37, 115653.16it/s]" + " 16%|█▌ | 786790/4997436 [00:06<00:32, 129362.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 717152/4997436 [00:06<00:36, 115806.46it/s]" + " 16%|█▌ | 799797/4997436 [00:06<00:32, 129572.33it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 728783/4997436 [00:06<00:36, 115952.34it/s]" + " 16%|█▋ | 812843/4997436 [00:06<00:32, 129835.16it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 740432/4997436 [00:06<00:36, 116110.93it/s]" + " 17%|█▋ | 825915/4997436 [00:06<00:32, 130097.98it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 752044/4997436 [00:06<00:36, 115845.10it/s]" + " 17%|█▋ | 838990/4997436 [00:06<00:31, 130289.96it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763733/4997436 [00:06<00:36, 116154.37it/s]" + " 17%|█▋ | 852020/4997436 [00:06<00:31, 130097.72it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 775489/4997436 [00:06<00:36, 116573.30it/s]" + " 17%|█▋ | 865051/4997436 [00:06<00:31, 130158.20it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 787259/4997436 [00:06<00:36, 116908.76it/s]" + " 18%|█▊ | 878067/4997436 [00:06<00:31, 129992.95it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 799103/4997436 [00:06<00:35, 117365.09it/s]" + " 18%|█▊ | 891067/4997436 [00:06<00:31, 129429.00it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 810946/4997436 [00:07<00:35, 117681.29it/s]" + " 18%|█▊ | 904065/4997436 [00:07<00:31, 129573.36it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 822741/4997436 [00:07<00:35, 117759.29it/s]" + " 18%|█▊ | 917023/4997436 [00:07<00:31, 129572.05it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834562/4997436 [00:07<00:35, 117891.88it/s]" + " 19%|█▊ | 930014/4997436 [00:07<00:31, 129669.28it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 846437/4997436 [00:07<00:35, 118146.41it/s]" + " 19%|█▉ | 943006/4997436 [00:07<00:31, 129741.74it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 858252/4997436 [00:07<00:35, 118132.91it/s]" + " 19%|█▉ | 956000/4997436 [00:07<00:31, 129799.80it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 870066/4997436 [00:07<00:35, 117812.32it/s]" + " 19%|█▉ | 968981/4997436 [00:07<00:31, 129744.75it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 881848/4997436 [00:07<00:35, 117279.65it/s]" + " 20%|█▉ | 981956/4997436 [00:07<00:31, 129530.30it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 893587/4997436 [00:07<00:34, 117303.95it/s]" + " 20%|█▉ | 994991/4997436 [00:07<00:30, 129774.15it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 905323/4997436 [00:07<00:34, 117316.64it/s]" + " 20%|██ | 1007969/4997436 [00:07<00:30, 129693.67it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 917055/4997436 [00:07<00:34, 117246.82it/s]" + " 20%|██ | 1020939/4997436 [00:07<00:30, 129543.84it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928781/4997436 [00:08<00:34, 117246.86it/s]" + " 21%|██ | 1033915/4997436 [00:08<00:30, 129605.38it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940516/4997436 [00:08<00:34, 117275.20it/s]" + " 21%|██ | 1046955/4997436 [00:08<00:30, 129839.80it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 952244/4997436 [00:08<00:34, 117260.08it/s]" + " 21%|██ | 1059940/4997436 [00:08<00:30, 129732.20it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 964036/4997436 [00:08<00:34, 117452.89it/s]" + " 21%|██▏ | 1072925/4997436 [00:08<00:30, 129765.86it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975782/4997436 [00:08<00:34, 117283.78it/s]" + " 22%|██▏ | 1085921/4997436 [00:08<00:30, 129821.40it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987511/4997436 [00:08<00:34, 117042.92it/s]" + " 22%|██▏ | 1098932/4997436 [00:08<00:30, 129904.25it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 999216/4997436 [00:08<00:34, 116468.44it/s]" + " 22%|██▏ | 1111926/4997436 [00:08<00:29, 129913.52it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1010864/4997436 [00:08<00:34, 116133.86it/s]" + " 23%|██▎ | 1124926/4997436 [00:08<00:29, 129936.89it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022485/4997436 [00:08<00:34, 116152.56it/s]" + " 23%|██▎ | 1137920/4997436 [00:08<00:29, 129885.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034101/4997436 [00:08<00:34, 115848.63it/s]" + " 23%|██▎ | 1150909/4997436 [00:08<00:29, 129882.09it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1045780/4997436 [00:09<00:34, 116125.54it/s]" + " 23%|██▎ | 1163898/4997436 [00:09<00:29, 129626.19it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1057511/4997436 [00:09<00:33, 116477.76it/s]" + " 24%|██▎ | 1176861/4997436 [00:09<00:29, 129556.68it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069231/4997436 [00:09<00:33, 116691.55it/s]" + " 24%|██▍ | 1189817/4997436 [00:09<00:29, 129415.10it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080901/4997436 [00:09<00:33, 116663.96it/s]" + " 24%|██▍ | 1202759/4997436 [00:09<00:29, 129375.60it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1092697/4997436 [00:09<00:33, 117049.53it/s]" + " 24%|██▍ | 1215697/4997436 [00:09<00:29, 129330.49it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1104403/4997436 [00:09<00:33, 117044.75it/s]" + " 25%|██▍ | 1228631/4997436 [00:09<00:29, 129220.31it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116108/4997436 [00:09<00:33, 116933.53it/s]" + " 25%|██▍ | 1241554/4997436 [00:09<00:29, 129098.32it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127802/4997436 [00:09<00:33, 116431.59it/s]" + " 25%|██▌ | 1254464/4997436 [00:09<00:29, 129065.41it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1139446/4997436 [00:09<00:33, 116273.25it/s]" + " 25%|██▌ | 1267371/4997436 [00:09<00:28, 128958.87it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1151205/4997436 [00:09<00:32, 116665.04it/s]" + " 26%|██▌ | 1280331/4997436 [00:09<00:28, 129146.61it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1162872/4997436 [00:10<00:32, 116368.76it/s]" + " 26%|██▌ | 1293365/4997436 [00:10<00:28, 129502.04it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1174650/4997436 [00:10<00:32, 116786.40it/s]" + " 26%|██▌ | 1306332/4997436 [00:10<00:28, 129550.20it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1186330/4997436 [00:10<00:32, 116591.54it/s]" + " 26%|██▋ | 1319328/4997436 [00:10<00:28, 129671.16it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1197990/4997436 [00:10<00:32, 116473.91it/s]" + " 27%|██▋ | 1332362/4997436 [00:10<00:28, 129870.38it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209722/4997436 [00:10<00:32, 116722.32it/s]" + " 27%|██▋ | 1345387/4997436 [00:10<00:28, 129981.48it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1221395/4997436 [00:10<00:32, 115931.36it/s]" + " 27%|██▋ | 1358423/4997436 [00:10<00:27, 130093.28it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1232990/4997436 [00:10<00:32, 115765.86it/s]" + " 27%|██▋ | 1371433/4997436 [00:10<00:27, 130014.07it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244582/4997436 [00:10<00:32, 115808.35it/s]" + " 28%|██▊ | 1384458/4997436 [00:10<00:27, 130083.55it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1256164/4997436 [00:10<00:32, 115799.24it/s]" + " 28%|██▊ | 1397492/4997436 [00:10<00:27, 130156.49it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267753/4997436 [00:10<00:32, 115822.05it/s]" + " 28%|██▊ | 1410508/4997436 [00:10<00:27, 130120.73it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1279336/4997436 [00:11<00:32, 115671.37it/s]" + " 28%|██▊ | 1423521/4997436 [00:11<00:27, 130108.39it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1291020/4997436 [00:11<00:31, 116018.05it/s]" + " 29%|██▊ | 1436532/4997436 [00:11<00:27, 130057.11it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1302741/4997436 [00:11<00:31, 116371.93it/s]" + " 29%|██▉ | 1449579/4997436 [00:11<00:27, 130177.32it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1314379/4997436 [00:11<00:31, 116313.22it/s]" + " 29%|██▉ | 1462597/4997436 [00:11<00:27, 130093.70it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1326190/4997436 [00:11<00:31, 116847.90it/s]" + " 30%|██▉ | 1475607/4997436 [00:11<00:27, 129912.99it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1337875/4997436 [00:11<00:31, 116665.80it/s]" + " 30%|██▉ | 1488632/4997436 [00:11<00:26, 130009.98it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1349572/4997436 [00:11<00:31, 116752.77it/s]" + " 30%|███ | 1501733/4997436 [00:11<00:26, 130308.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1361363/4997436 [00:11<00:31, 117097.55it/s]" + " 30%|███ | 1514819/4997436 [00:11<00:26, 130472.27it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373073/4997436 [00:11<00:31, 116914.67it/s]" + " 31%|███ | 1527867/4997436 [00:11<00:26, 130320.62it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1384765/4997436 [00:11<00:30, 116614.62it/s]" + " 31%|███ | 1540900/4997436 [00:11<00:26, 130170.59it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1396427/4997436 [00:12<00:32, 111762.03it/s]" + " 31%|███ | 1553918/4997436 [00:12<00:26, 130017.84it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407673/4997436 [00:12<00:32, 111960.89it/s]" + " 31%|███▏ | 1566986/4997436 [00:12<00:26, 130212.97it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1418900/4997436 [00:12<00:32, 111716.83it/s]" + " 32%|███▏ | 1580008/4997436 [00:12<00:26, 130038.55it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1430093/4997436 [00:12<00:32, 111138.74it/s]" + " 32%|███▏ | 1593012/4997436 [00:12<00:26, 129866.96it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441222/4997436 [00:12<00:32, 110686.26it/s]" + " 32%|███▏ | 1605999/4997436 [00:12<00:26, 129585.21it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452301/4997436 [00:12<00:33, 107221.16it/s]" + " 32%|███▏ | 1618958/4997436 [00:12<00:26, 129540.77it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1463050/4997436 [00:12<00:33, 104885.26it/s]" + " 33%|███▎ | 1631915/4997436 [00:12<00:25, 129546.78it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1473880/4997436 [00:12<00:33, 105865.46it/s]" + " 33%|███▎ | 1644870/4997436 [00:12<00:25, 129114.39it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485004/4997436 [00:12<00:32, 107431.14it/s]" + " 33%|███▎ | 1657784/4997436 [00:12<00:25, 129119.33it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1496177/4997436 [00:12<00:32, 108693.05it/s]" + " 33%|███▎ | 1670722/4997436 [00:12<00:25, 129193.77it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507062/4997436 [00:13<00:32, 107493.38it/s]" + " 34%|███▎ | 1683714/4997436 [00:13<00:25, 129409.17it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1518294/4997436 [00:13<00:31, 108913.55it/s]" + " 34%|███▍ | 1696716/4997436 [00:13<00:25, 129590.65it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529679/4997436 [00:13<00:31, 110357.45it/s]" + " 34%|███▍ | 1709796/4997436 [00:13<00:25, 129949.36it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1540912/4997436 [00:13<00:31, 110938.91it/s]" + " 34%|███▍ | 1722792/4997436 [00:13<00:25, 129885.00it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1552265/4997436 [00:13<00:30, 111707.38it/s]" + " 35%|███▍ | 1735793/4997436 [00:13<00:25, 129920.37it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563442/4997436 [00:13<00:31, 109962.05it/s]" + " 35%|███▍ | 1748835/4997436 [00:13<00:24, 130067.98it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1574448/4997436 [00:13<00:31, 109487.76it/s]" + " 35%|███▌ | 1761842/4997436 [00:13<00:24, 129986.47it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585404/4997436 [00:13<00:31, 109442.67it/s]" + " 36%|███▌ | 1774848/4997436 [00:13<00:24, 130006.60it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1596353/4997436 [00:13<00:31, 108333.10it/s]" + " 36%|███▌ | 1787887/4997436 [00:13<00:24, 130117.60it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1607302/4997436 [00:13<00:31, 108672.67it/s]" + " 36%|███▌ | 1800899/4997436 [00:13<00:24, 129917.53it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1618174/4997436 [00:14<00:31, 107342.91it/s]" + " 36%|███▋ | 1813891/4997436 [00:14<00:24, 129827.24it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1629193/4997436 [00:14<00:31, 108180.43it/s]" + " 37%|███▋ | 1826942/4997436 [00:14<00:24, 130030.70it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640564/4997436 [00:14<00:30, 109818.51it/s]" + " 37%|███▋ | 1839946/4997436 [00:14<00:24, 129570.98it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1651552/4997436 [00:14<00:30, 108036.68it/s]" + " 37%|███▋ | 1852904/4997436 [00:14<00:24, 128944.98it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1662365/4997436 [00:14<00:30, 107746.86it/s]" + " 37%|███▋ | 1865800/4997436 [00:14<00:24, 128486.74it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1673186/4997436 [00:14<00:30, 107879.94it/s]" + " 38%|███▊ | 1878650/4997436 [00:14<00:24, 128367.58it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1684513/4997436 [00:14<00:30, 109478.08it/s]" + " 38%|███▊ | 1891610/4997436 [00:14<00:24, 128733.40it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695466/4997436 [00:14<00:30, 108593.95it/s]" + " 38%|███▊ | 1904547/4997436 [00:14<00:23, 128920.14it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1706330/4997436 [00:14<00:30, 108118.20it/s]" + " 38%|███▊ | 1917574/4997436 [00:14<00:23, 129321.13it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717154/4997436 [00:15<00:30, 108151.55it/s]" + " 39%|███▊ | 1930627/4997436 [00:14<00:23, 129678.82it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1728087/4997436 [00:15<00:30, 108178.70it/s]" + " 39%|███▉ | 1943624/4997436 [00:15<00:23, 129764.33it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1739546/4997436 [00:15<00:29, 110086.10it/s]" + " 39%|███▉ | 1956601/4997436 [00:15<00:23, 129656.37it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1750684/4997436 [00:15<00:29, 110469.47it/s]" + " 39%|███▉ | 1969567/4997436 [00:15<00:23, 129202.46it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1762150/4997436 [00:15<00:28, 111717.89it/s]" + " 40%|███▉ | 1982488/4997436 [00:15<00:23, 129028.33it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1774023/4997436 [00:15<00:28, 113811.61it/s]" + " 40%|███▉ | 1995392/4997436 [00:15<00:23, 128459.39it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1785815/4997436 [00:15<00:27, 115038.30it/s]" + " 40%|████ | 2008239/4997436 [00:15<00:23, 126965.15it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1797612/4997436 [00:15<00:27, 115913.14it/s]" + " 40%|████ | 2020986/4997436 [00:15<00:23, 127110.52it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1809478/4997436 [00:15<00:27, 116733.63it/s]" + " 41%|████ | 2033964/4997436 [00:15<00:23, 127900.75it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1821198/4997436 [00:15<00:27, 116869.22it/s]" + " 41%|████ | 2046965/4997436 [00:15<00:22, 128526.97it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1833072/4997436 [00:16<00:26, 117426.01it/s]" + " 41%|████ | 2059904/4997436 [00:15<00:22, 128780.34it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844816/4997436 [00:16<00:26, 117177.06it/s]" + " 41%|████▏ | 2072816/4997436 [00:16<00:22, 128878.39it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856535/4997436 [00:16<00:26, 117096.86it/s]" + " 42%|████▏ | 2085706/4997436 [00:16<00:22, 128505.08it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1868294/4997436 [00:16<00:26, 117240.39it/s]" + " 42%|████▏ | 2098621/4997436 [00:16<00:22, 128661.23it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1880070/4997436 [00:16<00:26, 117393.18it/s]" + " 42%|████▏ | 2111541/4997436 [00:16<00:22, 128818.42it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1891864/4997436 [00:16<00:26, 117554.84it/s]" + " 43%|████▎ | 2124485/4997436 [00:16<00:22, 129000.34it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903667/4997436 [00:16<00:26, 117694.98it/s]" + " 43%|████▎ | 2137386/4997436 [00:16<00:22, 128802.34it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915723/4997436 [00:16<00:25, 118551.16it/s]" + " 43%|████▎ | 2150337/4997436 [00:16<00:22, 129009.91it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927704/4997436 [00:16<00:25, 118924.72it/s]" + " 43%|████▎ | 2163256/4997436 [00:16<00:21, 129061.41it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1939646/4997436 [00:16<00:25, 119069.04it/s]" + " 44%|████▎ | 2176163/4997436 [00:16<00:21, 128706.56it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1951553/4997436 [00:17<00:25, 118807.94it/s]" + " 44%|████▍ | 2189034/4997436 [00:16<00:21, 128343.70it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1963434/4997436 [00:17<00:25, 118786.28it/s]" + " 44%|████▍ | 2201869/4997436 [00:17<00:21, 128264.19it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1975313/4997436 [00:17<00:25, 118121.70it/s]" + " 44%|████▍ | 2214869/4997436 [00:17<00:21, 128780.03it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1987220/4997436 [00:17<00:25, 118401.47it/s]" + " 45%|████▍ | 2227748/4997436 [00:17<00:21, 127978.94it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 1999061/4997436 [00:17<00:25, 117900.48it/s]" + " 45%|████▍ | 2240655/4997436 [00:17<00:21, 128301.89it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2010852/4997436 [00:17<00:25, 117699.97it/s]" + " 45%|████▌ | 2253487/4997436 [00:17<00:21, 127746.11it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2022623/4997436 [00:17<00:25, 117658.03it/s]" + " 45%|████▌ | 2266263/4997436 [00:17<00:21, 126956.24it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034390/4997436 [00:17<00:25, 117648.06it/s]" + " 46%|████▌ | 2278961/4997436 [00:17<00:21, 126813.25it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2046176/4997436 [00:17<00:25, 117709.24it/s]" + " 46%|████▌ | 2291644/4997436 [00:17<00:21, 126353.06it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057954/4997436 [00:17<00:24, 117726.42it/s]" + " 46%|████▌ | 2304422/4997436 [00:17<00:21, 126774.34it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2069749/4997436 [00:18<00:24, 117789.99it/s]" + " 46%|████▋ | 2317288/4997436 [00:17<00:21, 127334.16it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2081529/4997436 [00:18<00:24, 117654.64it/s]" + " 47%|████▋ | 2330122/4997436 [00:18<00:20, 127632.21it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2093358/4997436 [00:18<00:24, 117841.55it/s]" + " 47%|████▋ | 2343068/4997436 [00:18<00:20, 128175.24it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2105143/4997436 [00:18<00:24, 117411.50it/s]" + " 47%|████▋ | 2356017/4997436 [00:18<00:20, 128566.05it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2116885/4997436 [00:18<00:24, 117405.95it/s]" + " 47%|████▋ | 2368947/4997436 [00:18<00:20, 128782.13it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2128626/4997436 [00:18<00:24, 117325.91it/s]" + " 48%|████▊ | 2381832/4997436 [00:18<00:20, 128798.46it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2140359/4997436 [00:18<00:24, 117074.90it/s]" + " 48%|████▊ | 2394736/4997436 [00:18<00:20, 128869.07it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152067/4997436 [00:18<00:24, 117053.01it/s]" + " 48%|████▊ | 2407624/4997436 [00:18<00:20, 128852.21it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2163907/4997436 [00:18<00:24, 117452.46it/s]" + " 48%|████▊ | 2420590/4997436 [00:18<00:19, 129090.60it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2175738/4997436 [00:18<00:23, 117706.57it/s]" + " 49%|████▊ | 2433500/4997436 [00:18<00:19, 128935.90it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187523/4997436 [00:19<00:23, 117746.47it/s]" + " 49%|████▉ | 2446394/4997436 [00:18<00:19, 128803.91it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2199298/4997436 [00:19<00:23, 117707.18it/s]" + " 49%|████▉ | 2459275/4997436 [00:19<00:19, 128615.99it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211069/4997436 [00:19<00:23, 117644.75it/s]" + " 49%|████▉ | 2472210/4997436 [00:19<00:19, 128833.57it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222834/4997436 [00:19<00:23, 116633.31it/s]" + " 50%|████▉ | 2485180/4997436 [00:19<00:19, 129089.84it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2234530/4997436 [00:19<00:23, 116728.12it/s]" + " 50%|████▉ | 2498138/4997436 [00:19<00:19, 129234.18it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246205/4997436 [00:19<00:23, 116723.64it/s]" + " 50%|█████ | 2511062/4997436 [00:19<00:19, 129032.71it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257879/4997436 [00:19<00:23, 116364.50it/s]" + " 51%|█████ | 2523966/4997436 [00:19<00:19, 128689.49it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269517/4997436 [00:19<00:23, 116239.80it/s]" + " 51%|█████ | 2536859/4997436 [00:19<00:19, 128759.07it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281213/4997436 [00:19<00:23, 116451.30it/s]" + " 51%|█████ | 2549764/4997436 [00:19<00:18, 128844.64it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2292859/4997436 [00:19<00:23, 116412.51it/s]" + " 51%|█████▏ | 2562649/4997436 [00:19<00:18, 128722.45it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2304501/4997436 [00:20<00:23, 116322.05it/s]" + " 52%|█████▏ | 2575579/4997436 [00:19<00:18, 128892.14it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316244/4997436 [00:20<00:22, 116649.36it/s]" + " 52%|█████▏ | 2588515/4997436 [00:20<00:18, 129030.24it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2327945/4997436 [00:20<00:22, 116754.00it/s]" + " 52%|█████▏ | 2601419/4997436 [00:20<00:18, 128898.72it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2339622/4997436 [00:20<00:22, 116756.24it/s]" + " 52%|█████▏ | 2614309/4997436 [00:20<00:18, 128732.88it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351386/4997436 [00:20<00:22, 117017.27it/s]" + " 53%|█████▎ | 2627213/4997436 [00:20<00:18, 128823.51it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363124/4997436 [00:20<00:22, 117122.71it/s]" + " 53%|█████▎ | 2640096/4997436 [00:20<00:18, 128676.03it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2374901/4997436 [00:20<00:22, 117313.41it/s]" + " 53%|█████▎ | 2652964/4997436 [00:20<00:18, 128612.61it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386706/4997436 [00:20<00:22, 117530.49it/s]" + " 53%|█████▎ | 2665892/4997436 [00:20<00:18, 128808.78it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2398460/4997436 [00:20<00:22, 117523.29it/s]" + " 54%|█████▎ | 2678904/4997436 [00:20<00:17, 129200.36it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410213/4997436 [00:20<00:22, 117435.98it/s]" + " 54%|█████▍ | 2691846/4997436 [00:20<00:17, 129262.73it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421976/4997436 [00:21<00:21, 117491.41it/s]" + " 54%|█████▍ | 2704773/4997436 [00:20<00:17, 128851.37it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2433764/4997436 [00:21<00:21, 117603.00it/s]" + " 54%|█████▍ | 2717699/4997436 [00:21<00:17, 128970.36it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2445589/4997436 [00:21<00:21, 117793.52it/s]" + " 55%|█████▍ | 2730597/4997436 [00:21<00:17, 128845.43it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457450/4997436 [00:21<00:21, 118035.22it/s]" + " 55%|█████▍ | 2743488/4997436 [00:21<00:17, 128860.47it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2469306/4997436 [00:21<00:21, 118188.43it/s]" + " 55%|█████▌ | 2756392/4997436 [00:21<00:17, 128910.79it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2481150/4997436 [00:21<00:21, 118259.69it/s]" + " 55%|█████▌ | 2769360/4997436 [00:21<00:17, 129138.04it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2492976/4997436 [00:21<00:21, 118197.01it/s]" + " 56%|█████▌ | 2782274/4997436 [00:21<00:17, 129001.74it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2504796/4997436 [00:21<00:21, 117843.09it/s]" + " 56%|█████▌ | 2795240/4997436 [00:21<00:17, 129196.61it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2516649/4997436 [00:21<00:21, 118046.00it/s]" + " 56%|█████▌ | 2808160/4997436 [00:21<00:16, 128973.24it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2528454/4997436 [00:21<00:20, 117832.94it/s]" + " 56%|█████▋ | 2821100/4997436 [00:21<00:16, 129098.76it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2540238/4997436 [00:22<00:20, 117572.61it/s]" + " 57%|█████▋ | 2834010/4997436 [00:21<00:16, 129055.75it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2551996/4997436 [00:22<00:20, 117526.59it/s]" + " 57%|█████▋ | 2846916/4997436 [00:22<00:16, 128909.52it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2563809/4997436 [00:22<00:20, 117703.73it/s]" + " 57%|█████▋ | 2859814/4997436 [00:22<00:16, 128926.16it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2575580/4997436 [00:22<00:20, 117398.04it/s]" + " 57%|█████▋ | 2872761/4997436 [00:22<00:16, 129086.95it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2587321/4997436 [00:22<00:20, 117348.10it/s]" + " 58%|█████▊ | 2885701/4997436 [00:22<00:16, 129178.24it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2599056/4997436 [00:22<00:20, 117279.75it/s]" + " 58%|█████▊ | 2898619/4997436 [00:22<00:16, 128917.63it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2610785/4997436 [00:22<00:20, 117081.47it/s]" + " 58%|█████▊ | 2911511/4997436 [00:22<00:16, 128871.27it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2622585/4997436 [00:22<00:20, 117351.88it/s]" + " 59%|█████▊ | 2924478/4997436 [00:22<00:16, 129108.90it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2634330/4997436 [00:22<00:20, 117377.27it/s]" + " 59%|█████▉ | 2937389/4997436 [00:22<00:15, 128901.95it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2646201/4997436 [00:22<00:19, 117773.63it/s]" + " 59%|█████▉ | 2950280/4997436 [00:22<00:15, 128894.28it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658021/4997436 [00:23<00:19, 117897.24it/s]" + " 59%|█████▉ | 2963170/4997436 [00:22<00:15, 128601.63it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2669814/4997436 [00:23<00:19, 117903.47it/s]" + " 60%|█████▉ | 2976106/4997436 [00:23<00:15, 128825.56it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2681708/4997436 [00:23<00:19, 118211.00it/s]" + " 60%|█████▉ | 2988989/4997436 [00:23<00:15, 128755.59it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2693530/4997436 [00:23<00:19, 117804.05it/s]" + " 60%|██████ | 3001904/4997436 [00:23<00:15, 128870.90it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705311/4997436 [00:23<00:19, 117489.74it/s]" + " 60%|██████ | 3014821/4997436 [00:23<00:15, 128957.52it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717061/4997436 [00:23<00:19, 116900.34it/s]" + " 61%|██████ | 3027741/4997436 [00:23<00:15, 129026.55it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2728861/4997436 [00:23<00:19, 117223.90it/s]" + " 61%|██████ | 3040644/4997436 [00:23<00:15, 128898.17it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2740644/4997436 [00:23<00:19, 117400.88it/s]" + " 61%|██████ | 3053587/4997436 [00:23<00:15, 129053.43it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2752385/4997436 [00:23<00:19, 117330.01it/s]" + " 61%|██████▏ | 3066548/4997436 [00:23<00:14, 129216.33it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2764146/4997436 [00:23<00:19, 117410.14it/s]" + " 62%|██████▏ | 3079470/4997436 [00:23<00:14, 129115.39it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775907/4997436 [00:24<00:18, 117465.91it/s]" + " 62%|██████▏ | 3092382/4997436 [00:23<00:14, 129087.75it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2787654/4997436 [00:24<00:18, 117017.39it/s]" + " 62%|██████▏ | 3105293/4997436 [00:24<00:14, 129091.32it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2799357/4997436 [00:24<00:18, 116720.48it/s]" + " 62%|██████▏ | 3118203/4997436 [00:24<00:14, 128716.08it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2811117/4997436 [00:24<00:18, 116979.90it/s]" + " 63%|██████▎ | 3131075/4997436 [00:24<00:14, 128664.78it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2823034/4997436 [00:24<00:18, 117631.77it/s]" + " 63%|██████▎ | 3143942/4997436 [00:24<00:14, 128601.11it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2834815/4997436 [00:24<00:18, 117682.55it/s]" + " 63%|██████▎ | 3156803/4997436 [00:24<00:14, 128528.83it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2846584/4997436 [00:24<00:18, 117412.30it/s]" + " 63%|██████▎ | 3169723/4997436 [00:24<00:14, 128725.48it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2858326/4997436 [00:24<00:18, 117313.21it/s]" + " 64%|██████▎ | 3182638/4997436 [00:24<00:14, 128849.87it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870058/4997436 [00:24<00:18, 117291.76it/s]" + " 64%|██████▍ | 3195559/4997436 [00:24<00:13, 128953.52it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2881788/4997436 [00:24<00:18, 117133.87it/s]" + " 64%|██████▍ | 3208462/4997436 [00:24<00:13, 128974.28it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893502/4997436 [00:25<00:17, 117070.07it/s]" + " 64%|██████▍ | 3221428/4997436 [00:24<00:13, 129176.15it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905210/4997436 [00:25<00:17, 117019.37it/s]" + " 65%|██████▍ | 3234346/4997436 [00:25<00:13, 129136.16it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2916912/4997436 [00:25<00:17, 116998.20it/s]" + " 65%|██████▍ | 3247289/4997436 [00:25<00:13, 129222.92it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2928612/4997436 [00:25<00:17, 116736.78it/s]" + " 65%|██████▌ | 3260228/4997436 [00:25<00:13, 129270.57it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2940287/4997436 [00:25<00:17, 116737.52it/s]" + " 65%|██████▌ | 3273156/4997436 [00:25<00:13, 129166.02it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2951961/4997436 [00:25<00:17, 116726.21it/s]" + " 66%|██████▌ | 3286138/4997436 [00:25<00:13, 129358.31it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2963634/4997436 [00:25<00:17, 116534.84it/s]" + " 66%|██████▌ | 3299122/4997436 [00:25<00:13, 129499.35it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2975288/4997436 [00:25<00:17, 116477.14it/s]" + " 66%|██████▋ | 3312072/4997436 [00:25<00:13, 129176.15it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2986996/4997436 [00:25<00:17, 116654.04it/s]" + " 67%|██████▋ | 3324998/4997436 [00:25<00:12, 129196.68it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 2998799/4997436 [00:25<00:17, 117062.98it/s]" + " 67%|██████▋ | 3337918/4997436 [00:25<00:12, 128815.90it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3010522/4997436 [00:26<00:16, 117110.90it/s]" + " 67%|██████▋ | 3350803/4997436 [00:25<00:12, 128824.57it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3022341/4997436 [00:26<00:16, 117430.51it/s]" + " 67%|██████▋ | 3363686/4997436 [00:26<00:12, 128789.83it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3034197/4997436 [00:26<00:16, 117765.44it/s]" + " 68%|██████▊ | 3376583/4997436 [00:26<00:12, 128840.15it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045974/4997436 [00:26<00:16, 117624.20it/s]" + " 68%|██████▊ | 3389542/4997436 [00:26<00:12, 129063.21it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3057737/4997436 [00:26<00:16, 117035.38it/s]" + " 68%|██████▊ | 3402454/4997436 [00:26<00:12, 129077.96it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3069442/4997436 [00:26<00:16, 116533.77it/s]" + " 68%|██████▊ | 3415362/4997436 [00:26<00:12, 128973.88it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3081130/4997436 [00:26<00:16, 116634.72it/s]" + " 69%|██████▊ | 3428312/4997436 [00:26<00:12, 129129.38it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3092803/4997436 [00:26<00:16, 116660.14it/s]" + " 69%|██████▉ | 3441228/4997436 [00:26<00:12, 129135.37it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3104472/4997436 [00:26<00:16, 116665.20it/s]" + " 69%|██████▉ | 3454179/4997436 [00:26<00:11, 129246.35it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116139/4997436 [00:26<00:16, 116647.02it/s]" + " 69%|██████▉ | 3467104/4997436 [00:26<00:11, 129234.08it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3127804/4997436 [00:27<00:16, 116395.51it/s]" + " 70%|██████▉ | 3480059/4997436 [00:26<00:11, 129327.29it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3139444/4997436 [00:27<00:15, 116267.25it/s]" + " 70%|██████▉ | 3492997/4997436 [00:27<00:11, 129341.38it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3151098/4997436 [00:27<00:15, 116345.82it/s]" + " 70%|███████ | 3505932/4997436 [00:27<00:11, 128869.39it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3162733/4997436 [00:27<00:15, 116151.49it/s]" + " 70%|███████ | 3518820/4997436 [00:27<00:11, 128819.95it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3174398/4997436 [00:27<00:15, 116296.81it/s]" + " 71%|███████ | 3531831/4997436 [00:27<00:11, 129204.59it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3186097/4997436 [00:27<00:15, 116499.52it/s]" + " 71%|███████ | 3544899/4997436 [00:27<00:11, 129644.72it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3197748/4997436 [00:27<00:15, 116389.04it/s]" + " 71%|███████ | 3557932/4997436 [00:27<00:11, 129848.17it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3209395/4997436 [00:27<00:15, 116408.83it/s]" + " 71%|███████▏ | 3570918/4997436 [00:27<00:10, 129796.74it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221051/4997436 [00:27<00:15, 116450.51it/s]" + " 72%|███████▏ | 3583993/4997436 [00:27<00:10, 130080.29it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3232697/4997436 [00:27<00:15, 116441.32it/s]" + " 72%|███████▏ | 3597002/4997436 [00:27<00:10, 130077.75it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3244367/4997436 [00:28<00:15, 116514.66it/s]" + " 72%|███████▏ | 3610010/4997436 [00:27<00:10, 129965.94it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3256019/4997436 [00:28<00:14, 116409.68it/s]" + " 72%|███████▏ | 3623007/4997436 [00:28<00:10, 129930.61it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3267674/4997436 [00:28<00:14, 116448.11it/s]" + " 73%|███████▎ | 3636057/4997436 [00:28<00:10, 130099.00it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3279328/4997436 [00:28<00:14, 116472.44it/s]" + " 73%|███████▎ | 3649067/4997436 [00:28<00:10, 130088.92it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3290976/4997436 [00:28<00:14, 116411.25it/s]" + " 73%|███████▎ | 3662076/4997436 [00:28<00:10, 129722.03it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3302618/4997436 [00:28<00:14, 115742.02it/s]" + " 74%|███████▎ | 3675049/4997436 [00:28<00:10, 129327.15it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3314271/4997436 [00:28<00:14, 115974.56it/s]" + " 74%|███████▍ | 3687983/4997436 [00:28<00:10, 128528.56it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3325926/4997436 [00:28<00:14, 116143.52it/s]" + " 74%|███████▍ | 3700837/4997436 [00:28<00:10, 127755.09it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337595/4997436 [00:28<00:14, 116304.80it/s]" + " 74%|███████▍ | 3713836/4997436 [00:28<00:09, 128417.85it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3349226/4997436 [00:28<00:14, 116281.98it/s]" + " 75%|███████▍ | 3726777/4997436 [00:28<00:09, 128711.61it/s]" ] }, { @@ -2850,7 +2850,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3360873/4997436 [00:29<00:14, 116334.28it/s]" + " 75%|███████▍ | 3739650/4997436 [00:28<00:09, 128409.65it/s]" ] }, { @@ -2858,7 +2858,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3372622/4997436 [00:29<00:13, 116676.46it/s]" + " 75%|███████▌ | 3752642/4997436 [00:29<00:09, 128858.49it/s]" ] }, { @@ -2866,7 +2866,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384290/4997436 [00:29<00:13, 116660.04it/s]" + " 75%|███████▌ | 3765610/4997436 [00:29<00:09, 129100.10it/s]" ] }, { @@ -2874,7 +2874,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3395957/4997436 [00:29<00:13, 116495.43it/s]" + " 76%|███████▌ | 3778650/4997436 [00:29<00:09, 129485.84it/s]" ] }, { @@ -2882,7 +2882,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3407631/4997436 [00:29<00:13, 116565.90it/s]" + " 76%|███████▌ | 3791652/4997436 [00:29<00:09, 129643.54it/s]" ] }, { @@ -2890,7 +2890,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419327/4997436 [00:29<00:13, 116681.29it/s]" + " 76%|███████▌ | 3804719/4997436 [00:29<00:09, 129949.29it/s]" ] }, { @@ -2898,7 +2898,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3431018/4997436 [00:29<00:13, 116747.05it/s]" + " 76%|███████▋ | 3817715/4997436 [00:29<00:09, 129639.02it/s]" ] }, { @@ -2906,7 +2906,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3442714/4997436 [00:29<00:13, 116807.76it/s]" + " 77%|███████▋ | 3830725/4997436 [00:29<00:08, 129773.70it/s]" ] }, { @@ -2914,7 +2914,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454395/4997436 [00:29<00:13, 116173.46it/s]" + " 77%|███████▋ | 3843781/4997436 [00:29<00:08, 130007.39it/s]" ] }, { @@ -2922,7 +2922,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3466136/4997436 [00:29<00:13, 116540.37it/s]" + " 77%|███████▋ | 3856782/4997436 [00:29<00:08, 129734.69it/s]" ] }, { @@ -2930,7 +2930,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3477812/4997436 [00:30<00:13, 116602.28it/s]" + " 77%|███████▋ | 3869846/4997436 [00:29<00:08, 130003.20it/s]" ] }, { @@ -2938,7 +2938,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3489477/4997436 [00:30<00:12, 116611.69it/s]" + " 78%|███████▊ | 3882847/4997436 [00:30<00:08, 129799.78it/s]" ] }, { @@ -2946,7 +2946,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3501163/4997436 [00:30<00:12, 116683.36it/s]" + " 78%|███████▊ | 3895828/4997436 [00:30<00:08, 129513.76it/s]" ] }, { @@ -2954,7 +2954,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3512832/4997436 [00:30<00:12, 116624.13it/s]" + " 78%|███████▊ | 3908806/4997436 [00:30<00:08, 129591.38it/s]" ] }, { @@ -2962,7 +2962,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3524543/4997436 [00:30<00:12, 116767.60it/s]" + " 78%|███████▊ | 3921797/4997436 [00:30<00:08, 129684.85it/s]" ] }, { @@ -2970,7 +2970,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3536248/4997436 [00:30<00:12, 116848.61it/s]" + " 79%|███████▊ | 3934766/4997436 [00:30<00:08, 129630.61it/s]" ] }, { @@ -2978,7 +2978,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3547933/4997436 [00:30<00:12, 116789.79it/s]" + " 79%|███████▉ | 3947774/4997436 [00:30<00:08, 129762.77it/s]" ] }, { @@ -2986,7 +2986,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3559650/4997436 [00:30<00:12, 116899.45it/s]" + " 79%|███████▉ | 3960763/4997436 [00:30<00:07, 129797.05it/s]" ] }, { @@ -2994,7 +2994,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3571341/4997436 [00:30<00:13, 109342.70it/s]" + " 80%|███████▉ | 3973804/4997436 [00:30<00:07, 129978.61it/s]" ] }, { @@ -3002,7 +3002,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3583049/4997436 [00:30<00:12, 111552.62it/s]" + " 80%|███████▉ | 3986822/4997436 [00:30<00:07, 130035.78it/s]" ] }, { @@ -3010,7 +3010,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594845/4997436 [00:31<00:12, 113408.97it/s]" + " 80%|████████ | 3999826/4997436 [00:30<00:07, 129761.07it/s]" ] }, { @@ -3018,7 +3018,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3606645/4997436 [00:31<00:12, 114752.25it/s]" + " 80%|████████ | 4012803/4997436 [00:31<00:07, 129740.44it/s]" ] }, { @@ -3026,7 +3026,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3618462/4997436 [00:31<00:11, 115757.11it/s]" + " 81%|████████ | 4025808/4997436 [00:31<00:07, 129831.27it/s]" ] }, { @@ -3034,7 +3034,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3630242/4997436 [00:31<00:11, 116358.77it/s]" + " 81%|████████ | 4038792/4997436 [00:31<00:07, 129666.68it/s]" ] }, { @@ -3042,7 +3042,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3642047/4997436 [00:31<00:11, 116858.78it/s]" + " 81%|████████ | 4051783/4997436 [00:31<00:07, 129736.17it/s]" ] }, { @@ -3050,7 +3050,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3653889/4997436 [00:31<00:11, 117320.64it/s]" + " 81%|████████▏ | 4064757/4997436 [00:31<00:07, 129265.70it/s]" ] }, { @@ -3058,7 +3058,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3665694/4997436 [00:31<00:11, 117534.74it/s]" + " 82%|████████▏ | 4077684/4997436 [00:31<00:07, 128713.36it/s]" ] }, { @@ -3066,7 +3066,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3677457/4997436 [00:31<00:11, 117507.21it/s]" + " 82%|████████▏ | 4090556/4997436 [00:31<00:07, 128134.23it/s]" ] }, { @@ -3074,7 +3074,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3689263/4997436 [00:31<00:11, 117670.09it/s]" + " 82%|████████▏ | 4103429/4997436 [00:31<00:06, 128307.76it/s]" ] }, { @@ -3082,7 +3082,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3701062/4997436 [00:31<00:11, 117761.98it/s]" + " 82%|████████▏ | 4116261/4997436 [00:31<00:06, 127763.99it/s]" ] }, { @@ -3090,7 +3090,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3712842/4997436 [00:32<00:10, 117496.82it/s]" + " 83%|████████▎ | 4129039/4997436 [00:31<00:06, 127712.71it/s]" ] }, { @@ -3098,7 +3098,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3724609/4997436 [00:32<00:10, 117546.33it/s]" + " 83%|████████▎ | 4141811/4997436 [00:32<00:06, 123364.49it/s]" ] }, { @@ -3106,7 +3106,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3736366/4997436 [00:32<00:10, 117516.12it/s]" + " 83%|████████▎ | 4154179/4997436 [00:32<00:06, 123453.24it/s]" ] }, { @@ -3114,7 +3114,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3748132/4997436 [00:32<00:10, 117555.81it/s]" + " 83%|████████▎ | 4167053/4997436 [00:32<00:06, 125006.85it/s]" ] }, { @@ -3122,7 +3122,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3759927/4997436 [00:32<00:10, 117669.86it/s]" + " 84%|████████▎ | 4179891/4997436 [00:32<00:06, 126002.27it/s]" ] }, { @@ -3130,7 +3130,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771695/4997436 [00:32<00:10, 117398.72it/s]" + " 84%|████████▍ | 4192674/4997436 [00:32<00:06, 126542.04it/s]" ] }, { @@ -3138,7 +3138,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3783473/4997436 [00:32<00:10, 117510.80it/s]" + " 84%|████████▍ | 4205546/4997436 [00:32<00:06, 127188.16it/s]" ] }, { @@ -3146,7 +3146,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3795225/4997436 [00:32<00:10, 117269.12it/s]" + " 84%|████████▍ | 4218508/4997436 [00:32<00:06, 127912.00it/s]" ] }, { @@ -3154,7 +3154,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3806953/4997436 [00:32<00:10, 116938.44it/s]" + " 85%|████████▍ | 4231364/4997436 [00:32<00:05, 128102.41it/s]" ] }, { @@ -3162,7 +3162,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818648/4997436 [00:32<00:10, 116727.75it/s]" + " 85%|████████▍ | 4244303/4997436 [00:32<00:05, 128480.38it/s]" ] }, { @@ -3170,7 +3170,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830439/4997436 [00:33<00:09, 117078.07it/s]" + " 85%|████████▌ | 4257333/4997436 [00:32<00:05, 129022.71it/s]" ] }, { @@ -3178,7 +3178,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3842148/4997436 [00:33<00:09, 115643.85it/s]" + " 85%|████████▌ | 4270375/4997436 [00:33<00:05, 129438.75it/s]" ] }, { @@ -3186,7 +3186,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3853717/4997436 [00:33<00:10, 112169.40it/s]" + " 86%|████████▌ | 4283321/4997436 [00:33<00:05, 129178.18it/s]" ] }, { @@ -3194,7 +3194,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865073/4997436 [00:33<00:10, 112569.12it/s]" + " 86%|████████▌ | 4296333/4997436 [00:33<00:05, 129456.39it/s]" ] }, { @@ -3202,7 +3202,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876864/4997436 [00:33<00:09, 114134.42it/s]" + " 86%|████████▌ | 4309282/4997436 [00:33<00:05, 129463.17it/s]" ] }, { @@ -3210,7 +3210,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3888293/4997436 [00:33<00:09, 113506.08it/s]" + " 86%|████████▋ | 4322305/4997436 [00:33<00:05, 129690.89it/s]" ] }, { @@ -3218,7 +3218,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3899900/4997436 [00:33<00:09, 114261.34it/s]" + " 87%|████████▋ | 4335295/4997436 [00:33<00:05, 129748.88it/s]" ] }, { @@ -3226,7 +3226,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911722/4997436 [00:33<00:09, 115434.75it/s]" + " 87%|████████▋ | 4348310/4997436 [00:33<00:04, 129864.73it/s]" ] }, { @@ -3234,7 +3234,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3923273/4997436 [00:33<00:09, 115445.56it/s]" + " 87%|████████▋ | 4361327/4997436 [00:33<00:04, 129952.13it/s]" ] }, { @@ -3242,7 +3242,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3934861/4997436 [00:33<00:09, 115572.97it/s]" + " 88%|████████▊ | 4374379/4997436 [00:33<00:04, 130120.99it/s]" ] }, { @@ -3250,7 +3250,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946539/4997436 [00:34<00:09, 115930.29it/s]" + " 88%|████████▊ | 4387392/4997436 [00:33<00:04, 129277.29it/s]" ] }, { @@ -3258,7 +3258,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958242/4997436 [00:34<00:08, 116255.27it/s]" + " 88%|████████▊ | 4400322/4997436 [00:34<00:04, 129108.93it/s]" ] }, { @@ -3266,7 +3266,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3970042/4997436 [00:34<00:08, 116772.29it/s]" + " 88%|████████▊ | 4413234/4997436 [00:34<00:04, 128905.52it/s]" ] }, { @@ -3274,7 +3274,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981769/4997436 [00:34<00:08, 116917.78it/s]" + " 89%|████████▊ | 4426199/4997436 [00:34<00:04, 129123.57it/s]" ] }, { @@ -3282,7 +3282,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3993462/4997436 [00:34<00:08, 116830.05it/s]" + " 89%|████████▉ | 4439195/4997436 [00:34<00:04, 129372.43it/s]" ] }, { @@ -3290,7 +3290,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005146/4997436 [00:34<00:08, 116807.70it/s]" + " 89%|████████▉ | 4452222/4997436 [00:34<00:04, 129638.87it/s]" ] }, { @@ -3298,7 +3298,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016985/4997436 [00:34<00:08, 117278.27it/s]" + " 89%|████████▉ | 4465205/4997436 [00:34<00:04, 129688.48it/s]" ] }, { @@ -3306,7 +3306,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4028717/4997436 [00:34<00:08, 117286.62it/s]" + " 90%|████████▉ | 4478178/4997436 [00:34<00:04, 129697.62it/s]" ] }, { @@ -3314,7 +3314,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4040498/4997436 [00:34<00:08, 117439.73it/s]" + " 90%|████████▉ | 4491181/4997436 [00:34<00:03, 129793.96it/s]" ] }, { @@ -3322,7 +3322,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052243/4997436 [00:34<00:08, 117368.91it/s]" + " 90%|█████████ | 4504213/4997436 [00:34<00:03, 129948.38it/s]" ] }, { @@ -3330,7 +3330,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4063981/4997436 [00:35<00:07, 117099.17it/s]" + " 90%|█████████ | 4517254/4997436 [00:34<00:03, 130083.31it/s]" ] }, { @@ -3338,7 +3338,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4075705/4997436 [00:35<00:07, 117138.10it/s]" + " 91%|█████████ | 4530263/4997436 [00:35<00:03, 129957.95it/s]" ] }, { @@ -3346,7 +3346,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4087457/4997436 [00:35<00:07, 117249.52it/s]" + " 91%|█████████ | 4543259/4997436 [00:35<00:03, 129779.06it/s]" ] }, { @@ -3354,7 +3354,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099183/4997436 [00:35<00:07, 116667.02it/s]" + " 91%|█████████ | 4556319/4997436 [00:35<00:03, 130023.87it/s]" ] }, { @@ -3362,7 +3362,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4110851/4997436 [00:35<00:07, 116478.72it/s]" + " 91%|█████████▏| 4569382/4997436 [00:35<00:03, 130201.73it/s]" ] }, { @@ -3370,7 +3370,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4122500/4997436 [00:35<00:07, 116452.51it/s]" + " 92%|█████████▏| 4582500/4997436 [00:35<00:03, 130491.65it/s]" ] }, { @@ -3378,7 +3378,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4134194/4997436 [00:35<00:07, 116593.69it/s]" + " 92%|█████████▏| 4595550/4997436 [00:35<00:03, 130272.84it/s]" ] }, { @@ -3386,7 +3386,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4145973/4997436 [00:35<00:07, 116949.41it/s]" + " 92%|█████████▏| 4608578/4997436 [00:35<00:02, 130139.80it/s]" ] }, { @@ -3394,7 +3394,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4157703/4997436 [00:35<00:07, 117049.94it/s]" + " 92%|█████████▏| 4621593/4997436 [00:35<00:02, 129950.19it/s]" ] }, { @@ -3402,7 +3402,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4169409/4997436 [00:36<00:07, 116776.75it/s]" + " 93%|█████████▎| 4634589/4997436 [00:35<00:02, 129793.03it/s]" ] }, { @@ -3410,7 +3410,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4181087/4997436 [00:36<00:07, 116152.61it/s]" + " 93%|█████████▎| 4647569/4997436 [00:35<00:02, 129201.41it/s]" ] }, { @@ -3418,7 +3418,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192704/4997436 [00:36<00:06, 115607.90it/s]" + " 93%|█████████▎| 4660507/4997436 [00:36<00:02, 129250.53it/s]" ] }, { @@ -3426,7 +3426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4204340/4997436 [00:36<00:06, 115828.58it/s]" + " 94%|█████████▎| 4673433/4997436 [00:36<00:02, 129206.52it/s]" ] }, { @@ -3434,7 +3434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4215960/4997436 [00:36<00:06, 115936.68it/s]" + " 94%|█████████▍| 4686354/4997436 [00:36<00:02, 128977.59it/s]" ] }, { @@ -3442,7 +3442,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4227570/4997436 [00:36<00:06, 115980.74it/s]" + " 94%|█████████▍| 4699252/4997436 [00:36<00:02, 128891.87it/s]" ] }, { @@ -3450,7 +3450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4239169/4997436 [00:36<00:06, 115832.72it/s]" + " 94%|█████████▍| 4712142/4997436 [00:36<00:02, 128774.09it/s]" ] }, { @@ -3458,7 +3458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4250915/4997436 [00:36<00:06, 116317.31it/s]" + " 95%|█████████▍| 4725062/4997436 [00:36<00:02, 128899.37it/s]" ] }, { @@ -3466,7 +3466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4262672/4997436 [00:36<00:06, 116689.95it/s]" + " 95%|█████████▍| 4737953/4997436 [00:36<00:02, 128613.79it/s]" ] }, { @@ -3474,7 +3474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4274367/4997436 [00:36<00:06, 116763.47it/s]" + " 95%|█████████▌| 4750815/4997436 [00:36<00:01, 128610.73it/s]" ] }, { @@ -3482,7 +3482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4286088/4997436 [00:37<00:06, 116893.58it/s]" + " 95%|█████████▌| 4763684/4997436 [00:36<00:01, 128632.67it/s]" ] }, { @@ -3490,7 +3490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4297779/4997436 [00:37<00:05, 116893.27it/s]" + " 96%|█████████▌| 4776613/4997436 [00:37<00:01, 128824.84it/s]" ] }, { @@ -3498,7 +3498,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309469/4997436 [00:37<00:05, 116073.41it/s]" + " 96%|█████████▌| 4789496/4997436 [00:37<00:01, 128658.37it/s]" ] }, { @@ -3506,7 +3506,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4321282/4997436 [00:37<00:05, 116684.58it/s]" + " 96%|█████████▌| 4802399/4997436 [00:37<00:01, 128767.88it/s]" ] }, { @@ -3514,7 +3514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4333014/4997436 [00:37<00:05, 116870.70it/s]" + " 96%|█████████▋| 4815276/4997436 [00:37<00:01, 128712.92it/s]" ] }, { @@ -3522,7 +3522,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344732/4997436 [00:37<00:05, 116960.61it/s]" + " 97%|█████████▋| 4828210/4997436 [00:37<00:01, 128897.74it/s]" ] }, { @@ -3530,7 +3530,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4356508/4997436 [00:37<00:05, 117197.67it/s]" + " 97%|█████████▋| 4841104/4997436 [00:37<00:01, 128906.67it/s]" ] }, { @@ -3538,7 +3538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368268/4997436 [00:37<00:05, 117314.39it/s]" + " 97%|█████████▋| 4854086/4997436 [00:37<00:01, 129177.32it/s]" ] }, { @@ -3546,7 +3546,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4380000/4997436 [00:37<00:05, 117079.09it/s]" + " 97%|█████████▋| 4867011/4997436 [00:37<00:01, 129194.62it/s]" ] }, { @@ -3554,7 +3554,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391709/4997436 [00:37<00:05, 116866.18it/s]" + " 98%|█████████▊| 4879931/4997436 [00:37<00:00, 129146.87it/s]" ] }, { @@ -3562,7 +3562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4403428/4997436 [00:38<00:05, 116960.59it/s]" + " 98%|█████████▊| 4892846/4997436 [00:37<00:00, 128958.11it/s]" ] }, { @@ -3570,7 +3570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415152/4997436 [00:38<00:04, 117041.36it/s]" + " 98%|█████████▊| 4905811/4997436 [00:38<00:00, 129163.95it/s]" ] }, { @@ -3578,7 +3578,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4426883/4997436 [00:38<00:04, 117118.53it/s]" + " 98%|█████████▊| 4918764/4997436 [00:38<00:00, 129271.48it/s]" ] }, { @@ -3586,7 +3586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438620/4997436 [00:38<00:04, 117189.66it/s]" + " 99%|█████████▊| 4931692/4997436 [00:38<00:00, 129266.13it/s]" ] }, { @@ -3594,7 +3594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450535/4997436 [00:38<00:04, 117774.09it/s]" + " 99%|█████████▉| 4944619/4997436 [00:38<00:00, 129095.85it/s]" ] }, { @@ -3602,7 +3602,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4462358/4997436 [00:38<00:04, 117907.79it/s]" + " 99%|█████████▉| 4957529/4997436 [00:38<00:00, 128914.62it/s]" ] }, { @@ -3610,7 +3610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4474149/4997436 [00:38<00:04, 117329.82it/s]" + " 99%|█████████▉| 4970517/4997436 [00:38<00:00, 129200.58it/s]" ] }, { @@ -3618,7 +3618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485900/4997436 [00:38<00:04, 117381.62it/s]" + "100%|█████████▉| 4983438/4997436 [00:38<00:00, 128668.72it/s]" ] }, { @@ -3626,7 +3626,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4497639/4997436 [00:38<00:04, 117063.89it/s]" + "100%|█████████▉| 4996306/4997436 [00:38<00:00, 128576.12it/s]" ] }, { @@ -3634,343 +3634,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4509354/4997436 [00:38<00:04, 117086.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4521063/4997436 [00:39<00:04, 117052.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4532769/4997436 [00:39<00:03, 116889.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4544555/4997436 [00:39<00:03, 117177.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4556273/4997436 [00:39<00:03, 116913.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 4568142/4997436 [00:39<00:03, 117441.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4579941/4997436 [00:39<00:03, 117602.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4591702/4997436 [00:39<00:03, 117477.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4603450/4997436 [00:39<00:03, 117443.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4615195/4997436 [00:39<00:03, 117215.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4626917/4997436 [00:39<00:03, 116959.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4638614/4997436 [00:40<00:03, 116699.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4650316/4997436 [00:40<00:02, 116791.81it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4662208/4997436 [00:40<00:02, 117425.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▎| 4674006/4997436 [00:40<00:02, 117587.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4685817/4997436 [00:40<00:02, 117740.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4697592/4997436 [00:40<00:02, 117554.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4709348/4997436 [00:40<00:02, 117267.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4721075/4997436 [00:40<00:02, 117085.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4732807/4997436 [00:40<00:02, 117152.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4744536/4997436 [00:40<00:02, 117189.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4756256/4997436 [00:41<00:02, 116836.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4767946/4997436 [00:41<00:01, 116851.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4779864/4997436 [00:41<00:01, 117546.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4791619/4997436 [00:41<00:01, 117188.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4803349/4997436 [00:41<00:01, 117206.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 4815107/4997436 [00:41<00:01, 117316.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4826839/4997436 [00:41<00:01, 116816.87it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4838522/4997436 [00:41<00:01, 116742.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4850197/4997436 [00:41<00:01, 116680.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4861883/4997436 [00:41<00:01, 116730.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4873579/4997436 [00:42<00:01, 116796.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4885259/4997436 [00:42<00:00, 116716.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4896959/4997436 [00:42<00:00, 116798.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4908639/4997436 [00:42<00:00, 116699.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4920309/4997436 [00:42<00:00, 116642.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▊| 4932001/4997436 [00:42<00:00, 116722.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4943676/4997436 [00:42<00:00, 116728.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4955353/4997436 [00:42<00:00, 116737.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4967081/4997436 [00:42<00:00, 116896.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4978773/4997436 [00:42<00:00, 116898.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4990566/4997436 [00:43<00:00, 117205.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997436/4997436 [00:43<00:00, 115995.74it/s]" + "100%|██████████| 4997436/4997436 [00:38<00:00, 129080.15it/s]" ] }, { @@ -4209,10 +3873,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:39:46.614689Z", - "iopub.status.busy": "2023-10-16T20:39:46.614161Z", - "iopub.status.idle": "2023-10-16T20:40:01.413727Z", - "shell.execute_reply": "2023-10-16T20:40:01.410680Z" + "iopub.execute_input": "2023-10-17T19:56:25.485139Z", + "iopub.status.busy": "2023-10-17T19:56:25.484752Z", + "iopub.status.idle": "2023-10-17T19:56:37.050683Z", + "shell.execute_reply": "2023-10-17T19:56:37.049095Z" } }, "outputs": [], @@ -4226,10 +3890,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:01.432180Z", - "iopub.status.busy": "2023-10-16T20:40:01.430645Z", - "iopub.status.idle": "2023-10-16T20:40:06.468614Z", - "shell.execute_reply": "2023-10-16T20:40:06.467462Z" + "iopub.execute_input": "2023-10-17T19:56:37.056687Z", + "iopub.status.busy": "2023-10-17T19:56:37.056264Z", + "iopub.status.idle": "2023-10-17T19:56:40.976669Z", + "shell.execute_reply": "2023-10-17T19:56:40.975882Z" } }, "outputs": [ @@ -4298,17 +3962,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:06.473754Z", - "iopub.status.busy": "2023-10-16T20:40:06.473104Z", - "iopub.status.idle": "2023-10-16T20:40:09.156157Z", - "shell.execute_reply": "2023-10-16T20:40:09.155189Z" + "iopub.execute_input": "2023-10-17T19:56:40.980240Z", + "iopub.status.busy": "2023-10-17T19:56:40.979848Z", + "iopub.status.idle": "2023-10-17T19:56:42.836924Z", + "shell.execute_reply": "2023-10-17T19:56:42.836254Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2924a791f9874fd192a64a546445773d", + "model_id": "4d2c1c04685a462b9988999ab4a7e69a", "version_major": 2, "version_minor": 0 }, @@ -4338,10 +4002,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:09.161243Z", - "iopub.status.busy": "2023-10-16T20:40:09.160696Z", - "iopub.status.idle": "2023-10-16T20:40:09.494908Z", - "shell.execute_reply": "2023-10-16T20:40:09.493570Z" + "iopub.execute_input": "2023-10-17T19:56:42.840793Z", + "iopub.status.busy": "2023-10-17T19:56:42.840331Z", + "iopub.status.idle": "2023-10-17T19:56:43.107206Z", + "shell.execute_reply": "2023-10-17T19:56:43.106511Z" } }, "outputs": [], @@ -4355,10 +4019,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:09.503283Z", - "iopub.status.busy": "2023-10-16T20:40:09.502421Z", - "iopub.status.idle": "2023-10-16T20:40:18.039695Z", - "shell.execute_reply": "2023-10-16T20:40:18.038489Z" + "iopub.execute_input": "2023-10-17T19:56:43.110834Z", + "iopub.status.busy": "2023-10-17T19:56:43.110451Z", + "iopub.status.idle": "2023-10-17T19:56:49.519235Z", + "shell.execute_reply": "2023-10-17T19:56:49.518470Z" } }, "outputs": [ @@ -4431,10 +4095,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:18.085927Z", - "iopub.status.busy": "2023-10-16T20:40:18.085448Z", - "iopub.status.idle": "2023-10-16T20:40:18.225420Z", - "shell.execute_reply": "2023-10-16T20:40:18.224174Z" + "iopub.execute_input": "2023-10-17T19:56:49.522545Z", + "iopub.status.busy": "2023-10-17T19:56:49.521986Z", + "iopub.status.idle": "2023-10-17T19:56:49.646543Z", + "shell.execute_reply": "2023-10-17T19:56:49.645848Z" }, "nbsphinx": "hidden" }, @@ -4478,22 +4142,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0e9c0778cd774ea294480acf4165b2bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15d536a147c94673a0297d02ff877e39": { + "0f4f8efd802a43b69707e51dbf6a2db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4545,7 +4194,118 @@ "width": null } }, - "164a3cf4d0d44bdfbd776f10f16b722f": { + "1a719f92021a47fa86cfb87fa66177b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "26501c3583a14416917066f8ba9d9c54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbc6569c5dfc4e69b2772a6e45a9e2a6", + "placeholder": "​", + "style": "IPY_MODEL_44167e01ee9e4cdea3c08564cad6607f", + "value": " 300000/? [00:02<00:00, 138904.84it/s]" + } + }, + "3492aa93a328498a9e3bda47924ec928": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36d92d7ce24342aabebe357aecfc4694": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9e68dafdb2f49d7bc4b53c92f6d5103", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_56f3125cda4c45448e6575a1c6367ef7", + "value": 244800.0 + } + }, + "40a209a17c26487f9649c6f1c2f57aea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_de24e4091b8e405cb91d2cb331a05b50", + "placeholder": "​", + "style": "IPY_MODEL_3492aa93a328498a9e3bda47924ec928", + "value": " 300000/? [00:00<00:00, 4472858.73it/s]" + } + }, + "44167e01ee9e4cdea3c08564cad6607f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ba5d91fab4c40729f123bc268878ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4597,23 +4357,29 @@ "width": null } }, - "264bfd1f623e4e56aaf2ebeb68649dce": { + "4d2c1c04685a462b9988999ab4a7e69a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82c3aef684ff43509512714c9a4ca231", + "IPY_MODEL_a6a53376cb6344b1a3539df6e8d8cc90", + "IPY_MODEL_882a856bc76b4d2e80adf338d2e9e43a" + ], + "layout": "IPY_MODEL_4ba5d91fab4c40729f123bc268878ce5" } }, - "27401ab4da1f4584ba15329437afdfb7": { + "5389a87ea7884a78b93d1fb4dd171fa4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4665,29 +4431,39 @@ "width": null } }, - "2924a791f9874fd192a64a546445773d": { + "54865d508a1f493c86040f5f1b5832e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a9d5b195a9e4dfa8f6d01f367758cbf", - "IPY_MODEL_bcae71a6662e4935ba245223e7f44888", - "IPY_MODEL_42ac59eb962c4ac5bd611787f37dad86" - ], - "layout": "IPY_MODEL_ee455bded97a4425925616ddf2fdf695" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56f3125cda4c45448e6575a1c6367ef7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2b1644a21e5e43d29111448b0f0d1847": { + "5a35ca85f77b4fa99c50bc83a04058d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4739,38 +4515,46 @@ "width": null } }, - "2bbc372446e1494aa1ce59ddefc7687f": { + "5a71847be6474ca5b5b794cc503895e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "3cc184c4b4a14a409983d8c1c9d7a3ff": { + "69499fa3232542c295b149432b691475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7b7e6d898f649c2b84bade1330786c7", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54865d508a1f493c86040f5f1b5832e7", + "value": 244800.0 } }, - "42ac59eb962c4ac5bd611787f37dad86": { + "6aebca3f287b4ac382d2e5e660fe6a2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4785,35 +4569,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9c7ee7ae0c6940e487758553be4e3e59", + "layout": "IPY_MODEL_8f8b1237acc34176929e3b984719b0fc", "placeholder": "​", - "style": "IPY_MODEL_ae0bf4baf2ff4c67a5a0b78d955a561a", - "value": " 30/30 [00:03<00:00, 12.55it/s]" + "style": "IPY_MODEL_1a719f92021a47fa86cfb87fa66177b6", + "value": "number of examples processed for checking labels: " } }, - "4470e1e8c8b647a9b52b4f727a1ba62d": { + "7265f494a9174c39ad57d88d1dfa5ef9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_83fc0000692245619bbb3da084aee156", - "IPY_MODEL_7d781a47b25a41bb9354ce761e53c219", - "IPY_MODEL_bf4136f59b0c462aadaeb3dd9ce58911" - ], - "layout": "IPY_MODEL_83214f928159459a9b575c7b65ae1622" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60bd11d68436487b8ddec4d79b9830a1": { + "7b738cffc4b14042a1f469d9cf59ba2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4865,7 +4643,7 @@ "width": null } }, - "64358e97316d42bf8f3e986873e573d5": { + "7b85545b5baf440a8cde504d7dc97ddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4917,22 +4695,71 @@ "width": null } }, - "6804bb31cf934b9a83fcdcd34fbbbd3e": { + "82c3aef684ff43509512714c9a4ca231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8cc3dfdf77b4bdeafc2509af0c04671", + "placeholder": "​", + "style": "IPY_MODEL_ccc154cf7e5545508e1afc78bfac5795", + "value": "images processed using softmin: 100%" + } + }, + "882a856bc76b4d2e80adf338d2e9e43a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5389a87ea7884a78b93d1fb4dd171fa4", + "placeholder": "​", + "style": "IPY_MODEL_5a71847be6474ca5b5b794cc503895e4", + "value": " 30/30 [00:02<00:00, 17.54it/s]" + } + }, + "8b60641c60db4a5baf6f06be909dd4cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e78c5d874911435b8577fb22a5e1f44a", + "IPY_MODEL_69499fa3232542c295b149432b691475", + "IPY_MODEL_40a209a17c26487f9649c6f1c2f57aea" + ], + "layout": "IPY_MODEL_0f4f8efd802a43b69707e51dbf6a2db0" } }, - "6b3fb2d8340b4744b6afec70b55549a0": { + "8f8b1237acc34176929e3b984719b0fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4984,49 +4811,7 @@ "width": null } }, - "75fe7d9be719413b96036deac292e5bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_64358e97316d42bf8f3e986873e573d5", - "placeholder": "​", - "style": "IPY_MODEL_3cc184c4b4a14a409983d8c1c9d7a3ff", - "value": " 300000/? [00:00<00:00, 3292008.39it/s]" - } - }, - "7a9d5b195a9e4dfa8f6d01f367758cbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_27401ab4da1f4584ba15329437afdfb7", - "placeholder": "​", - "style": "IPY_MODEL_dab23da520f044e2b661e73909d3764a", - "value": "images processed using softmin: 100%" - } - }, - "7d781a47b25a41bb9354ce761e53c219": { + "a6a53376cb6344b1a3539df6e8d8cc90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5042,15 +4827,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_60bd11d68436487b8ddec4d79b9830a1", - "max": 244800.0, + "layout": "IPY_MODEL_5a35ca85f77b4fa99c50bc83a04058d2", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_264bfd1f623e4e56aaf2ebeb68649dce", - "value": 244800.0 + "style": "IPY_MODEL_7265f494a9174c39ad57d88d1dfa5ef9", + "value": 30.0 } }, - "8045046d4f4b4cf2abf73e300580ff0e": { + "a7b7e6d898f649c2b84bade1330786c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5102,7 +4887,7 @@ "width": null } }, - "83214f928159459a9b575c7b65ae1622": { + "b8cc3dfdf77b4bdeafc2509af0c04671": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5154,44 +4939,7 @@ "width": null } }, - "83fc0000692245619bbb3da084aee156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_164a3cf4d0d44bdfbd776f10f16b722f", - "placeholder": "​", - "style": "IPY_MODEL_6804bb31cf934b9a83fcdcd34fbbbd3e", - "value": "number of examples processed for checking labels: " - } - }, - "8e53ace931c94f9b9622acf057cbe54a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9c7ee7ae0c6940e487758553be4e3e59": { + "b9e68dafdb2f49d7bc4b53c92f6d5103": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5243,140 +4991,7 @@ "width": null } }, - "a0e58bed90b44d51b40cff029a970400": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15d536a147c94673a0297d02ff877e39", - "placeholder": "​", - "style": "IPY_MODEL_0e9c0778cd774ea294480acf4165b2bd", - "value": "number of examples processed for estimating thresholds: " - } - }, - "a3f3606e29004c29a42cb9f73e56eaea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae0bf4baf2ff4c67a5a0b78d955a561a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae8c799f82cd4edebab47074d4591e96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a0e58bed90b44d51b40cff029a970400", - "IPY_MODEL_f2c39968581b4785a8b04e5deba1e8dd", - "IPY_MODEL_75fe7d9be719413b96036deac292e5bd" - ], - "layout": "IPY_MODEL_ddc0ca9d19034c3797d78e60115629ea" - } - }, - "bcae71a6662e4935ba245223e7f44888": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2b1644a21e5e43d29111448b0f0d1847", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8e53ace931c94f9b9622acf057cbe54a", - "value": 30.0 - } - }, - "bf4136f59b0c462aadaeb3dd9ce58911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b3fb2d8340b4744b6afec70b55549a0", - "placeholder": "​", - "style": "IPY_MODEL_a3f3606e29004c29a42cb9f73e56eaea", - "value": " 300000/? [00:02<00:00, 141387.56it/s]" - } - }, - "dab23da520f044e2b661e73909d3764a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ddc0ca9d19034c3797d78e60115629ea": { + "bbc6569c5dfc4e69b2772a6e45a9e2a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5428,7 +5043,37 @@ "width": null } }, - "ee455bded97a4425925616ddf2fdf695": { + "ccc154cf7e5545508e1afc78bfac5795": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da93618a551a42bdae73b69f0f7d27e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "de24e4091b8e405cb91d2cb331a05b50": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5480,28 +5125,47 @@ "width": null } }, - "f2c39968581b4785a8b04e5deba1e8dd": { + "e2968e4eec87426d9ed8bcb0f5844799": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6aebca3f287b4ac382d2e5e660fe6a2a", + "IPY_MODEL_36d92d7ce24342aabebe357aecfc4694", + "IPY_MODEL_26501c3583a14416917066f8ba9d9c54" + ], + "layout": "IPY_MODEL_7b85545b5baf440a8cde504d7dc97ddc" + } + }, + "e78c5d874911435b8577fb22a5e1f44a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8045046d4f4b4cf2abf73e300580ff0e", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2bbc372446e1494aa1ce59ddefc7687f", - "value": 244800.0 + "layout": "IPY_MODEL_7b738cffc4b14042a1f469d9cf59ba2e", + "placeholder": "​", + "style": "IPY_MODEL_da93618a551a42bdae73b69f0f7d27e3", + "value": "number of examples processed for estimating thresholds: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 41d174053..93dc75413 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:26.651112Z", - "iopub.status.busy": "2023-10-16T20:40:26.650789Z", - "iopub.status.idle": "2023-10-16T20:40:29.680251Z", - "shell.execute_reply": "2023-10-16T20:40:29.679078Z" + "iopub.execute_input": "2023-10-17T19:56:53.460705Z", + "iopub.status.busy": "2023-10-17T19:56:53.460476Z", + "iopub.status.idle": "2023-10-17T19:56:55.143456Z", + "shell.execute_reply": "2023-10-17T19:56:55.142767Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.685521Z", - "iopub.status.busy": "2023-10-16T20:40:29.684880Z", - "iopub.status.idle": "2023-10-16T20:40:29.787161Z", - "shell.execute_reply": "2023-10-16T20:40:29.786253Z" + "iopub.execute_input": "2023-10-17T19:56:55.147377Z", + "iopub.status.busy": "2023-10-17T19:56:55.146658Z", + "iopub.status.idle": "2023-10-17T19:56:55.196632Z", + "shell.execute_reply": "2023-10-17T19:56:55.195810Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.791923Z", - "iopub.status.busy": "2023-10-16T20:40:29.791391Z", - "iopub.status.idle": "2023-10-16T20:40:29.919011Z", - "shell.execute_reply": "2023-10-16T20:40:29.917810Z" + "iopub.execute_input": "2023-10-17T19:56:55.199965Z", + "iopub.status.busy": "2023-10-17T19:56:55.199424Z", + "iopub.status.idle": "2023-10-17T19:56:55.309733Z", + "shell.execute_reply": "2023-10-17T19:56:55.309079Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.922832Z", - "iopub.status.busy": "2023-10-16T20:40:29.922515Z", - "iopub.status.idle": "2023-10-16T20:40:29.933787Z", - "shell.execute_reply": "2023-10-16T20:40:29.932670Z" + "iopub.execute_input": "2023-10-17T19:56:55.313282Z", + "iopub.status.busy": "2023-10-17T19:56:55.312687Z", + "iopub.status.idle": "2023-10-17T19:56:55.319085Z", + "shell.execute_reply": "2023-10-17T19:56:55.318422Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.938306Z", - "iopub.status.busy": "2023-10-16T20:40:29.937583Z", - "iopub.status.idle": "2023-10-16T20:40:29.951876Z", - "shell.execute_reply": "2023-10-16T20:40:29.950798Z" + "iopub.execute_input": "2023-10-17T19:56:55.321924Z", + "iopub.status.busy": "2023-10-17T19:56:55.321692Z", + "iopub.status.idle": "2023-10-17T19:56:55.332758Z", + "shell.execute_reply": "2023-10-17T19:56:55.332075Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.956023Z", - "iopub.status.busy": "2023-10-16T20:40:29.955228Z", - "iopub.status.idle": "2023-10-16T20:40:29.960027Z", - "shell.execute_reply": "2023-10-16T20:40:29.959276Z" + "iopub.execute_input": "2023-10-17T19:56:55.336075Z", + "iopub.status.busy": "2023-10-17T19:56:55.335684Z", + "iopub.status.idle": "2023-10-17T19:56:55.338829Z", + "shell.execute_reply": "2023-10-17T19:56:55.338168Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.964297Z", - "iopub.status.busy": "2023-10-16T20:40:29.963836Z", - "iopub.status.idle": "2023-10-16T20:40:30.990938Z", - "shell.execute_reply": "2023-10-16T20:40:30.989583Z" + "iopub.execute_input": "2023-10-17T19:56:55.341711Z", + "iopub.status.busy": "2023-10-17T19:56:55.341373Z", + "iopub.status.idle": "2023-10-17T19:56:56.131410Z", + "shell.execute_reply": "2023-10-17T19:56:56.130753Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:30.996029Z", - "iopub.status.busy": "2023-10-16T20:40:30.995406Z", - "iopub.status.idle": "2023-10-16T20:40:36.024906Z", - "shell.execute_reply": "2023-10-16T20:40:36.023558Z" + "iopub.execute_input": "2023-10-17T19:56:56.134733Z", + "iopub.status.busy": "2023-10-17T19:56:56.134347Z", + "iopub.status.idle": "2023-10-17T19:56:58.751035Z", + "shell.execute_reply": "2023-10-17T19:56:58.749906Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.030832Z", - "iopub.status.busy": "2023-10-16T20:40:36.029503Z", - "iopub.status.idle": "2023-10-16T20:40:36.045541Z", - "shell.execute_reply": "2023-10-16T20:40:36.044805Z" + "iopub.execute_input": "2023-10-17T19:56:58.754752Z", + "iopub.status.busy": "2023-10-17T19:56:58.753944Z", + "iopub.status.idle": "2023-10-17T19:56:58.768611Z", + "shell.execute_reply": "2023-10-17T19:56:58.768018Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.049703Z", - "iopub.status.busy": "2023-10-16T20:40:36.049160Z", - "iopub.status.idle": "2023-10-16T20:40:36.056867Z", - "shell.execute_reply": "2023-10-16T20:40:36.056081Z" + "iopub.execute_input": "2023-10-17T19:56:58.771708Z", + "iopub.status.busy": "2023-10-17T19:56:58.771286Z", + "iopub.status.idle": "2023-10-17T19:56:58.776825Z", + "shell.execute_reply": "2023-10-17T19:56:58.776230Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.060691Z", - "iopub.status.busy": "2023-10-16T20:40:36.060137Z", - "iopub.status.idle": "2023-10-16T20:40:36.071411Z", - "shell.execute_reply": "2023-10-16T20:40:36.070389Z" + "iopub.execute_input": "2023-10-17T19:56:58.779512Z", + "iopub.status.busy": "2023-10-17T19:56:58.779279Z", + "iopub.status.idle": "2023-10-17T19:56:58.787772Z", + "shell.execute_reply": "2023-10-17T19:56:58.787087Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.076156Z", - "iopub.status.busy": "2023-10-16T20:40:36.075567Z", - "iopub.status.idle": "2023-10-16T20:40:36.279746Z", - "shell.execute_reply": "2023-10-16T20:40:36.278768Z" + "iopub.execute_input": "2023-10-17T19:56:58.790688Z", + "iopub.status.busy": "2023-10-17T19:56:58.790175Z", + "iopub.status.idle": "2023-10-17T19:56:58.954346Z", + "shell.execute_reply": "2023-10-17T19:56:58.953569Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.283951Z", - "iopub.status.busy": "2023-10-16T20:40:36.283362Z", - "iopub.status.idle": "2023-10-16T20:40:36.287609Z", - "shell.execute_reply": "2023-10-16T20:40:36.286738Z" + "iopub.execute_input": "2023-10-17T19:56:58.958625Z", + "iopub.status.busy": "2023-10-17T19:56:58.958386Z", + "iopub.status.idle": "2023-10-17T19:56:58.961728Z", + "shell.execute_reply": "2023-10-17T19:56:58.961076Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.291686Z", - "iopub.status.busy": "2023-10-16T20:40:36.291109Z", - "iopub.status.idle": "2023-10-16T20:40:39.788844Z", - "shell.execute_reply": "2023-10-16T20:40:39.787676Z" + "iopub.execute_input": "2023-10-17T19:56:58.964531Z", + "iopub.status.busy": "2023-10-17T19:56:58.964193Z", + "iopub.status.idle": "2023-10-17T19:57:01.235254Z", + "shell.execute_reply": "2023-10-17T19:57:01.234282Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:39.794576Z", - "iopub.status.busy": "2023-10-16T20:40:39.794090Z", - "iopub.status.idle": "2023-10-16T20:40:39.813765Z", - "shell.execute_reply": "2023-10-16T20:40:39.812774Z" + "iopub.execute_input": "2023-10-17T19:57:01.239614Z", + "iopub.status.busy": "2023-10-17T19:57:01.238929Z", + "iopub.status.idle": "2023-10-17T19:57:01.256402Z", + "shell.execute_reply": "2023-10-17T19:57:01.255744Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:39.817820Z", - "iopub.status.busy": "2023-10-16T20:40:39.817224Z", - "iopub.status.idle": "2023-10-16T20:40:39.961491Z", - "shell.execute_reply": "2023-10-16T20:40:39.960278Z" + "iopub.execute_input": "2023-10-17T19:57:01.260753Z", + "iopub.status.busy": "2023-10-17T19:57:01.259553Z", + "iopub.status.idle": "2023-10-17T19:57:01.358444Z", + "shell.execute_reply": "2023-10-17T19:57:01.357749Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 8fabcedda..50fd0cf2f 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:45.265717Z", - "iopub.status.busy": "2023-10-16T20:40:45.265406Z", - "iopub.status.idle": "2023-10-16T20:40:49.203268Z", - "shell.execute_reply": "2023-10-16T20:40:49.202128Z" + "iopub.execute_input": "2023-10-17T19:57:06.306459Z", + "iopub.status.busy": "2023-10-17T19:57:06.305962Z", + "iopub.status.idle": "2023-10-17T19:57:08.895244Z", + "shell.execute_reply": "2023-10-17T19:57:08.894502Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.207938Z", - "iopub.status.busy": "2023-10-16T20:40:49.206963Z", - "iopub.status.idle": "2023-10-16T20:40:49.213443Z", - "shell.execute_reply": "2023-10-16T20:40:49.212677Z" + "iopub.execute_input": "2023-10-17T19:57:08.899009Z", + "iopub.status.busy": "2023-10-17T19:57:08.898614Z", + "iopub.status.idle": "2023-10-17T19:57:08.903381Z", + "shell.execute_reply": "2023-10-17T19:57:08.902807Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.217521Z", - "iopub.status.busy": "2023-10-16T20:40:49.217006Z", - "iopub.status.idle": "2023-10-16T20:40:49.222297Z", - "shell.execute_reply": "2023-10-16T20:40:49.221493Z" + "iopub.execute_input": "2023-10-17T19:57:08.906121Z", + "iopub.status.busy": "2023-10-17T19:57:08.905765Z", + "iopub.status.idle": "2023-10-17T19:57:08.909325Z", + "shell.execute_reply": "2023-10-17T19:57:08.908676Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.226056Z", - "iopub.status.busy": "2023-10-16T20:40:49.225394Z", - "iopub.status.idle": "2023-10-16T20:40:49.367945Z", - "shell.execute_reply": "2023-10-16T20:40:49.366993Z" + "iopub.execute_input": "2023-10-17T19:57:08.912361Z", + "iopub.status.busy": "2023-10-17T19:57:08.912014Z", + "iopub.status.idle": "2023-10-17T19:57:09.032326Z", + "shell.execute_reply": "2023-10-17T19:57:09.031634Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.374223Z", - "iopub.status.busy": "2023-10-16T20:40:49.373886Z", - "iopub.status.idle": "2023-10-16T20:40:49.381915Z", - "shell.execute_reply": "2023-10-16T20:40:49.380699Z" + "iopub.execute_input": "2023-10-17T19:57:09.035625Z", + "iopub.status.busy": "2023-10-17T19:57:09.035064Z", + "iopub.status.idle": "2023-10-17T19:57:09.040600Z", + "shell.execute_reply": "2023-10-17T19:57:09.039920Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.386441Z", - "iopub.status.busy": "2023-10-16T20:40:49.385728Z", - "iopub.status.idle": "2023-10-16T20:40:49.391177Z", - "shell.execute_reply": "2023-10-16T20:40:49.390125Z" + "iopub.execute_input": "2023-10-17T19:57:09.047901Z", + "iopub.status.busy": "2023-10-17T19:57:09.046780Z", + "iopub.status.idle": "2023-10-17T19:57:09.053268Z", + "shell.execute_reply": "2023-10-17T19:57:09.052630Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.397025Z", - "iopub.status.busy": "2023-10-16T20:40:49.396415Z", - "iopub.status.idle": "2023-10-16T20:40:49.401444Z", - "shell.execute_reply": "2023-10-16T20:40:49.400549Z" + "iopub.execute_input": "2023-10-17T19:57:09.056118Z", + "iopub.status.busy": "2023-10-17T19:57:09.055756Z", + "iopub.status.idle": "2023-10-17T19:57:09.059305Z", + "shell.execute_reply": "2023-10-17T19:57:09.058791Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.410855Z", - "iopub.status.busy": "2023-10-16T20:40:49.407873Z", - "iopub.status.idle": "2023-10-16T20:40:49.425377Z", - "shell.execute_reply": "2023-10-16T20:40:49.424161Z" + "iopub.execute_input": "2023-10-17T19:57:09.062500Z", + "iopub.status.busy": "2023-10-17T19:57:09.062146Z", + "iopub.status.idle": "2023-10-17T19:57:09.065993Z", + "shell.execute_reply": "2023-10-17T19:57:09.065343Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.429958Z", - "iopub.status.busy": "2023-10-16T20:40:49.429196Z", - "iopub.status.idle": "2023-10-16T20:40:54.736725Z", - "shell.execute_reply": "2023-10-16T20:40:54.735886Z" + "iopub.execute_input": "2023-10-17T19:57:09.068824Z", + "iopub.status.busy": "2023-10-17T19:57:09.068474Z", + "iopub.status.idle": "2023-10-17T19:57:12.881702Z", + "shell.execute_reply": "2023-10-17T19:57:12.881066Z" } }, "outputs": [ @@ -470,7 +470,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.bias']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -511,10 +511,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.741109Z", - "iopub.status.busy": "2023-10-16T20:40:54.740604Z", - "iopub.status.idle": "2023-10-16T20:40:54.746318Z", - "shell.execute_reply": "2023-10-16T20:40:54.745525Z" + "iopub.execute_input": "2023-10-17T19:57:12.885432Z", + "iopub.status.busy": "2023-10-17T19:57:12.885059Z", + "iopub.status.idle": "2023-10-17T19:57:12.887843Z", + "shell.execute_reply": "2023-10-17T19:57:12.887325Z" } }, "outputs": [], @@ -536,10 +536,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.750193Z", - "iopub.status.busy": "2023-10-16T20:40:54.749663Z", - "iopub.status.idle": "2023-10-16T20:40:54.753190Z", - "shell.execute_reply": "2023-10-16T20:40:54.752491Z" + "iopub.execute_input": "2023-10-17T19:57:12.890541Z", + "iopub.status.busy": "2023-10-17T19:57:12.890199Z", + "iopub.status.idle": "2023-10-17T19:57:12.893205Z", + "shell.execute_reply": "2023-10-17T19:57:12.892697Z" } }, "outputs": [], @@ -554,10 +554,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.756940Z", - "iopub.status.busy": "2023-10-16T20:40:54.756113Z", - "iopub.status.idle": "2023-10-16T20:40:58.031508Z", - "shell.execute_reply": "2023-10-16T20:40:58.030307Z" + "iopub.execute_input": "2023-10-17T19:57:12.896001Z", + "iopub.status.busy": "2023-10-17T19:57:12.895600Z", + "iopub.status.idle": "2023-10-17T19:57:15.557069Z", + "shell.execute_reply": "2023-10-17T19:57:15.556004Z" }, "scrolled": true }, @@ -580,10 +580,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.036657Z", - "iopub.status.busy": "2023-10-16T20:40:58.035451Z", - "iopub.status.idle": "2023-10-16T20:40:58.050409Z", - "shell.execute_reply": "2023-10-16T20:40:58.049578Z" + "iopub.execute_input": "2023-10-17T19:57:15.562039Z", + "iopub.status.busy": "2023-10-17T19:57:15.560657Z", + "iopub.status.idle": "2023-10-17T19:57:15.572278Z", + "shell.execute_reply": "2023-10-17T19:57:15.571560Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.054336Z", - "iopub.status.busy": "2023-10-16T20:40:58.053671Z", - "iopub.status.idle": "2023-10-16T20:40:58.060448Z", - "shell.execute_reply": "2023-10-16T20:40:58.059559Z" + "iopub.execute_input": "2023-10-17T19:57:15.575279Z", + "iopub.status.busy": "2023-10-17T19:57:15.574895Z", + "iopub.status.idle": "2023-10-17T19:57:15.580507Z", + "shell.execute_reply": "2023-10-17T19:57:15.579829Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.064075Z", - "iopub.status.busy": "2023-10-16T20:40:58.063601Z", - "iopub.status.idle": "2023-10-16T20:40:58.068373Z", - "shell.execute_reply": "2023-10-16T20:40:58.067681Z" + "iopub.execute_input": "2023-10-17T19:57:15.583332Z", + "iopub.status.busy": "2023-10-17T19:57:15.583100Z", + "iopub.status.idle": "2023-10-17T19:57:15.586708Z", + "shell.execute_reply": "2023-10-17T19:57:15.586196Z" } }, "outputs": [ @@ -739,10 +739,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.071990Z", - "iopub.status.busy": "2023-10-16T20:40:58.071317Z", - "iopub.status.idle": "2023-10-16T20:40:58.077243Z", - "shell.execute_reply": "2023-10-16T20:40:58.076459Z" + "iopub.execute_input": "2023-10-17T19:57:15.589595Z", + "iopub.status.busy": "2023-10-17T19:57:15.589047Z", + "iopub.status.idle": "2023-10-17T19:57:15.593770Z", + "shell.execute_reply": "2023-10-17T19:57:15.593142Z" } }, "outputs": [], @@ -762,10 +762,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.080872Z", - "iopub.status.busy": "2023-10-16T20:40:58.080568Z", - "iopub.status.idle": "2023-10-16T20:40:58.094021Z", - "shell.execute_reply": "2023-10-16T20:40:58.093132Z" + "iopub.execute_input": "2023-10-17T19:57:15.596920Z", + "iopub.status.busy": "2023-10-17T19:57:15.596415Z", + "iopub.status.idle": "2023-10-17T19:57:15.605570Z", + "shell.execute_reply": "2023-10-17T19:57:15.604895Z" } }, "outputs": [ @@ -890,10 +890,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.099355Z", - "iopub.status.busy": "2023-10-16T20:40:58.097789Z", - "iopub.status.idle": "2023-10-16T20:40:58.392840Z", - "shell.execute_reply": "2023-10-16T20:40:58.392056Z" + "iopub.execute_input": "2023-10-17T19:57:15.608558Z", + "iopub.status.busy": "2023-10-17T19:57:15.608327Z", + "iopub.status.idle": "2023-10-17T19:57:15.868354Z", + "shell.execute_reply": "2023-10-17T19:57:15.867786Z" }, "scrolled": true }, @@ -932,10 +932,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.398281Z", - "iopub.status.busy": "2023-10-16T20:40:58.396637Z", - "iopub.status.idle": "2023-10-16T20:40:58.735893Z", - "shell.execute_reply": "2023-10-16T20:40:58.735088Z" + "iopub.execute_input": "2023-10-17T19:57:15.871241Z", + "iopub.status.busy": "2023-10-17T19:57:15.870855Z", + "iopub.status.idle": "2023-10-17T19:57:16.211412Z", + "shell.execute_reply": "2023-10-17T19:57:16.210831Z" }, "scrolled": true }, @@ -968,10 +968,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.741624Z", - "iopub.status.busy": "2023-10-16T20:40:58.739956Z", - "iopub.status.idle": "2023-10-16T20:40:58.747933Z", - "shell.execute_reply": "2023-10-16T20:40:58.747220Z" + "iopub.execute_input": "2023-10-17T19:57:16.214458Z", + "iopub.status.busy": "2023-10-17T19:57:16.213956Z", + "iopub.status.idle": "2023-10-17T19:57:16.218411Z", + "shell.execute_reply": "2023-10-17T19:57:16.217848Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 8930dd5ce..56d2c671c 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:04.692847Z", - "iopub.status.busy": "2023-10-16T20:41:04.692508Z", - "iopub.status.idle": "2023-10-16T20:41:06.889710Z", - "shell.execute_reply": "2023-10-16T20:41:06.887867Z" + "iopub.execute_input": "2023-10-17T19:57:21.394996Z", + "iopub.status.busy": "2023-10-17T19:57:21.394599Z", + "iopub.status.idle": "2023-10-17T19:57:23.138649Z", + "shell.execute_reply": "2023-10-17T19:57:23.137792Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-16 20:41:04-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-10-17 19:57:21-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.164, 2400:52e0:1a01::997:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.164|:443... connected.\r\n" + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -115,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.06s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2023-10-16 20:41:05 (16.8 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-10-17 19:57:21 (6.33 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,9 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-16 20:41:05-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.213.17, 3.5.29.66, 54.231.128.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.213.17|:443... " + "--2023-10-17 19:57:22-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.41.9, 3.5.25.17, 52.217.122.49, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.41.9|:443... " ] }, { @@ -173,23 +180,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 126.53K 592KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 5%[> ] 976.53K 2.22MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 41%[=======> ] 6.78M 10.5MB/s " + "pred_probs.npz 6%[> ] 1.01M 5.04MB/s " ] }, { @@ -197,7 +188,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 94%[=================> ] 15.37M 17.8MB/s " + "pred_probs.npz 78%[==============> ] 12.68M 31.6MB/s " ] }, { @@ -205,9 +196,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 18.7MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 37.1MB/s in 0.4s \r\n", "\r\n", - "2023-10-16 20:41:06 (18.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-10-17 19:57:23 (37.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -224,10 +215,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:06.895336Z", - "iopub.status.busy": "2023-10-16T20:41:06.894571Z", - "iopub.status.idle": "2023-10-16T20:41:08.397133Z", - "shell.execute_reply": "2023-10-16T20:41:08.396065Z" + "iopub.execute_input": "2023-10-17T19:57:23.142128Z", + "iopub.status.busy": "2023-10-17T19:57:23.141678Z", + "iopub.status.idle": "2023-10-17T19:57:24.289048Z", + "shell.execute_reply": "2023-10-17T19:57:24.288361Z" }, "nbsphinx": "hidden" }, @@ -238,7 +229,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -264,10 +255,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.402002Z", - "iopub.status.busy": "2023-10-16T20:41:08.401213Z", - "iopub.status.idle": "2023-10-16T20:41:08.407323Z", - "shell.execute_reply": "2023-10-16T20:41:08.406535Z" + "iopub.execute_input": "2023-10-17T19:57:24.292498Z", + "iopub.status.busy": "2023-10-17T19:57:24.291889Z", + "iopub.status.idle": "2023-10-17T19:57:24.297285Z", + "shell.execute_reply": "2023-10-17T19:57:24.296671Z" } }, "outputs": [], @@ -317,10 +308,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.410880Z", - "iopub.status.busy": "2023-10-16T20:41:08.410332Z", - "iopub.status.idle": "2023-10-16T20:41:08.414676Z", - "shell.execute_reply": "2023-10-16T20:41:08.413859Z" + "iopub.execute_input": "2023-10-17T19:57:24.300255Z", + "iopub.status.busy": "2023-10-17T19:57:24.299826Z", + "iopub.status.idle": "2023-10-17T19:57:24.303325Z", + "shell.execute_reply": "2023-10-17T19:57:24.302668Z" }, "nbsphinx": "hidden" }, @@ -338,10 +329,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.418523Z", - "iopub.status.busy": "2023-10-16T20:41:08.417990Z", - "iopub.status.idle": "2023-10-16T20:41:22.392761Z", - "shell.execute_reply": "2023-10-16T20:41:22.391666Z" + "iopub.execute_input": "2023-10-17T19:57:24.306219Z", + "iopub.status.busy": "2023-10-17T19:57:24.305618Z", + "iopub.status.idle": "2023-10-17T19:57:34.432022Z", + "shell.execute_reply": "2023-10-17T19:57:34.431356Z" } }, "outputs": [], @@ -415,10 +406,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:22.397591Z", - "iopub.status.busy": "2023-10-16T20:41:22.396990Z", - "iopub.status.idle": "2023-10-16T20:41:22.412731Z", - "shell.execute_reply": "2023-10-16T20:41:22.411690Z" + "iopub.execute_input": "2023-10-17T19:57:34.435741Z", + "iopub.status.busy": "2023-10-17T19:57:34.435230Z", + "iopub.status.idle": "2023-10-17T19:57:34.443242Z", + "shell.execute_reply": "2023-10-17T19:57:34.442659Z" }, "nbsphinx": "hidden" }, @@ -458,10 +449,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:22.417811Z", - "iopub.status.busy": "2023-10-16T20:41:22.417219Z", - "iopub.status.idle": "2023-10-16T20:41:23.135902Z", - "shell.execute_reply": "2023-10-16T20:41:23.134985Z" + "iopub.execute_input": "2023-10-17T19:57:34.445858Z", + "iopub.status.busy": "2023-10-17T19:57:34.445511Z", + "iopub.status.idle": "2023-10-17T19:57:35.008934Z", + "shell.execute_reply": "2023-10-17T19:57:35.008264Z" } }, "outputs": [], @@ -498,10 +489,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:23.140931Z", - "iopub.status.busy": "2023-10-16T20:41:23.140166Z", - "iopub.status.idle": "2023-10-16T20:41:23.148840Z", - "shell.execute_reply": "2023-10-16T20:41:23.148045Z" + "iopub.execute_input": "2023-10-17T19:57:35.012085Z", + "iopub.status.busy": "2023-10-17T19:57:35.011709Z", + "iopub.status.idle": "2023-10-17T19:57:35.018063Z", + "shell.execute_reply": "2023-10-17T19:57:35.017385Z" } }, "outputs": [ @@ -573,10 +564,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:23.152846Z", - "iopub.status.busy": "2023-10-16T20:41:23.152273Z", - "iopub.status.idle": "2023-10-16T20:41:26.277484Z", - "shell.execute_reply": "2023-10-16T20:41:26.276098Z" + "iopub.execute_input": "2023-10-17T19:57:35.021181Z", + "iopub.status.busy": "2023-10-17T19:57:35.020835Z", + "iopub.status.idle": "2023-10-17T19:57:37.424859Z", + "shell.execute_reply": "2023-10-17T19:57:37.423808Z" } }, "outputs": [], @@ -598,10 +589,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.283583Z", - "iopub.status.busy": "2023-10-16T20:41:26.282283Z", - "iopub.status.idle": "2023-10-16T20:41:26.294998Z", - "shell.execute_reply": "2023-10-16T20:41:26.294139Z" + "iopub.execute_input": "2023-10-17T19:57:37.429248Z", + "iopub.status.busy": "2023-10-17T19:57:37.428085Z", + "iopub.status.idle": "2023-10-17T19:57:37.438144Z", + "shell.execute_reply": "2023-10-17T19:57:37.437422Z" } }, "outputs": [ @@ -637,10 +628,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.298845Z", - "iopub.status.busy": "2023-10-16T20:41:26.298529Z", - "iopub.status.idle": "2023-10-16T20:41:26.329534Z", - "shell.execute_reply": "2023-10-16T20:41:26.328146Z" + "iopub.execute_input": "2023-10-17T19:57:37.441246Z", + "iopub.status.busy": "2023-10-17T19:57:37.440654Z", + "iopub.status.idle": "2023-10-17T19:57:37.462247Z", + "shell.execute_reply": "2023-10-17T19:57:37.461601Z" } }, "outputs": [ @@ -818,10 +809,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.333755Z", - "iopub.status.busy": "2023-10-16T20:41:26.333180Z", - "iopub.status.idle": "2023-10-16T20:41:26.386639Z", - "shell.execute_reply": "2023-10-16T20:41:26.385634Z" + "iopub.execute_input": "2023-10-17T19:57:37.465667Z", + "iopub.status.busy": "2023-10-17T19:57:37.465144Z", + "iopub.status.idle": "2023-10-17T19:57:37.509909Z", + "shell.execute_reply": "2023-10-17T19:57:37.509244Z" } }, "outputs": [ @@ -923,10 +914,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.391485Z", - "iopub.status.busy": "2023-10-16T20:41:26.390832Z", - "iopub.status.idle": "2023-10-16T20:41:26.405576Z", - "shell.execute_reply": "2023-10-16T20:41:26.404622Z" + "iopub.execute_input": "2023-10-17T19:57:37.513400Z", + "iopub.status.busy": "2023-10-17T19:57:37.513044Z", + "iopub.status.idle": "2023-10-17T19:57:37.524029Z", + "shell.execute_reply": "2023-10-17T19:57:37.523377Z" } }, "outputs": [ @@ -1000,10 +991,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.410618Z", - "iopub.status.busy": "2023-10-16T20:41:26.409072Z", - "iopub.status.idle": "2023-10-16T20:41:29.110681Z", - "shell.execute_reply": "2023-10-16T20:41:29.109391Z" + "iopub.execute_input": "2023-10-17T19:57:37.527493Z", + "iopub.status.busy": "2023-10-17T19:57:37.526994Z", + "iopub.status.idle": "2023-10-17T19:57:39.617738Z", + "shell.execute_reply": "2023-10-17T19:57:39.617068Z" } }, "outputs": [ @@ -1175,10 +1166,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:29.115030Z", - "iopub.status.busy": "2023-10-16T20:41:29.114606Z", - "iopub.status.idle": "2023-10-16T20:41:29.122913Z", - "shell.execute_reply": "2023-10-16T20:41:29.122071Z" + "iopub.execute_input": "2023-10-17T19:57:39.621260Z", + "iopub.status.busy": "2023-10-17T19:57:39.620886Z", + "iopub.status.idle": "2023-10-17T19:57:39.626944Z", + "shell.execute_reply": "2023-10-17T19:57:39.626352Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 9e04c204963d85d2bac45b715e66295fd44ab6ec..df0a2e679f6ba2ddd3111095dd21d8bd206f92c7 100644 GIT binary patch delta 8776 zcmeHMzpLd(73cZB2y127O~fL3*TqJ%$nqBolDBqmROyuDJD{qpWQn5%UkD; z@b6RGTj!2%+&IzJedFFe*TjXAC~7>+>ZH+D(Q4Y~2 zu`ZHU6N#nO`Stg3^t&HSzd70{u2O5UEp}nH;>P6%@3x3;OyBq zD6_dXJ-HbKxASY)rq6AB*OVf{N)z_Mq#BWt$)RSOsnspwJ~eG}%}5|9xvZRx7tYpI zN$S;-YTf?po#R)IHlc>lebVSFvlY!f6nx-ZuAQ@(?S20_{^QXw=zR6cWQH;4*RM=p z+!WV~R>spN<{-FdOP$ndH!c+JYXXc{jRA$oK{(|s-5DP{CG9KW}7ZuO5wS$T)zIy#g|^Xw7KY;I3GiEtrX7c zk}1i$jL)KI%Ud+e)oG(9;sf@s6vIKSuwmlVqSvVSiy5zcVf+1$re7VsJgUe=ME&|x z-+uOqC%^XCH=iAK;r{8tW95s_T$+FW*7U&RgS70DJkn$r6Wh`QOE=l~99rlWdA3Mq ztz?VHDLN|6Wmb+74Er6<#0G$-E=XBWWn4iGYi+!XxN6~jL^rQT}7xm(m4FwVOTzJ&nF0R&)CE8x93QNIH<`kT>1~|#aE%}{Dv+8_{ zuA&F15$YN>d%S{ZkF@>gJIB963knytjPJuKRlED5TDcd=>T6Cb(nc|tP920yE7ByQ zkhr>a%1vx>;*2w5ZLzkN_5PdSYF9EnvsJF9rZ;xEo*j5eVib3N^B2>@mm@#QPuv3>l?di&CNUZ-35rpS1MX@urCD!_2UD`QGic%d6>y`%>_ceOp!=r>Z^m~3_t+?{1#n%+ zCpNxS@mwH$WNl~}>e3r00O|c{Rk95gh?dmuGSFruGeZf9dL?gq+*7kr^!e@2PS>6u1lQdI-Bq()K_tdi&Cp6*#70+O27QOnCRl2C z=>}t{#joihEi^97igpHbLd|w!x{@x+R{ zV8$`Uk{1Wa+it*vD}gwMmw=2X1`paIg@OTdz)MFIF~rl58*oCNf0%de7Hg_>b-i4VJ*g(Rs}$ZqCmU;0x74?3Du$;6XrAc$+Qa8;vglq zYE>d05}Mcos*P!pG8(@n%y#qMTy}Q&`7N5RZidkxveV~JdT$tODrCR|=GG>QArS1h z3y&FXp@rL1=7X-mU%@e2X9E+`FFPz^HY=Fge*fv|ffZlyi;^e>%taOKn+iO2suX&L z$_0 zjMs)jgb?P%h%6)lrB1=aNNXat5gAE`uPES^43lw(Bu0UkBnENweEF->moD?8&YiN1 zU8Lno4Wx~3fpcV^eXqkh~!J$kJ>lC~KoHQ)UAB=b+dF@5K-|2XVFMmv`UU5EY0VgGU1e;oE7`-`dn z5vaj}ZvXUQ|M7peFNgidVgG@x)M5W|_y5Qa`;RmCE{FZcVgGU1e;oE7XYO4N`;U7| L9qd2e{mg#>`~AYy delta 8774 zcmeHLy{lzc73X?SGggLqMl76reAviLX7X$*GJ5WA^NADm)HYkv2gJI{NAzWonehAG~C=e~8;$M0jU z5AU7-@ZR}1Uq7c~EKxuE=TR@-b##4pLbc<0=2@0?rU z|7X^B&Mj}ZQRI^mudPok#gcZ7(i*S$*swAxwNO1ZDw=c%l8uT6PoWG!)%Dk( z9saZ!Yj9pSl}V6;uEH+kE49^POfY!t=8MDIi&ZD&bnWV(#!f_;UcEYeW#xm5Ty0Ca zRdU%SYsp)cn`%v>ot}PoI9k8(_vORG1*bSES1Pil=p|VWoVd19OVM`y{=FqKNYS|J zeQpiOTb-pv9XZvMDmV0d{lI^ge_4#3uyIa-&kpIP+hw?PQPWSpapmVv96$HmrSaG_ zl;7v9JP9c(l48a{an6NXm~MW&{QR8GDjOr#MnVTD1iT}smWrnm10GHjUi4^vBomk|+s@+H~XH;bb_!Hms7@ z$gQSWn~+nDHM6cQSXWfjv;~`Twt;Vz52{eIg$4YGj_X z7cYBrSswW>+?uO~{D!q-Bs3>AutziKn{XjBffSC`ci$Tx9#*Y@76UskLWI|Cz$r+w zhUBVhc^7Y;&ZvC^^+t66>0ZrF@zzPr&3LOxfjGFSU^OLY*q4-m46c|-Q0sOixq$mZ zODUU1c#v(gPWeoZBS{Q1j824XOr=SynEVzSRZ?8CKksTC|e2X%WH+QI}?zS}fIi2fWdo%Brang0+pJ$+Y1BXM@%*Sb>n#Fzf8y50<}L zi~m|Typ}kF@oj-dXSTNuzrZ1qLESW-V1-V3P!SXo(5`zti7ukR&wJ6nqO11;ZHhSwhC>3Fr zoRL7PdP}NcbZweoC6Bfq(I#fj*5v@<52V5Oj6YsfW)my#dcCMj#*B|f1&YSw2 zikSoXaR^&6tBM<>EmVL6rb8mM4-I6HBiJO&tzG$+JX_5*5oR>PaVeOzjmSF>n9ly} z1Z@{!5F%%veQcRB+vGyxVx(EnEKUD-2I?}7!)vgaXNR`)ymmsz8E`_zD&=bc+flVD zY6qExOD7QvJ(!y`ZVYBHErnPDL53ODwmJ)^>0o(--)ge>7y<&vj5=&|zQU4ulbfy; zAFp9Yp~=0NTf*psoNoPXxb%?P(=!h*P`&mxHtZZR#H?#HK7hNthjWArT^dK;)v{H}k|ach-6E2~m^TOtW7RNjQ_o$% z^`cL2=;7MfdciN4;fpJ&sTJ5(7*nflgaB=meK}Iy-Ugyq-b1 zV9p_|DxiLb5gIER1WUxh0iPy<^~?}7z=Ka9%c!&jsSRLiuwlU2ZXV!|SYeK_gep=Q z3!UhU;dRg&59Dt1=)~UU!Dq*{)0J-yU%kwi4ei)Q7E`ffCcFu-%njs?&8sQY9E_mW z@h-OiRgRINVil@~%Yc*!vPLQv8zvk?n^XGfN5k(I&-YrhkFw5GehOv1a@|MS*vU#w zxBorxbn|<|&&a|*Sm zYY{DGo4i%5z0G3m&s(!7rpo0eT0v=`iSBI)yLU3vG;re_5!74ZfdJ(yKol}c6E!hu z_cFR)iz?@q(ff}XbB3A_9pu!Az?cojD+aBIEe6>lD>l`-b3aXh=zNb@i8q4L)YT%uYF zY3UWdnAJESY4Ho*mr3WW&AGQWXyIIL8ROpP%IV52@VGusW~BFq1m^}1^Nv&iWTE)7@cxEXx zTvBa>(?&zJabmTBU<25)djSu(WnP#ZZ1pA>RJX98gNXovT_hpSJsjng? zSoA`uwSZVJ1VxjYJI>DYZJa*vh9*>m+bG~(|?srmqS1B*`2=u<4uNQ delta 2160 zcmeH{ziU-76vs*I(pnuvEU3`StJ>vZlid6|TCj);fHMzcOKbz{8YC+m%7 zbIKp-OW}Am2}5J3r)Z9$PbkcfqDQ51Xh&b8Ir1mh$nRwR)uewT`$)Z+O-zQB26_^P z4BAzkun6O=zqy3kCsAj(nxmy;bM1fO)@engt)ej4K==MDcF$yDt;{H7ECa)N1`IN1 z1hvd6&??ty*u8@8mqrzHE9l*a#8AP2abt;6oN@--2%)4TQgUG>DGn^)T1P?^lOPDE z&dUfTCRL7uupH9N#%hY5=Xe$!HYt(HrH(pdIR$NWEYuRpg`_m+q;f2|T?z9q@uA|! z3tXU5d{};kFO<^5(nq{6$wB1SGLV*ePJC{R%}g{Kl{yDw{6;I>DXAc3f-}l(tdYkO z!NqqfS246`E#k*0vC?s_Bn6@=SD66sXs)%hc@9qGt{8lcpP^D{dkvGM3>j)`Soabl zXci^VHqPEKp`~XYr1KhN)TP+JfQLJJtq1KW5z-USEsN3%khzpr&?uV=!(Z^;Vs;VV zL5Z@Oa|2E(p*X}580R#kHd-gMY1DSTg)(k<`We%t1S^AogZm-cK_3+?@i)!2>*KyT z&>XEyPgj$Qmr7B_A~xEL5UYt-A_V|0a-wYdOB>x0zAxj0<<5n-cm~}q6Q~lgXKR=1 z=P#Z*eXd^W%zvWGCRZ7)hSjgpb7g&n)_eT0)aBbtw!LKAOSbuY+R~EgqV^4++4&Rb C*?=Gb diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 02b6c3394f73f42aa671a4070bbd2f8bce7357ae..7d04923e1c23f3190ab1a113afe066ad166c8643 100644 GIT binary patch delta 68 zcmbRIj(zew_6=7!4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih Yjg6Bn%`FX64K12kxwf-%G4j0y02R^{!2kdN delta 68 zcmbRIj(zew_6=7!4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa VWaE@XprnaWGb`72RxU=qw*Ws074ZN7 diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 8b1a90d41428ef9427b0f449ecd044ef3e922c58..63c7ad564ec37f6e0a895d1f4871509daaeb44a7 100644 GIT binary patch delta 62 zcmew){z-g8BBNokrG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ RvZcADVXC3U=1GhRTmWrS5~KhC delta 62 zcmew){z-g8BBNnqVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Pk_ePEG1@$dF@XyJk;xO( diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 567e34f208692ce6ee70a11ba932c678e03a1c2f..a206f3f6326c4e160cfaefdf09ff27bcee1de884 100644 GIT binary patch delta 68 zcmcb5itXwtwhj9@4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih Yjg6Bn%`FX64K14Ab8dgn$(S}904ydJy#N3J delta 68 zcmcb5itXwtwhj9@4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa WWaE@XprnaW^Lx(i?>QOMW&;3KT^H>D diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 5a54bb0d44b49fba44e02bf0302d26e0f5b3a027..9b194a32fc2bde536f877bb9981af4b32f975608 100644 GIT binary patch delta 14851 zcmeHOTdZ7V6?QJMX^2Q`%SH6eZpBnBoc{NVi9DbMFBFQx1E%%(Un{hhrWaliiy$$A z260R_CU_wMQ6CU;)Pbncz7QHiLX8?iR0_tZ(FbaLk;Le?XV0N$D$cL*$z=M_^i2NQ zYp;K;Z>{fJ>-4tU*WZ5o`bQsMOAlEij~v>2(>B2svyPD{45i6Pri07ETNjwuf%9Os zrHPv5Kd$}J^{?9>(!Qm`2i^WdIUO9nIc^`mHoj$eTiiDMR@goKcC3azo;UnWeD8mF z@+0|~vzuq`I{nZu?;$mPcjv<4ulH=L>mPPD4zJjwho8RT!VP=U;lnrV-?MA!&;fTa z?OF=%U>wqq-SR&_;ez3#N7fEc+;Ha^Z~g4vONPhxUI_md`dcopw$$W_&iTW8_Og22 zlbsF2&c5@8m+jU6^_P~@zHJKw8ia{bbLO-liFqn`$kscrsna13UwH8L%9IXuMjMxJ zy!-hz6*DmtqkR&>3PXg`i4u|xvqHM;?f7xUL(Su=Fa2pvC7n^i(j4%HB3WvrRoXMJ zl*ss7jvrS%)I9FR`=4Jk&{PPX7zvtX5mdI>@|Xj4R7ywq@Z^JcRE0BX*gWmNhwyU7 zkeH+3S!g4i;?@%e?;Q)CWFcaEb)`ei<39Yz@77d!CzGP~B4;9qQ(n3dxshDUOo?wJ zQ988T8NIxwB9d~QnWRKBLEt3oSVjuuaLK7VKbuWLH58J_swCH0?E_kt=Dih^LMQ-TQNxS`f7O0CL~ z62bK7)Uoar{d(Vx-LnQn=_Iv`DI=i`364aPgV6ZQ`w(jSrrw6pf$#S2?o=KZO_?x0 zsvsm$R*@u9GE|ZvnN*`ww*UK1(R#gWfA`9&V3*d<+}ztxdF6y<);e#D5QJFEGeX1( z!mX)-$z$D}{YocfLFP(wZbdfP8LkzH)(I93adC9&j^4eU0lZ59F3%2G?Kq&Dj19)n zOuQqk?pXLrjPUkirob-71AShBnM;%f8FZr_o#`JL6~&9~l)9}|^$3C*PmS#YDR z^jc(m5P?{kYqz$)Vf0e3cWHlta}BSFQj9mgdnQRDl&CBt)2gQL$J?H~zx&C~K;vnS ziUb%CK{Fm10`XpW$CBi}KDK?uu|diHv7hv4zV7`{MfWsouHUOK!DsBmscYDB>s{g7fS%K|*@Uqz#D02v>ehzY0nz zi9+W>)&lk2IVBB3VuixLfy8Tm(fewrviMHMy?INONJwAw0HsKFGBaxrJAM}Yk`{ed=4>r68<1|@+g9}(AN zQUb6fo#fRx1uKgXTM?~hObY8L=n6wcW{h%biIAfgzTbVKQx)veF|MkDT~}}Vdhen^ z0?N^pLeAO>PH<5=D~5&&fO`|$5G*(!B_oyu?-_vRfOearRDlL#ZT-q|nhQj<&qIJQPg3){WVwIjO(%&EA%6TrG;dmu)+=yG^X1;Z8s~phzsQ zh(&1wwrr$H;;kpBDl(0cd$RkL&e2j>rZG~=!|Bt7`w9)B?tBJ_D!H_RC?jmJSu=|K zNA>31X`5I?(L<8fn||3vC%Uiuu0EPaMz(_BC>=yJ)Qcb-jocFa;0$YFHE<+(Vv|(( z2MUz-L~}=tQiy1_w0_`Dl*I#wdq3|~B+N8!>o-2yy&BDOrrr7rkN3_WWT2ZT0lWuL z6zzRZfkYYwx(}GeYCnAPfr9)6!o9G>8tzp{+(luz(1A_*7Lw0v8PJ^@uu1?Br9#|ed7!`Z~ z@HiYvaKv$xI!UOGn%9q=K-eY#LmiAw8wh}+j7|A(Dj}o5rRSpM8g2hA8E^e4+5Xz` z-X)h9vkF}(rp$=wG$BkVjYdThIJ@LhfiYM)`qWVrzJ=N3yba-P4|VVA94*AgOhcxS zkz)FEoPA$(rDa`S@@hgooR*Eu2o{wE5)lE-TyvC_&|qjKps4a-SsnsY3xpikCAGF- zO_U^q{2eotF(Vx0pbQWpTr^IAF1kpVVSzDd8tQ#ZQCfhdg7Nz76Wyz>E7&H@{j3lw zbk;>O=2VCQ%^u<8s05Kw7dYi2xDCnziwyaM zdL&l+P_otb!WnT!0M0k3a<1#1jx%MN!;{Gn$W3wZM={nsm~~ z3Ssfnz$xSjQu3UN}&aQY9Hm0CW)7sMJ2j$dV=^f(y0uutEt%E((XjMhP zSazXB3+NH;BV?CC17;2~0V5L~yoL{B*>!SL|KZMHw%G|gESYWDq1OXnFVAj=lpVi;G&6-8B<1{^tju;RMFNwjea%e4#J(S1z0#hEs z$J%};nEUJjPK}bdVbpf8LU_&)U4?|C)6gni*DKH}xz$1oX#+ozKLI5?YU8tR3Ow=? za)a*CKR^wsPqw;lj!8= z7+wY2seXBV@0zM$+tqvD(7Rw@kYDIPAx5+o%n~t#(9qn_%>jcOl!&HbRT;@;KwEP{ zcNHF@%b|`#Ia6dFRTFkt*$k+mq0@+JPqhWVr3@LI(7vGF@fnX&a)g^XdffI)UjnDbDpQG2nS0J%XENT^h( zlJ%q4LUXsYuw=S^iT8F?Y_@4r?-srD77|pFCKgl(V?Tk(yhI#zGpz6_uOuZ#gON*c zJaAQ!0|&oFC3nGk@J1-@HYqEN5+i0c5f4LRV>$vSw1Q5xa z2LO{qDT7)=&2%n0hk8K4*THKs16}D7M6pG=n*SwiN}5}Z z4C*`RW=|rK2^h|RMTAM)Z}og>SU-VODJat*nVp0(O`k4Z*Gi|lyx>-7A=U5=4Ynp2 zRCK_k(>F*mo@J0A&nDS8aFD}@V9G`cfih_@?qQT*|C21@JE3>u={r$qaWsIc5Iov* zj~=B!1Tc$72Wy@z&u3O<^+vL^98$A^ zgaC&&#WX`JEV87e&bf)qDDAE$$STC-46Kw=aT-~L>w0DIjw(OXBVXV0@!osqtFHN~ zYrg6_bM-onxcRE9-LB17UGr7f=?&yGM&_%of3s(sue#=|uG7DVHeYqMzx*^`b{8~du2C0sphM$_LqF;tFEan+kDkEUv)M6 k$LV3leAV@8JGS|%Yrg8@r~fb4|J$m|jDB#Wzx}L#0=&kfjQ{`u delta 14862 zcmeHOS*)F974;0UB2kdG3|4v$71EU9^38)0WU69hDyRttDBoD%)=HQXBa;wf0uF&+ z^Yeg$5!44_AUARlCBO^PAckv%7(%pQd@zp1L=ACT|M|~t&qX|6OiX+^2`}ya?!Uib zueH}+yWDciAvfQ0$U~1FK%I+@etO5w6Qy&M@Q^(bR+*%d3;3gsDj3Hp4?H^jP_U(6 zAMp5v)raDx)nCJVt0#i3ei#p{)@)w%j~!7xbnOAv^5wTxuPvTgEiG=SZeQF|oxgK!_3YxY^`TF9 z4qDr6s@=x^U7WgT{;OYDiaW{1L7-AAYl%=!=&ViTJdr4gV>Vl7s#os6WoSx^I-~VV zSKRT7H3J_l&t4LmNET5E=d%^rQ6B{(IaPb^zjatxld9%x!!Q44&Cn^DJvWjjngzCG zbhKLJm~G(6#&&bXMa}14y$73Xl1pMkTpK5d!#<;x+{cXL%IL?NE39cZclQI>T#%M{ zo{~|P3uGp)kOzs4CCfbxVtjMOMa||u@tt3-8FH3Pkl8Smgiyp7PG#~;3l@waoR2?O zTC~&|y}o8BtY@5RZ<05{$LL}(*p-e%Cn>lef2z2s+1XE?IO>3EVK=P~dgh@2EDsw7$CWg>}`XyWhI>&*f)&|KSI}>?|Gpvje-; zIWKL&hk3Pq_ZlpJuCw%!mzO&K_P4h#>=`ZW>3rd~{-4%#-cl`p_k{Ylse8nLAz7uB z*;^Zg6x1SB0s(bU5~(!x-dlU?Mpxe575#eW72N}e)DY^q&Lna#f(?#n8x@O4En{>J zqf`If`&ws6lFl^h>>YQ)Gi6=of@v)Yp^S4`zw$_T?dX)R^nThI7Pi3ai*|L-Dh95X zuj{QFXhpTOiArUeNV&;SnQdkX$IDcV9$xNl>kpCrS|wt+WLbF4oMbv1jT0n}J%-Vp zr}pmZ40JTnImv_1Kwos;Mr}nhEGjBY9N`S#!>ZXK>v!cIy`U6v)A7Si*SVe7rcLh~ zZrXIi4frGHBnB3w@&f6Lw~!Q=-i6!GKKG2RXKgQK-|E$+%h`1C@%1;p*gJG<=}7In1*e=9*sl^+P^Mi<)JDdn z4=R~h<3+}ZI;lV4!ekJPRGMg!q{Dj!i;K=g(paB*I!I;DJ>45S1Dq!b8o>_I2~M#{1x--< zI0NhI8h~9ldj7Qjw>pDD=y7rmaM3eE|87I?n4x5nI&2#`mPGQ}3#S5JOA%}E3}TX- z)`aAY3QBk@LQ=*OrhPCt6DnO24NcsMBajqCPKLAKM1-=!bugoh@>m;9{n?vvT5@go zo1J3d7GR~g^+Vt8ZC+qvK`x$l;?)J~;{r%B3WXl!Is24d@+0g5%vaJN z6Sx&#C9MWfAvfLX)rIRK``}hM5oym2SR@-*iaaqKTialD2K8BPgi3Mr$A%>bK%{|+ zGFqA}m_-?f3})V<&NZb)6=KW!-4Auo zEylj{(ca;MXsvNBP#2;RDQN@cE+WKU1M{rg=NlxdOy*HLPN?uiJL0X81oai?hqA^F6KFc62MZ7=lh?F=C~EX9*CE78J$a0!t_L0#kXL`5+z z2TOtLcP^uR72=ZV@}-oVlrKju^)zy{RRSb#jR6~Z?sya;8t*5EqTmTjLxL&{6vmL71%B}8z&L6HVbGW?_5SD(s&|8m>Am$6by$cj>%Z^qUNB^{L-YE|*SZ@9T6)9464ZmF6+?3Y1X!=oun6t#h`tA! zV*uf<(93}T6_^C|feT9U#D=5QL_r&>XaRBoNeeR|s|9QAr@hEc!DYv7zCAT7G~5{ zCR}PMz7@0yRW=f8oQ_n0FfG^xR01vp*}LG=OqZ_G)2xQe?0n>G_3FZ%?U#h5V@*nzCebF~ zNTL7t47gB=WT|PUiBrE%gq+kLO3#spMn-~mjX+a4kh$@QBXwj!w|2&WqCCVD0W6Ur z37G@79E=R;NWraazu0QRI6JtlUq7U`tr)jnT-!Thpah^KjlzFKIHC-(J~gercAyX2 z%DpEy^iS?@^r9&{K$wPO2z?7BnH8FAt30Ic2<;(k0KAF=iGUKoxC+LkJ`$eWLQoLR_Q%fqok08LS{gWYhEDFz%vz7MJLEbe(2ILf;TOif4%TRbp zad^gb0w)m~BZ^B@{)i@D!dufs$%vL!a+>zR>4nZFs7O@bVw+AW3trxfU zwk*&E!>3?{J`N5fL!CsYr6ITBNqVasJX?X0K4~8w?)%Mqq4*oi1@R15H6bzA$0A`>_ zJZ}u1WuQjW`l(%5*m@XX#>N&wn+k6WE(p?BGIUx<>_DuT_Aq8gm#NJtYmww^eIcirZo>qJNTT`a*;S>HHVKFm-FN29IbIqhS-;WGCUj7z`4i z^d%9~amM9A;Q6)Qc0Z zN!2R6$s25mLMpytb>X`9DZydkM5@02lf5(Nv#$B9Yd-6mo{Y_BU2igHo6oxX!_v%Y zr3IVMx@OK{=d-TabGG@cYd-602axkw7yjwfeAe|Q&>QX^I6x*2yZ^?n$NoMk921b+UB#asTtvX)-|7X&1YRJ T|KG{~an@xkRiww!9 diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index b2442c49b1fe7fa92f1c6616b52d7faa63208af6..c1208fbc72edfbb2a4704d4314b0389644fab170 100644 GIT binary patch delta 88 zcmcb0P2$!yi4A)=4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih mjg6Bn%`FX64K14Aa<;$aWCUU+AZ7+)79eKb{+5$1R}lbI>K+dO delta 88 zcmcb0P2$!yi4A)=4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa kWaE@XprnaW^IOjLx15YX%ml>DK+FQftlQsmvgIlQ0F~h%KL7v# diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 84f8358609b18006a53d148e4f11f3580515c061..c57609ec7c4631f6f4ed7943066cfd33d6d88085 100644 GIT binary patch delta 3891 zcmeHJy^CE%6la!2HpE~d#LnDoV-t4I%$)hMu`xoxU@R;w!g6Nj42Xilx`KunR^>; zc<+|7-@dAT{Yrf?Zhx(=4Y{!;TLN(sFdkB|E#;QjI!p3la`c0`u|5QD&<*Na+Z83nzHvHWagTxj?AN+_VoDRP+gq-^^N*ob*~?P zJW|(R>)pP2W!QX=-rD2M=LZK{aQn8rNVaHKttA-|`qT)V;fw;+q^vQ_k&)4yL(Cjn zL0>J!nzGR*R|YN5)0QXae^DQ*!9|b8u&-nt7D_Q>;|m&&1eU4H;Qh9~c42aOUwy7F zby^tpLj{*Q9gIJpsO^LEcb*ylexRNh5Ts4V#w|c_2r$OjF+o>Wn90ocJZYit{M6S7@{wxg=#PbAku}6P{Ux8VLeB$$=l!! zAxk3E$|TG+k{>pw#lkpuWOQC9FTzhzBT7MF2rfs^T9Sz7+@5h{@A{b|d$<3qBcpD~ zi*PN5hK)V7$Qe99F0BdW3uKXroB*!IqqHMY2jqfC*T>*3%y^wSl8e|tCy7FB5b{*< z)g%VriuHP4J1!h~R}H-$PAxe|R{eJi`_Haj9kO-0)W(u;3AL9D;S{N4!xHf9@*I!M zyg*6TS|4y~DGyousis5o(YYl&X3A-CGN+6ZDH+KL$C#r{0o}~DXYurUnBnQRF!iF- z5W&T`h4!o&MSNPKq!LQN1dL=!!Xi)(UbdNCkk(mHGmtYg_DEZ{S5Lvq)!Z52!i+=g z;2Q7!sa{xZ$%TejTe27PrwTt~&DEA%+Nr(qEsVL^lB+Gb+LH2@^?$P^$|i2r)#7TG>g! z+nGWLT4lqcFD~LAupok!qIN+D7Iq<}=e_$Db{EYwmhW}%-gD>7H{bW2Z|>Y*`}Y3Y z_RV9OsF1$==EW^Xq``8_fXT<|E3y0y#d9R9E!#r!63z7oPn_6!aP0EiLy5*fvDt9c z$gbs@v~D3nqh?6+_0Qh_s9UsSul%_-gkr%4s^Hil1xrROXN{*4c@l)D5*BtV<{hG)u^}#ELa>3L$&#W3!_y_T;#`t&Y$BzNLOp-R|R$ zx7C@~dd)XZ4jb>$#Y=VL`N6>^T)ip}5=7*beXdwAS)ZyC4l06!7Uk&@SVk9xLla%_ z$WobXb{46G3>0l$YPyCOA3$Qf-do_MUob_WiHwrW$(P zM}1ep&~5(Ru6lV0E%}Dv*}{B(n1dlmsTtXKtL&FZIBDMixv>z*kg_qkX3Ronkq_Yj zk|8&FR48N72HCp=sgm8*FS-Z{UqAWDlR zats<`h@vuzDGRV*L^rY31WR~5FHP{?xTii+QZeo zquV%ta@_t|9e=5ZYeFA$DKa5!%(0=NEZEUxW+Z1A+CI7B`0)CSP+dfe((8fh=kfxLDI6CX!gl@}0*hD;D4-@(E3^{ba&!_k{_AU;w*m51LR+ z4?eO?d`9$MN5aTxz^AOE>~JFM*@vglcxz8RJ)11pqw27!db&MQ-8r~@3l2S0)hauRR3Q|I6J%f$i2t^ E0T26cqW}N^ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 59c2c28669eb6b03d7d1e3137ca639169168e153..2421dfb6e0c6b047c3494028253fede313c97171 100644 GIT binary patch delta 28188 zcmeHQYpi8udCr=%_hy)S8HAZ(hT-fzGe`tx&V2U^HyJC0n=()-a&!D{s}N8wgH~g7 zL}|5xDLB|=ja5OdiKIb7b*EUhv^CXe6-;fDTCF6F#wGA`?wpJNVEqWcp9C!(PmTx@jMGGxf)nk08JSD<>pCCGuY3I3W7m!hO=Sw6 zt3Z_qo_R_!Wr7hdiS>@xuj_m$zwUu}?AoD7L|~ez#Xo{e;YE@@gwhj6sAdOWuix4E z%zCr&(K}y0phH zzT{q}yknBBU)T9ie%+n}c%5L(7^xI@JO~mCJF2~l z#rmFH(zbHHTAW_(I<+{a`tgay6-RxBSGR8|o|?J6_W9TCyTjd-UVr9j`CY^6;ggDw z{STj8to~$YacuRit;K^gzcKl^JFmvaedpxjlB3?rjhE~=+=apTeN-nqFrt@^YnzP9p+=*y-2i}#&W{Brek zTfFv&x6W>s_j_j+?^(G&Ya4IhR(<)b;;fEG&c3EtH@@lY=Pa{W;^v4mi_7)Qp7+w3 znZ=Ex&unw^lo3}I(aaa&#?im1xp_+U@r!4^ z2sfVdMVgL(^O9z*siAqTPpEFas@POLd}Xl~4zH#i{-3TaEM~ps!GE8*Jv#h~+RtB{ z*Z!r|zAK9ptKF|I@(!DR+04@uZ~xq@>+LZ8;PmIg<*%Q4&&=%|W4QdaYu3+ryQn^W zVR7kdx8qAfG;@B^^~K}QpZ0iB9lEHv^SPI{HkPr`vs(UvtY^d&i z_nM8>IU5(&S6|(nujL?>=wRNvURaC~#^m0NJ_bMIQSxw?DH@-?*y*Pi#) zHEXN$cC9(C`py=-xqiWKuZKL?%x;P z?KkbaasU1|q|vDU@BQJH+tWHOj4;)nKP!%Z0a*fwvy82iglSS=dtSaKq%rHb<<*m6 z&4zr1a$?Oojf8yYPmAV?Rz|He#8#K%nU~`kPAE0&&fb0N?djb6Z#d@q`)@ezo^PI= ze_A(c{`$ZDrnSr8R9!w?cxd~L`>(5KuY zacd&2_Nd+o<6B-k_^YDRaP?l>-+N_;+3h<=+u!JJenZ-R=13UMm&jY+ic2JwTA23Jz)xF;@hF#Vlzo$<}9d>;+`su>v zgEySH{&Y&ni?`RqawH)qs4_+Cg*E|sLE@gpv{|bmsuxuXlrKDJA&j+7TB40p z%#^MqV=Th^icyqFlulVGQDG~^oK7AaK$oJ#A|^U6{&3;3VzJ$1wdWH(I_fZ}t1XxG z&)6vlyXj@S_g~+PMH81$ZE?(}6~qdM@|v)OFdLEms;4gNZ^$cjZf~)jvZ$V<*is*T zaN#}0f%X-0G4Ga(_Fld36_>sI{7d(B>{Y$`>8|P8e*Mns<6m0XctQKXq-cg8QE@u# z&rs%NVA3bY%is+41dNTd%~CEJqb!PCD)WkBl?~R47$#JVC^G9kH{Sb5@9ttGg0hN( z^B__R1{WrjfYD)P6xypu$J>6i@B^%Rhu!MlYx`DP@5Y?6yYVt3*I7(_iX4LEQUNNO*{kTU3FwkU;(*AZ4xpzEX^GtOK5JB*Ke z+2HctkV%yZHKsVhw7X~x7QiRUxh|cFRS_rgVaP-YPC~nw;CwNF_5hca3}Az1M3>cV zH}p1)pSW%CiDJ}Y+BL)IFfFQ0H}}uj#hICMD+DG2N~Dz1ML{DbQ-KAvdD=8fVGM7{ zgKFpQrhUqGEX-;z>Dq;>pYE73aoDFiMpdqa6!?gW#8@N)VZbrbhzzBe(A>(y`w@Uo z3gR812$G1SIaJ1)jT3@ZxBa|-LUyWqilNYD)LfL@B={84L}|c+r5vIpp>pj0VerFZ z(ZLmuZnb*vTl$w>#eJ*MIy5aOGGm0CBr?1f-b7#%ONi|X|M$_kkQWxoY!dMo!Chgf zGPx34*>LL!2QlX0X(0&Tgo*P`?jI-?IU+6s0^v-7&C`Z(Zb_1nBd-7wuk6vqcGJ~; ze?4HscDt?`{&ZnW^*eXiYlHZYa0u8S5Xz!N zs`HfXXj{4#=*CB#vRn2|X<@WvcV?!bjQS+8Q9jyp{^&emaBRbTwV z!Wp~3uueG}$tjf(ng|1DT?PZU_Zl#RDXl#nKXTgOir!*7vE4wTCV$EH)e)<`hj#4F z)lYZKS6ueB^E(DL$zP8PK?837PUK)`dC3^F`;WNN_v z`V#w+Ce^swYySnVwishjq7+zDIIedd%q&<_78$aO1aRDN7&vyAF01wT_bwfEn2yy0 zUtc(3BmqK9#PWH?g(Uz%yz~i})d2bO-o)ADzvm84B6`TnUEuu&Qz(QFax(o0%9k1e)5AojH2DBZ${B>RLSZicl9=%#iwZC5nbZ+#ybw8UZ1C*+{U%SHy>J`aq75(~Zv8VL}L3eR+gm^y)Bs%x_n z8PMgNZyhpMDuYg3GU(Ho z1birgwG4_Z?XaWjh(1|AcpUMi26Tb@lpL)(<28m8J(4-{bK_-0li{R5^D!`r@&-Lj zU}%OmC&ItPj>yGbQ;2oiUO%9tF00wmPD5uW8GOGJ3fO|eOi3L;RtOdl4{0ptuMDgR zvNB>@E`NjNXrf`IkRG@ulp_GtaUzc(#VC=z1QP+lC!(*2+>PI0F2*sk++*;=4wH?C z0b913tOnlzNHly&zhb5MiUb(OD2l%kF_2y3op`UG`sNmzL z?pXi=Y;X5h+g<>7YY<@9daU-0uHCo#>5iFN@uT)Jao6M~L<)dh;O-Pkk=F&7Lumv$ z)Wr~3G>DCSI5Rj1fDtvn*I+I{TzH^<@NpE0!RS&|Pd(HWTz8}3LXHA!;Xty1p^xCL z1ZC79UonZwVEpzE_J3Fm+by%|&Cm9)80E0rV%1gu_-ud6&?1o}3b#=R#knX1oq<}= z1IKC-RKpZL^UpnuqSTrzY+k4XKs0HCy2*MCSQiN==Cl7gI9Mzy0(51O8?=NTN27m} zDG_5)gqMU@w=LGG>60K6+s)P#A#1m2n#=_14}i{tlJ!C)c$A17_!O+CMv)r%_`avX zV=RJz1&Raff;6m>L|kW4LQ8=<5P7DiF~)muK#4d6qvNG>UVuZDT7sXGy5td22jn0k zM-vjd%r@D{wVM^y!!PTdvBb%ener(vBt#g7LM8&Q=1|&z1uH>xGK%Qy8pyZT4zMQe z(wFJl%C|2KS?wzw`!KD38Wlt9lr5va3pz$N$xuRts4?xjEJ4W=Xh^_f2c^L5K2g^b?P#i0jOpsWQGlJ83MS5nh>0)^%1#K*r>3VK%mzj+>r8_ zg9bZ+NP+;MEZ9I0F$8sq7;Byhj+ z02BalP&Dj8Y=9@IORN!iYqXt8gF-vQ6>1oh=&4!iOYB~-*bNEaWwc>1x@^`A#t<^k z5?B^E3MmXFpf4Ht3=-iEk`dFu*`ZMYdKeQ$96-E}$Q5W~1)?mt7O5MyELZ=-03?f@ zO(?or0`#fNT_RLus)TMb$~ssyyjq9l2?Nk!Iab$QJlHvkL?>ZA(yjxorIcqD>=v|i zXfT4!oh-v*LQ+pCRY3az7zFOT*9pE@Y6IX=eea=u!(j{|FvMa;l!WN}fx8D063d{G zBM~D)nBqA*O*d}UZkf7FWbB}dvn4I2*b5sy_W-&GMp=fMJc;lvU|#JKdL7H%Rf{N@ z95O5rlmL5#S_5@suH!vgDO^t6s$*?t9HnbBu6C=A89U6yzr1TmjbE9Jl~g8pfj4+2 zB7lcLxPuVWAvCyn6hR-#gt3CU!h(U4Vh&6;2fu+n3YaE%)kn}8LQ4zGG5VO;;GhT) zCnffz1WrTya=EkBZjrmjsk%(oPPM3gl*p(WUPK@jiAI8ouqe@^L3@1s$WMA#^oHQ2 zl>H;7|Wfdl4vw#u?sD>qfI3`fOPzf?)@?H zK&wevJ#YoMiVl-y^@^JYON+>b5%`jp5P=J{>|F#Ujjxvh%_vblaBkCDMe{pYsxp~| zz9ZZmeFKm}z!}K4sCdzutBb^;*3gEN5^5KO1R9VaGJSy#9=gib>8X&=Zdt^}mpZJH z+Lv~Z;7Vr7mAD70MvEVmmJ}fUp|WKlB_Yesaw#(5!n%~i%bwJ>BIu*6_6_KIT6f^; zr#q(0ub{#95ly;UB9nMJKxfZT1w~XB90AgB33Q(jBAX1g7|_cBlN|w+oNxrN9jlE7 ziDf`ssXDX~HD=w^TI7Jz)gkUSE*y2)uU`4i z0l14+^O00vc<126Ap!9f6jTRA1P40Is=QB^art)8Q9$u zZL5fhwX5BWw(sA1kSih&v^!hpcf}cxKCXILOUFMG3`&)d|f6P|RgRg^Y?!g}AKg z!oChT=_`6;hfER-2vu%-8y0dAcm4|DajB z(YnF3;UI;NKl7YnuN9 zlYH4>ylnDihjG^AOAwI(wIpHz>?)T)>}Zuplz?Bt`!U2vXgX;yq$wX_0yB<7OpsF` zC8Ax61xHRK4T=MOiR6PTNSG+{Nd&(caqP@8?2tsNC+I}J2#Hv$(Fs@5VU$#Rzdkr^ z2u&KuV8k<;50jw+@DgP?5(lbl6nW#i*)q(Z1o0t7I~uAKjYc&Fi}JxpY+(ac3KTgL zwjWgmUWIXC5H_m~5-_MtNc`yGkTIy_&w(FqHQE%W2Re+dQsm@hiRS85vZQhb}5A85$uhK?>P~_46h3GgU6E=NQ;3!BOA)!IE zLi5HGm1Tb@kI*duE}P^_2#Qg7AYIn`B%e`)$ihOg4027o73d0eahKi33nAoawcB_h zM<)zn+GgQY_ArEbpk3xI$$TcxtU;7CX_qRXZ}9Ob?IBx$APHQnkLWO#L2?CNvS|QA z62veO$d}+MFs;sGv=ln@_BGO}bIe@le}tn2bDjV4v53R@Z?5y7>-<4l&vpJF zC7*NJWCl~VpNu%%Tex7Z^PlVd=Q{tn&c8k&I@kHagKFth9eO_j+^PlVd=Q{tk^Cokhf6EDjxz2yC^Y1u)v6=>) z>-=X97tD43bDjTO=Reo^uN*Cy>-@LRb^ddm|6J#P#M1?Ho&U-?l^OZeT<8CsLk82j zzq!tTuJdpC|6I&<{&SuG?BRmB&OaZDo9q1NI{&%Of3EYNI-c?WPUk;<@w0=Myy(9H D)p_^` delta 28678 zcmeHPd#q(;bl>K1B!ptOm$1w!;hh!2w5XlzxQk|x!vBu(2te1L!0GzRVO+k4-cdk!;u)71J$ zbLJ1Y=j`w9^}W_wzx7*d-S6DJ_3!WAdf(@crp`r2-}>6?cT49e;URk>tTIU@7w}O> z6^!GQ2Ob?B3iiPFj=pKvL>rx?(}WuzFrGMWiMKo}$3>=6-0=qe?%qKU9BblHlOzPA zhQyGv!B50zs+==|3KD5nyna>hpkvK(4_vrs%TZ&Kj5fq@VWbi)5=V&Tfx7G|$wuDs zdi|c>F&oUL2VQjkUu~E~skJ902$Gzzj+#U>VKE4rxfYhxbL$;c=JxQFM;|pN%tX(k z#cGL=CgBI21SUshO5W6S>l;(%_UU*u_RS@oQc#WA9_1vAD%iHr&{VV;_C)9hW}pz^wHca2Y) z(c8_n=~)F{lvk;Ph-sK)z?nN8z0>|xO;B& zx*2V+9^E#0dDrvPUo|*pdfUq2(j$(g&%6Gn7ZP$BA*W8bSv9J<|J=a^hxq!U?Sp@M zCOv&-=)<2HoOs7~Z#lC1*=q-{KE%V5tAE=uc>nx^y}Jfy%zZcg#z})Gm!Be)A9^yp z!elm8=k6RlJo_GAbVF|(!WSMm{ z^g|poA&1;qd|mJCS!d4eEFK(wXPbv7R}Y^xx3hTgl$|AH`k6gXIcvSj#UW-?e_hY$ zr1NHGR6jV}jMg5WTz&TZ!TXpp}HGE^W@0Ek&t9vgS z95qy{Mpy0+1}~^~J#TPi_2bJ1wru+02mWI2@#MfO#?`$i4xU?%{>*CcWrGu{-IovQ z3%2fMbE8)pb${sc<~FPwxPE#!Uop6PPU_s_lcq0v)!@oGWyjJFrR??B^`4)2_57Zz z!`_1Ww{RdQS08`%%q^%N%-w?W-SnM%pK=Reehz&v@pV0;U*(w@)#DF$3)UWAH!p3guDEb%wYqKd(s9+7HZMK9dhL05@U6}G?ipLwKK}BXM{KFSvuWu$ z)h{-!efQA&j@Vq?vIXCrd;H9I|FQ)y_|pU5o%qTlwpaI_zjWmE(c_n{8vIrTzhJuO z#HBwxVt;fuT(|ee@P-@GWOD6|d+U$a-gx7i(lLOO!c6dwtTMtaW98@e-z#pw07;l8 z<%==^*sdPDegL;z)t@ndavV7xngXa5r^IaLCm1%}IU)3WFv7-Kn0i3{zH_z(- z)&ox8z3+x}#)q#t^6C#?bL_4EaC-T4OgrdltZjdp`~TJAp2pg?b}g>DWW4nG`h>1J zctls#XLQxx-_{|WeT?Q$VTbAj#Td1i{ykN9* z7t{2*vv=Qkb+a7q8M6%GG{H3}_sh5}V(=-YoGfdW)5`@-AKN$jv%&tJv!Oe%f9G9% z#om`*^x|_a+>71oyo|G>d-lrjxcb!U>u*~=;l-Wn3C*gdb{;xp2`+$eGJ+XW(kQrS z!xaNEf8zPWi-%)wgk|7UH1kndVJvsvaqO0}R7Fxj^)^l~zJGY@UO3=Khybw+Y z2P8yH%o2M*jEvJq?ixNg7M+)`qU!W0wJ((wv< zvT;g2u>|wr!5kHu%mxRI0;8mjVFvt)N)|&~^8m94vX5hv6SyJ8oC^%p6_n9(Mrdmu zdc>M$39LtCb;9*UpSWD7PeckHIrY*qDmdubn0NvsOC;0`L{4q*Zo6seMZ;d|v{kCU zLzz_*+IYj%n1oSZ28q0(Zd(@Z(WJt5SB=eWxsMYV3TE@WyZT z%6(TDZKXTW0^(#v|cY*L&r(8)8 zD&Ut`(!dB#*C`CeNR%#H)~=>6KQR5#zR@QJ`#VoW$TX`cJ=c)Uj_%v2R;@Oj)3cz~ zTT!G6qLD7ZI^#xK%MHPVRE9~j_MlCHk>ud3Rpv6o2?!X$Y@C-e2cnP(N}`~^PYlLj z7~q~tmLNl^B+gSrg(J^QM!=ftkqrmDRgY|0ZTRr;!insWTYdW5OB=^5Lay@BC#3}s z#0XIDmLRnt6tY(ppxegjWB@F<)!M`@ZX*rYBBKD3Jhhmfmm*Y;T{PNMJFIa6oTQvf z0(>T1L^?})ORbGC6o#=W{mC-GV2@ndUdS$)TICuHR=3_W+B8;hiAZ21t}PXYA@O1Z zD`p_1#5`%e{jtku3|A;k8KBDR0MjS|%NcA$Kw=9U;q7$KaWxLa-UDGc>Ju;}U^~k! z5sh61Aj_a`fioKW&?DK_OBu&*snzZG3{N;+t|Q8I{q`oLg+&q>YsrJf5qr<};QbZwtoQ@6AGmeoRH z;(dvqtfoLx2sSKoekB&k!c<>-Xn6dz_TOVqqNTXEFo;NS;=X1R34mmR4nf_TThMqh zlRTw@;zT(NzZRyXMv-}yp!g!86@rE}c*r}X8#tiqkG?#5d9UoBetEQY9G!G50C;4W zb*G?ES(hv-EJ$>)8#TCk{HI0V6u_5LL^;6Ml0$@3j?Bj3fE25TKi2Bo1k*;2j0OZX z3YI8&ZV=ifisT;g+Q;erAA-V-yXCg%N_ELhDmMDI`^w>l2~?XC*e3Yol0gIR<8Zhk z!X8AWNo?TyLcZ-01GjI)D(*>0Xp+R7;^a0geedTCKrSz!MlPpliy$CV5nRCQT=1dB+K6kkjWDGx zozW+?dgl*D7f&Qo-G>)TLiN)hj7}IwBS%GXpCP-+8zXkW9tH{3W5xla8ZDjgbzqQ=H!?Ou`!|h{$}_WU_Lq} z`!&_;A7Sak>>lD3A!8#ZNR|+m` zQhoIK!{c7kx1vU|G)grXstyvWctB`KaD?#QIuKe;IUcZ(a6uXoKI16-0bYV*S5`u4 z64Vf6RD%yE0EG;^9gL^t0`)uqkw8_*M8O9}ysp)&KB3jyem%N$qI+akKmPS-3rsu@ zaEU-cIU!Pl+6!tp2gU{O5@EX=Mh4E2!6B!tBZ4ypPnMW+B3m7U0W>TjW&;fo9)RId zDBzHIVF}}OqPQ5IdkuKM4pa4sZs1{$WF&CG6;?&F#uVfr*gl#O528K@F)PYwSb(Ml z{2ZnrTyO^wfPkd|hYPrl1!S9G1q(0BU`(=UCRk{hF|{Bv6h%f5g)f;x{|IWCaC|aR z8XFr?!^1ww)$Lzcrjs7QuDbW^;m%bhXPg$)KKeqBAw&m!A*cevjB#LKIb;OwxdCfh z=`KU6$md{F8a&u@JZ?^1dM@Pb=$`!|Yk2USo<*frw>V6QV_H$;Jw7TN6@{5WXogc3IRa_{8R52Z3mnOGO~NDmVmMz0a4$t66;K0)GX?O#nF?fX2nnNH9;t0bV7-b>i7GqsqDqH9v_F z?hZ*4*nKTr4pwo%U<4+(bHLWEs!bf|Wsct~-mLay9&9;4Hv_;*U?W;j)+e;E94{UB zh-^p>gjgvez5+=pg;LUToY&m&Y4;qYC5;qi=P#A4BczKDu0x%UA7zBik zAESmwD+x3_D`8Lnxn;cQMnQ;YqtuH;G!wYi~M`>#~>{$Q5{4 zDF6vjYJ+?nVh@zrfW2wFQxkXD5E2Sqk!6j#)Nop4@Zf$8aD>Kdr+^v2hdoC#M+){` z#aSKf*)UVI>Lce3H=WbHDAiK)AlhI;0IxiU3lqdBN|6P*Ai0V8Ly)wQT|un_!~^@Me=p?h)%7_7Ln| zmt0>f)`S$r27!;*3-wVnTRsW>`J3sr9>Ko(voq zB4LG#O<)!{v<-1H3}fM1*OUus5sEeM){78~}b&M9w0bpb~o1lR@8{zz+s z`m%x`kEmgds$_tcqEa-stwF8fVFF;tePMAv=NSri6PKNpgBxT{}yaJU0wGhc>r2g6jbWyZ%kKBfI>yujTxpjH>7@2XQf-Wr!4zN0z2v?kyVkt;`)B0gx z5)Nn&Fo4uJ!YpSQjxQiY1gR_Kx*!Zo1dW=&qn5f8mJF;67(7Xm1cV1Hsq0R9q&B(n z{XJ6a;Aai5@0dvRH>ll;;NRp*l)+QBj=2YO!&kMQq_?=&?YlnRc+lA)1Bu!ck46TA z2p8ORM1B=nBOiuNmKFk-w?gndcUZmad&^r_x*H~%>(<0>J?E)rRSjOI;~E=3JGy6^ z*Z4;Gy~D4sERVIZTP|l#Yyx8~SVS2WsF4KZ1uOy_)P~|Xb(A?EQUNl7>4HWEcrlhr zUeo2=n68F$M93g;Igq#pkb&aDC=2W{x{L~?iJA*IzK^vU2?C`{xT-Gy?DEBz_Xw9| zf7UJo(p-eJ(Hr6ybh|`w8WBz$^Z+OZz!h|2F^BMSjWGe47YML30z3ppsObn)BU=Sl z2reR;8fi`&f56D0+K619dR&Sp(=^a#>MvtZ*msX)+oMeQ1v~pw+zV$TJC9~=&%7L2Z~&a1`xGJ7*oA*1!n)C+Kzj=ml}W4=q;+s zx(;}*Jge`f&+4t|-s!X!1)kHjzS4WO76pP-PhiDix$0Ys3_plzTx{59Eo+{ysS8@c z)%P?ZZH7=EjGI#$on;K_jo>l2MJKiHj!}38iWC(?VCQjd3iAop8@WwXlh72W?q8Sh zY*m+{l&wR)Zk%aJEO*G(wKE+naFhbDARwwJ>?UTBfX@I%k+N_tIB05|u!*Hd5u6b? zOJD=EaUwd2@R`WEfr@dzaH z6g5yEf@%WPz_T#}=!zqj$dDp~UNS1U?s59-H!eK{z}hXe0j#Ly=oC0(LW@7efv@wY zY^D_rR|g$;Pt{9=2_TYD-i6>+a9|yT6d)23sD~vL()80`7@pR6Qbebn9e|DJZE4W% zqcpQh)^ma99B=mqyLdn)JC=r(aoxI7P%B_r;6=exdQ=VL0tA*gXwiti;U;itt}!-= zB7+OBii$0qG73ozR1RG}CsEVdE^IqDKUb4F9-(IqI6Q0k}}&(zdR>TcPz zRmUE=wK}dag*IEKAe4I0nbwtZComi6yTuRF`%hWE6m>M{6exZVRZ*ZRq{U(5CQ{%; zRJ6gW9H^Nb%ToRe)Z)Q?fYkONr3yQYO3;W%4M}#?Ks4lhw_sV3Fk+W=%dJoNfP*<$ zlnj3f&Y2;T4L;r*l=gU};R^5tvlVrll|-92{AmQI401PTSV7cBqEZ37jWmm!f`qwa zup(hX88}f>*pGl3S)h8P{ZT{)02!K<*HLkg&?X@{=@DwG@BioW)-&m8M65%#V9i&R zSr=S__(M2p3sH;aTn_3Ml^4bm!cnIzTgto*u)15M8Zg&rU(eai5uH8vbuMv^%wyL+ zmJDC@k>?LLO?s9_s$c$U*;GFyqYaCWfRce+bObbP@1i51yL)2M5wPe8C=EkBHSTR# zyXXjLnsRz}YmI+dbObCq0&Yhy)1o8bFpVj5*@?c5IuMI3Isz6Q0i`pvyQICzOVl`U z(GgHuRu&xreccF)j(|l+z=1xESz2+?5is9}u;>U_bOg-&ImSgtz@j7IU^7Bf@3rU% zSabv|Isz6Q0gH}+xkTBbBcN?USabv|Is(==Ys`^?i;jS&G$JfI0u~(ss76EU&CFkj zUvvbZg7MbDq9b6w6JgO2u;>VA{zl!RBVb2gX@1)w*H@cg|1qLPN5G;Zz%M!i799bH oY(!Xe1fVIaqilZB5wPe8Sabx;w;?P#0)8_c0aJ7YyyDsa4X`#FoB#j- diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index afd4118884c03c6d94117426fccfa33f6ed3be70..5dcf7c9e9c1a1642d2bfe16e24d3d642723750a7 100644 GIT binary patch delta 76 zcmeypis$z#o(%^$4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih ejg6Bn%`FX64K12Ka<+fuWCUWS?H@UrySM@NM;Uei delta 76 zcmeypis$z#o(%^$4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa cWaE@XprnaW^GDA1kDQD^%(VR@Cvz7!04WU`rT_o{ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 0468253f0e96da41906d0447ee0312be3d4517b8..a975a41c4df1ec50309d666c7603f06c6aa25424 100644 GIT binary patch delta 62 zcmaDP@knArAfsWirG;r}ady7GiLsfHWulQmiiw4xVXB3xk$G}rnn{vnVzN<^d9tx_ RvZcADVXC3U<|f7mTmWNQ66OE^ delta 62 zcmaDP@knArAfsVoVoIW6WqOXjX=0+GfpKzLl7We(nMJBuYGN{wYo213Y>{YeXq;@E Pk_ePEG1}b3_<#!lhtU)k diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index ff3f9057d96142a60aa075fc92546d45a3941722..28dcd864acbd65e4070268f6aa29c87690a8cc3a 100644 GIT binary patch delta 72 zcmeynf#dH6jtzS_4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih cjg6Bn%`FX64K14Aa<;$aWZeFilW77U0Fq)C^8f$< delta 72 zcmeynf#dH6jtzS_4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa aWaE@XprnaW^IOjLx15aI-*Pfd-~#}_Ss5b$ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index df4e4c56e8ece25d418279179ac28fe497c0863e..e48f707e0604baa85fa6127d0943b6843774133f 100644 GIT binary patch delta 80 zcmaESkooaJ<_(uPZHp}}OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih kjg6Bn%`FX64K4Ij@{^18i}Op1l2a!aGHY$NvRGb77HBZCwZ3q!+H3sWQW6}M^486T diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index c4c6c1261519f9d033bbdf243bb084266bcc3b2b..b34d9aa35b90bc979574c816d5fe56c1ab6ef8a6 100644 GIT binary patch delta 2002 zcmeH{%}SO*6vr75%SBOS1{wMELQx-Q3}FZh*`EMZ1F1dsZo*g>O#VbZXo)g zS$PL81gUoywF;sxp+&3K-9eA$A~!zEHm+tC2hQ&|=ltjEdhfUO-i?hu(XphLI}aXT z0)^5#$s>>uiL^AqW$@Mo=}k~7SYt&JwE45|*mM=V7aWL_Lk-=16sU}}D$6gr*k)`&1cYovP8D!(V$U^%(S&XkP_M&(GG zb>7`%-y2cN;sWDU14$~M7ubo))$$Nb)(8SLWN(m5%|nC`jW%{iOKB|>q7%XikU_ef zJdd6Wi-Dxv(UR8skfn+a6c9!dTt>~KP6jpVw6|6h%C^=}14+5M!p@J0a}SqBIUnJC zxDqwE0D=4>;{Bydopx(=b+~FpYa)^dW1NA+mD4IG^rFrI27~6Wc;ni42cNPv_N;NB zb;t3kd$W_bu3f(|+qAu{UDb`R+8!>OGi;!0QYw$0Gdehbp#66K==6R>_anL=(SQHk PU7`C=5$)Cy{c-#cogyW) delta 2022 zcmeH|J!@1!6owg)Xo?gP6B{v?EktB7=gge>il*_S2pVFeiA56TGaCq67}0={BF`>GE^|zQlr@$|jLw&1#wh7j zw_NapHT(Fy#%@kE8MxSCrz%vDbB~gwc0?}Qs3~TY!es9~=|Ln}%CEfeK^ATa*{UQF z0z|7cx)(Kvk*4GX~H5%zbO*L4k-!HPWm*~vK<^_NmfOaL6mX=F<9_0Gw z^u6WQ_IA5!2?GdTN-6-QInihiAyY|9$|B~2dHX$^O#wNeh8^~dJ^ptiZElsj=Wg6y zonN?e_4;bl0RO3Os%UGuUB6jjlT{l|Hv**U&63~O)yG-jp0tA=4c+(5&y Q{`I%{Phstruzs8P1sVoHk^lez diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index dfc8a6ad25293edd7c8d810ce749b878228da2d0..85a1942a8b4cd0fead51ee27b55c5c0c5054cff9 100644 GIT binary patch delta 64 zcmaFR#`vI(af213VX>u!X=!nGzP^dEnUQ6pkwJ=yg`r`pg{hHwa$=fEl4WADQIdJG Tv2n7cxus#Mp~dEG#;=Y5m5CGH delta 64 zcmaFR#`vI(af213VPaxRqG4rvj=pJPqM?Cta$1ssiKUrEs#$7cGLUPYVwP-?Xl!Vl RY@Ct^lr%BgoXz;v5dgXX6%GIZ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 5fd8e705a6fe3c68cff292ac83d3cac52e99f33f..a19f88e8798c4089e9b7fdd158d04fe5e0414a98 100644 GIT binary patch delta 68 zcmbRFgJtFqmJM4t4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih Yjg6Bn%`FX64K13Va&CXh$!KB(03Xp6QX?DzNB> z3TmSZ-<9d6poQRU`fMSzlr|=|kXE*oR&HHH=bLwwZ%pSx>ksCEnR)N~o_o%Do^zh_ zS3f*YKNrUM5sT{Bk$2wP4N?p11dD*2Cse`&m%&>Xgf~ITV2$O8;}TmA*>;+ zC9ESnKzNYw5Me!GaOPpcBZP6n2Es_^dV}uZzYohwRc&dNt)$Tv*>m;nk1SthHAat}Tq7R;B zg#gCd_G6_}{cje!A3eKO;>_Wrdl;KzY*)>NWyof^I;E?L=IPVjz4v+Ee0I8feT&3r z?tZa3;kwh!sqedQ-S6p+=G^Puu?Eg`Pu%m!wKLrp?)9KA&UU{#Swj?o2L>9I11-F@ zh}K$1Wi?4#*Ct;&)&E#lYo@21@$^zei&=vurXYA16PJ=1)Sw9o1GL=C=fwdQdZh<7AH&!!|$tUClPT=eyfxrkB!*Nk9T-xhLW?6};ud11}|aOnJoy z=}@P@3P%}H{ShoWnD(R!=F?ra* zG#EuRftVwS|IR0$1KAxPjxTQMM}MKIjb z)DFv9xQ%po#UPqU#v#VrJt{5L0jd70!$QmM(qW0XD|J{ZMm!iDA5Ix0`F~_CEJP|Vop=b+aHZT*0w~6&a z2wXwPG=zx`wDS|ElLmcuL78T8k~ZD%-&LPldnpkwG09)R93Q8Pt(MUCkJe4C=_BjtuI^pswPKM+S8@tN*_Z>UjTL Ix3_k~zv}PNA^-pY delta 6034 zcmeHLO>9+F5Kf^g)q*H3h`ih0G)PP&<^0U~nWE8!Xh6fvo?l{uiHZ1w2^zsD ziEePgT_LPYT#&$qiwhE$hK&+j5LdV)Ze;7iIIr*4v`yjc&1?E4ukX&gbLY(W&3vzy zZhm};ey@&k=c41sj~v~joa0P}>=~f8NhcTRPZM>pPI4J!baWBKsXJp|-5DDptRt)^ zj1nFoJV(6p>A%8>SQsh{rUCYKO1VGk0wrcv|fX8=#}u0jWCXT zr$y}F?9_B2s6D;VJO2Dukh_i^+soJ-W4mk46{4Coa8_3n%`@kEFWlpL^ZB{n?JXdm zUH!r4jO)!bXTR$mx!2Vl&BZr+V-1||omn&F*7@GcYh7r?h2EFn)&d1MgFK@(kRwOo zG<sKp7(!Yd=|xYCnGfVB=>(#;0T6iC%5db=I zKp>)pq%g*mgVEOH=Fq#g$m@iy)B*s4S-rTjeYfGO2#YsbeuN#$Gv5{Wem} z-rQKI4$YU6&+M*eK6FPvNHcRaJ)&i7mYq03Z*mot)Q*D*2---;1e(Z1&eoVDu`7-x z49plCqA`%1!2Uf*D!{e!!pGMAQk@y89ZSmk6p?v=sHiv==!gV5Gz=JP=?s1xsY^+l zO_NisF6C@~__LaA_RROTJvFmfiw3D|LL)gfOZaTFOlaxsWm44i_U`5C&}c0~;1&Y) zlB#yV5Uq?h@PN@cnR8c)Q8}52J{gX{rAN)Ajx;ZbTS-yHgHj4P)u5D8&Svk;>S>U4 zYsT!X#CMMEd4FM0RE&WIhs0qffe1$3F*LXssZa|{jk{7!v~QoTo*OL=hCZt%n$3S# zg?gxEh!?!b7V z9B}VZDhSDFo|FuN<6`VUi2DA?c_+j|@_P%B1{5tOh%5s5m^~>?XU;O$-UyL9A!?dN z-b)@bO7Q5c%pry-A$#wmOdWgsZ!`MQCp> znl4gjg`Ne_qQAov6%moY$`Dk)#qomB%%qqQ1 zh*k;?8HJ_wNBg+HP>l-4YvmHxLUau(uH7|7SnAg*Sru5jGP-b%d`W~al`0&FPaGK(}=&EOoSEh)%_ghW-OW25;g1T74vOz=s;U~Ubzp%0FxtkYVH z1f)Rkh_iy!Yck!~+GQdvC2wx5pE~eHA-7vDLb%{&`*V*5uUoxfNzp%qq1^g(-oeXCRAV z9DqWVa2A9&k+|mU^~IS_S5=j4mDJk`Q;@zerRhMDlLUjn{g+ zn%h^ag`!F9W>d)}E(&dEQHK_F4O=|4sP{MGLyJ1Js6&hT-}l7Q7ps+cSH|77vqK>y0dsFK-{tFLM&FBCC diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index d0d5872c4d29262cae905e7686928008f765df5a..964ffaf58e9b3c1d631ac7ea12b4bafc1f34dfe6 100644 GIT binary patch delta 64 zcmaEPnfc{q<_+sO4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih Ujg6Bn%`FX64J|g`=j3_-0Nf-MIsgCw delta 64 zcmaEPnfc{q<_+sO4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa RWaE@Xprnb>=KGvn4*&qF7HR+h diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index cabfc7f00bb43802ea464c36b85a8e87f8f0e6ce..14cd5b5da435778facbf355960b8fbb408d52f13 100644 GIT binary patch delta 618 zcmX^7jP>v{)(tB-4T~);OiPQi^Yu-P&5SG)jSNyuEDQ}(EliEflM~ZSk}MOGjgrih zjg6Bn%`FX64J|g`sJFyHHOL=&lJ(ERzj@%04uT^Cjjbr{=_$6eZ>rr==E6-qmPE z9g{ZSZThA?+2Dx4WUlqvlP|Bc+3a}a4C7|8jb|A#Mb)+jGfgho%{%%2VbRI`+eM(X xG(^wpoqrf{%1&OrQ*875y*x}nQw1kKIjjuSs}Iz7mT|N8q0Jz>kVTo+0|2CZ@O}UQ delta 686 zcmX^7jP>v{)(tB-4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa zWaE@Xprnb>=9`=@1(Q{)?8RA5|$& z53pernQUIIFnM;B*5vSNH!^fxuQ@llsZNqFBQY;MH733wGf!PdL4EoHLq_Sz59{S8 zm)6Tllw}qt#>D3r#l+_(7MG+JB_|f8fK@e^GD@?6Sqn`W#YI4@)SQ_3lA^@C z;{XCY zC*N;Sn7p7#0vx!^K-W)x-zYx0wMlxiQj-Kf#3u-k1U4y8-rZW<(NUS`PpZwFUnG diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index d1ec3833776fcf5d3a1d1920d0e3abb58222af17..77d996b41bc1c117ebc7ee63fb16c3da38849e60 100644 GIT binary patch delta 1625 zcmeH{%_~Gv7{=!+i@7#77DRJ4%3|(2=RF^D?zxGKCUWz!Fequvj8Rey!_vY+Qg$aP z8?jcD_!}tY4^XnO_q9^UwPBPg!;*J(>U}y-?|FXjxjwdckL`n#Fc!5d7mL%gF~Q?Z zXBeFjE@Ix5Oyx3@BC9hwmQ^{IZh^(HLZ_7^vkmN;;3 zYP+87cROaz6Fbcq2Xq+-1RW(DBrpl6qC_%ar~p~e)8?{!q^3j}*qs3ny1j{5kpwk0 zLnw$Zy*X)lQ<}o4GETDg{|%C1v(z(ft#0nzTd}%wAf!o2yk!}%KSbu%zp6C;q|trZ zZz3>0IQ9vFJ3nP2spU#BpaVmHcl3VKG?cDy41R%fvHxcOw};m%1>mRqzn4C(H2A`3 j`=6cMJ-isl?TtDs5#Cs+vO;fVZeAKz=B%T+s)wyt+~|tX delta 1702 zcmZ3qjqAxat_>$R4HFYn5)CWUbM#FU6AcZFlhcw6Of1bTQq58mlYw0G6tiTDL}Nqa zWaE@Xprnb>=AWE@P35gw85nE|ic;;kbajmkjEr>+4Rj676pRe4Obo3IOeP1qMk$+F z>KU3E=oy&+X)_ZY1tSv!11nRbR0Au+L<2)BD@#lB$^8x{yeR4>D~9iwyv~Jfa<`+D zoPk*}7Z;}SrV1K{W_lKrFZ%r9g4=02*)eXRx~Y+#5m3&^&{)sVTt~rJ&s5LIQqRmx zN5RxY&&b$N&(O$1&(wVK{m2Mj6t$B-I-k)qw9qs6bXqdpmq=ab_>+}zHjC!KDl1J#|{{dXYCJ{cABw{joUP$QV zy@6dMrw`Z3>w}YsP9tU^v1n;zUdT04(+Gb+*l1Wl^9z4~|McI1jGU8yg@#G014|HG ziG%#I<0{E%g0eDW@8thcJfx`_ **automatically detects data and label issues in your ML datasets.** diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index 36cddb24d..93258f865 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 6a5ab5c38..dfca22bc3 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index bb220f083..0719faf85 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index db559723b..1d9cc9835 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 37c399ef8..630e369b4 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 712c0de25..1ece9d09b 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index e48fcc0b9..df98d3852 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 3e22ed6cf..18876bb3f 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 2789f236d..45dccef10 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 27168faa9..0ae6f1067 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 1b8eb1b90..374c6af51 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 0b7ed31ec..0977692bb 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index f415d2523..abbc41a62 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index ba8cf1ae9..8bb427574 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 214f37ab0..1b7179fe4 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 85d810a9b..673d2e530 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/index.html b/master/index.html index 88d5927db..b8539f171 100644 --- a/master/index.html +++ b/master/index.html @@ -520,8 +520,8 @@ - diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index d458fbd63..b3ae138cc 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:51.748225Z", - "iopub.status.busy": "2023-10-16T20:22:51.747674Z", - "iopub.status.idle": "2023-10-16T20:22:56.934414Z", - "shell.execute_reply": "2023-10-16T20:22:56.933296Z" + "iopub.execute_input": "2023-10-17T19:42:38.711519Z", + "iopub.status.busy": "2023-10-17T19:42:38.711060Z", + "iopub.status.idle": "2023-10-17T19:42:42.707828Z", + "shell.execute_reply": "2023-10-17T19:42:42.707108Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.939089Z", - "iopub.status.busy": "2023-10-16T20:22:56.938265Z", - "iopub.status.idle": "2023-10-16T20:22:56.942811Z", - "shell.execute_reply": "2023-10-16T20:22:56.942153Z" + "iopub.execute_input": "2023-10-17T19:42:42.711965Z", + "iopub.status.busy": "2023-10-17T19:42:42.711245Z", + "iopub.status.idle": "2023-10-17T19:42:42.716604Z", + "shell.execute_reply": "2023-10-17T19:42:42.715769Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.946700Z", - "iopub.status.busy": "2023-10-16T20:22:56.946214Z", - "iopub.status.idle": "2023-10-16T20:22:56.953557Z", - "shell.execute_reply": "2023-10-16T20:22:56.952762Z" + "iopub.execute_input": "2023-10-17T19:42:42.719684Z", + "iopub.status.busy": "2023-10-17T19:42:42.719294Z", + "iopub.status.idle": "2023-10-17T19:42:42.725228Z", + "shell.execute_reply": "2023-10-17T19:42:42.724567Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:56.957414Z", - "iopub.status.busy": "2023-10-16T20:22:56.957121Z", - "iopub.status.idle": "2023-10-16T20:22:59.063903Z", - "shell.execute_reply": "2023-10-16T20:22:59.062221Z" + "iopub.execute_input": "2023-10-17T19:42:42.728461Z", + "iopub.status.busy": "2023-10-17T19:42:42.728017Z", + "iopub.status.idle": "2023-10-17T19:42:44.715201Z", + "shell.execute_reply": "2023-10-17T19:42:44.714188Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.068825Z", - "iopub.status.busy": "2023-10-16T20:22:59.068241Z", - "iopub.status.idle": "2023-10-16T20:22:59.094784Z", - "shell.execute_reply": "2023-10-16T20:22:59.093734Z" + "iopub.execute_input": "2023-10-17T19:42:44.719459Z", + "iopub.status.busy": "2023-10-17T19:42:44.718834Z", + "iopub.status.idle": "2023-10-17T19:42:44.738446Z", + "shell.execute_reply": "2023-10-17T19:42:44.733964Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.144890Z", - "iopub.status.busy": "2023-10-16T20:22:59.143920Z", - "iopub.status.idle": "2023-10-16T20:22:59.152756Z", - "shell.execute_reply": "2023-10-16T20:22:59.151840Z" + "iopub.execute_input": "2023-10-17T19:42:44.773305Z", + "iopub.status.busy": "2023-10-17T19:42:44.772596Z", + "iopub.status.idle": "2023-10-17T19:42:44.779592Z", + "shell.execute_reply": "2023-10-17T19:42:44.778966Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:22:59.157022Z", - "iopub.status.busy": "2023-10-16T20:22:59.156239Z", - "iopub.status.idle": "2023-10-16T20:23:00.314108Z", - "shell.execute_reply": "2023-10-16T20:23:00.312905Z" + "iopub.execute_input": "2023-10-17T19:42:44.782621Z", + "iopub.status.busy": "2023-10-17T19:42:44.782017Z", + "iopub.status.idle": "2023-10-17T19:42:45.647626Z", + "shell.execute_reply": "2023-10-17T19:42:45.646847Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:00.318368Z", - "iopub.status.busy": "2023-10-16T20:23:00.317874Z", - "iopub.status.idle": "2023-10-16T20:23:02.234425Z", - "shell.execute_reply": "2023-10-16T20:23:02.233389Z" + "iopub.execute_input": "2023-10-17T19:42:45.650915Z", + "iopub.status.busy": "2023-10-17T19:42:45.650523Z", + "iopub.status.idle": "2023-10-17T19:42:47.301821Z", + "shell.execute_reply": "2023-10-17T19:42:47.301109Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.241316Z", - "iopub.status.busy": "2023-10-16T20:23:02.239450Z", - "iopub.status.idle": "2023-10-16T20:23:02.290418Z", - "shell.execute_reply": "2023-10-16T20:23:02.289177Z" + "iopub.execute_input": "2023-10-17T19:42:47.305488Z", + "iopub.status.busy": "2023-10-17T19:42:47.305031Z", + "iopub.status.idle": "2023-10-17T19:42:47.342788Z", + "shell.execute_reply": "2023-10-17T19:42:47.342147Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.296635Z", - "iopub.status.busy": "2023-10-16T20:23:02.295698Z", - "iopub.status.idle": "2023-10-16T20:23:02.302555Z", - "shell.execute_reply": "2023-10-16T20:23:02.301424Z" + "iopub.execute_input": "2023-10-17T19:42:47.345731Z", + "iopub.status.busy": "2023-10-17T19:42:47.345481Z", + "iopub.status.idle": "2023-10-17T19:42:47.349208Z", + "shell.execute_reply": "2023-10-17T19:42:47.348520Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:02.306839Z", - "iopub.status.busy": "2023-10-16T20:23:02.306025Z", - "iopub.status.idle": "2023-10-16T20:23:19.424314Z", - "shell.execute_reply": "2023-10-16T20:23:19.423502Z" + "iopub.execute_input": "2023-10-17T19:42:47.352093Z", + "iopub.status.busy": "2023-10-17T19:42:47.351659Z", + "iopub.status.idle": "2023-10-17T19:43:01.172081Z", + "shell.execute_reply": "2023-10-17T19:43:01.171455Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:19.429156Z", - "iopub.status.busy": "2023-10-16T20:23:19.428232Z", - "iopub.status.idle": "2023-10-16T20:23:19.434069Z", - "shell.execute_reply": "2023-10-16T20:23:19.433361Z" + "iopub.execute_input": "2023-10-17T19:43:01.175986Z", + "iopub.status.busy": "2023-10-17T19:43:01.175041Z", + "iopub.status.idle": "2023-10-17T19:43:01.180256Z", + "shell.execute_reply": "2023-10-17T19:43:01.179543Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:19.437818Z", - "iopub.status.busy": "2023-10-16T20:23:19.437237Z", - "iopub.status.idle": "2023-10-16T20:23:27.579902Z", - "shell.execute_reply": "2023-10-16T20:23:27.579089Z" + "iopub.execute_input": "2023-10-17T19:43:01.183980Z", + "iopub.status.busy": "2023-10-17T19:43:01.183722Z", + "iopub.status.idle": "2023-10-17T19:43:07.883304Z", + "shell.execute_reply": "2023-10-17T19:43:07.882656Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.584554Z", - "iopub.status.busy": "2023-10-16T20:23:27.583618Z", - "iopub.status.idle": "2023-10-16T20:23:27.591520Z", - "shell.execute_reply": "2023-10-16T20:23:27.590810Z" + "iopub.execute_input": "2023-10-17T19:43:07.887143Z", + "iopub.status.busy": "2023-10-17T19:43:07.886433Z", + "iopub.status.idle": "2023-10-17T19:43:07.891522Z", + "shell.execute_reply": "2023-10-17T19:43:07.890997Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.597295Z", - "iopub.status.busy": "2023-10-16T20:23:27.595838Z", - "iopub.status.idle": "2023-10-16T20:23:27.728288Z", - "shell.execute_reply": "2023-10-16T20:23:27.727335Z" + "iopub.execute_input": "2023-10-17T19:43:07.894450Z", + "iopub.status.busy": "2023-10-17T19:43:07.894014Z", + "iopub.status.idle": "2023-10-17T19:43:07.997262Z", + "shell.execute_reply": "2023-10-17T19:43:07.996402Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.732853Z", - "iopub.status.busy": "2023-10-16T20:23:27.732181Z", - "iopub.status.idle": "2023-10-16T20:23:27.749192Z", - "shell.execute_reply": "2023-10-16T20:23:27.748240Z" + "iopub.execute_input": "2023-10-17T19:43:08.000836Z", + "iopub.status.busy": "2023-10-17T19:43:08.000230Z", + "iopub.status.idle": "2023-10-17T19:43:08.012711Z", + "shell.execute_reply": "2023-10-17T19:43:08.012014Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.753492Z", - "iopub.status.busy": "2023-10-16T20:23:27.752717Z", - "iopub.status.idle": "2023-10-16T20:23:27.765903Z", - "shell.execute_reply": "2023-10-16T20:23:27.764942Z" + "iopub.execute_input": "2023-10-17T19:43:08.015950Z", + "iopub.status.busy": "2023-10-17T19:43:08.015367Z", + "iopub.status.idle": "2023-10-17T19:43:08.025386Z", + "shell.execute_reply": "2023-10-17T19:43:08.024662Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.770566Z", - "iopub.status.busy": "2023-10-16T20:23:27.769942Z", - "iopub.status.idle": "2023-10-16T20:23:27.778849Z", - "shell.execute_reply": "2023-10-16T20:23:27.778007Z" + "iopub.execute_input": "2023-10-17T19:43:08.031126Z", + "iopub.status.busy": "2023-10-17T19:43:08.030641Z", + "iopub.status.idle": "2023-10-17T19:43:08.036694Z", + "shell.execute_reply": "2023-10-17T19:43:08.035971Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.782921Z", - "iopub.status.busy": "2023-10-16T20:23:27.782342Z", - "iopub.status.idle": "2023-10-16T20:23:27.791430Z", - "shell.execute_reply": "2023-10-16T20:23:27.790590Z" + "iopub.execute_input": "2023-10-17T19:43:08.046931Z", + "iopub.status.busy": "2023-10-17T19:43:08.046636Z", + "iopub.status.idle": "2023-10-17T19:43:08.055963Z", + "shell.execute_reply": "2023-10-17T19:43:08.055330Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.796915Z", - "iopub.status.busy": "2023-10-16T20:23:27.796096Z", - "iopub.status.idle": "2023-10-16T20:23:27.984793Z", - "shell.execute_reply": "2023-10-16T20:23:27.983939Z" + "iopub.execute_input": "2023-10-17T19:43:08.059290Z", + "iopub.status.busy": "2023-10-17T19:43:08.058800Z", + "iopub.status.idle": "2023-10-17T19:43:08.207067Z", + "shell.execute_reply": "2023-10-17T19:43:08.206331Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:27.989299Z", - "iopub.status.busy": "2023-10-16T20:23:27.988642Z", - "iopub.status.idle": "2023-10-16T20:23:28.166155Z", - "shell.execute_reply": "2023-10-16T20:23:28.165297Z" + "iopub.execute_input": "2023-10-17T19:43:08.210976Z", + "iopub.status.busy": "2023-10-17T19:43:08.210525Z", + "iopub.status.idle": "2023-10-17T19:43:08.347555Z", + "shell.execute_reply": "2023-10-17T19:43:08.346831Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.179798Z", - "iopub.status.busy": "2023-10-16T20:23:28.178707Z", - "iopub.status.idle": "2023-10-16T20:23:28.360680Z", - "shell.execute_reply": "2023-10-16T20:23:28.359420Z" + "iopub.execute_input": "2023-10-17T19:43:08.351325Z", + "iopub.status.busy": "2023-10-17T19:43:08.350851Z", + "iopub.status.idle": "2023-10-17T19:43:08.490126Z", + "shell.execute_reply": "2023-10-17T19:43:08.489392Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.364949Z", - "iopub.status.busy": "2023-10-16T20:23:28.364452Z", - "iopub.status.idle": "2023-10-16T20:23:28.540862Z", - "shell.execute_reply": "2023-10-16T20:23:28.540025Z" + "iopub.execute_input": "2023-10-17T19:43:08.493928Z", + "iopub.status.busy": "2023-10-17T19:43:08.493450Z", + "iopub.status.idle": "2023-10-17T19:43:08.629414Z", + "shell.execute_reply": "2023-10-17T19:43:08.628704Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:28.545220Z", - "iopub.status.busy": "2023-10-16T20:23:28.544592Z", - "iopub.status.idle": "2023-10-16T20:23:28.550924Z", - "shell.execute_reply": "2023-10-16T20:23:28.550088Z" + "iopub.execute_input": "2023-10-17T19:43:08.633315Z", + "iopub.status.busy": "2023-10-17T19:43:08.632841Z", + "iopub.status.idle": "2023-10-17T19:43:08.637247Z", + "shell.execute_reply": "2023-10-17T19:43:08.636586Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,88 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0027c119b27346b5a9122908121790de": { + "03b6e9cad1f841e69c4598f2d484ac3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a35437942bf648f0a5fa6d6f23bbd710", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d76c6731bd3a4e4786045ba2c8265abc", + "value": 16887676.0 + } + }, + "04f9656a8e914272898f673b9dead023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba5ed3d97f154beea1f5f4fbf8b0005f", + "placeholder": "​", + "style": "IPY_MODEL_e9325184194e4b88b52e54c0167ff1aa", + "value": " 129k/129k [00:00<00:00, 4.33MB/s]" + } + }, + "0a41cc5549114dadb20a04fcc73dc5f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d7613fe0642492dbc32b2715f27b36a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5678a0453d640e08d331c4e53e509cb", + "placeholder": "​", + "style": "IPY_MODEL_d0f5a15413774243936dce7eaadd5e25", + "value": " 15.9M/15.9M [00:00<00:00, 77.4MB/s]" + } + }, + "14a10514e3b54360b215831842f0f1e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,7 +1510,23 @@ "width": null } }, - "01b99be9202344afa2fca7b9097b4f6a": { + "17433ef373ac4b23bccf79e7c10147ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "18d4b8273b5845f3b6936211ed23ceb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1481,50 +1578,7 @@ "width": null } }, - "053f03c0670d4b3d89756894ea44f71e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01b99be9202344afa2fca7b9097b4f6a", - "placeholder": "​", - "style": "IPY_MODEL_b614a6ebaef9450f81881ef735d0f145", - "value": " 16.9M/16.9M [00:00<00:00, 62.9MB/s]" - } - }, - "1d017622fc604d82bf83ce808c23bf91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f1a8c6c6afc4c83b57b8d29f3d34403", - "IPY_MODEL_3b888c35c73a47419808620d0c82ae82", - "IPY_MODEL_96a776fbac844290bebd662cf1ee6fba" - ], - "layout": "IPY_MODEL_6a51e6163af54ca7ac1ea2677eb66bec" - } - }, - "1d091ab6b62046dc8d93506bfa9e2878": { + "1b727cd149574d658f0a75195b91073c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1576,7 +1630,109 @@ "width": null } }, - "20bf7e64f4d141779c20a29d383370e9": { + "1bc078cf3a604086ace5370dbca46fed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20d5911c0b484656968eaadecdeedb64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be289196036c4019b7109c16fad6fa90", + "IPY_MODEL_87dc2e870b2d49d6adde851a273d92c7", + "IPY_MODEL_04f9656a8e914272898f673b9dead023" + ], + "layout": "IPY_MODEL_f88dac1d3efe4714945a5927a2a827b5" + } + }, + "2d852b5509014b099bd6c1cbefe71662": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b2284a1a0f247e38a1579b28f1e2860", + "placeholder": "​", + "style": "IPY_MODEL_0a41cc5549114dadb20a04fcc73dc5f5", + "value": "Downloading: 100%" + } + }, + "348ef23e945542b8b16068eb3f736267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4659666580ab4a958d240efda4bcb3e3", + "IPY_MODEL_60f31913cc714deaa44c6711fc150f7f", + "IPY_MODEL_0d7613fe0642492dbc32b2715f27b36a" + ], + "layout": "IPY_MODEL_14a10514e3b54360b215831842f0f1e1" + } + }, + "35a6f52e1d2c486e99b1bb3e86b2acda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3fbec498294468ca4d9f1e3ef036b4f", + "placeholder": "​", + "style": "IPY_MODEL_484476708a6849aa8f3057f19eff95e8", + "value": " 2.04k/2.04k [00:00<00:00, 296kB/s]" + } + }, + "3d58735d2326416b9bb69389ebaca261": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1591,31 +1747,28 @@ "description_width": "" } }, - "27c01147d6204293aa04429cb37a7591": { + "4659666580ab4a958d240efda4bcb3e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0027c119b27346b5a9122908121790de", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e146121261044c668db0425f7bb45662", - "value": 16887676.0 + "layout": "IPY_MODEL_18d4b8273b5845f3b6936211ed23ceb5", + "placeholder": "​", + "style": "IPY_MODEL_73a39d745ef445319dee295558549b21", + "value": "Downloading: 100%" } }, - "2a045c8b730544fe94dd1ae09e787ebe": { + "484476708a6849aa8f3057f19eff95e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1630,7 +1783,81 @@ "description_width": "" } }, - "2a327dc5aa514ff89c5980210fd0b7e0": { + "4dd6d80d303d479d87fd948585644ed5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d852b5509014b099bd6c1cbefe71662", + "IPY_MODEL_744e829c5b4146109bebd02c36730ab5", + "IPY_MODEL_5f03ef3fbf3c47f18518dfe1843dfbaf" + ], + "layout": "IPY_MODEL_d9186b48d0154d2a84fbe302ae7f4014" + } + }, + "5d83576d3dbb4ae390b923a35778eda2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f03ef3fbf3c47f18518dfe1843dfbaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1645,13 +1872,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2efd27290bd49fda4a695050c09d651", + "layout": "IPY_MODEL_89c37b88ff1d4db885c172e1a5b39d41", "placeholder": "​", - "style": "IPY_MODEL_2a045c8b730544fe94dd1ae09e787ebe", - "value": "Downloading: 100%" + "style": "IPY_MODEL_d867d0f2f79740c3beec1fa772368e35", + "value": " 3.20k/3.20k [00:00<00:00, 478kB/s]" } }, - "2f1366cc0649404d9bac4348ccd8f762": { + "5fe9972d78d845609c798e0a6ca2a1dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1703,7 +1930,46 @@ "width": null } }, - "2f1a8c6c6afc4c83b57b8d29f3d34403": { + "60f31913cc714deaa44c6711fc150f7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db62335881b845638bc47c8692113ce7", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_17433ef373ac4b23bccf79e7c10147ae", + "value": 15856877.0 + } + }, + "63cfe10fa42e4c0da9c587f163e3ccef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c66f59e75c4428eaf6b6f533acf4a80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1718,37 +1984,74 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e08f6767ee984da9a662aba844df0773", + "layout": "IPY_MODEL_5fe9972d78d845609c798e0a6ca2a1dc", "placeholder": "​", - "style": "IPY_MODEL_6fb68318eb4a41a78b0c5b027c56b14a", + "style": "IPY_MODEL_aca4676e13ae4a0584a23c89e5e21eec", "value": "Downloading: 100%" } }, - "3b888c35c73a47419808620d0c82ae82": { + "73a39d745ef445319dee295558549b21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "744e829c5b4146109bebd02c36730ab5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8159405dc854bc2b1226dadf5fd49ca", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1bc078cf3a604086ace5370dbca46fed", + "value": 3201.0 + } + }, + "770289629b03453cb0bd252b5e0a452a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1d091ab6b62046dc8d93506bfa9e2878", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83a6368700a64f529740e6340dde33bc", - "value": 15856877.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b84be24872bb4ee29633cc4fb8ae5ca9", + "IPY_MODEL_03b6e9cad1f841e69c4598f2d484ac3f", + "IPY_MODEL_b0c4a39f621c49988cbf66b1a6f78124" + ], + "layout": "IPY_MODEL_1b727cd149574d658f0a75195b91073c" } }, - "4ccbde05f5884eed94b1402492ccb002": { + "87dc2e870b2d49d6adde851a273d92c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1764,15 +2067,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c48331fcf8384ca6859bca48ab3434ec", - "max": 2041.0, + "layout": "IPY_MODEL_ed3246b994084945bebe55e52f547779", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6185d3bc54c94812a3cbc663dfc89b28", - "value": 2041.0 + "style": "IPY_MODEL_d23fe058d20a49f49e061a79298e4795", + "value": 128619.0 } }, - "542668a8e07a42289a45b395299549f9": { + "89c37b88ff1d4db885c172e1a5b39d41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1824,44 +2127,7 @@ "width": null } }, - "5b0ae73079c040ceae91c08c51346bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_542668a8e07a42289a45b395299549f9", - "placeholder": "​", - "style": "IPY_MODEL_824119667e2c424d979efa77fd425333", - "value": " 129k/129k [00:00<00:00, 8.24MB/s]" - } - }, - "6185d3bc54c94812a3cbc663dfc89b28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "675a8e3fbcfe45c5b334630cf0ff9a3a": { + "8b2284a1a0f247e38a1579b28f1e2860": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1913,7 +2179,22 @@ "width": null } }, - "6a51e6163af54ca7ac1ea2677eb66bec": { + "8d2e35d73cbb41d19d77ea523b8ef719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a35437942bf648f0a5fa6d6f23bbd710": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1965,7 +2246,7 @@ "width": null } }, - "6fb68318eb4a41a78b0c5b027c56b14a": { + "aca4676e13ae4a0584a23c89e5e21eec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1980,7 +2261,28 @@ "description_width": "" } }, - "7713457012f34cfdaeb25c9898669943": { + "b0c4a39f621c49988cbf66b1a6f78124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b875d884823e4d82b383030822b22cb3", + "placeholder": "​", + "style": "IPY_MODEL_63cfe10fa42e4c0da9c587f163e3ccef", + "value": " 16.9M/16.9M [00:00<00:00, 74.4MB/s]" + } + }, + "b3fbec498294468ca4d9f1e3ef036b4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2032,53 +2334,7 @@ "width": null } }, - "824119667e2c424d979efa77fd425333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "83a6368700a64f529740e6340dde33bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8508b05deaed4a69b3878b8efdedd135": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "892e0cfb5b09428f870d64f014530c00": { + "b5678a0453d640e08d331c4e53e509cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2130,45 +2386,28 @@ "width": null } }, - "8c22933a4383477a8b8bfbd64da7ccdb": { + "b84be24872bb4ee29633cc4fb8ae5ca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7561f0c498841e985c64fefed22720e", - "IPY_MODEL_4ccbde05f5884eed94b1402492ccb002", - "IPY_MODEL_ba25e66cff5f431c9fa1a8bebbe8f1fc" - ], - "layout": "IPY_MODEL_2f1366cc0649404d9bac4348ccd8f762" - } - }, - "8d1fc7fbbc2f414b83f3506c458a49a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec6a872fbce848bbbba4963320eafa03", + "placeholder": "​", + "style": "IPY_MODEL_8d2e35d73cbb41d19d77ea523b8ef719", + "value": "Downloading: 100%" } }, - "9423006e795a4e30a15e78bc64993dbf": { + "b875d884823e4d82b383030822b22cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2220,29 +2459,7 @@ "width": null } }, - "959119ababa045aa99d2630800ccf261": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e9881d0ecf84c7eb298547526b8b457", - "IPY_MODEL_bdf9fe688faf4e408dc9c7482b2f3e9d", - "IPY_MODEL_d3e6d15adb75469f97d02f0a96dd4924" - ], - "layout": "IPY_MODEL_7713457012f34cfdaeb25c9898669943" - } - }, - "965bebb5ed6a4acf80128eb6781ebb9d": { + "ba5ed3d97f154beea1f5f4fbf8b0005f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2294,7 +2511,23 @@ "width": null } }, - "96a776fbac844290bebd662cf1ee6fba": { + "bcba2c73708e4672982371ec07148dc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be289196036c4019b7109c16fad6fa90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2309,13 +2542,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9423006e795a4e30a15e78bc64993dbf", + "layout": "IPY_MODEL_ffdbeccf1d5a4422922702d8dde89c7e", "placeholder": "​", - "style": "IPY_MODEL_fbcf72fb7ad74787885ce5330c556176", - "value": " 15.9M/15.9M [00:00<00:00, 70.9MB/s]" + "style": "IPY_MODEL_3d58735d2326416b9bb69389ebaca261", + "value": "Downloading: 100%" } }, - "98b46cc9bfbb4472a7316e2cf1457463": { + "d0f5a15413774243936dce7eaadd5e25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2330,80 +2563,54 @@ "description_width": "" } }, - "9e9881d0ecf84c7eb298547526b8b457": { + "d23fe058d20a49f49e061a79298e4795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dfa39c12fab143cf9f284fade365bd44", - "placeholder": "​", - "style": "IPY_MODEL_f0d7733f4a2c4a759537115739a8ee72", - "value": "Downloading: 100%" - } - }, - "9ebfd11429364a3c8b339d347809ff59": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d76c6731bd3a4e4786045ba2c8265abc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d867d0f2f79740c3beec1fa772368e35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a17976dbcb9648ce9cd9c5422a8bf851": { + "d9186b48d0154d2a84fbe302ae7f4014": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2455,7 +2662,7 @@ "width": null } }, - "a2efd27290bd49fda4a695050c09d651": { + "db62335881b845638bc47c8692113ce7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2507,64 +2714,68 @@ "width": null } }, - "a853924c9a474d1fb4629c67b40ac74b": { + "e07577453bb046e28404149d75e7e0b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9ebfd11429364a3c8b339d347809ff59", - "placeholder": "​", - "style": "IPY_MODEL_98b46cc9bfbb4472a7316e2cf1457463", - "value": "Downloading: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c66f59e75c4428eaf6b6f533acf4a80", + "IPY_MODEL_e20dccb2d7f844f485ab4eac6125f270", + "IPY_MODEL_35a6f52e1d2c486e99b1bb3e86b2acda" + ], + "layout": "IPY_MODEL_5d83576d3dbb4ae390b923a35778eda2" } }, - "b614a6ebaef9450f81881ef735d0f145": { + "e20dccb2d7f844f485ab4eac6125f270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edf5d4ff54c94b198e147394a7df6d4b", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcba2c73708e4672982371ec07148dc2", + "value": 2041.0 } }, - "ba25e66cff5f431c9fa1a8bebbe8f1fc": { + "e9325184194e4b88b52e54c0167ff1aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_675a8e3fbcfe45c5b334630cf0ff9a3a", - "placeholder": "​", - "style": "IPY_MODEL_8508b05deaed4a69b3878b8efdedd135", - "value": " 2.04k/2.04k [00:00<00:00, 214kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bb26aed67e9046b296136b89d3415f4b": { + "ec6a872fbce848bbbba4963320eafa03": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2616,55 +2827,7 @@ "width": null } }, - "bc9b97a0e45a424daffad8fe42566be2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_965bebb5ed6a4acf80128eb6781ebb9d", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fcbb944e88f14262a1f9ac5e11df8a87", - "value": 128619.0 - } - }, - "bdf9fe688faf4e408dc9c7482b2f3e9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eb0b8b8f07314b5286dbba758ec095a8", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d1fc7fbbc2f414b83f3506c458a49a7", - "value": 3201.0 - } - }, - "c48331fcf8384ca6859bca48ab3434ec": { + "ed3246b994084945bebe55e52f547779": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2716,65 +2879,7 @@ "width": null } }, - "c5479135914d4952a413613ce0fb3e97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "caa8308edaea489da086533325e26bf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a853924c9a474d1fb4629c67b40ac74b", - "IPY_MODEL_bc9b97a0e45a424daffad8fe42566be2", - "IPY_MODEL_5b0ae73079c040ceae91c08c51346bc6" - ], - "layout": "IPY_MODEL_892e0cfb5b09428f870d64f014530c00" - } - }, - "d3e6d15adb75469f97d02f0a96dd4924": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a17976dbcb9648ce9cd9c5422a8bf851", - "placeholder": "​", - "style": "IPY_MODEL_c5479135914d4952a413613ce0fb3e97", - "value": " 3.20k/3.20k [00:00<00:00, 352kB/s]" - } - }, - "dfa39c12fab143cf9f284fade365bd44": { + "edf5d4ff54c94b198e147394a7df6d4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2826,29 +2931,7 @@ "width": null } }, - "dfd6b878569944d4bf366d34e7b5e0fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a327dc5aa514ff89c5980210fd0b7e0", - "IPY_MODEL_27c01147d6204293aa04429cb37a7591", - "IPY_MODEL_053f03c0670d4b3d89756894ea44f71e" - ], - "layout": "IPY_MODEL_f5e2468ab3aa4efdbf463f216898d425" - } - }, - "e08f6767ee984da9a662aba844df0773": { + "f8159405dc854bc2b1226dadf5fd49ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2900,44 +2983,7 @@ "width": null } }, - "e146121261044c668db0425f7bb45662": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7561f0c498841e985c64fefed22720e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bb26aed67e9046b296136b89d3415f4b", - "placeholder": "​", - "style": "IPY_MODEL_20bf7e64f4d141779c20a29d383370e9", - "value": "Downloading: 100%" - } - }, - "eb0b8b8f07314b5286dbba758ec095a8": { + "f88dac1d3efe4714945a5927a2a827b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2989,22 +3035,7 @@ "width": null } }, - "f0d7733f4a2c4a759537115739a8ee72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f5e2468ab3aa4efdbf463f216898d425": { + "ffdbeccf1d5a4422922702d8dde89c7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3055,37 +3086,6 @@ "visibility": null, "width": null } - }, - "fbcf72fb7ad74787885ce5330c556176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fcbb944e88f14262a1f9ac5e11df8a87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 6d1411465..626ff2693 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1300,7 +1300,7 @@

    Functionality 2: Specifying nondefault arguments
    -
    +
    @@ -1696,7 +1696,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"a152924ab077414294a5576606645b60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "172695041de644c0a37d495b493cbc19": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a3067d3d1dab4198a819cb0145611f40": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a152924ab077414294a5576606645b60", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_172695041de644c0a37d495b493cbc19", "value": 132.0}}, "f95fbb296b2e40efaabcaaa1168f9aae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d76793254214b98a49cb9d2967f768f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b6d44761908147c59ed1f88dbff9d5fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f95fbb296b2e40efaabcaaa1168f9aae", "placeholder": "\u200b", "style": "IPY_MODEL_4d76793254214b98a49cb9d2967f768f", "value": "Saving the dataset (1/1 shards): 100%"}}, "0051c1428b664a2586e2e96de896294a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be98d1056e0e4b2da5596f66b51766d6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7b844a9d7757499aaadd893bc2ccb360": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0051c1428b664a2586e2e96de896294a", "placeholder": "\u200b", "style": "IPY_MODEL_be98d1056e0e4b2da5596f66b51766d6", "value": " 132/132 [00:00<00:00, 4938.52 examples/s]"}}, "e677122cb377400b80e75399945f07b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "bb6c19c2c9a44c929cda51b2b7987f83": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b6d44761908147c59ed1f88dbff9d5fd", "IPY_MODEL_a3067d3d1dab4198a819cb0145611f40", "IPY_MODEL_7b844a9d7757499aaadd893bc2ccb360"], "layout": "IPY_MODEL_e677122cb377400b80e75399945f07b3"}}}, "version_major": 2, "version_minor": 0} +{"state": {"2ca1aefc961a4e22bead719ec30e195c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b2b6934647a484d85e6b743a944f0f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9c7996d7ad054a3bbdc322b6e1b5ff67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2ca1aefc961a4e22bead719ec30e195c", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7b2b6934647a484d85e6b743a944f0f0", "value": 132.0}}, "5ccbb63dbbe84cc6b223dd67c8b7493f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5dda0ecce36487da855134fa542130e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9405fcf805fc4795ae49bd38125b03de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ccbb63dbbe84cc6b223dd67c8b7493f", "placeholder": "\u200b", "style": "IPY_MODEL_a5dda0ecce36487da855134fa542130e", "value": "Saving the dataset (1/1 shards): 100%"}}, "ad2b12a3518a4c8a896470b8a9ebe9ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4a69ba9e4294d8b98eaf99f0d0f27cd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6079bd2d5ca34dd2af59db4419fda67b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ad2b12a3518a4c8a896470b8a9ebe9ba", "placeholder": "\u200b", "style": "IPY_MODEL_d4a69ba9e4294d8b98eaf99f0d0f27cd", "value": " 132/132 [00:00<00:00, 7315.07 examples/s]"}}, "f51d96142fd4477996bd5416f96d85e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null}}, "81e3acc041db4d909137e9f45f5af80a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9405fcf805fc4795ae49bd38125b03de", "IPY_MODEL_9c7996d7ad054a3bbdc322b6e1b5ff67", "IPY_MODEL_6079bd2d5ca34dd2af59db4419fda67b"], "layout": "IPY_MODEL_f51d96142fd4477996bd5416f96d85e6"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 060d80c1f..50f554448 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:34.512644Z", - "iopub.status.busy": "2023-10-16T20:23:34.512334Z", - "iopub.status.idle": "2023-10-16T20:23:36.127365Z", - "shell.execute_reply": "2023-10-16T20:23:36.126316Z" + "iopub.execute_input": "2023-10-17T19:43:13.829001Z", + "iopub.status.busy": "2023-10-17T19:43:13.828768Z", + "iopub.status.idle": "2023-10-17T19:43:15.045676Z", + "shell.execute_reply": "2023-10-17T19:43:15.045014Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.134811Z", - "iopub.status.busy": "2023-10-16T20:23:36.131136Z", - "iopub.status.idle": "2023-10-16T20:23:36.140636Z", - "shell.execute_reply": "2023-10-16T20:23:36.139530Z" + "iopub.execute_input": "2023-10-17T19:43:15.049470Z", + "iopub.status.busy": "2023-10-17T19:43:15.048979Z", + "iopub.status.idle": "2023-10-17T19:43:15.053755Z", + "shell.execute_reply": "2023-10-17T19:43:15.053131Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.145538Z", - "iopub.status.busy": "2023-10-16T20:23:36.144994Z", - "iopub.status.idle": "2023-10-16T20:23:36.166273Z", - "shell.execute_reply": "2023-10-16T20:23:36.165165Z" + "iopub.execute_input": "2023-10-17T19:43:15.057199Z", + "iopub.status.busy": "2023-10-17T19:43:15.056958Z", + "iopub.status.idle": "2023-10-17T19:43:15.069665Z", + "shell.execute_reply": "2023-10-17T19:43:15.069054Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.170219Z", - "iopub.status.busy": "2023-10-16T20:23:36.169856Z", - "iopub.status.idle": "2023-10-16T20:23:36.177837Z", - "shell.execute_reply": "2023-10-16T20:23:36.177049Z" + "iopub.execute_input": "2023-10-17T19:43:15.072790Z", + "iopub.status.busy": "2023-10-17T19:43:15.072457Z", + "iopub.status.idle": "2023-10-17T19:43:15.079654Z", + "shell.execute_reply": "2023-10-17T19:43:15.079080Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.182155Z", - "iopub.status.busy": "2023-10-16T20:23:36.181820Z", - "iopub.status.idle": "2023-10-16T20:23:36.625551Z", - "shell.execute_reply": "2023-10-16T20:23:36.624586Z" + "iopub.execute_input": "2023-10-17T19:43:15.083027Z", + "iopub.status.busy": "2023-10-17T19:43:15.082785Z", + "iopub.status.idle": "2023-10-17T19:43:15.424045Z", + "shell.execute_reply": "2023-10-17T19:43:15.423347Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:36.630469Z", - "iopub.status.busy": "2023-10-16T20:23:36.629802Z", - "iopub.status.idle": "2023-10-16T20:23:37.118367Z", - "shell.execute_reply": "2023-10-16T20:23:37.117604Z" + "iopub.execute_input": "2023-10-17T19:43:15.427222Z", + "iopub.status.busy": "2023-10-17T19:43:15.426837Z", + "iopub.status.idle": "2023-10-17T19:43:15.805501Z", + "shell.execute_reply": "2023-10-17T19:43:15.804843Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.122507Z", - "iopub.status.busy": "2023-10-16T20:23:37.121884Z", - "iopub.status.idle": "2023-10-16T20:23:37.160418Z", - "shell.execute_reply": "2023-10-16T20:23:37.159108Z" + "iopub.execute_input": "2023-10-17T19:43:15.808674Z", + "iopub.status.busy": "2023-10-17T19:43:15.808427Z", + "iopub.status.idle": "2023-10-17T19:43:15.836149Z", + "shell.execute_reply": "2023-10-17T19:43:15.835473Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.166344Z", - "iopub.status.busy": "2023-10-16T20:23:37.165996Z", - "iopub.status.idle": "2023-10-16T20:23:37.184995Z", - "shell.execute_reply": "2023-10-16T20:23:37.184077Z" + "iopub.execute_input": "2023-10-17T19:43:15.839609Z", + "iopub.status.busy": "2023-10-17T19:43:15.839058Z", + "iopub.status.idle": "2023-10-17T19:43:15.853064Z", + "shell.execute_reply": "2023-10-17T19:43:15.852428Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:37.189612Z", - "iopub.status.busy": "2023-10-16T20:23:37.188985Z", - "iopub.status.idle": "2023-10-16T20:23:39.261226Z", - "shell.execute_reply": "2023-10-16T20:23:39.260069Z" + "iopub.execute_input": "2023-10-17T19:43:15.856038Z", + "iopub.status.busy": "2023-10-17T19:43:15.855658Z", + "iopub.status.idle": "2023-10-17T19:43:17.455041Z", + "shell.execute_reply": "2023-10-17T19:43:17.454289Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.266708Z", - "iopub.status.busy": "2023-10-16T20:23:39.265897Z", - "iopub.status.idle": "2023-10-16T20:23:39.308683Z", - "shell.execute_reply": "2023-10-16T20:23:39.307685Z" + "iopub.execute_input": "2023-10-17T19:43:17.458689Z", + "iopub.status.busy": "2023-10-17T19:43:17.458122Z", + "iopub.status.idle": "2023-10-17T19:43:17.488677Z", + "shell.execute_reply": "2023-10-17T19:43:17.487773Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.313380Z", - "iopub.status.busy": "2023-10-16T20:23:39.312770Z", - "iopub.status.idle": "2023-10-16T20:23:39.346608Z", - "shell.execute_reply": "2023-10-16T20:23:39.345851Z" + "iopub.execute_input": "2023-10-17T19:43:17.491765Z", + "iopub.status.busy": "2023-10-17T19:43:17.491313Z", + "iopub.status.idle": "2023-10-17T19:43:17.515957Z", + "shell.execute_reply": "2023-10-17T19:43:17.515394Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:249: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.350655Z", - "iopub.status.busy": "2023-10-16T20:23:39.350068Z", - "iopub.status.idle": "2023-10-16T20:23:39.374575Z", - "shell.execute_reply": "2023-10-16T20:23:39.373738Z" + "iopub.execute_input": "2023-10-17T19:43:17.519269Z", + "iopub.status.busy": "2023-10-17T19:43:17.518672Z", + "iopub.status.idle": "2023-10-17T19:43:17.537263Z", + "shell.execute_reply": "2023-10-17T19:43:17.536538Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.379269Z", - "iopub.status.busy": "2023-10-16T20:23:39.378570Z", - "iopub.status.idle": "2023-10-16T20:23:39.429863Z", - "shell.execute_reply": "2023-10-16T20:23:39.428780Z" + "iopub.execute_input": "2023-10-17T19:43:17.540692Z", + "iopub.status.busy": "2023-10-17T19:43:17.540331Z", + "iopub.status.idle": "2023-10-17T19:43:17.572988Z", + "shell.execute_reply": "2023-10-17T19:43:17.572436Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb6c19c2c9a44c929cda51b2b7987f83", + "model_id": "81e3acc041db4d909137e9f45f5af80a", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.435311Z", - "iopub.status.busy": "2023-10-16T20:23:39.434795Z", - "iopub.status.idle": "2023-10-16T20:23:39.462423Z", - "shell.execute_reply": "2023-10-16T20:23:39.461478Z" + "iopub.execute_input": "2023-10-17T19:43:17.575720Z", + "iopub.status.busy": "2023-10-17T19:43:17.575335Z", + "iopub.status.idle": "2023-10-17T19:43:17.593352Z", + "shell.execute_reply": "2023-10-17T19:43:17.592783Z" } }, "outputs": [ @@ -1125,13 +1125,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Datalab loaded from folder: datalab-files\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Datalab loaded from folder: datalab-files\n", "Here is a summary of the different kinds of issues found in the data:\n", "\n", " issue_type num_issues\n", @@ -1241,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.466385Z", - "iopub.status.busy": "2023-10-16T20:23:39.465777Z", - "iopub.status.idle": "2023-10-16T20:23:39.475374Z", - "shell.execute_reply": "2023-10-16T20:23:39.474574Z" + "iopub.execute_input": "2023-10-17T19:43:17.596466Z", + "iopub.status.busy": "2023-10-17T19:43:17.595877Z", + "iopub.status.idle": "2023-10-17T19:43:17.603712Z", + "shell.execute_reply": "2023-10-17T19:43:17.603000Z" } }, "outputs": [], @@ -1301,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:39.479338Z", - "iopub.status.busy": "2023-10-16T20:23:39.478759Z", - "iopub.status.idle": "2023-10-16T20:23:39.508771Z", - "shell.execute_reply": "2023-10-16T20:23:39.507675Z" + "iopub.execute_input": "2023-10-17T19:43:17.606739Z", + "iopub.status.busy": "2023-10-17T19:43:17.606492Z", + "iopub.status.idle": "2023-10-17T19:43:17.629912Z", + "shell.execute_reply": "2023-10-17T19:43:17.629183Z" } }, "outputs": [ @@ -1436,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0051c1428b664a2586e2e96de896294a": { + "2ca1aefc961a4e22bead719ec30e195c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1488,59 +1482,7 @@ "width": null } }, - "172695041de644c0a37d495b493cbc19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4d76793254214b98a49cb9d2967f768f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b844a9d7757499aaadd893bc2ccb360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0051c1428b664a2586e2e96de896294a", - "placeholder": "​", - "style": "IPY_MODEL_be98d1056e0e4b2da5596f66b51766d6", - "value": " 132/132 [00:00<00:00, 4938.52 examples/s]" - } - }, - "a152924ab077414294a5576606645b60": { + "5ccbb63dbbe84cc6b223dd67c8b7493f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1592,31 +1534,66 @@ "width": null } }, - "a3067d3d1dab4198a819cb0145611f40": { + "6079bd2d5ca34dd2af59db4419fda67b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a152924ab077414294a5576606645b60", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_172695041de644c0a37d495b493cbc19", - "value": 132.0 + "layout": "IPY_MODEL_ad2b12a3518a4c8a896470b8a9ebe9ba", + "placeholder": "​", + "style": "IPY_MODEL_d4a69ba9e4294d8b98eaf99f0d0f27cd", + "value": " 132/132 [00:00<00:00, 7315.07 examples/s]" + } + }, + "7b2b6934647a484d85e6b743a944f0f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6d44761908147c59ed1f88dbff9d5fd": { + "81e3acc041db4d909137e9f45f5af80a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9405fcf805fc4795ae49bd38125b03de", + "IPY_MODEL_9c7996d7ad054a3bbdc322b6e1b5ff67", + "IPY_MODEL_6079bd2d5ca34dd2af59db4419fda67b" + ], + "layout": "IPY_MODEL_f51d96142fd4477996bd5416f96d85e6" + } + }, + "9405fcf805fc4795ae49bd38125b03de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1631,35 +1608,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f95fbb296b2e40efaabcaaa1168f9aae", + "layout": "IPY_MODEL_5ccbb63dbbe84cc6b223dd67c8b7493f", "placeholder": "​", - "style": "IPY_MODEL_4d76793254214b98a49cb9d2967f768f", + "style": "IPY_MODEL_a5dda0ecce36487da855134fa542130e", "value": "Saving the dataset (1/1 shards): 100%" } }, - "bb6c19c2c9a44c929cda51b2b7987f83": { + "9c7996d7ad054a3bbdc322b6e1b5ff67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6d44761908147c59ed1f88dbff9d5fd", - "IPY_MODEL_a3067d3d1dab4198a819cb0145611f40", - "IPY_MODEL_7b844a9d7757499aaadd893bc2ccb360" - ], - "layout": "IPY_MODEL_e677122cb377400b80e75399945f07b3" + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ca1aefc961a4e22bead719ec30e195c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b2b6934647a484d85e6b743a944f0f0", + "value": 132.0 } }, - "be98d1056e0e4b2da5596f66b51766d6": { + "a5dda0ecce36487da855134fa542130e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1674,7 +1653,7 @@ "description_width": "" } }, - "e677122cb377400b80e75399945f07b3": { + "ad2b12a3518a4c8a896470b8a9ebe9ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1722,11 +1701,26 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "f95fbb296b2e40efaabcaaa1168f9aae": { + "d4a69ba9e4294d8b98eaf99f0d0f27cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f51d96142fd4477996bd5416f96d85e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1774,7 +1768,7 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } } diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 66ee8c22e..a45c2d2ae 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:45.078978Z", - "iopub.status.busy": "2023-10-16T20:23:45.078376Z", - "iopub.status.idle": "2023-10-16T20:23:46.752896Z", - "shell.execute_reply": "2023-10-16T20:23:46.751718Z" + "iopub.execute_input": "2023-10-17T19:43:23.047262Z", + "iopub.status.busy": "2023-10-17T19:43:23.047015Z", + "iopub.status.idle": "2023-10-17T19:43:24.279652Z", + "shell.execute_reply": "2023-10-17T19:43:24.278958Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.758609Z", - "iopub.status.busy": "2023-10-16T20:23:46.758105Z", - "iopub.status.idle": "2023-10-16T20:23:46.763842Z", - "shell.execute_reply": "2023-10-16T20:23:46.763036Z" + "iopub.execute_input": "2023-10-17T19:43:24.283698Z", + "iopub.status.busy": "2023-10-17T19:43:24.283051Z", + "iopub.status.idle": "2023-10-17T19:43:24.286427Z", + "shell.execute_reply": "2023-10-17T19:43:24.285882Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.767864Z", - "iopub.status.busy": "2023-10-16T20:23:46.767561Z", - "iopub.status.idle": "2023-10-16T20:23:46.784260Z", - "shell.execute_reply": "2023-10-16T20:23:46.783459Z" + "iopub.execute_input": "2023-10-17T19:43:24.289490Z", + "iopub.status.busy": "2023-10-17T19:43:24.289098Z", + "iopub.status.idle": "2023-10-17T19:43:24.302082Z", + "shell.execute_reply": "2023-10-17T19:43:24.301468Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.788570Z", - "iopub.status.busy": "2023-10-16T20:23:46.787871Z", - "iopub.status.idle": "2023-10-16T20:23:46.796834Z", - "shell.execute_reply": "2023-10-16T20:23:46.796023Z" + "iopub.execute_input": "2023-10-17T19:43:24.305674Z", + "iopub.status.busy": "2023-10-17T19:43:24.305235Z", + "iopub.status.idle": "2023-10-17T19:43:24.310241Z", + "shell.execute_reply": "2023-10-17T19:43:24.309679Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:46.801304Z", - "iopub.status.busy": "2023-10-16T20:23:46.800985Z", - "iopub.status.idle": "2023-10-16T20:23:47.278408Z", - "shell.execute_reply": "2023-10-16T20:23:47.277287Z" + "iopub.execute_input": "2023-10-17T19:43:24.313262Z", + "iopub.status.busy": "2023-10-17T19:43:24.312849Z", + "iopub.status.idle": "2023-10-17T19:43:24.649404Z", + "shell.execute_reply": "2023-10-17T19:43:24.648718Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.284666Z", - "iopub.status.busy": "2023-10-16T20:23:47.283586Z", - "iopub.status.idle": "2023-10-16T20:23:47.750668Z", - "shell.execute_reply": "2023-10-16T20:23:47.749434Z" + "iopub.execute_input": "2023-10-17T19:43:24.653107Z", + "iopub.status.busy": "2023-10-17T19:43:24.652497Z", + "iopub.status.idle": "2023-10-17T19:43:25.017489Z", + "shell.execute_reply": "2023-10-17T19:43:25.016797Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.755133Z", - "iopub.status.busy": "2023-10-16T20:23:47.754388Z", - "iopub.status.idle": "2023-10-16T20:23:47.758503Z", - "shell.execute_reply": "2023-10-16T20:23:47.757616Z" + "iopub.execute_input": "2023-10-17T19:43:25.021053Z", + "iopub.status.busy": "2023-10-17T19:43:25.020668Z", + "iopub.status.idle": "2023-10-17T19:43:25.025013Z", + "shell.execute_reply": "2023-10-17T19:43:25.024418Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.763124Z", - "iopub.status.busy": "2023-10-16T20:23:47.762424Z", - "iopub.status.idle": "2023-10-16T20:23:47.797790Z", - "shell.execute_reply": "2023-10-16T20:23:47.796428Z" + "iopub.execute_input": "2023-10-17T19:43:25.028029Z", + "iopub.status.busy": "2023-10-17T19:43:25.027540Z", + "iopub.status.idle": "2023-10-17T19:43:25.054237Z", + "shell.execute_reply": "2023-10-17T19:43:25.053587Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:47.803572Z", - "iopub.status.busy": "2023-10-16T20:23:47.803075Z", - "iopub.status.idle": "2023-10-16T20:23:49.879818Z", - "shell.execute_reply": "2023-10-16T20:23:49.878695Z" + "iopub.execute_input": "2023-10-17T19:43:25.057620Z", + "iopub.status.busy": "2023-10-17T19:43:25.057061Z", + "iopub.status.idle": "2023-10-17T19:43:26.680299Z", + "shell.execute_reply": "2023-10-17T19:43:26.679491Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.884967Z", - "iopub.status.busy": "2023-10-16T20:23:49.883766Z", - "iopub.status.idle": "2023-10-16T20:23:49.913549Z", - "shell.execute_reply": "2023-10-16T20:23:49.912605Z" + "iopub.execute_input": "2023-10-17T19:43:26.685050Z", + "iopub.status.busy": "2023-10-17T19:43:26.683458Z", + "iopub.status.idle": "2023-10-17T19:43:26.705934Z", + "shell.execute_reply": "2023-10-17T19:43:26.705282Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.917925Z", - "iopub.status.busy": "2023-10-16T20:23:49.917322Z", - "iopub.status.idle": "2023-10-16T20:23:49.930353Z", - "shell.execute_reply": "2023-10-16T20:23:49.929514Z" + "iopub.execute_input": "2023-10-17T19:43:26.709664Z", + "iopub.status.busy": "2023-10-17T19:43:26.709154Z", + "iopub.status.idle": "2023-10-17T19:43:26.719509Z", + "shell.execute_reply": "2023-10-17T19:43:26.718909Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.935008Z", - "iopub.status.busy": "2023-10-16T20:23:49.934431Z", - "iopub.status.idle": "2023-10-16T20:23:49.946620Z", - "shell.execute_reply": "2023-10-16T20:23:49.945695Z" + "iopub.execute_input": "2023-10-17T19:43:26.722762Z", + "iopub.status.busy": "2023-10-17T19:43:26.722343Z", + "iopub.status.idle": "2023-10-17T19:43:26.731499Z", + "shell.execute_reply": "2023-10-17T19:43:26.730860Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.950436Z", - "iopub.status.busy": "2023-10-16T20:23:49.950106Z", - "iopub.status.idle": "2023-10-16T20:23:49.963423Z", - "shell.execute_reply": "2023-10-16T20:23:49.962623Z" + "iopub.execute_input": "2023-10-17T19:43:26.734597Z", + "iopub.status.busy": "2023-10-17T19:43:26.734244Z", + "iopub.status.idle": "2023-10-17T19:43:26.744033Z", + "shell.execute_reply": "2023-10-17T19:43:26.743491Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.967456Z", - "iopub.status.busy": "2023-10-16T20:23:49.966812Z", - "iopub.status.idle": "2023-10-16T20:23:49.981429Z", - "shell.execute_reply": "2023-10-16T20:23:49.980641Z" + "iopub.execute_input": "2023-10-17T19:43:26.747417Z", + "iopub.status.busy": "2023-10-17T19:43:26.747055Z", + "iopub.status.idle": "2023-10-17T19:43:26.760466Z", + "shell.execute_reply": "2023-10-17T19:43:26.759871Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:49.985879Z", - "iopub.status.busy": "2023-10-16T20:23:49.985088Z", - "iopub.status.idle": "2023-10-16T20:23:49.996695Z", - "shell.execute_reply": "2023-10-16T20:23:49.995816Z" + "iopub.execute_input": "2023-10-17T19:43:26.763986Z", + "iopub.status.busy": "2023-10-17T19:43:26.763482Z", + "iopub.status.idle": "2023-10-17T19:43:26.774343Z", + "shell.execute_reply": "2023-10-17T19:43:26.773742Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:50.000643Z", - "iopub.status.busy": "2023-10-16T20:23:50.000174Z", - "iopub.status.idle": "2023-10-16T20:23:50.015820Z", - "shell.execute_reply": "2023-10-16T20:23:50.014841Z" + "iopub.execute_input": "2023-10-17T19:43:26.778579Z", + "iopub.status.busy": "2023-10-17T19:43:26.777347Z", + "iopub.status.idle": "2023-10-17T19:43:26.791548Z", + "shell.execute_reply": "2023-10-17T19:43:26.790943Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/index.html b/master/tutorials/datalab/index.html index c7e0c5c0f..52fc20ce8 100644 --- a/master/tutorials/datalab/index.html +++ b/master/tutorials/datalab/index.html @@ -13,7 +13,7 @@ gtag('config', 'G-EV8RVEFX82'); - + Datalab Tutorials - cleanlab diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 30fb529fa..33fd2b411 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:55.306174Z", - "iopub.status.busy": "2023-10-16T20:23:55.305603Z", - "iopub.status.idle": "2023-10-16T20:23:56.806719Z", - "shell.execute_reply": "2023-10-16T20:23:56.805897Z" + "iopub.execute_input": "2023-10-17T19:43:32.441235Z", + "iopub.status.busy": "2023-10-17T19:43:32.440789Z", + "iopub.status.idle": "2023-10-17T19:43:33.588523Z", + "shell.execute_reply": "2023-10-17T19:43:33.587836Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:56.811139Z", - "iopub.status.busy": "2023-10-16T20:23:56.810439Z", - "iopub.status.idle": "2023-10-16T20:23:56.902820Z", - "shell.execute_reply": "2023-10-16T20:23:56.901488Z" + "iopub.execute_input": "2023-10-17T19:43:33.592262Z", + "iopub.status.busy": "2023-10-17T19:43:33.591660Z", + "iopub.status.idle": "2023-10-17T19:43:33.646127Z", + "shell.execute_reply": "2023-10-17T19:43:33.645454Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:56.908830Z", - "iopub.status.busy": "2023-10-16T20:23:56.908266Z", - "iopub.status.idle": "2023-10-16T20:23:57.190901Z", - "shell.execute_reply": "2023-10-16T20:23:57.189920Z" + "iopub.execute_input": "2023-10-17T19:43:33.650367Z", + "iopub.status.busy": "2023-10-17T19:43:33.649789Z", + "iopub.status.idle": "2023-10-17T19:43:33.892693Z", + "shell.execute_reply": "2023-10-17T19:43:33.892013Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.195671Z", - "iopub.status.busy": "2023-10-16T20:23:57.195153Z", - "iopub.status.idle": "2023-10-16T20:23:57.200859Z", - "shell.execute_reply": "2023-10-16T20:23:57.199977Z" + "iopub.execute_input": "2023-10-17T19:43:33.895788Z", + "iopub.status.busy": "2023-10-17T19:43:33.895407Z", + "iopub.status.idle": "2023-10-17T19:43:33.899833Z", + "shell.execute_reply": "2023-10-17T19:43:33.899172Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.208610Z", - "iopub.status.busy": "2023-10-16T20:23:57.208078Z", - "iopub.status.idle": "2023-10-16T20:23:57.225729Z", - "shell.execute_reply": "2023-10-16T20:23:57.224656Z" + "iopub.execute_input": "2023-10-17T19:43:33.902974Z", + "iopub.status.busy": "2023-10-17T19:43:33.902583Z", + "iopub.status.idle": "2023-10-17T19:43:33.912475Z", + "shell.execute_reply": "2023-10-17T19:43:33.911799Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.231643Z", - "iopub.status.busy": "2023-10-16T20:23:57.229943Z", - "iopub.status.idle": "2023-10-16T20:23:57.235791Z", - "shell.execute_reply": "2023-10-16T20:23:57.235018Z" + "iopub.execute_input": "2023-10-17T19:43:33.915726Z", + "iopub.status.busy": "2023-10-17T19:43:33.915329Z", + "iopub.status.idle": "2023-10-17T19:43:33.918583Z", + "shell.execute_reply": "2023-10-17T19:43:33.917882Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:23:57.239691Z", - "iopub.status.busy": "2023-10-16T20:23:57.239116Z", - "iopub.status.idle": "2023-10-16T20:24:03.600459Z", - "shell.execute_reply": "2023-10-16T20:24:03.599636Z" + "iopub.execute_input": "2023-10-17T19:43:33.921585Z", + "iopub.status.busy": "2023-10-17T19:43:33.921220Z", + "iopub.status.idle": "2023-10-17T19:43:39.157254Z", + "shell.execute_reply": "2023-10-17T19:43:39.156630Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:03.605792Z", - "iopub.status.busy": "2023-10-16T20:24:03.605209Z", - "iopub.status.idle": "2023-10-16T20:24:03.621638Z", - "shell.execute_reply": "2023-10-16T20:24:03.620874Z" + "iopub.execute_input": "2023-10-17T19:43:39.161458Z", + "iopub.status.busy": "2023-10-17T19:43:39.160972Z", + "iopub.status.idle": "2023-10-17T19:43:39.172728Z", + "shell.execute_reply": "2023-10-17T19:43:39.172173Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:03.626735Z", - "iopub.status.busy": "2023-10-16T20:24:03.626063Z", - "iopub.status.idle": "2023-10-16T20:24:05.689125Z", - "shell.execute_reply": "2023-10-16T20:24:05.683325Z" + "iopub.execute_input": "2023-10-17T19:43:39.175705Z", + "iopub.status.busy": "2023-10-17T19:43:39.175284Z", + "iopub.status.idle": "2023-10-17T19:43:40.774398Z", + "shell.execute_reply": "2023-10-17T19:43:40.773617Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.695139Z", - "iopub.status.busy": "2023-10-16T20:24:05.693862Z", - "iopub.status.idle": "2023-10-16T20:24:05.718858Z", - "shell.execute_reply": "2023-10-16T20:24:05.717912Z" + "iopub.execute_input": "2023-10-17T19:43:40.778496Z", + "iopub.status.busy": "2023-10-17T19:43:40.777838Z", + "iopub.status.idle": "2023-10-17T19:43:40.798292Z", + "shell.execute_reply": "2023-10-17T19:43:40.797618Z" }, "scrolled": true }, @@ -577,10 +577,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.723302Z", - "iopub.status.busy": "2023-10-16T20:24:05.722517Z", - "iopub.status.idle": "2023-10-16T20:24:05.735957Z", - "shell.execute_reply": "2023-10-16T20:24:05.735126Z" + "iopub.execute_input": "2023-10-17T19:43:40.801784Z", + "iopub.status.busy": "2023-10-17T19:43:40.801397Z", + "iopub.status.idle": "2023-10-17T19:43:40.813269Z", + "shell.execute_reply": "2023-10-17T19:43:40.812653Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.740103Z", - "iopub.status.busy": "2023-10-16T20:24:05.739330Z", - "iopub.status.idle": "2023-10-16T20:24:05.758087Z", - "shell.execute_reply": "2023-10-16T20:24:05.757130Z" + "iopub.execute_input": "2023-10-17T19:43:40.816122Z", + "iopub.status.busy": "2023-10-17T19:43:40.815878Z", + "iopub.status.idle": "2023-10-17T19:43:40.828745Z", + "shell.execute_reply": "2023-10-17T19:43:40.828132Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.764478Z", - "iopub.status.busy": "2023-10-16T20:24:05.762776Z", - "iopub.status.idle": "2023-10-16T20:24:05.778495Z", - "shell.execute_reply": "2023-10-16T20:24:05.777604Z" + "iopub.execute_input": "2023-10-17T19:43:40.832162Z", + "iopub.status.busy": "2023-10-17T19:43:40.831771Z", + "iopub.status.idle": "2023-10-17T19:43:40.844700Z", + "shell.execute_reply": "2023-10-17T19:43:40.844039Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.783466Z", - "iopub.status.busy": "2023-10-16T20:24:05.782642Z", - "iopub.status.idle": "2023-10-16T20:24:05.799574Z", - "shell.execute_reply": "2023-10-16T20:24:05.798766Z" + "iopub.execute_input": "2023-10-17T19:43:40.848375Z", + "iopub.status.busy": "2023-10-17T19:43:40.847829Z", + "iopub.status.idle": "2023-10-17T19:43:40.862231Z", + "shell.execute_reply": "2023-10-17T19:43:40.861546Z" } }, "outputs": [ @@ -1047,10 +1047,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.804104Z", - "iopub.status.busy": "2023-10-16T20:24:05.803375Z", - "iopub.status.idle": "2023-10-16T20:24:05.815720Z", - "shell.execute_reply": "2023-10-16T20:24:05.814940Z" + "iopub.execute_input": "2023-10-17T19:43:40.865920Z", + "iopub.status.busy": "2023-10-17T19:43:40.865513Z", + "iopub.status.idle": "2023-10-17T19:43:40.875511Z", + "shell.execute_reply": "2023-10-17T19:43:40.874827Z" } }, "outputs": [ @@ -1134,10 +1134,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.820194Z", - "iopub.status.busy": "2023-10-16T20:24:05.819484Z", - "iopub.status.idle": "2023-10-16T20:24:05.829612Z", - "shell.execute_reply": "2023-10-16T20:24:05.828884Z" + "iopub.execute_input": "2023-10-17T19:43:40.878307Z", + "iopub.status.busy": "2023-10-17T19:43:40.878075Z", + "iopub.status.idle": "2023-10-17T19:43:40.885953Z", + "shell.execute_reply": "2023-10-17T19:43:40.885404Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:05.833524Z", - "iopub.status.busy": "2023-10-16T20:24:05.832788Z", - "iopub.status.idle": "2023-10-16T20:24:05.845749Z", - "shell.execute_reply": "2023-10-16T20:24:05.844899Z" + "iopub.execute_input": "2023-10-17T19:43:40.889078Z", + "iopub.status.busy": "2023-10-17T19:43:40.888500Z", + "iopub.status.idle": "2023-10-17T19:43:40.897951Z", + "shell.execute_reply": "2023-10-17T19:43:40.897349Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index ecbf8b186..4ff54936d 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -937,7 +937,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer'}
    +Classes: {'cancel_transfer', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card'}
     

    Let’s view the i-th example in the dataset:

    @@ -984,43 +984,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1707,7 +1707,7 @@

    Near-duplicate issuesWe see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets.

    As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index aa91e39aa..a8fc1ff0c 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:11.726929Z", - "iopub.status.busy": "2023-10-16T20:24:11.726602Z", - "iopub.status.idle": "2023-10-16T20:24:15.580546Z", - "shell.execute_reply": "2023-10-16T20:24:15.579429Z" + "iopub.execute_input": "2023-10-17T19:43:46.444984Z", + "iopub.status.busy": "2023-10-17T19:43:46.444617Z", + "iopub.status.idle": "2023-10-17T19:43:49.281821Z", + "shell.execute_reply": "2023-10-17T19:43:49.281132Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd480a50df2d47ccb740466346c0cba1", + "model_id": "f194256422d04eda9aafe3848ab98800", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.586194Z", - "iopub.status.busy": "2023-10-16T20:24:15.585637Z", - "iopub.status.idle": "2023-10-16T20:24:15.592011Z", - "shell.execute_reply": "2023-10-16T20:24:15.591217Z" + "iopub.execute_input": "2023-10-17T19:43:49.285577Z", + "iopub.status.busy": "2023-10-17T19:43:49.284847Z", + "iopub.status.idle": "2023-10-17T19:43:49.288789Z", + "shell.execute_reply": "2023-10-17T19:43:49.288128Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.595764Z", - "iopub.status.busy": "2023-10-16T20:24:15.595182Z", - "iopub.status.idle": "2023-10-16T20:24:15.599807Z", - "shell.execute_reply": "2023-10-16T20:24:15.598973Z" + "iopub.execute_input": "2023-10-17T19:43:49.291973Z", + "iopub.status.busy": "2023-10-17T19:43:49.291438Z", + "iopub.status.idle": "2023-10-17T19:43:49.295152Z", + "shell.execute_reply": "2023-10-17T19:43:49.294483Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.604237Z", - "iopub.status.busy": "2023-10-16T20:24:15.603405Z", - "iopub.status.idle": "2023-10-16T20:24:15.732613Z", - "shell.execute_reply": "2023-10-16T20:24:15.731430Z" + "iopub.execute_input": "2023-10-17T19:43:49.298062Z", + "iopub.status.busy": "2023-10-17T19:43:49.297671Z", + "iopub.status.idle": "2023-10-17T19:43:49.422383Z", + "shell.execute_reply": "2023-10-17T19:43:49.421632Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.740043Z", - "iopub.status.busy": "2023-10-16T20:24:15.739259Z", - "iopub.status.idle": "2023-10-16T20:24:15.745199Z", - "shell.execute_reply": "2023-10-16T20:24:15.744315Z" + "iopub.execute_input": "2023-10-17T19:43:49.425657Z", + "iopub.status.busy": "2023-10-17T19:43:49.425267Z", + "iopub.status.idle": "2023-10-17T19:43:49.429997Z", + "shell.execute_reply": "2023-10-17T19:43:49.429296Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer'}\n" + "Classes: {'cancel_transfer', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.750551Z", - "iopub.status.busy": "2023-10-16T20:24:15.749774Z", - "iopub.status.idle": "2023-10-16T20:24:15.754685Z", - "shell.execute_reply": "2023-10-16T20:24:15.753834Z" + "iopub.execute_input": "2023-10-17T19:43:49.433795Z", + "iopub.status.busy": "2023-10-17T19:43:49.433418Z", + "iopub.status.idle": "2023-10-17T19:43:49.437346Z", + "shell.execute_reply": "2023-10-17T19:43:49.436693Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:15.759162Z", - "iopub.status.busy": "2023-10-16T20:24:15.758498Z", - "iopub.status.idle": "2023-10-16T20:24:21.892772Z", - "shell.execute_reply": "2023-10-16T20:24:21.891864Z" + "iopub.execute_input": "2023-10-17T19:43:49.441201Z", + "iopub.status.busy": "2023-10-17T19:43:49.440664Z", + "iopub.status.idle": "2023-10-17T19:43:54.821957Z", + "shell.execute_reply": "2023-10-17T19:43:54.821333Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c157699046a47f78d33e0d50a29f9a8", + "model_id": "81c48d5732a740e2b143cf9bab71a7cf", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd93fb501e0f4d64abf94fa1bd420fee", + "model_id": "28df087be4494804a7e100f82945afb9", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a61fb3851e1f450a87d974fdf9c3e9d8", + "model_id": "5a86491fcd574e9185967b2b664f2b65", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa105bf9378a40afb5d953bdfd505dbe", + "model_id": "71443e20c72f4c6f9f93dfc1a155a03e", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c590b3ee86934c3d9043c5c3ee93b1c4", + "model_id": "880dfd43f4784a639b02df0a2cb0f44d", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32e8c5f826e446088315eb2742c88033", + "model_id": "72f8ed7b4ff040a6b5acd385375f10bf", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49b2317b8eb84bddadc8ee97d07e543b", + "model_id": "05137f251072409f97be0367f091f6c2", "version_major": 2, "version_minor": 0 }, @@ -503,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -544,10 +544,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:21.898894Z", - "iopub.status.busy": "2023-10-16T20:24:21.898115Z", - "iopub.status.idle": "2023-10-16T20:24:23.448253Z", - "shell.execute_reply": "2023-10-16T20:24:23.447359Z" + "iopub.execute_input": "2023-10-17T19:43:54.825742Z", + "iopub.status.busy": "2023-10-17T19:43:54.824976Z", + "iopub.status.idle": "2023-10-17T19:43:56.152347Z", + "shell.execute_reply": "2023-10-17T19:43:56.151730Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:23.453504Z", - "iopub.status.busy": "2023-10-16T20:24:23.452571Z", - "iopub.status.idle": "2023-10-16T20:24:23.456546Z", - "shell.execute_reply": "2023-10-16T20:24:23.455837Z" + "iopub.execute_input": "2023-10-17T19:43:56.155994Z", + "iopub.status.busy": "2023-10-17T19:43:56.155413Z", + "iopub.status.idle": "2023-10-17T19:43:56.158605Z", + "shell.execute_reply": "2023-10-17T19:43:56.158077Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:23.460339Z", - "iopub.status.busy": "2023-10-16T20:24:23.459723Z", - "iopub.status.idle": "2023-10-16T20:24:25.516638Z", - "shell.execute_reply": "2023-10-16T20:24:25.515674Z" + "iopub.execute_input": "2023-10-17T19:43:56.161571Z", + "iopub.status.busy": "2023-10-17T19:43:56.160980Z", + "iopub.status.idle": "2023-10-17T19:43:57.781774Z", + "shell.execute_reply": "2023-10-17T19:43:57.780888Z" }, "scrolled": true }, @@ -647,10 +647,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.521068Z", - "iopub.status.busy": "2023-10-16T20:24:25.520186Z", - "iopub.status.idle": "2023-10-16T20:24:25.549426Z", - "shell.execute_reply": "2023-10-16T20:24:25.547917Z" + "iopub.execute_input": "2023-10-17T19:43:57.786114Z", + "iopub.status.busy": "2023-10-17T19:43:57.785501Z", + "iopub.status.idle": "2023-10-17T19:43:57.810196Z", + "shell.execute_reply": "2023-10-17T19:43:57.809439Z" }, "scrolled": true }, @@ -775,10 +775,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.553157Z", - "iopub.status.busy": "2023-10-16T20:24:25.552837Z", - "iopub.status.idle": "2023-10-16T20:24:25.566570Z", - "shell.execute_reply": "2023-10-16T20:24:25.565652Z" + "iopub.execute_input": "2023-10-17T19:43:57.813703Z", + "iopub.status.busy": "2023-10-17T19:43:57.813337Z", + "iopub.status.idle": "2023-10-17T19:43:57.826688Z", + "shell.execute_reply": "2023-10-17T19:43:57.825973Z" }, "scrolled": true }, @@ -888,10 +888,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.571175Z", - "iopub.status.busy": "2023-10-16T20:24:25.570539Z", - "iopub.status.idle": "2023-10-16T20:24:25.577711Z", - "shell.execute_reply": "2023-10-16T20:24:25.576810Z" + "iopub.execute_input": "2023-10-17T19:43:57.830268Z", + "iopub.status.busy": "2023-10-17T19:43:57.829779Z", + "iopub.status.idle": "2023-10-17T19:43:57.837008Z", + "shell.execute_reply": "2023-10-17T19:43:57.836369Z" } }, "outputs": [ @@ -929,10 +929,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.582172Z", - "iopub.status.busy": "2023-10-16T20:24:25.581750Z", - "iopub.status.idle": "2023-10-16T20:24:25.593935Z", - "shell.execute_reply": "2023-10-16T20:24:25.593193Z" + "iopub.execute_input": "2023-10-17T19:43:57.841324Z", + "iopub.status.busy": "2023-10-17T19:43:57.840129Z", + "iopub.status.idle": "2023-10-17T19:43:57.850703Z", + "shell.execute_reply": "2023-10-17T19:43:57.850009Z" } }, "outputs": [ @@ -1049,10 +1049,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.597939Z", - "iopub.status.busy": "2023-10-16T20:24:25.597141Z", - "iopub.status.idle": "2023-10-16T20:24:25.606847Z", - "shell.execute_reply": "2023-10-16T20:24:25.606139Z" + "iopub.execute_input": "2023-10-17T19:43:57.854165Z", + "iopub.status.busy": "2023-10-17T19:43:57.853688Z", + "iopub.status.idle": "2023-10-17T19:43:57.863401Z", + "shell.execute_reply": "2023-10-17T19:43:57.862828Z" } }, "outputs": [ @@ -1135,10 +1135,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.610480Z", - "iopub.status.busy": "2023-10-16T20:24:25.609880Z", - "iopub.status.idle": "2023-10-16T20:24:25.618812Z", - "shell.execute_reply": "2023-10-16T20:24:25.618094Z" + "iopub.execute_input": "2023-10-17T19:43:57.866204Z", + "iopub.status.busy": "2023-10-17T19:43:57.865778Z", + "iopub.status.idle": "2023-10-17T19:43:57.873029Z", + "shell.execute_reply": "2023-10-17T19:43:57.872465Z" } }, "outputs": [ @@ -1246,10 +1246,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.622509Z", - "iopub.status.busy": "2023-10-16T20:24:25.621921Z", - "iopub.status.idle": "2023-10-16T20:24:25.635535Z", - "shell.execute_reply": "2023-10-16T20:24:25.634748Z" + "iopub.execute_input": "2023-10-17T19:43:57.875967Z", + "iopub.status.busy": "2023-10-17T19:43:57.875560Z", + "iopub.status.idle": "2023-10-17T19:43:57.886195Z", + "shell.execute_reply": "2023-10-17T19:43:57.885633Z" } }, "outputs": [ @@ -1360,10 +1360,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.639294Z", - "iopub.status.busy": "2023-10-16T20:24:25.638699Z", - "iopub.status.idle": "2023-10-16T20:24:25.647320Z", - "shell.execute_reply": "2023-10-16T20:24:25.646609Z" + "iopub.execute_input": "2023-10-17T19:43:57.888959Z", + "iopub.status.busy": "2023-10-17T19:43:57.888571Z", + "iopub.status.idle": "2023-10-17T19:43:57.894832Z", + "shell.execute_reply": "2023-10-17T19:43:57.894297Z" } }, "outputs": [ @@ -1431,10 +1431,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.651454Z", - "iopub.status.busy": "2023-10-16T20:24:25.650868Z", - "iopub.status.idle": "2023-10-16T20:24:25.658838Z", - "shell.execute_reply": "2023-10-16T20:24:25.658137Z" + "iopub.execute_input": "2023-10-17T19:43:57.897585Z", + "iopub.status.busy": "2023-10-17T19:43:57.897173Z", + "iopub.status.idle": "2023-10-17T19:43:57.903292Z", + "shell.execute_reply": "2023-10-17T19:43:57.902770Z" } }, "outputs": [ @@ -1512,10 +1512,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:25.662524Z", - "iopub.status.busy": "2023-10-16T20:24:25.661942Z", - "iopub.status.idle": "2023-10-16T20:24:25.669776Z", - "shell.execute_reply": "2023-10-16T20:24:25.669082Z" + "iopub.execute_input": "2023-10-17T19:43:57.906111Z", + "iopub.status.busy": "2023-10-17T19:43:57.905703Z", + "iopub.status.idle": "2023-10-17T19:43:57.911631Z", + "shell.execute_reply": "2023-10-17T19:43:57.911091Z" }, "nbsphinx": "hidden" }, @@ -1565,125 +1565,99 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "044412fd93294f9d8b1243b0d2e85be7": { + "00fee9aa197e44f4b8444d4e7566b85e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a191b1d30f444f098810eb3a3d44d8bb", - "placeholder": "​", - "style": "IPY_MODEL_187591ce52714d88b220a3a190352c69", - "value": "Downloading: 100%" + "layout": "IPY_MODEL_1491bfa93a784d5b81f1dba3b6c5b047", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dd5918302d644eb91e33b93a8d52898", + "value": 29.0 } }, - "0a08e8da5e264fd2a3c3804d01419320": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "024cd14ac8414f79932720b710699bc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "0e7f1d7fba3a4b269af3427750012335": { + "0394a37262214974b25c1c38f05e1dc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f78595fb99c45419fb3c0fb010d1583", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1801b37f0d3b4c9ca079d62d1f4887fc", - "value": 0.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "10ec4fe832ca4dcfb79928686bbc8d80": { + "05137f251072409f97be0367f091f6c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5251a6376c0e4eb7b4a6c4946098e5a4", - "placeholder": "​", - "style": "IPY_MODEL_98cea86c64b94ce689027bc854f05de4", - "value": " 391/391 [00:00<00:00, 24.5kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa4eb2ddc03e4fa1a934d298ac94c48e", + "IPY_MODEL_068501ce030847b3bcd56ecb6c436626", + "IPY_MODEL_8abe0ad2329246c6bc6140910e7b14fa" + ], + "layout": "IPY_MODEL_2d2cfcef9bac4afcb67176107551aaab" + } + }, + "067e575defb1480ca0d0fc47575bbcc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "144dded57a4f4152aa26a123e9743959": { + "068501ce030847b3bcd56ecb6c436626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1699,15 +1673,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d70d9ecb368a4b2ba1660f571f1e31b9", - "max": 466062.0, + "layout": "IPY_MODEL_2a8471b342fa4cab9b5b048b2fd2fb26", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5b3b8385d0864067ba3298b55c57d2c7", - "value": 466062.0 + "style": "IPY_MODEL_ad22139ef854479e809a210fb9e96991", + "value": 231508.0 + } + }, + "06f8ca67b67c4d81b4c4a1d390d81a82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "150acb7c4e3f4bb38e65b584dc3c9e21": { + "0c849c9f7218450d933a79e2de015549": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1759,137 +1749,7 @@ "width": null } }, - "15de82d55e7f40d9ac4bd7da8e36c1e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "177e6f27c68b466eb81f9fdbbe238ea4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_330dc2c56b474215851937398170ccdf", - "placeholder": "​", - "style": "IPY_MODEL_2180cafdf702487c8ba9b9d97d4f6749", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "17dae8723de94ea3ac7cec3ef6ff55ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_75b825fc1b5c46268b1249b647447b96", - "placeholder": "​", - "style": "IPY_MODEL_8da630d6d266443eb341181b83b3c1c0", - "value": "Downloading: 100%" - } - }, - "1801b37f0d3b4c9ca079d62d1f4887fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "187591ce52714d88b220a3a190352c69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1a0673d3c2ef4058a535d539eee60da8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_922a71dc4655476ca28fd5e096c17961", - "placeholder": "​", - "style": "IPY_MODEL_2ce0c9e381ac4d0587e2801a2d826591", - "value": " 466k/466k [00:00<00:00, 844kB/s]" - } - }, - "1e0eb893a064478fa5f7389d7f825040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d2715220cda44b2c8945858c34e570a5", - "placeholder": "​", - "style": "IPY_MODEL_2b43ab9a8587490fbd7a049b384211c9", - "value": " 232k/232k [00:00<00:00, 3.81MB/s]" - } - }, - "1e8e41df345a431d916c70b503284b7e": { + "0caee2b3fa2f4a3babe89c881f0ba02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1904,13 +1764,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3e28fb8953704f148e1c63799d6f3c08", + "layout": "IPY_MODEL_b6a49299ab884400993f7be303857166", "placeholder": "​", - "style": "IPY_MODEL_d228ec0326154f3987727d9177f051d2", - "value": "Downloading: 100%" + "style": "IPY_MODEL_7ea6bf3653394f8fa83760d9a42d80ad", + "value": "" } }, - "1f12e1a6525348a9b4400409edb3ae82": { + "0cfb178df251433fbf0716b1259cca1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1962,110 +1822,10 @@ "width": null } }, - "2180cafdf702487c8ba9b9d97d4f6749": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "26777d3195d54fee8999477bf2ce32e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2b43ab9a8587490fbd7a049b384211c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2c1ca851e64a4415bd115cfc7907e1c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_783e9c2ed3e247c79c97ff6793846ed5", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a948abf8758f429e973c32b9b01ab242", - "value": 2211.0 - } - }, - "2ce0c9e381ac4d0587e2801a2d826591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f52710da52f40e7baafc8d7ce1602bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f78595fb99c45419fb3c0fb010d1583": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1491bfa93a784d5b81f1dba3b6c5b047": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2111,10 +1871,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "32e8c5f826e446088315eb2742c88033": { + "28df087be4494804a7e100f82945afb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2129,14 +1889,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_593d17c52cca4b8a8ad952c5e3c23f57", - "IPY_MODEL_4cc68b35c73d4b75ada7065d6a8531e9", - "IPY_MODEL_98deaf6912d04123a3d98feacf9028fe" + "IPY_MODEL_294b75c80c554e5e8e8bb69f13b1e608", + "IPY_MODEL_a0eb09e56a0e4e27b073a1866d86f914", + "IPY_MODEL_d2acd22d0cb245db9883946214feb341" ], - "layout": "IPY_MODEL_7b7ea4293a7c474d8e23b96a2e9434ca" + "layout": "IPY_MODEL_a2f284da700246718f0e1c4535676095" } }, - "330dc2c56b474215851937398170ccdf": { + "2941fb46731b4d21ac3134fa0e6a23ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2188,23 +1948,7 @@ "width": null } }, - "348f7b8567074e5abbe05e2b7e6c3929": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3507bc7287964a789739ff89055ab868": { + "294b75c80c554e5e8e8bb69f13b1e608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2219,13 +1963,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff9c3a60c2064d34baf6dab70f4f9c57", + "layout": "IPY_MODEL_f3943e4741cb4f7bbfec0d1d4cae67f9", "placeholder": "​", - "style": "IPY_MODEL_2f52710da52f40e7baafc8d7ce1602bc", - "value": " 665/665 [00:00<00:00, 42.0kB/s]" + "style": "IPY_MODEL_bebc1804c03b490983b6ce3ad49347c2", + "value": "Downloading: 100%" + } + }, + "2a8471b342fa4cab9b5b048b2fd2fb26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3cd2657e03cc406a911e26ffb057df22": { + "2d2cfcef9bac4afcb67176107551aaab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2277,7 +2073,23 @@ "width": null } }, - "3e28fb8953704f148e1c63799d6f3c08": { + "2dd5918302d644eb91e33b93a8d52898": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "333459cf0bc04370b062361ad40a8738": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2329,7 +2141,7 @@ "width": null } }, - "3f7c22f335664018a5c55d525798e258": { + "37cff2bd6e2b4534a92e84991f51dcb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2381,7 +2193,7 @@ "width": null } }, - "4378314d1e8d4a8db203a8a3901f84ca": { + "3c5c3664f0b74ea180e0abffcd5c7e1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2397,61 +2209,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca6a947d86494127aee19d225bc6e8d9", - "max": 391.0, + "layout": "IPY_MODEL_d5924b82ac214d78bf7a23c7b998503e", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_348f7b8567074e5abbe05e2b7e6c3929", - "value": 391.0 - } - }, - "49b2317b8eb84bddadc8ee97d07e543b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db2f666b978a4ee7a7f4b90c2f8ba493", - "IPY_MODEL_a5383e93c97b46edb15526061b0c0943", - "IPY_MODEL_1e0eb893a064478fa5f7389d7f825040" - ], - "layout": "IPY_MODEL_b78ee0ed16854a28bc9434afe67c5826" + "style": "IPY_MODEL_68d1898e5ddd44c2a50a9b684b8fae5a", + "value": 466062.0 } }, - "4cc68b35c73d4b75ada7065d6a8531e9": { + "3d421143c1dd47bd997217162ae9fdfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a08e8da5e264fd2a3c3804d01419320", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8ad428a31291476498dfaf06de635bf1", - "value": 29.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5251a6376c0e4eb7b4a6c4946098e5a4": { + "3fe4b770971742d49ba55347eea4bef6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2503,7 +2284,7 @@ "width": null } }, - "55cf0ab13b0f408789589bd22b4ce48d": { + "400d74a5e6c54e2a8ed7d59d8b18f775": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2555,7 +2336,7 @@ "width": null } }, - "59035e73cbd74a57a98fb2d4840f18b3": { + "4605067a7e6e43ea916d164ff5775306": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2607,44 +2388,44 @@ "width": null } }, - "593d17c52cca4b8a8ad952c5e3c23f57": { + "4ab8f5cd1edb41f6a7c581ed4a71738d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3f7c22f335664018a5c55d525798e258", - "placeholder": "​", - "style": "IPY_MODEL_bedf81b02e2c4f4c8a9a7c2b15b65c5c", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5b3b8385d0864067ba3298b55c57d2c7": { + "5a86491fcd574e9185967b2b664f2b65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f0b467505b34ca9ae083b4186ffcbeb", + "IPY_MODEL_fc68f8c4ad8a4bbcad0282c224941bb3", + "IPY_MODEL_9a7a702003914b439c697d72d2af7b4b" + ], + "layout": "IPY_MODEL_333459cf0bc04370b062361ad40a8738" } }, - "6464758658604a06809bedf707a2b992": { + "6511652d476a437b98bddd2e704d3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2696,83 +2477,140 @@ "width": null } }, - "66e91167295d42b7b0050631727606d4": { + "653da65d71764faf9f4b76c037574b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da85fca276d644c68873fc4001387a74", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b90337585ce14bc19287f05e3048ca00", - "value": 665.0 - } + "layout": "IPY_MODEL_3fe4b770971742d49ba55347eea4bef6", + "placeholder": "​", + "style": "IPY_MODEL_a83d350b4ad04fc3a28b54ac9b21a6b2", + "value": "Downloading: 100%" + } }, - "698d8763c736423882692af8f381b772": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "68d1898e5ddd44c2a50a9b684b8fae5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bd93fb0d47448a2845779b3f10e87f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "74f76e09352f4b72a527f87488e3775c": { + "71443e20c72f4c6f9f93dfc1a155a03e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4d4cc07bd2f46a182ad597cf7cb733c", + "IPY_MODEL_9cc3d6d64c5f4411b3d5dea59b3dc331", + "IPY_MODEL_c958de51e8b5405d830078f4c796b812" + ], + "layout": "IPY_MODEL_da08fecb508d4c38b13756b724b65037" + } + }, + "72f8ed7b4ff040a6b5acd385375f10bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_653da65d71764faf9f4b76c037574b32", + "IPY_MODEL_00fee9aa197e44f4b8444d4e7566b85e", + "IPY_MODEL_cd45abf12b924aadaa4ca168fb342b32" + ], + "layout": "IPY_MODEL_e32a9b21d20e4c7ab7154b83fa704c3c" + } + }, + "758ca14ecd3041f5b7cc0bb4ba2e53ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e15aee7358cf438795b74fe73d5965f0", + "placeholder": "​", + "style": "IPY_MODEL_a337884066234400b250e0106f5d2763", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "78a77f1f288c4706bdf77e8eea4251ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7ea6bf3653394f8fa83760d9a42d80ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2787,7 +2625,7 @@ "description_width": "" } }, - "75b825fc1b5c46268b1249b647447b96": { + "7f2b77ab39c6498daef5f1d747585a10": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2839,7 +2677,50 @@ "width": null } }, - "761759e156924ef8a405f9f2e99cf14e": { + "7f39460dd5cd4e7cbab6c631e058f3ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4605067a7e6e43ea916d164ff5775306", + "placeholder": "​", + "style": "IPY_MODEL_922455f6179e43acb7543e7d18598bb6", + "value": " 466k/466k [00:00<00:00, 5.71MB/s]" + } + }, + "81c48d5732a740e2b143cf9bab71a7cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_925694d9722549a19852537221319045", + "IPY_MODEL_99ccfd8bb9164efa845a660fa1eb8a2f", + "IPY_MODEL_d51bec43027b428c8606e547d863294c" + ], + "layout": "IPY_MODEL_c7f79c3d51514b609a6b2a89d1e556c5" + } + }, + "85e3974cdd3b40e29c87a33b18c4b9ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2891,7 +2772,101 @@ "width": null } }, - "783e9c2ed3e247c79c97ff6793846ed5": { + "880dfd43f4784a639b02df0a2cb0f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9fbc61411d9141798661295ee4ca77ff", + "IPY_MODEL_3c5c3664f0b74ea180e0abffcd5c7e1a", + "IPY_MODEL_7f39460dd5cd4e7cbab6c631e058f3ac" + ], + "layout": "IPY_MODEL_37cff2bd6e2b4534a92e84991f51dcb3" + } + }, + "8abe0ad2329246c6bc6140910e7b14fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9c2ad429c344aba961a64b69e2a33fe", + "placeholder": "​", + "style": "IPY_MODEL_3d421143c1dd47bd997217162ae9fdfc", + "value": " 232k/232k [00:00<00:00, 4.79MB/s]" + } + }, + "8c886cbc2e434c0eb49a31005017d73b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8dfb6b88699f4713966597811b191716": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f0b467505b34ca9ae083b4186ffcbeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2941fb46731b4d21ac3134fa0e6a23ce", + "placeholder": "​", + "style": "IPY_MODEL_0394a37262214974b25c1c38f05e1dc9", + "value": "Downloading: 100%" + } + }, + "8fa4f3924bf84124a48aa1f912b66fd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2943,7 +2918,157 @@ "width": null } }, - "7b7ea4293a7c474d8e23b96a2e9434ca": { + "922455f6179e43acb7543e7d18598bb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "925694d9722549a19852537221319045": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c53c105255554ee4af98caf7badff571", + "placeholder": "​", + "style": "IPY_MODEL_78a77f1f288c4706bdf77e8eea4251ba", + "value": "Downloading: 100%" + } + }, + "99ccfd8bb9164efa845a660fa1eb8a2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cfb178df251433fbf0716b1259cca1a", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c66650a2acf74100aa658e539460aa27", + "value": 391.0 + } + }, + "9a7a702003914b439c697d72d2af7b4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf844df012ce4d8788f0b8307d6a2a52", + "placeholder": "​", + "style": "IPY_MODEL_4ab8f5cd1edb41f6a7c581ed4a71738d", + "value": " 665/665 [00:00<00:00, 59.0kB/s]" + } + }, + "9cc3d6d64c5f4411b3d5dea59b3dc331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b090c95bacd8438cb58bde95987c90eb", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3960dbe609f4837a8b36d5aa7f059bf", + "value": 54245363.0 + } + }, + "9fbc61411d9141798661295ee4ca77ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85e3974cdd3b40e29c87a33b18c4b9ee", + "placeholder": "​", + "style": "IPY_MODEL_f8308e27fe8a44bea4a6973841405162", + "value": "Downloading: 100%" + } + }, + "a0eb09e56a0e4e27b073a1866d86f914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c849c9f7218450d933a79e2de015549", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_06f8ca67b67c4d81b4c4a1d390d81a82", + "value": 2211.0 + } + }, + "a2f284da700246718f0e1c4535676095": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2995,61 +3120,68 @@ "width": null } }, - "86a3dc805a0d42e28e7fdcb2f85371ab": { + "a337884066234400b250e0106f5d2763": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8ad428a31291476498dfaf06de635bf1": { + "a83d350b4ad04fc3a28b54ac9b21a6b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8c157699046a47f78d33e0d50a29f9a8": { + "abd52090cbb24fea81f9ed56c1c89930": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e8e41df345a431d916c70b503284b7e", - "IPY_MODEL_4378314d1e8d4a8db203a8a3901f84ca", - "IPY_MODEL_10ec4fe832ca4dcfb79928686bbc8d80" - ], - "layout": "IPY_MODEL_a0f148e3bda3447c86a870affbefaeb0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ad22139ef854479e809a210fb9e96991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c165fadb72b492095938608dba95ab8": { + "b090c95bacd8438cb58bde95987c90eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3101,22 +3233,7 @@ "width": null } }, - "8da630d6d266443eb341181b83b3c1c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "922a71dc4655476ca28fd5e096c17961": { + "b6a49299ab884400993f7be303857166": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3168,7 +3285,7 @@ "width": null } }, - "982b918feea9400b88173b7df82cb385": { + "b78155c7cece442a84f24adf3a554d90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3220,7 +3337,31 @@ "width": null } }, - "98cea86c64b94ce689027bc854f05de4": { + "bb5a1248bd6c4506960e4ee8150c5256": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f014b981a64048a3819b61196fd10427", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_067e575defb1480ca0d0fc47575bbcc1", + "value": 0.0 + } + }, + "be0335d44e18413db95e3366dc493e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3235,28 +3376,22 @@ "description_width": "" } }, - "98deaf6912d04123a3d98feacf9028fe": { + "bebc1804c03b490983b6ce3ad49347c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_59035e73cbd74a57a98fb2d4840f18b3", - "placeholder": "​", - "style": "IPY_MODEL_15de82d55e7f40d9ac4bd7da8e36c1e5", - "value": " 29.0/29.0 [00:00<00:00, 1.83kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a0f148e3bda3447c86a870affbefaeb0": { + "bf844df012ce4d8788f0b8307d6a2a52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3308,7 +3443,28 @@ "width": null } }, - "a191b1d30f444f098810eb3a3d44d8bb": { + "c4d4cc07bd2f46a182ad597cf7cb733c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6511652d476a437b98bddd2e704d3291", + "placeholder": "​", + "style": "IPY_MODEL_024cd14ac8414f79932720b710699bc6", + "value": "Downloading: 100%" + } + }, + "c53c105255554ee4af98caf7badff571": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3360,68 +3516,7 @@ "width": null } }, - "a5383e93c97b46edb15526061b0c0943": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed8764668cc64d0dab34895ca627cb5e", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86a3dc805a0d42e28e7fdcb2f85371ab", - "value": 231508.0 - } - }, - "a61fb3851e1f450a87d974fdf9c3e9d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_044412fd93294f9d8b1243b0d2e85be7", - "IPY_MODEL_66e91167295d42b7b0050631727606d4", - "IPY_MODEL_3507bc7287964a789739ff89055ab868" - ], - "layout": "IPY_MODEL_698d8763c736423882692af8f381b772" - } - }, - "a6fef748b933448381f05292db676b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a948abf8758f429e973c32b9b01ab242": { + "c66650a2acf74100aa658e539460aa27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3437,29 +3532,7 @@ "description_width": "" } }, - "aa105bf9378a40afb5d953bdfd505dbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_17dae8723de94ea3ac7cec3ef6ff55ec", - "IPY_MODEL_bca4ba1c8b76457aa35da26f138de632", - "IPY_MODEL_e59cd018a7d14fc493a3a85bd158a030" - ], - "layout": "IPY_MODEL_55cf0ab13b0f408789589bd22b4ce48d" - } - }, - "b78ee0ed16854a28bc9434afe67c5826": { + "c7f79c3d51514b609a6b2a89d1e556c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3511,47 +3584,28 @@ "width": null } }, - "b90337585ce14bc19287f05e3048ca00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bca4ba1c8b76457aa35da26f138de632": { + "c958de51e8b5405d830078f4c796b812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_982b918feea9400b88173b7df82cb385", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26777d3195d54fee8999477bf2ce32e3", - "value": 54245363.0 + "layout": "IPY_MODEL_b78155c7cece442a84f24adf3a554d90", + "placeholder": "​", + "style": "IPY_MODEL_be0335d44e18413db95e3366dc493e3a", + "value": " 54.2M/54.2M [00:00<00:00, 98.0MB/s]" } }, - "bcaa8998de3646f9a53d832918a594d7": { + "cd45abf12b924aadaa4ca168fb342b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3566,35 +3620,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6464758658604a06809bedf707a2b992", + "layout": "IPY_MODEL_cf202ab7aa274e00bddc503f7d0934c3", "placeholder": "​", - "style": "IPY_MODEL_fb4d2e82667f4d9e9c1af6cd496b73ca", - "value": "Downloading: 100%" - } - }, - "bd93fb501e0f4d64abf94fa1bd420fee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_be7cbe6ce0db43a981559c7b1f73223e", - "IPY_MODEL_2c1ca851e64a4415bd115cfc7907e1c3", - "IPY_MODEL_f55c43f62da64bb7a5c03ef2167b786c" - ], - "layout": "IPY_MODEL_150acb7c4e3f4bb38e65b584dc3c9e21" + "style": "IPY_MODEL_8dfb6b88699f4713966597811b191716", + "value": " 29.0/29.0 [00:00<00:00, 2.50kB/s]" } }, - "be3eb4375ffe4ecdb62b0b75a8a6d2f9": { + "cf202ab7aa274e00bddc503f7d0934c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3646,7 +3678,7 @@ "width": null } }, - "be7cbe6ce0db43a981559c7b1f73223e": { + "d2acd22d0cb245db9883946214feb341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3661,50 +3693,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d998aac1acd84ee789684d0fe03a8f70", + "layout": "IPY_MODEL_8fa4f3924bf84124a48aa1f912b66fd6", "placeholder": "​", - "style": "IPY_MODEL_e168f3d7a3014b07a0b985026901ad72", - "value": "Downloading: 100%" - } - }, - "bedf81b02e2c4f4c8a9a7c2b15b65c5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_8c886cbc2e434c0eb49a31005017d73b", + "value": " 2.21k/2.21k [00:00<00:00, 188kB/s]" } }, - "c590b3ee86934c3d9043c5c3ee93b1c4": { + "d3960dbe609f4837a8b36d5aa7f059bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bcaa8998de3646f9a53d832918a594d7", - "IPY_MODEL_144dded57a4f4152aa26a123e9743959", - "IPY_MODEL_1a0673d3c2ef4058a535d539eee60da8" - ], - "layout": "IPY_MODEL_3cd2657e03cc406a911e26ffb057df22" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c7d8daa53cbf4fadab9d794e82d6148d": { + "d51bec43027b428c8606e547d863294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3719,13 +3730,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_761759e156924ef8a405f9f2e99cf14e", + "layout": "IPY_MODEL_e837dfccff794308a27f62e443fab8da", "placeholder": "​", - "style": "IPY_MODEL_74f76e09352f4b72a527f87488e3775c", - "value": "" + "style": "IPY_MODEL_abd52090cbb24fea81f9ed56c1c89930", + "value": " 391/391 [00:00<00:00, 36.4kB/s]" } }, - "ca6a947d86494127aee19d225bc6e8d9": { + "d5924b82ac214d78bf7a23c7b998503e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3777,44 +3788,7 @@ "width": null } }, - "cd480a50df2d47ccb740466346c0cba1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c7d8daa53cbf4fadab9d794e82d6148d", - "IPY_MODEL_0e7f1d7fba3a4b269af3427750012335", - "IPY_MODEL_177e6f27c68b466eb81f9fdbbe238ea4" - ], - "layout": "IPY_MODEL_d78828e6064d4378b05757780f100727" - } - }, - "d228ec0326154f3987727d9177f051d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d2715220cda44b2c8945858c34e570a5": { + "d9c2ad429c344aba961a64b69e2a33fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3866,22 +3840,7 @@ "width": null } }, - "d51afa1788e0465d869b373305cbd57b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d70d9ecb368a4b2ba1660f571f1e31b9": { + "da08fecb508d4c38b13756b724b65037": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3933,7 +3892,7 @@ "width": null } }, - "d78828e6064d4378b05757780f100727": { + "e15aee7358cf438795b74fe73d5965f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3985,7 +3944,7 @@ "width": null } }, - "d998aac1acd84ee789684d0fe03a8f70": { + "e32a9b21d20e4c7ab7154b83fa704c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4037,7 +3996,7 @@ "width": null } }, - "da85fca276d644c68873fc4001387a74": { + "e837dfccff794308a27f62e443fab8da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4089,79 +4048,59 @@ "width": null } }, - "db2f666b978a4ee7a7f4b90c2f8ba493": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f12e1a6525348a9b4400409edb3ae82", - "placeholder": "​", - "style": "IPY_MODEL_d51afa1788e0465d869b373305cbd57b", - "value": "Downloading: 100%" - } - }, - "e1376afbb0a64c2faea5938f3a924aee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e168f3d7a3014b07a0b985026901ad72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "ea75a7e1c95141e1a48f373e55cd81b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e59cd018a7d14fc493a3a85bd158a030": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8c165fadb72b492095938608dba95ab8", - "placeholder": "​", - "style": "IPY_MODEL_e1376afbb0a64c2faea5938f3a924aee", - "value": " 54.2M/54.2M [00:00<00:00, 83.3MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ed8764668cc64d0dab34895ca627cb5e": { + "f014b981a64048a3819b61196fd10427": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4210,46 +4149,32 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "f55c43f62da64bb7a5c03ef2167b786c": { + "f194256422d04eda9aafe3848ab98800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_be3eb4375ffe4ecdb62b0b75a8a6d2f9", - "placeholder": "​", - "style": "IPY_MODEL_a6fef748b933448381f05292db676b8b", - "value": " 2.21k/2.21k [00:00<00:00, 126kB/s]" - } - }, - "fb4d2e82667f4d9e9c1af6cd496b73ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0caee2b3fa2f4a3babe89c881f0ba02c", + "IPY_MODEL_bb5a1248bd6c4506960e4ee8150c5256", + "IPY_MODEL_758ca14ecd3041f5b7cc0bb4ba2e53ba" + ], + "layout": "IPY_MODEL_400d74a5e6c54e2a8ed7d59d8b18f775" } }, - "ff9c3a60c2064d34baf6dab70f4f9c57": { + "f3943e4741cb4f7bbfec0d1d4cae67f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4300,6 +4225,81 @@ "visibility": null, "width": null } + }, + "f5c1874b31ed47f493755712b71b4e8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f8308e27fe8a44bea4a6973841405162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa4eb2ddc03e4fa1a934d298ac94c48e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f2b77ab39c6498daef5f1d747585a10", + "placeholder": "​", + "style": "IPY_MODEL_f5c1874b31ed47f493755712b71b4e8a", + "value": "Downloading: 100%" + } + }, + "fc68f8c4ad8a4bbcad0282c224941bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea75a7e1c95141e1a48f373e55cd81b6", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bd93fb0d47448a2845779b3f10e87f0", + "value": 665.0 + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 2d79518ec..d5c615f03 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:31.270346Z", - "iopub.status.busy": "2023-10-16T20:24:31.269747Z", - "iopub.status.idle": "2023-10-16T20:24:32.775771Z", - "shell.execute_reply": "2023-10-16T20:24:32.774732Z" + "iopub.execute_input": "2023-10-17T19:44:02.741468Z", + "iopub.status.busy": "2023-10-17T19:44:02.741237Z", + "iopub.status.idle": "2023-10-17T19:44:03.879184Z", + "shell.execute_reply": "2023-10-17T19:44:03.878472Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.780490Z", - "iopub.status.busy": "2023-10-16T20:24:32.779760Z", - "iopub.status.idle": "2023-10-16T20:24:32.785541Z", - "shell.execute_reply": "2023-10-16T20:24:32.784681Z" + "iopub.execute_input": "2023-10-17T19:44:03.882963Z", + "iopub.status.busy": "2023-10-17T19:44:03.882346Z", + "iopub.status.idle": "2023-10-17T19:44:03.886745Z", + "shell.execute_reply": "2023-10-17T19:44:03.886127Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.791276Z", - "iopub.status.busy": "2023-10-16T20:24:32.789802Z", - "iopub.status.idle": "2023-10-16T20:24:32.851109Z", - "shell.execute_reply": "2023-10-16T20:24:32.849775Z" + "iopub.execute_input": "2023-10-17T19:44:03.890144Z", + "iopub.status.busy": "2023-10-17T19:44:03.889886Z", + "iopub.status.idle": "2023-10-17T19:44:03.934814Z", + "shell.execute_reply": "2023-10-17T19:44:03.934166Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:24:32.855466Z", - "iopub.status.busy": "2023-10-16T20:24:32.854847Z", - "iopub.status.idle": "2023-10-16T20:25:54.201993Z", - "shell.execute_reply": "2023-10-16T20:25:54.201164Z" + "iopub.execute_input": "2023-10-17T19:44:03.938156Z", + "iopub.status.busy": "2023-10-17T19:44:03.937577Z", + "iopub.status.idle": "2023-10-17T19:44:29.417590Z", + "shell.execute_reply": "2023-10-17T19:44:29.416920Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 4c03b7cc9..06b2e67be 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -931,13 +931,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +
    -
    +
    @@ -1192,7 +1192,7 @@

    Can’t find an answer to your question?Cleanlab Github issues, Cleanlab Code Examples or our Slack Community.

    If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 59d12336e..c00076109 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:25:59.451912Z", - "iopub.status.busy": "2023-10-16T20:25:59.451598Z", - "iopub.status.idle": "2023-10-16T20:26:00.930794Z", - "shell.execute_reply": "2023-10-16T20:26:00.929613Z" + "iopub.execute_input": "2023-10-17T19:44:31.538972Z", + "iopub.status.busy": "2023-10-17T19:44:31.538752Z", + "iopub.status.idle": "2023-10-17T19:44:32.658021Z", + "shell.execute_reply": "2023-10-17T19:44:32.657339Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:00.936303Z", - "iopub.status.busy": "2023-10-16T20:26:00.935796Z", - "iopub.status.idle": "2023-10-16T20:26:00.941289Z", - "shell.execute_reply": "2023-10-16T20:26:00.939898Z" + "iopub.execute_input": "2023-10-17T19:44:32.661740Z", + "iopub.status.busy": "2023-10-17T19:44:32.661134Z", + "iopub.status.idle": "2023-10-17T19:44:32.666449Z", + "shell.execute_reply": "2023-10-17T19:44:32.665847Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:00.945332Z", - "iopub.status.busy": "2023-10-16T20:26:00.944535Z", - "iopub.status.idle": "2023-10-16T20:26:04.129603Z", - "shell.execute_reply": "2023-10-16T20:26:04.128396Z" + "iopub.execute_input": "2023-10-17T19:44:32.669748Z", + "iopub.status.busy": "2023-10-17T19:44:32.669389Z", + "iopub.status.idle": "2023-10-17T19:44:35.173730Z", + "shell.execute_reply": "2023-10-17T19:44:35.172788Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.134852Z", - "iopub.status.busy": "2023-10-16T20:26:04.133548Z", - "iopub.status.idle": "2023-10-16T20:26:04.187442Z", - "shell.execute_reply": "2023-10-16T20:26:04.186297Z" + "iopub.execute_input": "2023-10-17T19:44:35.178363Z", + "iopub.status.busy": "2023-10-17T19:44:35.177165Z", + "iopub.status.idle": "2023-10-17T19:44:35.215407Z", + "shell.execute_reply": "2023-10-17T19:44:35.214508Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.192200Z", - "iopub.status.busy": "2023-10-16T20:26:04.191580Z", - "iopub.status.idle": "2023-10-16T20:26:04.238734Z", - "shell.execute_reply": "2023-10-16T20:26:04.237557Z" + "iopub.execute_input": "2023-10-17T19:44:35.219219Z", + "iopub.status.busy": "2023-10-17T19:44:35.218814Z", + "iopub.status.idle": "2023-10-17T19:44:35.262586Z", + "shell.execute_reply": "2023-10-17T19:44:35.261679Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.243759Z", - "iopub.status.busy": "2023-10-16T20:26:04.242930Z", - "iopub.status.idle": "2023-10-16T20:26:04.249330Z", - "shell.execute_reply": "2023-10-16T20:26:04.248192Z" + "iopub.execute_input": "2023-10-17T19:44:35.266219Z", + "iopub.status.busy": "2023-10-17T19:44:35.265697Z", + "iopub.status.idle": "2023-10-17T19:44:35.270691Z", + "shell.execute_reply": "2023-10-17T19:44:35.270079Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.253146Z", - "iopub.status.busy": "2023-10-16T20:26:04.252422Z", - "iopub.status.idle": "2023-10-16T20:26:04.257399Z", - "shell.execute_reply": "2023-10-16T20:26:04.256639Z" + "iopub.execute_input": "2023-10-17T19:44:35.273502Z", + "iopub.status.busy": "2023-10-17T19:44:35.273147Z", + "iopub.status.idle": "2023-10-17T19:44:35.276466Z", + "shell.execute_reply": "2023-10-17T19:44:35.275834Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.261471Z", - "iopub.status.busy": "2023-10-16T20:26:04.260944Z", - "iopub.status.idle": "2023-10-16T20:26:04.308336Z", - "shell.execute_reply": "2023-10-16T20:26:04.307576Z" + "iopub.execute_input": "2023-10-17T19:44:35.279398Z", + "iopub.status.busy": "2023-10-17T19:44:35.279029Z", + "iopub.status.idle": "2023-10-17T19:44:35.309394Z", + "shell.execute_reply": "2023-10-17T19:44:35.308855Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d8220d3b2c814c5fbe911f780faf2a1c", + "model_id": "756fbae403f74ed6920048c0ba73cd0f", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7d3037ae05c24a73ae1bbe9519bd24e1", + "model_id": "11fd7ee3fdc34abfa910a859df2d054a", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.312040Z", - "iopub.status.busy": "2023-10-16T20:26:04.311400Z", - "iopub.status.idle": "2023-10-16T20:26:04.321064Z", - "shell.execute_reply": "2023-10-16T20:26:04.320314Z" + "iopub.execute_input": "2023-10-17T19:44:35.319630Z", + "iopub.status.busy": "2023-10-17T19:44:35.319188Z", + "iopub.status.idle": "2023-10-17T19:44:35.326456Z", + "shell.execute_reply": "2023-10-17T19:44:35.325877Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.324967Z", - "iopub.status.busy": "2023-10-16T20:26:04.324105Z", - "iopub.status.idle": "2023-10-16T20:26:04.329224Z", - "shell.execute_reply": "2023-10-16T20:26:04.328513Z" + "iopub.execute_input": "2023-10-17T19:44:35.329255Z", + "iopub.status.busy": "2023-10-17T19:44:35.328825Z", + "iopub.status.idle": "2023-10-17T19:44:35.332765Z", + "shell.execute_reply": "2023-10-17T19:44:35.332226Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.334097Z", - "iopub.status.busy": "2023-10-16T20:26:04.333153Z", - "iopub.status.idle": "2023-10-16T20:26:04.347901Z", - "shell.execute_reply": "2023-10-16T20:26:04.347018Z" + "iopub.execute_input": "2023-10-17T19:44:35.335532Z", + "iopub.status.busy": "2023-10-17T19:44:35.335088Z", + "iopub.status.idle": "2023-10-17T19:44:35.342985Z", + "shell.execute_reply": "2023-10-17T19:44:35.342452Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.352421Z", - "iopub.status.busy": "2023-10-16T20:26:04.351382Z", - "iopub.status.idle": "2023-10-16T20:26:04.399277Z", - "shell.execute_reply": "2023-10-16T20:26:04.398139Z" + "iopub.execute_input": "2023-10-17T19:44:35.345620Z", + "iopub.status.busy": "2023-10-17T19:44:35.345197Z", + "iopub.status.idle": "2023-10-17T19:44:35.383885Z", + "shell.execute_reply": "2023-10-17T19:44:35.382886Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.403928Z", - "iopub.status.busy": "2023-10-16T20:26:04.403382Z", - "iopub.status.idle": "2023-10-16T20:26:04.461790Z", - "shell.execute_reply": "2023-10-16T20:26:04.460633Z" + "iopub.execute_input": "2023-10-17T19:44:35.387936Z", + "iopub.status.busy": "2023-10-17T19:44:35.387306Z", + "iopub.status.idle": "2023-10-17T19:44:35.427482Z", + "shell.execute_reply": "2023-10-17T19:44:35.426549Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.466812Z", - "iopub.status.busy": "2023-10-16T20:26:04.466200Z", - "iopub.status.idle": "2023-10-16T20:26:04.655764Z", - "shell.execute_reply": "2023-10-16T20:26:04.653459Z" + "iopub.execute_input": "2023-10-17T19:44:35.431578Z", + "iopub.status.busy": "2023-10-17T19:44:35.431058Z", + "iopub.status.idle": "2023-10-17T19:44:35.572571Z", + "shell.execute_reply": "2023-10-17T19:44:35.571671Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:04.660266Z", - "iopub.status.busy": "2023-10-16T20:26:04.659457Z", - "iopub.status.idle": "2023-10-16T20:26:08.770251Z", - "shell.execute_reply": "2023-10-16T20:26:08.769328Z" + "iopub.execute_input": "2023-10-17T19:44:35.576467Z", + "iopub.status.busy": "2023-10-17T19:44:35.575795Z", + "iopub.status.idle": "2023-10-17T19:44:38.622272Z", + "shell.execute_reply": "2023-10-17T19:44:38.621545Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:08.774979Z", - "iopub.status.busy": "2023-10-16T20:26:08.774217Z", - "iopub.status.idle": "2023-10-16T20:26:08.869747Z", - "shell.execute_reply": "2023-10-16T20:26:08.868908Z" + "iopub.execute_input": "2023-10-17T19:44:38.626205Z", + "iopub.status.busy": "2023-10-17T19:44:38.625630Z", + "iopub.status.idle": "2023-10-17T19:44:38.699606Z", + "shell.execute_reply": "2023-10-17T19:44:38.698857Z" } }, "outputs": [ @@ -874,7 +874,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08d0646d4c69407793150546cd78aad2": { + "11fd7ee3fdc34abfa910a859df2d054a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ecc8e19a851240b2969d29e06fc36130", + "IPY_MODEL_8561962eb98144fa87e075b80118c0a7", + "IPY_MODEL_e2762ac596ab43eab4a52a44b8397452" + ], + "layout": "IPY_MODEL_8ce21929da4a46748a3a0697ab760483" + } + }, + "18eaa5434d2649049100a57e93687630": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a63762a4ec34ddea459fa86cf513f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3c292969ab664a0b94b1b05e938b20a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -889,7 +942,7 @@ "description_width": "" } }, - "111fb87108784d5a89bc7d72c978fe90": { + "40c465ea5c8e45e9979df002c7a4610c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -941,7 +994,66 @@ "width": null } }, - "157ded92336f4bc79ef43f6c91a6a616": { + "586422e6da354ca987b26c42e8a03eac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93c15d33af2d469fa052eb4c7a29b147", + "placeholder": "​", + "style": "IPY_MODEL_a21eb78be7fc46d3a8d9b212bde01212", + "value": "number of examples processed for estimating thresholds: " + } + }, + "756fbae403f74ed6920048c0ba73cd0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_586422e6da354ca987b26c42e8a03eac", + "IPY_MODEL_9f1efe099f4541c1ab6677beed9d18ee", + "IPY_MODEL_a203069a1434459082bdd8a80bd99f37" + ], + "layout": "IPY_MODEL_845b0d57c82d41dfaf2fc982eec6732e" + } + }, + "7ef0fcaa70424732a38c6d8cf54101db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "81f96a5c347f4fe6af8eb0600bcff5b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -993,43 +1105,7 @@ "width": null } }, - "28daa5e2b78f477b9bddcf4ed9d4a357": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e3240c13beae4a8d802028d32fbecfac", - "placeholder": "​", - "style": "IPY_MODEL_08d0646d4c69407793150546cd78aad2", - "value": "number of examples processed for checking labels: " - } - }, - "42bc53d96832405dbcd4e0ca6ebbd7ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6cd85045958744b5974862f36a62ac9f": { + "845b0d57c82d41dfaf2fc982eec6732e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1081,29 +1157,31 @@ "width": null } }, - "7d3037ae05c24a73ae1bbe9519bd24e1": { + "8561962eb98144fa87e075b80118c0a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28daa5e2b78f477b9bddcf4ed9d4a357", - "IPY_MODEL_a756717e52a54697987f4dc1fd2923e4", - "IPY_MODEL_a341fe9d405449a780b968648a6ad0c2" - ], - "layout": "IPY_MODEL_fd1068cac9c446618a48c42069b18d40" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_904786c2f7d24970aa1ce2434e0392e1", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a63762a4ec34ddea459fa86cf513f94", + "value": 50.0 } }, - "7f96f406c30d4994b72a099f2c7dfec6": { + "8ce21929da4a46748a3a0697ab760483": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1155,31 +1233,7 @@ "width": null } }, - "873594486f3a4ced8e4e9c977b6168f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6cd85045958744b5974862f36a62ac9f", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d4d59999a3ce41e396ec4e762fb7948e", - "value": 50.0 - } - }, - "8bddd3b38b8f42abbc742bcc4a52c0f6": { + "904786c2f7d24970aa1ce2434e0392e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1231,7 +1285,7 @@ "width": null } }, - "9084c9b6be4d49369e514ce4050f86be": { + "93c15d33af2d469fa052eb4c7a29b147": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1283,28 +1337,7 @@ "width": null } }, - "a341fe9d405449a780b968648a6ad0c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_157ded92336f4bc79ef43f6c91a6a616", - "placeholder": "​", - "style": "IPY_MODEL_42bc53d96832405dbcd4e0ca6ebbd7ce", - "value": " 10000/? [00:00<00:00, 733603.39it/s]" - } - }, - "a756717e52a54697987f4dc1fd2923e4": { + "9f1efe099f4541c1ab6677beed9d18ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1320,30 +1353,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8bddd3b38b8f42abbc742bcc4a52c0f6", + "layout": "IPY_MODEL_bfe3a3c7ae9f4b609c3f9bf9e353aa3c", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e05eb33c5a4245c9bbfa56cd0d9e02dc", + "style": "IPY_MODEL_7ef0fcaa70424732a38c6d8cf54101db", "value": 50.0 } }, - "b458c7d285764cd4993b534ad7b0a83e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bfd0ddab4d124c65909ea5617ae1fd13": { + "a203069a1434459082bdd8a80bd99f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1358,13 +1376,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7f96f406c30d4994b72a099f2c7dfec6", + "layout": "IPY_MODEL_40c465ea5c8e45e9979df002c7a4610c", "placeholder": "​", - "style": "IPY_MODEL_c916f04cfc744c09b22beb4b2f3d0d40", - "value": " 10000/? [00:00<00:00, 549352.19it/s]" + "style": "IPY_MODEL_3c292969ab664a0b94b1b05e938b20a2", + "value": " 10000/? [00:00<00:00, 872758.75it/s]" } }, - "c916f04cfc744c09b22beb4b2f3d0d40": { + "a21eb78be7fc46d3a8d9b212bde01212": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1379,61 +1397,22 @@ "description_width": "" } }, - "d4d59999a3ce41e396ec4e762fb7948e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d8220d3b2c814c5fbe911f780faf2a1c": { + "a87c0c9333674bd9960b16f2fc7f6855": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb74e6768f00493280e02754e1de3b81", - "IPY_MODEL_873594486f3a4ced8e4e9c977b6168f3", - "IPY_MODEL_bfd0ddab4d124c65909ea5617ae1fd13" - ], - "layout": "IPY_MODEL_111fb87108784d5a89bc7d72c978fe90" - } - }, - "e05eb33c5a4245c9bbfa56cd0d9e02dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e3240c13beae4a8d802028d32fbecfac": { + "b351cdfebee94168bee98acb2ea73e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1485,28 +1464,7 @@ "width": null } }, - "fb74e6768f00493280e02754e1de3b81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9084c9b6be4d49369e514ce4050f86be", - "placeholder": "​", - "style": "IPY_MODEL_b458c7d285764cd4993b534ad7b0a83e", - "value": "number of examples processed for estimating thresholds: " - } - }, - "fd1068cac9c446618a48c42069b18d40": { + "bfe3a3c7ae9f4b609c3f9bf9e353aa3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1557,6 +1515,48 @@ "visibility": null, "width": null } + }, + "e2762ac596ab43eab4a52a44b8397452": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b351cdfebee94168bee98acb2ea73e5b", + "placeholder": "​", + "style": "IPY_MODEL_a87c0c9333674bd9960b16f2fc7f6855", + "value": " 10000/? [00:00<00:00, 1080588.43it/s]" + } + }, + "ecc8e19a851240b2969d29e06fc36130": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81f96a5c347f4fe6af8eb0600bcff5b0", + "placeholder": "​", + "style": "IPY_MODEL_18eaa5434d2649049100a57e93687630", + "value": "number of examples processed for checking labels: " + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index bf613315d..2e9b21295 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -873,19 +873,19 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1263,7 +1263,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -100%|██████████| 40/40 [00:01<00:00, 38.86it/s]
    +100%|██████████| 40/40 [00:00<00:00, 43.82it/s]
     
    @@ -1314,7 +1314,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -100%|██████████| 40/40 [00:01<00:00, 38.00it/s]
    +100%|██████████| 40/40 [00:00<00:00, 44.38it/s]
     
    @@ -1365,7 +1365,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -100%|██████████| 40/40 [00:01<00:00, 37.36it/s]
    +100%|██████████| 40/40 [00:00<00:00, 43.44it/s]
     
    -
    +
    @@ -2190,35 +2190,35 @@

    Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2363,7 +2363,7 @@

    Low information images

    Here we can see a lot of low information images belong to the Sandal class.

    diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 79603576e..8f857176c 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:15.042512Z", - "iopub.status.busy": "2023-10-16T20:26:15.042188Z", - "iopub.status.idle": "2023-10-16T20:26:18.307912Z", - "shell.execute_reply": "2023-10-16T20:26:18.306538Z" + "iopub.execute_input": "2023-10-17T19:44:43.852226Z", + "iopub.status.busy": "2023-10-17T19:44:43.851987Z", + "iopub.status.idle": "2023-10-17T19:44:46.377210Z", + "shell.execute_reply": "2023-10-17T19:44:46.376537Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:18.313567Z", - "iopub.status.busy": "2023-10-16T20:26:18.313021Z", - "iopub.status.idle": "2023-10-16T20:26:18.319703Z", - "shell.execute_reply": "2023-10-16T20:26:18.318938Z" + "iopub.execute_input": "2023-10-17T19:44:46.380744Z", + "iopub.status.busy": "2023-10-17T19:44:46.380368Z", + "iopub.status.idle": "2023-10-17T19:44:46.385423Z", + "shell.execute_reply": "2023-10-17T19:44:46.384840Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:18.323415Z", - "iopub.status.busy": "2023-10-16T20:26:18.322921Z", - "iopub.status.idle": "2023-10-16T20:26:40.448372Z", - "shell.execute_reply": "2023-10-16T20:26:40.447417Z" + "iopub.execute_input": "2023-10-17T19:44:46.388461Z", + "iopub.status.busy": "2023-10-17T19:44:46.387864Z", + "iopub.status.idle": "2023-10-17T19:45:02.528281Z", + "shell.execute_reply": "2023-10-17T19:45:02.527560Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "787e5a7038bc4960a390b93f6a34f154", + "model_id": "97248df699bc45e6bbe741bcbe36d76f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e442180dcef84210bf16aa84140d1f63", + "model_id": "26f6dfae73804d2fa0047c683b7635af", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e878083485642d0a0093c1afb10f85f", + "model_id": "20fe4cec32c54e3591c27868cf342127", "version_major": 2, "version_minor": 0 }, @@ -211,7 +211,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d577b00c40ea49a18e1f02dc41f37490", + "model_id": "591e41fa3ea040c8a705f4307abfd2ae", "version_major": 2, "version_minor": 0 }, @@ -225,7 +225,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "028db2d980d0458e9807e4c1a05eeb8f", + "model_id": "81efecb36c164cb2b11be34203509ba3", "version_major": 2, "version_minor": 0 }, @@ -239,7 +239,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eae7eec6a08a44e2aceb8f1869c47d44", + "model_id": "4e04b76196194354b4e5bccfb0201724", "version_major": 2, "version_minor": 0 }, @@ -253,7 +253,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1fdeb94e5fa49b8a656f7ef47a08165", + "model_id": "d38073d3ca994198af28656d2f0c5807", "version_major": 2, "version_minor": 0 }, @@ -267,7 +267,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17842d9b268a478e9d1a09abfb969ba4", + "model_id": "3ce1edabfe0f437c987dbf3b5ec45ee9", "version_major": 2, "version_minor": 0 }, @@ -281,7 +281,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0abc91fbced04079b7f536d453f4bf67", + "model_id": "422885663a3c41c0af9e6d44ac0ce863", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45c4b98a6ba64ea995251a7702602c8b", + "model_id": "9983c1dc92b64131a9f2b4b854d74e07", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e744c279fed142889b0486cde9b77238", + "model_id": "54953e296f0f4c579439dca58706404b", "version_major": 2, "version_minor": 0 }, @@ -358,10 +358,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:40.453556Z", - "iopub.status.busy": "2023-10-16T20:26:40.453011Z", - "iopub.status.idle": "2023-10-16T20:26:40.459044Z", - "shell.execute_reply": "2023-10-16T20:26:40.458161Z" + "iopub.execute_input": "2023-10-17T19:45:02.531919Z", + "iopub.status.busy": "2023-10-17T19:45:02.531453Z", + "iopub.status.idle": "2023-10-17T19:45:02.535991Z", + "shell.execute_reply": "2023-10-17T19:45:02.535324Z" } }, "outputs": [ @@ -386,17 +386,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:26:40.463682Z", - "iopub.status.busy": "2023-10-16T20:26:40.463191Z", - "iopub.status.idle": "2023-10-16T20:27:02.519914Z", - "shell.execute_reply": "2023-10-16T20:27:02.518811Z" + "iopub.execute_input": "2023-10-17T19:45:02.539474Z", + "iopub.status.busy": "2023-10-17T19:45:02.539028Z", + "iopub.status.idle": "2023-10-17T19:45:18.389091Z", + "shell.execute_reply": "2023-10-17T19:45:18.388325Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fff81bd228894710a3864b437210b422", + "model_id": "a3a15abe08e543d49ea829f91cc19330", "version_major": 2, "version_minor": 0 }, @@ -434,10 +434,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:02.525059Z", - "iopub.status.busy": "2023-10-16T20:27:02.524465Z", - "iopub.status.idle": "2023-10-16T20:27:37.435196Z", - "shell.execute_reply": "2023-10-16T20:27:37.434333Z" + "iopub.execute_input": "2023-10-17T19:45:18.392969Z", + "iopub.status.busy": "2023-10-17T19:45:18.392448Z", + "iopub.status.idle": "2023-10-17T19:45:47.813621Z", + "shell.execute_reply": "2023-10-17T19:45:47.812931Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.441483Z", - "iopub.status.busy": "2023-10-16T20:27:37.440729Z", - "iopub.status.idle": "2023-10-16T20:27:37.450421Z", - "shell.execute_reply": "2023-10-16T20:27:37.449463Z" + "iopub.execute_input": "2023-10-17T19:45:47.817753Z", + "iopub.status.busy": "2023-10-17T19:45:47.817471Z", + "iopub.status.idle": "2023-10-17T19:45:47.823555Z", + "shell.execute_reply": "2023-10-17T19:45:47.822883Z" } }, "outputs": [], @@ -511,10 +511,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.455037Z", - "iopub.status.busy": "2023-10-16T20:27:37.454317Z", - "iopub.status.idle": "2023-10-16T20:27:37.461106Z", - "shell.execute_reply": "2023-10-16T20:27:37.460310Z" + "iopub.execute_input": "2023-10-17T19:45:47.826949Z", + "iopub.status.busy": "2023-10-17T19:45:47.826572Z", + "iopub.status.idle": "2023-10-17T19:45:47.831366Z", + "shell.execute_reply": "2023-10-17T19:45:47.830837Z" }, "nbsphinx": "hidden" }, @@ -651,10 +651,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.469018Z", - "iopub.status.busy": "2023-10-16T20:27:37.464524Z", - "iopub.status.idle": "2023-10-16T20:27:37.497124Z", - "shell.execute_reply": "2023-10-16T20:27:37.494523Z" + "iopub.execute_input": "2023-10-17T19:45:47.834394Z", + "iopub.status.busy": "2023-10-17T19:45:47.833922Z", + "iopub.status.idle": "2023-10-17T19:45:47.845287Z", + "shell.execute_reply": "2023-10-17T19:45:47.844756Z" }, "nbsphinx": "hidden" }, @@ -779,10 +779,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.507442Z", - "iopub.status.busy": "2023-10-16T20:27:37.504846Z", - "iopub.status.idle": "2023-10-16T20:27:37.585870Z", - "shell.execute_reply": "2023-10-16T20:27:37.584428Z" + "iopub.execute_input": "2023-10-17T19:45:47.848273Z", + "iopub.status.busy": "2023-10-17T19:45:47.847620Z", + "iopub.status.idle": "2023-10-17T19:45:47.881866Z", + "shell.execute_reply": "2023-10-17T19:45:47.881247Z" } }, "outputs": [], @@ -819,10 +819,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:27:37.591283Z", - "iopub.status.busy": "2023-10-16T20:27:37.590931Z", - "iopub.status.idle": "2023-10-16T20:28:27.673349Z", - "shell.execute_reply": "2023-10-16T20:28:27.672151Z" + "iopub.execute_input": "2023-10-17T19:45:47.885239Z", + "iopub.status.busy": "2023-10-17T19:45:47.884623Z", + "iopub.status.idle": "2023-10-17T19:46:29.513107Z", + "shell.execute_reply": "2023-10-17T19:46:29.512246Z" } }, "outputs": [ @@ -838,14 +838,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 7.517\n" + "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.233\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 7.118\n", + "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.796\n", "Computing feature embeddings ...\n" ] }, @@ -862,7 +862,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.01it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.07it/s]" ] }, { @@ -870,7 +870,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 24.99it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 31.66it/s]" ] }, { @@ -878,7 +878,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 33.83it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 35.20it/s]" ] }, { @@ -886,7 +886,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 37.15it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 40.24it/s]" ] }, { @@ -894,7 +894,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 39.37it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 43.50it/s]" ] }, { @@ -902,7 +902,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 37.88it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 45.25it/s]" ] }, { @@ -910,7 +910,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 40.12it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 46.59it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 41.45it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 47.12it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.86it/s]" + "100%|██████████| 40/40 [00:00<00:00, 43.82it/s]" ] }, { @@ -956,7 +956,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.43it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.71it/s]" ] }, { @@ -964,7 +964,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 28.31it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.79it/s]" ] }, { @@ -972,7 +972,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 35.44it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 40.45it/s]" ] }, { @@ -980,7 +980,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 39.30it/s]" + " 40%|████ | 16/40 [00:00<00:00, 40.67it/s]" ] }, { @@ -988,7 +988,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 40.58it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 43.58it/s]" ] }, { @@ -996,7 +996,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 37.92it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 45.18it/s]" ] }, { @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 39.66it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 46.58it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 41.08it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 49.40it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.83it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.47it/s]" ] }, { @@ -1042,14 +1042,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 7.506\n" + "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.298\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 7.121\n", + "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.934\n", "Computing feature embeddings ...\n" ] }, @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.14it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 25.54it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 33.34it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 34.23it/s]" + " 30%|███ | 12/40 [00:00<00:00, 40.17it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 34.15it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 43.30it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 35.65it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 45.23it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 38.52it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 44.45it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 38.66it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 45.50it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 40.25it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 48.87it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.00it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.38it/s]" ] }, { @@ -1160,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 6.91it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.35it/s]" ] }, { @@ -1168,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 23.07it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.15it/s]" ] }, { @@ -1176,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 31.94it/s]" + " 30%|███ | 12/40 [00:00<00:00, 39.62it/s]" ] }, { @@ -1184,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 32.62it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 44.02it/s]" ] }, { @@ -1192,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 36.12it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 46.37it/s]" ] }, { @@ -1200,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 39.03it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 45.39it/s]" ] }, { @@ -1208,7 +1208,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 40.35it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 46.55it/s]" ] }, { @@ -1216,15 +1216,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 40.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:01<00:00, 37.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.71it/s]" ] }, { @@ -1246,14 +1238,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 7.577\n" + "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.181\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 6.876\n", + "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.696\n", "Computing feature embeddings ...\n" ] }, @@ -1270,15 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 12%|█▎ | 5/40 [00:00<00:01, 23.50it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.98it/s]" ] }, { @@ -1286,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 32.81it/s]" + " 12%|█▎ | 5/40 [00:00<00:01, 26.34it/s]" ] }, { @@ -1294,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 37.19it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 31.13it/s]" ] }, { @@ -1302,7 +1286,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 34.70it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 37.96it/s]" ] }, { @@ -1310,7 +1294,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 37.16it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 42.97it/s]" ] }, { @@ -1318,7 +1302,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 39.73it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 45.13it/s]" ] }, { @@ -1326,7 +1310,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 41.26it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 47.03it/s]" ] }, { @@ -1334,7 +1318,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:01<00:00, 42.73it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 49.56it/s]" ] }, { @@ -1342,7 +1326,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 37.36it/s]" + "100%|██████████| 40/40 [00:00<00:00, 43.44it/s]" ] }, { @@ -1372,15 +1356,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 28.12it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.88it/s]" ] }, { @@ -1388,7 +1364,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 33.02it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 32.78it/s]" ] }, { @@ -1396,7 +1372,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 34.60it/s]" + " 30%|███ | 12/40 [00:00<00:00, 41.50it/s]" ] }, { @@ -1404,7 +1380,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 36.91it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 41.26it/s]" ] }, { @@ -1412,7 +1388,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 39.69it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 44.11it/s]" ] }, { @@ -1420,7 +1396,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 41.30it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 46.44it/s]" ] }, { @@ -1428,7 +1404,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 41.36it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 46.85it/s]" ] }, { @@ -1436,7 +1412,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:01<00:00, 38.80it/s]" + "100%|██████████| 40/40 [00:00<00:00, 44.99it/s]" ] }, { @@ -1513,10 +1489,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:27.677450Z", - "iopub.status.busy": "2023-10-16T20:28:27.676716Z", - "iopub.status.idle": "2023-10-16T20:28:27.700100Z", - "shell.execute_reply": "2023-10-16T20:28:27.699219Z" + "iopub.execute_input": "2023-10-17T19:46:29.517092Z", + "iopub.status.busy": "2023-10-17T19:46:29.516812Z", + "iopub.status.idle": "2023-10-17T19:46:29.534918Z", + "shell.execute_reply": "2023-10-17T19:46:29.534282Z" } }, "outputs": [], @@ -1541,10 +1517,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:27.704320Z", - "iopub.status.busy": "2023-10-16T20:28:27.703722Z", - "iopub.status.idle": "2023-10-16T20:28:28.494410Z", - "shell.execute_reply": "2023-10-16T20:28:28.493497Z" + "iopub.execute_input": "2023-10-17T19:46:29.538294Z", + "iopub.status.busy": "2023-10-17T19:46:29.538036Z", + "iopub.status.idle": "2023-10-17T19:46:30.184880Z", + "shell.execute_reply": "2023-10-17T19:46:30.184192Z" } }, "outputs": [], @@ -1564,10 +1540,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:28:28.500570Z", - "iopub.status.busy": "2023-10-16T20:28:28.498726Z", - "iopub.status.idle": "2023-10-16T20:32:58.142317Z", - "shell.execute_reply": "2023-10-16T20:32:58.140044Z" + "iopub.execute_input": "2023-10-17T19:46:30.188709Z", + "iopub.status.busy": "2023-10-17T19:46:30.188066Z", + "iopub.status.idle": "2023-10-17T19:50:30.786789Z", + "shell.execute_reply": "2023-10-17T19:50:30.786026Z" } }, "outputs": [ @@ -1604,7 +1580,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eff274ebfa614f09814bef0567c583c5", + "model_id": "6053beefe5384ed2bf12688bc3c18f64", "version_major": 2, "version_minor": 0 }, @@ -1643,10 +1619,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.148303Z", - "iopub.status.busy": "2023-10-16T20:32:58.146912Z", - "iopub.status.idle": "2023-10-16T20:32:58.817007Z", - "shell.execute_reply": "2023-10-16T20:32:58.816083Z" + "iopub.execute_input": "2023-10-17T19:50:30.790875Z", + "iopub.status.busy": "2023-10-17T19:50:30.789801Z", + "iopub.status.idle": "2023-10-17T19:50:31.309312Z", + "shell.execute_reply": "2023-10-17T19:50:31.308157Z" } }, "outputs": [ @@ -1818,10 +1794,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.821398Z", - "iopub.status.busy": "2023-10-16T20:32:58.820637Z", - "iopub.status.idle": "2023-10-16T20:32:58.888092Z", - "shell.execute_reply": "2023-10-16T20:32:58.887325Z" + "iopub.execute_input": "2023-10-17T19:50:31.312182Z", + "iopub.status.busy": "2023-10-17T19:50:31.311939Z", + "iopub.status.idle": "2023-10-17T19:50:31.365506Z", + "shell.execute_reply": "2023-10-17T19:50:31.364840Z" } }, "outputs": [ @@ -1925,10 +1901,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.892932Z", - "iopub.status.busy": "2023-10-16T20:32:58.892464Z", - "iopub.status.idle": "2023-10-16T20:32:58.909967Z", - "shell.execute_reply": "2023-10-16T20:32:58.908930Z" + "iopub.execute_input": "2023-10-17T19:50:31.369002Z", + "iopub.status.busy": "2023-10-17T19:50:31.368404Z", + "iopub.status.idle": "2023-10-17T19:50:31.379378Z", + "shell.execute_reply": "2023-10-17T19:50:31.378698Z" } }, "outputs": [ @@ -2058,10 +2034,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.917240Z", - "iopub.status.busy": "2023-10-16T20:32:58.916874Z", - "iopub.status.idle": "2023-10-16T20:32:58.925653Z", - "shell.execute_reply": "2023-10-16T20:32:58.924786Z" + "iopub.execute_input": "2023-10-17T19:50:31.382584Z", + "iopub.status.busy": "2023-10-17T19:50:31.381965Z", + "iopub.status.idle": "2023-10-17T19:50:31.387811Z", + "shell.execute_reply": "2023-10-17T19:50:31.387139Z" }, "nbsphinx": "hidden" }, @@ -2107,10 +2083,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:58.929888Z", - "iopub.status.busy": "2023-10-16T20:32:58.929543Z", - "iopub.status.idle": "2023-10-16T20:32:59.978263Z", - "shell.execute_reply": "2023-10-16T20:32:59.977405Z" + "iopub.execute_input": "2023-10-17T19:50:31.390584Z", + "iopub.status.busy": "2023-10-17T19:50:31.390341Z", + "iopub.status.idle": "2023-10-17T19:50:32.151375Z", + "shell.execute_reply": "2023-10-17T19:50:32.150679Z" } }, "outputs": [ @@ -2145,10 +2121,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:32:59.984055Z", - "iopub.status.busy": "2023-10-16T20:32:59.983182Z", - "iopub.status.idle": "2023-10-16T20:33:00.000194Z", - "shell.execute_reply": "2023-10-16T20:32:59.999241Z" + "iopub.execute_input": "2023-10-17T19:50:32.154981Z", + "iopub.status.busy": "2023-10-17T19:50:32.154441Z", + "iopub.status.idle": "2023-10-17T19:50:32.166753Z", + "shell.execute_reply": "2023-10-17T19:50:32.166125Z" } }, "outputs": [ @@ -2315,10 +2291,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.005879Z", - "iopub.status.busy": "2023-10-16T20:33:00.005351Z", - "iopub.status.idle": "2023-10-16T20:33:00.020278Z", - "shell.execute_reply": "2023-10-16T20:33:00.019521Z" + "iopub.execute_input": "2023-10-17T19:50:32.171211Z", + "iopub.status.busy": "2023-10-17T19:50:32.170074Z", + "iopub.status.idle": "2023-10-17T19:50:32.181030Z", + "shell.execute_reply": "2023-10-17T19:50:32.180420Z" }, "nbsphinx": "hidden" }, @@ -2394,10 +2370,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.025014Z", - "iopub.status.busy": "2023-10-16T20:33:00.024429Z", - "iopub.status.idle": "2023-10-16T20:33:00.722489Z", - "shell.execute_reply": "2023-10-16T20:33:00.721458Z" + "iopub.execute_input": "2023-10-17T19:50:32.184539Z", + "iopub.status.busy": "2023-10-17T19:50:32.184043Z", + "iopub.status.idle": "2023-10-17T19:50:32.723252Z", + "shell.execute_reply": "2023-10-17T19:50:32.722657Z" } }, "outputs": [ @@ -2434,10 +2410,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.727641Z", - "iopub.status.busy": "2023-10-16T20:33:00.727104Z", - "iopub.status.idle": "2023-10-16T20:33:00.758692Z", - "shell.execute_reply": "2023-10-16T20:33:00.757603Z" + "iopub.execute_input": "2023-10-17T19:50:32.726242Z", + "iopub.status.busy": "2023-10-17T19:50:32.725802Z", + "iopub.status.idle": "2023-10-17T19:50:32.745776Z", + "shell.execute_reply": "2023-10-17T19:50:32.745092Z" } }, "outputs": [ @@ -2594,10 +2570,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.763156Z", - "iopub.status.busy": "2023-10-16T20:33:00.762378Z", - "iopub.status.idle": "2023-10-16T20:33:00.771493Z", - "shell.execute_reply": "2023-10-16T20:33:00.770596Z" + "iopub.execute_input": "2023-10-17T19:50:32.748726Z", + "iopub.status.busy": "2023-10-17T19:50:32.748353Z", + "iopub.status.idle": "2023-10-17T19:50:32.755323Z", + "shell.execute_reply": "2023-10-17T19:50:32.754666Z" }, "nbsphinx": "hidden" }, @@ -2642,10 +2618,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:00.775746Z", - "iopub.status.busy": "2023-10-16T20:33:00.774959Z", - "iopub.status.idle": "2023-10-16T20:33:01.333698Z", - "shell.execute_reply": "2023-10-16T20:33:01.332939Z" + "iopub.execute_input": "2023-10-17T19:50:32.758074Z", + "iopub.status.busy": "2023-10-17T19:50:32.757706Z", + "iopub.status.idle": "2023-10-17T19:50:33.207433Z", + "shell.execute_reply": "2023-10-17T19:50:33.206860Z" } }, "outputs": [ @@ -2720,10 +2696,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.337767Z", - "iopub.status.busy": "2023-10-16T20:33:01.336907Z", - "iopub.status.idle": "2023-10-16T20:33:01.358702Z", - "shell.execute_reply": "2023-10-16T20:33:01.357961Z" + "iopub.execute_input": "2023-10-17T19:50:33.210654Z", + "iopub.status.busy": "2023-10-17T19:50:33.210266Z", + "iopub.status.idle": "2023-10-17T19:50:33.219917Z", + "shell.execute_reply": "2023-10-17T19:50:33.219396Z" } }, "outputs": [ @@ -2748,47 +2724,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2851,10 +2827,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.363296Z", - "iopub.status.busy": "2023-10-16T20:33:01.362595Z", - "iopub.status.idle": "2023-10-16T20:33:01.372708Z", - "shell.execute_reply": "2023-10-16T20:33:01.371934Z" + "iopub.execute_input": "2023-10-17T19:50:33.223036Z", + "iopub.status.busy": "2023-10-17T19:50:33.222679Z", + "iopub.status.idle": "2023-10-17T19:50:33.228149Z", + "shell.execute_reply": "2023-10-17T19:50:33.227625Z" }, "nbsphinx": "hidden" }, @@ -2891,10 +2867,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.378541Z", - "iopub.status.busy": "2023-10-16T20:33:01.376900Z", - "iopub.status.idle": "2023-10-16T20:33:01.689219Z", - "shell.execute_reply": "2023-10-16T20:33:01.688362Z" + "iopub.execute_input": "2023-10-17T19:50:33.231068Z", + "iopub.status.busy": "2023-10-17T19:50:33.230715Z", + "iopub.status.idle": "2023-10-17T19:50:33.419995Z", + "shell.execute_reply": "2023-10-17T19:50:33.419218Z" } }, "outputs": [ @@ -2936,10 +2912,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.695608Z", - "iopub.status.busy": "2023-10-16T20:33:01.694487Z", - "iopub.status.idle": "2023-10-16T20:33:01.709506Z", - "shell.execute_reply": "2023-10-16T20:33:01.708789Z" + "iopub.execute_input": "2023-10-17T19:50:33.423308Z", + "iopub.status.busy": "2023-10-17T19:50:33.422831Z", + "iopub.status.idle": "2023-10-17T19:50:33.432381Z", + "shell.execute_reply": "2023-10-17T19:50:33.431750Z" } }, "outputs": [ @@ -3025,10 +3001,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.713492Z", - "iopub.status.busy": "2023-10-16T20:33:01.712843Z", - "iopub.status.idle": "2023-10-16T20:33:01.988345Z", - "shell.execute_reply": "2023-10-16T20:33:01.987517Z" + "iopub.execute_input": "2023-10-17T19:50:33.435056Z", + "iopub.status.busy": "2023-10-17T19:50:33.434825Z", + "iopub.status.idle": "2023-10-17T19:50:33.625599Z", + "shell.execute_reply": "2023-10-17T19:50:33.624950Z" } }, "outputs": [ @@ -3059,10 +3035,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:01.993119Z", - "iopub.status.busy": "2023-10-16T20:33:01.992460Z", - "iopub.status.idle": "2023-10-16T20:33:01.999544Z", - "shell.execute_reply": "2023-10-16T20:33:01.998604Z" + "iopub.execute_input": "2023-10-17T19:50:33.628484Z", + "iopub.status.busy": "2023-10-17T19:50:33.628238Z", + "iopub.status.idle": "2023-10-17T19:50:33.634796Z", + "shell.execute_reply": "2023-10-17T19:50:33.634191Z" }, "nbsphinx": "hidden" }, @@ -3099,71 +3075,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0258a21ae0874580969461d8cc244062": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_06c8152b5f614f1f906f618aba288723", - "placeholder": "​", - "style": "IPY_MODEL_4d9b3d0956654525ba3b7e90b5383fb9", - "value": "Extracting data files: 100%" - } - }, - "028db2d980d0458e9807e4c1a05eeb8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1f6d141cb04645aeb38ca2e191f0b7bd", - "IPY_MODEL_8eb114175334407481f6349654bed01c", - "IPY_MODEL_8a3b140c2f9c4b20abdad2258b79bd11" - ], - "layout": "IPY_MODEL_05da681b6a374470ada9aab6acdac158" - } - }, - "033f96e60442407ca255da1f5c6e83b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_faa02cd1d3d64d619a2c4d7dce2af25f", - "placeholder": "​", - "style": "IPY_MODEL_d8dc0fb24c004d7cac179c25cc997d8c", - "value": "Generating test split: 99%" - } - }, - "0543d31b592143adade3e68e05292175": { + "019d165b01d2429cacbe4f7813ac85c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3211,11 +3123,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "05da681b6a374470ada9aab6acdac158": { + "022cfe30452e46fbb2150ee67593c88b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3267,7 +3179,7 @@ "width": null } }, - "06c8152b5f614f1f906f618aba288723": { + "072b56f48ff04360b4ec5b188d3ededf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3319,44 +3231,7 @@ "width": null } }, - "0abc91fbced04079b7f536d453f4bf67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0258a21ae0874580969461d8cc244062", - "IPY_MODEL_2bbccae7e483413d9d0f5620de0f54dd", - "IPY_MODEL_3e820b78f6254017a3b0997874adbe68" - ], - "layout": "IPY_MODEL_114a5742a1114f3ab56348ca52b15045" - } - }, - "0bb2cb9ef7dd456a99e26a4f97dc84c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "114a5742a1114f3ab56348ca52b15045": { + "08cec6fa60054d4da2dd9719a53bd337": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3408,7 +3283,7 @@ "width": null } }, - "137d2be1f8e54c1db168a2ca97cdb1c6": { + "0a628001e0254efc84dcb71a22677b14": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3460,7 +3335,22 @@ "width": null } }, - "13f27119ac314866a58d0f56f96aa224": { + "0a762e426c3d42e9afc4b64be10421ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ef7407a50d14109ba70341a2c375fbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3512,37 +3402,28 @@ "width": null } }, - "13f3a27fee9449e6a92695cb74d3e55a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "165d242331874e4d8e5d224bcc161bb2": { + "0f29d0be1ee943b79519a22594819e69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_317972a9647b494c8127802b9090e026", + "placeholder": "​", + "style": "IPY_MODEL_6fda5032f4bd4c54a86bd89dfc536e95", + "value": "100%" } }, - "172f5e5c9a3f4d7ca5af0fdaf2269757": { + "0f99d27725d04f35bd37d6436a82a1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3594,7 +3475,108 @@ "width": null } }, - "1771b683bf584f0aa32e037e3fb28624": { + "106eccb5e6354a37a0b3cddc71b87994": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13f6f9a1a9ee4b2c95f8c5fe12aeeff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40aa77ce732442d99f3766835d50ef15", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7808d0d7fda4a05b3c83ef0920bbed0", + "value": 60000.0 + } + }, + "147fd734f38e42dc99f8ec4e3ded5015": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_70ae0856d08948348ac01d1256247395", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b039540ba0140478c4043d61961442d", + "value": 8845.0 + } + }, + "1631e9496f1c4879aff4f7a60f812087": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_480ca9e6cb554748b1447a5c369b6776", + "placeholder": "​", + "style": "IPY_MODEL_2a630b4cd5cd4b64be6f1e03cb151832", + "value": " 9956/10000 [00:01<00:00, 6222.86 examples/s]" + } + }, + "198fe596b8344f48a48f197feef84abe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19977bca5ecf4ea5a50e673707fa2ae2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3646,7 +3628,7 @@ "width": null } }, - "17842d9b268a478e9d1a09abfb969ba4": { + "20fe4cec32c54e3591c27868cf342127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3661,64 +3643,22 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7cc3ff21f4324355816cbb7b1c02e407", - "IPY_MODEL_2a5f253254df41c6af1fbd118e46a610", - "IPY_MODEL_1e84937a15c641868df4087895685194" + "IPY_MODEL_5333647b032645e7803390e5d3686484", + "IPY_MODEL_147fd734f38e42dc99f8ec4e3ded5015", + "IPY_MODEL_25d1ef00a11f43dca5c5438aca73da5d" ], - "layout": "IPY_MODEL_13f27119ac314866a58d0f56f96aa224" + "layout": "IPY_MODEL_0a628001e0254efc84dcb71a22677b14" } }, - "181d950b1ff648f09dd2c13ddb17a202": { + "2305570999a44300ba405fa553d66951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f70ed9da2d854667a7885753681f800a", - "placeholder": "​", - "style": "IPY_MODEL_3131c8765cf242c487979455916e7e2c", - "value": "Computing checksums: 100%" - } - }, - "19e62619815c4f1fa0018ead85e11dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_137d2be1f8e54c1db168a2ca97cdb1c6", - "placeholder": "​", - "style": "IPY_MODEL_6133d506ff354f9f9e86a983423a5f8a", - "value": " 4.42M/4.42M [00:00<00:00, 65.0MB/s]" - } - }, - "1a10b48b86c6408194de5897770587a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", @@ -3726,67 +3666,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57ab07390f724a5d8e16586809836234", - "max": 3126.0, + "layout": "IPY_MODEL_8736f610ce2b43f0aa481a01ee87cc3a", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_38492a4972bd494893aba324ba916d0a", - "value": 3126.0 - } - }, - "1e7ed85ac36e45a99380c7e6f9329975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_d7255ebad04544d3a82a4cc388d47a6e", + "value": 4.0 } }, - "1e84937a15c641868df4087895685194": { + "236f10ffe7084936a8e0795e8cea320a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3801,37 +3689,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e62c3a504d6f4673aecf2f497ddfa294", + "layout": "IPY_MODEL_696a2adb310f4381ab5235e458276b2b", "placeholder": "​", - "style": "IPY_MODEL_230813a6faa642cdbfc120bb0b4b8a70", - "value": " 5.15k/5.15k [00:00<00:00, 290kB/s]" + "style": "IPY_MODEL_3608eb412b76457cbc46a6f68516588d", + "value": " 59980/60000 [00:15<00:00, 4398.38 examples/s]" } }, - "1f1c3856f53e452294229402927b998b": { + "248a6c65d4044cf79862c35c09284eb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8bf8cb55d51d4695bedb38d095be6f59", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e181b73508444fffbb8495cb8e241918", - "value": 60000.0 + "layout": "IPY_MODEL_4c0f987ab09b48e1b27a4d423ba21118", + "placeholder": "​", + "style": "IPY_MODEL_e778c45cc4b5494b8a6749f3ea5a049f", + "value": " 29.5k/29.5k [00:00<00:00, 2.22MB/s]" } }, - "1f6d141cb04645aeb38ca2e191f0b7bd": { + "24fb647adef44dc28832ce83097207f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3846,13 +3731,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da5a2c529fab4a6396f70f85a99da978", + "layout": "IPY_MODEL_f820166ea37d4391937e7a28ab9e7aca", "placeholder": "​", - "style": "IPY_MODEL_6647da606ac64e5faf50d29dcabd6e6d", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_256caf42630246ad98408be1337fa8d4", + "value": " 3.13k/3.13k [00:00<00:00, 328kB/s]" } }, - "230813a6faa642cdbfc120bb0b4b8a70": { + "256caf42630246ad98408be1337fa8d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3867,7 +3752,7 @@ "description_width": "" } }, - "234b4f59cde245d68f73a73fa3ca0b36": { + "25d1ef00a11f43dca5c5438aca73da5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3882,68 +3767,50 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3f5cc7fa9713475d86e437260fd8d912", + "layout": "IPY_MODEL_3a99f87095044dd1b9ecd10ceb2ca9c3", "placeholder": "​", - "style": "IPY_MODEL_e0e3eddd07ef4b3fa0c5750360e7ee2f", - "value": " 29.5k/29.5k [00:00<00:00, 1.91MB/s]" - } - }, - "2407e1f0174e4bffbeac6beddc32ff73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_e21e4ffbc43e4d51a1c7d9e797cd4c86", + "value": " 8.85k/8.85k [00:00<00:00, 994kB/s]" } }, - "2412fd7f7293416a8ab91956799fdccd": { + "26f6dfae73804d2fa0047c683b7635af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b2621bde93f4a5585c19a7c01f5ccdd", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71757e8923bc4ad88aa6953e6ec249af", - "value": 4422102.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93c670b2f439428d81cb09521e181c89", + "IPY_MODEL_4c6963e4105542d6b010d762fd47b6d1", + "IPY_MODEL_24fb647adef44dc28832ce83097207f4" + ], + "layout": "IPY_MODEL_4da09f2f55ad41d39467c39c40672ecf" } }, - "254f1e6d92014d459e928f8eba3dbbef": { + "2a630b4cd5cd4b64be6f1e03cb151832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "26f18a6d891b4ef9a88d89ffc478d85e": { + "2af6841fe82b48e1a353918d957a0cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3995,86 +3862,74 @@ "width": null } }, - "2a5f253254df41c6af1fbd118e46a610": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73c9aa2761274dbea8685e3134962bb2", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4b1f22c7eb1c4fdf8519174539430273", - "value": 5148.0 - } - }, - "2b4072ace9ca451abc7882810a6e95a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "2ed7dc1fb882441f9d0acbbd955afd13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2bbccae7e483413d9d0f5620de0f54dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7466a4bdb8c42ed8e9571f1764d884b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b96fcc9e4cdf43038d9f9f48f0cfcc4b", - "value": 4.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2d61b1e30b2f4f8ea676d42071f0af97": { + "2f7736f98a584887890e9b7955d03088": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "2d61d6bdbe6743c084e74901a0461031": { + "317972a9647b494c8127802b9090e026": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4126,7 +3981,7 @@ "width": null } }, - "2dad158353bc466eab1c6457d749889b": { + "332e64d98f5e459b956d806c1d13f6a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4178,7 +4033,28 @@ "width": null } }, - "30bbebbb9716430cb9d986799f488d69": { + "33688730cf7d495881ce4b679eada595": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d196b561a10743b2aa19a58d6e640275", + "placeholder": "​", + "style": "IPY_MODEL_8f34684271154426a41cdaa28b4a8556", + "value": " 59403/60000 [00:09<00:00, 6192.76 examples/s]" + } + }, + "3459dc816d4d4031be869f6fe2165ca7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4230,89 +4106,7 @@ "width": null } }, - "3131c8765cf242c487979455916e7e2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3534d3abf4a247f1ab536b69035719ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3636e89ad6b44a7ca58808df5a49085d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_768522dcfe15419db3658186433d513a", - "placeholder": "​", - "style": "IPY_MODEL_fc68fb4b7a89444d945bd6c12d1c2c46", - "value": "Downloading metadata: 100%" - } - }, - "37335c6e1385415990b82d1fee8b5f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38492a4972bd494893aba324ba916d0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3b22924b90db4846b8af4dcbeeefe92c": { + "347c8c436d0f4dd5a4c327acf87fa233": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4364,7 +4158,22 @@ "width": null } }, - "3dc68583162846b3985c0734b206fbfa": { + "3608eb412b76457cbc46a6f68516588d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3a99f87095044dd1b9ecd10ceb2ca9c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4416,7 +4225,7 @@ "width": null } }, - "3e820b78f6254017a3b0997874adbe68": { + "3ac2452754c143738f8ee95e440bce85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4431,13 +4240,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4cb4004215ba4979a1893ec16e617561", + "layout": "IPY_MODEL_9c90e0bbfb0a4f29bd2c849d68507294", "placeholder": "​", - "style": "IPY_MODEL_c40b2c2bd5a84ed3a310e49c56fc2499", - "value": " 4/4 [00:00<00:00, 2.56it/s]" + "style": "IPY_MODEL_f4f15e77fa90469d817fd059753fe5b6", + "value": "Downloading data: 100%" + } + }, + "3b039540ba0140478c4043d61961442d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f5cc7fa9713475d86e437260fd8d912": { + "3b1a7833aa75411fbe02690fec4ed20f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4489,7 +4314,46 @@ "width": null } }, - "45c4b98a6ba64ea995251a7702602c8b": { + "3b8c5122999044998860603f3fc073c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3cdf55e334944f73983b789b6a11a0f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9f8d712d71c45a3b0e42028c443610f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67815fc73566414d88e0a9a3f3ae4ae2", + "value": 60000.0 + } + }, + "3ce1edabfe0f437c987dbf3b5ec45ee9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4504,14 +4368,38 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f5b393ca71154dc387d5e533e9f08f46", - "IPY_MODEL_1f1c3856f53e452294229402927b998b", - "IPY_MODEL_4a2fabe4a6434a2e8b3d6a350e51c641" + "IPY_MODEL_3ac2452754c143738f8ee95e440bce85", + "IPY_MODEL_759cee69c4c1468a866dac8faf92299b", + "IPY_MODEL_79a9fb54ab3a40eb9fe3390f181dbd7c" ], - "layout": "IPY_MODEL_961ba36b6cd84a3f8dd7bb7e6bca5182" + "layout": "IPY_MODEL_a23595be90b84ea58ff99548c495e776" + } + }, + "3f22c8ae1ab54a538f98954c8b8ac383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e28aad57ba1b49ec89dea323faf0e0cb", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_caf7392ce9e14f4aa8bbafb0e65cffe8", + "value": 29515.0 } }, - "482d65abacd74a66b4d277c62def9031": { + "40aa77ce732442d99f3766835d50ef15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4563,28 +4451,44 @@ "width": null } }, - "4a2fabe4a6434a2e8b3d6a350e51c641": { + "422885663a3c41c0af9e6d44ac0ce863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_85246c7bfb9a46ae8d7a7f662ec59a4a", - "placeholder": "​", - "style": "IPY_MODEL_13f3a27fee9449e6a92695cb74d3e55a", - "value": " 59526/60000 [00:12<00:00, 4753.77 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4692a28af0743c58b9cdf9efaa515ea", + "IPY_MODEL_2305570999a44300ba405fa553d66951", + "IPY_MODEL_776d70f768d741cea5cedd03f9079a7b" + ], + "layout": "IPY_MODEL_3b1a7833aa75411fbe02690fec4ed20f" + } + }, + "45ff25849f2e4609834ee1c804dc3390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4a3c634bd4fe4b8997418336f9948d8f": { + "46cd7b397ffa480ea8d14c66a0985429": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4636,28 +4540,23 @@ "width": null } }, - "4a707367235e4ba1867e1d35b3b745ea": { + "472b0a043ae84aedbf18e6dbf6cc1e6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4a3c634bd4fe4b8997418336f9948d8f", - "placeholder": "​", - "style": "IPY_MODEL_0bb2cb9ef7dd456a99e26a4f97dc84c7", - "value": "Downloading data: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4ad3025d077b4228823874cd25bd670d": { + "480ca9e6cb554748b1447a5c369b6776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4709,23 +4608,28 @@ "width": null } }, - "4b1f22c7eb1c4fdf8519174539430273": { + "4888046b31504da2a0a23b4bfad772ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ef7407a50d14109ba70341a2c375fbc", + "placeholder": "​", + "style": "IPY_MODEL_714ec990445241a5a2d95926a759691b", + "value": "Downloading builder script: 100%" } }, - "4c9f42ea65434e55bd08b5c2bfa83197": { + "4c0f987ab09b48e1b27a4d423ba21118": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4777,7 +4681,7 @@ "width": null } }, - "4cb4004215ba4979a1893ec16e617561": { + "4c406e2ee74a4d009dd11a33c735eebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4829,91 +4733,34 @@ "width": null } }, - "4d9b3d0956654525ba3b7e90b5383fb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4e41cdaac37d40ff80567503cb52f808": { + "4c6963e4105542d6b010d762fd47b6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_69e24d46c9cc4fe4ab1e0993fbbaca59", - "placeholder": "​", - "style": "IPY_MODEL_2407e1f0174e4bffbeac6beddc32ff73", - "value": "Map (num_proc=2): 100%" + "layout": "IPY_MODEL_d6f0aa50cf5e4f25bea3fca81b0c97a9", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_886931a1576f40858f3408246dde08ad", + "value": 3126.0 } }, - "4e45952280b74d75b11331999e645dad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_482d65abacd74a66b4d277c62def9031", - "placeholder": "​", - "style": "IPY_MODEL_61d4098e90c94382b004bc0644bcfcf5", - "value": " 59780/60000 [00:21<00:00, 3420.51 examples/s]" - } - }, - "4f1219b7e98345c6ba126db4bd32f044": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3dc68583162846b3985c0734b206fbfa", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4fa59cba1dc4b0ebbbd759fb3deb6b3", - "value": 4833.0 - } - }, - "50821ad3594f48edb5ec9a4edff2249f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4da09f2f55ad41d39467c39c40672ecf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4962,44 +4809,77 @@ "width": null } }, - "527a6a2d3baa4b989dfc13f7720392bf": { + "4db4d76ab31848d59041218744251e4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aac2b7e701d240f9b2bd7965d5410c5c", - "placeholder": "​", - "style": "IPY_MODEL_8889138156ab43d88d810c0ecb8b484f", - "value": " 8.85k/8.85k [00:00<00:00, 577kB/s]" + "layout": "IPY_MODEL_19977bca5ecf4ea5a50e673707fa2ae2", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee02d606b7824ddebceb7031f6887f6a", + "value": 4422102.0 } }, - "532386f35f864457af8ab55fc066c8e4": { + "4e04b76196194354b4e5bccfb0201724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aad26a4731d476b85a669f866c81799", + "IPY_MODEL_3f22c8ae1ab54a538f98954c8b8ac383", + "IPY_MODEL_248a6c65d4044cf79862c35c09284eb6" + ], + "layout": "IPY_MODEL_8cf3711c5de3405cb219d24229e3633a" + } + }, + "51911da6bae647dfbc86762e8a398d17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_65b25af159ca48cdae7d6b80672b57a8", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe01f88233804e058e05cd52125775a8", + "value": 4833.0 } }, - "565f54a2b6794a7bb5485e3b86dc5670": { + "5333647b032645e7803390e5d3686484": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5014,13 +4894,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_26f18a6d891b4ef9a88d89ffc478d85e", + "layout": "IPY_MODEL_56dc730c4e9c42018f3bdaacd3942c31", "placeholder": "​", - "style": "IPY_MODEL_37335c6e1385415990b82d1fee8b5f96", - "value": "100%" + "style": "IPY_MODEL_f4cc015eaf7d4839a03a9fa886cc4bad", + "value": "Downloading readme: 100%" } }, - "569460658d9e4369b9e526153bf35f8b": { + "5409da599e5b4b6b9eafe463384b2e80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5035,7 +4915,29 @@ "description_width": "" } }, - "57ab07390f724a5d8e16586809836234": { + "54953e296f0f4c579439dca58706404b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e17c02b33ca48738d58e864c1d9aa70", + "IPY_MODEL_888b64f8845b41ecb4dc7fb2db3ef9bc", + "IPY_MODEL_1631e9496f1c4879aff4f7a60f812087" + ], + "layout": "IPY_MODEL_019d165b01d2429cacbe4f7813ac85c3" + } + }, + "54cd4f61f9ac4823ad1a291a5c83044d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5087,23 +4989,7 @@ "width": null } }, - "58a429f8b1d549978ea7f80a8eb60e0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fd72aca2a224e22a1ac57e9aa2f6fe5": { + "56dc730c4e9c42018f3bdaacd3942c31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5155,58 +5041,7 @@ "width": null } }, - "6133d506ff354f9f9e86a983423a5f8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6134b8f53ada40528440dd5908efa45e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a2b4d5f077fd45a186f58e3df41d69d5", - "placeholder": "​", - "style": "IPY_MODEL_165d242331874e4d8e5d224bcc161bb2", - "value": "Downloading readme: 100%" - } - }, - "61d4098e90c94382b004bc0644bcfcf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6245639120b0483aa611089003eef510": { + "56df5f0afd084f92bf02497e3c102cfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5258,46 +5093,44 @@ "width": null } }, - "642474d896014495a314b6c00cb77413": { + "5876f44043c744899a59078a628faf07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7f7f6609eb0442d583585ec877071c86", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9208db7b7aa4f3b84cf542e2039aff5", - "value": 10000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6647da606ac64e5faf50d29dcabd6e6d": { + "591e41fa3ea040c8a705f4307abfd2ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d12f5d3dc3e84996a3ee898dae525955", + "IPY_MODEL_7ddc64f41ef348bab5491cc2d2e74512", + "IPY_MODEL_a5971c7bb5be4514a67654690cf9f66e" + ], + "layout": "IPY_MODEL_6bd40464a3ac4d009eb978e40ec47d87" } }, - "6968644c8b774b0dbe4c244586ac49a3": { + "5ae98d025b634902a73fbe2579dad0be": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5349,7 +5182,29 @@ "width": null } }, - "69e24d46c9cc4fe4ab1e0993fbbaca59": { + "6053beefe5384ed2bf12688bc3c18f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f29d0be1ee943b79519a22594819e69", + "IPY_MODEL_7dfedd884b7645dabf9969ae793b7af6", + "IPY_MODEL_c11f5038837c4f2db8e886ed7f154147" + ], + "layout": "IPY_MODEL_9f6b4a8fdcc14cffa0979831efc2b7e4" + } + }, + "65b25af159ca48cdae7d6b80672b57a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5401,7 +5256,23 @@ "width": null } }, - "6df5536e3791482eb99c22331cee2b09": { + "67815fc73566414d88e0a9a3f3ae4ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "696a2adb310f4381ab5235e458276b2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5453,7 +5324,7 @@ "width": null } }, - "701696342d8e4b6dbb4dc2e3612da341": { + "6bd40464a3ac4d009eb978e40ec47d87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5505,44 +5376,22 @@ "width": null } }, - "71757e8923bc4ad88aa6953e6ec249af": { + "6fda5032f4bd4c54a86bd89dfc536e95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "72f0cb41ae434a448da25b88d16cc771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5fd72aca2a224e22a1ac57e9aa2f6fe5", - "placeholder": "​", - "style": "IPY_MODEL_cf72a2b568c44589a367992c7de5824d", - "value": "Downloading builder script: 100%" - } - }, - "73c9aa2761274dbea8685e3134962bb2": { + "70ae0856d08948348ac01d1256247395": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5594,7 +5443,7 @@ "width": null } }, - "743eb12abdb14b85b8b9cd9a46177d7b": { + "70ae94336b394094aecb02e213ded254": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5646,11 +5495,138 @@ "width": null } }, - "768522dcfe15419db3658186433d513a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { + "714ec990445241a5a2d95926a759691b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7202c3cc1ae64c93bfed3ee023701355": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7218ee2960494c5a9c0ba90ce4fe7300": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "759cee69c4c1468a866dac8faf92299b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46cd7b397ffa480ea8d14c66a0985429", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_106eccb5e6354a37a0b3cddc71b87994", + "value": 5148.0 + } + }, + "776d70f768d741cea5cedd03f9079a7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54cd4f61f9ac4823ad1a291a5c83044d", + "placeholder": "​", + "style": "IPY_MODEL_c91678e4a81e4f39a98c66a17f4aa3c0", + "value": " 4/4 [00:00<00:00, 2.78it/s]" + } + }, + "79a9fb54ab3a40eb9fe3390f181dbd7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aaa287f9be84485a955394a61d59745e", + "placeholder": "​", + "style": "IPY_MODEL_da87c56641b14a93b42be5ceb6441b0c", + "value": " 5.15k/5.15k [00:00<00:00, 460kB/s]" + } + }, + "7b2a576efcd2435cb06181caa5deb935": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7bd5a377dc10484d85b8b91afd8e7d59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", @@ -5698,29 +5674,31 @@ "width": null } }, - "787e5a7038bc4960a390b93f6a34f154": { + "7ddc64f41ef348bab5491cc2d2e74512": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72f0cb41ae434a448da25b88d16cc771", - "IPY_MODEL_4f1219b7e98345c6ba126db4bd32f044", - "IPY_MODEL_f9afb966d39547ffbb9d6ed4703312fb" - ], - "layout": "IPY_MODEL_3b22924b90db4846b8af4dcbeeefe92c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f99d27725d04f35bd37d6436a82a1bf", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_472b0a043ae84aedbf18e6dbf6cc1e6d", + "value": 4.0 } }, - "7ab1bd10a19b4366953d86aa78081ed6": { + "7dfedd884b7645dabf9969ae793b7af6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5733,18 +5711,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_172f5e5c9a3f4d7ca5af0fdaf2269757", + "layout": "IPY_MODEL_2ed7dc1fb882441f9d0acbbd955afd13", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2d61b1e30b2f4f8ea676d42071f0af97", + "style": "IPY_MODEL_7b2a576efcd2435cb06181caa5deb935", "value": 60000.0 } }, - "7b2621bde93f4a5585c19a7c01f5ccdd": { + "8028351f2e8043af8734e73f26c855ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5796,28 +5774,81 @@ "width": null } }, - "7cc3ff21f4324355816cbb7b1c02e407": { + "81efecb36c164cb2b11be34203509ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_93faf8bedd5a4c08b8adbab43406d184", - "placeholder": "​", - "style": "IPY_MODEL_a5c40c29f5da4efa8efa47046b484d83", - "value": "Downloading data: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_88c514f6dc214486bbf5e29794385d8c", + "IPY_MODEL_fdb426ebc44744b98c41060ae9622a9f", + "IPY_MODEL_88cedd5f00424c25bd6c1af7c932add6" + ], + "layout": "IPY_MODEL_d0e3d861616e46e7911083819d199ec7" } }, - "7cda4b187c524ede81bf7275c38fb18f": { + "850394b058b44ee1b4d3b281097d50d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86aadd681ee643ed8b4315c0698ba57d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5832,7 +5863,59 @@ "description_width": "" } }, - "7f7f6609eb0442d583585ec877071c86": { + "86b18db49a2d4e988856013873443b00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "8736f610ce2b43f0aa481a01ee87cc3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5884,22 +5967,23 @@ "width": null } }, - "7ff49bb3b830426796c6bf3dc628df54": { + "886931a1576f40858f3408246dde08ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "82f4d43c1d894b2a871e4455cfce5d2c": { + "888b64f8845b41ecb4dc7fb2db3ef9bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5912,18 +5996,18 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", - "bar_style": "success", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_701696342d8e4b6dbb4dc2e3612da341", - "max": 60000.0, + "layout": "IPY_MODEL_347c8c436d0f4dd5a4c327acf87fa233", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_254f1e6d92014d459e928f8eba3dbbef", - "value": 60000.0 + "style": "IPY_MODEL_9ff2c6da3fdb490fb9d20cab77f0b513", + "value": 10000.0 } }, - "84070e95d85c4c378491b7a150a534ce": { + "88c514f6dc214486bbf5e29794385d8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5938,13 +6022,50 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c13dcacb07c743c59f66ec2634ee7b68", + "layout": "IPY_MODEL_2af6841fe82b48e1a353918d957a0cf6", "placeholder": "​", - "style": "IPY_MODEL_569460658d9e4369b9e526153bf35f8b", - "value": " 9937/10000 [00:02<00:00, 4863.82 examples/s]" + "style": "IPY_MODEL_ad00bf755ae84f37ab8b753bdb834d61", + "value": "Downloading data: 100%" + } + }, + "88cedd5f00424c25bd6c1af7c932add6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3e8b48a4689415d8f1af55cc9ce80ce", + "placeholder": "​", + "style": "IPY_MODEL_7202c3cc1ae64c93bfed3ee023701355", + "value": " 26.4M/26.4M [00:00<00:00, 83.7MB/s]" + } + }, + "8b9abaf439804f53b33c14b27f0aa7e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "85246c7bfb9a46ae8d7a7f662ec59a4a": { + "8cf3711c5de3405cb219d24229e3633a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5996,7 +6117,52 @@ "width": null } }, - "8889138156ab43d88d810c0ecb8b484f": { + "8d8407f8cc5749f182258cd91bf05989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebdb56c3fff44dfa9495b59ed6827c1e", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_198fe596b8344f48a48f197feef84abe", + "value": 4.0 + } + }, + "8e17c02b33ca48738d58e864c1d9aa70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56df5f0afd084f92bf02497e3c102cfc", + "placeholder": "​", + "style": "IPY_MODEL_0a762e426c3d42e9afc4b64be10421ed", + "value": "Generating test split: 100%" + } + }, + "8f34684271154426a41cdaa28b4a8556": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6011,7 +6177,7 @@ "description_width": "" } }, - "899e396ab1ce4086b96b19f25b54c76f": { + "93514b61d58b499f8f7c25a5ccb5e50c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6026,7 +6192,7 @@ "description_width": "" } }, - "8a3b140c2f9c4b20abdad2258b79bd11": { + "93c670b2f439428d81cb09521e181c89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6041,13 +6207,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ad3025d077b4228823874cd25bd670d", + "layout": "IPY_MODEL_4c406e2ee74a4d009dd11a33c735eebe", "placeholder": "​", - "style": "IPY_MODEL_7cda4b187c524ede81bf7275c38fb18f", - "value": " 26.4M/26.4M [00:00<00:00, 78.0MB/s]" + "style": "IPY_MODEL_3b8c5122999044998860603f3fc073c2", + "value": "Downloading metadata: 100%" } }, - "8bf8cb55d51d4695bedb38d095be6f59": { + "94f6e1ffe6424540b2ee3d6b6a870c6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6099,7 +6265,7 @@ "width": null } }, - "8e878083485642d0a0093c1afb10f85f": { + "9514eab67e674c3ebbad3eb33cb35e35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -6114,38 +6280,79 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6134b8f53ada40528440dd5908efa45e", - "IPY_MODEL_c7e9bb2f8002414db1552d880834a8d2", - "IPY_MODEL_527a6a2d3baa4b989dfc13f7720392bf" + "IPY_MODEL_cab5be801ad7401dae4fa5ae6ffd2d5b", + "IPY_MODEL_8d8407f8cc5749f182258cd91bf05989", + "IPY_MODEL_d44dfad94303426393cdfc758b373cc4" ], - "layout": "IPY_MODEL_e4014efe2e7c44a7a7038620d5af925c" + "layout": "IPY_MODEL_9db3bb480bc040ceb0dff927a7ae2f48" } }, - "8eb114175334407481f6349654bed01c": { + "97248df699bc45e6bbe741bcbe36d76f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4888046b31504da2a0a23b4bfad772ad", + "IPY_MODEL_51911da6bae647dfbc86762e8a398d17", + "IPY_MODEL_d5e4fa6955f34662a7eb48c7f4f191e1" + ], + "layout": "IPY_MODEL_70ae94336b394094aecb02e213ded254" + } + }, + "9983c1dc92b64131a9f2b4b854d74e07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d17360babfea4e738cef757cd9978d69", + "IPY_MODEL_13f6f9a1a9ee4b2c95f8c5fe12aeeff6", + "IPY_MODEL_33688730cf7d495881ce4b679eada595" + ], + "layout": "IPY_MODEL_332e64d98f5e459b956d806c1d13f6a1" + } + }, + "9aad26a4731d476b85a669f866c81799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30bbebbb9716430cb9d986799f488d69", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0d911032d3e44e39f8d0e16edd866c9", - "value": 26421880.0 + "layout": "IPY_MODEL_e6b671e63eb24a11931a89c1415dbffe", + "placeholder": "​", + "style": "IPY_MODEL_5409da599e5b4b6b9eafe463384b2e80", + "value": "Downloading data: 100%" } }, - "93beadcf27ad400dafd12739ff788219": { + "9c90e0bbfb0a4f29bd2c849d68507294": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6197,7 +6404,7 @@ "width": null } }, - "93faf8bedd5a4c08b8adbab43406d184": { + "9db3bb480bc040ceb0dff927a7ae2f48": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6249,7 +6456,7 @@ "width": null } }, - "96149419a3834898aa7a239d8cc92ff4": { + "9f6b4a8fdcc14cffa0979831efc2b7e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6301,7 +6508,23 @@ "width": null } }, - "961ba36b6cd84a3f8dd7bb7e6bca5182": { + "9ff2c6da3fdb490fb9d20cab77f0b513": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a0e2686fed9b478c8f656fe680850fa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6349,11 +6572,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "98020cf0a9cb47d3910886d94e275a38": { + "a23595be90b84ea58ff99548c495e776": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6405,49 +6628,29 @@ "width": null } }, - "9ac8dbc5c90343baa5be2ebdfea28cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7d4195f659c4d999ea32f53a5e3b1bb", - "placeholder": "​", - "style": "IPY_MODEL_d19b2e9b2b7a4899be10d620800fcd22", - "value": "Downloading data: 100%" - } - }, - "9b09a707dd0147aab0fe541a0810d4c8": { + "a3a15abe08e543d49ea829f91cc19330": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_93beadcf27ad400dafd12739ff788219", - "placeholder": "​", - "style": "IPY_MODEL_7ff49bb3b830426796c6bf3dc628df54", - "value": " 4/4 [00:00<00:00, 517.11it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f7b4a4fe36084e0d870d4e5921d2e08f", + "IPY_MODEL_3cdf55e334944f73983b789b6a11a0f3", + "IPY_MODEL_236f10ffe7084936a8e0795e8cea320a" + ], + "layout": "IPY_MODEL_86b18db49a2d4e988856013873443b00" } }, - "9c6b759342544baebf332586bef22365": { + "a3e8b48a4689415d8f1af55cc9ce80ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6499,29 +6702,28 @@ "width": null } }, - "9cce69b734d7471091b99818ba175177": { + "a5971c7bb5be4514a67654690cf9f66e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_181d950b1ff648f09dd2c13ddb17a202", - "IPY_MODEL_a0203286fd7f416a8bdcf4472dfee61d", - "IPY_MODEL_9b09a707dd0147aab0fe541a0810d4c8" - ], - "layout": "IPY_MODEL_9c6b759342544baebf332586bef22365" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_022cfe30452e46fbb2150ee67593c88b", + "placeholder": "​", + "style": "IPY_MODEL_bcbcc5ab2d394963a8ca2b7d0cd6bf65", + "value": " 4/4 [00:03<00:00, 1.31it/s]" } }, - "9ef3770a7bb0451b9ab2be53321fc418": { + "aa396543f32b46e581e2d583c2643e84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6536,31 +6738,7 @@ "description_width": "" } }, - "a0203286fd7f416a8bdcf4472dfee61d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1771b683bf584f0aa32e037e3fb28624", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dd21b5477dc74afc9631f6cb016c81b3", - "value": 4.0 - } - }, - "a2b4d5f077fd45a186f58e3df41d69d5": { + "aaa287f9be84485a955394a61d59745e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6612,22 +6790,7 @@ "width": null } }, - "a39ec2d73c184ff19b62a66ce5df99a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a5c40c29f5da4efa8efa47046b484d83": { + "ad00bf755ae84f37ab8b753bdb834d61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6642,71 +6805,28 @@ "description_width": "" } }, - "a61de5b8a6f24153ba4d6810f25dd82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e7ed85ac36e45a99380c7e6f9329975", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_532386f35f864457af8ab55fc066c8e4", - "value": 4.0 - } - }, - "a9208db7b7aa4f3b84cf542e2039aff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9c78f14cac74bacbc3e68ed1c79de24": { + "b60d399f1a75481788bd11a8967cf030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6968644c8b774b0dbe4c244586ac49a3", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_58a429f8b1d549978ea7f80a8eb60e0c", - "value": 29515.0 + "layout": "IPY_MODEL_94f6e1ffe6424540b2ee3d6b6a870c6c", + "placeholder": "​", + "style": "IPY_MODEL_2f7736f98a584887890e9b7955d03088", + "value": "Downloading data: 100%" } }, - "aac2b7e701d240f9b2bd7965d5410c5c": { + "b9f8d712d71c45a3b0e42028c443610f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6758,7 +6878,64 @@ "width": null } }, - "ae05e4054f3d43f1a90b447efc96ce37": { + "bcbcc5ab2d394963a8ca2b7d0cd6bf65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "be2eb5aab4f74575b3957f3db67c7fe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_850394b058b44ee1b4d3b281097d50d3", + "placeholder": "​", + "style": "IPY_MODEL_aa396543f32b46e581e2d583c2643e84", + "value": " 4.42M/4.42M [00:00<00:00, 30.8MB/s]" + } + }, + "c11f5038837c4f2db8e886ed7f154147": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8028351f2e8043af8734e73f26c855ca", + "placeholder": "​", + "style": "IPY_MODEL_45ff25849f2e4609834ee1c804dc3390", + "value": " 60000/60000 [00:48<00:00, 1185.87it/s]" + } + }, + "c2bf7bab27e64439bf2d020dc145208b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6806,11 +6983,99 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "b0d911032d3e44e39f8d0e16edd866c9": { + "c4692a28af0743c58b9cdf9efaa515ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7bd5a377dc10484d85b8b91afd8e7d59", + "placeholder": "​", + "style": "IPY_MODEL_d9e6ac7d0c814764963f8fac0953fa3f", + "value": "Extracting data files: 100%" + } + }, + "c7808d0d7fda4a05b3c83ef0920bbed0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c7931e902b3842a7b28b8db4e0042d7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c91678e4a81e4f39a98c66a17f4aa3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cab5be801ad7401dae4fa5ae6ffd2d5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2bf7bab27e64439bf2d020dc145208b", + "placeholder": "​", + "style": "IPY_MODEL_86aadd681ee643ed8b4315c0698ba57d", + "value": "Computing checksums: 100%" + } + }, + "caf7392ce9e14f4aa8bbafb0e65cffe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6826,7 +7091,7 @@ "description_width": "" } }, - "b3fdb0983bfd48109baf9e34b1435dee": { + "d07e49bb6aa14766b2947f15a212089e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6878,28 +7143,7 @@ "width": null } }, - "b5ea62fc18734dc390ab5f6d7e7d7bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_743eb12abdb14b85b8b9cd9a46177d7b", - "placeholder": "​", - "style": "IPY_MODEL_a39ec2d73c184ff19b62a66ce5df99a8", - "value": " 60000/60000 [01:04<00:00, 917.68it/s]" - } - }, - "b8d3185892fb4fd18aaf97a9be2fb0ad": { + "d0e3d861616e46e7911083819d199ec7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6951,23 +7195,28 @@ "width": null } }, - "b96fcc9e4cdf43038d9f9f48f0cfcc4b": { + "d12f5d3dc3e84996a3ee898dae525955": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ae98d025b634902a73fbe2579dad0be", + "placeholder": "​", + "style": "IPY_MODEL_c7931e902b3842a7b28b8db4e0042d7e", + "value": "Downloading data files: 100%" } }, - "bbdea4357ae64e62aac2a09377932011": { + "d17360babfea4e738cef757cd9978d69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6982,13 +7231,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_98020cf0a9cb47d3910886d94e275a38", + "layout": "IPY_MODEL_08cec6fa60054d4da2dd9719a53bd337", "placeholder": "​", - "style": "IPY_MODEL_2b4072ace9ca451abc7882810a6e95a3", - "value": " 3.13k/3.13k [00:00<00:00, 235kB/s]" + "style": "IPY_MODEL_93514b61d58b499f8f7c25a5ccb5e50c", + "value": "Generating train split: 99%" } }, - "c13dcacb07c743c59f66ec2634ee7b68": { + "d196b561a10743b2aa19a58d6e640275": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7040,129 +7289,71 @@ "width": null } }, - "c40b2c2bd5a84ed3a310e49c56fc2499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c752b95488964f508f5fe027bbfde3e5": { + "d38073d3ca994198af28656d2f0c5807": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b60d399f1a75481788bd11a8967cf030", + "IPY_MODEL_4db4d76ab31848d59041218744251e4e", + "IPY_MODEL_be2eb5aab4f74575b3957f3db67c7fe8" + ], + "layout": "IPY_MODEL_3459dc816d4d4031be869f6fe2165ca7" } }, - "c7e9bb2f8002414db1552d880834a8d2": { + "d44dfad94303426393cdfc758b373cc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4c9f42ea65434e55bd08b5c2bfa83197", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c752b95488964f508f5fe027bbfde3e5", - "value": 8845.0 - } - }, - "cf72a2b568c44589a367992c7de5824d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d11ef6b8b7cf425ebb2e5dcd0ad6bb90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d19b2e9b2b7a4899be10d620800fcd22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_d07e49bb6aa14766b2947f15a212089e", + "placeholder": "​", + "style": "IPY_MODEL_eee0e10800a041c3abb7e87ff783701a", + "value": " 4/4 [00:00<00:00, 632.74it/s]" } }, - "d577b00c40ea49a18e1f02dc41f37490": { + "d5e4fa6955f34662a7eb48c7f4f191e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea1a133501004ad8bc5b9199d4db8229", - "IPY_MODEL_a61de5b8a6f24153ba4d6810f25dd82e", - "IPY_MODEL_f810bd4a1be24f7592f2e0753246bf1a" - ], - "layout": "IPY_MODEL_96149419a3834898aa7a239d8cc92ff4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0e2686fed9b478c8f656fe680850fa1", + "placeholder": "​", + "style": "IPY_MODEL_5876f44043c744899a59078a628faf07", + "value": " 4.83k/4.83k [00:00<00:00, 402kB/s]" } }, - "d7d4195f659c4d999ea32f53a5e3b1bb": { + "d6bccc5f9b9446aeb8776e0d5dd04bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7211,25 +7402,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "d8dc0fb24c004d7cac179c25cc997d8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "width": null } }, - "da5a2c529fab4a6396f70f85a99da978": { + "d6f0aa50cf5e4f25bea3fca81b0c97a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7281,7 +7457,7 @@ "width": null } }, - "dd21b5477dc74afc9631f6cb016c81b3": { + "d7255ebad04544d3a82a4cc388d47a6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7297,7 +7473,7 @@ "description_width": "" } }, - "e0e3eddd07ef4b3fa0c5750360e7ee2f": { + "d9e6ac7d0c814764963f8fac0953fa3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7312,45 +7488,37 @@ "description_width": "" } }, - "e181b73508444fffbb8495cb8e241918": { + "da87c56641b14a93b42be5ceb6441b0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e1fdeb94e5fa49b8a656f7ef47a08165": { + "e21e4ffbc43e4d51a1c7d9e797cd4c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a707367235e4ba1867e1d35b3b745ea", - "IPY_MODEL_2412fd7f7293416a8ab91956799fdccd", - "IPY_MODEL_19e62619815c4f1fa0018ead85e11dd0" - ], - "layout": "IPY_MODEL_b3fdb0983bfd48109baf9e34b1435dee" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e4014efe2e7c44a7a7038620d5af925c": { + "e28aad57ba1b49ec89dea323faf0e0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7402,29 +7570,7 @@ "width": null } }, - "e442180dcef84210bf16aa84140d1f63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3636e89ad6b44a7ca58808df5a49085d", - "IPY_MODEL_1a10b48b86c6408194de5897770587a9", - "IPY_MODEL_bbdea4357ae64e62aac2a09377932011" - ], - "layout": "IPY_MODEL_0543d31b592143adade3e68e05292175" - } - }, - "e62c3a504d6f4673aecf2f497ddfa294": { + "e6b671e63eb24a11931a89c1415dbffe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7476,29 +7622,22 @@ "width": null } }, - "e744c279fed142889b0486cde9b77238": { + "e778c45cc4b5494b8a6749f3ea5a049f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_033f96e60442407ca255da1f5c6e83b1", - "IPY_MODEL_642474d896014495a314b6c00cb77413", - "IPY_MODEL_84070e95d85c4c378491b7a150a534ce" - ], - "layout": "IPY_MODEL_2dad158353bc466eab1c6457d749889b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e7466a4bdb8c42ed8e9571f1764d884b": { + "ebdb56c3fff44dfa9495b59ed6827c1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7550,140 +7689,68 @@ "width": null } }, - "ea1a133501004ad8bc5b9199d4db8229": { + "ee02d606b7824ddebceb7031f6887f6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2d61d6bdbe6743c084e74901a0461031", - "placeholder": "​", - "style": "IPY_MODEL_899e396ab1ce4086b96b19f25b54c76f", - "value": "Downloading data files: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eae7eec6a08a44e2aceb8f1869c47d44": { + "eee0e10800a041c3abb7e87ff783701a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ac8dbc5c90343baa5be2ebdfea28cd0", - "IPY_MODEL_a9c78f14cac74bacbc3e68ed1c79de24", - "IPY_MODEL_234b4f59cde245d68f73a73fa3ca0b36" - ], - "layout": "IPY_MODEL_50821ad3594f48edb5ec9a4edff2249f" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "eff274ebfa614f09814bef0567c583c5": { + "f4cc015eaf7d4839a03a9fa886cc4bad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_565f54a2b6794a7bb5485e3b86dc5670", - "IPY_MODEL_82f4d43c1d894b2a871e4455cfce5d2c", - "IPY_MODEL_b5ea62fc18734dc390ab5f6d7e7d7bc6" - ], - "layout": "IPY_MODEL_6245639120b0483aa611089003eef510" - } - }, - "f46735b37d824f1ca365f5c187aeebec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "f4fa59cba1dc4b0ebbbd759fb3deb6b3": { + "f4f15e77fa90469d817fd059753fe5b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f5b393ca71154dc387d5e533e9f08f46": { + "f7b4a4fe36084e0d870d4e5921d2e08f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7698,13 +7765,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b8d3185892fb4fd18aaf97a9be2fb0ad", + "layout": "IPY_MODEL_d6bccc5f9b9446aeb8776e0d5dd04bb4", "placeholder": "​", - "style": "IPY_MODEL_3534d3abf4a247f1ab536b69035719ef", - "value": "Generating train split: 99%" + "style": "IPY_MODEL_7218ee2960494c5a9c0ba90ce4fe7300", + "value": "Map (num_proc=2): 100%" } }, - "f70ed9da2d854667a7885753681f800a": { + "f820166ea37d4391937e7a28ab9e7aca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7756,136 +7823,45 @@ "width": null } }, - "f810bd4a1be24f7592f2e0753246bf1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6df5536e3791482eb99c22331cee2b09", - "placeholder": "​", - "style": "IPY_MODEL_d11ef6b8b7cf425ebb2e5dcd0ad6bb90", - "value": " 4/4 [00:05<00:00, 1.29s/it]" - } - }, - "f9afb966d39547ffbb9d6ed4703312fb": { + "fdb426ebc44744b98c41060ae9622a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f46735b37d824f1ca365f5c187aeebec", - "placeholder": "​", - "style": "IPY_MODEL_9ef3770a7bb0451b9ab2be53321fc418", - "value": " 4.83k/4.83k [00:00<00:00, 271kB/s]" - } - }, - "faa02cd1d3d64d619a2c4d7dce2af25f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_072b56f48ff04360b4ec5b188d3ededf", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b9abaf439804f53b33c14b27f0aa7e9", + "value": 26421880.0 } }, - "fc68fb4b7a89444d945bd6c12d1c2c46": { + "fe01f88233804e058e05cd52125775a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } - }, - "fff81bd228894710a3864b437210b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4e41cdaac37d40ff80567503cb52f808", - "IPY_MODEL_7ab1bd10a19b4366953d86aa78081ed6", - "IPY_MODEL_4e45952280b74d75b11331999e645dad" - ], - "layout": "IPY_MODEL_ae05e4054f3d43f1a90b447efc96ce37" - } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 4a3bedc12..ceb4ad5ca 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:08.127201Z", - "iopub.status.busy": "2023-10-16T20:33:08.126898Z", - "iopub.status.idle": "2023-10-16T20:33:09.751103Z", - "shell.execute_reply": "2023-10-16T20:33:09.750189Z" + "iopub.execute_input": "2023-10-17T19:50:39.751593Z", + "iopub.status.busy": "2023-10-17T19:50:39.751375Z", + "iopub.status.idle": "2023-10-17T19:50:40.954776Z", + "shell.execute_reply": "2023-10-17T19:50:40.954088Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:09.756108Z", - "iopub.status.busy": "2023-10-16T20:33:09.755400Z", - "iopub.status.idle": "2023-10-16T20:33:10.078201Z", - "shell.execute_reply": "2023-10-16T20:33:10.076927Z" + "iopub.execute_input": "2023-10-17T19:50:40.959545Z", + "iopub.status.busy": "2023-10-17T19:50:40.958149Z", + "iopub.status.idle": "2023-10-17T19:50:41.210024Z", + "shell.execute_reply": "2023-10-17T19:50:41.209336Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.084405Z", - "iopub.status.busy": "2023-10-16T20:33:10.084072Z", - "iopub.status.idle": "2023-10-16T20:33:10.219492Z", - "shell.execute_reply": "2023-10-16T20:33:10.218611Z" + "iopub.execute_input": "2023-10-17T19:50:41.213457Z", + "iopub.status.busy": "2023-10-17T19:50:41.213196Z", + "iopub.status.idle": "2023-10-17T19:50:41.302582Z", + "shell.execute_reply": "2023-10-17T19:50:41.301916Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.223526Z", - "iopub.status.busy": "2023-10-16T20:33:10.223022Z", - "iopub.status.idle": "2023-10-16T20:33:10.530046Z", - "shell.execute_reply": "2023-10-16T20:33:10.529297Z" + "iopub.execute_input": "2023-10-17T19:50:41.305538Z", + "iopub.status.busy": "2023-10-17T19:50:41.305291Z", + "iopub.status.idle": "2023-10-17T19:50:41.546391Z", + "shell.execute_reply": "2023-10-17T19:50:41.545763Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.535044Z", - "iopub.status.busy": "2023-10-16T20:33:10.534196Z", - "iopub.status.idle": "2023-10-16T20:33:10.571783Z", - "shell.execute_reply": "2023-10-16T20:33:10.570838Z" + "iopub.execute_input": "2023-10-17T19:50:41.550075Z", + "iopub.status.busy": "2023-10-17T19:50:41.549499Z", + "iopub.status.idle": "2023-10-17T19:50:41.578378Z", + "shell.execute_reply": "2023-10-17T19:50:41.577099Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:10.576476Z", - "iopub.status.busy": "2023-10-16T20:33:10.575910Z", - "iopub.status.idle": "2023-10-16T20:33:12.677129Z", - "shell.execute_reply": "2023-10-16T20:33:12.675951Z" + "iopub.execute_input": "2023-10-17T19:50:41.581387Z", + "iopub.status.busy": "2023-10-17T19:50:41.581160Z", + "iopub.status.idle": "2023-10-17T19:50:43.185463Z", + "shell.execute_reply": "2023-10-17T19:50:43.184703Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:12.682621Z", - "iopub.status.busy": "2023-10-16T20:33:12.681472Z", - "iopub.status.idle": "2023-10-16T20:33:12.707854Z", - "shell.execute_reply": "2023-10-16T20:33:12.707036Z" + "iopub.execute_input": "2023-10-17T19:50:43.189102Z", + "iopub.status.busy": "2023-10-17T19:50:43.188534Z", + "iopub.status.idle": "2023-10-17T19:50:43.209472Z", + "shell.execute_reply": "2023-10-17T19:50:43.208647Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:12.711964Z", - "iopub.status.busy": "2023-10-16T20:33:12.711354Z", - "iopub.status.idle": "2023-10-16T20:33:14.196600Z", - "shell.execute_reply": "2023-10-16T20:33:14.195485Z" + "iopub.execute_input": "2023-10-17T19:50:43.212519Z", + "iopub.status.busy": "2023-10-17T19:50:43.212134Z", + "iopub.status.idle": "2023-10-17T19:50:44.322598Z", + "shell.execute_reply": "2023-10-17T19:50:44.321743Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.201857Z", - "iopub.status.busy": "2023-10-16T20:33:14.201282Z", - "iopub.status.idle": "2023-10-16T20:33:14.225403Z", - "shell.execute_reply": "2023-10-16T20:33:14.224411Z" + "iopub.execute_input": "2023-10-17T19:50:44.325976Z", + "iopub.status.busy": "2023-10-17T19:50:44.325608Z", + "iopub.status.idle": "2023-10-17T19:50:44.343308Z", + "shell.execute_reply": "2023-10-17T19:50:44.342613Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.230985Z", - "iopub.status.busy": "2023-10-16T20:33:14.229409Z", - "iopub.status.idle": "2023-10-16T20:33:14.364517Z", - "shell.execute_reply": "2023-10-16T20:33:14.363346Z" + "iopub.execute_input": "2023-10-17T19:50:44.346691Z", + "iopub.status.busy": "2023-10-17T19:50:44.346317Z", + "iopub.status.idle": "2023-10-17T19:50:44.435468Z", + "shell.execute_reply": "2023-10-17T19:50:44.434694Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.370330Z", - "iopub.status.busy": "2023-10-16T20:33:14.369748Z", - "iopub.status.idle": "2023-10-16T20:33:14.641057Z", - "shell.execute_reply": "2023-10-16T20:33:14.640153Z" + "iopub.execute_input": "2023-10-17T19:50:44.438641Z", + "iopub.status.busy": "2023-10-17T19:50:44.438267Z", + "iopub.status.idle": "2023-10-17T19:50:44.651386Z", + "shell.execute_reply": "2023-10-17T19:50:44.650661Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.645956Z", - "iopub.status.busy": "2023-10-16T20:33:14.645078Z", - "iopub.status.idle": "2023-10-16T20:33:14.674255Z", - "shell.execute_reply": "2023-10-16T20:33:14.673073Z" + "iopub.execute_input": "2023-10-17T19:50:44.654472Z", + "iopub.status.busy": "2023-10-17T19:50:44.654101Z", + "iopub.status.idle": "2023-10-17T19:50:44.679217Z", + "shell.execute_reply": "2023-10-17T19:50:44.678570Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.681395Z", - "iopub.status.busy": "2023-10-16T20:33:14.680600Z", - "iopub.status.idle": "2023-10-16T20:33:14.699856Z", - "shell.execute_reply": "2023-10-16T20:33:14.698860Z" + "iopub.execute_input": "2023-10-17T19:50:44.682788Z", + "iopub.status.busy": "2023-10-17T19:50:44.682251Z", + "iopub.status.idle": "2023-10-17T19:50:44.696273Z", + "shell.execute_reply": "2023-10-17T19:50:44.695681Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.704149Z", - "iopub.status.busy": "2023-10-16T20:33:14.703410Z", - "iopub.status.idle": "2023-10-16T20:33:14.838657Z", - "shell.execute_reply": "2023-10-16T20:33:14.837088Z" + "iopub.execute_input": "2023-10-17T19:50:44.699638Z", + "iopub.status.busy": "2023-10-17T19:50:44.699050Z", + "iopub.status.idle": "2023-10-17T19:50:44.800713Z", + "shell.execute_reply": "2023-10-17T19:50:44.799914Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:14.843631Z", - "iopub.status.busy": "2023-10-16T20:33:14.842890Z", - "iopub.status.idle": "2023-10-16T20:33:15.048937Z", - "shell.execute_reply": "2023-10-16T20:33:15.047879Z" + "iopub.execute_input": "2023-10-17T19:50:44.805605Z", + "iopub.status.busy": "2023-10-17T19:50:44.804279Z", + "iopub.status.idle": "2023-10-17T19:50:44.963157Z", + "shell.execute_reply": "2023-10-17T19:50:44.962417Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.053962Z", - "iopub.status.busy": "2023-10-16T20:33:15.053250Z", - "iopub.status.idle": "2023-10-16T20:33:15.061136Z", - "shell.execute_reply": "2023-10-16T20:33:15.060288Z" + "iopub.execute_input": "2023-10-17T19:50:44.966714Z", + "iopub.status.busy": "2023-10-17T19:50:44.966037Z", + "iopub.status.idle": "2023-10-17T19:50:44.972615Z", + "shell.execute_reply": "2023-10-17T19:50:44.971934Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.065369Z", - "iopub.status.busy": "2023-10-16T20:33:15.064886Z", - "iopub.status.idle": "2023-10-16T20:33:15.072899Z", - "shell.execute_reply": "2023-10-16T20:33:15.071999Z" + "iopub.execute_input": "2023-10-17T19:50:44.976557Z", + "iopub.status.busy": "2023-10-17T19:50:44.975972Z", + "iopub.status.idle": "2023-10-17T19:50:44.981729Z", + "shell.execute_reply": "2023-10-17T19:50:44.981039Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.076842Z", - "iopub.status.busy": "2023-10-16T20:33:15.076332Z", - "iopub.status.idle": "2023-10-16T20:33:15.134739Z", - "shell.execute_reply": "2023-10-16T20:33:15.133793Z" + "iopub.execute_input": "2023-10-17T19:50:44.984665Z", + "iopub.status.busy": "2023-10-17T19:50:44.984434Z", + "iopub.status.idle": "2023-10-17T19:50:45.027371Z", + "shell.execute_reply": "2023-10-17T19:50:45.026663Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.140036Z", - "iopub.status.busy": "2023-10-16T20:33:15.139205Z", - "iopub.status.idle": "2023-10-16T20:33:15.213893Z", - "shell.execute_reply": "2023-10-16T20:33:15.212824Z" + "iopub.execute_input": "2023-10-17T19:50:45.030329Z", + "iopub.status.busy": "2023-10-17T19:50:45.030097Z", + "iopub.status.idle": "2023-10-17T19:50:45.080056Z", + "shell.execute_reply": "2023-10-17T19:50:45.079383Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.218171Z", - "iopub.status.busy": "2023-10-16T20:33:15.217551Z", - "iopub.status.idle": "2023-10-16T20:33:15.353107Z", - "shell.execute_reply": "2023-10-16T20:33:15.347145Z" + "iopub.execute_input": "2023-10-17T19:50:45.083634Z", + "iopub.status.busy": "2023-10-17T19:50:45.083072Z", + "iopub.status.idle": "2023-10-17T19:50:45.178393Z", + "shell.execute_reply": "2023-10-17T19:50:45.177464Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.359640Z", - "iopub.status.busy": "2023-10-16T20:33:15.358170Z", - "iopub.status.idle": "2023-10-16T20:33:15.498654Z", - "shell.execute_reply": "2023-10-16T20:33:15.497624Z" + "iopub.execute_input": "2023-10-17T19:50:45.182233Z", + "iopub.status.busy": "2023-10-17T19:50:45.181592Z", + "iopub.status.idle": "2023-10-17T19:50:45.293459Z", + "shell.execute_reply": "2023-10-17T19:50:45.292669Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.502925Z", - "iopub.status.busy": "2023-10-16T20:33:15.502366Z", - "iopub.status.idle": "2023-10-16T20:33:15.766712Z", - "shell.execute_reply": "2023-10-16T20:33:15.765944Z" + "iopub.execute_input": "2023-10-17T19:50:45.297460Z", + "iopub.status.busy": "2023-10-17T19:50:45.296876Z", + "iopub.status.idle": "2023-10-17T19:50:45.507264Z", + "shell.execute_reply": "2023-10-17T19:50:45.506665Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:15.772912Z", - "iopub.status.busy": "2023-10-16T20:33:15.772259Z", - "iopub.status.idle": "2023-10-16T20:33:16.065241Z", - "shell.execute_reply": "2023-10-16T20:33:16.063704Z" + "iopub.execute_input": "2023-10-17T19:50:45.510403Z", + "iopub.status.busy": "2023-10-17T19:50:45.509937Z", + "iopub.status.idle": "2023-10-17T19:50:45.739414Z", + "shell.execute_reply": "2023-10-17T19:50:45.738652Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.070221Z", - "iopub.status.busy": "2023-10-16T20:33:16.069528Z", - "iopub.status.idle": "2023-10-16T20:33:16.079863Z", - "shell.execute_reply": "2023-10-16T20:33:16.079007Z" + "iopub.execute_input": "2023-10-17T19:50:45.742735Z", + "iopub.status.busy": "2023-10-17T19:50:45.742323Z", + "iopub.status.idle": "2023-10-17T19:50:45.751451Z", + "shell.execute_reply": "2023-10-17T19:50:45.750815Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.083795Z", - "iopub.status.busy": "2023-10-16T20:33:16.083000Z", - "iopub.status.idle": "2023-10-16T20:33:16.378486Z", - "shell.execute_reply": "2023-10-16T20:33:16.377505Z" + "iopub.execute_input": "2023-10-17T19:50:45.754435Z", + "iopub.status.busy": "2023-10-17T19:50:45.754082Z", + "iopub.status.idle": "2023-10-17T19:50:45.974814Z", + "shell.execute_reply": "2023-10-17T19:50:45.974166Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:16.382680Z", - "iopub.status.busy": "2023-10-16T20:33:16.382340Z", - "iopub.status.idle": "2023-10-16T20:33:18.175983Z", - "shell.execute_reply": "2023-10-16T20:33:18.174655Z" + "iopub.execute_input": "2023-10-17T19:50:45.977912Z", + "iopub.status.busy": "2023-10-17T19:50:45.977664Z", + "iopub.status.idle": "2023-10-17T19:50:47.283377Z", + "shell.execute_reply": "2023-10-17T19:50:47.282703Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 604884702..cf626c03a 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:24.202065Z", - "iopub.status.busy": "2023-10-16T20:33:24.201542Z", - "iopub.status.idle": "2023-10-16T20:33:25.701795Z", - "shell.execute_reply": "2023-10-16T20:33:25.700667Z" + "iopub.execute_input": "2023-10-17T19:50:53.308157Z", + "iopub.status.busy": "2023-10-17T19:50:53.307725Z", + "iopub.status.idle": "2023-10-17T19:50:54.433542Z", + "shell.execute_reply": "2023-10-17T19:50:54.432845Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.707560Z", - "iopub.status.busy": "2023-10-16T20:33:25.706839Z", - "iopub.status.idle": "2023-10-16T20:33:25.712975Z", - "shell.execute_reply": "2023-10-16T20:33:25.712191Z" + "iopub.execute_input": "2023-10-17T19:50:54.436993Z", + "iopub.status.busy": "2023-10-17T19:50:54.436392Z", + "iopub.status.idle": "2023-10-17T19:50:54.441188Z", + "shell.execute_reply": "2023-10-17T19:50:54.440579Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.716913Z", - "iopub.status.busy": "2023-10-16T20:33:25.716238Z", - "iopub.status.idle": "2023-10-16T20:33:25.728621Z", - "shell.execute_reply": "2023-10-16T20:33:25.727774Z" + "iopub.execute_input": "2023-10-17T19:50:54.444333Z", + "iopub.status.busy": "2023-10-17T19:50:54.443893Z", + "iopub.status.idle": "2023-10-17T19:50:54.453820Z", + "shell.execute_reply": "2023-10-17T19:50:54.453144Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.732479Z", - "iopub.status.busy": "2023-10-16T20:33:25.731817Z", - "iopub.status.idle": "2023-10-16T20:33:25.804723Z", - "shell.execute_reply": "2023-10-16T20:33:25.803382Z" + "iopub.execute_input": "2023-10-17T19:50:54.456735Z", + "iopub.status.busy": "2023-10-17T19:50:54.456371Z", + "iopub.status.idle": "2023-10-17T19:50:54.514315Z", + "shell.execute_reply": "2023-10-17T19:50:54.513630Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.809875Z", - "iopub.status.busy": "2023-10-16T20:33:25.809148Z", - "iopub.status.idle": "2023-10-16T20:33:25.838287Z", - "shell.execute_reply": "2023-10-16T20:33:25.837395Z" + "iopub.execute_input": "2023-10-17T19:50:54.518548Z", + "iopub.status.busy": "2023-10-17T19:50:54.517901Z", + "iopub.status.idle": "2023-10-17T19:50:54.543520Z", + "shell.execute_reply": "2023-10-17T19:50:54.542852Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.842741Z", - "iopub.status.busy": "2023-10-16T20:33:25.842021Z", - "iopub.status.idle": "2023-10-16T20:33:25.847708Z", - "shell.execute_reply": "2023-10-16T20:33:25.846882Z" + "iopub.execute_input": "2023-10-17T19:50:54.547009Z", + "iopub.status.busy": "2023-10-17T19:50:54.546613Z", + "iopub.status.idle": "2023-10-17T19:50:54.553232Z", + "shell.execute_reply": "2023-10-17T19:50:54.552639Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.852758Z", - "iopub.status.busy": "2023-10-16T20:33:25.852276Z", - "iopub.status.idle": "2023-10-16T20:33:25.894062Z", - "shell.execute_reply": "2023-10-16T20:33:25.892977Z" + "iopub.execute_input": "2023-10-17T19:50:54.556292Z", + "iopub.status.busy": "2023-10-17T19:50:54.555841Z", + "iopub.status.idle": "2023-10-17T19:50:54.586660Z", + "shell.execute_reply": "2023-10-17T19:50:54.585978Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.899145Z", - "iopub.status.busy": "2023-10-16T20:33:25.898485Z", - "iopub.status.idle": "2023-10-16T20:33:25.940197Z", - "shell.execute_reply": "2023-10-16T20:33:25.939208Z" + "iopub.execute_input": "2023-10-17T19:50:54.589838Z", + "iopub.status.busy": "2023-10-17T19:50:54.589221Z", + "iopub.status.idle": "2023-10-17T19:50:54.619746Z", + "shell.execute_reply": "2023-10-17T19:50:54.619090Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:25.945834Z", - "iopub.status.busy": "2023-10-16T20:33:25.945174Z", - "iopub.status.idle": "2023-10-16T20:33:28.074010Z", - "shell.execute_reply": "2023-10-16T20:33:28.072996Z" + "iopub.execute_input": "2023-10-17T19:50:54.622950Z", + "iopub.status.busy": "2023-10-17T19:50:54.622567Z", + "iopub.status.idle": "2023-10-17T19:50:56.276074Z", + "shell.execute_reply": "2023-10-17T19:50:56.275384Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.080583Z", - "iopub.status.busy": "2023-10-16T20:33:28.078460Z", - "iopub.status.idle": "2023-10-16T20:33:28.092785Z", - "shell.execute_reply": "2023-10-16T20:33:28.091921Z" + "iopub.execute_input": "2023-10-17T19:50:56.279942Z", + "iopub.status.busy": "2023-10-17T19:50:56.279035Z", + "iopub.status.idle": "2023-10-17T19:50:56.289959Z", + "shell.execute_reply": "2023-10-17T19:50:56.289236Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.098187Z", - "iopub.status.busy": "2023-10-16T20:33:28.096547Z", - "iopub.status.idle": "2023-10-16T20:33:28.121793Z", - "shell.execute_reply": "2023-10-16T20:33:28.120890Z" + "iopub.execute_input": "2023-10-17T19:50:56.292826Z", + "iopub.status.busy": "2023-10-17T19:50:56.292460Z", + "iopub.status.idle": "2023-10-17T19:50:56.308037Z", + "shell.execute_reply": "2023-10-17T19:50:56.307339Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.126778Z", - "iopub.status.busy": "2023-10-16T20:33:28.126104Z", - "iopub.status.idle": "2023-10-16T20:33:28.139740Z", - "shell.execute_reply": "2023-10-16T20:33:28.138913Z" + "iopub.execute_input": "2023-10-17T19:50:56.310888Z", + "iopub.status.busy": "2023-10-17T19:50:56.310652Z", + "iopub.status.idle": "2023-10-17T19:50:56.318347Z", + "shell.execute_reply": "2023-10-17T19:50:56.317694Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.144409Z", - "iopub.status.busy": "2023-10-16T20:33:28.143557Z", - "iopub.status.idle": "2023-10-16T20:33:28.148649Z", - "shell.execute_reply": "2023-10-16T20:33:28.147853Z" + "iopub.execute_input": "2023-10-17T19:50:56.321680Z", + "iopub.status.busy": "2023-10-17T19:50:56.321331Z", + "iopub.status.idle": "2023-10-17T19:50:56.324493Z", + "shell.execute_reply": "2023-10-17T19:50:56.323852Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.152931Z", - "iopub.status.busy": "2023-10-16T20:33:28.152173Z", - "iopub.status.idle": "2023-10-16T20:33:28.159698Z", - "shell.execute_reply": "2023-10-16T20:33:28.158941Z" + "iopub.execute_input": "2023-10-17T19:50:56.327210Z", + "iopub.status.busy": "2023-10-17T19:50:56.326858Z", + "iopub.status.idle": "2023-10-17T19:50:56.331252Z", + "shell.execute_reply": "2023-10-17T19:50:56.330588Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.164058Z", - "iopub.status.busy": "2023-10-16T20:33:28.163450Z", - "iopub.status.idle": "2023-10-16T20:33:28.168961Z", - "shell.execute_reply": "2023-10-16T20:33:28.168170Z" + "iopub.execute_input": "2023-10-17T19:50:56.334879Z", + "iopub.status.busy": "2023-10-17T19:50:56.334519Z", + "iopub.status.idle": "2023-10-17T19:50:56.337725Z", + "shell.execute_reply": "2023-10-17T19:50:56.337076Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.173447Z", - "iopub.status.busy": "2023-10-16T20:33:28.172563Z", - "iopub.status.idle": "2023-10-16T20:33:28.180871Z", - "shell.execute_reply": "2023-10-16T20:33:28.180045Z" + "iopub.execute_input": "2023-10-17T19:50:56.340446Z", + "iopub.status.busy": "2023-10-17T19:50:56.340090Z", + "iopub.status.idle": "2023-10-17T19:50:56.345344Z", + "shell.execute_reply": "2023-10-17T19:50:56.344676Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.185413Z", - "iopub.status.busy": "2023-10-16T20:33:28.184694Z", - "iopub.status.idle": "2023-10-16T20:33:28.236976Z", - "shell.execute_reply": "2023-10-16T20:33:28.236049Z" + "iopub.execute_input": "2023-10-17T19:50:56.348515Z", + "iopub.status.busy": "2023-10-17T19:50:56.348167Z", + "iopub.status.idle": "2023-10-17T19:50:56.383911Z", + "shell.execute_reply": "2023-10-17T19:50:56.383248Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:28.241875Z", - "iopub.status.busy": "2023-10-16T20:33:28.241110Z", - "iopub.status.idle": "2023-10-16T20:33:28.250085Z", - "shell.execute_reply": "2023-10-16T20:33:28.247908Z" + "iopub.execute_input": "2023-10-17T19:50:56.387234Z", + "iopub.status.busy": "2023-10-17T19:50:56.386664Z", + "iopub.status.idle": "2023-10-17T19:50:56.392667Z", + "shell.execute_reply": "2023-10-17T19:50:56.391984Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 49b7326c1..50545376d 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:33.802143Z", - "iopub.status.busy": "2023-10-16T20:33:33.801823Z", - "iopub.status.idle": "2023-10-16T20:33:35.408312Z", - "shell.execute_reply": "2023-10-16T20:33:35.407012Z" + "iopub.execute_input": "2023-10-17T19:51:01.637145Z", + "iopub.status.busy": "2023-10-17T19:51:01.636764Z", + "iopub.status.idle": "2023-10-17T19:51:02.825356Z", + "shell.execute_reply": "2023-10-17T19:51:02.824658Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.416095Z", - "iopub.status.busy": "2023-10-16T20:33:35.413791Z", - "iopub.status.idle": "2023-10-16T20:33:35.893858Z", - "shell.execute_reply": "2023-10-16T20:33:35.892616Z" + "iopub.execute_input": "2023-10-17T19:51:02.829262Z", + "iopub.status.busy": "2023-10-17T19:51:02.828759Z", + "iopub.status.idle": "2023-10-17T19:51:03.178273Z", + "shell.execute_reply": "2023-10-17T19:51:03.177569Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.898983Z", - "iopub.status.busy": "2023-10-16T20:33:35.898647Z", - "iopub.status.idle": "2023-10-16T20:33:35.920706Z", - "shell.execute_reply": "2023-10-16T20:33:35.919734Z" + "iopub.execute_input": "2023-10-17T19:51:03.182114Z", + "iopub.status.busy": "2023-10-17T19:51:03.181817Z", + "iopub.status.idle": "2023-10-17T19:51:03.199508Z", + "shell.execute_reply": "2023-10-17T19:51:03.198865Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:35.924757Z", - "iopub.status.busy": "2023-10-16T20:33:35.924255Z", - "iopub.status.idle": "2023-10-16T20:33:39.595117Z", - "shell.execute_reply": "2023-10-16T20:33:39.594263Z" + "iopub.execute_input": "2023-10-17T19:51:03.203653Z", + "iopub.status.busy": "2023-10-17T19:51:03.202412Z", + "iopub.status.idle": "2023-10-17T19:51:06.041640Z", + "shell.execute_reply": "2023-10-17T19:51:06.040874Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:39.599354Z", - "iopub.status.busy": "2023-10-16T20:33:39.598479Z", - "iopub.status.idle": "2023-10-16T20:33:42.053291Z", - "shell.execute_reply": "2023-10-16T20:33:42.052158Z" + "iopub.execute_input": "2023-10-17T19:51:06.044943Z", + "iopub.status.busy": "2023-10-17T19:51:06.044382Z", + "iopub.status.idle": "2023-10-17T19:51:07.981585Z", + "shell.execute_reply": "2023-10-17T19:51:07.980910Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:42.059225Z", - "iopub.status.busy": "2023-10-16T20:33:42.058528Z", - "iopub.status.idle": "2023-10-16T20:33:42.079906Z", - "shell.execute_reply": "2023-10-16T20:33:42.078913Z" + "iopub.execute_input": "2023-10-17T19:51:07.985407Z", + "iopub.status.busy": "2023-10-17T19:51:07.985026Z", + "iopub.status.idle": "2023-10-17T19:51:08.004381Z", + "shell.execute_reply": "2023-10-17T19:51:08.003677Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:42.084242Z", - "iopub.status.busy": "2023-10-16T20:33:42.083620Z", - "iopub.status.idle": "2023-10-16T20:33:44.205956Z", - "shell.execute_reply": "2023-10-16T20:33:44.204816Z" + "iopub.execute_input": "2023-10-17T19:51:08.007729Z", + "iopub.status.busy": "2023-10-17T19:51:08.007359Z", + "iopub.status.idle": "2023-10-17T19:51:09.631423Z", + "shell.execute_reply": "2023-10-17T19:51:09.630373Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:44.211852Z", - "iopub.status.busy": "2023-10-16T20:33:44.210468Z", - "iopub.status.idle": "2023-10-16T20:33:47.895150Z", - "shell.execute_reply": "2023-10-16T20:33:47.893843Z" + "iopub.execute_input": "2023-10-17T19:51:09.636178Z", + "iopub.status.busy": "2023-10-17T19:51:09.634967Z", + "iopub.status.idle": "2023-10-17T19:51:12.458173Z", + "shell.execute_reply": "2023-10-17T19:51:12.457485Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.899485Z", - "iopub.status.busy": "2023-10-16T20:33:47.898971Z", - "iopub.status.idle": "2023-10-16T20:33:47.907452Z", - "shell.execute_reply": "2023-10-16T20:33:47.906643Z" + "iopub.execute_input": "2023-10-17T19:51:12.461203Z", + "iopub.status.busy": "2023-10-17T19:51:12.460820Z", + "iopub.status.idle": "2023-10-17T19:51:12.467659Z", + "shell.execute_reply": "2023-10-17T19:51:12.467035Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.911790Z", - "iopub.status.busy": "2023-10-16T20:33:47.911173Z", - "iopub.status.idle": "2023-10-16T20:33:47.918851Z", - "shell.execute_reply": "2023-10-16T20:33:47.918034Z" + "iopub.execute_input": "2023-10-17T19:51:12.470982Z", + "iopub.status.busy": "2023-10-17T19:51:12.470479Z", + "iopub.status.idle": "2023-10-17T19:51:12.475478Z", + "shell.execute_reply": "2023-10-17T19:51:12.474823Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:47.923309Z", - "iopub.status.busy": "2023-10-16T20:33:47.922569Z", - "iopub.status.idle": "2023-10-16T20:33:47.928304Z", - "shell.execute_reply": "2023-10-16T20:33:47.927528Z" + "iopub.execute_input": "2023-10-17T19:51:12.478328Z", + "iopub.status.busy": "2023-10-17T19:51:12.478105Z", + "iopub.status.idle": "2023-10-17T19:51:12.482663Z", + "shell.execute_reply": "2023-10-17T19:51:12.482060Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 6801e5727..001848407 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:52.695229Z", - "iopub.status.busy": "2023-10-16T20:33:52.694919Z", - "iopub.status.idle": "2023-10-16T20:33:54.295228Z", - "shell.execute_reply": "2023-10-16T20:33:54.294358Z" + "iopub.execute_input": "2023-10-17T19:51:17.565474Z", + "iopub.status.busy": "2023-10-17T19:51:17.565097Z", + "iopub.status.idle": "2023-10-17T19:51:18.775691Z", + "shell.execute_reply": "2023-10-17T19:51:18.775022Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:54.299877Z", - "iopub.status.busy": "2023-10-16T20:33:54.299213Z", - "iopub.status.idle": "2023-10-16T20:33:57.250740Z", - "shell.execute_reply": "2023-10-16T20:33:57.248759Z" + "iopub.execute_input": "2023-10-17T19:51:18.779007Z", + "iopub.status.busy": "2023-10-17T19:51:18.778523Z", + "iopub.status.idle": "2023-10-17T19:51:22.404994Z", + "shell.execute_reply": "2023-10-17T19:51:22.403972Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.257644Z", - "iopub.status.busy": "2023-10-16T20:33:57.256665Z", - "iopub.status.idle": "2023-10-16T20:33:57.261705Z", - "shell.execute_reply": "2023-10-16T20:33:57.260842Z" + "iopub.execute_input": "2023-10-17T19:51:22.408584Z", + "iopub.status.busy": "2023-10-17T19:51:22.408130Z", + "iopub.status.idle": "2023-10-17T19:51:22.412049Z", + "shell.execute_reply": "2023-10-17T19:51:22.411388Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.265704Z", - "iopub.status.busy": "2023-10-16T20:33:57.265197Z", - "iopub.status.idle": "2023-10-16T20:33:57.275023Z", - "shell.execute_reply": "2023-10-16T20:33:57.274257Z" + "iopub.execute_input": "2023-10-17T19:51:22.415054Z", + "iopub.status.busy": "2023-10-17T19:51:22.414468Z", + "iopub.status.idle": "2023-10-17T19:51:22.422344Z", + "shell.execute_reply": "2023-10-17T19:51:22.421722Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:57.279076Z", - "iopub.status.busy": "2023-10-16T20:33:57.278395Z", - "iopub.status.idle": "2023-10-16T20:33:58.222687Z", - "shell.execute_reply": "2023-10-16T20:33:58.221887Z" + "iopub.execute_input": "2023-10-17T19:51:22.425170Z", + "iopub.status.busy": "2023-10-17T19:51:22.424736Z", + "iopub.status.idle": "2023-10-17T19:51:23.148103Z", + "shell.execute_reply": "2023-10-17T19:51:23.147427Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.226949Z", - "iopub.status.busy": "2023-10-16T20:33:58.226161Z", - "iopub.status.idle": "2023-10-16T20:33:58.236105Z", - "shell.execute_reply": "2023-10-16T20:33:58.235197Z" + "iopub.execute_input": "2023-10-17T19:51:23.153005Z", + "iopub.status.busy": "2023-10-17T19:51:23.152518Z", + "iopub.status.idle": "2023-10-17T19:51:23.159331Z", + "shell.execute_reply": "2023-10-17T19:51:23.158706Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.240122Z", - "iopub.status.busy": "2023-10-16T20:33:58.239680Z", - "iopub.status.idle": "2023-10-16T20:33:58.245728Z", - "shell.execute_reply": "2023-10-16T20:33:58.244866Z" + "iopub.execute_input": "2023-10-17T19:51:23.162023Z", + "iopub.status.busy": "2023-10-17T19:51:23.161591Z", + "iopub.status.idle": "2023-10-17T19:51:23.166021Z", + "shell.execute_reply": "2023-10-17T19:51:23.165479Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:58.250809Z", - "iopub.status.busy": "2023-10-16T20:33:58.250081Z", - "iopub.status.idle": "2023-10-16T20:33:59.121607Z", - "shell.execute_reply": "2023-10-16T20:33:59.120077Z" + "iopub.execute_input": "2023-10-17T19:51:23.169008Z", + "iopub.status.busy": "2023-10-17T19:51:23.168359Z", + "iopub.status.idle": "2023-10-17T19:51:23.854782Z", + "shell.execute_reply": "2023-10-17T19:51:23.853989Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.127191Z", - "iopub.status.busy": "2023-10-16T20:33:59.126286Z", - "iopub.status.idle": "2023-10-16T20:33:59.263013Z", - "shell.execute_reply": "2023-10-16T20:33:59.261943Z" + "iopub.execute_input": "2023-10-17T19:51:23.858413Z", + "iopub.status.busy": "2023-10-17T19:51:23.857979Z", + "iopub.status.idle": "2023-10-17T19:51:23.977196Z", + "shell.execute_reply": "2023-10-17T19:51:23.976563Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.268077Z", - "iopub.status.busy": "2023-10-16T20:33:59.267129Z", - "iopub.status.idle": "2023-10-16T20:33:59.275011Z", - "shell.execute_reply": "2023-10-16T20:33:59.274265Z" + "iopub.execute_input": "2023-10-17T19:51:23.981366Z", + "iopub.status.busy": "2023-10-17T19:51:23.980107Z", + "iopub.status.idle": "2023-10-17T19:51:23.987180Z", + "shell.execute_reply": "2023-10-17T19:51:23.986591Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.279311Z", - "iopub.status.busy": "2023-10-16T20:33:59.278619Z", - "iopub.status.idle": "2023-10-16T20:33:59.822436Z", - "shell.execute_reply": "2023-10-16T20:33:59.821461Z" + "iopub.execute_input": "2023-10-17T19:51:23.990520Z", + "iopub.status.busy": "2023-10-17T19:51:23.989989Z", + "iopub.status.idle": "2023-10-17T19:51:24.421958Z", + "shell.execute_reply": "2023-10-17T19:51:24.421310Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:33:59.829138Z", - "iopub.status.busy": "2023-10-16T20:33:59.828575Z", - "iopub.status.idle": "2023-10-16T20:34:00.321257Z", - "shell.execute_reply": "2023-10-16T20:34:00.317939Z" + "iopub.execute_input": "2023-10-17T19:51:24.426331Z", + "iopub.status.busy": "2023-10-17T19:51:24.425793Z", + "iopub.status.idle": "2023-10-17T19:51:24.807146Z", + "shell.execute_reply": "2023-10-17T19:51:24.806544Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:00.325653Z", - "iopub.status.busy": "2023-10-16T20:34:00.324993Z", - "iopub.status.idle": "2023-10-16T20:34:00.886470Z", - "shell.execute_reply": "2023-10-16T20:34:00.885512Z" + "iopub.execute_input": "2023-10-17T19:51:24.810632Z", + "iopub.status.busy": "2023-10-17T19:51:24.809949Z", + "iopub.status.idle": "2023-10-17T19:51:25.247410Z", + "shell.execute_reply": "2023-10-17T19:51:25.246674Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:00.891225Z", - "iopub.status.busy": "2023-10-16T20:34:00.890578Z", - "iopub.status.idle": "2023-10-16T20:34:01.571251Z", - "shell.execute_reply": "2023-10-16T20:34:01.570361Z" + "iopub.execute_input": "2023-10-17T19:51:25.250468Z", + "iopub.status.busy": "2023-10-17T19:51:25.250088Z", + "iopub.status.idle": "2023-10-17T19:51:25.779605Z", + "shell.execute_reply": "2023-10-17T19:51:25.778992Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:01.586353Z", - "iopub.status.busy": "2023-10-16T20:34:01.585771Z", - "iopub.status.idle": "2023-10-16T20:34:02.270394Z", - "shell.execute_reply": "2023-10-16T20:34:02.269487Z" + "iopub.execute_input": "2023-10-17T19:51:25.788646Z", + "iopub.status.busy": "2023-10-17T19:51:25.787996Z", + "iopub.status.idle": "2023-10-17T19:51:26.327271Z", + "shell.execute_reply": "2023-10-17T19:51:26.326673Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.275035Z", - "iopub.status.busy": "2023-10-16T20:34:02.274235Z", - "iopub.status.idle": "2023-10-16T20:34:02.590281Z", - "shell.execute_reply": "2023-10-16T20:34:02.589436Z" + "iopub.execute_input": "2023-10-17T19:51:26.332288Z", + "iopub.status.busy": "2023-10-17T19:51:26.331683Z", + "iopub.status.idle": "2023-10-17T19:51:26.575484Z", + "shell.execute_reply": "2023-10-17T19:51:26.574879Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.594347Z", - "iopub.status.busy": "2023-10-16T20:34:02.593702Z", - "iopub.status.idle": "2023-10-16T20:34:02.870938Z", - "shell.execute_reply": "2023-10-16T20:34:02.870188Z" + "iopub.execute_input": "2023-10-17T19:51:26.578530Z", + "iopub.status.busy": "2023-10-17T19:51:26.578092Z", + "iopub.status.idle": "2023-10-17T19:51:26.806812Z", + "shell.execute_reply": "2023-10-17T19:51:26.806227Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:02.883079Z", - "iopub.status.busy": "2023-10-16T20:34:02.882378Z", - "iopub.status.idle": "2023-10-16T20:34:02.887668Z", - "shell.execute_reply": "2023-10-16T20:34:02.886964Z" + "iopub.execute_input": "2023-10-17T19:51:26.812091Z", + "iopub.status.busy": "2023-10-17T19:51:26.811455Z", + "iopub.status.idle": "2023-10-17T19:51:26.817040Z", + "shell.execute_reply": "2023-10-17T19:51:26.816421Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index b8012b6f2..82a4bf2db 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -925,7 +925,7 @@

    2. Pre-process the Cifar10 dataset

    -
    +
    @@ -1270,7 +1270,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 33baa741f..7dda8e19e 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:06.130145Z", - "iopub.status.busy": "2023-10-16T20:34:06.129803Z", - "iopub.status.idle": "2023-10-16T20:34:09.325320Z", - "shell.execute_reply": "2023-10-16T20:34:09.323920Z" + "iopub.execute_input": "2023-10-17T19:51:29.498622Z", + "iopub.status.busy": "2023-10-17T19:51:29.498202Z", + "iopub.status.idle": "2023-10-17T19:51:31.871996Z", + "shell.execute_reply": "2023-10-17T19:51:31.871290Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.331292Z", - "iopub.status.busy": "2023-10-16T20:34:09.330340Z", - "iopub.status.idle": "2023-10-16T20:34:09.843211Z", - "shell.execute_reply": "2023-10-16T20:34:09.841915Z" + "iopub.execute_input": "2023-10-17T19:51:31.875979Z", + "iopub.status.busy": "2023-10-17T19:51:31.875593Z", + "iopub.status.idle": "2023-10-17T19:51:32.256679Z", + "shell.execute_reply": "2023-10-17T19:51:32.256017Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.849422Z", - "iopub.status.busy": "2023-10-16T20:34:09.848799Z", - "iopub.status.idle": "2023-10-16T20:34:09.859557Z", - "shell.execute_reply": "2023-10-16T20:34:09.858639Z" + "iopub.execute_input": "2023-10-17T19:51:32.260279Z", + "iopub.status.busy": "2023-10-17T19:51:32.259711Z", + "iopub.status.idle": "2023-10-17T19:51:32.264855Z", + "shell.execute_reply": "2023-10-17T19:51:32.264280Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:09.863817Z", - "iopub.status.busy": "2023-10-16T20:34:09.863318Z", - "iopub.status.idle": "2023-10-16T20:34:18.587041Z", - "shell.execute_reply": "2023-10-16T20:34:18.586104Z" + "iopub.execute_input": "2023-10-17T19:51:32.267746Z", + "iopub.status.busy": "2023-10-17T19:51:32.267224Z", + "iopub.status.idle": "2023-10-17T19:51:37.742592Z", + "shell.execute_reply": "2023-10-17T19:51:37.741944Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb71e42e4de04f5e871bc19bc434fedf", + "model_id": "cbb104808a604a4ea5b6fca3bc248b2a", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:18.591567Z", - "iopub.status.busy": "2023-10-16T20:34:18.591013Z", - "iopub.status.idle": "2023-10-16T20:34:18.600166Z", - "shell.execute_reply": "2023-10-16T20:34:18.599364Z" + "iopub.execute_input": "2023-10-17T19:51:37.745818Z", + "iopub.status.busy": "2023-10-17T19:51:37.745436Z", + "iopub.status.idle": "2023-10-17T19:51:37.751386Z", + "shell.execute_reply": "2023-10-17T19:51:37.750693Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:18.604142Z", - "iopub.status.busy": "2023-10-16T20:34:18.603687Z", - "iopub.status.idle": "2023-10-16T20:34:19.349698Z", - "shell.execute_reply": "2023-10-16T20:34:19.348611Z" + "iopub.execute_input": "2023-10-17T19:51:37.754505Z", + "iopub.status.busy": "2023-10-17T19:51:37.753963Z", + "iopub.status.idle": "2023-10-17T19:51:38.361837Z", + "shell.execute_reply": "2023-10-17T19:51:38.361140Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:19.353939Z", - "iopub.status.busy": "2023-10-16T20:34:19.353334Z", - "iopub.status.idle": "2023-10-16T20:34:20.070491Z", - "shell.execute_reply": "2023-10-16T20:34:20.069491Z" + "iopub.execute_input": "2023-10-17T19:51:38.365291Z", + "iopub.status.busy": "2023-10-17T19:51:38.364671Z", + "iopub.status.idle": "2023-10-17T19:51:38.930131Z", + "shell.execute_reply": "2023-10-17T19:51:38.929443Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:20.075177Z", - "iopub.status.busy": "2023-10-16T20:34:20.074580Z", - "iopub.status.idle": "2023-10-16T20:34:20.079796Z", - "shell.execute_reply": "2023-10-16T20:34:20.078950Z" + "iopub.execute_input": "2023-10-17T19:51:38.933153Z", + "iopub.status.busy": "2023-10-17T19:51:38.932770Z", + "iopub.status.idle": "2023-10-17T19:51:38.938005Z", + "shell.execute_reply": "2023-10-17T19:51:38.937421Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:20.083864Z", - "iopub.status.busy": "2023-10-16T20:34:20.083117Z", - "iopub.status.idle": "2023-10-16T20:34:36.508925Z", - "shell.execute_reply": "2023-10-16T20:34:36.507989Z" + "iopub.execute_input": "2023-10-17T19:51:38.940592Z", + "iopub.status.busy": "2023-10-17T19:51:38.940361Z", + "iopub.status.idle": "2023-10-17T19:51:52.391798Z", + "shell.execute_reply": "2023-10-17T19:51:52.391097Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:36.513114Z", - "iopub.status.busy": "2023-10-16T20:34:36.512464Z", - "iopub.status.idle": "2023-10-16T20:34:38.419300Z", - "shell.execute_reply": "2023-10-16T20:34:38.418381Z" + "iopub.execute_input": "2023-10-17T19:51:52.395293Z", + "iopub.status.busy": "2023-10-17T19:51:52.394822Z", + "iopub.status.idle": "2023-10-17T19:51:54.038815Z", + "shell.execute_reply": "2023-10-17T19:51:54.038229Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:38.423556Z", - "iopub.status.busy": "2023-10-16T20:34:38.423103Z", - "iopub.status.idle": "2023-10-16T20:34:38.793911Z", - "shell.execute_reply": "2023-10-16T20:34:38.793124Z" + "iopub.execute_input": "2023-10-17T19:51:54.041924Z", + "iopub.status.busy": "2023-10-17T19:51:54.041310Z", + "iopub.status.idle": "2023-10-17T19:51:54.322771Z", + "shell.execute_reply": "2023-10-17T19:51:54.322103Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:38.799902Z", - "iopub.status.busy": "2023-10-16T20:34:38.798414Z", - "iopub.status.idle": "2023-10-16T20:34:39.806679Z", - "shell.execute_reply": "2023-10-16T20:34:39.805778Z" + "iopub.execute_input": "2023-10-17T19:51:54.326011Z", + "iopub.status.busy": "2023-10-17T19:51:54.325628Z", + "iopub.status.idle": "2023-10-17T19:51:55.141144Z", + "shell.execute_reply": "2023-10-17T19:51:55.140486Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:39.810944Z", - "iopub.status.busy": "2023-10-16T20:34:39.810527Z", - "iopub.status.idle": "2023-10-16T20:34:40.230790Z", - "shell.execute_reply": "2023-10-16T20:34:40.229548Z" + "iopub.execute_input": "2023-10-17T19:51:55.144171Z", + "iopub.status.busy": "2023-10-17T19:51:55.143927Z", + "iopub.status.idle": "2023-10-17T19:51:55.475574Z", + "shell.execute_reply": "2023-10-17T19:51:55.474873Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.235269Z", - "iopub.status.busy": "2023-10-16T20:34:40.234567Z", - "iopub.status.idle": "2023-10-16T20:34:40.594499Z", - "shell.execute_reply": "2023-10-16T20:34:40.593717Z" + "iopub.execute_input": "2023-10-17T19:51:55.478772Z", + "iopub.status.busy": "2023-10-17T19:51:55.478200Z", + "iopub.status.idle": "2023-10-17T19:51:55.757689Z", + "shell.execute_reply": "2023-10-17T19:51:55.757035Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.598428Z", - "iopub.status.busy": "2023-10-16T20:34:40.598035Z", - "iopub.status.idle": "2023-10-16T20:34:40.766350Z", - "shell.execute_reply": "2023-10-16T20:34:40.764969Z" + "iopub.execute_input": "2023-10-17T19:51:55.760940Z", + "iopub.status.busy": "2023-10-17T19:51:55.760567Z", + "iopub.status.idle": "2023-10-17T19:51:55.897659Z", + "shell.execute_reply": "2023-10-17T19:51:55.896991Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:34:40.771960Z", - "iopub.status.busy": "2023-10-16T20:34:40.771626Z", - "iopub.status.idle": "2023-10-16T20:35:41.545795Z", - "shell.execute_reply": "2023-10-16T20:35:41.544208Z" + "iopub.execute_input": "2023-10-17T19:51:55.901286Z", + "iopub.status.busy": "2023-10-17T19:51:55.900721Z", + "iopub.status.idle": "2023-10-17T19:52:42.933559Z", + "shell.execute_reply": "2023-10-17T19:52:42.932702Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:41.551777Z", - "iopub.status.busy": "2023-10-16T20:35:41.551081Z", - "iopub.status.idle": "2023-10-16T20:35:43.537048Z", - "shell.execute_reply": "2023-10-16T20:35:43.535729Z" + "iopub.execute_input": "2023-10-17T19:52:42.937117Z", + "iopub.status.busy": "2023-10-17T19:52:42.936574Z", + "iopub.status.idle": "2023-10-17T19:52:44.457331Z", + "shell.execute_reply": "2023-10-17T19:52:44.456654Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.543524Z", - "iopub.status.busy": "2023-10-16T20:35:43.541919Z", - "iopub.status.idle": "2023-10-16T20:35:43.891831Z", - "shell.execute_reply": "2023-10-16T20:35:43.890340Z" + "iopub.execute_input": "2023-10-17T19:52:44.461853Z", + "iopub.status.busy": "2023-10-17T19:52:44.460860Z", + "iopub.status.idle": "2023-10-17T19:52:44.667633Z", + "shell.execute_reply": "2023-10-17T19:52:44.666947Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.899107Z", - "iopub.status.busy": "2023-10-16T20:35:43.897912Z", - "iopub.status.idle": "2023-10-16T20:35:43.903065Z", - "shell.execute_reply": "2023-10-16T20:35:43.902263Z" + "iopub.execute_input": "2023-10-17T19:52:44.671106Z", + "iopub.status.busy": "2023-10-17T19:52:44.670478Z", + "iopub.status.idle": "2023-10-17T19:52:44.674527Z", + "shell.execute_reply": "2023-10-17T19:52:44.673916Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:43.907136Z", - "iopub.status.busy": "2023-10-16T20:35:43.906465Z", - "iopub.status.idle": "2023-10-16T20:35:43.918802Z", - "shell.execute_reply": "2023-10-16T20:35:43.918045Z" + "iopub.execute_input": "2023-10-17T19:52:44.677927Z", + "iopub.status.busy": "2023-10-17T19:52:44.677429Z", + "iopub.status.idle": "2023-10-17T19:52:44.687017Z", + "shell.execute_reply": "2023-10-17T19:52:44.686417Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,80 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "046f5ab9137c4b80ac06f3cf1936cea4": { + "052f5441d225472091336a5e9b9ac6e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43268e44006b4aa1ac37a98b783e95ed", + "placeholder": "​", + "style": "IPY_MODEL_bc2b27763f8e4f30ba45f30ba9ca613e", + "value": "100%" + } + }, + "2164398d71e84d35b83bdf9d6c514a9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "299bcf23da43486d8102d50d5e76565e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1644c7f5641454fb760250cd4cd7579", + "placeholder": "​", + "style": "IPY_MODEL_3551366a11a142c2afeb0db0196c822e", + "value": " 170498071/170498071 [00:01<00:00, 113614160.66it/s]" + } + }, + "3551366a11a142c2afeb0db0196c822e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43268e44006b4aa1ac37a98b783e95ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,7 +1142,31 @@ "width": null } }, - "16d22b15457a44af9d74df1538fbbb47": { + "5ecf76e2c4ed42098f703918282c37bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e38a292919464a2880035911eef858c4", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2164398d71e84d35b83bdf9d6c514a9f", + "value": 170498071.0 + } + }, + "a1644c7f5641454fb760250cd4cd7579": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1121,44 +1218,44 @@ "width": null } }, - "1a67e1bbbe5b46e09949ce4c79a32d25": { + "bc2b27763f8e4f30ba45f30ba9ca613e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_046f5ab9137c4b80ac06f3cf1936cea4", - "placeholder": "​", - "style": "IPY_MODEL_9c963bcbf1a8440192a16167778757ce", - "value": " 170498071/170498071 [00:04<00:00, 36759259.05it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2a133c730eb24d9ca3f446a87ba0809b": { + "cbb104808a604a4ea5b6fca3bc248b2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_052f5441d225472091336a5e9b9ac6e4", + "IPY_MODEL_5ecf76e2c4ed42098f703918282c37bd", + "IPY_MODEL_299bcf23da43486d8102d50d5e76565e" + ], + "layout": "IPY_MODEL_d97d68b477a74e03a53fe6b14806c767" } }, - "35773d4bd42246199074874a34def1ef": { + "d97d68b477a74e03a53fe6b14806c767": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1210,7 +1307,7 @@ "width": null } }, - "38010b554a16450d8720cf468eef3dfb": { + "e38a292919464a2880035911eef858c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1261,103 +1358,6 @@ "visibility": null, "width": null } - }, - "5b046b3bc507450f96e510c0d9671a47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "85fde215616941d18d3640851d0aff9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_16d22b15457a44af9d74df1538fbbb47", - "placeholder": "​", - "style": "IPY_MODEL_5b046b3bc507450f96e510c0d9671a47", - "value": "100%" - } - }, - "9c963bcbf1a8440192a16167778757ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d2faed25fdec469892d1dab6a88865a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_35773d4bd42246199074874a34def1ef", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a133c730eb24d9ca3f446a87ba0809b", - "value": 170498071.0 - } - }, - "eb71e42e4de04f5e871bc19bc434fedf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_85fde215616941d18d3640851d0aff9f", - "IPY_MODEL_d2faed25fdec469892d1dab6a88865a6", - "IPY_MODEL_1a67e1bbbe5b46e09949ce4c79a32d25" - ], - "layout": "IPY_MODEL_38010b554a16450d8720cf468eef3dfb" - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 9c7036301..1791787f3 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:49.722564Z", - "iopub.status.busy": "2023-10-16T20:35:49.721879Z", - "iopub.status.idle": "2023-10-16T20:35:51.293447Z", - "shell.execute_reply": "2023-10-16T20:35:51.292315Z" + "iopub.execute_input": "2023-10-17T19:52:49.572476Z", + "iopub.status.busy": "2023-10-17T19:52:49.572098Z", + "iopub.status.idle": "2023-10-17T19:52:50.788472Z", + "shell.execute_reply": "2023-10-17T19:52:50.787788Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.299012Z", - "iopub.status.busy": "2023-10-16T20:35:51.298516Z", - "iopub.status.idle": "2023-10-16T20:35:51.331572Z", - "shell.execute_reply": "2023-10-16T20:35:51.330562Z" + "iopub.execute_input": "2023-10-17T19:52:50.792170Z", + "iopub.status.busy": "2023-10-17T19:52:50.791583Z", + "iopub.status.idle": "2023-10-17T19:52:50.816825Z", + "shell.execute_reply": "2023-10-17T19:52:50.816143Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.337249Z", - "iopub.status.busy": "2023-10-16T20:35:51.336903Z", - "iopub.status.idle": "2023-10-16T20:35:51.342405Z", - "shell.execute_reply": "2023-10-16T20:35:51.341575Z" + "iopub.execute_input": "2023-10-17T19:52:50.820522Z", + "iopub.status.busy": "2023-10-17T19:52:50.819947Z", + "iopub.status.idle": "2023-10-17T19:52:50.823521Z", + "shell.execute_reply": "2023-10-17T19:52:50.822896Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.346414Z", - "iopub.status.busy": "2023-10-16T20:35:51.345744Z", - "iopub.status.idle": "2023-10-16T20:35:51.589066Z", - "shell.execute_reply": "2023-10-16T20:35:51.587856Z" + "iopub.execute_input": "2023-10-17T19:52:50.826181Z", + "iopub.status.busy": "2023-10-17T19:52:50.825819Z", + "iopub.status.idle": "2023-10-17T19:52:51.022462Z", + "shell.execute_reply": "2023-10-17T19:52:51.021735Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:51.595687Z", - "iopub.status.busy": "2023-10-16T20:35:51.595199Z", - "iopub.status.idle": "2023-10-16T20:35:52.034878Z", - "shell.execute_reply": "2023-10-16T20:35:52.033808Z" + "iopub.execute_input": "2023-10-17T19:52:51.025907Z", + "iopub.status.busy": "2023-10-17T19:52:51.025375Z", + "iopub.status.idle": "2023-10-17T19:52:51.352333Z", + "shell.execute_reply": "2023-10-17T19:52:51.351662Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.040027Z", - "iopub.status.busy": "2023-10-16T20:35:52.039710Z", - "iopub.status.idle": "2023-10-16T20:35:52.385468Z", - "shell.execute_reply": "2023-10-16T20:35:52.384575Z" + "iopub.execute_input": "2023-10-17T19:52:51.355837Z", + "iopub.status.busy": "2023-10-17T19:52:51.355366Z", + "iopub.status.idle": "2023-10-17T19:52:51.623376Z", + "shell.execute_reply": "2023-10-17T19:52:51.622618Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.390046Z", - "iopub.status.busy": "2023-10-16T20:35:52.389158Z", - "iopub.status.idle": "2023-10-16T20:35:52.395900Z", - "shell.execute_reply": "2023-10-16T20:35:52.395060Z" + "iopub.execute_input": "2023-10-17T19:52:51.627035Z", + "iopub.status.busy": "2023-10-17T19:52:51.626416Z", + "iopub.status.idle": "2023-10-17T19:52:51.631530Z", + "shell.execute_reply": "2023-10-17T19:52:51.631013Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.399517Z", - "iopub.status.busy": "2023-10-16T20:35:52.399067Z", - "iopub.status.idle": "2023-10-16T20:35:52.409243Z", - "shell.execute_reply": "2023-10-16T20:35:52.408386Z" + "iopub.execute_input": "2023-10-17T19:52:51.634169Z", + "iopub.status.busy": "2023-10-17T19:52:51.633632Z", + "iopub.status.idle": "2023-10-17T19:52:51.641121Z", + "shell.execute_reply": "2023-10-17T19:52:51.640477Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.412924Z", - "iopub.status.busy": "2023-10-16T20:35:52.412437Z", - "iopub.status.idle": "2023-10-16T20:35:52.416322Z", - "shell.execute_reply": "2023-10-16T20:35:52.415500Z" + "iopub.execute_input": "2023-10-17T19:52:51.643780Z", + "iopub.status.busy": "2023-10-17T19:52:51.643552Z", + "iopub.status.idle": "2023-10-17T19:52:51.646611Z", + "shell.execute_reply": "2023-10-17T19:52:51.645954Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:35:52.420156Z", - "iopub.status.busy": "2023-10-16T20:35:52.419379Z", - "iopub.status.idle": "2023-10-16T20:36:09.965567Z", - "shell.execute_reply": "2023-10-16T20:36:09.964715Z" + "iopub.execute_input": "2023-10-17T19:52:51.649380Z", + "iopub.status.busy": "2023-10-17T19:52:51.649158Z", + "iopub.status.idle": "2023-10-17T19:53:05.766026Z", + "shell.execute_reply": "2023-10-17T19:53:05.765362Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.970277Z", - "iopub.status.busy": "2023-10-16T20:36:09.969476Z", - "iopub.status.idle": "2023-10-16T20:36:09.979403Z", - "shell.execute_reply": "2023-10-16T20:36:09.978719Z" + "iopub.execute_input": "2023-10-17T19:53:05.770356Z", + "iopub.status.busy": "2023-10-17T19:53:05.769607Z", + "iopub.status.idle": "2023-10-17T19:53:05.780380Z", + "shell.execute_reply": "2023-10-17T19:53:05.779850Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.983082Z", - "iopub.status.busy": "2023-10-16T20:36:09.982608Z", - "iopub.status.idle": "2023-10-16T20:36:09.987436Z", - "shell.execute_reply": "2023-10-16T20:36:09.986774Z" + "iopub.execute_input": "2023-10-17T19:53:05.783902Z", + "iopub.status.busy": "2023-10-17T19:53:05.783266Z", + "iopub.status.idle": "2023-10-17T19:53:05.787719Z", + "shell.execute_reply": "2023-10-17T19:53:05.787130Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.990923Z", - "iopub.status.busy": "2023-10-16T20:36:09.990464Z", - "iopub.status.idle": "2023-10-16T20:36:09.994886Z", - "shell.execute_reply": "2023-10-16T20:36:09.994228Z" + "iopub.execute_input": "2023-10-17T19:53:05.790509Z", + "iopub.status.busy": "2023-10-17T19:53:05.790143Z", + "iopub.status.idle": "2023-10-17T19:53:05.794035Z", + "shell.execute_reply": "2023-10-17T19:53:05.793380Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:09.998390Z", - "iopub.status.busy": "2023-10-16T20:36:09.997935Z", - "iopub.status.idle": "2023-10-16T20:36:10.001927Z", - "shell.execute_reply": "2023-10-16T20:36:10.001263Z" + "iopub.execute_input": "2023-10-17T19:53:05.797715Z", + "iopub.status.busy": "2023-10-17T19:53:05.797208Z", + "iopub.status.idle": "2023-10-17T19:53:05.800884Z", + "shell.execute_reply": "2023-10-17T19:53:05.800221Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.005301Z", - "iopub.status.busy": "2023-10-16T20:36:10.004849Z", - "iopub.status.idle": "2023-10-16T20:36:10.016993Z", - "shell.execute_reply": "2023-10-16T20:36:10.016264Z" + "iopub.execute_input": "2023-10-17T19:53:05.803539Z", + "iopub.status.busy": "2023-10-17T19:53:05.803180Z", + "iopub.status.idle": "2023-10-17T19:53:05.813354Z", + "shell.execute_reply": "2023-10-17T19:53:05.812698Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.020666Z", - "iopub.status.busy": "2023-10-16T20:36:10.020194Z", - "iopub.status.idle": "2023-10-16T20:36:10.268996Z", - "shell.execute_reply": "2023-10-16T20:36:10.268234Z" + "iopub.execute_input": "2023-10-17T19:53:05.816778Z", + "iopub.status.busy": "2023-10-17T19:53:05.816427Z", + "iopub.status.idle": "2023-10-17T19:53:06.044639Z", + "shell.execute_reply": "2023-10-17T19:53:06.044060Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.272974Z", - "iopub.status.busy": "2023-10-16T20:36:10.272447Z", - "iopub.status.idle": "2023-10-16T20:36:10.521219Z", - "shell.execute_reply": "2023-10-16T20:36:10.520455Z" + "iopub.execute_input": "2023-10-17T19:53:06.047724Z", + "iopub.status.busy": "2023-10-17T19:53:06.047080Z", + "iopub.status.idle": "2023-10-17T19:53:06.231949Z", + "shell.execute_reply": "2023-10-17T19:53:06.231345Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:10.525335Z", - "iopub.status.busy": "2023-10-16T20:36:10.524816Z", - "iopub.status.idle": "2023-10-16T20:36:11.569893Z", - "shell.execute_reply": "2023-10-16T20:36:11.568999Z" + "iopub.execute_input": "2023-10-17T19:53:06.235105Z", + "iopub.status.busy": "2023-10-17T19:53:06.234847Z", + "iopub.status.idle": "2023-10-17T19:53:07.113130Z", + "shell.execute_reply": "2023-10-17T19:53:07.112512Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:11.574722Z", - "iopub.status.busy": "2023-10-16T20:36:11.574114Z", - "iopub.status.idle": "2023-10-16T20:36:11.760892Z", - "shell.execute_reply": "2023-10-16T20:36:11.760128Z" + "iopub.execute_input": "2023-10-17T19:53:07.117970Z", + "iopub.status.busy": "2023-10-17T19:53:07.116798Z", + "iopub.status.idle": "2023-10-17T19:53:07.236453Z", + "shell.execute_reply": "2023-10-17T19:53:07.235870Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:11.764857Z", - "iopub.status.busy": "2023-10-16T20:36:11.764331Z", - "iopub.status.idle": "2023-10-16T20:36:11.778202Z", - "shell.execute_reply": "2023-10-16T20:36:11.777440Z" + "iopub.execute_input": "2023-10-17T19:53:07.239906Z", + "iopub.status.busy": "2023-10-17T19:53:07.239278Z", + "iopub.status.idle": "2023-10-17T19:53:07.252166Z", + "shell.execute_reply": "2023-10-17T19:53:07.251550Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index f34a0b6d1..2d26d10ea 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -954,13 +954,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1360,7 +1360,7 @@

    Get label quality scores -{"state": {"8045046d4f4b4cf2abf73e300580ff0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bbc372446e1494aa1ce59ddefc7687f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f2c39968581b4785a8b04e5deba1e8dd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8045046d4f4b4cf2abf73e300580ff0e", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2bbc372446e1494aa1ce59ddefc7687f", "value": 244800.0}}, "15d536a147c94673a0297d02ff877e39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e9c0778cd774ea294480acf4165b2bd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a0e58bed90b44d51b40cff029a970400": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_15d536a147c94673a0297d02ff877e39", "placeholder": "\u200b", "style": "IPY_MODEL_0e9c0778cd774ea294480acf4165b2bd", "value": "number of examples processed for estimating thresholds: "}}, "64358e97316d42bf8f3e986873e573d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cc184c4b4a14a409983d8c1c9d7a3ff": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "75fe7d9be719413b96036deac292e5bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_64358e97316d42bf8f3e986873e573d5", "placeholder": "\u200b", "style": "IPY_MODEL_3cc184c4b4a14a409983d8c1c9d7a3ff", "value": " 300000/? [00:00<00:00, 3292008.39it/s]"}}, "ddc0ca9d19034c3797d78e60115629ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae8c799f82cd4edebab47074d4591e96": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a0e58bed90b44d51b40cff029a970400", "IPY_MODEL_f2c39968581b4785a8b04e5deba1e8dd", "IPY_MODEL_75fe7d9be719413b96036deac292e5bd"], "layout": "IPY_MODEL_ddc0ca9d19034c3797d78e60115629ea"}}, "60bd11d68436487b8ddec4d79b9830a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "264bfd1f623e4e56aaf2ebeb68649dce": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7d781a47b25a41bb9354ce761e53c219": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_60bd11d68436487b8ddec4d79b9830a1", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_264bfd1f623e4e56aaf2ebeb68649dce", "value": 244800.0}}, "164a3cf4d0d44bdfbd776f10f16b722f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6804bb31cf934b9a83fcdcd34fbbbd3e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "83fc0000692245619bbb3da084aee156": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_164a3cf4d0d44bdfbd776f10f16b722f", "placeholder": "\u200b", "style": "IPY_MODEL_6804bb31cf934b9a83fcdcd34fbbbd3e", "value": "number of examples processed for checking labels: "}}, "6b3fb2d8340b4744b6afec70b55549a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a3f3606e29004c29a42cb9f73e56eaea": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "bf4136f59b0c462aadaeb3dd9ce58911": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6b3fb2d8340b4744b6afec70b55549a0", "placeholder": "\u200b", "style": "IPY_MODEL_a3f3606e29004c29a42cb9f73e56eaea", "value": " 300000/? [00:02<00:00, 141387.56it/s]"}}, "83214f928159459a9b575c7b65ae1622": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4470e1e8c8b647a9b52b4f727a1ba62d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_83fc0000692245619bbb3da084aee156", "IPY_MODEL_7d781a47b25a41bb9354ce761e53c219", "IPY_MODEL_bf4136f59b0c462aadaeb3dd9ce58911"], "layout": "IPY_MODEL_83214f928159459a9b575c7b65ae1622"}}, "2b1644a21e5e43d29111448b0f0d1847": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e53ace931c94f9b9622acf057cbe54a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bcae71a6662e4935ba245223e7f44888": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2b1644a21e5e43d29111448b0f0d1847", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8e53ace931c94f9b9622acf057cbe54a", "value": 30.0}}, "27401ab4da1f4584ba15329437afdfb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dab23da520f044e2b661e73909d3764a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7a9d5b195a9e4dfa8f6d01f367758cbf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_27401ab4da1f4584ba15329437afdfb7", "placeholder": "\u200b", "style": "IPY_MODEL_dab23da520f044e2b661e73909d3764a", "value": "images processed using softmin: 100%"}}, "9c7ee7ae0c6940e487758553be4e3e59": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae0bf4baf2ff4c67a5a0b78d955a561a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "42ac59eb962c4ac5bd611787f37dad86": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9c7ee7ae0c6940e487758553be4e3e59", "placeholder": "\u200b", "style": "IPY_MODEL_ae0bf4baf2ff4c67a5a0b78d955a561a", "value": " 30/30 [00:03<00:00, 12.55it/s]"}}, "ee455bded97a4425925616ddf2fdf695": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2924a791f9874fd192a64a546445773d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7a9d5b195a9e4dfa8f6d01f367758cbf", "IPY_MODEL_bcae71a6662e4935ba245223e7f44888", "IPY_MODEL_42ac59eb962c4ac5bd611787f37dad86"], "layout": "IPY_MODEL_ee455bded97a4425925616ddf2fdf695"}}}, "version_major": 2, "version_minor": 0} +{"state": {"a7b7e6d898f649c2b84bade1330786c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54865d508a1f493c86040f5f1b5832e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "69499fa3232542c295b149432b691475": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a7b7e6d898f649c2b84bade1330786c7", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_54865d508a1f493c86040f5f1b5832e7", "value": 244800.0}}, "7b738cffc4b14042a1f469d9cf59ba2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da93618a551a42bdae73b69f0f7d27e3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e78c5d874911435b8577fb22a5e1f44a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7b738cffc4b14042a1f469d9cf59ba2e", "placeholder": "\u200b", "style": "IPY_MODEL_da93618a551a42bdae73b69f0f7d27e3", "value": "number of examples processed for estimating thresholds: "}}, "de24e4091b8e405cb91d2cb331a05b50": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3492aa93a328498a9e3bda47924ec928": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "40a209a17c26487f9649c6f1c2f57aea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_de24e4091b8e405cb91d2cb331a05b50", "placeholder": "\u200b", "style": "IPY_MODEL_3492aa93a328498a9e3bda47924ec928", "value": " 300000/? [00:00<00:00, 4472858.73it/s]"}}, "0f4f8efd802a43b69707e51dbf6a2db0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b60641c60db4a5baf6f06be909dd4cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e78c5d874911435b8577fb22a5e1f44a", "IPY_MODEL_69499fa3232542c295b149432b691475", "IPY_MODEL_40a209a17c26487f9649c6f1c2f57aea"], "layout": "IPY_MODEL_0f4f8efd802a43b69707e51dbf6a2db0"}}, "b9e68dafdb2f49d7bc4b53c92f6d5103": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56f3125cda4c45448e6575a1c6367ef7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "36d92d7ce24342aabebe357aecfc4694": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b9e68dafdb2f49d7bc4b53c92f6d5103", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_56f3125cda4c45448e6575a1c6367ef7", "value": 244800.0}}, "8f8b1237acc34176929e3b984719b0fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a719f92021a47fa86cfb87fa66177b6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6aebca3f287b4ac382d2e5e660fe6a2a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8f8b1237acc34176929e3b984719b0fc", "placeholder": "\u200b", "style": "IPY_MODEL_1a719f92021a47fa86cfb87fa66177b6", "value": "number of examples processed for checking labels: "}}, "bbc6569c5dfc4e69b2772a6e45a9e2a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44167e01ee9e4cdea3c08564cad6607f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "26501c3583a14416917066f8ba9d9c54": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bbc6569c5dfc4e69b2772a6e45a9e2a6", "placeholder": "\u200b", "style": "IPY_MODEL_44167e01ee9e4cdea3c08564cad6607f", "value": " 300000/? [00:02<00:00, 138904.84it/s]"}}, "7b85545b5baf440a8cde504d7dc97ddc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2968e4eec87426d9ed8bcb0f5844799": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6aebca3f287b4ac382d2e5e660fe6a2a", "IPY_MODEL_36d92d7ce24342aabebe357aecfc4694", "IPY_MODEL_26501c3583a14416917066f8ba9d9c54"], "layout": "IPY_MODEL_7b85545b5baf440a8cde504d7dc97ddc"}}, "5a35ca85f77b4fa99c50bc83a04058d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7265f494a9174c39ad57d88d1dfa5ef9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a6a53376cb6344b1a3539df6e8d8cc90": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5a35ca85f77b4fa99c50bc83a04058d2", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7265f494a9174c39ad57d88d1dfa5ef9", "value": 30.0}}, "b8cc3dfdf77b4bdeafc2509af0c04671": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccc154cf7e5545508e1afc78bfac5795": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "82c3aef684ff43509512714c9a4ca231": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b8cc3dfdf77b4bdeafc2509af0c04671", "placeholder": "\u200b", "style": "IPY_MODEL_ccc154cf7e5545508e1afc78bfac5795", "value": "images processed using softmin: 100%"}}, "5389a87ea7884a78b93d1fb4dd171fa4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a71847be6474ca5b5b794cc503895e4": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "882a856bc76b4d2e80adf338d2e9e43a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5389a87ea7884a78b93d1fb4dd171fa4", "placeholder": "\u200b", "style": "IPY_MODEL_5a71847be6474ca5b5b794cc503895e4", "value": " 30/30 [00:02<00:00, 17.54it/s]"}}, "4ba5d91fab4c40729f123bc268878ce5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d2c1c04685a462b9988999ab4a7e69a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_82c3aef684ff43509512714c9a4ca231", "IPY_MODEL_a6a53376cb6344b1a3539df6e8d8cc90", "IPY_MODEL_882a856bc76b4d2e80adf338d2e9e43a"], "layout": "IPY_MODEL_4ba5d91fab4c40729f123bc268878ce5"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2d9369ee8..60db45bd3 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:17.010815Z", - "iopub.status.busy": "2023-10-16T20:36:17.009718Z", - "iopub.status.idle": "2023-10-16T20:36:19.575020Z", - "shell.execute_reply": "2023-10-16T20:36:19.573161Z" + "iopub.execute_input": "2023-10-17T19:53:12.732918Z", + "iopub.status.busy": "2023-10-17T19:53:12.732684Z", + "iopub.status.idle": "2023-10-17T19:53:14.793619Z", + "shell.execute_reply": "2023-10-17T19:53:14.792711Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:36:19.580152Z", - "iopub.status.busy": "2023-10-16T20:36:19.579499Z", - "iopub.status.idle": "2023-10-16T20:37:42.794967Z", - "shell.execute_reply": "2023-10-16T20:37:42.793238Z" + "iopub.execute_input": "2023-10-17T19:53:14.797370Z", + "iopub.status.busy": "2023-10-17T19:53:14.796981Z", + "iopub.status.idle": "2023-10-17T19:54:31.729201Z", + "shell.execute_reply": "2023-10-17T19:54:31.728290Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:42.801811Z", - "iopub.status.busy": "2023-10-16T20:37:42.801250Z", - "iopub.status.idle": "2023-10-16T20:37:44.570534Z", - "shell.execute_reply": "2023-10-16T20:37:44.569474Z" + "iopub.execute_input": "2023-10-17T19:54:31.732908Z", + "iopub.status.busy": "2023-10-17T19:54:31.732289Z", + "iopub.status.idle": "2023-10-17T19:54:32.953547Z", + "shell.execute_reply": "2023-10-17T19:54:32.952856Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.575603Z", - "iopub.status.busy": "2023-10-16T20:37:44.574763Z", - "iopub.status.idle": "2023-10-16T20:37:44.581442Z", - "shell.execute_reply": "2023-10-16T20:37:44.580637Z" + "iopub.execute_input": "2023-10-17T19:54:32.957071Z", + "iopub.status.busy": "2023-10-17T19:54:32.956441Z", + "iopub.status.idle": "2023-10-17T19:54:32.961547Z", + "shell.execute_reply": "2023-10-17T19:54:32.960942Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.585258Z", - "iopub.status.busy": "2023-10-16T20:37:44.584786Z", - "iopub.status.idle": "2023-10-16T20:37:44.590444Z", - "shell.execute_reply": "2023-10-16T20:37:44.589589Z" + "iopub.execute_input": "2023-10-17T19:54:32.964393Z", + "iopub.status.busy": "2023-10-17T19:54:32.964163Z", + "iopub.status.idle": "2023-10-17T19:54:32.971110Z", + "shell.execute_reply": "2023-10-17T19:54:32.969791Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.594804Z", - "iopub.status.busy": "2023-10-16T20:37:44.594327Z", - "iopub.status.idle": "2023-10-16T20:37:44.599831Z", - "shell.execute_reply": "2023-10-16T20:37:44.598949Z" + "iopub.execute_input": "2023-10-17T19:54:32.974562Z", + "iopub.status.busy": "2023-10-17T19:54:32.974009Z", + "iopub.status.idle": "2023-10-17T19:54:32.979731Z", + "shell.execute_reply": "2023-10-17T19:54:32.979098Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.604567Z", - "iopub.status.busy": "2023-10-16T20:37:44.604110Z", - "iopub.status.idle": "2023-10-16T20:37:44.608564Z", - "shell.execute_reply": "2023-10-16T20:37:44.607714Z" + "iopub.execute_input": "2023-10-17T19:54:32.982772Z", + "iopub.status.busy": "2023-10-17T19:54:32.982263Z", + "iopub.status.idle": "2023-10-17T19:54:32.986568Z", + "shell.execute_reply": "2023-10-17T19:54:32.985931Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:37:44.612197Z", - "iopub.status.busy": "2023-10-16T20:37:44.611644Z", - "iopub.status.idle": "2023-10-16T20:38:58.297120Z", - "shell.execute_reply": "2023-10-16T20:38:58.295866Z" + "iopub.execute_input": "2023-10-17T19:54:32.995290Z", + "iopub.status.busy": "2023-10-17T19:54:32.994763Z", + "iopub.status.idle": "2023-10-17T19:55:42.625930Z", + "shell.execute_reply": "2023-10-17T19:55:42.625033Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae8c799f82cd4edebab47074d4591e96", + "model_id": "8b60641c60db4a5baf6f06be909dd4cc", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4470e1e8c8b647a9b52b4f727a1ba62d", + "model_id": "e2968e4eec87426d9ed8bcb0f5844799", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:38:58.302334Z", - "iopub.status.busy": "2023-10-16T20:38:58.301532Z", - "iopub.status.idle": "2023-10-16T20:38:59.493859Z", - "shell.execute_reply": "2023-10-16T20:38:59.492444Z" + "iopub.execute_input": "2023-10-17T19:55:42.629783Z", + "iopub.status.busy": "2023-10-17T19:55:42.629355Z", + "iopub.status.idle": "2023-10-17T19:55:43.597003Z", + "shell.execute_reply": "2023-10-17T19:55:43.595874Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:38:59.499396Z", - "iopub.status.busy": "2023-10-16T20:38:59.498546Z", - "iopub.status.idle": "2023-10-16T20:39:03.017649Z", - "shell.execute_reply": "2023-10-16T20:39:03.016552Z" + "iopub.execute_input": "2023-10-17T19:55:43.600687Z", + "iopub.status.busy": "2023-10-17T19:55:43.599994Z", + "iopub.status.idle": "2023-10-17T19:55:46.381448Z", + "shell.execute_reply": "2023-10-17T19:55:46.380761Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:39:03.021654Z", - "iopub.status.busy": "2023-10-16T20:39:03.021293Z", - "iopub.status.idle": "2023-10-16T20:39:46.610894Z", - "shell.execute_reply": "2023-10-16T20:39:46.610073Z" + "iopub.execute_input": "2023-10-17T19:55:46.384768Z", + "iopub.status.busy": "2023-10-17T19:55:46.384178Z", + "iopub.status.idle": "2023-10-17T19:56:25.482441Z", + "shell.execute_reply": "2023-10-17T19:56:25.481872Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 11391/4997436 [00:00<00:43, 113893.27it/s]" + " 0%| | 12783/4997436 [00:00<00:38, 127824.03it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 23012/4997436 [00:00<00:43, 115251.35it/s]" + " 1%| | 25651/4997436 [00:00<00:38, 128321.48it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34627/4997436 [00:00<00:42, 115656.81it/s]" + " 1%| | 38511/4997436 [00:00<00:38, 128443.96it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46193/4997436 [00:00<00:42, 115623.07it/s]" + " 1%| | 51364/4997436 [00:00<00:38, 128473.62it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 57756/4997436 [00:00<00:42, 115435.10it/s]" + " 1%|▏ | 64231/4997436 [00:00<00:38, 128541.16it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69300/4997436 [00:00<00:42, 114763.73it/s]" + " 2%|▏ | 77086/4997436 [00:00<00:38, 128331.38it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 80778/4997436 [00:00<00:42, 114405.28it/s]" + " 2%|▏ | 89920/4997436 [00:00<00:38, 128198.09it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92220/4997436 [00:00<00:43, 113877.50it/s]" + " 2%|▏ | 102753/4997436 [00:00<00:38, 128235.59it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 103609/4997436 [00:00<00:43, 113484.94it/s]" + " 2%|▏ | 115591/4997436 [00:00<00:38, 128279.29it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 114958/4997436 [00:01<00:43, 113154.45it/s]" + " 3%|▎ | 128419/4997436 [00:01<00:38, 127823.95it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 126274/4997436 [00:01<00:43, 112926.09it/s]" + " 3%|▎ | 141271/4997436 [00:01<00:37, 128033.49it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137567/4997436 [00:01<00:43, 112873.45it/s]" + " 3%|▎ | 154174/4997436 [00:01<00:37, 128333.72it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 149090/4997436 [00:01<00:42, 113579.49it/s]" + " 3%|▎ | 167008/4997436 [00:01<00:37, 128122.58it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 160449/4997436 [00:01<00:42, 113267.18it/s]" + " 4%|▎ | 179840/4997436 [00:01<00:37, 128178.16it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171875/4997436 [00:01<00:42, 113560.16it/s]" + " 4%|▍ | 192757/4997436 [00:01<00:37, 128473.57it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183232/4997436 [00:01<00:42, 112607.53it/s]" + " 4%|▍ | 205736/4997436 [00:01<00:37, 128867.48it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 194806/4997436 [00:01<00:42, 113540.02it/s]" + " 4%|▍ | 218623/4997436 [00:01<00:37, 128668.81it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 206184/4997436 [00:01<00:42, 113607.55it/s]" + " 5%|▍ | 231496/4997436 [00:01<00:37, 128683.89it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 217801/4997436 [00:01<00:41, 114371.45it/s]" + " 5%|▍ | 244444/4997436 [00:01<00:36, 128921.56it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 229340/4997436 [00:02<00:41, 114673.08it/s]" + " 5%|▌ | 257347/4997436 [00:02<00:36, 128950.07it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 240840/4997436 [00:02<00:41, 114768.67it/s]" + " 5%|▌ | 270321/4997436 [00:02<00:36, 129185.41it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 252417/4997436 [00:02<00:41, 115066.09it/s]" + " 6%|▌ | 283255/4997436 [00:02<00:36, 129228.40it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263925/4997436 [00:02<00:41, 115054.34it/s]" + " 6%|▌ | 296252/4997436 [00:02<00:36, 129447.21it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 275431/4997436 [00:02<00:41, 114962.14it/s]" + " 6%|▌ | 309197/4997436 [00:02<00:36, 129335.88it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 286988/4997436 [00:02<00:40, 115139.99it/s]" + " 6%|▋ | 322131/4997436 [00:02<00:36, 129315.43it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298503/4997436 [00:02<00:40, 114826.64it/s]" + " 7%|▋ | 335090/4997436 [00:02<00:36, 129395.38it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 310120/4997436 [00:02<00:40, 115224.59it/s]" + " 7%|▋ | 348030/4997436 [00:02<00:35, 129382.93it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 321643/4997436 [00:02<00:40, 115130.47it/s]" + " 7%|▋ | 360969/4997436 [00:02<00:35, 129259.95it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333157/4997436 [00:02<00:40, 114243.22it/s]" + " 7%|▋ | 373963/4997436 [00:02<00:35, 129459.56it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 344784/4997436 [00:03<00:40, 114845.19it/s]" + " 8%|▊ | 386909/4997436 [00:03<00:35, 129250.57it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 356334/4997436 [00:03<00:40, 115036.81it/s]" + " 8%|▊ | 399863/4997436 [00:03<00:35, 129335.36it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368085/4997436 [00:03<00:39, 115771.39it/s]" + " 8%|▊ | 412797/4997436 [00:03<00:35, 129106.00it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 379777/4997436 [00:03<00:39, 116110.89it/s]" + " 9%|▊ | 425708/4997436 [00:03<00:35, 129032.63it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 391389/4997436 [00:03<00:39, 116060.03it/s]" + " 9%|▉ | 438612/4997436 [00:03<00:35, 129018.30it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 403076/4997436 [00:03<00:39, 116297.87it/s]" + " 9%|▉ | 451522/4997436 [00:03<00:35, 129039.68it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 414707/4997436 [00:03<00:39, 116178.19it/s]" + " 9%|▉ | 464513/4997436 [00:03<00:35, 129296.58it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 426353/4997436 [00:03<00:39, 116260.65it/s]" + " 10%|▉ | 477443/4997436 [00:03<00:35, 129031.21it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 438056/4997436 [00:03<00:39, 116486.67it/s]" + " 10%|▉ | 490371/4997436 [00:03<00:34, 129103.06it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 449705/4997436 [00:03<00:39, 116079.85it/s]" + " 10%|█ | 503282/4997436 [00:03<00:34, 128993.51it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 461314/4997436 [00:04<00:39, 115791.11it/s]" + " 10%|█ | 516183/4997436 [00:04<00:34, 128995.44it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 472894/4997436 [00:04<00:39, 115647.21it/s]" + " 11%|█ | 529083/4997436 [00:04<00:34, 128633.55it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 484555/4997436 [00:04<00:38, 115931.33it/s]" + " 11%|█ | 541975/4997436 [00:04<00:34, 128716.44it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 496219/4997436 [00:04<00:38, 116139.20it/s]" + " 11%|█ | 554868/4997436 [00:04<00:34, 128778.21it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 507839/4997436 [00:04<00:38, 116154.20it/s]" + " 11%|█▏ | 567746/4997436 [00:04<00:34, 128629.67it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519455/4997436 [00:04<00:38, 116099.74it/s]" + " 12%|█▏ | 580610/4997436 [00:04<00:34, 128366.64it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531066/4997436 [00:04<00:38, 115824.26it/s]" + " 12%|█▏ | 593488/4997436 [00:04<00:34, 128488.79it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 542759/4997436 [00:04<00:38, 116152.35it/s]" + " 12%|█▏ | 606338/4997436 [00:04<00:34, 128435.06it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554375/4997436 [00:04<00:38, 116146.47it/s]" + " 12%|█▏ | 619199/4997436 [00:04<00:34, 128484.93it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 566028/4997436 [00:04<00:38, 116256.92it/s]" + " 13%|█▎ | 632092/4997436 [00:04<00:33, 128614.47it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 577654/4997436 [00:05<00:38, 115835.40it/s]" + " 13%|█▎ | 644954/4997436 [00:05<00:33, 128572.70it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 589302/4997436 [00:05<00:37, 116025.38it/s]" + " 13%|█▎ | 657816/4997436 [00:05<00:33, 128583.98it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 600905/4997436 [00:05<00:38, 115342.94it/s]" + " 13%|█▎ | 670680/4997436 [00:05<00:33, 128596.95it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 612488/4997436 [00:05<00:37, 115484.89it/s]" + " 14%|█▎ | 683583/4997436 [00:05<00:33, 128725.19it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 624168/4997436 [00:05<00:37, 115872.67it/s]" + " 14%|█▍ | 696456/4997436 [00:05<00:33, 128575.99it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635823/4997436 [00:05<00:37, 116071.10it/s]" + " 14%|█▍ | 709315/4997436 [00:05<00:33, 128577.56it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647431/4997436 [00:05<00:37, 115879.91it/s]" + " 14%|█▍ | 722173/4997436 [00:05<00:33, 128311.64it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659020/4997436 [00:05<00:37, 115727.34it/s]" + " 15%|█▍ | 735005/4997436 [00:05<00:33, 128290.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670719/4997436 [00:05<00:37, 116101.40it/s]" + " 15%|█▍ | 747876/4997436 [00:05<00:33, 128412.21it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 682330/4997436 [00:05<00:37, 116078.24it/s]" + " 15%|█▌ | 760765/4997436 [00:05<00:32, 128553.59it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693939/4997436 [00:06<00:37, 115946.16it/s]" + " 15%|█▌ | 773763/4997436 [00:06<00:32, 128977.63it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705534/4997436 [00:06<00:37, 115653.16it/s]" + " 16%|█▌ | 786790/4997436 [00:06<00:32, 129362.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 717152/4997436 [00:06<00:36, 115806.46it/s]" + " 16%|█▌ | 799797/4997436 [00:06<00:32, 129572.33it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 728783/4997436 [00:06<00:36, 115952.34it/s]" + " 16%|█▋ | 812843/4997436 [00:06<00:32, 129835.16it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 740432/4997436 [00:06<00:36, 116110.93it/s]" + " 17%|█▋ | 825915/4997436 [00:06<00:32, 130097.98it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 752044/4997436 [00:06<00:36, 115845.10it/s]" + " 17%|█▋ | 838990/4997436 [00:06<00:31, 130289.96it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763733/4997436 [00:06<00:36, 116154.37it/s]" + " 17%|█▋ | 852020/4997436 [00:06<00:31, 130097.72it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 775489/4997436 [00:06<00:36, 116573.30it/s]" + " 17%|█▋ | 865051/4997436 [00:06<00:31, 130158.20it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 787259/4997436 [00:06<00:36, 116908.76it/s]" + " 18%|█▊ | 878067/4997436 [00:06<00:31, 129992.95it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 799103/4997436 [00:06<00:35, 117365.09it/s]" + " 18%|█▊ | 891067/4997436 [00:06<00:31, 129429.00it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 810946/4997436 [00:07<00:35, 117681.29it/s]" + " 18%|█▊ | 904065/4997436 [00:07<00:31, 129573.36it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 822741/4997436 [00:07<00:35, 117759.29it/s]" + " 18%|█▊ | 917023/4997436 [00:07<00:31, 129572.05it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834562/4997436 [00:07<00:35, 117891.88it/s]" + " 19%|█▊ | 930014/4997436 [00:07<00:31, 129669.28it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 846437/4997436 [00:07<00:35, 118146.41it/s]" + " 19%|█▉ | 943006/4997436 [00:07<00:31, 129741.74it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 858252/4997436 [00:07<00:35, 118132.91it/s]" + " 19%|█▉ | 956000/4997436 [00:07<00:31, 129799.80it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 870066/4997436 [00:07<00:35, 117812.32it/s]" + " 19%|█▉ | 968981/4997436 [00:07<00:31, 129744.75it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 881848/4997436 [00:07<00:35, 117279.65it/s]" + " 20%|█▉ | 981956/4997436 [00:07<00:31, 129530.30it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 893587/4997436 [00:07<00:34, 117303.95it/s]" + " 20%|█▉ | 994991/4997436 [00:07<00:30, 129774.15it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 905323/4997436 [00:07<00:34, 117316.64it/s]" + " 20%|██ | 1007969/4997436 [00:07<00:30, 129693.67it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 917055/4997436 [00:07<00:34, 117246.82it/s]" + " 20%|██ | 1020939/4997436 [00:07<00:30, 129543.84it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 928781/4997436 [00:08<00:34, 117246.86it/s]" + " 21%|██ | 1033915/4997436 [00:08<00:30, 129605.38it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940516/4997436 [00:08<00:34, 117275.20it/s]" + " 21%|██ | 1046955/4997436 [00:08<00:30, 129839.80it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 952244/4997436 [00:08<00:34, 117260.08it/s]" + " 21%|██ | 1059940/4997436 [00:08<00:30, 129732.20it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 964036/4997436 [00:08<00:34, 117452.89it/s]" + " 21%|██▏ | 1072925/4997436 [00:08<00:30, 129765.86it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 975782/4997436 [00:08<00:34, 117283.78it/s]" + " 22%|██▏ | 1085921/4997436 [00:08<00:30, 129821.40it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987511/4997436 [00:08<00:34, 117042.92it/s]" + " 22%|██▏ | 1098932/4997436 [00:08<00:30, 129904.25it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 999216/4997436 [00:08<00:34, 116468.44it/s]" + " 22%|██▏ | 1111926/4997436 [00:08<00:29, 129913.52it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1010864/4997436 [00:08<00:34, 116133.86it/s]" + " 23%|██▎ | 1124926/4997436 [00:08<00:29, 129936.89it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022485/4997436 [00:08<00:34, 116152.56it/s]" + " 23%|██▎ | 1137920/4997436 [00:08<00:29, 129885.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034101/4997436 [00:08<00:34, 115848.63it/s]" + " 23%|██▎ | 1150909/4997436 [00:08<00:29, 129882.09it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1045780/4997436 [00:09<00:34, 116125.54it/s]" + " 23%|██▎ | 1163898/4997436 [00:09<00:29, 129626.19it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1057511/4997436 [00:09<00:33, 116477.76it/s]" + " 24%|██▎ | 1176861/4997436 [00:09<00:29, 129556.68it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1069231/4997436 [00:09<00:33, 116691.55it/s]" + " 24%|██▍ | 1189817/4997436 [00:09<00:29, 129415.10it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080901/4997436 [00:09<00:33, 116663.96it/s]" + " 24%|██▍ | 1202759/4997436 [00:09<00:29, 129375.60it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1092697/4997436 [00:09<00:33, 117049.53it/s]" + " 24%|██▍ | 1215697/4997436 [00:09<00:29, 129330.49it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1104403/4997436 [00:09<00:33, 117044.75it/s]" + " 25%|██▍ | 1228631/4997436 [00:09<00:29, 129220.31it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1116108/4997436 [00:09<00:33, 116933.53it/s]" + " 25%|██▍ | 1241554/4997436 [00:09<00:29, 129098.32it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127802/4997436 [00:09<00:33, 116431.59it/s]" + " 25%|██▌ | 1254464/4997436 [00:09<00:29, 129065.41it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1139446/4997436 [00:09<00:33, 116273.25it/s]" + " 25%|██▌ | 1267371/4997436 [00:09<00:28, 128958.87it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1151205/4997436 [00:09<00:32, 116665.04it/s]" + " 26%|██▌ | 1280331/4997436 [00:09<00:28, 129146.61it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1162872/4997436 [00:10<00:32, 116368.76it/s]" + " 26%|██▌ | 1293365/4997436 [00:10<00:28, 129502.04it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1174650/4997436 [00:10<00:32, 116786.40it/s]" + " 26%|██▌ | 1306332/4997436 [00:10<00:28, 129550.20it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1186330/4997436 [00:10<00:32, 116591.54it/s]" + " 26%|██▋ | 1319328/4997436 [00:10<00:28, 129671.16it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1197990/4997436 [00:10<00:32, 116473.91it/s]" + " 27%|██▋ | 1332362/4997436 [00:10<00:28, 129870.38it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209722/4997436 [00:10<00:32, 116722.32it/s]" + " 27%|██▋ | 1345387/4997436 [00:10<00:28, 129981.48it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1221395/4997436 [00:10<00:32, 115931.36it/s]" + " 27%|██▋ | 1358423/4997436 [00:10<00:27, 130093.28it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1232990/4997436 [00:10<00:32, 115765.86it/s]" + " 27%|██▋ | 1371433/4997436 [00:10<00:27, 130014.07it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244582/4997436 [00:10<00:32, 115808.35it/s]" + " 28%|██▊ | 1384458/4997436 [00:10<00:27, 130083.55it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1256164/4997436 [00:10<00:32, 115799.24it/s]" + " 28%|██▊ | 1397492/4997436 [00:10<00:27, 130156.49it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267753/4997436 [00:10<00:32, 115822.05it/s]" + " 28%|██▊ | 1410508/4997436 [00:10<00:27, 130120.73it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1279336/4997436 [00:11<00:32, 115671.37it/s]" + " 28%|██▊ | 1423521/4997436 [00:11<00:27, 130108.39it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1291020/4997436 [00:11<00:31, 116018.05it/s]" + " 29%|██▊ | 1436532/4997436 [00:11<00:27, 130057.11it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1302741/4997436 [00:11<00:31, 116371.93it/s]" + " 29%|██▉ | 1449579/4997436 [00:11<00:27, 130177.32it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1314379/4997436 [00:11<00:31, 116313.22it/s]" + " 29%|██▉ | 1462597/4997436 [00:11<00:27, 130093.70it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1326190/4997436 [00:11<00:31, 116847.90it/s]" + " 30%|██▉ | 1475607/4997436 [00:11<00:27, 129912.99it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1337875/4997436 [00:11<00:31, 116665.80it/s]" + " 30%|██▉ | 1488632/4997436 [00:11<00:26, 130009.98it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1349572/4997436 [00:11<00:31, 116752.77it/s]" + " 30%|███ | 1501733/4997436 [00:11<00:26, 130308.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1361363/4997436 [00:11<00:31, 117097.55it/s]" + " 30%|███ | 1514819/4997436 [00:11<00:26, 130472.27it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373073/4997436 [00:11<00:31, 116914.67it/s]" + " 31%|███ | 1527867/4997436 [00:11<00:26, 130320.62it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1384765/4997436 [00:11<00:30, 116614.62it/s]" + " 31%|███ | 1540900/4997436 [00:11<00:26, 130170.59it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1396427/4997436 [00:12<00:32, 111762.03it/s]" + " 31%|███ | 1553918/4997436 [00:12<00:26, 130017.84it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407673/4997436 [00:12<00:32, 111960.89it/s]" + " 31%|███▏ | 1566986/4997436 [00:12<00:26, 130212.97it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1418900/4997436 [00:12<00:32, 111716.83it/s]" + " 32%|███▏ | 1580008/4997436 [00:12<00:26, 130038.55it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1430093/4997436 [00:12<00:32, 111138.74it/s]" + " 32%|███▏ | 1593012/4997436 [00:12<00:26, 129866.96it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441222/4997436 [00:12<00:32, 110686.26it/s]" + " 32%|███▏ | 1605999/4997436 [00:12<00:26, 129585.21it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452301/4997436 [00:12<00:33, 107221.16it/s]" + " 32%|███▏ | 1618958/4997436 [00:12<00:26, 129540.77it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1463050/4997436 [00:12<00:33, 104885.26it/s]" + " 33%|███▎ | 1631915/4997436 [00:12<00:25, 129546.78it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1473880/4997436 [00:12<00:33, 105865.46it/s]" + " 33%|███▎ | 1644870/4997436 [00:12<00:25, 129114.39it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485004/4997436 [00:12<00:32, 107431.14it/s]" + " 33%|███▎ | 1657784/4997436 [00:12<00:25, 129119.33it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1496177/4997436 [00:12<00:32, 108693.05it/s]" + " 33%|███▎ | 1670722/4997436 [00:12<00:25, 129193.77it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1507062/4997436 [00:13<00:32, 107493.38it/s]" + " 34%|███▎ | 1683714/4997436 [00:13<00:25, 129409.17it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1518294/4997436 [00:13<00:31, 108913.55it/s]" + " 34%|███▍ | 1696716/4997436 [00:13<00:25, 129590.65it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529679/4997436 [00:13<00:31, 110357.45it/s]" + " 34%|███▍ | 1709796/4997436 [00:13<00:25, 129949.36it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1540912/4997436 [00:13<00:31, 110938.91it/s]" + " 34%|███▍ | 1722792/4997436 [00:13<00:25, 129885.00it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1552265/4997436 [00:13<00:30, 111707.38it/s]" + " 35%|███▍ | 1735793/4997436 [00:13<00:25, 129920.37it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563442/4997436 [00:13<00:31, 109962.05it/s]" + " 35%|███▍ | 1748835/4997436 [00:13<00:24, 130067.98it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1574448/4997436 [00:13<00:31, 109487.76it/s]" + " 35%|███▌ | 1761842/4997436 [00:13<00:24, 129986.47it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1585404/4997436 [00:13<00:31, 109442.67it/s]" + " 36%|███▌ | 1774848/4997436 [00:13<00:24, 130006.60it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1596353/4997436 [00:13<00:31, 108333.10it/s]" + " 36%|███▌ | 1787887/4997436 [00:13<00:24, 130117.60it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1607302/4997436 [00:13<00:31, 108672.67it/s]" + " 36%|███▌ | 1800899/4997436 [00:13<00:24, 129917.53it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1618174/4997436 [00:14<00:31, 107342.91it/s]" + " 36%|███▋ | 1813891/4997436 [00:14<00:24, 129827.24it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1629193/4997436 [00:14<00:31, 108180.43it/s]" + " 37%|███▋ | 1826942/4997436 [00:14<00:24, 130030.70it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640564/4997436 [00:14<00:30, 109818.51it/s]" + " 37%|███▋ | 1839946/4997436 [00:14<00:24, 129570.98it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1651552/4997436 [00:14<00:30, 108036.68it/s]" + " 37%|███▋ | 1852904/4997436 [00:14<00:24, 128944.98it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1662365/4997436 [00:14<00:30, 107746.86it/s]" + " 37%|███▋ | 1865800/4997436 [00:14<00:24, 128486.74it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1673186/4997436 [00:14<00:30, 107879.94it/s]" + " 38%|███▊ | 1878650/4997436 [00:14<00:24, 128367.58it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1684513/4997436 [00:14<00:30, 109478.08it/s]" + " 38%|███▊ | 1891610/4997436 [00:14<00:24, 128733.40it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695466/4997436 [00:14<00:30, 108593.95it/s]" + " 38%|███▊ | 1904547/4997436 [00:14<00:23, 128920.14it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1706330/4997436 [00:14<00:30, 108118.20it/s]" + " 38%|███▊ | 1917574/4997436 [00:14<00:23, 129321.13it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717154/4997436 [00:15<00:30, 108151.55it/s]" + " 39%|███▊ | 1930627/4997436 [00:14<00:23, 129678.82it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1728087/4997436 [00:15<00:30, 108178.70it/s]" + " 39%|███▉ | 1943624/4997436 [00:15<00:23, 129764.33it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1739546/4997436 [00:15<00:29, 110086.10it/s]" + " 39%|███▉ | 1956601/4997436 [00:15<00:23, 129656.37it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1750684/4997436 [00:15<00:29, 110469.47it/s]" + " 39%|███▉ | 1969567/4997436 [00:15<00:23, 129202.46it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1762150/4997436 [00:15<00:28, 111717.89it/s]" + " 40%|███▉ | 1982488/4997436 [00:15<00:23, 129028.33it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1774023/4997436 [00:15<00:28, 113811.61it/s]" + " 40%|███▉ | 1995392/4997436 [00:15<00:23, 128459.39it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1785815/4997436 [00:15<00:27, 115038.30it/s]" + " 40%|████ | 2008239/4997436 [00:15<00:23, 126965.15it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1797612/4997436 [00:15<00:27, 115913.14it/s]" + " 40%|████ | 2020986/4997436 [00:15<00:23, 127110.52it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1809478/4997436 [00:15<00:27, 116733.63it/s]" + " 41%|████ | 2033964/4997436 [00:15<00:23, 127900.75it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1821198/4997436 [00:15<00:27, 116869.22it/s]" + " 41%|████ | 2046965/4997436 [00:15<00:22, 128526.97it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1833072/4997436 [00:16<00:26, 117426.01it/s]" + " 41%|████ | 2059904/4997436 [00:15<00:22, 128780.34it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844816/4997436 [00:16<00:26, 117177.06it/s]" + " 41%|████▏ | 2072816/4997436 [00:16<00:22, 128878.39it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856535/4997436 [00:16<00:26, 117096.86it/s]" + " 42%|████▏ | 2085706/4997436 [00:16<00:22, 128505.08it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1868294/4997436 [00:16<00:26, 117240.39it/s]" + " 42%|████▏ | 2098621/4997436 [00:16<00:22, 128661.23it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1880070/4997436 [00:16<00:26, 117393.18it/s]" + " 42%|████▏ | 2111541/4997436 [00:16<00:22, 128818.42it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1891864/4997436 [00:16<00:26, 117554.84it/s]" + " 43%|████▎ | 2124485/4997436 [00:16<00:22, 129000.34it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903667/4997436 [00:16<00:26, 117694.98it/s]" + " 43%|████▎ | 2137386/4997436 [00:16<00:22, 128802.34it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915723/4997436 [00:16<00:25, 118551.16it/s]" + " 43%|████▎ | 2150337/4997436 [00:16<00:22, 129009.91it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1927704/4997436 [00:16<00:25, 118924.72it/s]" + " 43%|████▎ | 2163256/4997436 [00:16<00:21, 129061.41it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1939646/4997436 [00:16<00:25, 119069.04it/s]" + " 44%|████▎ | 2176163/4997436 [00:16<00:21, 128706.56it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1951553/4997436 [00:17<00:25, 118807.94it/s]" + " 44%|████▍ | 2189034/4997436 [00:16<00:21, 128343.70it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1963434/4997436 [00:17<00:25, 118786.28it/s]" + " 44%|████▍ | 2201869/4997436 [00:17<00:21, 128264.19it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1975313/4997436 [00:17<00:25, 118121.70it/s]" + " 44%|████▍ | 2214869/4997436 [00:17<00:21, 128780.03it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1987220/4997436 [00:17<00:25, 118401.47it/s]" + " 45%|████▍ | 2227748/4997436 [00:17<00:21, 127978.94it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 1999061/4997436 [00:17<00:25, 117900.48it/s]" + " 45%|████▍ | 2240655/4997436 [00:17<00:21, 128301.89it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2010852/4997436 [00:17<00:25, 117699.97it/s]" + " 45%|████▌ | 2253487/4997436 [00:17<00:21, 127746.11it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2022623/4997436 [00:17<00:25, 117658.03it/s]" + " 45%|████▌ | 2266263/4997436 [00:17<00:21, 126956.24it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034390/4997436 [00:17<00:25, 117648.06it/s]" + " 46%|████▌ | 2278961/4997436 [00:17<00:21, 126813.25it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2046176/4997436 [00:17<00:25, 117709.24it/s]" + " 46%|████▌ | 2291644/4997436 [00:17<00:21, 126353.06it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057954/4997436 [00:17<00:24, 117726.42it/s]" + " 46%|████▌ | 2304422/4997436 [00:17<00:21, 126774.34it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2069749/4997436 [00:18<00:24, 117789.99it/s]" + " 46%|████▋ | 2317288/4997436 [00:17<00:21, 127334.16it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2081529/4997436 [00:18<00:24, 117654.64it/s]" + " 47%|████▋ | 2330122/4997436 [00:18<00:20, 127632.21it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2093358/4997436 [00:18<00:24, 117841.55it/s]" + " 47%|████▋ | 2343068/4997436 [00:18<00:20, 128175.24it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2105143/4997436 [00:18<00:24, 117411.50it/s]" + " 47%|████▋ | 2356017/4997436 [00:18<00:20, 128566.05it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2116885/4997436 [00:18<00:24, 117405.95it/s]" + " 47%|████▋ | 2368947/4997436 [00:18<00:20, 128782.13it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2128626/4997436 [00:18<00:24, 117325.91it/s]" + " 48%|████▊ | 2381832/4997436 [00:18<00:20, 128798.46it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2140359/4997436 [00:18<00:24, 117074.90it/s]" + " 48%|████▊ | 2394736/4997436 [00:18<00:20, 128869.07it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152067/4997436 [00:18<00:24, 117053.01it/s]" + " 48%|████▊ | 2407624/4997436 [00:18<00:20, 128852.21it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2163907/4997436 [00:18<00:24, 117452.46it/s]" + " 48%|████▊ | 2420590/4997436 [00:18<00:19, 129090.60it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2175738/4997436 [00:18<00:23, 117706.57it/s]" + " 49%|████▊ | 2433500/4997436 [00:18<00:19, 128935.90it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2187523/4997436 [00:19<00:23, 117746.47it/s]" + " 49%|████▉ | 2446394/4997436 [00:18<00:19, 128803.91it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2199298/4997436 [00:19<00:23, 117707.18it/s]" + " 49%|████▉ | 2459275/4997436 [00:19<00:19, 128615.99it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211069/4997436 [00:19<00:23, 117644.75it/s]" + " 49%|████▉ | 2472210/4997436 [00:19<00:19, 128833.57it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2222834/4997436 [00:19<00:23, 116633.31it/s]" + " 50%|████▉ | 2485180/4997436 [00:19<00:19, 129089.84it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2234530/4997436 [00:19<00:23, 116728.12it/s]" + " 50%|████▉ | 2498138/4997436 [00:19<00:19, 129234.18it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246205/4997436 [00:19<00:23, 116723.64it/s]" + " 50%|█████ | 2511062/4997436 [00:19<00:19, 129032.71it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257879/4997436 [00:19<00:23, 116364.50it/s]" + " 51%|█████ | 2523966/4997436 [00:19<00:19, 128689.49it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2269517/4997436 [00:19<00:23, 116239.80it/s]" + " 51%|█████ | 2536859/4997436 [00:19<00:19, 128759.07it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281213/4997436 [00:19<00:23, 116451.30it/s]" + " 51%|█████ | 2549764/4997436 [00:19<00:18, 128844.64it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2292859/4997436 [00:19<00:23, 116412.51it/s]" + " 51%|█████▏ | 2562649/4997436 [00:19<00:18, 128722.45it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2304501/4997436 [00:20<00:23, 116322.05it/s]" + " 52%|█████▏ | 2575579/4997436 [00:19<00:18, 128892.14it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316244/4997436 [00:20<00:22, 116649.36it/s]" + " 52%|█████▏ | 2588515/4997436 [00:20<00:18, 129030.24it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2327945/4997436 [00:20<00:22, 116754.00it/s]" + " 52%|█████▏ | 2601419/4997436 [00:20<00:18, 128898.72it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2339622/4997436 [00:20<00:22, 116756.24it/s]" + " 52%|█████▏ | 2614309/4997436 [00:20<00:18, 128732.88it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351386/4997436 [00:20<00:22, 117017.27it/s]" + " 53%|█████▎ | 2627213/4997436 [00:20<00:18, 128823.51it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2363124/4997436 [00:20<00:22, 117122.71it/s]" + " 53%|█████▎ | 2640096/4997436 [00:20<00:18, 128676.03it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2374901/4997436 [00:20<00:22, 117313.41it/s]" + " 53%|█████▎ | 2652964/4997436 [00:20<00:18, 128612.61it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386706/4997436 [00:20<00:22, 117530.49it/s]" + " 53%|█████▎ | 2665892/4997436 [00:20<00:18, 128808.78it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2398460/4997436 [00:20<00:22, 117523.29it/s]" + " 54%|█████▎ | 2678904/4997436 [00:20<00:17, 129200.36it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2410213/4997436 [00:20<00:22, 117435.98it/s]" + " 54%|█████▍ | 2691846/4997436 [00:20<00:17, 129262.73it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421976/4997436 [00:21<00:21, 117491.41it/s]" + " 54%|█████▍ | 2704773/4997436 [00:20<00:17, 128851.37it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2433764/4997436 [00:21<00:21, 117603.00it/s]" + " 54%|█████▍ | 2717699/4997436 [00:21<00:17, 128970.36it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2445589/4997436 [00:21<00:21, 117793.52it/s]" + " 55%|█████▍ | 2730597/4997436 [00:21<00:17, 128845.43it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457450/4997436 [00:21<00:21, 118035.22it/s]" + " 55%|█████▍ | 2743488/4997436 [00:21<00:17, 128860.47it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2469306/4997436 [00:21<00:21, 118188.43it/s]" + " 55%|█████▌ | 2756392/4997436 [00:21<00:17, 128910.79it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2481150/4997436 [00:21<00:21, 118259.69it/s]" + " 55%|█████▌ | 2769360/4997436 [00:21<00:17, 129138.04it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2492976/4997436 [00:21<00:21, 118197.01it/s]" + " 56%|█████▌ | 2782274/4997436 [00:21<00:17, 129001.74it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2504796/4997436 [00:21<00:21, 117843.09it/s]" + " 56%|█████▌ | 2795240/4997436 [00:21<00:17, 129196.61it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2516649/4997436 [00:21<00:21, 118046.00it/s]" + " 56%|█████▌ | 2808160/4997436 [00:21<00:16, 128973.24it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2528454/4997436 [00:21<00:20, 117832.94it/s]" + " 56%|█████▋ | 2821100/4997436 [00:21<00:16, 129098.76it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2540238/4997436 [00:22<00:20, 117572.61it/s]" + " 57%|█████▋ | 2834010/4997436 [00:21<00:16, 129055.75it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2551996/4997436 [00:22<00:20, 117526.59it/s]" + " 57%|█████▋ | 2846916/4997436 [00:22<00:16, 128909.52it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2563809/4997436 [00:22<00:20, 117703.73it/s]" + " 57%|█████▋ | 2859814/4997436 [00:22<00:16, 128926.16it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2575580/4997436 [00:22<00:20, 117398.04it/s]" + " 57%|█████▋ | 2872761/4997436 [00:22<00:16, 129086.95it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2587321/4997436 [00:22<00:20, 117348.10it/s]" + " 58%|█████▊ | 2885701/4997436 [00:22<00:16, 129178.24it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2599056/4997436 [00:22<00:20, 117279.75it/s]" + " 58%|█████▊ | 2898619/4997436 [00:22<00:16, 128917.63it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2610785/4997436 [00:22<00:20, 117081.47it/s]" + " 58%|█████▊ | 2911511/4997436 [00:22<00:16, 128871.27it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2622585/4997436 [00:22<00:20, 117351.88it/s]" + " 59%|█████▊ | 2924478/4997436 [00:22<00:16, 129108.90it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2634330/4997436 [00:22<00:20, 117377.27it/s]" + " 59%|█████▉ | 2937389/4997436 [00:22<00:15, 128901.95it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2646201/4997436 [00:22<00:19, 117773.63it/s]" + " 59%|█████▉ | 2950280/4997436 [00:22<00:15, 128894.28it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658021/4997436 [00:23<00:19, 117897.24it/s]" + " 59%|█████▉ | 2963170/4997436 [00:22<00:15, 128601.63it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2669814/4997436 [00:23<00:19, 117903.47it/s]" + " 60%|█████▉ | 2976106/4997436 [00:23<00:15, 128825.56it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2681708/4997436 [00:23<00:19, 118211.00it/s]" + " 60%|█████▉ | 2988989/4997436 [00:23<00:15, 128755.59it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2693530/4997436 [00:23<00:19, 117804.05it/s]" + " 60%|██████ | 3001904/4997436 [00:23<00:15, 128870.90it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705311/4997436 [00:23<00:19, 117489.74it/s]" + " 60%|██████ | 3014821/4997436 [00:23<00:15, 128957.52it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717061/4997436 [00:23<00:19, 116900.34it/s]" + " 61%|██████ | 3027741/4997436 [00:23<00:15, 129026.55it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2728861/4997436 [00:23<00:19, 117223.90it/s]" + " 61%|██████ | 3040644/4997436 [00:23<00:15, 128898.17it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2740644/4997436 [00:23<00:19, 117400.88it/s]" + " 61%|██████ | 3053587/4997436 [00:23<00:15, 129053.43it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2752385/4997436 [00:23<00:19, 117330.01it/s]" + " 61%|██████▏ | 3066548/4997436 [00:23<00:14, 129216.33it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2764146/4997436 [00:23<00:19, 117410.14it/s]" + " 62%|██████▏ | 3079470/4997436 [00:23<00:14, 129115.39it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775907/4997436 [00:24<00:18, 117465.91it/s]" + " 62%|██████▏ | 3092382/4997436 [00:23<00:14, 129087.75it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2787654/4997436 [00:24<00:18, 117017.39it/s]" + " 62%|██████▏ | 3105293/4997436 [00:24<00:14, 129091.32it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2799357/4997436 [00:24<00:18, 116720.48it/s]" + " 62%|██████▏ | 3118203/4997436 [00:24<00:14, 128716.08it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2811117/4997436 [00:24<00:18, 116979.90it/s]" + " 63%|██████▎ | 3131075/4997436 [00:24<00:14, 128664.78it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2823034/4997436 [00:24<00:18, 117631.77it/s]" + " 63%|██████▎ | 3143942/4997436 [00:24<00:14, 128601.11it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2834815/4997436 [00:24<00:18, 117682.55it/s]" + " 63%|██████▎ | 3156803/4997436 [00:24<00:14, 128528.83it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2846584/4997436 [00:24<00:18, 117412.30it/s]" + " 63%|██████▎ | 3169723/4997436 [00:24<00:14, 128725.48it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2858326/4997436 [00:24<00:18, 117313.21it/s]" + " 64%|██████▎ | 3182638/4997436 [00:24<00:14, 128849.87it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870058/4997436 [00:24<00:18, 117291.76it/s]" + " 64%|██████▍ | 3195559/4997436 [00:24<00:13, 128953.52it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2881788/4997436 [00:24<00:18, 117133.87it/s]" + " 64%|██████▍ | 3208462/4997436 [00:24<00:13, 128974.28it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893502/4997436 [00:25<00:17, 117070.07it/s]" + " 64%|██████▍ | 3221428/4997436 [00:24<00:13, 129176.15it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905210/4997436 [00:25<00:17, 117019.37it/s]" + " 65%|██████▍ | 3234346/4997436 [00:25<00:13, 129136.16it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2916912/4997436 [00:25<00:17, 116998.20it/s]" + " 65%|██████▍ | 3247289/4997436 [00:25<00:13, 129222.92it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2928612/4997436 [00:25<00:17, 116736.78it/s]" + " 65%|██████▌ | 3260228/4997436 [00:25<00:13, 129270.57it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2940287/4997436 [00:25<00:17, 116737.52it/s]" + " 65%|██████▌ | 3273156/4997436 [00:25<00:13, 129166.02it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2951961/4997436 [00:25<00:17, 116726.21it/s]" + " 66%|██████▌ | 3286138/4997436 [00:25<00:13, 129358.31it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2963634/4997436 [00:25<00:17, 116534.84it/s]" + " 66%|██████▌ | 3299122/4997436 [00:25<00:13, 129499.35it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2975288/4997436 [00:25<00:17, 116477.14it/s]" + " 66%|██████▋ | 3312072/4997436 [00:25<00:13, 129176.15it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2986996/4997436 [00:25<00:17, 116654.04it/s]" + " 67%|██████▋ | 3324998/4997436 [00:25<00:12, 129196.68it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 2998799/4997436 [00:25<00:17, 117062.98it/s]" + " 67%|██████▋ | 3337918/4997436 [00:25<00:12, 128815.90it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3010522/4997436 [00:26<00:16, 117110.90it/s]" + " 67%|██████▋ | 3350803/4997436 [00:25<00:12, 128824.57it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3022341/4997436 [00:26<00:16, 117430.51it/s]" + " 67%|██████▋ | 3363686/4997436 [00:26<00:12, 128789.83it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3034197/4997436 [00:26<00:16, 117765.44it/s]" + " 68%|██████▊ | 3376583/4997436 [00:26<00:12, 128840.15it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045974/4997436 [00:26<00:16, 117624.20it/s]" + " 68%|██████▊ | 3389542/4997436 [00:26<00:12, 129063.21it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3057737/4997436 [00:26<00:16, 117035.38it/s]" + " 68%|██████▊ | 3402454/4997436 [00:26<00:12, 129077.96it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3069442/4997436 [00:26<00:16, 116533.77it/s]" + " 68%|██████▊ | 3415362/4997436 [00:26<00:12, 128973.88it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3081130/4997436 [00:26<00:16, 116634.72it/s]" + " 69%|██████▊ | 3428312/4997436 [00:26<00:12, 129129.38it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3092803/4997436 [00:26<00:16, 116660.14it/s]" + " 69%|██████▉ | 3441228/4997436 [00:26<00:12, 129135.37it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3104472/4997436 [00:26<00:16, 116665.20it/s]" + " 69%|██████▉ | 3454179/4997436 [00:26<00:11, 129246.35it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116139/4997436 [00:26<00:16, 116647.02it/s]" + " 69%|██████▉ | 3467104/4997436 [00:26<00:11, 129234.08it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3127804/4997436 [00:27<00:16, 116395.51it/s]" + " 70%|██████▉ | 3480059/4997436 [00:26<00:11, 129327.29it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3139444/4997436 [00:27<00:15, 116267.25it/s]" + " 70%|██████▉ | 3492997/4997436 [00:27<00:11, 129341.38it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3151098/4997436 [00:27<00:15, 116345.82it/s]" + " 70%|███████ | 3505932/4997436 [00:27<00:11, 128869.39it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3162733/4997436 [00:27<00:15, 116151.49it/s]" + " 70%|███████ | 3518820/4997436 [00:27<00:11, 128819.95it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3174398/4997436 [00:27<00:15, 116296.81it/s]" + " 71%|███████ | 3531831/4997436 [00:27<00:11, 129204.59it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3186097/4997436 [00:27<00:15, 116499.52it/s]" + " 71%|███████ | 3544899/4997436 [00:27<00:11, 129644.72it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3197748/4997436 [00:27<00:15, 116389.04it/s]" + " 71%|███████ | 3557932/4997436 [00:27<00:11, 129848.17it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3209395/4997436 [00:27<00:15, 116408.83it/s]" + " 71%|███████▏ | 3570918/4997436 [00:27<00:10, 129796.74it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221051/4997436 [00:27<00:15, 116450.51it/s]" + " 72%|███████▏ | 3583993/4997436 [00:27<00:10, 130080.29it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3232697/4997436 [00:27<00:15, 116441.32it/s]" + " 72%|███████▏ | 3597002/4997436 [00:27<00:10, 130077.75it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3244367/4997436 [00:28<00:15, 116514.66it/s]" + " 72%|███████▏ | 3610010/4997436 [00:27<00:10, 129965.94it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3256019/4997436 [00:28<00:14, 116409.68it/s]" + " 72%|███████▏ | 3623007/4997436 [00:28<00:10, 129930.61it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3267674/4997436 [00:28<00:14, 116448.11it/s]" + " 73%|███████▎ | 3636057/4997436 [00:28<00:10, 130099.00it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3279328/4997436 [00:28<00:14, 116472.44it/s]" + " 73%|███████▎ | 3649067/4997436 [00:28<00:10, 130088.92it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3290976/4997436 [00:28<00:14, 116411.25it/s]" + " 73%|███████▎ | 3662076/4997436 [00:28<00:10, 129722.03it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3302618/4997436 [00:28<00:14, 115742.02it/s]" + " 74%|███████▎ | 3675049/4997436 [00:28<00:10, 129327.15it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3314271/4997436 [00:28<00:14, 115974.56it/s]" + " 74%|███████▍ | 3687983/4997436 [00:28<00:10, 128528.56it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3325926/4997436 [00:28<00:14, 116143.52it/s]" + " 74%|███████▍ | 3700837/4997436 [00:28<00:10, 127755.09it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337595/4997436 [00:28<00:14, 116304.80it/s]" + " 74%|███████▍ | 3713836/4997436 [00:28<00:09, 128417.85it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3349226/4997436 [00:28<00:14, 116281.98it/s]" + " 75%|███████▍ | 3726777/4997436 [00:28<00:09, 128711.61it/s]" ] }, { @@ -2850,7 +2850,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3360873/4997436 [00:29<00:14, 116334.28it/s]" + " 75%|███████▍ | 3739650/4997436 [00:28<00:09, 128409.65it/s]" ] }, { @@ -2858,7 +2858,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3372622/4997436 [00:29<00:13, 116676.46it/s]" + " 75%|███████▌ | 3752642/4997436 [00:29<00:09, 128858.49it/s]" ] }, { @@ -2866,7 +2866,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384290/4997436 [00:29<00:13, 116660.04it/s]" + " 75%|███████▌ | 3765610/4997436 [00:29<00:09, 129100.10it/s]" ] }, { @@ -2874,7 +2874,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3395957/4997436 [00:29<00:13, 116495.43it/s]" + " 76%|███████▌ | 3778650/4997436 [00:29<00:09, 129485.84it/s]" ] }, { @@ -2882,7 +2882,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3407631/4997436 [00:29<00:13, 116565.90it/s]" + " 76%|███████▌ | 3791652/4997436 [00:29<00:09, 129643.54it/s]" ] }, { @@ -2890,7 +2890,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419327/4997436 [00:29<00:13, 116681.29it/s]" + " 76%|███████▌ | 3804719/4997436 [00:29<00:09, 129949.29it/s]" ] }, { @@ -2898,7 +2898,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3431018/4997436 [00:29<00:13, 116747.05it/s]" + " 76%|███████▋ | 3817715/4997436 [00:29<00:09, 129639.02it/s]" ] }, { @@ -2906,7 +2906,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3442714/4997436 [00:29<00:13, 116807.76it/s]" + " 77%|███████▋ | 3830725/4997436 [00:29<00:08, 129773.70it/s]" ] }, { @@ -2914,7 +2914,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454395/4997436 [00:29<00:13, 116173.46it/s]" + " 77%|███████▋ | 3843781/4997436 [00:29<00:08, 130007.39it/s]" ] }, { @@ -2922,7 +2922,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3466136/4997436 [00:29<00:13, 116540.37it/s]" + " 77%|███████▋ | 3856782/4997436 [00:29<00:08, 129734.69it/s]" ] }, { @@ -2930,7 +2930,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3477812/4997436 [00:30<00:13, 116602.28it/s]" + " 77%|███████▋ | 3869846/4997436 [00:29<00:08, 130003.20it/s]" ] }, { @@ -2938,7 +2938,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3489477/4997436 [00:30<00:12, 116611.69it/s]" + " 78%|███████▊ | 3882847/4997436 [00:30<00:08, 129799.78it/s]" ] }, { @@ -2946,7 +2946,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3501163/4997436 [00:30<00:12, 116683.36it/s]" + " 78%|███████▊ | 3895828/4997436 [00:30<00:08, 129513.76it/s]" ] }, { @@ -2954,7 +2954,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3512832/4997436 [00:30<00:12, 116624.13it/s]" + " 78%|███████▊ | 3908806/4997436 [00:30<00:08, 129591.38it/s]" ] }, { @@ -2962,7 +2962,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3524543/4997436 [00:30<00:12, 116767.60it/s]" + " 78%|███████▊ | 3921797/4997436 [00:30<00:08, 129684.85it/s]" ] }, { @@ -2970,7 +2970,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3536248/4997436 [00:30<00:12, 116848.61it/s]" + " 79%|███████▊ | 3934766/4997436 [00:30<00:08, 129630.61it/s]" ] }, { @@ -2978,7 +2978,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3547933/4997436 [00:30<00:12, 116789.79it/s]" + " 79%|███████▉ | 3947774/4997436 [00:30<00:08, 129762.77it/s]" ] }, { @@ -2986,7 +2986,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3559650/4997436 [00:30<00:12, 116899.45it/s]" + " 79%|███████▉ | 3960763/4997436 [00:30<00:07, 129797.05it/s]" ] }, { @@ -2994,7 +2994,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3571341/4997436 [00:30<00:13, 109342.70it/s]" + " 80%|███████▉ | 3973804/4997436 [00:30<00:07, 129978.61it/s]" ] }, { @@ -3002,7 +3002,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3583049/4997436 [00:30<00:12, 111552.62it/s]" + " 80%|███████▉ | 3986822/4997436 [00:30<00:07, 130035.78it/s]" ] }, { @@ -3010,7 +3010,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594845/4997436 [00:31<00:12, 113408.97it/s]" + " 80%|████████ | 3999826/4997436 [00:30<00:07, 129761.07it/s]" ] }, { @@ -3018,7 +3018,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3606645/4997436 [00:31<00:12, 114752.25it/s]" + " 80%|████████ | 4012803/4997436 [00:31<00:07, 129740.44it/s]" ] }, { @@ -3026,7 +3026,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3618462/4997436 [00:31<00:11, 115757.11it/s]" + " 81%|████████ | 4025808/4997436 [00:31<00:07, 129831.27it/s]" ] }, { @@ -3034,7 +3034,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3630242/4997436 [00:31<00:11, 116358.77it/s]" + " 81%|████████ | 4038792/4997436 [00:31<00:07, 129666.68it/s]" ] }, { @@ -3042,7 +3042,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3642047/4997436 [00:31<00:11, 116858.78it/s]" + " 81%|████████ | 4051783/4997436 [00:31<00:07, 129736.17it/s]" ] }, { @@ -3050,7 +3050,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3653889/4997436 [00:31<00:11, 117320.64it/s]" + " 81%|████████▏ | 4064757/4997436 [00:31<00:07, 129265.70it/s]" ] }, { @@ -3058,7 +3058,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3665694/4997436 [00:31<00:11, 117534.74it/s]" + " 82%|████████▏ | 4077684/4997436 [00:31<00:07, 128713.36it/s]" ] }, { @@ -3066,7 +3066,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3677457/4997436 [00:31<00:11, 117507.21it/s]" + " 82%|████████▏ | 4090556/4997436 [00:31<00:07, 128134.23it/s]" ] }, { @@ -3074,7 +3074,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3689263/4997436 [00:31<00:11, 117670.09it/s]" + " 82%|████████▏ | 4103429/4997436 [00:31<00:06, 128307.76it/s]" ] }, { @@ -3082,7 +3082,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3701062/4997436 [00:31<00:11, 117761.98it/s]" + " 82%|████████▏ | 4116261/4997436 [00:31<00:06, 127763.99it/s]" ] }, { @@ -3090,7 +3090,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3712842/4997436 [00:32<00:10, 117496.82it/s]" + " 83%|████████▎ | 4129039/4997436 [00:31<00:06, 127712.71it/s]" ] }, { @@ -3098,7 +3098,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3724609/4997436 [00:32<00:10, 117546.33it/s]" + " 83%|████████▎ | 4141811/4997436 [00:32<00:06, 123364.49it/s]" ] }, { @@ -3106,7 +3106,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3736366/4997436 [00:32<00:10, 117516.12it/s]" + " 83%|████████▎ | 4154179/4997436 [00:32<00:06, 123453.24it/s]" ] }, { @@ -3114,7 +3114,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3748132/4997436 [00:32<00:10, 117555.81it/s]" + " 83%|████████▎ | 4167053/4997436 [00:32<00:06, 125006.85it/s]" ] }, { @@ -3122,7 +3122,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3759927/4997436 [00:32<00:10, 117669.86it/s]" + " 84%|████████▎ | 4179891/4997436 [00:32<00:06, 126002.27it/s]" ] }, { @@ -3130,7 +3130,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771695/4997436 [00:32<00:10, 117398.72it/s]" + " 84%|████████▍ | 4192674/4997436 [00:32<00:06, 126542.04it/s]" ] }, { @@ -3138,7 +3138,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3783473/4997436 [00:32<00:10, 117510.80it/s]" + " 84%|████████▍ | 4205546/4997436 [00:32<00:06, 127188.16it/s]" ] }, { @@ -3146,7 +3146,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3795225/4997436 [00:32<00:10, 117269.12it/s]" + " 84%|████████▍ | 4218508/4997436 [00:32<00:06, 127912.00it/s]" ] }, { @@ -3154,7 +3154,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3806953/4997436 [00:32<00:10, 116938.44it/s]" + " 85%|████████▍ | 4231364/4997436 [00:32<00:05, 128102.41it/s]" ] }, { @@ -3162,7 +3162,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818648/4997436 [00:32<00:10, 116727.75it/s]" + " 85%|████████▍ | 4244303/4997436 [00:32<00:05, 128480.38it/s]" ] }, { @@ -3170,7 +3170,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830439/4997436 [00:33<00:09, 117078.07it/s]" + " 85%|████████▌ | 4257333/4997436 [00:32<00:05, 129022.71it/s]" ] }, { @@ -3178,7 +3178,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3842148/4997436 [00:33<00:09, 115643.85it/s]" + " 85%|████████▌ | 4270375/4997436 [00:33<00:05, 129438.75it/s]" ] }, { @@ -3186,7 +3186,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3853717/4997436 [00:33<00:10, 112169.40it/s]" + " 86%|████████▌ | 4283321/4997436 [00:33<00:05, 129178.18it/s]" ] }, { @@ -3194,7 +3194,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865073/4997436 [00:33<00:10, 112569.12it/s]" + " 86%|████████▌ | 4296333/4997436 [00:33<00:05, 129456.39it/s]" ] }, { @@ -3202,7 +3202,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876864/4997436 [00:33<00:09, 114134.42it/s]" + " 86%|████████▌ | 4309282/4997436 [00:33<00:05, 129463.17it/s]" ] }, { @@ -3210,7 +3210,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3888293/4997436 [00:33<00:09, 113506.08it/s]" + " 86%|████████▋ | 4322305/4997436 [00:33<00:05, 129690.89it/s]" ] }, { @@ -3218,7 +3218,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3899900/4997436 [00:33<00:09, 114261.34it/s]" + " 87%|████████▋ | 4335295/4997436 [00:33<00:05, 129748.88it/s]" ] }, { @@ -3226,7 +3226,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911722/4997436 [00:33<00:09, 115434.75it/s]" + " 87%|████████▋ | 4348310/4997436 [00:33<00:04, 129864.73it/s]" ] }, { @@ -3234,7 +3234,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3923273/4997436 [00:33<00:09, 115445.56it/s]" + " 87%|████████▋ | 4361327/4997436 [00:33<00:04, 129952.13it/s]" ] }, { @@ -3242,7 +3242,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3934861/4997436 [00:33<00:09, 115572.97it/s]" + " 88%|████████▊ | 4374379/4997436 [00:33<00:04, 130120.99it/s]" ] }, { @@ -3250,7 +3250,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946539/4997436 [00:34<00:09, 115930.29it/s]" + " 88%|████████▊ | 4387392/4997436 [00:33<00:04, 129277.29it/s]" ] }, { @@ -3258,7 +3258,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958242/4997436 [00:34<00:08, 116255.27it/s]" + " 88%|████████▊ | 4400322/4997436 [00:34<00:04, 129108.93it/s]" ] }, { @@ -3266,7 +3266,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3970042/4997436 [00:34<00:08, 116772.29it/s]" + " 88%|████████▊ | 4413234/4997436 [00:34<00:04, 128905.52it/s]" ] }, { @@ -3274,7 +3274,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981769/4997436 [00:34<00:08, 116917.78it/s]" + " 89%|████████▊ | 4426199/4997436 [00:34<00:04, 129123.57it/s]" ] }, { @@ -3282,7 +3282,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3993462/4997436 [00:34<00:08, 116830.05it/s]" + " 89%|████████▉ | 4439195/4997436 [00:34<00:04, 129372.43it/s]" ] }, { @@ -3290,7 +3290,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005146/4997436 [00:34<00:08, 116807.70it/s]" + " 89%|████████▉ | 4452222/4997436 [00:34<00:04, 129638.87it/s]" ] }, { @@ -3298,7 +3298,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016985/4997436 [00:34<00:08, 117278.27it/s]" + " 89%|████████▉ | 4465205/4997436 [00:34<00:04, 129688.48it/s]" ] }, { @@ -3306,7 +3306,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4028717/4997436 [00:34<00:08, 117286.62it/s]" + " 90%|████████▉ | 4478178/4997436 [00:34<00:04, 129697.62it/s]" ] }, { @@ -3314,7 +3314,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4040498/4997436 [00:34<00:08, 117439.73it/s]" + " 90%|████████▉ | 4491181/4997436 [00:34<00:03, 129793.96it/s]" ] }, { @@ -3322,7 +3322,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052243/4997436 [00:34<00:08, 117368.91it/s]" + " 90%|█████████ | 4504213/4997436 [00:34<00:03, 129948.38it/s]" ] }, { @@ -3330,7 +3330,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4063981/4997436 [00:35<00:07, 117099.17it/s]" + " 90%|█████████ | 4517254/4997436 [00:34<00:03, 130083.31it/s]" ] }, { @@ -3338,7 +3338,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4075705/4997436 [00:35<00:07, 117138.10it/s]" + " 91%|█████████ | 4530263/4997436 [00:35<00:03, 129957.95it/s]" ] }, { @@ -3346,7 +3346,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4087457/4997436 [00:35<00:07, 117249.52it/s]" + " 91%|█████████ | 4543259/4997436 [00:35<00:03, 129779.06it/s]" ] }, { @@ -3354,7 +3354,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4099183/4997436 [00:35<00:07, 116667.02it/s]" + " 91%|█████████ | 4556319/4997436 [00:35<00:03, 130023.87it/s]" ] }, { @@ -3362,7 +3362,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4110851/4997436 [00:35<00:07, 116478.72it/s]" + " 91%|█████████▏| 4569382/4997436 [00:35<00:03, 130201.73it/s]" ] }, { @@ -3370,7 +3370,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4122500/4997436 [00:35<00:07, 116452.51it/s]" + " 92%|█████████▏| 4582500/4997436 [00:35<00:03, 130491.65it/s]" ] }, { @@ -3378,7 +3378,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4134194/4997436 [00:35<00:07, 116593.69it/s]" + " 92%|█████████▏| 4595550/4997436 [00:35<00:03, 130272.84it/s]" ] }, { @@ -3386,7 +3386,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4145973/4997436 [00:35<00:07, 116949.41it/s]" + " 92%|█████████▏| 4608578/4997436 [00:35<00:02, 130139.80it/s]" ] }, { @@ -3394,7 +3394,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4157703/4997436 [00:35<00:07, 117049.94it/s]" + " 92%|█████████▏| 4621593/4997436 [00:35<00:02, 129950.19it/s]" ] }, { @@ -3402,7 +3402,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4169409/4997436 [00:36<00:07, 116776.75it/s]" + " 93%|█████████▎| 4634589/4997436 [00:35<00:02, 129793.03it/s]" ] }, { @@ -3410,7 +3410,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4181087/4997436 [00:36<00:07, 116152.61it/s]" + " 93%|█████████▎| 4647569/4997436 [00:35<00:02, 129201.41it/s]" ] }, { @@ -3418,7 +3418,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192704/4997436 [00:36<00:06, 115607.90it/s]" + " 93%|█████████▎| 4660507/4997436 [00:36<00:02, 129250.53it/s]" ] }, { @@ -3426,7 +3426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4204340/4997436 [00:36<00:06, 115828.58it/s]" + " 94%|█████████▎| 4673433/4997436 [00:36<00:02, 129206.52it/s]" ] }, { @@ -3434,7 +3434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4215960/4997436 [00:36<00:06, 115936.68it/s]" + " 94%|█████████▍| 4686354/4997436 [00:36<00:02, 128977.59it/s]" ] }, { @@ -3442,7 +3442,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4227570/4997436 [00:36<00:06, 115980.74it/s]" + " 94%|█████████▍| 4699252/4997436 [00:36<00:02, 128891.87it/s]" ] }, { @@ -3450,7 +3450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4239169/4997436 [00:36<00:06, 115832.72it/s]" + " 94%|█████████▍| 4712142/4997436 [00:36<00:02, 128774.09it/s]" ] }, { @@ -3458,7 +3458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4250915/4997436 [00:36<00:06, 116317.31it/s]" + " 95%|█████████▍| 4725062/4997436 [00:36<00:02, 128899.37it/s]" ] }, { @@ -3466,7 +3466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4262672/4997436 [00:36<00:06, 116689.95it/s]" + " 95%|█████████▍| 4737953/4997436 [00:36<00:02, 128613.79it/s]" ] }, { @@ -3474,7 +3474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4274367/4997436 [00:36<00:06, 116763.47it/s]" + " 95%|█████████▌| 4750815/4997436 [00:36<00:01, 128610.73it/s]" ] }, { @@ -3482,7 +3482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4286088/4997436 [00:37<00:06, 116893.58it/s]" + " 95%|█████████▌| 4763684/4997436 [00:36<00:01, 128632.67it/s]" ] }, { @@ -3490,7 +3490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4297779/4997436 [00:37<00:05, 116893.27it/s]" + " 96%|█████████▌| 4776613/4997436 [00:37<00:01, 128824.84it/s]" ] }, { @@ -3498,7 +3498,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309469/4997436 [00:37<00:05, 116073.41it/s]" + " 96%|█████████▌| 4789496/4997436 [00:37<00:01, 128658.37it/s]" ] }, { @@ -3506,7 +3506,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4321282/4997436 [00:37<00:05, 116684.58it/s]" + " 96%|█████████▌| 4802399/4997436 [00:37<00:01, 128767.88it/s]" ] }, { @@ -3514,7 +3514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4333014/4997436 [00:37<00:05, 116870.70it/s]" + " 96%|█████████▋| 4815276/4997436 [00:37<00:01, 128712.92it/s]" ] }, { @@ -3522,7 +3522,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344732/4997436 [00:37<00:05, 116960.61it/s]" + " 97%|█████████▋| 4828210/4997436 [00:37<00:01, 128897.74it/s]" ] }, { @@ -3530,7 +3530,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4356508/4997436 [00:37<00:05, 117197.67it/s]" + " 97%|█████████▋| 4841104/4997436 [00:37<00:01, 128906.67it/s]" ] }, { @@ -3538,7 +3538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368268/4997436 [00:37<00:05, 117314.39it/s]" + " 97%|█████████▋| 4854086/4997436 [00:37<00:01, 129177.32it/s]" ] }, { @@ -3546,7 +3546,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4380000/4997436 [00:37<00:05, 117079.09it/s]" + " 97%|█████████▋| 4867011/4997436 [00:37<00:01, 129194.62it/s]" ] }, { @@ -3554,7 +3554,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391709/4997436 [00:37<00:05, 116866.18it/s]" + " 98%|█████████▊| 4879931/4997436 [00:37<00:00, 129146.87it/s]" ] }, { @@ -3562,7 +3562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4403428/4997436 [00:38<00:05, 116960.59it/s]" + " 98%|█████████▊| 4892846/4997436 [00:37<00:00, 128958.11it/s]" ] }, { @@ -3570,7 +3570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4415152/4997436 [00:38<00:04, 117041.36it/s]" + " 98%|█████████▊| 4905811/4997436 [00:38<00:00, 129163.95it/s]" ] }, { @@ -3578,7 +3578,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4426883/4997436 [00:38<00:04, 117118.53it/s]" + " 98%|█████████▊| 4918764/4997436 [00:38<00:00, 129271.48it/s]" ] }, { @@ -3586,7 +3586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438620/4997436 [00:38<00:04, 117189.66it/s]" + " 99%|█████████▊| 4931692/4997436 [00:38<00:00, 129266.13it/s]" ] }, { @@ -3594,7 +3594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450535/4997436 [00:38<00:04, 117774.09it/s]" + " 99%|█████████▉| 4944619/4997436 [00:38<00:00, 129095.85it/s]" ] }, { @@ -3602,7 +3602,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4462358/4997436 [00:38<00:04, 117907.79it/s]" + " 99%|█████████▉| 4957529/4997436 [00:38<00:00, 128914.62it/s]" ] }, { @@ -3610,7 +3610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4474149/4997436 [00:38<00:04, 117329.82it/s]" + " 99%|█████████▉| 4970517/4997436 [00:38<00:00, 129200.58it/s]" ] }, { @@ -3618,7 +3618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485900/4997436 [00:38<00:04, 117381.62it/s]" + "100%|█████████▉| 4983438/4997436 [00:38<00:00, 128668.72it/s]" ] }, { @@ -3626,7 +3626,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4497639/4997436 [00:38<00:04, 117063.89it/s]" + "100%|█████████▉| 4996306/4997436 [00:38<00:00, 128576.12it/s]" ] }, { @@ -3634,343 +3634,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4509354/4997436 [00:38<00:04, 117086.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4521063/4997436 [00:39<00:04, 117052.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4532769/4997436 [00:39<00:03, 116889.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4544555/4997436 [00:39<00:03, 117177.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4556273/4997436 [00:39<00:03, 116913.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 4568142/4997436 [00:39<00:03, 117441.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4579941/4997436 [00:39<00:03, 117602.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4591702/4997436 [00:39<00:03, 117477.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4603450/4997436 [00:39<00:03, 117443.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4615195/4997436 [00:39<00:03, 117215.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4626917/4997436 [00:39<00:03, 116959.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4638614/4997436 [00:40<00:03, 116699.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4650316/4997436 [00:40<00:02, 116791.81it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4662208/4997436 [00:40<00:02, 117425.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▎| 4674006/4997436 [00:40<00:02, 117587.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4685817/4997436 [00:40<00:02, 117740.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4697592/4997436 [00:40<00:02, 117554.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4709348/4997436 [00:40<00:02, 117267.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4721075/4997436 [00:40<00:02, 117085.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4732807/4997436 [00:40<00:02, 117152.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4744536/4997436 [00:40<00:02, 117189.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4756256/4997436 [00:41<00:02, 116836.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4767946/4997436 [00:41<00:01, 116851.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4779864/4997436 [00:41<00:01, 117546.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4791619/4997436 [00:41<00:01, 117188.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4803349/4997436 [00:41<00:01, 117206.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 4815107/4997436 [00:41<00:01, 117316.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4826839/4997436 [00:41<00:01, 116816.87it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4838522/4997436 [00:41<00:01, 116742.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4850197/4997436 [00:41<00:01, 116680.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4861883/4997436 [00:41<00:01, 116730.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4873579/4997436 [00:42<00:01, 116796.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4885259/4997436 [00:42<00:00, 116716.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4896959/4997436 [00:42<00:00, 116798.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4908639/4997436 [00:42<00:00, 116699.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4920309/4997436 [00:42<00:00, 116642.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▊| 4932001/4997436 [00:42<00:00, 116722.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4943676/4997436 [00:42<00:00, 116728.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4955353/4997436 [00:42<00:00, 116737.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4967081/4997436 [00:42<00:00, 116896.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4978773/4997436 [00:42<00:00, 116898.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4990566/4997436 [00:43<00:00, 117205.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997436/4997436 [00:43<00:00, 115995.74it/s]" + "100%|██████████| 4997436/4997436 [00:38<00:00, 129080.15it/s]" ] }, { @@ -4209,10 +3873,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:39:46.614689Z", - "iopub.status.busy": "2023-10-16T20:39:46.614161Z", - "iopub.status.idle": "2023-10-16T20:40:01.413727Z", - "shell.execute_reply": "2023-10-16T20:40:01.410680Z" + "iopub.execute_input": "2023-10-17T19:56:25.485139Z", + "iopub.status.busy": "2023-10-17T19:56:25.484752Z", + "iopub.status.idle": "2023-10-17T19:56:37.050683Z", + "shell.execute_reply": "2023-10-17T19:56:37.049095Z" } }, "outputs": [], @@ -4226,10 +3890,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:01.432180Z", - "iopub.status.busy": "2023-10-16T20:40:01.430645Z", - "iopub.status.idle": "2023-10-16T20:40:06.468614Z", - "shell.execute_reply": "2023-10-16T20:40:06.467462Z" + "iopub.execute_input": "2023-10-17T19:56:37.056687Z", + "iopub.status.busy": "2023-10-17T19:56:37.056264Z", + "iopub.status.idle": "2023-10-17T19:56:40.976669Z", + "shell.execute_reply": "2023-10-17T19:56:40.975882Z" } }, "outputs": [ @@ -4298,17 +3962,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:06.473754Z", - "iopub.status.busy": "2023-10-16T20:40:06.473104Z", - "iopub.status.idle": "2023-10-16T20:40:09.156157Z", - "shell.execute_reply": "2023-10-16T20:40:09.155189Z" + "iopub.execute_input": "2023-10-17T19:56:40.980240Z", + "iopub.status.busy": "2023-10-17T19:56:40.979848Z", + "iopub.status.idle": "2023-10-17T19:56:42.836924Z", + "shell.execute_reply": "2023-10-17T19:56:42.836254Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2924a791f9874fd192a64a546445773d", + "model_id": "4d2c1c04685a462b9988999ab4a7e69a", "version_major": 2, "version_minor": 0 }, @@ -4338,10 +4002,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:09.161243Z", - "iopub.status.busy": "2023-10-16T20:40:09.160696Z", - "iopub.status.idle": "2023-10-16T20:40:09.494908Z", - "shell.execute_reply": "2023-10-16T20:40:09.493570Z" + "iopub.execute_input": "2023-10-17T19:56:42.840793Z", + "iopub.status.busy": "2023-10-17T19:56:42.840331Z", + "iopub.status.idle": "2023-10-17T19:56:43.107206Z", + "shell.execute_reply": "2023-10-17T19:56:43.106511Z" } }, "outputs": [], @@ -4355,10 +4019,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:09.503283Z", - "iopub.status.busy": "2023-10-16T20:40:09.502421Z", - "iopub.status.idle": "2023-10-16T20:40:18.039695Z", - "shell.execute_reply": "2023-10-16T20:40:18.038489Z" + "iopub.execute_input": "2023-10-17T19:56:43.110834Z", + "iopub.status.busy": "2023-10-17T19:56:43.110451Z", + "iopub.status.idle": "2023-10-17T19:56:49.519235Z", + "shell.execute_reply": "2023-10-17T19:56:49.518470Z" } }, "outputs": [ @@ -4431,10 +4095,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:18.085927Z", - "iopub.status.busy": "2023-10-16T20:40:18.085448Z", - "iopub.status.idle": "2023-10-16T20:40:18.225420Z", - "shell.execute_reply": "2023-10-16T20:40:18.224174Z" + "iopub.execute_input": "2023-10-17T19:56:49.522545Z", + "iopub.status.busy": "2023-10-17T19:56:49.521986Z", + "iopub.status.idle": "2023-10-17T19:56:49.646543Z", + "shell.execute_reply": "2023-10-17T19:56:49.645848Z" }, "nbsphinx": "hidden" }, @@ -4478,22 +4142,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0e9c0778cd774ea294480acf4165b2bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15d536a147c94673a0297d02ff877e39": { + "0f4f8efd802a43b69707e51dbf6a2db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4545,7 +4194,118 @@ "width": null } }, - "164a3cf4d0d44bdfbd776f10f16b722f": { + "1a719f92021a47fa86cfb87fa66177b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "26501c3583a14416917066f8ba9d9c54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbc6569c5dfc4e69b2772a6e45a9e2a6", + "placeholder": "​", + "style": "IPY_MODEL_44167e01ee9e4cdea3c08564cad6607f", + "value": " 300000/? [00:02<00:00, 138904.84it/s]" + } + }, + "3492aa93a328498a9e3bda47924ec928": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36d92d7ce24342aabebe357aecfc4694": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9e68dafdb2f49d7bc4b53c92f6d5103", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_56f3125cda4c45448e6575a1c6367ef7", + "value": 244800.0 + } + }, + "40a209a17c26487f9649c6f1c2f57aea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_de24e4091b8e405cb91d2cb331a05b50", + "placeholder": "​", + "style": "IPY_MODEL_3492aa93a328498a9e3bda47924ec928", + "value": " 300000/? [00:00<00:00, 4472858.73it/s]" + } + }, + "44167e01ee9e4cdea3c08564cad6607f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ba5d91fab4c40729f123bc268878ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4597,23 +4357,29 @@ "width": null } }, - "264bfd1f623e4e56aaf2ebeb68649dce": { + "4d2c1c04685a462b9988999ab4a7e69a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82c3aef684ff43509512714c9a4ca231", + "IPY_MODEL_a6a53376cb6344b1a3539df6e8d8cc90", + "IPY_MODEL_882a856bc76b4d2e80adf338d2e9e43a" + ], + "layout": "IPY_MODEL_4ba5d91fab4c40729f123bc268878ce5" } }, - "27401ab4da1f4584ba15329437afdfb7": { + "5389a87ea7884a78b93d1fb4dd171fa4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4665,29 +4431,39 @@ "width": null } }, - "2924a791f9874fd192a64a546445773d": { + "54865d508a1f493c86040f5f1b5832e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a9d5b195a9e4dfa8f6d01f367758cbf", - "IPY_MODEL_bcae71a6662e4935ba245223e7f44888", - "IPY_MODEL_42ac59eb962c4ac5bd611787f37dad86" - ], - "layout": "IPY_MODEL_ee455bded97a4425925616ddf2fdf695" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56f3125cda4c45448e6575a1c6367ef7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2b1644a21e5e43d29111448b0f0d1847": { + "5a35ca85f77b4fa99c50bc83a04058d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4739,38 +4515,46 @@ "width": null } }, - "2bbc372446e1494aa1ce59ddefc7687f": { + "5a71847be6474ca5b5b794cc503895e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "3cc184c4b4a14a409983d8c1c9d7a3ff": { + "69499fa3232542c295b149432b691475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7b7e6d898f649c2b84bade1330786c7", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54865d508a1f493c86040f5f1b5832e7", + "value": 244800.0 } }, - "42ac59eb962c4ac5bd611787f37dad86": { + "6aebca3f287b4ac382d2e5e660fe6a2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4785,35 +4569,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9c7ee7ae0c6940e487758553be4e3e59", + "layout": "IPY_MODEL_8f8b1237acc34176929e3b984719b0fc", "placeholder": "​", - "style": "IPY_MODEL_ae0bf4baf2ff4c67a5a0b78d955a561a", - "value": " 30/30 [00:03<00:00, 12.55it/s]" + "style": "IPY_MODEL_1a719f92021a47fa86cfb87fa66177b6", + "value": "number of examples processed for checking labels: " } }, - "4470e1e8c8b647a9b52b4f727a1ba62d": { + "7265f494a9174c39ad57d88d1dfa5ef9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_83fc0000692245619bbb3da084aee156", - "IPY_MODEL_7d781a47b25a41bb9354ce761e53c219", - "IPY_MODEL_bf4136f59b0c462aadaeb3dd9ce58911" - ], - "layout": "IPY_MODEL_83214f928159459a9b575c7b65ae1622" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60bd11d68436487b8ddec4d79b9830a1": { + "7b738cffc4b14042a1f469d9cf59ba2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4865,7 +4643,7 @@ "width": null } }, - "64358e97316d42bf8f3e986873e573d5": { + "7b85545b5baf440a8cde504d7dc97ddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4917,22 +4695,71 @@ "width": null } }, - "6804bb31cf934b9a83fcdcd34fbbbd3e": { + "82c3aef684ff43509512714c9a4ca231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8cc3dfdf77b4bdeafc2509af0c04671", + "placeholder": "​", + "style": "IPY_MODEL_ccc154cf7e5545508e1afc78bfac5795", + "value": "images processed using softmin: 100%" + } + }, + "882a856bc76b4d2e80adf338d2e9e43a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5389a87ea7884a78b93d1fb4dd171fa4", + "placeholder": "​", + "style": "IPY_MODEL_5a71847be6474ca5b5b794cc503895e4", + "value": " 30/30 [00:02<00:00, 17.54it/s]" + } + }, + "8b60641c60db4a5baf6f06be909dd4cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e78c5d874911435b8577fb22a5e1f44a", + "IPY_MODEL_69499fa3232542c295b149432b691475", + "IPY_MODEL_40a209a17c26487f9649c6f1c2f57aea" + ], + "layout": "IPY_MODEL_0f4f8efd802a43b69707e51dbf6a2db0" } }, - "6b3fb2d8340b4744b6afec70b55549a0": { + "8f8b1237acc34176929e3b984719b0fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4984,49 +4811,7 @@ "width": null } }, - "75fe7d9be719413b96036deac292e5bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_64358e97316d42bf8f3e986873e573d5", - "placeholder": "​", - "style": "IPY_MODEL_3cc184c4b4a14a409983d8c1c9d7a3ff", - "value": " 300000/? [00:00<00:00, 3292008.39it/s]" - } - }, - "7a9d5b195a9e4dfa8f6d01f367758cbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_27401ab4da1f4584ba15329437afdfb7", - "placeholder": "​", - "style": "IPY_MODEL_dab23da520f044e2b661e73909d3764a", - "value": "images processed using softmin: 100%" - } - }, - "7d781a47b25a41bb9354ce761e53c219": { + "a6a53376cb6344b1a3539df6e8d8cc90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5042,15 +4827,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_60bd11d68436487b8ddec4d79b9830a1", - "max": 244800.0, + "layout": "IPY_MODEL_5a35ca85f77b4fa99c50bc83a04058d2", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_264bfd1f623e4e56aaf2ebeb68649dce", - "value": 244800.0 + "style": "IPY_MODEL_7265f494a9174c39ad57d88d1dfa5ef9", + "value": 30.0 } }, - "8045046d4f4b4cf2abf73e300580ff0e": { + "a7b7e6d898f649c2b84bade1330786c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5102,7 +4887,7 @@ "width": null } }, - "83214f928159459a9b575c7b65ae1622": { + "b8cc3dfdf77b4bdeafc2509af0c04671": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5154,44 +4939,7 @@ "width": null } }, - "83fc0000692245619bbb3da084aee156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_164a3cf4d0d44bdfbd776f10f16b722f", - "placeholder": "​", - "style": "IPY_MODEL_6804bb31cf934b9a83fcdcd34fbbbd3e", - "value": "number of examples processed for checking labels: " - } - }, - "8e53ace931c94f9b9622acf057cbe54a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9c7ee7ae0c6940e487758553be4e3e59": { + "b9e68dafdb2f49d7bc4b53c92f6d5103": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5243,140 +4991,7 @@ "width": null } }, - "a0e58bed90b44d51b40cff029a970400": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15d536a147c94673a0297d02ff877e39", - "placeholder": "​", - "style": "IPY_MODEL_0e9c0778cd774ea294480acf4165b2bd", - "value": "number of examples processed for estimating thresholds: " - } - }, - "a3f3606e29004c29a42cb9f73e56eaea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae0bf4baf2ff4c67a5a0b78d955a561a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae8c799f82cd4edebab47074d4591e96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a0e58bed90b44d51b40cff029a970400", - "IPY_MODEL_f2c39968581b4785a8b04e5deba1e8dd", - "IPY_MODEL_75fe7d9be719413b96036deac292e5bd" - ], - "layout": "IPY_MODEL_ddc0ca9d19034c3797d78e60115629ea" - } - }, - "bcae71a6662e4935ba245223e7f44888": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2b1644a21e5e43d29111448b0f0d1847", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8e53ace931c94f9b9622acf057cbe54a", - "value": 30.0 - } - }, - "bf4136f59b0c462aadaeb3dd9ce58911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b3fb2d8340b4744b6afec70b55549a0", - "placeholder": "​", - "style": "IPY_MODEL_a3f3606e29004c29a42cb9f73e56eaea", - "value": " 300000/? [00:02<00:00, 141387.56it/s]" - } - }, - "dab23da520f044e2b661e73909d3764a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ddc0ca9d19034c3797d78e60115629ea": { + "bbc6569c5dfc4e69b2772a6e45a9e2a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5428,7 +5043,37 @@ "width": null } }, - "ee455bded97a4425925616ddf2fdf695": { + "ccc154cf7e5545508e1afc78bfac5795": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da93618a551a42bdae73b69f0f7d27e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "de24e4091b8e405cb91d2cb331a05b50": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5480,28 +5125,47 @@ "width": null } }, - "f2c39968581b4785a8b04e5deba1e8dd": { + "e2968e4eec87426d9ed8bcb0f5844799": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6aebca3f287b4ac382d2e5e660fe6a2a", + "IPY_MODEL_36d92d7ce24342aabebe357aecfc4694", + "IPY_MODEL_26501c3583a14416917066f8ba9d9c54" + ], + "layout": "IPY_MODEL_7b85545b5baf440a8cde504d7dc97ddc" + } + }, + "e78c5d874911435b8577fb22a5e1f44a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8045046d4f4b4cf2abf73e300580ff0e", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2bbc372446e1494aa1ce59ddefc7687f", - "value": 244800.0 + "layout": "IPY_MODEL_7b738cffc4b14042a1f469d9cf59ba2e", + "placeholder": "​", + "style": "IPY_MODEL_da93618a551a42bdae73b69f0f7d27e3", + "value": "number of examples processed for estimating thresholds: " } } }, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 41d174053..93dc75413 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:26.651112Z", - "iopub.status.busy": "2023-10-16T20:40:26.650789Z", - "iopub.status.idle": "2023-10-16T20:40:29.680251Z", - "shell.execute_reply": "2023-10-16T20:40:29.679078Z" + "iopub.execute_input": "2023-10-17T19:56:53.460705Z", + "iopub.status.busy": "2023-10-17T19:56:53.460476Z", + "iopub.status.idle": "2023-10-17T19:56:55.143456Z", + "shell.execute_reply": "2023-10-17T19:56:55.142767Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.685521Z", - "iopub.status.busy": "2023-10-16T20:40:29.684880Z", - "iopub.status.idle": "2023-10-16T20:40:29.787161Z", - "shell.execute_reply": "2023-10-16T20:40:29.786253Z" + "iopub.execute_input": "2023-10-17T19:56:55.147377Z", + "iopub.status.busy": "2023-10-17T19:56:55.146658Z", + "iopub.status.idle": "2023-10-17T19:56:55.196632Z", + "shell.execute_reply": "2023-10-17T19:56:55.195810Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.791923Z", - "iopub.status.busy": "2023-10-16T20:40:29.791391Z", - "iopub.status.idle": "2023-10-16T20:40:29.919011Z", - "shell.execute_reply": "2023-10-16T20:40:29.917810Z" + "iopub.execute_input": "2023-10-17T19:56:55.199965Z", + "iopub.status.busy": "2023-10-17T19:56:55.199424Z", + "iopub.status.idle": "2023-10-17T19:56:55.309733Z", + "shell.execute_reply": "2023-10-17T19:56:55.309079Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.922832Z", - "iopub.status.busy": "2023-10-16T20:40:29.922515Z", - "iopub.status.idle": "2023-10-16T20:40:29.933787Z", - "shell.execute_reply": "2023-10-16T20:40:29.932670Z" + "iopub.execute_input": "2023-10-17T19:56:55.313282Z", + "iopub.status.busy": "2023-10-17T19:56:55.312687Z", + "iopub.status.idle": "2023-10-17T19:56:55.319085Z", + "shell.execute_reply": "2023-10-17T19:56:55.318422Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.938306Z", - "iopub.status.busy": "2023-10-16T20:40:29.937583Z", - "iopub.status.idle": "2023-10-16T20:40:29.951876Z", - "shell.execute_reply": "2023-10-16T20:40:29.950798Z" + "iopub.execute_input": "2023-10-17T19:56:55.321924Z", + "iopub.status.busy": "2023-10-17T19:56:55.321692Z", + "iopub.status.idle": "2023-10-17T19:56:55.332758Z", + "shell.execute_reply": "2023-10-17T19:56:55.332075Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.956023Z", - "iopub.status.busy": "2023-10-16T20:40:29.955228Z", - "iopub.status.idle": "2023-10-16T20:40:29.960027Z", - "shell.execute_reply": "2023-10-16T20:40:29.959276Z" + "iopub.execute_input": "2023-10-17T19:56:55.336075Z", + "iopub.status.busy": "2023-10-17T19:56:55.335684Z", + "iopub.status.idle": "2023-10-17T19:56:55.338829Z", + "shell.execute_reply": "2023-10-17T19:56:55.338168Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:29.964297Z", - "iopub.status.busy": "2023-10-16T20:40:29.963836Z", - "iopub.status.idle": "2023-10-16T20:40:30.990938Z", - "shell.execute_reply": "2023-10-16T20:40:30.989583Z" + "iopub.execute_input": "2023-10-17T19:56:55.341711Z", + "iopub.status.busy": "2023-10-17T19:56:55.341373Z", + "iopub.status.idle": "2023-10-17T19:56:56.131410Z", + "shell.execute_reply": "2023-10-17T19:56:56.130753Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:30.996029Z", - "iopub.status.busy": "2023-10-16T20:40:30.995406Z", - "iopub.status.idle": "2023-10-16T20:40:36.024906Z", - "shell.execute_reply": "2023-10-16T20:40:36.023558Z" + "iopub.execute_input": "2023-10-17T19:56:56.134733Z", + "iopub.status.busy": "2023-10-17T19:56:56.134347Z", + "iopub.status.idle": "2023-10-17T19:56:58.751035Z", + "shell.execute_reply": "2023-10-17T19:56:58.749906Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.030832Z", - "iopub.status.busy": "2023-10-16T20:40:36.029503Z", - "iopub.status.idle": "2023-10-16T20:40:36.045541Z", - "shell.execute_reply": "2023-10-16T20:40:36.044805Z" + "iopub.execute_input": "2023-10-17T19:56:58.754752Z", + "iopub.status.busy": "2023-10-17T19:56:58.753944Z", + "iopub.status.idle": "2023-10-17T19:56:58.768611Z", + "shell.execute_reply": "2023-10-17T19:56:58.768018Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.049703Z", - "iopub.status.busy": "2023-10-16T20:40:36.049160Z", - "iopub.status.idle": "2023-10-16T20:40:36.056867Z", - "shell.execute_reply": "2023-10-16T20:40:36.056081Z" + "iopub.execute_input": "2023-10-17T19:56:58.771708Z", + "iopub.status.busy": "2023-10-17T19:56:58.771286Z", + "iopub.status.idle": "2023-10-17T19:56:58.776825Z", + "shell.execute_reply": "2023-10-17T19:56:58.776230Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.060691Z", - "iopub.status.busy": "2023-10-16T20:40:36.060137Z", - "iopub.status.idle": "2023-10-16T20:40:36.071411Z", - "shell.execute_reply": "2023-10-16T20:40:36.070389Z" + "iopub.execute_input": "2023-10-17T19:56:58.779512Z", + "iopub.status.busy": "2023-10-17T19:56:58.779279Z", + "iopub.status.idle": "2023-10-17T19:56:58.787772Z", + "shell.execute_reply": "2023-10-17T19:56:58.787087Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.076156Z", - "iopub.status.busy": "2023-10-16T20:40:36.075567Z", - "iopub.status.idle": "2023-10-16T20:40:36.279746Z", - "shell.execute_reply": "2023-10-16T20:40:36.278768Z" + "iopub.execute_input": "2023-10-17T19:56:58.790688Z", + "iopub.status.busy": "2023-10-17T19:56:58.790175Z", + "iopub.status.idle": "2023-10-17T19:56:58.954346Z", + "shell.execute_reply": "2023-10-17T19:56:58.953569Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.283951Z", - "iopub.status.busy": "2023-10-16T20:40:36.283362Z", - "iopub.status.idle": "2023-10-16T20:40:36.287609Z", - "shell.execute_reply": "2023-10-16T20:40:36.286738Z" + "iopub.execute_input": "2023-10-17T19:56:58.958625Z", + "iopub.status.busy": "2023-10-17T19:56:58.958386Z", + "iopub.status.idle": "2023-10-17T19:56:58.961728Z", + "shell.execute_reply": "2023-10-17T19:56:58.961076Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:36.291686Z", - "iopub.status.busy": "2023-10-16T20:40:36.291109Z", - "iopub.status.idle": "2023-10-16T20:40:39.788844Z", - "shell.execute_reply": "2023-10-16T20:40:39.787676Z" + "iopub.execute_input": "2023-10-17T19:56:58.964531Z", + "iopub.status.busy": "2023-10-17T19:56:58.964193Z", + "iopub.status.idle": "2023-10-17T19:57:01.235254Z", + "shell.execute_reply": "2023-10-17T19:57:01.234282Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:39.794576Z", - "iopub.status.busy": "2023-10-16T20:40:39.794090Z", - "iopub.status.idle": "2023-10-16T20:40:39.813765Z", - "shell.execute_reply": "2023-10-16T20:40:39.812774Z" + "iopub.execute_input": "2023-10-17T19:57:01.239614Z", + "iopub.status.busy": "2023-10-17T19:57:01.238929Z", + "iopub.status.idle": "2023-10-17T19:57:01.256402Z", + "shell.execute_reply": "2023-10-17T19:57:01.255744Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:39.817820Z", - "iopub.status.busy": "2023-10-16T20:40:39.817224Z", - "iopub.status.idle": "2023-10-16T20:40:39.961491Z", - "shell.execute_reply": "2023-10-16T20:40:39.960278Z" + "iopub.execute_input": "2023-10-17T19:57:01.260753Z", + "iopub.status.busy": "2023-10-17T19:57:01.259553Z", + "iopub.status.idle": "2023-10-17T19:57:01.358444Z", + "shell.execute_reply": "2023-10-17T19:57:01.357749Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 7bfa210f0..2484e276b 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -963,7 +963,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'supported_cards_and_currencies'}
    +Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer'}
     

    Let’s print the first example in the train set.

    @@ -1028,7 +1028,7 @@

    2. Load and format the text dataset
     No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.
    -Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.bias']
    +Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight']
     - This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
     - This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
     
    diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 8fabcedda..50fd0cf2f 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:45.265717Z", - "iopub.status.busy": "2023-10-16T20:40:45.265406Z", - "iopub.status.idle": "2023-10-16T20:40:49.203268Z", - "shell.execute_reply": "2023-10-16T20:40:49.202128Z" + "iopub.execute_input": "2023-10-17T19:57:06.306459Z", + "iopub.status.busy": "2023-10-17T19:57:06.305962Z", + "iopub.status.idle": "2023-10-17T19:57:08.895244Z", + "shell.execute_reply": "2023-10-17T19:57:08.894502Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.207938Z", - "iopub.status.busy": "2023-10-16T20:40:49.206963Z", - "iopub.status.idle": "2023-10-16T20:40:49.213443Z", - "shell.execute_reply": "2023-10-16T20:40:49.212677Z" + "iopub.execute_input": "2023-10-17T19:57:08.899009Z", + "iopub.status.busy": "2023-10-17T19:57:08.898614Z", + "iopub.status.idle": "2023-10-17T19:57:08.903381Z", + "shell.execute_reply": "2023-10-17T19:57:08.902807Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.217521Z", - "iopub.status.busy": "2023-10-16T20:40:49.217006Z", - "iopub.status.idle": "2023-10-16T20:40:49.222297Z", - "shell.execute_reply": "2023-10-16T20:40:49.221493Z" + "iopub.execute_input": "2023-10-17T19:57:08.906121Z", + "iopub.status.busy": "2023-10-17T19:57:08.905765Z", + "iopub.status.idle": "2023-10-17T19:57:08.909325Z", + "shell.execute_reply": "2023-10-17T19:57:08.908676Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.226056Z", - "iopub.status.busy": "2023-10-16T20:40:49.225394Z", - "iopub.status.idle": "2023-10-16T20:40:49.367945Z", - "shell.execute_reply": "2023-10-16T20:40:49.366993Z" + "iopub.execute_input": "2023-10-17T19:57:08.912361Z", + "iopub.status.busy": "2023-10-17T19:57:08.912014Z", + "iopub.status.idle": "2023-10-17T19:57:09.032326Z", + "shell.execute_reply": "2023-10-17T19:57:09.031634Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.374223Z", - "iopub.status.busy": "2023-10-16T20:40:49.373886Z", - "iopub.status.idle": "2023-10-16T20:40:49.381915Z", - "shell.execute_reply": "2023-10-16T20:40:49.380699Z" + "iopub.execute_input": "2023-10-17T19:57:09.035625Z", + "iopub.status.busy": "2023-10-17T19:57:09.035064Z", + "iopub.status.idle": "2023-10-17T19:57:09.040600Z", + "shell.execute_reply": "2023-10-17T19:57:09.039920Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.386441Z", - "iopub.status.busy": "2023-10-16T20:40:49.385728Z", - "iopub.status.idle": "2023-10-16T20:40:49.391177Z", - "shell.execute_reply": "2023-10-16T20:40:49.390125Z" + "iopub.execute_input": "2023-10-17T19:57:09.047901Z", + "iopub.status.busy": "2023-10-17T19:57:09.046780Z", + "iopub.status.idle": "2023-10-17T19:57:09.053268Z", + "shell.execute_reply": "2023-10-17T19:57:09.052630Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'cancel_transfer'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.397025Z", - "iopub.status.busy": "2023-10-16T20:40:49.396415Z", - "iopub.status.idle": "2023-10-16T20:40:49.401444Z", - "shell.execute_reply": "2023-10-16T20:40:49.400549Z" + "iopub.execute_input": "2023-10-17T19:57:09.056118Z", + "iopub.status.busy": "2023-10-17T19:57:09.055756Z", + "iopub.status.idle": "2023-10-17T19:57:09.059305Z", + "shell.execute_reply": "2023-10-17T19:57:09.058791Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.410855Z", - "iopub.status.busy": "2023-10-16T20:40:49.407873Z", - "iopub.status.idle": "2023-10-16T20:40:49.425377Z", - "shell.execute_reply": "2023-10-16T20:40:49.424161Z" + "iopub.execute_input": "2023-10-17T19:57:09.062500Z", + "iopub.status.busy": "2023-10-17T19:57:09.062146Z", + "iopub.status.idle": "2023-10-17T19:57:09.065993Z", + "shell.execute_reply": "2023-10-17T19:57:09.065343Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:49.429958Z", - "iopub.status.busy": "2023-10-16T20:40:49.429196Z", - "iopub.status.idle": "2023-10-16T20:40:54.736725Z", - "shell.execute_reply": "2023-10-16T20:40:54.735886Z" + "iopub.execute_input": "2023-10-17T19:57:09.068824Z", + "iopub.status.busy": "2023-10-17T19:57:09.068474Z", + "iopub.status.idle": "2023-10-17T19:57:12.881702Z", + "shell.execute_reply": "2023-10-17T19:57:12.881066Z" } }, "outputs": [ @@ -470,7 +470,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.bias']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias', 'discriminator_predictions.dense.weight']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -511,10 +511,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.741109Z", - "iopub.status.busy": "2023-10-16T20:40:54.740604Z", - "iopub.status.idle": "2023-10-16T20:40:54.746318Z", - "shell.execute_reply": "2023-10-16T20:40:54.745525Z" + "iopub.execute_input": "2023-10-17T19:57:12.885432Z", + "iopub.status.busy": "2023-10-17T19:57:12.885059Z", + "iopub.status.idle": "2023-10-17T19:57:12.887843Z", + "shell.execute_reply": "2023-10-17T19:57:12.887325Z" } }, "outputs": [], @@ -536,10 +536,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.750193Z", - "iopub.status.busy": "2023-10-16T20:40:54.749663Z", - "iopub.status.idle": "2023-10-16T20:40:54.753190Z", - "shell.execute_reply": "2023-10-16T20:40:54.752491Z" + "iopub.execute_input": "2023-10-17T19:57:12.890541Z", + "iopub.status.busy": "2023-10-17T19:57:12.890199Z", + "iopub.status.idle": "2023-10-17T19:57:12.893205Z", + "shell.execute_reply": "2023-10-17T19:57:12.892697Z" } }, "outputs": [], @@ -554,10 +554,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:54.756940Z", - "iopub.status.busy": "2023-10-16T20:40:54.756113Z", - "iopub.status.idle": "2023-10-16T20:40:58.031508Z", - "shell.execute_reply": "2023-10-16T20:40:58.030307Z" + "iopub.execute_input": "2023-10-17T19:57:12.896001Z", + "iopub.status.busy": "2023-10-17T19:57:12.895600Z", + "iopub.status.idle": "2023-10-17T19:57:15.557069Z", + "shell.execute_reply": "2023-10-17T19:57:15.556004Z" }, "scrolled": true }, @@ -580,10 +580,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.036657Z", - "iopub.status.busy": "2023-10-16T20:40:58.035451Z", - "iopub.status.idle": "2023-10-16T20:40:58.050409Z", - "shell.execute_reply": "2023-10-16T20:40:58.049578Z" + "iopub.execute_input": "2023-10-17T19:57:15.562039Z", + "iopub.status.busy": "2023-10-17T19:57:15.560657Z", + "iopub.status.idle": "2023-10-17T19:57:15.572278Z", + "shell.execute_reply": "2023-10-17T19:57:15.571560Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.054336Z", - "iopub.status.busy": "2023-10-16T20:40:58.053671Z", - "iopub.status.idle": "2023-10-16T20:40:58.060448Z", - "shell.execute_reply": "2023-10-16T20:40:58.059559Z" + "iopub.execute_input": "2023-10-17T19:57:15.575279Z", + "iopub.status.busy": "2023-10-17T19:57:15.574895Z", + "iopub.status.idle": "2023-10-17T19:57:15.580507Z", + "shell.execute_reply": "2023-10-17T19:57:15.579829Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.064075Z", - "iopub.status.busy": "2023-10-16T20:40:58.063601Z", - "iopub.status.idle": "2023-10-16T20:40:58.068373Z", - "shell.execute_reply": "2023-10-16T20:40:58.067681Z" + "iopub.execute_input": "2023-10-17T19:57:15.583332Z", + "iopub.status.busy": "2023-10-17T19:57:15.583100Z", + "iopub.status.idle": "2023-10-17T19:57:15.586708Z", + "shell.execute_reply": "2023-10-17T19:57:15.586196Z" } }, "outputs": [ @@ -739,10 +739,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.071990Z", - "iopub.status.busy": "2023-10-16T20:40:58.071317Z", - "iopub.status.idle": "2023-10-16T20:40:58.077243Z", - "shell.execute_reply": "2023-10-16T20:40:58.076459Z" + "iopub.execute_input": "2023-10-17T19:57:15.589595Z", + "iopub.status.busy": "2023-10-17T19:57:15.589047Z", + "iopub.status.idle": "2023-10-17T19:57:15.593770Z", + "shell.execute_reply": "2023-10-17T19:57:15.593142Z" } }, "outputs": [], @@ -762,10 +762,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.080872Z", - "iopub.status.busy": "2023-10-16T20:40:58.080568Z", - "iopub.status.idle": "2023-10-16T20:40:58.094021Z", - "shell.execute_reply": "2023-10-16T20:40:58.093132Z" + "iopub.execute_input": "2023-10-17T19:57:15.596920Z", + "iopub.status.busy": "2023-10-17T19:57:15.596415Z", + "iopub.status.idle": "2023-10-17T19:57:15.605570Z", + "shell.execute_reply": "2023-10-17T19:57:15.604895Z" } }, "outputs": [ @@ -890,10 +890,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.099355Z", - "iopub.status.busy": "2023-10-16T20:40:58.097789Z", - "iopub.status.idle": "2023-10-16T20:40:58.392840Z", - "shell.execute_reply": "2023-10-16T20:40:58.392056Z" + "iopub.execute_input": "2023-10-17T19:57:15.608558Z", + "iopub.status.busy": "2023-10-17T19:57:15.608327Z", + "iopub.status.idle": "2023-10-17T19:57:15.868354Z", + "shell.execute_reply": "2023-10-17T19:57:15.867786Z" }, "scrolled": true }, @@ -932,10 +932,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.398281Z", - "iopub.status.busy": "2023-10-16T20:40:58.396637Z", - "iopub.status.idle": "2023-10-16T20:40:58.735893Z", - "shell.execute_reply": "2023-10-16T20:40:58.735088Z" + "iopub.execute_input": "2023-10-17T19:57:15.871241Z", + "iopub.status.busy": "2023-10-17T19:57:15.870855Z", + "iopub.status.idle": "2023-10-17T19:57:16.211412Z", + "shell.execute_reply": "2023-10-17T19:57:16.210831Z" }, "scrolled": true }, @@ -968,10 +968,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:40:58.741624Z", - "iopub.status.busy": "2023-10-16T20:40:58.739956Z", - "iopub.status.idle": "2023-10-16T20:40:58.747933Z", - "shell.execute_reply": "2023-10-16T20:40:58.747220Z" + "iopub.execute_input": "2023-10-17T19:57:16.214458Z", + "iopub.status.busy": "2023-10-17T19:57:16.213956Z", + "iopub.status.idle": "2023-10-17T19:57:16.218411Z", + "shell.execute_reply": "2023-10-17T19:57:16.217848Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 1ab15b18c..701b80ad8 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -856,16 +856,16 @@

    1. Install required dependencies and download data diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 8930dd5ce..56d2c671c 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:04.692847Z", - "iopub.status.busy": "2023-10-16T20:41:04.692508Z", - "iopub.status.idle": "2023-10-16T20:41:06.889710Z", - "shell.execute_reply": "2023-10-16T20:41:06.887867Z" + "iopub.execute_input": "2023-10-17T19:57:21.394996Z", + "iopub.status.busy": "2023-10-17T19:57:21.394599Z", + "iopub.status.idle": "2023-10-17T19:57:23.138649Z", + "shell.execute_reply": "2023-10-17T19:57:23.137792Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-16 20:41:04-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-10-17 19:57:21-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.164, 2400:52e0:1a01::997:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.164|:443... connected.\r\n" + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -115,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.06s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2023-10-16 20:41:05 (16.8 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-10-17 19:57:21 (6.33 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,9 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-10-16 20:41:05-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.213.17, 3.5.29.66, 54.231.128.57, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.213.17|:443... " + "--2023-10-17 19:57:22-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.41.9, 3.5.25.17, 52.217.122.49, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.41.9|:443... " ] }, { @@ -173,23 +180,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 126.53K 592KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 5%[> ] 976.53K 2.22MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 41%[=======> ] 6.78M 10.5MB/s " + "pred_probs.npz 6%[> ] 1.01M 5.04MB/s " ] }, { @@ -197,7 +188,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 94%[=================> ] 15.37M 17.8MB/s " + "pred_probs.npz 78%[==============> ] 12.68M 31.6MB/s " ] }, { @@ -205,9 +196,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 18.7MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 37.1MB/s in 0.4s \r\n", "\r\n", - "2023-10-16 20:41:06 (18.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-10-17 19:57:23 (37.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -224,10 +215,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:06.895336Z", - "iopub.status.busy": "2023-10-16T20:41:06.894571Z", - "iopub.status.idle": "2023-10-16T20:41:08.397133Z", - "shell.execute_reply": "2023-10-16T20:41:08.396065Z" + "iopub.execute_input": "2023-10-17T19:57:23.142128Z", + "iopub.status.busy": "2023-10-17T19:57:23.141678Z", + "iopub.status.idle": "2023-10-17T19:57:24.289048Z", + "shell.execute_reply": "2023-10-17T19:57:24.288361Z" }, "nbsphinx": "hidden" }, @@ -238,7 +229,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@902fb487c9537d7f8415d5d73f601eea8e71df72\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@18fab35bb933761934d1f67349c8c3783663eabf\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -264,10 +255,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.402002Z", - "iopub.status.busy": "2023-10-16T20:41:08.401213Z", - "iopub.status.idle": "2023-10-16T20:41:08.407323Z", - "shell.execute_reply": "2023-10-16T20:41:08.406535Z" + "iopub.execute_input": "2023-10-17T19:57:24.292498Z", + "iopub.status.busy": "2023-10-17T19:57:24.291889Z", + "iopub.status.idle": "2023-10-17T19:57:24.297285Z", + "shell.execute_reply": "2023-10-17T19:57:24.296671Z" } }, "outputs": [], @@ -317,10 +308,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.410880Z", - "iopub.status.busy": "2023-10-16T20:41:08.410332Z", - "iopub.status.idle": "2023-10-16T20:41:08.414676Z", - "shell.execute_reply": "2023-10-16T20:41:08.413859Z" + "iopub.execute_input": "2023-10-17T19:57:24.300255Z", + "iopub.status.busy": "2023-10-17T19:57:24.299826Z", + "iopub.status.idle": "2023-10-17T19:57:24.303325Z", + "shell.execute_reply": "2023-10-17T19:57:24.302668Z" }, "nbsphinx": "hidden" }, @@ -338,10 +329,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:08.418523Z", - "iopub.status.busy": "2023-10-16T20:41:08.417990Z", - "iopub.status.idle": "2023-10-16T20:41:22.392761Z", - "shell.execute_reply": "2023-10-16T20:41:22.391666Z" + "iopub.execute_input": "2023-10-17T19:57:24.306219Z", + "iopub.status.busy": "2023-10-17T19:57:24.305618Z", + "iopub.status.idle": "2023-10-17T19:57:34.432022Z", + "shell.execute_reply": "2023-10-17T19:57:34.431356Z" } }, "outputs": [], @@ -415,10 +406,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:22.397591Z", - "iopub.status.busy": "2023-10-16T20:41:22.396990Z", - "iopub.status.idle": "2023-10-16T20:41:22.412731Z", - "shell.execute_reply": "2023-10-16T20:41:22.411690Z" + "iopub.execute_input": "2023-10-17T19:57:34.435741Z", + "iopub.status.busy": "2023-10-17T19:57:34.435230Z", + "iopub.status.idle": "2023-10-17T19:57:34.443242Z", + "shell.execute_reply": "2023-10-17T19:57:34.442659Z" }, "nbsphinx": "hidden" }, @@ -458,10 +449,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:22.417811Z", - "iopub.status.busy": "2023-10-16T20:41:22.417219Z", - "iopub.status.idle": "2023-10-16T20:41:23.135902Z", - "shell.execute_reply": "2023-10-16T20:41:23.134985Z" + "iopub.execute_input": "2023-10-17T19:57:34.445858Z", + "iopub.status.busy": "2023-10-17T19:57:34.445511Z", + "iopub.status.idle": "2023-10-17T19:57:35.008934Z", + "shell.execute_reply": "2023-10-17T19:57:35.008264Z" } }, "outputs": [], @@ -498,10 +489,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:23.140931Z", - "iopub.status.busy": "2023-10-16T20:41:23.140166Z", - "iopub.status.idle": "2023-10-16T20:41:23.148840Z", - "shell.execute_reply": "2023-10-16T20:41:23.148045Z" + "iopub.execute_input": "2023-10-17T19:57:35.012085Z", + "iopub.status.busy": "2023-10-17T19:57:35.011709Z", + "iopub.status.idle": "2023-10-17T19:57:35.018063Z", + "shell.execute_reply": "2023-10-17T19:57:35.017385Z" } }, "outputs": [ @@ -573,10 +564,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:23.152846Z", - "iopub.status.busy": "2023-10-16T20:41:23.152273Z", - "iopub.status.idle": "2023-10-16T20:41:26.277484Z", - "shell.execute_reply": "2023-10-16T20:41:26.276098Z" + "iopub.execute_input": "2023-10-17T19:57:35.021181Z", + "iopub.status.busy": "2023-10-17T19:57:35.020835Z", + "iopub.status.idle": "2023-10-17T19:57:37.424859Z", + "shell.execute_reply": "2023-10-17T19:57:37.423808Z" } }, "outputs": [], @@ -598,10 +589,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.283583Z", - "iopub.status.busy": "2023-10-16T20:41:26.282283Z", - "iopub.status.idle": "2023-10-16T20:41:26.294998Z", - "shell.execute_reply": "2023-10-16T20:41:26.294139Z" + "iopub.execute_input": "2023-10-17T19:57:37.429248Z", + "iopub.status.busy": "2023-10-17T19:57:37.428085Z", + "iopub.status.idle": "2023-10-17T19:57:37.438144Z", + "shell.execute_reply": "2023-10-17T19:57:37.437422Z" } }, "outputs": [ @@ -637,10 +628,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.298845Z", - "iopub.status.busy": "2023-10-16T20:41:26.298529Z", - "iopub.status.idle": "2023-10-16T20:41:26.329534Z", - "shell.execute_reply": "2023-10-16T20:41:26.328146Z" + "iopub.execute_input": "2023-10-17T19:57:37.441246Z", + "iopub.status.busy": "2023-10-17T19:57:37.440654Z", + "iopub.status.idle": "2023-10-17T19:57:37.462247Z", + "shell.execute_reply": "2023-10-17T19:57:37.461601Z" } }, "outputs": [ @@ -818,10 +809,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.333755Z", - "iopub.status.busy": "2023-10-16T20:41:26.333180Z", - "iopub.status.idle": "2023-10-16T20:41:26.386639Z", - "shell.execute_reply": "2023-10-16T20:41:26.385634Z" + "iopub.execute_input": "2023-10-17T19:57:37.465667Z", + "iopub.status.busy": "2023-10-17T19:57:37.465144Z", + "iopub.status.idle": "2023-10-17T19:57:37.509909Z", + "shell.execute_reply": "2023-10-17T19:57:37.509244Z" } }, "outputs": [ @@ -923,10 +914,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.391485Z", - "iopub.status.busy": "2023-10-16T20:41:26.390832Z", - "iopub.status.idle": "2023-10-16T20:41:26.405576Z", - "shell.execute_reply": "2023-10-16T20:41:26.404622Z" + "iopub.execute_input": "2023-10-17T19:57:37.513400Z", + "iopub.status.busy": "2023-10-17T19:57:37.513044Z", + "iopub.status.idle": "2023-10-17T19:57:37.524029Z", + "shell.execute_reply": "2023-10-17T19:57:37.523377Z" } }, "outputs": [ @@ -1000,10 +991,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:26.410618Z", - "iopub.status.busy": "2023-10-16T20:41:26.409072Z", - "iopub.status.idle": "2023-10-16T20:41:29.110681Z", - "shell.execute_reply": "2023-10-16T20:41:29.109391Z" + "iopub.execute_input": "2023-10-17T19:57:37.527493Z", + "iopub.status.busy": "2023-10-17T19:57:37.526994Z", + "iopub.status.idle": "2023-10-17T19:57:39.617738Z", + "shell.execute_reply": "2023-10-17T19:57:39.617068Z" } }, "outputs": [ @@ -1175,10 +1166,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-10-16T20:41:29.115030Z", - "iopub.status.busy": "2023-10-16T20:41:29.114606Z", - "iopub.status.idle": "2023-10-16T20:41:29.122913Z", - "shell.execute_reply": "2023-10-16T20:41:29.122071Z" + "iopub.execute_input": "2023-10-17T19:57:39.621260Z", + "iopub.status.busy": "2023-10-17T19:57:39.620886Z", + "iopub.status.idle": "2023-10-17T19:57:39.626944Z", + "shell.execute_reply": "2023-10-17T19:57:39.626352Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 9e3238256..7fa20e60b 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "902fb487c9537d7f8415d5d73f601eea8e71df72", + commit_hash: "18fab35bb933761934d1f67349c8c3783663eabf", }; \ No newline at end of file

    -

    cleanlab documentation#

    +
    +

    cleanlab open-source documentation#

    cleanlab automatically detects data and label issues in your ML datasets.

    This helps you improve your data and train reliable ML models on noisy real-world datasets. cleanlab has already found thousands of label errors in ImageNet, MNIST, and other popular ML benchmarking datasets. Beyond handling label errors, this is a comprehensive open-source library implementing many data-centric AI capabilities. Start using automation to improve your data in 5 minutes!
    diff --git a/master/objects.inv b/master/objects.inv index de743d6e3a7d7edd67d03fed1e1a103eed31729d..47926fe928e244ad8020f5b27159fd4e7ef41e38 100644 GIT binary patch delta 8214 zcmV+xAnD)WtpV_@0k8`ZGfRgOVs~?pKfySE|H7@dp2uK%#dZ00!7A+Tt-~R(ZL)$6j8|f3G3rV0C=YFOs*I zB%vfsa}1CGNkXq29JDxOF9_0{YCOK0Z1q|1xWCtga9NIfZd>y06;s;e6`_-A#KXRBjY z-mj|mfa+C?HV1NHf3e&e8;l<=k}FC+_&dSm36Lj*JQ>JGnwCwQ6-D2q$kmw=KEpEU zv%bpmz`vjK%{6{qOIsbD)z2>ygi zl*xIdfBRQlP`|tQE`iZua;g!w;=7Aya+yz9kO?f0wtmf~IVr=q)D2RkShNQ{!A{%!3WYp ze?B4H?)^Jyz@czn_Dz*g){|!!tFEQnB0KPuURv zu1OC|dPb;gJCwEOI{zD55pDyOF!G-#$lRBcBjZjR^CcYL=!??}#&B)!`4Yk>Gw{U) z9<$-m7Y52|CN-l2AIN;Ns?P1I+O3-Gcq)jtuzd^bN^ZGW=SAM;)7l_37t49;FXsh} zx!Q!He=u7!ItBxjWQ3CRD9H##=87Nax9$h*;CvVZ($SS@BrLS_2l`>vFh9_**bgn> zgTY{uLU*HJv7Y4bN!*c+?)aif`z_HBN2oPvPga)#P`*?GXxE;2HbGG9U<%0oO|$Jy zR&LN%-2zIvNTc|gK7EvGKxIi}fG1b3w^Xiq6jA&n_8>5lH@9No0+>hZ8MJCOx zqOBU-PHYZtX1<-mU&-J{l*zM~2}emQb3!SdjeGtQD)%Pe-Q!UPp2gulbC;cqwjWhD ze<5tdQa)>>j7@$1G8q_>fuSG5H_jG+k1ft_xLU%vR`m3L5PPwV&m$SHCo;y?evhri zrEsM2?czt{~kIKIh1BRQAw z{kNTs7DE2_E55HgT-OkFv$>(# zcjbfJaA9F7o=lRH0C>iXC;ZtOf4mEV1q%`$wqhyoETrJcD~e;Z?%DveKD^gtq5X0YL<$iL~g{{U8K`r%C@*5Mb$GB`e1=e?opVkbLQg zl)z8=W~-wy7bV~|65eL(bCK0%gPx9<+D4PC;hDfyUp~K30wVgq{`2b(c&1n9o2Qr9 zvwJwP4p&%L#ras`zLLa)n2uV__z{lNu!dKiAIoS5Fvg>nvA$g>8mc|+;5MjfjAKJ1 zUAq9a5U2}QLzBQ>DnmnKe;skR-k^dsT+^Uo;Bc?dGA#acVDWgQK_R&jM0eSWe@IyD zMLZnXRJgFzXKcy!3Ysj`wD{kAf507J-K_R?b~;$O24i0Kn17UG;?YG#V^LKs6GrqI>PEMWqNVvQQUzzmaV|7?QLKi(gj#=4Hm1J~h7*`;a z(*89|zTo%$ektuY@5TD}pPgQjI?q8(Q9DU zQ$P+1dPAwEWuF^2Y5j-3WE*UClAr8Qf4e#O1y?5;K6z^hN$Bju zrgIaZri*qQLr1Wh?oYO|1dvC*?y4dncP~0$hyFA^Te3vf7;Vh5-IXQOoWx?Fv*_qv zuFy?ZoXM_4TrMav5d6#PRGs<(JO*lPEc!f`^Tt>XVTPz%&zyA3q)<|3Ao!PrF?T(} zs6y|u-_^Ake+X#Ref1|H;}cx+|MB<#)zUsIgFQCQE$nr!Xtzbu)Zh~HqfWw;OH&|5 zNV~lZw&(yMbcCem>j}mB;=i=2U}NP5!%kIb7V`OA5qi0GzVE*i?c<94n8Wzxh>lf# zuXn`HOu&_^0N5J~4bs(oq6+;g2Iva|?Nu2-!T@x3f0Mp!sucs5D4`jKHqxf-QhvhjwW*ij}W-bZI>uRGZ8umCiAq-F15lL0pAV8NMV zSh?r66%-gcxSx!GX_%Z?(v9lO+=4N$Y%sy*Z3V@GP9P@3W)}Dd(|aC`L5KSjs!0wm zJbuGC?GgPN+U&BT6P&6fL}XhBU&_C6EGEPs5mgctA>z)l z$OJ?tAd)o2w8*f1t!&3Dh)l3ZLV!gkOysDleq&v{@^S|jV>32YT|>;0D+cI}On#bS zqH)OZn zARuI|V8$KuW2=9ChoaIKPha4o1B|*7oh00@&Um0!8|rKdM)YRHSWV#p#ce`~6}lgb zf3B11OICg690pzIkE@|^&+qtE=TQxS#QiN6EKubJoElt*UR;# z6JrlvBG_DKk>ByluF(t1uxw%a} z#HS==kbgyPh!bsz|K+u=DmA@+F&~c5(j%AZ7@dGTp29WdvEX-O2$m!w(#YqMnnM3}d4450( z`3GfWJo$q%5-!tfo7LAV^1wuef7cu}{GHIhW#Hs*;n}9seG3h!(YYp0K53DK=bBiH zJU-JDrU5qzpL04I#mz_fc-X>iwle=3@5GGwF~50B^Np;+^_+0WomsqSvj9CO(>OBE zOS#F(@!$pq%-0CdeEV4$jTUi}7XuakVu1#<3D72#c9_c1FcUZV(JSAee;ZVj77lE- zQ+3KaC`R9O_x!2V!2Lp1x2A#_H4#PsR)Ul89d2@`#nH4b{6!B!R3TBmYDc!+@C8*_ zM~H@Pbs9c47Gl?O{zV5tw8I2LA;DU1C2cGoww>BTTH%iex@ktVQ))7}{ervqU;C4L zSk`MY1%?|1^G))KM8$+nf9D61GvwWDGpkssC)plP>AzjwA~L=1?~WxSl2I&o2e*<# zr`90+$#&f24r|$5SXuYvm8;atiBt-d+#)jRAFj!T(a|W9On{)%#Xw2E>wA@i0(p9> zy~Q79*4R|H5MH77u#9<2IM78I8^2QgX=_RFna>%%m%E93R{c!%e_vO}Y;%C2{V;h2 zy9gQDDmQ_OT}V_~y&D9)X9C{I1rVO3pUVDg!gz*9#2Jidwr5mkDm@hAyfiGa&lHs% zud!MlmRJJerEEhMfJxx1J>dUz6C1WhNRlT0XlKjM=C}|E>PR7+2BiH&iLEqJQUiN@ z7KX)^L|Gb^Xb;N-e+|r{ZV#x0$_^8p?l}1B4;Rl@c&hn_i|>UyNiDz72a&8_jb&l> z1lSW`hjs(jxjJ?{cY2=S?hdmH_p|u4nbcOe#!gTF9Do!<@b zcSU|WL5Brxe_r#_&ZB>R7#*jvkWMU3LpB<35U~j_7Csp@kO*UuNBE119o~0h6Dro= zn?3Nr?k~ZIa({V%!CTiVeBFGr`ol{aSi=MG_S+St9{zSk6QOpAx^R(#Rn_9&&Q-sT zh5Xr62*;QFft5tUNAe$D9n}9c_P3Z67Z|O=V5T z^MenbQy+}irO0{|oUvtzIHyB<8((}c@&z0Dj50yPdOYmnfFxV+wKlWdtHwV0UgQ&F znZ0kme;4_Njk?C^uk(`Z1_2l-F&mN!*4#%gUWxx$%zu8FU|>3Zg<=Q5WHLw&w_{*3 zZQ_9w1}vNb+j#a57tdB-lWy{xm#f{mDDEMFXq|0vR|%sPeiZmMKLq@i4jaE+o$4Gn zf6%anxIQ!b=3DHI|ND)jn@1|W4XhG3_k5OgQW7F1;iZhmp2Y9~vnhs6i3(WS~LhlD1e^-JsvM>3bZ66HR&5ZSU8$gfIG{1+Yd;BLc z+&Y0lN>`RMvZMN*ZCCW{j=-+we1iB2e{QlXx>9jO?V;K>!fy2IZ%D>$x>1wm^OVCi#{L5+on zD_G^~XE`gZKS@aPdsip>Ne*eXE@0l;`7k#FI5}Q0!2nf96mX zTla4>Sn^=T3FOva8p?`azaZqebdEqAdv$8 zx@Q`^e$`PWe`22M4r|ef8rnkHeBXJjC)es0Vh^9djwLqp3C$UDvN zvsxAsn!^&TZ=u@-C&1w|tWgV5v6RfT4BE4;Q!ww_MtH+V`^SP_{EoZG3>SKUrb_aFH+uHi)JDZO1S(S!*2> zp{x#O(4_%fPvfC>zvwWaf75vbBkMcp{s3J;dkh$6^&NFjZe?TFTdgifvit65^(Rg? zStxop$nJWpfxKD1``evsQj?hfl^Lo<9(XI_XAcwpp;i-myo5W`aWN(%YZ5=&==QT2 zB0c}XUq&}3BTE-QYW2sXh!e{MF_gr~;IIoCo^Z2Winh~U*)-)D=Z<2HEd&`__I(s+?!>LWe#GX#}ROk{qXlx{b z2)Zr)O)rkCfz$mIT@75M>av@*SW#w!$9;Z-N*WG@S$z`o+$#v*8kfpb--Wk#GwO0Zp;4S3oD(?TKzG;QM=!<%yyAV>3f_{rsspXR?lZ(_BhSP&@EH)RZp(%jKv1C zhHuslQx#Wz!#D1HLpPN$Hnr(S#J2n-LxGT3;na&fp`oI4L-#Zdh1W{4j}j2_9G1>W zf$5)*)M6*FG@V*U#bq1qj={05cKu#DXbrn#j`Sepe|wtd;OjO&9>0+b=Q}hA z;Dx{if2IOn2uvS%T}@_NCwqy*(Vt#Fb|jh}nr7)vXk9fknl=Zkk0TM6yom0QG(ATB zek3ARV=@dGn(9dQWRQKwT`Dqizd39G>o*J=+4>h-)M1k{Fp$kMuvxiFT}Ez6hrMGR z18>pr^;44lAic>7)tai1p0wCBzW@mQNS9zff72zHU-~7OUq;J3^dpdr3x5%2T#%{u zWYbA9%!xqDqhXE-seysSF6Sn%#Xq?l%wRv7EW`b1WCuCulQ*`>LgW_c07>ekypd%E z8EMTW7*dXIIJzNn%b$pWw)Rs`Bpi57WjQBNpC}VHh5AfOm#asn8V0#_WTqLPHD`Fq zf8{9`PMwD}1d|nusU>`x9dDU@N}d6X%Zh#$O~QwD3)yPL%u{&KL6>H;@reYYHQDiF zax87?3yk{30u_&5zR;VRM`sPFwPeQ-zxP>b&kq-D0sS_+AI40)G#EE=-$yqyotlOP zd~_4=!v&jD0cZcsc*~%v;J)_Oq^SsPe; ziG79(YTJB+{}|{EMF)(5&a_=V{wc8U`9;63HjYkmGXrCTp3@CNO0eg2gU>v`InZcS z_K9lFb&e9z6lmQYOujwjkj<%v9UI3Z$yj^Ln{HD^cj&-a{YxuYMx7Aq1d^e3f7Ho9 z-JN{U7$jV4Ygk=d@eJDbWp0*mWv#2oE50IY7S+5e|E}85eMlAEd{6H-#|n^-X<>~T zr+b}LbR&NEnx2Bv=x7^xoNMP5brfjCodd2;j281$?OM0RR8K25@%$pL5qZz4K4sE55Mo z6=%2n1(;P#@A#Ra##g?D zXo~o&-j)e%a5j)a`WY`Cov1s?yh>=QqO9zFeVz zQ+}xp%TN6k_IiW>Gs_NG`-l@7+;-zqe+`EhDm*V_YoBm98&BoQkcSIy+*bA0(F68!i1|HRGO*#s zdtl?EDZplE`}`1yh**6TL~ilVHt6$XAtK`W;Shy&Bx5s;HxXa5Br&vrcMfwX%kRx_ zfsBQ_l7TECWc~LtEu~!v5Cu-`E%>ZL>t2dNF<-5-Cg0G*D8<(bEkcU{uF3Bh`f<(#CDoA^tl&qxVE6mj|@D{;G#vW7Q7Fj9g4Y4@wjH+iEkC zJ}0AnIsaS&N-~3_dsHIsa!e)ul!Js&9KcWfaSTrs2Um&&HT)y5U&KT);%5m+k%dB|X4~xiemNX z>5!b?Lh6i}eV^{9vGn}7#;>72agg3KGxNKj=F%;`=A4mt`cc;2$N-F+KobBTO=#cj zpaEf|lF6UO63eR0^R0_W%Gq_G@VBv0wy)7eDr2Q$*$;(W?*0y~AWBP-+3g)O;)?VH zS&_~{jWT#4e+L!v-^(g#^R__$HWt(c2t|J3@ z6O*#hNB2{PT(yWK@!T6g_q5%}ru!`cm$w0PG78B*mw@tFmC|+AZVqUxmm%WfD%j+W zL^Qc4E@iu%^)g4~RM_azAcdvV6(Q1BtPdrB4{Qcqf2UcO*;7$xu$f1CZu6p1!wML9 zw~k&2n1TjWDUxrPLzl3yD=9LB%ls ze;9jI4i4$p4!Wo8(s20mtC`<8ihd2W!js@tQ=RJ#!6x*Rd{rHPLG$^9(B|;(bUzTk z{cgaSECi+5_6CBmTd`Cb^=PHzW%8;6>F*_jasw*2^acvD)*y%d{hV*En>HH<;!NnL zia?5Ol4yhqAMV+KtuK9clHn>9vT%}hTP_-bjo zOY~K*Iluk#zy9-o>kqi0tnX0<+xbvOJn%h()rK8>CfJXcr+#Gp0Nbj#!USx!C5}ASChv zrpZzF&0_hn6F`WLoQgGZK2k3}btD!N=78yJL% *uzNUy}c5NmV5NoTbU#>B5dRR If94ojw94fIPyhe` delta 8198 zcmV+hAo<_$tpVVz0k8`egz3` zrAiDGZ}49UByQ&cV8FbhEf`Z~m6xmg>Rhkp*9vm5I=<%@$y-d4e^3&pIR;38B%xOb z4q6@qx~iKMezYQ&%dP5aeQw$n&Evbe&D+BYuI;>EiEcRJbo4|0{v!FA z03;Nf0wnlRLI4s9z-~lI03aa%Nq4u=U|)Vb)zu9e{Ij~rv(+&x?^jiOK=rCcn*+Ik zSZ<9C#t#?C6(t}1f1P0R1jrLYo($w8P0OauilT2Kr<{H1Q zrL720@~8gKubv+BJyeNu&;CN`&GUI{B%~sZ)6dl{o=7kP1b@P%$mD#{zx^vNsNY?D zm%wN*In@YT@!iEUxy&c5$Y=GQv_GUg-DGv1t#L^!vmUPyuEA|xr>^|1&`RY6T zfAFPN_)D#x;UCXT6}E*9T4q?U>*8n;>wEId)S)H1T~QQcp*+h6bepih6+-A`%3E7O zQ?^g^_aLx6f5WD|tZ1HQ=WSkH`(j-kuNR@vDe&df=RoBvO(Fv8XUec!a!Ngq-J#B z1DQ-#)wx|&yH%4NPX*Bywqs#k$*mRZyvW;pS{sDsVmWX9<-C9~SDR22W@|>rV1Sa0 zP?8=ce;J|3T=4__*8RX7oDX9_I=T{#goT#=KtHS+<_G!}`=JGVFc?fy=x!7&)|31_ zi6hd{9bYtQza<*t2(>2d$?8%7%9lz2?b;L1CJ1UBOzGIaX|}z|$_?78TR~R8jtis*K4R{#LZTaE3sWwkGHG)nRf6O;(dX#EDxs;*N7sO?StaZ|8${xR5 zbA-TT|Ik=`!W2X$fTK7v{i%KiOs>y%(qkc zD;fNVGI{ng;V5ZkPAH|banD~u<=*7Gdpyd(vpC#m?y_^y_M_@1gpF9rXN{Dxsn1^~ ze*;4@F!V$C#@XWUvBlX9S4$Yzik{{VVlS5Qc_icYM8??K@3FO*e5jv{oaNJVxAg^7 zSIC#M%2pdZV&7ZFm#Vv zv%a0qPqMyWb2a-X4}qB1YzRSTMp-iOe_FVt8*OvLV%S}pV^O1Vvzz@_rs&-eoEvp_ zgri}(tz~c(R*NRp)x#EsH?Eoq_i9oNRr(I`7rS8w$2S>hB%0_AlFeSj05T>MKvho0)8!pgpPJMx;`ZS(+Vj8La zocZSkovC$AOgFl&hNHaArJu6&RiD=aL$QWN9P^b(bC3KaM}+!5yh^xN zRyvcA(Dr;PAc%l8krti0AB14=H0hrT0xTV@WF=Te$d3k+FCCE*_(|Vve|0qGq6EA~ z!rN?pF0$He(9;o9+i21>JQKL;%jXwLKt%u7e}4S|&-Chi^YjvXb`K}e;Y#YNI3G*g zSCV)T(^0D#Kf-Yu*6^zHV;SuL#(2~+*0&2qL$${p+y*s`acpR$YZssv0(HS^XcE{< zWoT%uBktB4RFH;i8Z-?54Z!Yo7KL~P6sR3V9d)N^N(^&Ji6%Vl0PPlE*a<&LZ>&vC&DeXAWE!T ztoycWi1;BGr69EgH$)|Ch&Dq*wCWln8p~$TRyOu6APtxh!K?*bf5}_GiQul4UbZ=P z{;uzM#&=fV$*D6R377ZaE0Z34tPaaB=%UBRF)RD2l8o*Q;|hdQ+P`MW7yQ28FQxtF zy;%SLv(qb5=Q(J~_ndUpNcuaVFrCc|%JRLZ42isNmUkJiSq( zUME{YyRdrA1FJd~_jbgpoo>xZe2z%*0;YH6tV0qdJU|43dkuzZ@ks_6&x+; zEy#w`*P|V?>~rHLt^d%MY=f;%@{=8EHwVAq>O{jQZw(;{f1Q2UbZ!FFbkUAu=m=KR z{mE9A0P@J!T~!3+?nUS8(4WR34f=m8CfByczTH0r2u*askg}u%d?Y2nT8C+t1)Jb@9X$r&$X}6cb79Ajjj*#?x zJ)u}%{Fhc0Y^>a1*r^K5LO!1>LNB+@_x*RGeO!?ra~QuI(Xp!U^^W+N3Al0<0DEJh zLAshxRH0wR0DWPgy($Ap7=X@hvUrj2cBqE^&}@Hxf7f2ofeiHgH_gR={U_D{&nC%M zKQhcHSECe4Hs0_PJIaj2`{)eqbqCuW7Jx>NwCo*hGQcJsEI4xvEBD;Cf&xPa_mdGY z4U-c~x>22(TQKI84JO#Ut)N)Y3B+XB%mV*lde5UV=x~2RHOZ-k$8WfV`*h-~ZNOZhjB#f11HqDq1yMBF(RnSjUyM3SbM78$m$ zmF;*1kqH(_2(ZY6i5ykcZ>)<~UhcqRY{sUlYlvBL#Q@!r$xky(G!7YlQ)K%++FJP6 zM@a860z#~3AbjELK!!OE21z;)xeuB{buPA0e<}sXiXhxZ_JERl+(Mud>bIHU4Ef3q z8LXw8P(}nNm0)3&Y%=XRNt+`v@%E6ltf|Y&!NF`*ukRo97X4}p1ca;=%=n{yboH-=#wH17Ewzv?`y0g#BlC5xzrroMkSk$okSJ#+$wvWaKjzw3IrzI0;j!Ak_2 z>n!p+etCRUDLHJJBk!?>SS58P#Z{YKBm8AnMP<_1|0+ctwU-lA%#{FFqDeOoTuD%%UGI z>>}7S+)s`Y$0W~_;#K|WuvhZ9JYmvuin!+^T zCgF2VN29p;2p-R8+3ze(!znwe|D-)c?ZSl zo9^B|wHmlzsOr{KFry}-=-*0k628Mt?zA|X)`h?5L5M0O%2(~kwi~{nD(eW*u&qwR z$HqeJTF$@dAc%IDU??P5%dMo1#lyB!dq^w%@jy4th;~X%2De{u_x@{tau3UTO{Tzb zLtws1UXiGnu<86ja)!K{e{E(JEA=GX<0<{Ot6M~-*Zp0vWJEHGK4K))E<@rZwUvwC}ZPSia%{F2|n{V!}oGGanGusss8Kgm~9R)f3zPauV5D;LtEu0 zP_YY%N~?E+fcH$mJGlVDlk`*Be@z(A@Q65r@yzy&%1ot)Vw{(TCH9%3vg0*Y%fk{& zAiR`q$O144e6xd+JF50e>J4hBSF(ccETQRpasND=@Hf4dSb65i0-j_y0pa6n=h>3al1>VC$nOIsk0Ke_%;_3$O`;g~k`R;siEf zu*m?Mbg-m&@vsIyg{EalMnDEk!x&|igrau4rP@E>RaQQn0F8+}pY8*Rha4n+oCh zl0UGLNcc#e<8N7}^e$^y((zfC4f#tZXJ*-YCCRVYf8L)Ecb?JBYLGEGGpmx(_odHX zPEXIW6;hJRk+2O1ByDVd{*nuzc0*{g90ccFyY!foLA;~w&#CR>C8(*a>3Dwd!E@?^ z@wyaQkAgF{ED`5)Xm8_-??t{~BcD-bXIPJiT^x{P3%=H7mV4FMC*O;FVl1=w&G#bT zuu<1If1Pz+lHDKx10`ldQo)-0=*3HMzGbjS!P&yj2Fq8Bg4A$lW`y@y`B6i4#M z$#wfwm6K$<<_`MdCDoMfC?s1o0KTm%Xy)-lJmABneOtkYJ{I$#)jv792@Ae77X1F5 zNO140A6~LaGuiD(c8$P93}Zph(qSb83)cE)e|c~J$;M^>{F0PxGQWebTSK->m@ScW z>n+v>#9;0b~4^8*@Phz-r0)v#U zEN5g#^*!6J=-C~CUCsFf@fF-;S9GP~e~8*cwQYpm=-1znjM;RfCd<>m>i1P%c(^yH z8YAy^$O#~Wml(3Jga7&)lH;3h3uVa3fNba7?^j>L=o%N940FNK=O%+13lCSY%GJ+u zR#<Rp+?Q2Dz@(5e`c`a zmA4gdy{+Ir?e_^&EEy?AW;6*=tef&B_#mT3B>i{(Hf1^ji-GEF?6C zC0NVL9KS0_W)D&*x~=&1-ihBZ1g?QM6$?EEIomCA1IxS?RUMX|jmb!Qe;M7u0eW`^ zm63o9zw_Thw+l{y!)I8d7NTM^v%yGu@kayK;NU8}v2v^6V7Rq7!D(@fkx-1e7r|%r z@{s{U>y{rba1Cy`wC}XXPVmh0Aqi$!v5hRVGL{#OZ(f7VP>+{Iw(R}9n7Fh z1Gt{XL+yUiVL+$z21eF*f6)B_x`Or?FwE*Z>Ym)n#;&(oU5;e;-OuVzoNTgC^lp&d z^;QFUvwZirJJ+NpG5;$wREs?DR>aR9Cj3LKCiHj-cc$ZFOh(ouezei;XEQ{4{)4|< zZcIj&E`HSNk4F(FmI-1giIc%$7c@NKX1f%1A)4KaA}g;#${oPCe~LI6oOUtG9&B1? z1sflU;&j|Ux#CSfLKLzMSr+I%+&BF}Gg1p^J)5q>z7`w|*J!5A)I%yf^j4Z<5^7Vl zX?$j4bZLD^y8%6*;OKaJ2oM2M-#%QEJ>5DSC~=v zodNV)(?a!;=AnPxQ45QbSOK%fe_P#_{lynnI-9lnV|=4_zhjy0B9+(~q`?=PxKKMU zG0dlV7uyr1RhMYbrs4E06E^HIa<_raw`t9Ir^IE`>YkL`KiKaIvb1N&Y0{_V9_M`N z4_U+fs5jfrf4J9HLI%Tnz9G~1IG;?<2Xn2S&%o?)nvJ1brsS)hT-zCo4Q37BtQ)2( zuKI>=-1&xXDq(DD(~XF2`ALQXA+f@#7kNTMMdya@X&MTzm0}+yAmlkLos$C7KOd>Z zPGD&|wT_C*HrgG7V_WU|y>!qTcE=p)LCE(s&B51ge||iEBNxthXb{M?3UiM%LZnibn^*K2$J;J%1;5;X%qgQ;^Zbl-SKuz?V z_A=sA$bDDQar2i`m>Dwdd|U)g`zG;G=f2D8PZn~QV<=qlLf{JMvQr2^hj76QfeTCp zybzc^fAG4R%(hPU5{IKdy?*RSG(9xU(w)${YGyQT4ptvWA})Cm-63gujQagZM6AYS z7&0`~k?hGJ`;NO*WaNHx*Z|gV7&fx?FSe+|CS_nCn`L0La+kV{+>#D^$2tbyqT%bO zB>O>nlNG8pRUtiTv1xt*5crWU!F;AmFu(Lme=xs{mU-w$AQ>0_BFwlTQ|-y7lVq3^ zftE+Z91~Il1BqSEOUv(la)F4zM4ZFWD5nRsb1ZsNX=Ze}_)4GZ|_Cg6t) zHm3s4{+scZK~uqf?X5{u5!yZy_vX(9e*)gneof-smJMBl_T)-peI#^5DPI!%3>Vb4 z`3CM;l7z3SYyL|jpVBhnLeqC)Go#bW)#s)p78-$c#&*=uAd4O}E(WvYb)tu`b zC88EaA#pSCLnIMb<2;c~$;hwW0fvD!Tce-ffN*ARp7h8Z}P$I;rSJ z{O&b91*Or^Hu5;v&MWFD(1<$+T%8B{^J=+i!ud6+L(|Gn>yT!a z9kBKhCp5V2#-$n#FI0G5f5_H8;czyd%99}v7u>k5>aC*(?Bx*id$wd?!;SaA#z#|t z&CvGwArKL<`Y4Fp;-78M=f^@s#Ph=;3hPM5W*ToIzGO*aXaVmW=1`X3o8bZ(3wI?0 zSwhJA?`2v_yAmJ@oY-6NS%ucU6oq2GT4znZp@+%SV^(H+a-@$Ff8Tw+{yNb8Ip3nE z8$7_Mj$=lu3qhof+p0tScX&qciA*jJXmkBl54*;y9gZ2fn1mjbCi1t{W+Z)1M*DL9 zxdfDC21)m*MBL?=O8hAY6*YZ2h?|sY5x!^~GJeLv!BKxP3P}P$nc>f`W?zTDfOpD0 zp`keJ$5$5LSqZKwe;)K~Gc~2b{XVnxHpr*h$%k%p};orGEYizyJsq3^8I1Bp{Wu=e-0*wd!iM^>e167IlqO} z88iDn-A`lb`EiY3Lx18Ry=P|TcR$UgTYSwqBk%O1ti6!|7&n0?06v<~zS%(o!bl~P zKaC}pRhj2o7m<{+>p#W@z&{i))#Kl#x$s37ia!*{! zb~)>1j>xI7(W5~MOQ$PBq_0>XO8y?$47yIUF0-eif6ibtkM!K;MWcolFz{|2y%5TS z;BA@}d$g`IohY8Rlfpj}2pDG)FtJF)!9JegjZ7pppG@6q19?0-CyalrmSk!eM?I4x zGf36GPl+Tgc~2&q8k;CD=c5wk?*&T0bG102puq5#0AjK+Sqe1JQ8@0_!Je2Nl)%H~ zrX`C#ebEASF1Qde&$svr>iU=_TDbdEyCUByI z*vj5j%O&Y|<$Q`pTE`@AzU5qs@2BRO)oEGiLXJbyA=-%s7B+f-eHMbs?Hkj~Ajeko`_@#YSU@K(!6QPsBj;qS1aQwKpi;|c zRHDy3B2tx95uv1%iu!1kGZpk=rwSS5&XtqP#}pc2Qm0F)Ma~xzt3HB?Vf-=ns2m*9 zf3F>MPuZp6@aI=Ezi|}(8Yq5s9tt8E^&HVQ$D{I~OBFouWX0l&do^0P7{R0)7R^o} z$9`JfmcAPCN~}6`dK&E3c zB&WW{u3zrk10JZ4%xiF$!6xyOj8z?fHS_s|(B|;(bPo`}4EdHd~_67p4Td`Cb z^=NhDW%8;6>F*+gasw*2^wtToz95JF{hV*En>HH<-%RMIia=Uzl3aueAMVzH?Jj*r zlHvLkvRIOJ+bkM^jkqi0 ztnCWGXcr+#8>T$>jaZLR`Pb$dASChvrp8hC&0_hnlRk)!nTj=W sK1MG-X(SdB=1}Qu6Tetk*aJx8{k#&1mizM6+m|FVB5d9Le;%en%9G#;zyJUM diff --git a/master/searchindex.js b/master/searchindex.js index 574f4aabc..3317ba7f0 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 51, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 51, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 51, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 51, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80, 87], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 51, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 51, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 51, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 51, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 51, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 51, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 51, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 51, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 51, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 51, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 51, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 51, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 65, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 51, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 51, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 51, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 51, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 51, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 51, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 51, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61, 74], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 51, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 51, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 51, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 51, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 51, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 51, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 51, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 51, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 51, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 51, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 51, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 51, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 74, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 51, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 51, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 51, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 51, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 51, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 51, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 51, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 51, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 51, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 51, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 51, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 51, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 51, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 51, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 51, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 51, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 51, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 51, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 51, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 51, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 51, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 51, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 51, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 51, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 51, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44, 51], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 51, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 51, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 51, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81], "01": [28, 53, 55, 67, 75, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 74, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 51, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64, 74], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 51, 73], "highest": [43, 51, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 51, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": [48, 51], "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 51, 52, 86, 87], "mmdetect": [48, 51, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": [50, 51], "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "object_counts_per_imag": 51, "discov": [51, 69, 87], "auxiliari": [51, 81, 84], "_get_valid_inputs_for_compute_scor": 51, "object_count": 51, "bounding_box_size_distribut": 51, "down": 51, "bbox_siz": 51, "class_label_distribut": 51, "class_distribut": 51, "get_sorted_bbox_count_idx": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "sorted_idx": [51, 81], "plot_class_size_distribut": 51, "class_to_show": 51, "hidden": [51, 81], "max_class_to_show": 51, "plot_class_distribut": 51, "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83, 87], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86, 87], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75, 87], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80, 87], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80, 87], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 76, 80, 84, 86], "168035": 68, "125": 68, "090878": 68, "37": [68, 73, 75], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "card_payment_fee_charg": [72, 86], "visa_or_mastercard": [72, 86], "lost_or_stolen_phon": [72, 86], "apple_pay_or_google_pai": [72, 86], "change_pin": [72, 86], "beneficiary_not_allow": [72, 86], "getting_spare_card": [72, 86], "supported_cards_and_curr": [72, 86], "card_about_to_expir": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 80, 83, 87], "38": [72, 73, 75, 80], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": [73, 87], "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 79, 80], "00088": 73, "435": 73, "876": [73, 75], "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80], "255": [73, 75], "190": [73, 76, 80], "66": [73, 87], "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": [73, 87], "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "sped": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "517": 75, "329": [75, 80], "215": [75, 80], "118": [75, 76], "86it": 75, "83it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "506": 75, "415": 75, "121": [75, 76, 86], "00it": 75, "34it": 75, "476": 75, "577": 75, "327": [75, 80], "755": 75, "36it": 75, "80it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80], "624422": 76, "625965": 76, "626079": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80, 87], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79, 87], "198": [76, 80], "191": [76, 80], "63": [76, 80], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": 76, "194": 76, "201": [76, 80], "174": 76, "163": 76, "150": [76, 78, 80, 87], "169": [76, 87], "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80], "216": [79, 80, 87], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": [80, 87], "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": 80, "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": 80, "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": 80, "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": 80, "145": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "115995": 84, "74it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a01": 87, "connect": 87, "443": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "kb": 87, "mb": 87, "directori": 87, "inflat": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "7mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "bounding_box_size_distribution"], [51, 1, 1, "", "class_label_distribution"], [51, 1, 1, "", "get_sorted_bbox_count_idxs"], [51, 1, 1, "", "object_counts_per_image"], [51, 1, 1, "", "plot_class_distribution"], [51, 1, 1, "", "plot_class_size_distributions"], [51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "open": 74, "sourc": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 66, 68, 69, 76, 78, 79], "helper": [1, 13, 27, 31, 33, 34, 35, 36, 37, 38, 50, 73, 75, 87], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 77, 82], "benchmark": [1, 24, 65, 66, 68, 69, 76, 78, 79], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82], "": [1, 2, 3, 7, 23, 24, 28, 31, 34, 36, 38, 43, 44, 48, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "core": [1, 4, 27, 29, 57, 59, 84], "algorithm": [1, 2, 7, 25, 38, 43, 52, 61, 63, 65, 74, 76, 78, 87], "These": [1, 2, 3, 7, 26, 29, 30, 41, 43, 44, 47, 52, 56, 60, 61, 63, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "introduc": [1, 67, 74, 76], "synthet": [1, 78, 79, 84], "nois": [1, 2, 3, 23, 29, 32, 38, 44, 68, 69, 73, 78], "label": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 73, 77, 81, 82], "classif": [1, 3, 7, 23, 27, 29, 32, 34, 35, 38, 43, 44, 45, 46, 47, 52, 53, 61, 62, 63, 64, 65, 66, 68, 69, 77, 78, 81, 82, 83, 84], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 27, 28, 29, 32, 34, 38, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 77, 78, 82, 85], "specif": [1, 3, 4, 6, 10, 13, 21, 26, 41, 45, 48, 51, 60, 64, 69, 72, 75, 76, 87], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "modul": [1, 3, 10, 11, 12, 13, 16, 21, 23, 24, 25, 26, 27, 28, 29, 38, 41, 43, 52, 53, 65, 74, 75, 79], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 18, 23, 24, 25, 27, 28, 29, 32, 38, 42, 43, 44, 45, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87], "gener": [1, 2, 3, 5, 7, 18, 21, 23, 34, 38, 39, 52, 53, 55, 60, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87], "valid": [1, 2, 3, 4, 7, 9, 23, 29, 30, 32, 33, 34, 38, 43, 45, 48, 51, 53, 55, 56, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "matric": [1, 3, 32, 74], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 17, 19, 21, 23, 24, 28, 29, 32, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "learn": [1, 2, 3, 7, 17, 25, 26, 27, 28, 29, 31, 33, 38, 41, 43, 45, 52, 54, 56, 59, 63, 65, 67, 68, 71, 72, 73, 77, 78, 83, 86], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "possibl": [1, 2, 3, 7, 23, 24, 28, 29, 31, 32, 34, 45, 46, 47, 48, 50, 51, 52, 53, 55, 61, 63, 64, 69, 74, 76, 78, 79, 80, 83, 84, 87], "noisi": [1, 2, 3, 23, 25, 28, 29, 32, 38, 44, 45, 47, 53, 55, 56, 57, 59, 60, 66, 68, 69, 71, 72, 74, 77, 78], "given": [1, 2, 3, 7, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 37, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "matrix": [1, 2, 3, 4, 7, 13, 23, 29, 31, 32, 35, 38, 39, 45, 50, 52, 53, 71, 81], "trace": [1, 68, 69, 76, 78, 79], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 17, 19, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 57, 59, 60, 61, 64, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "more": [1, 2, 3, 4, 5, 7, 10, 13, 19, 23, 24, 27, 28, 31, 34, 38, 43, 44, 45, 46, 47, 48, 50, 51, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 84, 87], "function": [1, 2, 3, 4, 5, 10, 11, 13, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 32, 38, 68, 69, 76, 78, 79], "py": [1, 3, 21, 24, 25, 29, 32, 34, 43, 68, 69, 76, 78, 79], "verbos": [1, 2, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 29, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 68, 76, 78], "fals": [1, 2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 67, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 86], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64], "prior": [1, 2, 3, 23, 29, 32, 34], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 19, 23, 27, 29, 32, 35, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "p": [1, 2, 3, 7, 23, 29, 31, 32, 38, 43, 51, 52, 53, 57, 69, 71, 72, 75, 76, 78, 87], "true_label": [1, 2, 3, 23, 32, 38, 76, 78], "k": [1, 2, 3, 4, 7, 9, 13, 14, 18, 19, 20, 23, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 68, 69, 74, 76, 78, 79, 80, 81, 84, 85, 87], "check": [1, 2, 4, 6, 7, 9, 13, 24, 27, 28, 33, 39, 42, 48, 51, 55, 65, 67, 68, 69, 71, 74, 75, 76, 78, 79, 83, 85, 86], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 17, 19, 25, 28, 32, 34, 50, 55, 69, 72, 74, 76, 78, 79, 81, 83, 86], "achiev": [1, 2, 24, 25, 28, 55, 78, 87], "better": [1, 4, 29, 43, 45, 53, 55, 56, 65, 67, 69, 71, 72, 74, 76, 79, 80, 81, 86, 87], "than": [1, 2, 3, 5, 7, 19, 20, 23, 29, 38, 42, 43, 48, 50, 52, 53, 55, 59, 63, 67, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87], "random": [1, 2, 3, 5, 7, 27, 34, 43, 53, 55, 67, 68, 69, 71, 74, 75, 76, 78, 79, 81, 85], "perform": [1, 2, 5, 7, 19, 20, 24, 28, 34, 55, 65, 68, 74, 76, 78, 79, 82, 83, 85, 86], "averag": [1, 3, 17, 20, 23, 24, 28, 34, 36, 43, 44, 52, 53, 74, 78, 81], "amount": [1, 3, 75], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 69, 72, 75, 85, 86], "np": [1, 2, 3, 4, 5, 13, 23, 25, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87], "ndarrai": [1, 2, 3, 4, 13, 18, 19, 23, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 87], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "arrai": [1, 2, 3, 4, 5, 9, 13, 19, 23, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "shape": [1, 2, 3, 4, 13, 23, 25, 27, 29, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 73, 74, 76, 79, 80, 81, 84, 87], "condit": [1, 2, 3, 32, 37, 38, 53, 75, 76, 87], "probabl": [1, 2, 3, 4, 7, 13, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 84, 87], "k_": [1, 2, 3, 32, 38], "k_y": [1, 2, 3, 32, 38], "contain": [1, 2, 3, 4, 9, 10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86], "fraction": [1, 2, 3, 7, 15, 25, 32, 38, 43, 55, 71, 74], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 78, 79, 80, 82, 83, 84, 85, 86, 87], "everi": [1, 2, 3, 4, 13, 24, 28, 29, 32, 37, 38, 45, 53, 55, 56, 67, 68, 69, 71, 72, 74, 75, 78, 80, 82, 84, 85, 87], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87], "other": [1, 2, 3, 4, 7, 13, 17, 23, 24, 26, 27, 28, 29, 32, 35, 38, 39, 41, 43, 44, 47, 52, 53, 55, 60, 67, 68, 69, 71, 72, 74, 75, 76, 79, 81, 84, 87], "assum": [1, 2, 3, 9, 29, 32, 36, 37, 38, 53, 57, 60, 74, 81, 84, 87], "column": [1, 2, 3, 4, 7, 9, 10, 23, 27, 29, 32, 34, 35, 37, 38, 43, 44, 45, 47, 48, 51, 52, 53, 55, 60, 61, 63, 64, 67, 68, 69, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "sum": [1, 2, 3, 19, 23, 32, 34, 38, 44, 45, 47, 50, 55, 68, 69, 74, 75, 76, 78, 79, 84, 87], "1": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 73, 74, 82], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "true": [1, 2, 3, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "return": [1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 75, 79, 80, 84, 85, 87], "bool": [1, 2, 3, 4, 9, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 34, 37, 38, 43, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 64], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 29, 38, 43, 44, 45, 47, 48, 64, 67, 69, 72, 73, 75, 76, 83, 86, 87], "generate_noisy_label": [1, 68, 69, 76, 78, 79], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 43, 45, 47, 50, 51, 52, 53, 55, 56, 61, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 87], "perfect": [1, 2, 23, 55, 76, 80], "exactli": [1, 3, 7, 23, 24, 28, 29, 46, 52, 68, 69, 71, 72, 75, 76, 86], "yield": [1, 24, 28], "between": [1, 4, 7, 12, 13, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 41, 43, 44, 47, 50, 52, 53, 55, 56, 59, 63, 64, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87], "below": [1, 3, 7, 23, 24, 27, 28, 29, 31, 34, 43, 44, 45, 50, 51, 59, 63, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "we": [1, 2, 3, 4, 5, 7, 10, 17, 24, 27, 28, 29, 34, 38, 39, 43, 50, 53, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "loop": [1, 3, 32, 38, 75], "implement": [1, 2, 3, 4, 6, 11, 17, 24, 25, 27, 28, 32, 38, 55, 65, 67, 68, 71, 81, 82, 85], "what": [1, 4, 6, 7, 13, 21, 23, 25, 27, 29, 43, 44, 48, 50, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "doe": [1, 2, 3, 7, 27, 28, 29, 34, 39, 50, 55, 57, 59, 63, 67, 68, 69, 71, 72, 75, 79, 83, 84, 86], "do": [1, 2, 4, 7, 23, 27, 28, 38, 39, 52, 53, 57, 67, 68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "fast": 1, "explain": [1, 7], "python": [1, 2, 28, 42, 55, 68, 69, 73, 81], "pseudocod": [1, 82], "happen": [1, 7, 29, 45, 78, 84], "n": [1, 2, 3, 4, 5, 23, 24, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 67, 72, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87], "without": [1, 2, 4, 7, 9, 13, 15, 24, 28, 47, 55, 65, 67, 72, 76, 80, 81, 86], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 33, 37, 38, 42, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86], "distinct": [1, 38, 87], "natur": [1, 7, 78, 81], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 63, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 84, 87], "0": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "count_joint": 1, "len": [1, 2, 3, 5, 23, 27, 32, 37, 38, 39, 52, 53, 55, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87], "y": [1, 2, 3, 4, 28, 32, 34, 38, 39, 42, 51, 55, 56, 67, 68, 69, 71, 74, 76, 78, 79, 81, 83, 86], "round": [1, 27, 29, 38, 55, 74, 83], "astyp": [1, 78], "int": [1, 2, 3, 4, 5, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 38, 44, 45, 47, 51, 52, 53, 55, 57, 59, 60, 61, 64, 67, 68, 75, 81], "rang": [1, 3, 5, 9, 32, 34, 36, 38, 55, 56, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 87], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 23, 27, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87], "pragma": 1, "cover": [1, 3, 66, 73], "choic": [1, 29, 75, 79, 81], "replac": [1, 37, 42, 53, 68, 69, 72, 73, 75, 78, 81, 85, 86], "generate_noise_matrix_from_trac": [1, 68, 69, 76, 78, 79], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 53, 67, 68, 69], "05": [1, 19, 37, 55, 61, 63, 73, 74, 76, 80], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 68, 69, 76, 78, 79], "none": [1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 74, 75, 76, 78, 79, 84], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 19, 28, 34, 55, 67, 68, 69, 71, 73, 76, 78, 79, 85], "max_it": [1, 67, 72, 81, 86], "10000": [1, 27, 73, 74], "x": [1, 2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 32, 34, 37, 38, 39, 42, 43, 45, 51, 52, 53, 55, 57, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "diagon": [1, 3, 4, 13, 29, 32, 38], "equal": [1, 3, 7, 9, 45, 50, 60, 82], "creat": [1, 2, 6, 13, 24, 27, 28, 29, 38, 55, 65, 67, 71, 72, 74, 75, 84, 86, 87], "impli": [1, 23, 44], "float": [1, 2, 7, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 33, 34, 37, 38, 43, 44, 45, 47, 50, 51, 55, 59, 63, 67, 68, 69, 76, 78, 79], "entri": [1, 3, 4, 13, 23, 24, 28, 29, 31, 35, 38, 43, 44, 45, 48, 71, 72, 76, 79, 80, 85, 86], "maximum": [1, 7, 52, 60, 64, 84], "minimum": [1, 7, 15, 29, 31, 45, 50, 63], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 19, 24, 28, 29, 50, 55, 68, 74, 76, 78, 80, 81], "default": [1, 2, 3, 4, 7, 11, 13, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 68, 74, 75, 84], "If": [1, 2, 3, 4, 7, 10, 13, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 45, 48, 50, 51, 52, 55, 56, 57, 59, 60, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "have": [1, 2, 3, 4, 7, 13, 16, 19, 23, 24, 26, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 56, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "all": [1, 2, 3, 4, 5, 7, 10, 13, 17, 21, 23, 24, 27, 28, 29, 32, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "necessari": [1, 2, 3, 5, 7, 37, 68], "In": [1, 2, 3, 7, 23, 24, 27, 28, 43, 44, 46, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87], "particular": [1, 4, 7, 10, 11, 13, 14, 15, 17, 19, 20, 24, 28, 38, 43, 47, 51, 55, 60, 64, 65, 67, 69, 72, 74, 78, 79, 81, 83, 85, 86], "satisfi": [1, 3, 23], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 22, 24, 25, 26, 27, 28, 29, 32, 38, 41, 42, 45, 52, 53, 55, 57, 65, 66, 67, 73, 74, 76, 82], "argument": [1, 2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 34, 39, 42, 43, 44, 45, 47, 50, 51, 52, 53, 55, 59, 60, 61, 63, 69, 72, 73, 74, 75, 80, 83, 86, 87], "when": [1, 2, 3, 4, 7, 9, 11, 13, 18, 19, 24, 28, 29, 32, 34, 38, 42, 45, 47, 48, 50, 52, 53, 55, 56, 68, 69, 71, 72, 74, 75, 78, 82, 83, 84, 85, 86, 87], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "rate": [1, 2, 3, 7, 25, 38, 67, 87], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 48, 50, 51, 52, 53, 55, 57, 59, 60, 68, 69, 71, 72, 74, 78, 79, 81, 82, 83, 84, 85, 86, 87], "note": [1, 2, 3, 5, 7, 24, 27, 28, 29, 34, 38, 43, 48, 50, 51, 52, 53, 55, 56, 60, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "you": [1, 2, 3, 4, 5, 7, 11, 13, 23, 24, 26, 27, 28, 29, 34, 41, 42, 43, 45, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "high": [1, 2, 13, 27, 29, 38, 50, 53, 55, 68, 69, 73, 75, 76, 80, 83, 84, 85, 86, 87], "mai": [1, 2, 3, 4, 7, 10, 16, 17, 23, 24, 26, 27, 28, 29, 32, 34, 38, 43, 44, 48, 50, 51, 52, 53, 55, 57, 60, 64, 66, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87], "imposs": [1, 7, 76], "also": [1, 2, 3, 5, 7, 17, 23, 24, 27, 28, 29, 37, 42, 43, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "low": [1, 7, 38, 43, 65, 68, 69, 72, 76, 80, 84], "zero": [1, 3, 4, 13, 24, 28, 31, 38, 39, 68, 75, 79, 80, 81], "forc": [1, 2, 3, 4, 28, 68, 87], "instead": [1, 2, 3, 7, 10, 13, 21, 23, 24, 27, 28, 29, 32, 38, 42, 43, 45, 47, 52, 53, 55, 56, 59, 61, 63, 66, 67, 71, 74, 75, 76, 79, 80, 81, 83, 84, 85, 86, 87], "onli": [1, 2, 3, 4, 7, 13, 18, 19, 23, 24, 27, 28, 29, 31, 32, 37, 38, 42, 43, 52, 53, 55, 57, 59, 63, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87], "guarante": [1, 3, 4, 12, 16, 24, 26, 28, 30, 32, 41, 66], "produc": [1, 2, 4, 7, 13, 34, 43, 53, 55, 57, 59, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "higher": [1, 4, 7, 23, 29, 31, 32, 34, 43, 44, 55, 69, 72, 74, 80], "opposit": [1, 87], "occur": [1, 3, 7, 23, 37, 50, 68, 69, 74, 75, 81], "small": [1, 3, 7, 23, 27, 34, 38, 44, 51, 72, 73, 75, 79, 81, 86], "numpi": [1, 3, 4, 5, 7, 9, 27, 28, 34, 36, 37, 39, 42, 47, 50, 55, 56, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "max": [1, 29, 52, 53, 75, 81], "tri": [1, 24, 28, 82], "befor": [1, 2, 3, 24, 28, 38, 52, 55, 60, 72, 74, 76, 78, 81, 83, 85, 86], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 18, 19, 23, 24, 27, 28, 29, 32, 34, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 60, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 83, 84, 85], "left": [1, 2, 29, 31, 36, 38, 45, 48, 51, 68, 69, 79, 80, 81, 84], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 24, 28, 33, 34, 43, 48, 50, 51, 52, 68, 69, 73, 78, 79, 80, 87], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 24, 28, 42, 74, 76, 84], "length": [1, 4, 9, 19, 23, 25, 29, 38, 45, 48, 52, 53, 55, 57, 60, 64, 67, 79, 81, 84, 85, 87], "must": [1, 2, 3, 4, 13, 23, 24, 25, 26, 28, 29, 32, 34, 35, 38, 41, 42, 43, 44, 45, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 71, 78, 82, 84, 87], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 23, 27, 29, 35, 38, 39, 43, 45, 51, 57, 59, 60, 61, 63, 64, 67, 74, 78, 79, 80, 84, 85, 86, 87], "ball": [1, 73], "bin": [1, 3, 45, 68, 69, 81], "ensur": [1, 2, 7, 24, 28, 38, 39, 50, 53, 55, 67, 68, 69, 72, 75, 76, 81, 82, 83, 85, 86], "most": [1, 3, 4, 5, 7, 13, 23, 27, 29, 34, 42, 43, 44, 45, 48, 50, 51, 52, 53, 56, 59, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86], "least": [1, 7, 23, 27, 43, 44, 50, 53, 63, 74, 75, 78, 81, 84], "int_arrai": [1, 38], "can": [2, 3, 4, 5, 6, 10, 11, 13, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 64, 65, 66, 67, 68, 71, 72, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "model": [2, 3, 4, 7, 13, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 68, 69, 73, 77, 82, 84, 87], "For": [2, 3, 4, 5, 6, 7, 8, 13, 17, 22, 23, 24, 27, 28, 29, 32, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87], "regular": [2, 3, 27, 42], "multi": [2, 3, 7, 23, 24, 27, 28, 29, 33, 34, 35, 38, 39, 44, 45, 46, 47, 52, 53, 65, 74, 76, 77], "task": [2, 4, 23, 27, 32, 34, 35, 36, 38, 43, 45, 53, 55, 65, 67, 72, 73, 74, 76, 79, 81, 84, 86, 87], "cleanlearn": [2, 3, 7, 18, 24, 38, 42, 55, 56, 65, 66, 83, 85, 86], "wrap": [2, 24, 28, 42, 52, 55, 65, 68, 69, 71, 72, 76, 83, 85, 86], "instanc": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42, 51, 52, 55, 60, 67, 68, 69, 71, 72, 75, 76, 85], "sklearn": [2, 3, 4, 7, 23, 28, 34, 38, 42, 52, 55, 56, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86], "classifi": [2, 3, 28, 34, 38, 43, 46, 52, 53, 65, 66, 67, 71, 72, 74, 78, 79, 81, 82, 84, 85, 86, 87], "adher": [2, 28, 55], "estim": [2, 3, 4, 6, 10, 17, 23, 27, 28, 29, 32, 38, 43, 44, 45, 50, 52, 55, 57, 59, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87], "api": [2, 3, 11, 42, 52, 55, 66, 74, 83], "defin": [2, 3, 4, 5, 7, 11, 17, 23, 24, 25, 27, 28, 29, 53, 55, 57, 68, 69, 71, 78, 81, 87], "four": [2, 7, 73, 76, 87], "clf": [2, 3, 4, 34, 55, 65, 71, 74, 76, 79, 85], "fit": [2, 3, 4, 7, 28, 42, 52, 55, 65, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87], "sample_weight": [2, 28, 55, 76], "predict_proba": [2, 4, 23, 28, 34, 42, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 85], "predict": [2, 3, 4, 7, 13, 17, 18, 20, 23, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 73, 74, 76, 77, 81, 83, 84, 86, 87], "score": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 27, 29, 31, 34, 36, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 81, 83, 85, 86], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 34, 35, 38, 41, 42, 43, 44, 45, 46, 50, 52, 53, 54, 55, 60, 61, 62, 63, 64, 66, 70, 72, 75, 77, 82, 86], "e": [2, 3, 4, 7, 13, 17, 23, 24, 27, 28, 29, 32, 34, 35, 38, 39, 43, 44, 45, 46, 52, 53, 55, 57, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "featur": [2, 3, 4, 7, 13, 14, 18, 19, 20, 34, 38, 52, 55, 65, 68, 69, 71, 72, 76, 78, 83, 85], "element": [2, 3, 4, 23, 29, 31, 38, 43, 45, 53, 60, 61, 63, 67, 72, 74, 86, 87], "first": [2, 7, 19, 23, 27, 34, 38, 43, 44, 48, 51, 53, 55, 67, 68, 71, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "index": [2, 7, 19, 23, 29, 36, 37, 38, 39, 44, 53, 55, 60, 63, 64, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "should": [2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 42, 43, 44, 47, 48, 50, 51, 52, 53, 55, 56, 60, 61, 63, 64, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "correspond": [2, 3, 4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 34, 37, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "differ": [2, 4, 5, 7, 10, 12, 16, 19, 23, 24, 26, 27, 28, 29, 30, 34, 38, 39, 41, 43, 48, 50, 52, 55, 67, 68, 69, 71, 72, 75, 76, 78, 81, 82, 85], "sampl": [2, 3, 4, 7, 13, 15, 29, 31, 34, 45, 48, 51, 53, 55, 56, 65, 66, 73, 74, 76, 77, 79, 80, 83, 84, 86, 87], "size": [2, 7, 24, 27, 28, 29, 34, 45, 50, 51, 55, 57, 59, 71, 74, 75, 76, 78, 79, 82, 84, 86], "here": [2, 4, 5, 7, 13, 27, 29, 32, 42, 43, 44, 45, 47, 48, 51, 52, 63, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "re": [2, 4, 24, 28, 37, 43, 55, 65, 67, 68, 71, 72, 74, 83, 84, 85, 86, 87], "weight": [2, 7, 24, 25, 28, 34, 43, 50, 53, 55, 67, 68, 69, 72, 81, 86], "loss": [2, 25, 42, 53, 55, 75], "while": [2, 3, 7, 24, 27, 28, 33, 34, 38, 48, 51, 55, 65, 74, 75, 76, 78, 83], "train": [2, 3, 4, 7, 13, 24, 25, 28, 34, 38, 42, 43, 48, 51, 52, 55, 56, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 84, 87], "support": [2, 3, 4, 9, 27, 34, 38, 39, 52, 53, 63, 65, 66, 67, 68, 69, 74, 75], "your": [2, 3, 4, 6, 7, 13, 23, 24, 26, 27, 28, 29, 34, 38, 41, 42, 43, 44, 45, 47, 52, 53, 55, 56, 57, 59, 60, 66, 67, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "recommend": [2, 4, 7, 10, 13, 27, 29, 43, 68, 69, 74, 75, 82, 83], "furthermor": 2, "correctli": [2, 3, 7, 23, 24, 28, 29, 32, 39, 44, 45, 50, 55, 57, 72, 74, 79, 80, 83, 84, 86], "clonabl": [2, 55], "via": [2, 4, 7, 10, 13, 17, 23, 25, 27, 28, 34, 38, 43, 48, 51, 52, 53, 55, 56, 59, 63, 67, 68, 69, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 87], "base": [2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87], "clone": [2, 55, 79], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 51, 55, 61, 66, 68, 74, 76, 78, 79, 81, 87], "multipl": [2, 3, 4, 9, 10, 23, 29, 37, 43, 44, 45, 47, 50, 51, 55, 65, 68, 69, 74, 75, 77, 79, 80, 83], "g": [2, 3, 4, 7, 17, 23, 24, 28, 29, 35, 38, 45, 46, 52, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86], "manual": [2, 55, 67, 74, 81, 82, 83, 85, 86, 87], "pytorch": [2, 24, 25, 28, 55, 65, 67, 74, 77, 79, 84], "call": [2, 3, 4, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28, 34, 38, 42, 52, 55, 67, 68, 69, 72, 74, 75, 76, 81, 82, 84, 86, 87], "__init__": [2, 25, 55, 75], "independ": [2, 3, 7, 44, 55, 82, 87], "compat": [2, 24, 27, 28, 42, 55, 56, 59, 63, 65, 74, 82, 83, 85, 86], "neural": [2, 25, 42, 52, 55, 67, 74, 75, 79, 81], "network": [2, 24, 25, 28, 42, 52, 55, 67, 72, 74, 75, 79, 81, 86], "typic": [2, 24, 28, 52, 55, 67, 69, 71, 72, 75, 81, 82, 85, 86], "initi": [2, 3, 10, 24, 28, 43, 55, 72, 74, 85, 86], "insid": [2, 28, 55, 74, 76], "There": [2, 3, 65, 76, 78, 79], "two": [2, 3, 7, 19, 23, 24, 27, 28, 35, 38, 48, 50, 51, 66, 68, 69, 71, 72, 74, 75, 76, 79, 83, 84, 86, 87], "new": [2, 5, 11, 17, 24, 27, 28, 33, 37, 38, 43, 55, 67, 68, 71, 72, 73, 74, 81, 82, 86, 87], "notion": 2, "confid": [2, 3, 7, 17, 23, 27, 29, 32, 34, 38, 43, 44, 45, 48, 50, 51, 52, 53, 55, 59, 63, 65, 76, 78, 79, 80, 82, 84, 85, 87], "packag": [2, 4, 5, 6, 7, 8, 12, 22, 26, 29, 30, 38, 41, 48, 51, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "prune": [2, 3, 29, 45, 55, 66, 80], "everyth": [2, 76], "els": [2, 68, 73, 74, 75, 78, 79], "mathemat": [2, 3, 7, 32], "keep": [2, 10, 11, 38, 65, 68, 73, 74, 84], "belong": [2, 3, 7, 23, 29, 31, 32, 44, 45, 46, 47, 52, 53, 57, 61, 63, 64, 75, 76, 79, 81, 84, 87], "2": [2, 3, 4, 5, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 47, 52, 53, 55, 56, 60, 61, 63, 64, 73, 74, 82], "error": [2, 3, 4, 7, 10, 24, 28, 29, 31, 32, 36, 38, 44, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 63, 66, 67, 68, 69, 71, 72, 73, 77, 85], "erron": [2, 3, 23, 29, 32, 38, 44, 45, 53, 55, 56, 57, 81, 83], "import": [2, 3, 4, 5, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 27, 34, 36, 37, 43, 47, 50, 55, 56, 61, 63, 64, 65, 71, 72, 74, 79, 80, 81, 83, 84, 85, 86, 87], "linear_model": [2, 4, 23, 38, 55, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logisticregress": [2, 3, 4, 23, 38, 65, 67, 68, 69, 72, 74, 76, 78, 81, 86], "logreg": 2, "cl": [2, 11, 55, 65, 74, 76, 83, 85, 86], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 18, 21, 24, 27, 28, 29, 33, 34, 38, 42, 43, 45, 52, 53, 55, 61, 65, 67, 68, 69, 72, 73, 74, 76, 78, 80, 81, 83, 86], "x_train": [2, 68, 69, 76, 78, 79, 83, 85], "labels_maybe_with_error": 2, "had": [2, 3, 55, 80], "issu": [2, 3, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 70, 77, 78, 82, 83, 86], "pred": [2, 29, 38, 82, 83, 85, 86], "x_test": [2, 68, 69, 76, 79, 83, 85], "might": [2, 43, 55, 60, 68, 69, 74, 75, 85, 86], "case": [2, 3, 10, 23, 34, 43, 55, 67, 68, 69, 71, 73, 75, 76, 81, 83, 85, 86, 87], "standard": [2, 3, 4, 23, 29, 42, 44, 45, 47, 53, 55, 65, 68, 69, 71, 73, 76, 85], "adapt": [2, 24, 26, 38, 41, 55, 81], "skorch": [2, 55, 65, 74], "kera": [2, 41, 55, 65, 74], "scikera": [2, 42, 55, 74], "open": [2, 27, 73, 80, 87], "doesn": [2, 55, 65], "t": [2, 3, 7, 24, 25, 27, 28, 29, 34, 36, 37, 47, 52, 53, 55, 61, 63, 64, 65, 68, 69, 73, 75, 76, 79, 80, 87], "alreadi": [2, 4, 13, 24, 27, 28, 32, 42, 43, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 85, 86], "exist": [2, 4, 7, 9, 24, 27, 28, 37, 42, 48, 50, 52, 55, 65, 66, 68, 69, 72, 78, 79, 86, 87], "made": [2, 4, 13, 55, 72, 75, 78, 80, 82, 83, 85, 86], "easi": [2, 32, 55, 68, 69, 73, 74, 76, 79], "inherit": [2, 5, 25, 55], "baseestim": [2, 28, 55], "yourmodel": [2, 55], "def": [2, 5, 11, 24, 28, 42, 55, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "self": [2, 3, 4, 5, 9, 10, 11, 13, 24, 25, 27, 28, 29, 34, 52, 53, 55, 68, 73, 75, 79, 84, 85, 87], "refer": [2, 7, 24, 28, 44, 45, 47, 48, 50, 51, 55, 59, 60, 68, 69, 71, 72, 74, 75, 76, 82, 83], "origin": [2, 4, 7, 28, 29, 37, 38, 42, 44, 45, 48, 51, 52, 55, 56, 59, 61, 63, 68, 71, 72, 74, 75, 76, 80, 81, 83, 85, 86, 87], "total": [2, 3, 23, 27, 38, 44, 64, 74, 75, 84], "state": [2, 3, 4, 24, 25, 28, 33, 55, 76, 79, 80, 87], "art": [2, 25, 76, 79], "northcutt": [2, 3, 23, 52, 53], "et": [2, 3, 23, 25, 52, 53], "al": [2, 3, 23, 25, 52, 53], "2021": [2, 3, 23, 52, 53], "weak": 2, "supervis": [2, 7, 68, 69, 74, 78], "find": [2, 4, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 33, 37, 38, 41, 48, 51, 52, 53, 55, 57, 61, 63, 66, 68, 77, 82], "uncertainti": [2, 7, 31, 52, 55, 74, 81, 83], "It": [2, 3, 4, 5, 7, 9, 10, 13, 17, 21, 24, 28, 29, 32, 34, 36, 43, 50, 51, 55, 65, 68, 69, 74, 75, 76, 79, 82], "work": [2, 3, 5, 7, 9, 23, 24, 27, 28, 29, 32, 37, 38, 39, 42, 43, 53, 55, 65, 66, 68, 69, 73, 81, 83, 86], "includ": [2, 3, 4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 37, 38, 41, 43, 44, 47, 48, 52, 53, 55, 59, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 87], "deep": [2, 26, 28, 41, 42, 55, 72], "see": [2, 3, 4, 10, 23, 24, 27, 28, 29, 34, 38, 42, 44, 45, 47, 48, 51, 52, 53, 55, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "subfield": 2, "theori": [2, 76], "machin": [2, 26, 41, 55, 68, 69, 73, 78], "across": [2, 3, 4, 5, 7, 10, 13, 17, 23, 27, 34, 44, 51, 52, 68, 69, 71, 72, 73, 74, 75, 76, 80, 82], "varieti": [2, 85, 86], "like": [2, 3, 4, 5, 7, 11, 13, 23, 24, 27, 28, 29, 32, 38, 42, 43, 44, 47, 48, 50, 53, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "pu": [2, 38], "input": [2, 3, 4, 7, 13, 19, 23, 24, 27, 28, 32, 34, 37, 38, 39, 42, 51, 55, 65, 66, 69, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "discret": [2, 29, 32, 38, 52, 53, 57, 59, 60], "vector": [2, 3, 4, 7, 13, 29, 32, 34, 35, 38, 52, 53, 65, 67, 68, 69, 71, 72, 75, 76, 79, 80, 81, 84, 86, 87], "would": [2, 3, 4, 24, 27, 28, 29, 38, 45, 55, 65, 68, 74, 75, 76, 81, 83, 86, 87], "obtain": [2, 4, 7, 13, 29, 43, 45, 48, 51, 53, 56, 67, 69, 72, 74, 78, 80, 82, 84, 87], "been": [2, 23, 29, 32, 37, 38, 43, 44, 48, 50, 52, 53, 55, 67, 68, 71, 74, 76, 78, 79, 80, 81, 84, 87], "dure": [2, 13, 52, 55, 67, 71, 72, 74, 76, 79, 82, 83, 85, 86, 87], "denot": [2, 3, 32, 34, 38, 45, 52, 53, 63], "tild": 2, "paper": [2, 7, 43, 52, 61, 63, 73, 76, 78, 81, 83, 87], "cv_n_fold": [2, 3, 55, 86], "5": [2, 3, 4, 14, 15, 17, 18, 19, 20, 21, 23, 28, 29, 31, 33, 34, 38, 43, 44, 47, 48, 51, 55, 56, 63, 68, 72, 73, 74, 79, 80, 81, 82, 84, 86, 87], "converge_latent_estim": [2, 3], "pulearn": [2, 38], "find_label_issues_kwarg": [2, 7, 55, 66, 74, 76], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 45, 61, 74], "clean": [2, 50, 53, 55, 56, 65, 68, 69, 73, 83, 85, 86], "even": [2, 3, 23, 27, 31, 32, 38, 55, 67, 74, 76, 78, 79, 80], "messi": [2, 55, 76], "ridden": [2, 55], "autom": [2, 55, 65, 69, 73, 74], "robust": [2, 32, 55, 69, 74], "prone": [2, 55], "out": [2, 3, 4, 7, 13, 20, 24, 28, 29, 34, 42, 45, 46, 48, 51, 52, 53, 55, 56, 64, 65, 66, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87], "current": [2, 3, 7, 10, 11, 17, 24, 28, 29, 34, 43, 50, 55, 68, 69, 74, 78], "intend": [2, 10, 11, 12, 13, 21, 30, 43, 59, 63, 67, 68, 69, 72, 76], "A": [2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 50, 51, 52, 53, 55, 57, 59, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 80, 82, 85, 86, 87], "follow": [2, 3, 7, 11, 23, 24, 27, 28, 34, 36, 43, 44, 48, 50, 51, 52, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "experiment": [2, 24, 25, 27, 28, 45, 66, 74], "wrapper": [2, 4, 42, 67, 83, 85, 86], "around": [2, 4, 50, 68, 69, 80, 81, 87], "fasttext": [2, 41], "store": [2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 52, 55, 71, 72, 73, 84, 85, 86, 87], "along": [2, 34, 45, 63, 68, 69, 74, 75, 81], "dimens": [2, 36, 38, 57, 60, 74, 75, 81, 84], "select": [2, 6, 19, 43, 53, 75, 78, 81], "split": [2, 3, 4, 7, 9, 27, 34, 37, 38, 55, 67, 68, 69, 71, 72, 73, 75, 76, 79, 82, 85, 87], "cross": [2, 3, 7, 23, 29, 32, 33, 34, 45, 48, 51, 53, 55, 56, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 83, 84, 85, 86, 87], "fold": [2, 3, 23, 29, 32, 55, 67, 71, 73, 74, 80, 84, 85], "By": [2, 23, 44, 45, 55, 68, 84], "need": [2, 3, 7, 23, 24, 27, 28, 29, 44, 45, 47, 52, 55, 65, 67, 68, 69, 72, 74, 76, 78, 79, 80, 84, 86], "holdout": [2, 3, 55], "comput": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 38, 43, 44, 45, 47, 50, 51, 52, 53, 55, 56, 57, 59, 65, 66, 68, 69, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86], "them": [2, 3, 4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 43, 52, 55, 66, 68, 69, 71, 72, 74, 75, 78, 79, 81, 83, 84, 85, 86, 87], "numer": [2, 3, 4, 7, 10, 17, 34, 50, 52, 55, 60, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 81, 83, 85, 86], "consist": [2, 3, 24, 28, 38, 43, 84, 87], "latent": [2, 3, 32], "thei": [2, 3, 12, 16, 19, 24, 25, 26, 28, 29, 30, 38, 42, 45, 50, 53, 55, 56, 59, 63, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 81, 83, 86, 87], "relat": [2, 3, 10, 14, 15, 19, 20, 32, 38, 44, 55, 69], "close": [2, 3, 7, 27, 32, 52, 67, 68, 69, 71, 72, 74, 75, 76, 80], "form": [2, 3, 7, 24, 25, 28, 32, 37, 38, 53, 55, 74], "equival": [2, 3, 24, 28, 32, 52, 81], "iter": [2, 3, 23, 24, 28, 29, 38, 44, 45, 55, 78, 84], "enforc": [2, 24, 28, 38], "perfectli": [2, 23, 44, 76], "certain": [2, 3, 4, 13, 24, 28, 42, 55, 68, 69, 73, 81], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 23, 24, 27, 28, 29, 33, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 63, 68, 69, 74, 75, 87], "keyword": [2, 3, 4, 7, 13, 18, 24, 27, 28, 29, 31, 34, 37, 42, 43, 45, 52, 53, 55, 61, 63, 68], "filter": [2, 3, 7, 27, 37, 44, 46, 47, 49, 58, 59, 60, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 79, 80, 83, 84, 85, 86, 87], "find_label_issu": [2, 3, 7, 27, 29, 44, 45, 47, 48, 50, 55, 57, 59, 60, 61, 63, 64, 65, 66, 74, 79, 80, 83, 84, 85, 86, 87], "particularli": [2, 65, 78, 81], "filter_bi": [2, 3, 27, 29, 45, 66, 74], "frac_nois": [2, 29, 45, 61, 74], "min_examples_per_class": [2, 29, 45, 74, 76], "impact": [2, 7, 68, 69, 75], "ml": [2, 4, 7, 55, 65, 68, 69, 71, 72, 75, 78, 85, 86], "accuraci": [2, 25, 53, 67, 74, 75, 76, 78, 81, 83, 84, 85, 86], "n_job": [2, 27, 29, 45, 57, 59, 61, 74, 81, 84], "disabl": [2, 24, 28, 29, 81], "process": [2, 3, 5, 13, 27, 29, 37, 43, 45, 57, 59, 61, 67, 68, 78, 82, 86], "caus": [2, 29, 34, 68, 69], "rank": [2, 3, 23, 27, 29, 34, 44, 45, 46, 48, 49, 51, 52, 54, 58, 60, 61, 62, 64, 65, 66, 68, 69, 73, 74, 79, 80, 81, 83, 84, 85, 86, 87], "get_label_quality_scor": [2, 27, 29, 34, 43, 45, 47, 48, 50, 53, 56, 59, 61, 63, 66, 76, 79, 80, 83, 84, 87], "adjust_pred_prob": [2, 7, 47, 52, 53, 76], "control": [2, 4, 6, 7, 13, 27, 29, 36, 43, 51, 52, 55, 61, 63, 68, 69, 73, 74], "how": [2, 3, 4, 7, 10, 11, 13, 17, 23, 24, 25, 27, 28, 32, 38, 43, 44, 47, 48, 50, 52, 53, 55, 59, 63, 65, 68, 69, 71, 72, 73, 75, 80, 81, 82, 83, 84, 85, 86], "much": [2, 7, 23, 27, 29, 55, 74, 76, 78, 81], "output": [2, 3, 4, 7, 13, 24, 25, 28, 32, 38, 42, 43, 44, 48, 50, 51, 52, 55, 59, 60, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 80, 81, 82, 83, 86], "print": [2, 4, 5, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 38, 43, 44, 45, 50, 52, 53, 55, 57, 59, 60, 64, 66, 67, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "suppress": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60, 84, 87], "statement": [2, 27, 43, 50, 52, 53, 55, 57, 59, 60], "big": [2, 27, 45, 51, 55, 76], "limit": [2, 4, 13, 27, 45, 80, 84, 87], "memori": [2, 24, 27, 28, 45, 51, 57, 59, 68, 84], "label_issues_batch": [2, 26, 45, 74], "find_label_issues_batch": [2, 27, 45, 74], "pred_prob": [2, 3, 4, 7, 13, 18, 20, 23, 27, 29, 31, 32, 33, 34, 35, 38, 39, 43, 44, 45, 47, 48, 51, 52, 53, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86], "threshold": [2, 3, 5, 7, 14, 15, 17, 20, 27, 50, 51, 52, 53, 59, 63, 68, 80, 81, 84, 87], "inverse_noise_matrix": [2, 3, 7, 32, 38, 66, 76], "label_issu": [2, 27, 29, 45, 48, 55, 57, 66, 67, 72, 74, 75, 76, 83, 85, 86], "clf_kwarg": [2, 3, 7, 55], "clf_final_kwarg": [2, 55], "validation_func": [2, 3, 7], "correct": [2, 7, 23, 27, 29, 31, 43, 44, 45, 47, 48, 50, 51, 53, 55, 56, 59, 63, 65, 67, 71, 72, 75, 76, 78, 80, 82, 83], "result": [2, 3, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 27, 28, 29, 31, 38, 45, 47, 48, 51, 53, 55, 56, 57, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 85, 86, 87], "identifi": [2, 3, 4, 5, 7, 9, 13, 21, 23, 27, 29, 45, 48, 53, 55, 56, 57, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 84, 85, 86, 87], "final": [2, 7, 55, 71, 80, 82, 83, 85], "remain": [2, 55, 66, 75, 83, 85, 86, 87], "datasetlik": [2, 38, 55], "beyond": [2, 4, 5, 6, 8, 22, 65, 84], "pd": [2, 3, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 33, 42, 43, 44, 55, 63, 67, 68, 69, 71, 72, 74, 76, 78, 83, 85, 86, 87], "datafram": [2, 3, 4, 5, 9, 10, 14, 15, 17, 18, 19, 20, 23, 27, 33, 38, 39, 42, 43, 44, 55, 60, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 78, 83, 84, 86, 87], "scipi": [2, 10, 38], "spars": [2, 4, 7, 10, 13, 38, 39, 71], "csr_matrix": [2, 4, 10, 13], "torch": [2, 24, 25, 28, 67, 72, 73, 75, 81, 86], "util": [2, 4, 13, 21, 24, 25, 28, 30, 43, 55, 65, 66, 67, 68, 69, 74, 75, 76, 81], "tensorflow": [2, 38, 42, 65, 67, 74], "object": [2, 4, 9, 10, 13, 21, 24, 25, 27, 28, 34, 38, 39, 42, 45, 48, 49, 50, 51, 52, 55, 63, 65, 67, 69, 71, 75, 76, 77, 83, 86], "list": [2, 3, 4, 9, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 35, 37, 38, 39, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 59, 60, 61, 63, 64, 66, 67, 68, 69, 73, 75, 76, 79, 80, 83, 86, 87], "index_list": 2, "subset": [2, 3, 4, 13, 23, 27, 29, 38, 53, 60, 64, 67, 71, 72, 74, 75, 79, 80, 81, 82, 83, 85, 86, 87], "wa": [2, 3, 9, 11, 27, 38, 43, 44, 50, 52, 64, 67, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 86, 87], "abl": [2, 3, 7, 55, 67, 74, 76, 78, 79], "format": [2, 3, 4, 7, 9, 24, 27, 28, 29, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 48, 51, 52, 53, 55, 57, 59, 60, 63, 64, 68, 69, 71, 73, 75, 78, 83, 84, 85, 87], "make": [2, 3, 24, 27, 28, 34, 42, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "sure": [2, 27, 29, 34, 67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 85, 86], "shuffl": [2, 7, 38, 67, 75, 79, 81], "ha": [2, 3, 4, 7, 14, 15, 17, 18, 19, 20, 24, 28, 32, 34, 37, 38, 43, 48, 50, 55, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "batch": [2, 27, 38, 42, 43, 57, 59, 74, 75, 81], "order": [2, 7, 23, 24, 28, 29, 32, 33, 34, 36, 38, 43, 44, 45, 48, 51, 52, 53, 57, 60, 61, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 80, 83, 84, 86, 87], "destroi": [2, 38], "oper": [2, 24, 27, 28, 38, 42, 53, 65, 72, 81, 85, 86], "eg": [2, 7, 38, 48, 51, 68, 69, 74], "repeat": [2, 38, 43, 78, 81], "appli": [2, 24, 28, 29, 34, 35, 37, 38, 47, 52, 61, 67, 68, 71, 75, 78, 79, 81, 82, 83, 84, 85, 86], "array_lik": [2, 3, 23, 29, 38, 45, 52, 56], "some": [2, 3, 4, 7, 11, 17, 23, 24, 26, 28, 29, 32, 37, 38, 41, 43, 44, 45, 47, 48, 51, 52, 53, 55, 57, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "seri": [2, 3, 27, 38, 39, 55, 63], "row": [2, 3, 4, 10, 13, 23, 27, 29, 31, 32, 36, 38, 43, 44, 45, 47, 52, 53, 55, 60, 61, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 81, 85, 87], "rather": [2, 3, 19, 23, 38, 42, 43, 50, 59, 63, 78, 82, 84, 86, 87], "leav": [2, 29], "per": [2, 3, 10, 23, 27, 29, 34, 37, 43, 44, 45, 47, 50, 53, 56, 57, 59, 63, 69, 74, 80, 87], "determin": [2, 3, 7, 13, 17, 19, 23, 27, 29, 34, 38, 43, 45, 48, 50, 53, 59, 63, 68, 78, 81, 83], "cutoff": [2, 3, 81], "consid": [2, 3, 4, 7, 10, 13, 18, 19, 20, 23, 24, 28, 29, 38, 43, 50, 52, 53, 56, 59, 63, 67, 69, 71, 72, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86], "section": [2, 3, 5, 7, 66, 71, 75], "3": [2, 3, 4, 5, 23, 24, 28, 29, 32, 33, 34, 35, 36, 37, 38, 42, 45, 52, 53, 55, 56, 61, 63, 73, 74, 82], "equat": [2, 3, 32], "advanc": [2, 3, 4, 6, 13, 50, 52, 63, 66, 69, 70, 76], "user": [2, 3, 4, 11, 13, 21, 24, 28, 29, 50, 52, 53, 55, 59, 63, 76], "specifi": [2, 3, 4, 7, 10, 13, 21, 24, 27, 28, 29, 34, 37, 43, 44, 45, 48, 50, 52, 53, 55, 56, 64, 66, 67, 69, 72, 74, 75, 78, 80, 83, 86], "automat": [2, 3, 4, 19, 23, 65, 71, 72, 73, 74, 75, 78, 80, 83, 84, 85, 86, 87], "greater": [2, 3, 4, 6, 7, 20, 27, 36, 38, 50, 69, 73, 74, 87], "count": [2, 17, 19, 23, 27, 29, 32, 38, 44, 45, 51, 66, 74, 75], "observ": [2, 3, 32, 67, 68, 69, 78, 81, 83], "mislabel": [2, 7, 23, 27, 29, 32, 43, 44, 45, 48, 50, 53, 59, 61, 63, 65, 67, 71, 72, 74, 75, 76, 79, 80, 83, 85, 86], "one": [2, 3, 4, 7, 19, 23, 24, 27, 28, 29, 34, 38, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 78, 81, 82, 83, 85, 86, 87], "get_label_issu": [2, 27, 55, 76, 83, 85, 86], "either": [2, 3, 5, 7, 24, 27, 28, 29, 43, 45, 50, 52, 53, 57, 59, 69, 79, 80], "boolean": [2, 5, 7, 17, 27, 29, 37, 43, 45, 48, 53, 55, 57, 59, 60, 65, 67, 69, 72, 74, 75, 80, 83, 84, 86], "label_issues_mask": [2, 29, 53, 55, 66], "indic": [2, 3, 4, 5, 7, 10, 17, 23, 27, 28, 29, 31, 34, 38, 42, 43, 44, 45, 47, 48, 50, 52, 53, 55, 56, 59, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "its": [2, 4, 6, 7, 13, 24, 27, 28, 29, 36, 37, 45, 48, 51, 52, 53, 55, 57, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 87], "return_indices_ranked_bi": [2, 27, 29, 45, 61, 66, 74, 76, 79, 85, 86], "significantli": [2, 75, 76, 78, 82], "reduc": [2, 27, 29, 38, 67, 74], "time": [2, 7, 24, 27, 28, 38, 43, 66, 68, 73, 74, 75, 76, 80, 81, 83, 84, 85, 86, 87], "take": [2, 4, 7, 13, 23, 24, 28, 33, 34, 38, 42, 53, 71, 75, 78, 85, 87], "run": [2, 4, 5, 6, 8, 13, 19, 22, 24, 27, 28, 55, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "skip": [2, 7, 24, 28, 55, 67, 74, 79, 87], "slow": [2, 3], "step": [2, 5, 19, 34, 74, 75, 76, 78, 82], "caution": [2, 4, 74], "previous": [2, 4, 10, 38, 52, 55, 66, 67, 68, 71, 72, 78, 82, 85], "assign": [2, 5, 14, 15, 17, 18, 19, 20, 33, 34, 38, 55, 68, 71, 74, 75, 83, 84, 85, 87], "individu": [2, 10, 19, 24, 28, 43, 47, 50, 53, 55, 61, 63, 66, 69, 71, 74, 78, 79, 80, 85, 87], "still": [2, 27, 28, 38, 52, 74, 75, 81, 85], "extra": [2, 24, 28, 38, 42, 43, 44, 55, 72, 74, 75, 78, 81], "receiv": [2, 7, 24, 28, 44, 47, 48, 55, 57, 61, 69, 80], "overwritten": [2, 55], "callabl": [2, 3, 34, 37, 42, 47], "x_val": 2, "y_val": 2, "map": [2, 3, 27, 28, 33, 37, 38, 51, 53, 55, 60, 67, 68, 69, 74, 75, 76, 79, 87], "appropri": [2, 7, 13, 45, 53, 68, 71, 79, 80], "earli": [2, 75], "stop": [2, 75], "x_valid": 2, "y_valid": 2, "could": [2, 17, 23, 38, 52, 68, 71, 75, 79, 83, 85, 87], "f": [2, 5, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86], "ignor": [2, 24, 28, 37, 42, 55, 60, 64, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "allow": [2, 23, 24, 27, 28, 31, 38, 43, 51, 52, 55, 57, 59, 67, 74, 75, 82, 84, 86], "access": [2, 7, 10, 24, 28, 55, 69, 75, 79], "hyperparamet": [2, 47, 52, 75], "purpos": [2, 68, 69, 74, 79, 83], "want": [2, 4, 23, 27, 39, 43, 45, 55, 68, 72, 73, 75, 78, 80, 81, 82, 84, 86, 87], "explicitli": [2, 28, 55], "yourself": [2, 4, 27, 69], "altern": [2, 7, 34, 38, 42, 43, 53, 66, 67, 71, 72, 74, 75, 76, 78, 79, 81, 83, 86], "same": [2, 3, 4, 5, 7, 9, 11, 19, 24, 27, 28, 29, 38, 42, 43, 45, 52, 53, 55, 59, 60, 63, 64, 65, 68, 69, 71, 72, 74, 75, 80, 81, 82, 83, 84, 85, 86], "effect": [2, 7, 24, 28, 43, 52, 55, 71, 72, 74, 81], "offer": [2, 4, 67, 68, 69, 72, 74, 76, 79, 86], "after": [2, 3, 4, 10, 14, 15, 17, 18, 19, 20, 24, 28, 38, 43, 55, 68, 72, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86], "attribut": [2, 4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 52, 55, 68, 85], "label_issues_df": [2, 55, 75], "similar": [2, 7, 23, 24, 28, 36, 38, 43, 47, 48, 50, 52, 55, 59, 63, 68, 69, 71, 72, 74, 75, 76, 80, 81, 84], "document": [2, 3, 4, 7, 11, 23, 24, 27, 28, 29, 34, 37, 42, 44, 45, 47, 50, 51, 52, 55, 59, 60, 61, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "descript": [2, 4, 5, 7, 14, 15, 17, 18, 19, 20, 21, 23, 38, 48, 55, 68, 69], "were": [2, 3, 4, 23, 28, 44, 50, 63, 67, 71, 72, 74, 76, 78, 80, 82, 84, 85, 86], "present": [2, 3, 4, 7, 9, 10, 15, 23, 38, 52, 60, 65, 71, 74, 75, 81, 85], "actual": [2, 3, 4, 23, 43, 44, 53, 69, 74, 76, 87], "num_class": [2, 23, 27, 38, 42, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 85, 86], "uniqu": [2, 38, 60, 68, 74, 79, 81], "given_label": [2, 4, 23, 32, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86, 87], "normal": [2, 3, 19, 29, 31, 34, 37, 38, 53, 74, 76, 81], "trick": [2, 74], "distribut": [2, 3, 4, 7, 13, 19, 20, 23, 28, 29, 33, 43, 51, 52, 53, 65, 68, 69, 71, 72, 75, 81], "account": [2, 23, 43, 47, 52, 53, 72, 74, 76, 78, 79, 81, 83, 86], "word": [2, 3, 37, 63, 64, 74], "remov": [2, 7, 23, 24, 28, 29, 55, 65, 72, 73, 74, 75, 81, 83, 85, 86], "so": [2, 3, 5, 7, 11, 19, 23, 24, 27, 28, 29, 38, 43, 44, 50, 53, 55, 59, 63, 67, 68, 69, 72, 75, 76, 81, 84], "proportion": [2, 7, 29], "just": [2, 3, 4, 7, 10, 23, 25, 27, 38, 42, 53, 55, 57, 65, 66, 67, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86], "procedur": 2, "get": [2, 3, 4, 10, 24, 25, 28, 29, 34, 37, 38, 43, 45, 47, 52, 53, 55, 56, 57, 65, 67, 72, 73, 74, 75, 76, 81, 82, 83, 85, 86], "detect": [2, 4, 5, 6, 10, 11, 13, 17, 20, 36, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 62, 65, 68, 70, 75, 77, 79, 83, 84, 85, 86, 87], "arg": [2, 9, 17, 24, 25, 28, 34, 38, 53, 55], "kwarg": [2, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 34, 42, 55, 57, 59, 61, 74], "test": [2, 7, 19, 28, 34, 42, 55, 65, 68, 69, 71, 72, 75, 82, 83, 85, 86, 87], "expect": [2, 3, 24, 28, 29, 34, 43, 52, 53, 55, 72, 74, 76, 78, 79, 80, 83, 85, 86, 87], "class_predict": 2, "evalu": [2, 7, 24, 25, 27, 28, 55, 67, 68, 69, 74, 75, 76, 78, 82, 83, 84, 85, 86], "simpli": [2, 23, 53, 68, 69, 71, 72, 74, 76, 83, 84, 86, 87], "quantifi": [2, 4, 5, 7, 10, 29, 47, 52, 55, 65, 69, 71, 72, 75, 76, 80], "save_spac": [2, 7, 55], "potenti": [2, 7, 23, 29, 37, 45, 48, 53, 55, 57, 59, 66, 67, 68, 69, 71, 72, 73, 75, 76, 79, 80, 84, 85, 87], "cach": [2, 72, 75, 81, 86], "panda": [2, 4, 5, 9, 14, 15, 17, 18, 19, 20, 23, 38, 39, 42, 43, 44, 66, 67, 68, 69, 71, 72, 73, 76, 78, 83, 84, 85, 86], "unlik": [2, 29, 31, 34, 42, 44, 45, 47, 63, 68, 78, 79, 81, 83], "both": [2, 4, 7, 13, 19, 23, 24, 28, 29, 38, 43, 45, 53, 57, 59, 64, 65, 68, 74, 75, 76, 78, 87], "mask": [2, 27, 29, 37, 38, 45, 48, 53, 55, 57, 59, 60, 65, 73, 74, 78, 80, 84, 87], "prefer": [2, 53, 61], "plan": 2, "subsequ": [2, 3, 24, 28, 72, 74, 75, 76, 80, 86], "invok": [2, 24, 28, 76, 82], "scratch": [2, 55], "To": [2, 4, 5, 6, 7, 8, 10, 13, 19, 22, 24, 27, 28, 29, 42, 43, 45, 47, 51, 52, 53, 55, 56, 57, 59, 65, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "share": [2, 53, 55], "mostli": [2, 38, 50, 55], "longer": [2, 33, 37, 55, 66, 72, 74, 80, 86], "info": [2, 4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 44, 55, 63, 68, 69, 73, 74, 87], "about": [2, 3, 4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 31, 43, 44, 47, 55, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 78, 81], "docstr": [2, 23, 24, 28, 38, 55, 73, 76], "unless": [2, 24, 28, 55, 74], "our": [2, 3, 7, 42, 43, 53, 55, 65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "is_label_issu": [2, 55, 67, 68, 69, 71, 72, 75, 76, 83, 86], "entir": [2, 7, 19, 27, 29, 32, 44, 45, 50, 53, 55, 57, 59, 60, 65, 68, 69, 74, 80, 81, 82, 84, 87], "accur": [2, 3, 4, 7, 13, 23, 27, 29, 43, 44, 45, 48, 51, 53, 55, 56, 57, 59, 60, 66, 69, 71, 72, 74, 75, 78, 83], "label_qu": [2, 43, 55, 76, 78, 83, 86], "measur": [2, 23, 43, 44, 55, 65, 73, 74, 76, 78, 79, 84, 85, 87], "qualiti": [2, 3, 4, 5, 7, 10, 23, 27, 29, 31, 34, 43, 44, 45, 47, 48, 50, 53, 55, 56, 59, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 83, 85, 86], "lower": [2, 4, 5, 7, 10, 20, 27, 34, 43, 44, 47, 50, 53, 55, 56, 59, 63, 67, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 86, 87], "eas": 2, "comparison": [2, 24, 28, 76, 78, 83], "against": [2, 24, 28, 68, 71, 74, 78, 79], "predicted_label": [2, 4, 55, 60, 64, 67, 68, 69, 71, 72, 75, 76, 83, 84, 86], "ad": [2, 24, 28, 69, 78, 83], "precis": [2, 45, 48, 74, 76, 84, 87], "definit": [2, 5, 55, 71, 85], "accessor": [2, 55], "describ": [2, 7, 43, 52, 53, 55, 61, 63, 76, 78, 79, 80, 82, 87], "precomput": [2, 32, 55, 73], "clear": [2, 55, 72, 83, 86], "save": [2, 4, 13, 24, 27, 28, 51, 55, 74, 80, 84, 87], "space": [2, 7, 52, 55, 71, 73, 75], "place": [2, 24, 28, 38, 55, 78, 85], "larg": [2, 27, 55, 74, 81, 84, 87], "deploi": [2, 55, 74], "care": [2, 7, 24, 28, 55, 74, 76], "avail": [2, 4, 5, 9, 13, 21, 28, 55, 76, 78, 80, 83], "cannot": [2, 4, 9, 13, 38, 82, 87], "anymor": 2, "classmethod": [2, 14, 15, 17, 18, 19, 20, 28, 34, 55], "__init_subclass__": [2, 28, 55], "set_": [2, 28, 55], "_request": [2, 28, 55], "pep": [2, 28, 55], "487": [2, 28, 55], "look": [2, 4, 5, 13, 24, 28, 38, 55, 60, 68, 69, 71, 74, 76, 78, 79, 80, 81, 84, 85, 87], "inform": [2, 4, 5, 7, 10, 13, 21, 24, 28, 38, 43, 44, 48, 51, 55, 60, 63, 64, 65, 67, 68, 71, 72, 76, 78, 81, 84, 87], "__metadata_request__": [2, 28, 55], "infer": [2, 28, 38, 55, 60, 64, 75, 78, 79, 83, 85, 86], "signatur": [2, 24, 28, 55], "accept": [2, 24, 28, 53, 55, 68, 69], "metadata": [2, 28, 55, 87], "through": [2, 4, 5, 28, 55, 67, 69, 72, 73, 78, 81, 83, 86], "develop": [2, 6, 28, 55, 74, 76, 87], "request": [2, 28, 55, 69, 72, 73, 79, 85, 86, 87], "those": [2, 3, 7, 27, 28, 29, 42, 43, 45, 55, 59, 63, 64, 65, 67, 74, 75, 80, 84], "http": [2, 4, 5, 6, 7, 8, 22, 24, 25, 27, 28, 31, 38, 52, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "www": [2, 28, 55, 81], "org": [2, 24, 25, 28, 38, 52, 55, 74, 76, 87], "dev": [2, 28, 55], "0487": [2, 28, 55], "get_metadata_rout": [2, 28, 55], "rout": [2, 28, 55], "pleas": [2, 24, 28, 42, 55, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 81, 83, 86, 87], "guid": [2, 5, 28, 55, 66, 75], "mechan": [2, 24, 28, 55], "metadatarequest": [2, 28, 55], "encapsul": [2, 13, 28, 50, 55], "get_param": [2, 28, 42, 55], "subobject": [2, 28, 55], "param": [2, 7, 24, 28, 42, 52, 55], "name": [2, 4, 5, 7, 9, 10, 23, 24, 28, 33, 34, 38, 42, 43, 44, 51, 55, 60, 64, 67, 69, 72, 73, 75, 76, 79, 84, 86, 87], "set_fit_request": [2, 28, 55], "union": [2, 3, 4, 9, 27, 28, 34, 38, 39, 45, 51, 55, 59, 63], "str": [2, 3, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29, 32, 34, 37, 38, 42, 43, 44, 48, 50, 51, 53, 55, 60, 64, 67, 68, 78, 79, 87], "unchang": [2, 24, 28, 55, 87], "relev": [2, 13, 19, 28, 55, 75], "enable_metadata_rout": [2, 28, 55], "set_config": [2, 28, 55], "meta": [2, 28, 55], "rais": [2, 4, 9, 10, 24, 28, 31, 34, 55, 74], "alia": [2, 24, 28, 55], "metadata_rout": [2, 28, 55], "retain": [2, 28, 38, 55], "chang": [2, 24, 27, 28, 31, 55, 63, 67, 68, 72, 74, 80, 81, 86, 87], "version": [2, 4, 5, 6, 7, 8, 12, 16, 22, 24, 26, 28, 30, 31, 38, 41, 42, 53, 55, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87], "sub": [2, 28, 50, 55], "pipelin": [2, 28, 55], "otherwis": [2, 7, 23, 24, 27, 28, 29, 35, 37, 38, 45, 52, 55, 57, 59, 60, 64, 72, 74, 86], "updat": [2, 10, 24, 27, 28, 55, 66, 68, 75], "set_param": [2, 28, 42, 55], "simpl": [2, 24, 28, 29, 43, 53, 55, 68, 69, 71, 72, 75, 78, 81, 83, 85, 86], "well": [2, 3, 7, 24, 28, 31, 32, 43, 45, 53, 55, 60, 63, 64, 66, 68, 69, 71, 72, 74, 75, 76, 78, 80, 81], "nest": [2, 24, 28, 55, 61, 63, 64, 87], "latter": [2, 24, 28, 55, 81], "compon": [2, 28, 55], "__": [2, 28, 55], "set_score_request": [2, 55], "structur": [3, 52, 71, 85], "unobserv": 3, "less": [3, 4, 7, 27, 34, 43, 52, 53, 57, 59, 63, 71, 73, 74, 75, 76, 80, 87], "channel": [3, 67, 76], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 23, 32, 38, 44, 69, 73, 86], "inv": 3, "confident_joint": [3, 17, 23, 29, 38, 44, 45, 66, 74, 76], "un": 3, "under": [3, 7, 24, 28, 44, 51, 52, 81], "joint": [3, 23, 29, 32, 38, 44, 45, 73], "num_label_issu": [3, 27, 29, 45, 60, 64, 66], "estimation_method": [3, 27], "off_diagon": 3, "multi_label": [3, 23, 29, 38, 39, 45, 79], "don": [3, 65, 69, 76, 80], "statis": 3, "compute_confident_joint": [3, 23, 29, 38, 45, 76], "off": [3, 29, 38, 50, 75, 76, 80, 81], "j": [3, 4, 13, 23, 24, 28, 29, 45, 48, 51, 52, 61, 63, 64, 68, 69, 76, 84, 87], "confident_learn": [3, 29, 45, 76], "off_diagonal_calibr": 3, "calibr": [3, 29, 38, 43, 78], "cj": [3, 32, 38], "axi": [3, 32, 34, 57, 60, 67, 68, 69, 74, 75, 76, 78, 79, 81, 83, 84], "bincount": [3, 68, 69, 76, 78, 79], "alwai": [3, 7, 24, 28, 38, 67, 76, 83, 85, 86], "estimate_issu": 3, "over": [3, 7, 24, 27, 28, 50, 51, 57, 59, 69, 71, 73, 74, 75, 76, 81, 83, 85], "As": [3, 5, 65, 68, 69, 72, 76, 83, 87], "add": [3, 4, 5, 10, 24, 28, 42, 51, 67, 68, 69, 72, 74, 75, 76, 79, 86], "approach": [3, 23, 27, 29, 71, 76, 79, 81, 83, 85], "custom": [3, 5, 8, 24, 27, 28, 34, 37, 53, 72, 76, 86], "know": [3, 68, 69, 74, 76, 78], "cut": [3, 50, 65, 76], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 81, 87], "underestim": 3, "few": [3, 51, 65, 74, 78, 79, 80, 81, 87], "4": [3, 4, 14, 15, 17, 18, 19, 20, 33, 34, 37, 47, 48, 50, 51, 53, 56, 63, 73, 74, 79, 84, 87], "detail": [3, 11, 23, 24, 28, 34, 38, 42, 43, 44, 45, 47, 48, 50, 51, 52, 59, 60, 61, 65, 66, 67, 79, 81, 87], "num_issu": [3, 5, 27, 67, 68, 69, 71, 72, 75, 76], "calibrate_confident_joint": 3, "up": [3, 19, 29, 34, 43, 73, 74, 80, 83, 86, 87], "p_": [3, 23, 29], "pair": [3, 7, 23, 29, 76], "v": [3, 7, 27, 44, 45, 47, 53, 68, 69, 79, 81, 82], "rest": [3, 4, 5, 6, 7, 8, 22, 44, 45, 47, 55, 68, 69, 71, 72, 75, 76, 78, 83, 85, 86], "fashion": [3, 57, 85], "2x2": 3, "incorrectli": [3, 23, 44, 45, 48, 71, 87], "calibrated_cj": 3, "c": [3, 7, 37, 45, 53, 65, 67, 68, 69, 71, 72, 74, 76, 79, 81, 82, 83, 85], "whose": [3, 4, 7, 13, 20, 24, 28, 32, 37, 43, 47, 50, 56, 59, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 84, 87], "truli": [3, 81, 84], "estimate_joint": [3, 23, 76], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 45, 76, 80, 82, 84, 87], "return_indices_of_off_diagon": 3, "frequenc": [3, 19, 43, 44, 51, 60, 81], "done": [3, 7, 55, 68, 74, 76, 79, 81, 82], "overfit": [3, 7, 48, 51, 67, 68, 69, 71, 72, 75, 82, 85], "classifict": 3, "singl": [3, 4, 19, 23, 24, 28, 34, 35, 38, 43, 44, 50, 51, 52, 53, 63, 67, 68, 74, 76, 79, 80, 85], "baselin": [3, 24, 29, 81, 83, 86], "proxi": 3, "tupl": [3, 24, 28, 32, 33, 35, 37, 38, 43, 45, 51, 59, 61, 63, 64, 67, 87], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 27, 32, 43, 57, 59, 65, 74, 75, 84, 86], "practic": [3, 69, 75, 76, 81, 83, 85, 86], "complet": [3, 67, 68, 69, 71, 72, 75, 76, 80], "gist": 3, "cj_ish": 3, "guess": [3, 32, 76, 78], "8": [3, 4, 5, 33, 34, 35, 37, 47, 61, 63, 67, 68, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "parallel": [3, 29, 61, 73], "again": [3, 42, 81, 85], "simplifi": [3, 11], "understand": [3, 6, 23, 44, 51, 69, 76, 83, 84, 87], "100": [3, 24, 28, 53, 68, 69, 71, 73, 74, 75, 76, 79, 84, 85, 86, 87], "optim": [3, 24, 25, 28, 42, 75, 78], "speed": [3, 29, 73, 74, 83, 86], "dtype": [3, 18, 19, 24, 28, 37, 38, 47, 63, 67, 80], "enumer": [3, 24, 28, 67, 68, 69, 75, 87], "s_label": 3, "confident_bin": 3, "6": [3, 4, 28, 34, 38, 63, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "num_confident_bin": 3, "argmax": [3, 29, 53, 57, 60, 67, 74, 76, 81, 84], "elif": 3, "estimate_lat": 3, "py_method": [3, 32], "cnt": [3, 32], "1d": [3, 27, 29, 34, 35, 38, 39, 47, 56, 67, 85], "eqn": [3, 32], "margin": [3, 29, 32, 34, 53], "marginal_p": [3, 32], "shorthand": [3, 10], "proport": [3, 7, 23, 44, 76, 82], "poorli": [3, 32, 85], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 76], "variabl": [3, 5, 11, 38, 55, 56, 67, 68, 71, 76, 79, 83], "exact": [3, 32, 68, 69, 71, 75, 85], "within": [3, 4, 12, 24, 25, 28, 30, 45, 50, 59, 61, 63, 68, 69, 75, 80, 84], "percent": 3, "often": [3, 23, 32, 44, 74, 76, 82, 84], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 38, 39, 51, 67, 68, 71, 72, 74, 75, 80, 81, 86], "wai": [3, 4, 42, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 79, 80, 82, 85, 86], "pro": 3, "con": 3, "pred_proba": [3, 82], "combin": [3, 23, 68, 73, 74, 75, 76, 82, 83], "becaus": [3, 32, 38, 50, 74, 76, 78, 80], "littl": [3, 27, 73, 80, 87], "uniform": [3, 53, 73, 74, 76], "20": [3, 5, 64, 67, 69, 73, 75, 76, 84, 87], "Such": [3, 75, 81], "bound": [3, 18, 24, 28, 48, 50, 51, 80], "reason": [3, 17, 24, 28], "comment": [3, 37, 87], "end": [3, 24, 28, 51], "file": [3, 4, 9, 26, 27, 41, 51, 67, 68, 71, 72, 73, 74, 80, 81, 84, 85, 87], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 76], "handl": [3, 4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 21, 24, 27, 28, 66, 68, 69, 76, 84, 85, 87], "five": [3, 48, 51, 76, 80], "estimate_cv_predicted_prob": [3, 76], "estimate_noise_matric": 3, "get_confident_threshold": [3, 27], "amongst": [3, 7], "confident_threshold": [3, 7, 17, 27, 52], "unifi": 4, "audit": [4, 6, 9, 10, 13, 67, 70, 71, 72, 75, 76, 80], "kind": [4, 5, 67, 68, 71, 72, 73, 75, 76], "addit": [4, 5, 6, 7, 8, 10, 21, 22, 24, 28, 34, 39, 43, 61, 67, 68, 72, 75, 76, 78, 81, 82, 85, 86], "depend": [4, 5, 6, 7, 8, 9, 10, 22, 26, 29, 31, 38, 41, 45, 52, 55, 56, 65], "instal": [4, 5, 6, 7, 8, 22, 24, 26, 27, 28, 29, 41, 42, 57, 59], "pip": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "development": [4, 5, 6, 8, 22], "git": [4, 5, 6, 8, 22, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "github": [4, 5, 6, 8, 22, 24, 25, 38, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "com": [4, 5, 6, 8, 22, 24, 25, 27, 31, 38, 52, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "egg": [4, 5, 6, 8, 22, 65, 73], "label_nam": [4, 5, 7, 9, 65, 67, 68, 69, 71, 72, 75, 76], "image_kei": [4, 75], "interfac": [4, 65, 74, 76], "librari": [4, 7, 28, 48, 51, 52, 65, 68, 72, 73, 74, 86], "goal": 4, "track": [4, 10, 11, 65, 68, 73, 74, 76], "intermedi": [4, 6, 69], "statist": [4, 7, 10, 17, 19, 23, 43, 44, 69, 72, 75, 76], "convert": [4, 9, 24, 28, 35, 39, 43, 50, 59, 63, 66, 67, 72, 73, 75, 78, 79, 80, 86], "hug": [4, 9, 75], "face": [4, 9, 13, 73, 75, 79], "kei": [4, 5, 7, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 34, 43, 44, 50, 52, 68, 69, 74, 75, 76, 78, 80], "string": [4, 7, 9, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 38, 43, 44, 56, 60, 63, 64, 71, 72, 74, 78, 79, 86, 87], "dictionari": [4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 23, 24, 28, 33, 38, 43, 44, 47, 48, 50, 51, 68, 69, 71, 72, 76, 78, 79, 80], "path": [4, 9, 24, 27, 28, 51, 67, 68, 74, 80], "local": [4, 9, 24, 25, 28, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "text": [4, 5, 7, 9, 14, 15, 17, 18, 19, 20, 34, 52, 61, 63, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78, 81], "txt": [4, 9, 87], "csv": [4, 9, 71, 72, 83, 85, 86], "json": [4, 9], "hub": [4, 9, 81], "imag": [4, 6, 23, 28, 48, 50, 51, 52, 57, 59, 60, 65, 68, 69, 73, 74, 77, 78, 79, 80, 82, 84], "point": [4, 5, 19, 24, 28, 68, 69, 74, 76, 78], "field": [4, 7, 24, 28], "themselv": [4, 83, 85, 86], "cleanvis": [4, 7], "level": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 37, 61, 63, 69, 75, 77, 84], "load_dataset": [4, 9, 75], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 23, 44, 51, 60, 64, 65, 73, 76, 80, 84, 87], "empti": [4, 9, 32, 43, 69, 79], "find_issu": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 65, 67, 68, 69, 71, 72, 75, 76], "knn_graph": [4, 7, 13, 14, 19, 20, 71], "issue_typ": [4, 5, 7, 13, 14, 15, 17, 18, 19, 20, 67, 68, 69, 71, 72, 75, 76], "sort": [4, 13, 27, 29, 34, 36, 43, 45, 48, 50, 51, 53, 59, 61, 63, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "common": [4, 10, 13, 69, 70, 73, 74, 76, 79, 80, 84], "real": [4, 13, 65, 68, 69, 74, 76, 78, 79, 83, 84], "world": [4, 13, 65, 68, 69, 74, 76, 78, 83, 84], "interact": [4, 13, 74], "embed": [4, 7, 13, 52, 65, 67, 68, 69, 71, 72, 76, 86], "thereof": [4, 13], "insight": [4, 13, 78], "act": [4, 7, 50, 68], "issuefind": [4, 13, 21], "logic": [4, 11, 27, 29, 57, 59, 84], "best": [4, 13, 33, 43, 53, 68, 69, 71, 74, 78, 79, 81, 83, 85, 86, 87], "2d": [4, 13, 27, 34, 35, 37, 38, 43, 67, 79, 85], "num_exampl": [4, 13, 14, 15, 17, 18, 19, 20, 21, 23, 44, 67, 68, 69, 71, 72, 75, 76], "represent": [4, 7, 13, 24, 28, 35, 45, 65, 67, 68, 69, 72, 74, 75, 76, 81, 86], "num_featur": [4, 13, 24, 28, 42], "distanc": [4, 7, 13, 19, 20, 36, 50, 52, 71, 81], "nearest": [4, 7, 13, 18, 19, 20, 36, 52, 69, 72, 81], "neighbor": [4, 7, 13, 18, 19, 20, 36, 52, 68, 69, 71, 72, 75, 81], "graph": [4, 7, 10, 13, 19], "squar": [4, 13, 38, 55, 73, 83], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 50, 51, 75, 80], "itself": [4, 13, 24, 28, 80], "duplic": [4, 6, 12, 13, 16, 17, 24, 28, 65, 68, 76], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20, 21, 24, 28, 34, 42], "neither": [4, 7, 11, 13, 80], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 14, 15, 17, 18, 19, 20, 43, 78, 87], "unspecifi": [4, 13, 29, 45], "interest": [4, 13, 17, 60, 64, 72, 76, 84, 85, 86, 87], "constructor": [4, 7, 13, 18], "issuemanag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21], "respons": [4, 13, 17, 55, 56, 73, 83, 87], "random_st": [4, 67, 68, 69, 75, 76, 79, 81, 85], "lab": [4, 14, 15, 17, 18, 19, 20, 27, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79], "nearestneighbor": [4, 7, 52, 71, 81], "comprehens": [4, 65, 75], "nbr": 4, "n_neighbor": [4, 7, 52], "metric": [4, 7, 14, 19, 38, 42, 52, 67, 71, 72, 75, 76, 83, 85, 86], "euclidean": [4, 7, 50, 52, 71], "kneighbors_graph": [4, 71], "mode": [4, 24, 27, 28, 71, 81], "4x4": 4, "float64": [4, 19, 24, 28, 63], "compress": [4, 7, 38, 57, 59], "toarrai": 4, "NOT": [4, 27, 72, 86], "23606798": 4, "41421356": 4, "configur": [4, 13, 34], "suppos": [4, 48, 81, 83, 85, 86], "who": [4, 50, 71, 76, 85, 87], "manag": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 20, 68], "clean_learning_kwarg": [4, 7, 18], "labelissuemanag": [4, 7, 11, 18], "prune_method": [4, 66], "prune_by_noise_r": [4, 29, 45, 76], "report": [4, 5, 8, 12, 14, 15, 17, 18, 19, 20, 23, 44, 64, 65, 67, 68, 69, 71, 72, 76, 87], "include_descript": [4, 14, 15, 17, 18, 19, 20, 21], "show_summary_scor": [4, 21], "summari": [4, 5, 10, 14, 15, 17, 18, 19, 20, 23, 42, 44, 49, 58, 59, 61, 62, 63, 66, 67, 68, 69, 71, 72, 73, 75, 76, 80, 84, 87], "show": [4, 19, 24, 28, 33, 38, 51, 60, 64, 69, 71, 72, 73, 74, 75, 76, 78, 81, 83, 84, 85, 87], "top": [4, 23, 27, 29, 38, 45, 48, 51, 53, 60, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 83, 86, 87], "suffer": [4, 7, 10, 17, 45, 53, 64, 87], "onc": [4, 17, 23, 24, 28, 68, 74, 76, 79, 80, 85], "familiar": 4, "usag": [4, 27, 42], "found": [4, 5, 7, 10, 13, 14, 15, 17, 18, 19, 20, 24, 28, 38, 65, 67, 68, 69, 71, 72, 74, 75, 81, 83, 85, 86, 87], "issue_summari": [4, 7, 10, 68], "overal": [4, 5, 7, 10, 14, 15, 17, 18, 19, 20, 23, 34, 43, 44, 47, 50, 51, 55, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 80, 87], "sever": [4, 5, 7, 9, 10, 17, 24, 27, 28, 29, 47, 50, 52, 53, 59, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 80, 81, 85, 86, 87], "dataissu": [4, 10, 13, 21], "outlier": [4, 6, 11, 12, 16, 17, 30, 53, 65, 68, 69, 76, 77], "someth": [4, 5, 24, 28, 53], "123": [4, 68, 69], "456": [4, 67, 86], "nearest_neighbor": 4, "7": [4, 34, 35, 42, 61, 63, 67, 68, 69, 71, 72, 73, 74, 78, 79, 80, 81, 83, 84, 85, 86, 87], "9": [4, 14, 15, 17, 18, 19, 20, 34, 35, 47, 61, 63, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "distance_to_nearest_neighbor": [4, 68, 69, 71, 72, 75, 76], "789": 4, "get_issu": [4, 7, 10, 67, 69, 71, 72, 75], "issue_nam": [4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20, 68, 69], "focu": [4, 10, 72, 84, 87], "full": [4, 7, 10, 27, 51, 75, 87], "summar": [4, 10, 14, 15, 17, 18, 19, 20, 23, 44, 60, 64, 65, 84], "valueerror": [4, 9, 10, 31, 34, 74], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 60, 69, 72, 75, 76, 80], "lie": [4, 7, 36, 52, 53, 67, 68, 69, 71, 72, 75, 76, 86], "directli": [4, 11, 13, 21, 27, 42, 43, 69, 72, 79, 80, 83, 86], "compar": [4, 43, 52, 63, 68, 69, 71, 76], "get_issue_summari": [4, 10, 69], "get_info": [4, 10, 69], "yet": [4, 10, 73, 78], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 13, 24, 28, 68], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 67, 68, 75], "load": [4, 9, 27, 51, 73, 74, 75, 76, 80, 81, 84, 87], "futur": [4, 7, 17, 24, 28, 43, 65, 68], "overwrit": [4, 68], "separ": [4, 23, 34, 47, 68, 69, 74, 75, 80, 82], "rememb": [4, 74, 76], "part": [4, 7, 24, 28, 29, 48, 50, 51, 67, 68, 73, 84, 87], "ident": [4, 7, 17, 38, 72, 86], "walk": 5, "alongsid": [5, 24, 28, 68, 74], "pre": [5, 7, 24, 28, 68, 69], "runtim": [5, 24, 27, 28, 55, 57, 59, 67, 74, 75], "issue_manager_factori": [5, 11, 68], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 24, 25, 28, 65, 71, 79, 87], "ll": [5, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "thing": [5, 28, 76, 83, 86], "next": [5, 43, 65, 67, 71, 72, 78, 80, 83, 85, 86, 87], "dummi": 5, "randint": [5, 34, 68, 69], "mark": [5, 66, 80, 81, 83], "regard": [5, 69, 76], "rand": [5, 34, 68, 69], "is_": [5, 7, 68], "_issu": [5, 7, 68], "issue_score_kei": [5, 14, 15, 17, 18, 19, 20, 68], "whole": [5, 19, 24, 28, 69], "make_summari": [5, 14, 15, 17, 18, 19, 20, 68], "popul": 5, "verbosity_level": [5, 14, 15, 17, 18, 19, 20], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 27, 60, 64, 74, 79], "intermediate_arg": 5, "min": [5, 34, 50, 63, 68, 74, 81], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 14, 15, 18, 19, 20, 68], "instanti": [5, 13, 27, 42, 52, 67, 69, 71, 86], "477762": 5, "286455": 5, "term": [5, 7, 32, 38, 67, 68, 69, 71, 72, 75, 76], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 14, 20, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "003042": 5, "058117": 5, "11": [5, 42, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "121908": 5, "15": [5, 36, 55, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "169312": 5, "17": [5, 67, 71, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 68, 73, 76], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 15, 19, 37, 55, 74, 82], "nondefault": 6, "Near": 6, "iid": [6, 19, 69, 72, 75, 76], "imbal": [6, 12, 16, 47, 52, 53], "togeth": [6, 7, 32, 68, 69, 71, 72, 75, 76, 83, 86, 87], "built": [6, 34], "own": [6, 24, 26, 28, 41, 47, 48, 51, 57, 61, 67, 69, 71, 72, 75, 78, 79, 83, 84, 85, 86, 87], "prerequisit": 6, "basic": [6, 28, 42, 81], "page": [7, 69, 74, 76], "variou": [7, 10, 26, 39, 41, 65, 68, 69, 71, 72, 73, 76, 78, 80, 85], "sai": [7, 24, 28, 79, 84], "why": [7, 72], "matter": [7, 23, 44], "three": [7, 23, 43, 44, 55, 60, 67, 68, 69, 71, 73, 76, 78, 82, 83, 84, 85, 87], "_score": 7, "flag": [7, 17, 19, 29, 34, 44, 45, 48, 55, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86], "badli": [7, 50, 87], "code": [7, 24, 28, 32, 38, 42, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "issue_scor": 7, "outlier_scor": [7, 20, 68, 69, 71, 72, 75, 76, 81], "atyp": [7, 52, 68, 69, 71, 72, 75, 76, 81], "datapoint": [7, 29, 34, 38, 53, 56, 65, 67, 68, 69, 71, 72, 74, 82, 83, 85, 86], "is_issu": [7, 17], "is_outlier_issu": [7, 68, 69, 71, 72, 75, 76], "annot": [7, 23, 33, 43, 44, 45, 47, 48, 50, 51, 60, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 80, 84], "transform": [7, 34, 36, 38, 52, 53, 69, 72, 75, 81, 85, 86, 87], "dissimilar": [7, 71, 72], "preced": 7, "cosin": [7, 52, 81], "incorrect": [7, 50, 53, 56, 67, 68, 69, 71, 72, 75, 76, 80, 83, 85], "due": [7, 27, 29, 53, 57, 59, 67, 68, 69, 71, 72, 75, 76], "appear": [7, 23, 33, 44, 45, 48, 56, 69, 71, 72, 75, 83, 84], "likelihood": [7, 27, 29, 45, 50, 52, 53, 57, 61], "now": [7, 27, 66, 67, 69, 78, 80, 81, 83, 85, 86, 87], "u": [7, 67, 68, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87], "token": [7, 37, 59, 60, 61, 62, 63, 64, 74, 76, 77], "etc": [7, 17, 24, 28, 32, 42, 43, 61, 65, 68, 69, 72, 74, 75, 76], "calcul": [7, 19, 27, 34, 43, 47, 48, 50, 52, 55, 59, 73, 75], "hamper": [7, 73, 75], "analyt": [7, 65, 78], "lead": [7, 50, 53, 75, 80], "draw": [7, 68, 69], "conclus": 7, "try": [7, 27, 29, 42, 43, 57, 59, 65, 69, 74, 76, 84], "veri": [7, 23, 44, 48, 50, 68, 69, 71, 72, 75, 76, 78, 81, 83, 86], "rare": [7, 29, 51, 68, 69, 71, 72, 74, 75, 76], "anomal": [7, 53, 68, 69, 71, 72, 75, 76], "articl": [7, 27, 74], "ai": [7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 86, 87], "blog": 7, "unexpect": [7, 24, 28], "consequ": 7, "inspect": [7, 67, 69, 75, 76, 80, 83, 86], "neg": [7, 50, 68, 69, 73], "affect": [7, 24, 28, 57, 63, 72, 74], "extrem": [7, 68, 69, 71, 72, 74, 75, 76], "rel": [7, 23, 43, 44, 52, 68, 69, 71, 72, 75, 76, 81], "record": [7, 24, 28, 67, 71, 83], "abbrevi": 7, "misspel": 7, "typo": [7, 64], "resolut": 7, "video": [7, 73], "audio": [7, 68, 69, 74, 77], "minor": [7, 37], "variat": 7, "translat": 7, "d": [7, 36, 71, 72, 76, 79, 85, 87], "constant": [7, 55], "median": 7, "question": [7, 17, 65, 76], "nearli": [7, 17, 69, 71, 72, 75], "awar": [7, 66, 76], "presenc": [7, 76], "signific": [7, 69, 72, 75, 76], "violat": [7, 69, 72, 75, 76], "assumpt": [7, 69, 72, 75, 76], "changepoint": [7, 69, 72, 75, 76], "shift": [7, 69, 72, 75, 76], "drift": [7, 69, 72, 75, 76], "autocorrel": [7, 69, 72, 75, 76], "almost": [7, 69, 72, 75, 76], "adjac": [7, 69, 72, 75, 76], "tend": [7, 23, 32, 69, 72, 75, 76, 84, 87], "sequenti": [7, 24, 28, 42, 75], "gap": 7, "group": [7, 19, 73, 80, 87], "b": [7, 14, 15, 17, 18, 19, 20, 23, 37, 38, 63, 71, 72, 73, 76, 82, 85, 87], "x1": [7, 48, 51, 80], "x2": [7, 48, 51, 80], "10th": 7, "100th": 7, "90": [7, 63, 71, 76, 82, 85], "similarli": [7, 24, 28, 68, 71, 74, 75, 80], "math": [7, 75], "behind": [7, 52, 76], "fundament": 7, "proper": [7, 38, 43, 48, 51, 72, 75, 78, 80, 85], "closer": [7, 50, 80], "scenario": [7, 53, 68, 69], "underli": [7, 52, 61, 63, 87], "stem": [7, 52, 81], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 79, 81], "partit": [7, 82], "ahead": 7, "good": [7, 24, 28, 42, 44, 50, 53, 57, 59, 60, 65, 75], "fix": [7, 43, 72, 76, 83, 86], "problem": [7, 27, 34, 60, 65, 68, 69, 72, 74, 75], "deploy": [7, 76, 83, 85, 86], "overlook": [7, 50, 80], "fact": 7, "thu": [7, 23, 28, 44, 67, 71, 72, 76, 82, 85, 87], "diagnos": [7, 69, 74], "rarest": 7, "q": [7, 80], "fall": [7, 50, 59, 63, 76, 81], "subpar": 7, "special": [7, 37], "techniqu": 7, "smote": 7, "asymmetr": [7, 23], "properli": [7, 27, 33, 38, 39, 57, 74, 79, 81, 83, 84], "too": [7, 29, 34, 52, 74, 75, 80], "dark": [7, 84], "bright": [7, 87], "blurri": [7, 75], "abnorm": [7, 51, 75], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 14, 68, 69, 71, 72, 75, 76], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 19, 69, 71, 72, 75, 76], "non_iid_kwarg": 7, "health_summary_paramet": [7, 18], "health_summari": [7, 18, 23, 65, 73], "health_summary_kwarg": 7, "tandem": [7, 73], "view": [7, 24, 28, 29, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 20, 52, 81], "outsid": 7, "knn": [7, 10, 19, 52, 71, 81], "outlierissuemanag": [7, 11, 20, 68], "nearduplicateissuemanag": [7, 11, 14], "noniidissuemanag": [7, 11, 19, 71], "num_permut": [7, 19], "permut": [7, 19], "significance_threshold": [7, 19], "signic": 7, "noniid": [7, 12, 16], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 15], "data_issu": [8, 12, 13, 21, 68], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 65, 67, 75, 78, 85, 86], "except": [9, 42, 53, 68, 69, 75, 78], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 21, 75, 78, 83], "datasetloaderror": 9, "dataset_typ": 9, "fail": [9, 71], "hold": 9, "is_avail": [9, 75], "serv": [10, 13, 78], "central": [10, 87], "repositori": 10, "being": [10, 23, 24, 28, 29, 34, 37, 38, 53, 71, 76, 83, 84, 85], "basi": 10, "collect_statist": 10, "reus": [10, 17, 75], "avoid": [10, 24, 27, 28, 29, 36, 38, 45, 48, 51, 55, 57, 59, 68, 69, 74], "recomput": [10, 86], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 18, 23, 44, 65], "get_data_statist": 10, "concret": 11, "subclass": [11, 24, 28, 52, 68], "my_issu": 11, "stabl": [12, 16, 26, 30, 38, 41, 52, 66], "instati": 13, "public": [13, 76, 80, 84, 87], "creation": [13, 28], "execut": [13, 24, 28, 68, 74, 80], "coordin": [13, 48, 50, 51, 80, 87], "behavior": [13, 23, 24, 28], "At": [13, 74], "associ": [13, 24, 28, 51, 78], "get_available_issue_typ": 13, "10": [14, 18, 19, 24, 25, 51, 52, 53, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "_": [14, 17, 18, 19, 34, 37, 38, 67, 68, 73, 75, 76, 79, 85], "classvar": [14, 15, 17, 18, 19, 20], "short": [14, 15, 17, 18, 19, 20, 37, 38], "item": [14, 15, 17, 18, 19, 20, 38, 68, 69, 75, 76, 78, 79], "some_info_kei": [14, 15, 17, 18, 19, 20], "additional_info_kei": [14, 15, 17, 18, 19, 20], "near_duplicate_set": [14, 68, 69, 71, 72, 75, 76], "occurr": [14, 15, 17, 19, 20, 37], "collect_info": [14, 15, 17, 18, 19, 20], "near_duplicate_scor": [14, 68, 69, 71, 72, 75, 76], "info_to_omit": [14, 15, 17, 18, 19, 20], "compos": [14, 15, 17, 18, 19, 20, 24, 28, 72, 81, 86], "is_x_issu": [14, 15, 17, 18, 19, 20], "x_score": [14, 15, 17, 18, 19, 20], "val_a": [14, 15, 17, 18, 19, 20], "val_b1": [14, 15, 17, 18, 19, 20], "val_b2": [14, 15, 17, 18, 19, 20], "report_str": [14, 15, 17, 18, 19, 20, 21], "class_imbal": 15, "class_imbalance_scor": 15, "bleed": [16, 26], "edg": [16, 26, 50, 65, 76, 87], "sharp": [16, 26], "abc": 17, "believ": [17, 84], "priori": [17, 76], "global": 17, "anoth": [17, 23, 27, 37, 50, 53, 71, 72, 74, 76, 78, 81, 86], "abstract": 17, "applic": [18, 43, 76, 78, 79, 87], "typevar": [18, 24, 28, 50, 51], "_scalartype_co": 18, "covari": [18, 55, 83], "get_health_summari": 18, "summary_dict": 18, "label_scor": [18, 67, 68, 69, 71, 72, 75, 76], "simplified_kolmogorov_smirnov_test": 19, "neighbor_histogram": 19, "non_neighbor_histogram": 19, "kolmogorov": 19, "smirnov": 19, "largest": [19, 27, 34, 53, 57, 59, 84], "empir": [19, 33, 43], "cumul": 19, "ecdf": 19, "histogram": [19, 71, 83], "absolut": 19, "25": [19, 24, 34, 36, 73, 75, 76, 78, 79, 80, 87], "dimension": [19, 38, 67, 76, 81], "trial": 19, "non_iid_scor": [19, 69, 72, 75, 76], "default_threshold": 20, "37037": 20, "q3_avg_dist": 20, "iqr_avg_dist": 20, "median_outlier_scor": 20, "ood": [20, 52, 53, 68, 69, 72, 75, 76, 81], "exclud": [21, 60, 64, 68, 87], "get_report": 21, "overview": [23, 67, 69, 71, 72, 75, 78, 80, 81, 83, 85, 86, 87], "modifi": [23, 24, 27, 28, 38, 74, 76], "help": [23, 24, 28, 51, 65, 66, 67, 68, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87], "rank_classes_by_label_qu": [23, 69], "merg": [23, 37, 65, 73, 74, 87], "find_overlapping_class": [23, 74, 76], "ascend": [23, 36, 44, 75, 76], "problemat": [23, 44, 60, 64, 67, 80, 87], "unnorm": [23, 44, 76], "abov": [23, 24, 27, 28, 38, 43, 50, 53, 59, 63, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87], "model_select": [23, 34, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 83, 85, 86], "cross_val_predict": [23, 28, 67, 68, 69, 71, 72, 76, 78, 82, 83, 85, 86], "get_data_labels_from_dataset": 23, "yourfavoritemodel": [23, 76], "cv": [23, 34, 67, 68, 69, 71, 76, 78, 85], "df": [23, 38, 64, 67], "overall_label_qu": [23, 44], "col": 23, "prob": [23, 37, 76, 82], "divid": [23, 44, 53], "label_nois": [23, 44], "human": [23, 73, 84, 87], "clearli": [23, 53, 75, 80, 84], "num": [23, 44, 73, 76], "overlap": [23, 65, 73, 74, 76], "ontolog": 23, "publish": [23, 87], "therefor": [23, 53], "vehicl": [23, 73], "truck": [23, 73, 81, 84], "intuit": [23, 44], "car": [23, 73, 80, 84], "frequent": [23, 43, 71, 74, 83, 85], "confus": [23, 24, 28, 29, 38, 86, 87], "characterist": 23, "l": [23, 24, 28, 48, 50, 51], "class1": 23, "class2": 23, "relationship": 23, "arbitrari": [23, 59, 63, 68, 81, 83], "match": [23, 24, 28, 29, 43, 44, 53, 68, 69, 73, 75, 80, 82, 84], "dog": [23, 38, 44, 46, 60, 73, 74, 81, 82, 87], "cat": [23, 38, 44, 46, 73, 74, 81, 82], "captur": [23, 67, 80, 81, 84], "co": [23, 24, 25], "noisy_label": [23, 68, 69, 79], "overlapping_class": 23, "descend": [23, 24, 28, 34, 44, 51], "overall_label_health_scor": [23, 44, 76], "suggest": [23, 43, 44, 50, 72, 74, 75, 83, 86], "half": [23, 24, 28, 44, 73, 87], "health_scor": [23, 44], "classes_by_label_qu": [23, 69], "cnn": [24, 28, 75], "cifar": [24, 25, 73, 81], "teach": [24, 25], "bhanml": 24, "blob": 24, "master": [24, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "call_bn": 24, "bn": 24, "input_channel": 24, "n_output": 24, "dropout_r": 24, "top_bn": 24, "architectur": [24, 28, 72, 86], "shown": [24, 51, 68, 74, 78, 81, 82, 84, 87], "forward": [24, 25, 28, 75, 78], "overridden": [24, 28], "although": [24, 28, 52, 71, 85], "recip": [24, 28], "afterward": [24, 28], "sinc": [24, 28, 31, 39, 44, 59, 63, 74, 78, 79, 80, 82, 87], "former": [24, 28], "hook": [24, 28, 73], "silent": [24, 27, 28], "t_destin": [24, 28], "__call__": [24, 28, 34], "add_modul": [24, 28], "child": [24, 28], "fn": [24, 28], "recurs": [24, 28, 34], "submodul": [24, 28], "children": [24, 28, 87], "nn": [24, 25, 28, 75], "init": [24, 28, 76], "doc": [24, 28, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "no_grad": [24, 28, 75, 81], "init_weight": [24, 28], "linear": [24, 28, 72, 75, 86], "fill_": [24, 28], "net": [24, 28, 67, 73, 75], "in_featur": [24, 28], "out_featur": [24, 28], "bia": [24, 28, 72, 75, 86], "tensor": [24, 25, 28, 67, 75, 81], "requires_grad": [24, 28], "bfloat16": [24, 28], "cast": [24, 28, 67], "buffer": [24, 28], "datatyp": [24, 28], "direct": [24, 28], "member": [24, 28, 68], "xdoctest": [24, 28], "undefin": [24, 28], "var": [24, 28], "buf": [24, 28], "20l": [24, 28], "1l": [24, 28], "5l": [24, 28], "immedi": [24, 28, 81], "cpu": [24, 28, 29, 67, 75], "move": [24, 28, 34, 66, 73], "cuda": [24, 28, 67, 75], "devic": [24, 28, 67, 75], "gpu": [24, 28, 67, 72, 86], "live": [24, 28], "copi": [24, 28, 55, 67, 68, 69, 71, 74, 79, 82, 83, 85], "doubl": [24, 28], "dump_patch": [24, 28], "eval": [24, 28, 75, 79, 81], "dropout": [24, 28], "batchnorm": [24, 28], "grad": [24, 28], "extra_repr": [24, 28], "line": [24, 28, 65, 68, 73, 78, 81, 87], "get_buff": [24, 28], "target": [24, 25, 28, 55, 56, 81, 83], "throw": [24, 28], "get_submodul": [24, 28], "explan": [24, 28], "fulli": [24, 28, 42, 74], "qualifi": [24, 28], "referenc": [24, 28], "attributeerror": [24, 28], "invalid": [24, 28], "resolv": [24, 28, 87], "get_extra_st": [24, 28], "state_dict": [24, 28], "set_extra_st": [24, 28], "build": [24, 28, 75, 84], "pickleabl": [24, 28], "serial": [24, 28], "backward": [24, 28, 75], "break": [24, 28, 75], "pickl": [24, 28, 80], "get_paramet": [24, 28], "let": [24, 28, 52, 53, 67, 69, 71, 72, 74, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "net_b": [24, 28], "net_c": [24, 28], "conv": [24, 28], "conv2d": [24, 28, 75], "16": [24, 28, 34, 59, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 86, 87], "33": [24, 28, 73, 80, 87], "kernel_s": [24, 28], "stride": [24, 28], "200": [24, 28, 53, 73, 80, 87], "diagram": [24, 28, 82], "degre": [24, 28, 83], "queri": [24, 28, 69, 75], "named_modul": [24, 28], "o": [24, 28, 36, 37, 67, 68, 69, 73, 74, 76, 79, 80, 87], "transit": [24, 28], "ipu": [24, 28], "load_state_dict": [24, 28], "strict": [24, 28, 34], "persist": [24, 28], "strictli": [24, 28], "namedtupl": [24, 28], "missing_kei": [24, 28], "unexpected_kei": [24, 28], "miss": [24, 28, 38, 48, 50, 71, 74, 80, 83, 85], "runtimeerror": [24, 28], "idx": [24, 28, 38, 39, 51, 68, 74, 75, 76, 78, 80, 81], "named_buff": [24, 28], "prefix": [24, 28, 67, 87], "prepend": [24, 28], "running_var": [24, 28], "named_children": [24, 28], "conv4": [24, 28], "conv5": [24, 28], "memo": [24, 28], "remove_dupl": [24, 28], "named_paramet": [24, 28], "register_backward_hook": [24, 28], "deprec": [24, 28, 31], "favor": [24, 28], "register_full_backward_hook": [24, 28], "removablehandl": [24, 28], "register_buff": [24, 28], "running_mean": [24, 28], "register_forward_hook": [24, 28], "posit": [24, 28, 38, 73, 81], "won": [24, 28, 68, 69, 74, 79], "inplac": [24, 28, 78], "register_forward_pre_hook": [24, 28], "gradient": [24, 28, 71, 75, 83], "respect": [24, 28, 51, 76], "grad_input": [24, 28], "grad_output": [24, 28], "technic": [24, 28], "caller": [24, 28], "register_load_state_dict_post_hook": [24, 28], "post": [24, 28], "incompatible_kei": [24, 28], "modif": [24, 28], "thrown": [24, 28], "clearn": [24, 28], "register_modul": [24, 28], "register_paramet": [24, 28], "requires_grad_": [24, 28], "autograd": [24, 28], "freez": [24, 28, 67, 72, 86], "finetun": [24, 28], "gan": [24, 28], "share_memori": [24, 28], "share_memory_": [24, 28], "destin": [24, 28], "keep_var": [24, 28], "shallow": [24, 28], "howev": [24, 28, 38, 67, 71, 72, 75, 78, 82, 84, 85, 86], "releas": [24, 28, 66, 74, 81], "design": [24, 28], "ordereddict": [24, 28], "detach": [24, 28, 75], "non_block": [24, 28], "memory_format": [24, 28], "channels_last": [24, 28], "Its": [24, 28, 34, 44, 50], "complex": [24, 28], "integr": [24, 28, 65], "asynchron": [24, 28], "host": [24, 28], "pin": [24, 28, 72, 73, 86], "desir": [24, 28, 37, 51], "4d": [24, 28], "ignore_w": [24, 28], "determinist": [24, 28, 67], "1913": [24, 28], "3420": [24, 28], "5113": [24, 28], "2325": [24, 28], "env": [24, 28], "torch_doctest_cuda1": [24, 28], "gpu1": [24, 28], "1914": [24, 28], "5112": [24, 28], "2324": [24, 28], "float16": [24, 28], "cdoubl": [24, 28], "3741": [24, 28], "2382": [24, 28], "5593": [24, 28], "4443": [24, 28], "complex128": [24, 28], "6122": [24, 28], "1150": [24, 28], "to_empti": [24, 28], "storag": [24, 28], "dst_type": [24, 28], "xpu": [24, 28], "zero_grad": [24, 28, 75], "set_to_non": [24, 28], "context": [24, 28, 80], "noisili": [25, 76], "han": 25, "2018": 25, "cifar_cnn": [25, 26], "loss_coteach": 25, "y_1": 25, "y_2": 25, "forget_r": 25, "class_weight": 25, "logit": [25, 42, 75], "decim": [25, 38], "quickli": [25, 67, 71, 72, 74, 75, 79, 81, 84, 85, 87], "forget": [25, 34, 87], "rate_schedul": 25, "epoch": [25, 28, 74, 75], "initialize_lr_schedul": 25, "lr": [25, 28], "001": [25, 53, 74], "250": [25, 68, 69, 76, 80], "epoch_decay_start": 25, "80": [25, 71, 73, 79, 83, 85], "schedul": 25, "adjust": [25, 29, 47, 52, 53, 65, 76], "beta": 25, "adam": 25, "adjust_learning_r": 25, "alpha_plan": 25, "beta1_plan": 25, "forget_rate_schedul": 25, "num_gradu": 25, "expon": 25, "tell": [25, 72, 75, 76, 86], "train_load": [25, 28], "model1": [25, 76], "optimizer1": 25, "model2": [25, 76], "optimizer2": 25, "dataload": [25, 75, 81], "parser": 25, "parse_arg": 25, "num_iter_per_epoch": 25, "print_freq": 25, "topk": 25, "top1": 25, "top5": 25, "test_load": 25, "offici": [26, 41, 87], "wish": [26, 41, 81, 84, 87], "mnist_pytorch": 26, "coteach": [26, 66], "mini": [27, 57, 59, 74], "With": [27, 72, 76, 78, 83, 84, 86, 87], "approxim": [27, 52, 78], "low_self_confid": [27, 29, 45], "self_confid": [27, 29, 34, 45, 47, 53, 61, 63, 74, 76, 79, 85, 86], "conveni": [27, 67, 72, 86], "script": 27, "labelinspector": [27, 74], "adj_confident_thresholds_shar": 27, "labels_shar": 27, "pred_probs_shar": 27, "labels_fil": [27, 74], "pred_probs_fil": [27, 74], "batch_siz": [27, 28, 57, 59, 74, 75, 81, 84], "quality_score_kwarg": 27, "num_issue_kwarg": 27, "return_mask": 27, "variant": [27, 43, 84], "read": [27, 31, 69, 74, 76, 81, 87], "zarr": [27, 74], "memmap": [27, 84], "pythonspe": 27, "mmap": [27, 74], "hdf5": 27, "further": [27, 44, 45, 47, 50, 51, 59, 60, 67, 74], "yourfil": 27, "r": [27, 55, 68, 69, 83, 84], "npy": [27, 73, 74, 84], "mmap_mod": [27, 84], "tip": [27, 29, 42, 74], "save_arrai": 27, "your_arrai": 27, "disk": [27, 73, 74], "npz": [27, 87], "maxim": [27, 43, 57, 59, 84], "multiprocess": [27, 29, 45, 57, 59, 74, 75, 84], "linux": [27, 57, 59], "physic": [27, 29, 57, 59, 80, 84], "psutil": [27, 29, 57, 59, 84], "demonstr": [27, 68, 72, 74, 75, 76, 78, 79, 80, 83, 84], "labels_arrai": [27, 39], "predprob": 27, "pred_probs_arrai": 27, "back": [27, 51, 68, 74, 80, 81], "store_result": 27, "becom": [27, 81], "verifi": [27, 74, 78, 81], "long": [27, 43, 52, 78], "enough": [27, 38, 74], "chunk": [27, 82], "ram": [27, 73], "faster": [27, 52, 55, 57, 59, 74, 76], "end_index": 27, "labels_batch": 27, "pred_probs_batch": 27, "update_confident_threshold": 27, "batch_result": 27, "score_label_qu": 27, "indices_of_examples_with_issu": [27, 74], "shortcut": 27, "encount": [27, 29, 57], "1000": [27, 67, 72, 73, 74, 81], "aggreg": [27, 34, 43, 47, 50, 53, 63, 74, 76, 78], "get_num_issu": 27, "fetch": [27, 67, 69], "seen": [27, 74, 81, 87], "far": [27, 43], "get_quality_scor": 27, "label_quality_scor": [27, 47, 50, 53, 56, 76, 80, 83], "method1": 27, "method2": 27, "normalized_margin": [27, 29, 34, 45, 47, 53, 61, 63], "low_normalized_margin": [27, 29, 45], "issue_indic": [27, 50, 75], "update_num_issu": 27, "split_arr": 27, "arr": [27, 74], "chunksiz": 27, "convnet": 28, "bespok": [28, 42], "get_mnist_dataset": 28, "loader": [28, 75], "download": [28, 67, 74, 75, 81], "mnist": [28, 65, 67, 73], "get_sklearn_digits_dataset": 28, "handwritten": 28, "digit": [28, 67, 73], "last": [28, 34, 48, 51, 68, 69, 74, 78, 87], "sklearn_digits_test_s": 28, "hard": [28, 73, 81], "simplenet": 28, "64": [28, 71, 75, 76, 80, 85], "log_interv": 28, "50": [28, 73, 74, 76, 78, 80, 81], "01": [28, 53, 55, 67, 76, 79, 80, 83], "momentum": 28, "no_cuda": 28, "test_batch_s": [28, 75], "templat": 28, "enabl": 28, "flexibli": 28, "among": [28, 43, 76], "test_set": 28, "Be": 28, "overrid": 28, "train_idx": [28, 38, 81], "train_label": [28, 81, 86], "scikit": [28, 38, 52, 65, 67, 68, 69, 71, 72, 74, 77, 83, 86], "set_predict_proba_request": 28, "set_predict_request": 28, "encourag": [29, 45, 53, 56], "multilabel_classif": [29, 44, 45, 47, 53, 74, 79], "pred_probs_by_class": 29, "prune_count_matrix_col": 29, "rank_by_kwarg": [29, 45, 53, 76], "num_to_remove_per_class": [29, 45], "bad": [29, 45, 50, 53, 72, 74, 86], "seem": [29, 76, 79], "fewer": [29, 38, 80], "aren": 29, "confidence_weighted_entropi": [29, 34, 45, 47, 53, 61, 63], "label_issues_idx": [29, 53], "entropi": [29, 31, 33, 34, 52, 53], "prune_by_class": [29, 45, 76], "predicted_neq_given": [29, 45, 76], "prune_counts_matrix": 29, "smallest": [29, 53], "unus": 29, "number_of_mislabeled_examples_in_class_k": 29, "delet": [29, 65, 74, 86], "thread": [29, 45], "window": [29, 73], "shorter": [29, 48], "find_predicted_neq_given": 29, "find_label_issues_using_argmax_confusion_matrix": 29, "latent_algebra": [30, 66], "label_quality_util": 30, "multilabel_util": [30, 79], "multilabel_scor": [30, 47], "token_classification_util": [30, 87], "get_normalized_entropi": 31, "min_allowed_prob": 31, "wikipedia": 31, "activ": [31, 33, 43, 65, 78], "towardsdatasci": 31, "cheatsheet": 31, "ec57bc067c0b": 31, "clip": [31, 38, 67], "behav": 31, "unnecessari": [31, 74], "slightli": [31, 85, 86], "interv": [31, 34, 81], "herein": 32, "inexact": 32, "cours": 32, "propag": 32, "throughout": [32, 38, 55, 67, 78, 84, 87], "compute_ps_py_inv_noise_matrix": 32, "compute_py_inv_noise_matrix": 32, "compute_inv_noise_matrix": 32, "easili": [32, 66, 67, 69, 71, 72, 76, 78, 79, 81, 82, 83, 84, 85, 86], "increas": [32, 50, 52, 53, 67, 68, 74, 78, 79, 87], "dot": [32, 63, 74], "compute_noise_matrix_from_invers": 32, "compute_pi": 32, "true_labels_class_count": 32, "compute_pyx": 32, "pyx": 32, "multiannot": 33, "assert_valid_inputs_multiannot": 33, "labels_multiannot": [33, 43], "ensembl": [33, 34, 43, 53, 71, 74, 79, 81, 83, 85], "allow_single_label": 33, "annotator_id": 33, "assert_valid_pred_prob": 33, "pred_probs_unlabel": [33, 43], "format_multiannotator_label": [33, 43, 78], "lexicograph": [33, 38], "formatted_label": [33, 38], "old": [33, 38, 66, 73], "th": [33, 37, 38, 43, 45, 48, 50, 51, 52, 61, 63, 64, 72, 79, 80, 87], "check_consensus_label_class": 33, "consensus_label": [33, 43, 78], "consensus_method": [33, 43], "consensu": [33, 43, 65, 77, 87], "establish": [33, 83, 86], "compute_soft_cross_entropi": 33, "soft": [33, 73], "find_best_temp_scal": 33, "coarse_search_rang": [33, 55, 74], "fine_search_s": [33, 55, 74], "temperatur": [33, 34, 50, 59, 63], "scale": [33, 36, 73, 74, 81, 84, 85], "factor": [33, 34, 57, 59], "minim": [33, 50, 81], "temp_scale_pred_prob": 33, "temp": 33, "sharpen": [33, 73], "smoothen": 33, "classlabelscor": 34, "enum": 34, "get_self_confidence_for_each_label": [34, 53], "get_normalized_margin_for_each_label": [34, 53], "get_confidence_weighted_entropy_for_each_label": [34, 53], "75": [34, 68, 69, 73, 78, 79, 80, 83, 87], "from_str": 34, "scorer": 34, "exponential_moving_averag": [34, 47], "alpha": [34, 47, 50, 68, 69, 76, 79, 83], "exponenti": 34, "ema": 34, "s_1": 34, "s_k": 34, "ema_k": 34, "accord": [34, 45, 71, 72, 76, 87], "formula": [34, 36], "_t": 34, "cdot": 34, "s_t": 34, "qquad": 34, "leq": 34, "_1": 34, "give": [34, 53, 76, 78, 84], "recent": [34, 87], "success": 34, "previou": [34, 75, 80], "discount": 34, "s_ema": 34, "175": [34, 76, 80], "softmin": [34, 47, 50, 59, 63], "underflow": 34, "nan": [34, 43, 71, 78, 83, 85], "possible_method": 34, "aggregated_scor": 34, "multilabelscor": 34, "base_scor": 34, "base_scorer_kwarg": 34, "aggregator_kwarg": [34, 47], "n_sampl": 34, "n_label": 34, "binari": [34, 38, 45, 47, 76, 87], "worst": [34, 78], "class_label_quality_scor": 34, "get_class_label_quality_scor": 34, "42": [34, 73, 80, 87], "452": 34, "new_scor": 34, "575": 34, "get_label_quality_scores_per_class": [34, 47], "ml_scorer": 34, "multilabel_pi": 34, "binar": [34, 35], "second": [34, 36, 38, 51, 53, 68, 74, 76, 87], "get_cross_validated_multilabel_pred_prob": 34, "reformat": [34, 67], "wider": 34, "strategi": 34, "splitter": 34, "kfold": [34, 75], "multiclass": [34, 38, 43, 79], "onevsrestclassifi": [34, 79], "randomforestclassifi": [34, 76, 79], "n_split": [34, 75, 79], "stack_compl": 35, "pred_prob_slic": 35, "extend": [35, 75, 81, 87], "get_onehot_num_class": 35, "onehot": 35, "encod": [35, 51, 57, 60, 71, 72, 74, 83, 84, 85, 86], "multilabel": [35, 79], "int2onehot": [35, 79], "hot": [35, 45, 51, 57, 60, 71, 73, 74, 83, 84, 85], "onehot2int": [35, 79], "onehot_matrix": 35, "transform_distances_to_scor": 36, "exp": [36, 52, 53, 68], "dt": 36, "right": [36, 48, 51, 72, 79, 80, 81, 86], "num_neighbor": 36, "slice": 36, "ood_features_scor": [36, 52, 81], "95122942": 36, "83945702": 36, "token_classif": [37, 61, 63, 64, 74], "get_sent": [37, 87], "sentenc": [37, 61, 63, 64, 72, 86], "readabl": 37, "filter_sent": [37, 87], "lambda": [37, 67, 68, 78], "long_sent": 37, "headlin": 37, "process_token": 37, "charact": [37, 38], "s1": 37, "s2": 37, "processed_token": 37, "rule": [37, 73], "alecnlcb": 37, "entiti": [37, 65, 74, 87], "mapped_ent": 37, "unique_ident": 37, "loc": [37, 68, 69, 75, 87], "merge_prob": 37, "probs_merg": 37, "55": [37, 73, 80, 83], "0125": [37, 63], "0375": 37, "075": 37, "025": 37, "color_sent": 37, "color": [37, 60, 68, 69, 71, 76, 79, 81, 83, 84], "red": [37, 51, 68, 69, 73, 76, 79, 80, 81, 84], "colored_sent": 37, "termcolor": 37, "31msentenc": 37, "0m": 37, "ancillari": 38, "remove_noise_from_class": 38, "class_without_nois": 38, "any_other_class": 38, "choos": [38, 53, 71, 74, 76, 83, 85], "tradition": 38, "clip_noise_r": 38, "clip_valu": 38, "new_sum": 38, "preserv": 38, "value_count": [38, 74], "fill": 38, "wherea": [38, 45, 82], "come": [38, 68, 69, 74, 84], "major": [38, 43, 66, 75, 81], "versu": [38, 76], "value_counts_fill_missing_class": 38, "get_missing_class": 38, "round_preserving_sum": 38, "obviou": 38, "cgdeboer": 38, "iteround": 38, "round_preserving_row_tot": 38, "reach": 38, "estimate_pu_f1": 38, "prob_s_eq_1": 38, "claesen": 38, "f1": [38, 72, 76], "confusion_matrix": 38, "BE": 38, "print_square_matrix": 38, "left_nam": 38, "top_nam": 38, "titl": [38, 68, 69, 76, 79, 81], "short_titl": 38, "round_plac": 38, "pretti": [38, 76], "print_noise_matrix": [38, 76], "print_inverse_noise_matrix": 38, "print_joint_matrix": [38, 76], "joint_matrix": 38, "compress_int_arrai": 38, "num_possible_valu": 38, "train_val_split": 38, "holdout_idx": 38, "subset_x_i": 38, "extract": [38, 52, 67, 72, 78, 81, 84, 86], "subset_label": 38, "subset_data": 38, "extract_indices_tf": 38, "allow_shuffl": 38, "turn": [38, 65, 80], "unshuffle_tensorflow_dataset": 38, "shuffledataset": 38, "histori": 38, "pre_x": 38, "buffer_s": 38, "is_torch_dataset": 38, "is_tensorflow_dataset": 38, "csr_vstack": 38, "csr_matric": 38, "append": [38, 67, 73, 75, 76, 78, 79, 81, 87], "bottom": [38, 48, 51, 80], "vstack": [38, 73, 74, 75, 76, 78, 79], "append_extra_datapoint": 38, "to_data": 38, "from_data": 38, "taken": 38, "One": [38, 52, 74], "get_num_class": 38, "label_matrix": 38, "canon": 38, "num_unique_class": 38, "get_unique_class": 38, "format_label": 38, "smart_display_datafram": 38, "displai": [38, 51, 60, 64, 67, 72, 76, 86, 87], "jupyt": [38, 67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "notebook": [38, 43, 67, 69, 73, 74, 76, 78, 79, 80, 84, 87], "consol": 38, "force_two_dimens": 38, "html": [38, 52, 71, 74, 76], "assert_valid_input": 39, "allow_missing_class": 39, "allow_one_class": 39, "assert_valid_class_label": 39, "assert_nonempty_input": 39, "assert_indexing_work": 39, "length_x": 39, "labels_to_arrai": 39, "labellik": 39, "keraswrappermodel": [42, 65], "keraswrappersequenti": 42, "tf": [42, 67], "legaci": 42, "lack": 42, "keraswrapp": 42, "huggingface_keras_imdb": 42, "unit": [42, 87], "model_kwarg": [42, 55], "compile_kwarg": 42, "sparsecategoricalcrossentropi": 42, "layer": [42, 67, 72, 81, 86], "dens": [42, 72, 86], "my_keras_model": 42, "from_logit": 42, "compil": 42, "declar": 42, "apply_softmax": 42, "analysi": 43, "analyz": [43, 65, 76, 78, 79], "get_label_quality_multiannot": [43, 78], "vote": 43, "crowdsourc": [43, 65, 78], "dawid": [43, 78], "skene": [43, 78], "analog": [43, 73, 78], "chosen": [43, 53, 78], "crowdlab": [43, 78], "unlabel": [43, 78, 81, 84], "decid": [43, 72, 73, 78, 83, 86, 87], "get_active_learning_scor": [43, 78], "activelab": [43, 78], "priorit": [43, 50, 80, 84, 87], "showcas": 43, "main": 43, "best_qual": 43, "quality_method": 43, "calibrate_prob": 43, "return_detailed_qu": 43, "return_annotator_stat": 43, "return_weight": 43, "label_quality_score_kwarg": 43, "necessarili": [43, 72, 76], "did": [43, 44, 67, 71, 76, 78, 83, 85, 86], "id": [43, 68, 75, 78], "majority_vot": 43, "ti": 43, "broken": [43, 51, 73], "highest": [43, 51, 68, 75, 82], "0th": 43, "consensus_quality_scor": [43, 78], "annotator_agr": [43, 78], "reman": 43, "1st": 43, "2nd": [43, 57], "3rd": 43, "consensus_label_suffix": 43, "consensus_quality_score_suffix": 43, "suffix": 43, "emsembl": 43, "weigh": [43, 73], "agreement": [43, 78], "agre": 43, "prevent": 43, "overconfid": [43, 82], "wrong": [43, 48, 50, 66, 68, 69, 72, 74, 76, 80, 86], "detailed_label_qu": [43, 78], "annotator_stat": [43, 78], "model_weight": 43, "annotator_weight": 43, "warn": [43, 68], "labels_info": 43, "num_annot": [43, 78], "deriv": [43, 78], "quality_annotator_1": 43, "quality_annotator_2": 43, "quality_annotator_m": 43, "lowest": [43, 51, 69, 75, 78, 79, 80, 84], "annotator_qu": [43, 78], "num_examples_label": [43, 78], "agreement_with_consensu": [43, 78], "worst_class": [43, 78], "trustworthi": [43, 78, 83], "get_label_quality_multiannotator_ensembl": 43, "func": 43, "weigtht": 43, "budget": 43, "retrain": [43, 83, 86], "active_learning_scor": 43, "improv": [43, 69, 73, 74, 75, 76, 83, 84, 85, 86], "active_learning_scores_unlabel": 43, "get_active_learning_scores_ensembl": 43, "henc": [43, 67, 68, 78], "get_majority_vote_label": [43, 78], "event": 43, "lastli": [43, 71], "convert_long_to_wide_dataset": 43, "labels_multiannotator_long": 43, "wide": [43, 67, 85, 86], "suitabl": [43, 71, 85], "labels_multiannotator_wid": 43, "common_multilabel_issu": 44, "mutual": [44, 79], "exclus": [44, 79], "vice": 44, "versa": 44, "rank_classes_by_multilabel_qu": 44, "overall_multilabel_health_scor": 44, "multilabel_health_summari": 44, "classes_by_multilabel_qu": 44, "inner": [45, 59], "find_multilabel_issues_per_class": 45, "per_class_label_issu": 45, "label_issues_list": 45, "labels_list": 45, "pred_probs_list": [45, 53, 75, 76], "anim": [46, 81], "rat": 46, "predat": 46, "pet": 46, "reptil": 46, "manner": [47, 78, 83, 85, 86], "box": [48, 50, 51, 73, 80], "object_detect": [48, 50, 51, 80], "return_indices_ranked_by_scor": [48, 80], "overlapping_label_check": [48, 50], "suboptim": [48, 50], "locat": [48, 50, 80, 84, 87], "bbox": [48, 51, 80], "image_nam": [48, 51], "y1": [48, 51, 80], "y2": [48, 51, 80], "later": [48, 51, 52, 86, 87], "mmdetect": [48, 51, 80], "corner": [48, 51, 80], "swap": [48, 50, 60, 64], "penal": [48, 50], "concern": [48, 50, 65, 69], "aggregation_weight": 50, "imperfect": [50, 74], "chose": [50, 78, 80], "imperfectli": [50, 80], "dirti": [50, 53, 56, 83], "subtyp": 50, "badloc": 50, "nonneg": 50, "issues_from_scor": [50, 59, 60, 63, 64, 80, 84, 87], "compute_overlooked_box_scor": 50, "high_probability_threshold": 50, "auxiliary_input": [50, 51], "vari": [50, 69], "iou": 50, "heavili": 50, "auxiliarytypesdict": 50, "pred_label": [50, 86], "pred_label_prob": 50, "pred_bbox": 50, "lab_label": 50, "lab_bbox": 50, "similarity_matrix": 50, "min_possible_similar": 50, "scores_overlook": 50, "compute_badloc_box_scor": 50, "low_probability_threshold": 50, "scores_badloc": 50, "compute_swap_box_scor": 50, "accident": [50, 71, 72, 86], "scores_swap": 50, "pool_box_scores_per_imag": 50, "box_scor": 50, "image_scor": [50, 59, 84], "object_counts_per_imag": 51, "discov": [51, 69, 87], "auxiliari": [51, 81, 84], "_get_valid_inputs_for_compute_scor": 51, "object_count": 51, "bounding_box_size_distribut": 51, "down": 51, "bbox_siz": 51, "class_label_distribut": 51, "class_distribut": 51, "get_sorted_bbox_count_idx": 51, "plot": [51, 68, 69, 76, 79, 81, 83, 84], "sorted_idx": [51, 81], "plot_class_size_distribut": 51, "class_to_show": 51, "hidden": [51, 81], "max_class_to_show": 51, "plot_class_distribut": 51, "visual": [51, 68, 69, 75, 83, 85, 87], "prediction_threshold": 51, "overlai": [51, 80], "figsiz": [51, 68, 69, 75, 76, 79, 81], "save_path": [51, 80], "blue": [51, 73, 76, 80], "overlaid": 51, "side": [51, 73, 80], "figur": [51, 76, 79, 81, 83], "extens": [51, 76, 78], "png": [51, 80], "pdf": [51, 52], "ep": 51, "svg": 51, "matplotlib": [51, 68, 69, 75, 76, 79, 80, 81, 83], "Of": 52, "li": 52, "smaller": [52, 79, 80], "find_top_issu": [52, 53, 81], "reli": [52, 67, 68, 69, 72, 80, 81, 86], "dist_metr": 52, "dim": [52, 75, 84], "subtract": [52, 53], "renorm": [52, 53, 74], "least_confid": 52, "sum_": 52, "log": [52, 53, 66], "softmax": [52, 59, 63, 75], "literatur": 52, "gen": 52, "liu": 52, "lochman": 52, "zach": 52, "openaccess": 52, "thecvf": 52, "content": [52, 67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "cvpr2023": 52, "liu_gen_pushing_the_limits_of_softmax": 52, "based_out": 52, "distribution_detection_cvpr_2023_pap": 52, "fit_scor": [52, 81], "ood_predictions_scor": 52, "categor": [52, 68, 69, 70, 83, 85], "pretrain": [52, 67, 72, 81, 86], "adjust_confident_threshold": 52, "probabilist": [52, 67, 68, 69, 71, 72, 81, 82, 85], "order_label_issu": [53, 66], "whichev": [53, 82], "argsort": [53, 72, 75, 76, 81, 83, 86], "max_": 53, "get_label_quality_ensemble_scor": [53, 74, 76], "weight_ensemble_members_bi": 53, "custom_weight": 53, "log_loss_search_t_valu": 53, "0001": [53, 73], "scheme": 53, "log_loss_search": 53, "log_loss": [53, 72], "1e0": 53, "1e1": 53, "1e2": 53, "2e2": 53, "quality_scor": [53, 81], "forth": 53, "top_issue_indic": 53, "rank_bi": [53, 66], "weird": [53, 64], "minu": 53, "prob_label": 53, "max_prob_not_label": 53, "idea": 53, "AND": [53, 72], "corrupt": [55, 83], "linearregress": [55, 74, 83], "y_with_nois": 55, "n_boot": [55, 74], "include_aleatoric_uncertainti": [55, 74], "sole": [55, 68, 78, 81, 85], "larger": [55, 57, 59, 73, 74, 75], "bootstrap": [55, 74, 83], "resampl": [55, 67, 74], "epistem": [55, 74, 81, 83], "aleator": [55, 74, 83], "model_final_kwarg": 55, "coars": 55, "thorough": [55, 74], "fine": [55, 67, 72, 81, 86], "grain": 55, "grid": 55, "get_epistemic_uncertainti": 55, "varianc": [55, 76], "epistemic_uncertainti": 55, "get_aleatoric_uncertainti": 55, "residu": [55, 56, 74], "deviat": [55, 83], "ie": 55, "aleatoric_uncertainti": 55, "outr": 56, "contin": 56, "raw": [56, 65, 66, 69, 73, 75, 78, 80, 81], "aka": [56, 67, 76, 87], "00323821": 56, "33692597": 56, "00191686": 56, "semant": [57, 59, 60, 77], "segment": [57, 59, 60, 77], "pixel": [57, 59, 60, 81, 84], "h": [57, 59, 60, 84], "height": [57, 59, 60, 84], "w": [57, 59, 60, 84], "width": [57, 59, 60, 84], "labels_one_hot": [57, 60, 84], "stream": [57, 81, 87], "downsampl": [57, 59, 84], "shrink": [57, 59], "divis": [57, 59, 68], "segmant": [59, 60], "num_pixel_issu": [59, 84], "product": [59, 74, 75], "pixel_scor": [59, 84], "display_issu": [59, 60, 61, 63, 64, 84, 87], "highlight": [60, 64, 68, 69, 71, 84], "enter": 60, "legend": [60, 68, 69, 79, 80, 83, 84], "colormap": 60, "background": 60, "person": [60, 74, 80, 84, 87], "common_label_issu": [60, 64, 84, 87], "ambigu": [60, 64, 67, 72, 73, 76, 86, 87], "systemat": [60, 64, 78], "misunderstood": [60, 64], "issues_df": [60, 75], "filter_by_class": [60, 84], "class_index": 60, "issues_subset": [60, 64], "95": [61, 63, 71, 73, 76, 83], "token_score_method": 63, "sentence_score_method": 63, "sentence_score_kwarg": 63, "compris": [63, 64], "token_scor": [63, 87], "converg": 63, "toward": 63, "_softmin_sentence_scor": 63, "sentence_scor": [63, 87], "token_info": 63, "70": [63, 71, 76, 83], "02": [63, 68, 69, 76, 80, 83], "03": [63, 73, 76, 80, 87], "04": [63, 80, 83], "08": [63, 76, 80, 87], "commonli": [64, 66, 68, 69, 79, 87], "filter_by_token": [64, 87], "But": [64, 76, 87], "restrict": [64, 74], "reliabl": [65, 67, 74, 78, 84, 85], "thousand": 65, "imagenet": [65, 73], "popular": [65, 78, 80], "centric": [65, 77], "capabl": 65, "minut": [65, 67, 71, 72, 73, 78, 79, 80, 83, 84, 85, 86, 87], "conda": 65, "feature_embed": [65, 81], "Then": [65, 74, 75, 83, 85, 86], "your_dataset": [65, 67, 68, 69, 71, 72, 75], "column_name_of_label": [65, 67, 68, 69, 71, 72, 75], "plagu": [65, 69], "untrain": 65, "\u30c4": 65, "label_issues_info": [65, 69], "sklearn_compatible_model": 65, "framework": [65, 79, 80], "complianc": 65, "tag": [65, 79, 87], "sequenc": 65, "recognit": [65, 67, 74, 87], "train_data": [65, 81, 83, 85, 86], "gotten": 65, "test_data": [65, 76, 79, 81, 83, 85, 86], "deal": [65, 69], "tutori": [65, 67, 68, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "faq": [65, 77], "feel": [65, 67, 69, 74], "free": [65, 67, 69, 74, 76], "ask": [65, 74], "slack": [65, 74], "project": [65, 83], "welcom": 65, "commun": [65, 74], "guidelin": [65, 80], "piec": 65, "studio": [65, 69, 74], "platform": [65, 74], "tabular": [65, 68, 69, 70, 74, 77, 78], "automl": [65, 74], "foundat": 65, "smart": [65, 74], "edit": [65, 74], "easier": [65, 76], "unreli": [65, 67, 71, 72, 85], "older": 66, "outlin": 66, "substitut": 66, "v2": [66, 71, 85], "get_noise_indic": 66, "psx": 66, "sorted_index_method": 66, "order_label_error": 66, "label_errors_bool": 66, "latent_estim": 66, "num_label_error": 66, "learningwithnoisylabel": 66, "neatli": 66, "organ": [66, 71, 73, 85, 87], "reorgan": 66, "baseline_method": 66, "incorpor": [66, 76], "research": [66, 76], "polyplex": 66, "terminologi": 66, "label_error": 66, "quickstart": [67, 68, 69, 71, 72, 73, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "spoken": 67, "500": [67, 81, 87], "english": [67, 73], "pronunci": 67, "wav": 67, "huggingfac": [67, 68, 69, 75], "voxceleb": 67, "speech": [67, 87], "your_pred_prob": [67, 68, 69, 71, 72], "tensorflow_io": 67, "26": [67, 68, 73, 75, 76, 78, 80], "huggingface_hub": 67, "12": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85, 86, 87], "branch": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 85, 86], "reproduc": [67, 71, 76, 78], "command": 67, "wget": [67, 80, 84, 87], "navig": 67, "link": [67, 73, 80], "browser": 67, "jakobovski": 67, "archiv": [67, 87], "v1": 67, "tar": [67, 81], "gz": [67, 81], "mkdir": [67, 87], "spoken_digit": 67, "xf": 67, "6_nicolas_32": 67, "data_path": 67, "listdir": 67, "nondeterminist": 67, "file_nam": 67, "endswith": 67, "file_path": 67, "join": [67, 74, 75], "39": [67, 68, 72, 73, 74, 75, 80, 83, 84, 86, 87], "7_george_26": 67, "0_nicolas_24": 67, "0_nicolas_6": 67, "listen": 67, "display_exampl": 67, "click": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "expand": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "pulldown": [67, 68, 69, 73, 75, 76, 78, 79, 81, 83, 87], "colab": [67, 68, 69, 73, 74, 75, 76, 78, 79, 81, 83, 87], "tfio": 67, "pathlib": 67, "ipython": 67, "load_wav_16k_mono": 67, "filenam": 67, "khz": 67, "file_cont": 67, "io": [67, 73], "read_fil": 67, "sample_r": 67, "decode_wav": 67, "desired_channel": 67, "squeez": 67, "int64": [67, 78], "rate_in": 67, "rate_out": 67, "16000": 67, "wav_file_nam": 67, "audio_r": 67, "wav_file_exampl": 67, "plai": [67, 73, 74], "button": 67, "wav_file_name_exampl": 67, "7_jackson_43": 67, "hear": 67, "extractor": 67, "encoderclassifi": 67, "spkrec": 67, "xvect": 67, "feature_extractor": 67, "from_hparam": 67, "run_opt": 67, "uncom": 67, "wav_audio_file_path": 67, "head": [67, 69, 71, 72, 73, 75, 76, 78, 83, 85, 86], "torchaudio": 67, "extract_audio_embed": 67, "emb": [67, 75], "signal": 67, "encode_batch": 67, "embeddings_list": [67, 75], "embeddings_arrai": 67, "512": [67, 75], "14": [67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "196308": 67, "319454": 67, "47899": 67, "289091": 67, "817013": 67, "892642": 67, "24": [67, 73, 76, 78, 80], "898056": 67, "2561927": 67, "559636": 67, "5597174": 67, "6206665": 67, "285249": 67, "21": [67, 68, 69, 73, 76, 80, 87], "709625": 67, "5033684": 67, "913807": 67, "819826": 67, "1831462": 67, "208761": 67, "08425": 67, "321053": 67, "005463": 67, "216175": 67, "478231": 67, "682177": 67, "053815": 67, "2424726": 67, "091422": 67, "78335106": 67, "039538": 67, "23": [67, 73, 75, 76, 80, 87], "569181": 67, "19": [67, 72, 73, 75, 76, 81, 83, 84, 86, 87], "76109": 67, "1258249": 67, "75323": 67, "3508852": 67, "598273": 67, "237118": 67, "2500": 67, "leverag": [67, 72, 74, 76, 78, 86], "tune": [67, 72, 73, 81, 86], "computation": [67, 72, 86], "intens": [67, 72, 86], "held": [67, 71, 72, 73, 80, 81, 82, 85], "straightforward": [67, 71, 85], "benefit": [67, 82, 84, 85], "tol": 67, "num_crossval_fold": [67, 71, 78, 85], "decreas": [67, 74], "never": [67, 76, 79, 81, 82], "accuracy_scor": [67, 72, 76, 85, 86], "cv_accuraci": 67, "9772": 67, "probabilit": [67, 86], "9976": 67, "176": [67, 73, 76, 79], "006548": 67, "2318": 67, "008296": 67, "986": 67, "010476": 67, "1946": 67, "012922": 67, "516": 67, "013263": 67, "investig": 67, "100049": 67, "998728": 67, "998785": 67, "980984": 67, "998247": 67, "18": [67, 72, 73, 76, 80, 81, 83, 84, 86], "identified_label_issu": [67, 72], "lowest_quality_label": [67, 72, 76, 83, 86], "sort_valu": [67, 69, 71, 72, 75, 76, 78], "469": 67, "1871": 67, "1955": 67, "2132": 67, "worth": [67, 76], "iloc": [67, 71, 72, 83, 85, 86], "6_yweweler_14": 67, "6_yweweler_36": 67, "6_yweweler_35": 67, "6_theo_27": 67, "4_george_31": 67, "6_nicolas_8": 67, "sound": 67, "quit": [67, 81], "22": [67, 68, 73, 75, 76, 79, 80, 87], "blindli": [67, 74, 83, 85, 86], "trust": [67, 74, 76, 78, 82, 83, 85, 86], "address": [68, 69, 72, 74, 86], "underneath": 68, "hood": 68, "alert": 68, "introduct": 68, "mayb": [68, 69, 72], "examin": [68, 69, 71, 85], "your_feature_matrix": [68, 69], "toi": [68, 69, 73, 75, 76, 78], "train_test_split": [68, 69, 81, 85, 86], "inf": [68, 69], "mid": [68, 69], "bins_map": [68, 69], "create_data": [68, 69], "y_bin": [68, 69], "y_i": [68, 69], "y_bin_idx": [68, 69], "y_train": [68, 69, 76, 83], "y_test": [68, 69, 76, 83], "y_train_idx": [68, 69], "y_test_idx": [68, 69], "test_siz": [68, 69, 85, 86], "slide": [68, 69, 73], "decis": [68, 69, 85], "boundari": [68, 69], "frame": [68, 69], "x_out": [68, 69], "tini": [68, 69], "concaten": [68, 69, 82], "y_out": [68, 69], "y_out_bin": [68, 69], "y_out_bin_idx": [68, 69], "exact_duplicate_idx": [68, 69], "x_duplic": [68, 69], "y_duplic": [68, 69], "y_duplicate_idx": [68, 69], "noisy_labels_idx": [68, 69, 79], "scatter": [68, 69, 76, 79, 83], "black": [68, 69, 73, 83], "cyan": [68, 69], "pyplot": [68, 69, 75, 76, 79, 81, 83], "plt": [68, 69, 75, 76, 79, 81, 83], "plot_data": [68, 69, 76, 79, 83], "fig": [68, 69, 73, 75, 81, 83], "ax": [68, 69, 75, 81, 83], "subplot": [68, 69, 75, 81], "set_titl": [68, 69, 75, 81], "set_xlabel": [68, 69], "x_1": [68, 69], "fontsiz": [68, 69, 75, 76, 79], "set_ylabel": [68, 69], "x_2": [68, 69], "set_xlim": [68, 69], "set_ylim": [68, 69], "linestyl": [68, 69], "circl": [68, 69, 76, 79], "misclassifi": [68, 69], "zip": [68, 69, 75, 80, 87], "label_err": [68, 69], "180": [68, 69, 80], "marker": [68, 69], "facecolor": [68, 69], "edgecolor": [68, 69], "linewidth": [68, 69, 81], "dup": [68, 69], "first_legend": [68, 69], "align": [68, 69], "title_fontproperti": [68, 69], "semibold": [68, 69], "second_legend": [68, 69], "45": [68, 69, 73, 76, 80], "gca": [68, 69], "add_artist": [68, 69], "tight_layout": [68, 69], "ideal": [68, 69], "logist": [68, 69, 72, 78, 81, 86], "regress": [68, 69, 72, 77, 78, 81, 86], "remaind": 68, "modal": [68, 69, 74, 78], "regardless": [68, 69], "132": [68, 69, 76, 80], "9091": [68, 69], "77": [68, 69, 71, 73, 80, 85], "006939": [68, 69], "007830": [68, 69], "40": [68, 69, 72, 73, 75], "014826": [68, 69], "107": [68, 69, 76, 79], "021220": [68, 69], "120": [68, 69], "026403": [68, 69], "notic": [68, 76, 78, 80], "5221": [68, 69], "126": [68, 69, 76, 80], "046465": [68, 69], "130": [68, 69], "068695": [68, 69], "129": [68, 69], "127": [68, 69], "076251": [68, 69], "128": [68, 69, 73, 75], "083941": [68, 69], "2465": [68, 69], "is_near_duplicate_issu": [68, 69, 71, 72, 75, 76], "131": [68, 69, 84], "000000e": [68, 69], "00": [68, 69, 71, 73, 75, 84, 85], "463180e": [68, 69], "07": [68, 69, 76, 80], "51": [68, 69, 71, 73, 76, 80], "857172e": [68, 69], "859087e": [68, 69], "30": [68, 73, 74, 75, 79, 84, 87], "3293": 68, "025076": 68, "026534": 68, "050766": 68, "051025": 68, "home": [68, 72, 73, 75, 81, 86], "runner": [68, 72, 75, 81, 86], "219": [68, 80], "userwarn": 68, "249": [68, 76, 80], "228": [68, 80], "34": [68, 73, 76, 78, 80, 81, 87], "54": [68, 73, 76, 80], "039117": 68, "53": [68, 71, 73, 79, 80, 85], "044594": 68, "105": 68, "105121": 68, "133588": [68, 69], "43": [68, 73, 75, 76, 80, 86], "168035": 68, "125": 68, "090878": 68, "37": [68, 73, 87], "169462": 68, "109": [68, 80], "194566": 68, "35": [68, 73, 78, 79, 80], "196302": 68, "206314": 68, "average_ood_scor": 68, "32933380816554325": 68, "52": [68, 73, 80, 87], "085049e": 68, "087324e": 68, "89": [68, 71, 80, 83], "92": [68, 73, 76, 80], "574261e": 68, "583757e": 68, "91": [68, 73, 80, 85], "314215e": 68, "341292e": 68, "specfi": 68, "new_lab": 68, "scoring_funct": 68, "div": 68, "rem": 68, "inv_scal": 68, "49": [68, 73, 76, 80, 87], "superstitionissuemanag": 68, "unlucki": 68, "superstit": 68, "to_seri": 68, "issues_mask": 68, "summary_scor": 68, "32": [68, 73, 76, 78, 80], "9242": 68, "is_superstition_issu": 68, "superstition_scor": 68, "047581": 68, "090635": 68, "129591": 68, "65": [68, 80], "164840": 68, "demo": [69, 71, 79, 85], "lurk": [69, 75, 76], "thoroughli": 69, "preprocess": [69, 71, 81, 83, 85, 86], "review": [69, 71, 72, 73, 74, 76, 80, 83, 84, 85, 86, 87], "8218": 69, "is_non_iid_issu": [69, 72, 75, 76], "810274": 69, "826147": 69, "849587": 69, "855359": 69, "855485": 69, "821750488732925": 69, "auto": [69, 73, 74, 83, 85, 86], "conceptu": 69, "909091": 69, "522080": 69, "246459": 69, "821750": 69, "betweeen": 69, "864232": 69, "586131": 69, "235095": 69, "970324": 69, "825563": 69, "548979": 69, "221560": 69, "890575": 69, "533367": 69, "622256": 69, "199185": 69, "755724": 69, "499498": [69, 73], "179601": 69, "948362": 69, "632385": 69, "292800": 69, "878267": 69, "examples_w_issu": [69, 74], "inde": [69, 72], "miscellan": [69, 87], "206897": 69, "041667": 69, "793103": 69, "071429": 69, "103448": 69, "928571": 69, "053333": 69, "101266": 69, "946667": 69, "portion": 69, "huge": [69, 76], "worri": 69, "critic": 69, "highli": [69, 75], "sql": [71, 85], "databas": [71, 85], "excel": [71, 85], "parquet": [71, 85], "student": [71, 83, 85, 87], "grade": [71, 83, 85], "900": [71, 83, 85], "exam": [71, 83, 85], "letter": [71, 85, 87], "hundr": [71, 85], "histgradientboostingclassifi": 71, "reflect": [71, 72, 78, 80, 81, 83, 85, 86], "standardscal": [71, 81, 85], "possibli": [71, 85], "grades_data": [71, 85], "read_csv": [71, 72, 83, 85, 86], "stud_id": [71, 85], "exam_1": [71, 83, 85], "exam_2": [71, 83, 85], "exam_3": [71, 83, 85], "letter_grad": [71, 85], "f48f73": [71, 85], "0bd4e7": [71, 85], "81": [71, 72, 80, 83, 85, 87], "great": [71, 73, 85], "particip": [71, 85], "cb9d7a": [71, 85], "61": [71, 80, 85], "94": [71, 73, 76, 80, 83, 85], "78": [71, 73, 76, 80, 83, 85], "9acca4": [71, 85], "48": [71, 73, 76, 80, 85], "x_raw": [71, 85], "cat_featur": 71, "x_encod": [71, 85], "get_dummi": [71, 83, 85], "drop_first": [71, 85], "numeric_featur": [71, 85], "scaler": [71, 81, 85], "x_process": [71, 85], "fit_transform": [71, 85], "bring": [71, 72, 75, 78, 83, 85, 86], "byod": [71, 72, 75, 78, 83, 85, 86], "boost": [71, 74, 78, 83], "xgboost": [71, 74, 83], "think": [71, 74, 79, 84, 87], "carefulli": [71, 72, 75, 85], "nonzero": 71, "suspici": [71, 85], "tabl": [71, 73, 78, 85], "357": 71, "294": [71, 80], "46": [71, 73, 76, 80], "941": 71, "6578": 71, "000005": [71, 72, 75], "886": 71, "000059": 71, "709": 71, "000104": 71, "723": 71, "000169": 71, "689": 71, "000181": 71, "7154": 71, "012085": 71, "061510": 71, "115512": 71, "124391": 71, "214163": 71, "2169": 71, "915": 71, "168": [71, 76], "691": 71, "185": [71, 73, 80, 87], "582": 71, "issue_result": 71, "000842": 71, "555944": 71, "004374": 71, "sorted_issu": 71, "73": [71, 73, 79, 80, 83], "86": [71, 73, 75, 76, 80, 83], "deserv": 71, "outlier_result": 71, "sorted_outli": 71, "56": [71, 83], "96": [71, 73, 76, 79, 80, 83], "lt": [71, 72, 73, 75, 78, 84], "style": [71, 84], "font": 71, "18px": 71, "ff00ff": 71, "bac": 71, "unintend": [71, 72], "mistak": [71, 72, 75, 85, 86], "duplicate_result": 71, "690": 71, "246": [71, 80], "58": [71, 73, 76, 80], "perhap": [71, 76, 78], "twice": 71, "67": [71, 73, 80, 83], "wari": [71, 72, 74], "intent": [72, 86], "servic": [72, 86], "onlin": [72, 86], "bank": [72, 73, 86], "banking77": [72, 86], "oo": [72, 86], "000": [72, 73, 75, 86, 87], "categori": [72, 75, 86], "scope": [72, 86], "dive": 72, "your_featur": 72, "sentence_transform": [72, 86], "sentencetransform": [72, 86], "payment": [72, 86], "cancel_transf": [72, 86], "transfer": [72, 86], "fund": [72, 86], "cancel": [72, 86], "transact": [72, 86], "my": [72, 86], "revert": [72, 86], "morn": [72, 86], "realis": [72, 86], "yesterdai": [72, 86], "rent": [72, 86], "realli": [72, 78, 84, 86], "tomorrow": [72, 86], "raw_text": [72, 86], "change_pin": [72, 86], "beneficiary_not_allow": [72, 86], "apple_pay_or_google_pai": [72, 86], "supported_cards_and_curr": [72, 86], "card_payment_fee_charg": [72, 86], "visa_or_mastercard": [72, 86], "lost_or_stolen_phon": [72, 86], "card_about_to_expir": [72, 86], "getting_spare_card": [72, 86], "utter": [72, 86], "continu": [72, 75, 78, 83, 85, 86, 87], "suit": [72, 73, 86], "electra": [72, 86], "discrimin": [72, 86], "googl": [72, 86], "text_embed": 72, "No": [72, 74, 86], "google_electra": [72, 86], "pool": [72, 74, 81, 86], "checkpoint": [72, 81, 86], "electramodel": [72, 86], "discriminator_predict": [72, 86], "dense_predict": [72, 86], "bertforsequenceclassif": [72, 86], "bertforpretrain": [72, 86], "400": [72, 86], "data_dict": [72, 76, 78], "84": [72, 73, 80], "41": [72, 73, 80, 83, 87], "38": [72, 73, 80, 84], "9580": 72, "981": 72, "974": 72, "000150": 72, "982": [72, 73], "000220": 72, "971": 72, "000511": 72, "980": [72, 73], "000948": 72, "9122": 72, "994": 72, "676322": 72, "999": [72, 73], "693868": 72, "697240": 72, "433": 72, "700874": 72, "989": 72, "713590": 72, "0656": 72, "148": 72, "006237": 72, "160": 72, "514": 72, "006485": 72, "546": 72, "481": 72, "008165": 72, "0000": [72, 73, 76], "313": [72, 80], "564102": 72, "572258": 72, "28": [72, 73, 75, 76, 78, 87], "574915": 72, "31": [72, 73, 78, 80], "575507": 72, "575874": 72, "791943": 72, "258507": 72, "698864": 72, "183013": 72, "771059": 72, "to_numpi": [72, 83, 86], "data_with_suggested_label": 72, "suggested_label": 72, "charg": [72, 86], "cash": [72, 86], "holidai": [72, 86], "sent": [72, 86, 87], "card": [72, 73, 86], "mine": [72, 86], "expir": [72, 86], "me": [72, 86], "withdraw": 72, "monei": 72, "whoever": [72, 86], "outlier_issu": [72, 75], "lowest_quality_outli": 72, "OR": 72, "636c65616e6c616220697320617765736f6d6521": 72, "phone": [72, 73], "gone": 72, "gt": [72, 78, 87], "samp": 72, "br": 72, "press": [72, 87], "nonsens": 72, "sens": 72, "detriment": 72, "duplicate_issu": 72, "fee": 72, "pai": 72, "go": [72, 73, 76], "shortlist": [72, 83, 86], "curat": [72, 77], "mnist_test_set": 73, "imagenet_val_set": 73, "tench": 73, "goldfish": 73, "white": [73, 87], "shark": 73, "tiger": 73, "hammerhead": 73, "electr": 73, "rai": 73, "stingrai": 73, "cock": 73, "hen": 73, "ostrich": 73, "brambl": 73, "goldfinch": 73, "hous": 73, "finch": 73, "junco": 73, "indigo": 73, "bunt": 73, "american": [73, 87], "robin": 73, "bulbul": 73, "jai": 73, "magpi": 73, "chickade": 73, "dipper": 73, "kite": 73, "bald": 73, "eagl": 73, "vultur": 73, "grei": 73, "owl": 73, "fire": 73, "salamand": 73, "smooth": 73, "newt": 73, "spot": [73, 80], "axolotl": 73, "bullfrog": 73, "tree": 73, "frog": [73, 81], "tail": 73, "loggerhead": 73, "sea": 73, "turtl": 73, "leatherback": 73, "mud": 73, "terrapin": 73, "band": 73, "gecko": 73, "green": [73, 87], "iguana": 73, "carolina": 73, "anol": 73, "desert": 73, "grassland": 73, "whiptail": 73, "lizard": 73, "agama": 73, "frill": 73, "neck": 73, "allig": 73, "gila": 73, "monster": 73, "european": 73, "chameleon": 73, "komodo": 73, "dragon": 73, "nile": 73, "crocodil": 73, "triceratop": 73, "worm": 73, "snake": 73, "ring": 73, "eastern": 73, "hog": 73, "nose": 73, "kingsnak": 73, "garter": 73, "water": 73, "vine": 73, "night": 73, "boa": 73, "constrictor": 73, "african": 73, "rock": 73, "indian": 73, "cobra": 73, "mamba": 73, "saharan": 73, "horn": 73, "viper": 73, "diamondback": 73, "rattlesnak": 73, "sidewind": 73, "trilobit": 73, "harvestman": 73, "scorpion": 73, "yellow": 73, "garden": 73, "spider": 73, "barn": 73, "southern": 73, "widow": 73, "tarantula": 73, "wolf": 73, "tick": 73, "centiped": 73, "grous": 73, "ptarmigan": 73, "ruf": 73, "prairi": 73, "peacock": 73, "quail": 73, "partridg": 73, "parrot": 73, "macaw": 73, "sulphur": 73, "crest": 73, "cockatoo": 73, "lorikeet": 73, "coucal": 73, "bee": 73, "eater": 73, "hornbil": 73, "hummingbird": 73, "jacamar": 73, "toucan": 73, "duck": [73, 86], "breast": 73, "mergans": 73, "goos": 73, "swan": 73, "tusker": 73, "echidna": 73, "platypu": 73, "wallabi": 73, "koala": 73, "wombat": 73, "jellyfish": 73, "anemon": 73, "brain": 73, "coral": 73, "flatworm": 73, "nematod": 73, "conch": 73, "snail": 73, "slug": 73, "chiton": 73, "chamber": 73, "nautilu": 73, "dung": 73, "crab": 73, "fiddler": 73, "king": 73, "lobster": 73, "spini": 73, "crayfish": 73, "hermit": 73, "isopod": 73, "stork": 73, "spoonbil": 73, "flamingo": 73, "heron": 73, "egret": 73, "bittern": 73, "crane": 73, "bird": [73, 81], "limpkin": 73, "gallinul": 73, "coot": 73, "bustard": 73, "ruddi": 73, "turnston": 73, "dunlin": 73, "redshank": 73, "dowitch": 73, "oystercatch": 73, "pelican": 73, "penguin": 73, "albatross": 73, "whale": 73, "killer": 73, "dugong": 73, "lion": 73, "chihuahua": 73, "japanes": 73, "chin": 73, "maltes": 73, "pekinges": 73, "shih": 73, "tzu": 73, "charl": 73, "spaniel": 73, "papillon": 73, "terrier": 73, "rhodesian": 73, "ridgeback": 73, "afghan": [73, 87], "hound": 73, "basset": 73, "beagl": 73, "bloodhound": 73, "bluetick": 73, "coonhound": 73, "tan": 73, "walker": 73, "foxhound": 73, "redbon": 73, "borzoi": 73, "irish": 73, "wolfhound": 73, "italian": 73, "greyhound": 73, "whippet": 73, "ibizan": 73, "norwegian": 73, "elkhound": 73, "otterhound": 73, "saluki": 73, "scottish": 73, "deerhound": 73, "weimaran": 73, "staffordshir": 73, "bull": 73, "bedlington": 73, "border": 73, "kerri": 73, "norfolk": 73, "norwich": 73, "yorkshir": 73, "wire": 73, "fox": 73, "lakeland": 73, "sealyham": 73, "airedal": 73, "cairn": 73, "australian": 73, "dandi": 73, "dinmont": 73, "boston": 73, "miniatur": 73, "schnauzer": 73, "giant": 73, "tibetan": 73, "silki": 73, "coat": [73, 75], "wheaten": 73, "west": 73, "highland": 73, "lhasa": 73, "apso": 73, "flat": 73, "retriev": 73, "curli": 73, "golden": 73, "labrador": 73, "chesapeak": 73, "bai": 73, "german": [73, 87], "shorthair": 73, "pointer": 73, "vizsla": 73, "setter": 73, "gordon": 73, "brittani": 73, "clumber": 73, "springer": 73, "welsh": 73, "cocker": 73, "sussex": 73, "kuvasz": 73, "schipperk": 73, "groenendael": 73, "malinoi": 73, "briard": 73, "kelpi": 73, "komondor": 73, "sheepdog": 73, "shetland": 73, "colli": 73, "bouvier": 73, "de": 73, "flandr": 73, "rottweil": 73, "shepherd": 73, "dobermann": 73, "pinscher": 73, "swiss": [73, 87], "mountain": 73, "bernes": 73, "appenzel": 73, "sennenhund": 73, "entlebuch": 73, "boxer": 73, "bullmastiff": 73, "mastiff": 73, "french": 73, "bulldog": 73, "dane": 73, "st": 73, "bernard": 73, "huski": 73, "alaskan": 73, "malamut": 73, "siberian": 73, "dalmatian": 73, "affenpinsch": 73, "basenji": 73, "pug": 73, "leonberg": 73, "newfoundland": 73, "pyrenean": 73, "samoi": 73, "pomeranian": 73, "chow": 73, "keeshond": 73, "griffon": 73, "bruxelloi": 73, "pembrok": 73, "corgi": 73, "cardigan": 73, "poodl": 73, "mexican": 73, "hairless": 73, "tundra": 73, "coyot": 73, "dingo": 73, "dhole": 73, "wild": 73, "hyena": 73, "kit": 73, "arctic": 73, "tabbi": 73, "persian": 73, "siames": 73, "egyptian": 73, "mau": 73, "cougar": 73, "lynx": 73, "leopard": 73, "snow": 73, "jaguar": 73, "cheetah": 73, "brown": [73, 84], "bear": 73, "polar": 73, "sloth": 73, "mongoos": 73, "meerkat": 73, "beetl": 73, "ladybug": 73, "ground": [73, 76, 78, 83], "longhorn": 73, "leaf": 73, "rhinocero": 73, "weevil": 73, "fly": 73, "ant": 73, "grasshopp": 73, "cricket": 73, "stick": 73, "insect": 73, "cockroach": 73, "manti": 73, "cicada": 73, "leafhopp": 73, "lacew": 73, "dragonfli": 73, "damselfli": 73, "admir": 73, "ringlet": 73, "monarch": 73, "butterfli": 73, "gossam": 73, "wing": 73, "starfish": 73, "urchin": 73, "cucumb": 73, "cottontail": 73, "rabbit": 73, "hare": 73, "angora": 73, "hamster": 73, "porcupin": 73, "squirrel": 73, "marmot": 73, "beaver": 73, "guinea": 73, "pig": 73, "sorrel": 73, "zebra": 73, "boar": 73, "warthog": 73, "hippopotamu": 73, "ox": 73, "buffalo": 73, "bison": 73, "bighorn": 73, "sheep": 73, "alpin": 73, "ibex": 73, "hartebeest": 73, "impala": 73, "gazel": 73, "dromedari": 73, "llama": 73, "weasel": 73, "mink": 73, "polecat": 73, "foot": 73, "ferret": 73, "otter": 73, "skunk": 73, "badger": 73, "armadillo": 73, "toed": 73, "orangutan": 73, "gorilla": 73, "chimpanze": 73, "gibbon": 73, "siamang": 73, "guenon": 73, "pata": 73, "monkei": 73, "baboon": 73, "macaqu": 73, "langur": 73, "colobu": 73, "probosci": 73, "marmoset": 73, "capuchin": 73, "howler": 73, "titi": 73, "geoffroi": 73, "lemur": 73, "indri": 73, "asian": 73, "eleph": 73, "bush": 73, "snoek": 73, "eel": 73, "coho": 73, "salmon": 73, "beauti": 73, "clownfish": 73, "sturgeon": 73, "garfish": 73, "lionfish": 73, "pufferfish": 73, "abacu": 73, "abaya": 73, "academ": 73, "gown": 73, "accordion": 73, "acoust": 73, "guitar": 73, "aircraft": 73, "carrier": 73, "airlin": 73, "airship": 73, "altar": 73, "ambul": 73, "amphibi": 73, "clock": [73, 87], "apiari": 73, "apron": 73, "wast": 73, "assault": 73, "rifl": 73, "backpack": 73, "bakeri": 73, "balanc": 73, "beam": 73, "balloon": 73, "ballpoint": 73, "pen": 73, "aid": 73, "banjo": 73, "balust": 73, "barbel": 73, "barber": 73, "chair": [73, 80], "barbershop": 73, "baromet": 73, "barrel": 73, "wheelbarrow": 73, "basebal": 73, "basketbal": 73, "bassinet": 73, "bassoon": 73, "swim": 73, "cap": 73, "bath": 73, "towel": 73, "bathtub": 73, "station": 73, "wagon": 73, "lighthous": 73, "beaker": 73, "militari": 73, "beer": 73, "bottl": 73, "glass": 73, "bell": 73, "cot": 73, "bib": 73, "bicycl": [73, 84], "bikini": 73, "binder": 73, "binocular": 73, "birdhous": 73, "boathous": 73, "bobsleigh": 73, "bolo": 73, "tie": 73, "poke": 73, "bonnet": 73, "bookcas": 73, "bookstor": 73, "bow": 73, "brass": 73, "bra": 73, "breakwat": 73, "breastplat": 73, "broom": 73, "bucket": 73, "buckl": 73, "bulletproof": 73, "vest": 73, "butcher": 73, "shop": 73, "taxicab": 73, "cauldron": 73, "candl": 73, "cannon": 73, "cano": 73, "mirror": [73, 80], "carousel": 73, "tool": [73, 76, 78], "carton": 73, "wheel": 73, "teller": 73, "cassett": 73, "player": 73, "castl": 73, "catamaran": 73, "cd": 73, "cello": 73, "mobil": [73, 87], "chain": 73, "fenc": [73, 84], "mail": 73, "chainsaw": 73, "chest": 73, "chiffoni": 73, "chime": 73, "china": 73, "cabinet": 73, "christma": 73, "stock": 73, "church": 73, "movi": 73, "theater": 73, "cleaver": 73, "cliff": 73, "dwell": 73, "cloak": 73, "clog": 73, "cocktail": 73, "shaker": 73, "coffe": 73, "mug": 73, "coffeemak": 73, "coil": 73, "lock": 73, "keyboard": 73, "confectioneri": 73, "ship": [73, 81], "corkscrew": 73, "cornet": 73, "cowboi": 73, "boot": 73, "hat": 73, "cradl": 73, "crash": 73, "helmet": 73, "crate": 73, "infant": 73, "bed": 73, "crock": 73, "pot": 73, "croquet": 73, "crutch": 73, "cuirass": 73, "dam": 73, "desk": 73, "desktop": 73, "rotari": 73, "dial": 73, "telephon": 73, "diaper": 73, "watch": 73, "dine": 73, "dishcloth": 73, "dishwash": 73, "disc": 73, "brake": 73, "dock": 73, "sled": 73, "dome": 73, "doormat": 73, "drill": 73, "rig": 73, "drum": 73, "drumstick": 73, "dumbbel": 73, "dutch": 73, "oven": 73, "fan": 73, "locomot": 73, "entertain": 73, "center": 73, "envelop": 73, "espresso": 73, "powder": 73, "feather": 73, "fireboat": 73, "engin": [73, 84], "screen": 73, "sheet": 73, "flagpol": 73, "flute": 73, "footbal": 73, "forklift": 73, "fountain": 73, "poster": 73, "freight": 73, "fry": 73, "pan": 73, "fur": 73, "garbag": 73, "ga": 73, "pump": 73, "goblet": 73, "kart": 73, "golf": 73, "cart": 73, "gondola": 73, "gong": 73, "grand": 73, "piano": 73, "greenhous": 73, "grill": 73, "groceri": 73, "guillotin": 73, "barrett": 73, "hair": 73, "sprai": 73, "hammer": 73, "dryer": 73, "hand": [73, 76], "handkerchief": 73, "drive": 73, "harmonica": 73, "harp": 73, "harvest": 73, "hatchet": 73, "holster": 73, "honeycomb": 73, "hoop": 73, "skirt": 73, "horizont": 73, "bar": 73, "hors": [73, 81, 86], "drawn": 73, "hourglass": 73, "ipod": 73, "cloth": 73, "iron": 73, "jack": 73, "lantern": 73, "jean": 73, "jeep": 73, "shirt": [73, 75], "jigsaw": 73, "puzzl": 73, "pull": 73, "rickshaw": 73, "joystick": 73, "kimono": 73, "knee": 73, "pad": 73, "knot": 73, "ladl": 73, "lampshad": 73, "laptop": 73, "lawn": 73, "mower": 73, "knife": 73, "lifeboat": 73, "lighter": 73, "limousin": 73, "ocean": 73, "liner": 73, "lipstick": 73, "slip": 73, "shoe": 73, "lotion": 73, "speaker": 73, "loup": 73, "sawmil": 73, "magnet": 73, "compass": 73, "bag": [73, 75, 81, 82], "mailbox": 73, "tight": 73, "tank": 73, "manhol": 73, "maraca": 73, "marimba": 73, "maypol": 73, "maze": 73, "cup": [73, 80], "medicin": 73, "megalith": 73, "microphon": 73, "microwav": 73, "milk": 73, "minibu": 73, "miniskirt": 73, "minivan": 73, "missil": 73, "mitten": 73, "mix": 73, "bowl": 73, "modem": 73, "monasteri": 73, "monitor": 73, "mope": 73, "mortar": 73, "mosqu": 73, "mosquito": 73, "scooter": 73, "bike": 73, "tent": 73, "mous": [73, 74], "mousetrap": 73, "van": 73, "muzzl": 73, "nail": 73, "brace": 73, "necklac": 73, "nippl": 73, "obelisk": 73, "obo": 73, "ocarina": 73, "odomet": 73, "oil": 73, "oscilloscop": 73, "overskirt": 73, "bullock": 73, "oxygen": 73, "packet": 73, "paddl": 73, "padlock": 73, "paintbrush": 73, "pajama": 73, "palac": [73, 87], "parachut": 73, "park": 73, "bench": 73, "meter": 73, "passeng": 73, "patio": 73, "payphon": 73, "pedest": 73, "pencil": 73, "perfum": 73, "petri": 73, "dish": 73, "photocopi": 73, "plectrum": 73, "pickelhaub": 73, "picket": 73, "pickup": 73, "pier": 73, "piggi": 73, "pill": 73, "pillow": 73, "ping": 73, "pong": 73, "pinwheel": 73, "pirat": 73, "pitcher": 73, "plane": 73, "planetarium": 73, "plastic": 73, "plate": 73, "rack": 73, "plow": 73, "plunger": 73, "polaroid": 73, "camera": 73, "pole": [73, 84], "polic": 73, "poncho": 73, "billiard": 73, "soda": 73, "potter": 73, "power": [73, 76, 87], "prayer": 73, "rug": 73, "printer": 73, "prison": 73, "projectil": 73, "projector": 73, "hockei": 73, "puck": 73, "punch": 73, "purs": 73, "quill": 73, "quilt": 73, "race": 73, "racket": 73, "radiat": 73, "radio": 73, "telescop": 73, "rain": 73, "recreat": 73, "reel": 73, "reflex": 73, "refriger": 73, "remot": 73, "restaur": 73, "revolv": 73, "rotisseri": 73, "eras": 73, "rugbi": 73, "ruler": 73, "safe": 73, "safeti": 73, "salt": 73, "sandal": [73, 75], "sarong": 73, "saxophon": 73, "scabbard": 73, "school": 73, "bu": [73, 84], "schooner": 73, "scoreboard": 73, "crt": 73, "screw": 73, "screwdriv": 73, "seat": 73, "belt": 73, "sew": 73, "shield": 73, "shoji": 73, "basket": 73, "shovel": 73, "shower": 73, "curtain": 73, "ski": 73, "sleep": 73, "door": 73, "slot": 73, "snorkel": 73, "snowmobil": 73, "snowplow": 73, "soap": 73, "dispens": 73, "soccer": [73, 87], "sock": 73, "solar": 73, "thermal": 73, "collector": 73, "sombrero": 73, "soup": 73, "heater": 73, "shuttl": 73, "spatula": 73, "motorboat": 73, "web": 73, "spindl": 73, "sport": [73, 87], "spotlight": 73, "stage": 73, "steam": 73, "arch": 73, "bridg": 73, "steel": 73, "stethoscop": 73, "scarf": 73, "stone": 73, "wall": [73, 84], "stopwatch": 73, "stove": 73, "strainer": 73, "tram": 73, "stretcher": 73, "couch": 73, "stupa": 73, "submarin": 73, "sundial": 73, "sunglass": 73, "sunscreen": 73, "suspens": 73, "mop": 73, "sweatshirt": 73, "swimsuit": 73, "swing": 73, "switch": 73, "syring": 73, "lamp": 73, "tape": 73, "teapot": 73, "teddi": 73, "televis": [73, 87], "tenni": 73, "thatch": 73, "roof": 73, "front": 73, "thimbl": 73, "thresh": 73, "throne": 73, "tile": 73, "toaster": 73, "tobacco": 73, "toilet": 73, "totem": 73, "tow": 73, "tractor": 73, "semi": 73, "trailer": 73, "trai": 73, "trench": 73, "tricycl": 73, "trimaran": 73, "tripod": 73, "triumphal": 73, "trolleybu": 73, "trombon": 73, "tub": 73, "turnstil": 73, "typewrit": 73, "umbrella": 73, "unicycl": 73, "upright": 73, "vacuum": 73, "cleaner": 73, "vase": 73, "vault": 73, "velvet": 73, "vend": 73, "vestment": 73, "viaduct": 73, "violin": 73, "volleybal": 73, "waffl": 73, "wallet": 73, "wardrob": 73, "sink": 73, "wash": 73, "jug": 73, "tower": 73, "whiskei": 73, "whistl": 73, "wig": 73, "shade": [73, 84], "windsor": 73, "wine": 73, "wok": 73, "wooden": 73, "spoon": 73, "wool": 73, "rail": 73, "shipwreck": 73, "yawl": 73, "yurt": 73, "websit": 73, "comic": 73, "book": 73, "crossword": 73, "traffic": [73, 80, 84], "sign": [73, 84, 87], "light": [73, 75, 80, 84], "dust": 73, "jacket": [73, 80], "menu": 73, "guacamol": 73, "consomm": 73, "trifl": 73, "ic": 73, "cream": 73, "pop": 73, "baguett": 73, "bagel": 73, "pretzel": 73, "cheeseburg": 73, "mash": 73, "potato": 73, "cabbag": 73, "broccoli": 73, "cauliflow": 73, "zucchini": 73, "spaghetti": 73, "squash": 73, "acorn": 73, "butternut": 73, "artichok": 73, "pepper": 73, "cardoon": 73, "mushroom": 73, "granni": 73, "smith": 73, "strawberri": 73, "orang": 73, "lemon": 73, "pineappl": 73, "banana": 73, "jackfruit": 73, "custard": 73, "appl": 73, "pomegran": 73, "hai": 73, "carbonara": 73, "chocol": 73, "syrup": 73, "dough": 73, "meatloaf": 73, "pizza": 73, "pie": 73, "burrito": 73, "eggnog": 73, "alp": 73, "bubbl": 73, "reef": 73, "geyser": 73, "lakeshor": 73, "promontori": 73, "shoal": 73, "seashor": 73, "vallei": 73, "volcano": 73, "bridegroom": 73, "scuba": 73, "diver": 73, "rapese": 73, "daisi": 73, "ladi": 73, "slipper": 73, "corn": 73, "rose": 73, "hip": 73, "chestnut": 73, "fungu": 73, "agar": 73, "gyromitra": 73, "stinkhorn": 73, "earth": 73, "star": 73, "wood": 73, "bolet": 73, "ear": 73, "cifar10_test_set": 73, "airplan": [73, 81], "automobil": [73, 81], "deer": [73, 81], "cifar100_test_set": 73, "aquarium_fish": 73, "babi": 73, "boi": 73, "camel": 73, "caterpillar": 73, "cattl": [73, 87], "cloud": 73, "dinosaur": 73, "dolphin": 73, "flatfish": 73, "forest": 73, "girl": 73, "kangaroo": 73, "lawn_mow": 73, "man": 73, "maple_tre": 73, "motorcycl": [73, 84], "oak_tre": 73, "orchid": 73, "palm_tre": 73, "pear": 73, "pickup_truck": 73, "pine_tre": 73, "plain": 73, "poppi": 73, "possum": 73, "raccoon": 73, "road": [73, 84], "rocket": 73, "seal": 73, "shrew": 73, "skyscrap": 73, "streetcar": 73, "sunflow": 73, "sweet_pepp": 73, "trout": 73, "tulip": 73, "willow_tre": 73, "woman": [73, 80], "caltech256": 73, "ak47": 73, "bat": 73, "glove": 73, "birdbath": 73, "blimp": 73, "bonsai": 73, "boom": 73, "breadmak": 73, "buddha": 73, "bulldoz": 73, "cactu": 73, "cake": 73, "tire": 73, "cartman": 73, "cereal": 73, "chandeli": 73, "chess": 73, "board": 73, "chimp": 73, "chopstick": 73, "coffin": 73, "coin": 73, "comet": 73, "cormor": 73, "globe": 73, "diamond": 73, "dice": 73, "doorknob": 73, "drink": 73, "straw": 73, "dumb": 73, "eiffel": 73, "elk": 73, "ewer": 73, "eyeglass": 73, "fern": 73, "fighter": 73, "jet": [73, 83], "extinguish": 73, "hydrant": 73, "firework": 73, "flashlight": 73, "floppi": 73, "fri": 73, "frisbe": 73, "galaxi": 73, "giraff": 73, "goat": 73, "gate": 73, "grape": 73, "pick": 73, "hamburg": 73, "hammock": 73, "harpsichord": 73, "hawksbil": 73, "helicopt": 73, "hibiscu": 73, "homer": 73, "simpson": 73, "horsesho": 73, "air": 73, "skeleton": 73, "ibi": 73, "cone": 73, "iri": 73, "jesu": 73, "christ": 73, "joi": 73, "kayak": 73, "ketch": 73, "ladder": 73, "lath": 73, "licens": 73, "lightbulb": 73, "lightn": 73, "mandolin": 73, "mar": 73, "mattress": 73, "megaphon": 73, "menorah": 73, "microscop": 73, "minaret": 73, "minotaur": 73, "motorbik": 73, "mussel": 73, "neckti": 73, "octopu": 73, "palm": 73, "pilot": 73, "paperclip": 73, "shredder": 73, "pci": 73, "peopl": [73, 80], "pez": 73, "picnic": 73, "pram": 73, "prai": 73, "pyramid": 73, "rainbow": 73, "roulett": 73, "saddl": 73, "saturn": 73, "segwai": 73, "propel": 73, "sextant": 73, "music": 73, "skateboard": 73, "smokestack": 73, "sneaker": 73, "boat": 73, "stain": 73, "steer": 73, "stirrup": 73, "superman": 73, "sushi": 73, "armi": [73, 87], "sword": 73, "tambourin": 73, "teepe": 73, "court": 73, "theodolit": 73, "tomato": 73, "tombston": 73, "tour": 73, "pisa": 73, "treadmil": 73, "fork": 73, "tweezer": 73, "unicorn": 73, "vcr": 73, "waterfal": 73, "watermelon": 73, "weld": 73, "windmil": 73, "xylophon": 73, "yarmulk": 73, "yo": 73, "toad": 73, "twenty_news_test_set": 73, "alt": 73, "atheism": 73, "comp": 73, "graphic": [73, 84], "misc": [73, 87], "sy": 73, "ibm": 73, "pc": 73, "hardwar": 73, "mac": 73, "forsal": 73, "rec": 73, "sci": 73, "crypt": 73, "electron": 73, "med": 73, "soc": 73, "religion": 73, "christian": [73, 87], "talk": [73, 87], "polit": 73, "gun": 73, "mideast": 73, "amazon": 73, "neutral": 73, "imdb_test_set": 73, "all_class": 73, "20news_test_set": 73, "_load_classes_predprobs_label": 73, "dataset_nam": 73, "labelerror": 73, "url_bas": 73, "5392f6c71473055060be3044becdde1cbc18284d": 73, "url_label": 73, "original_test_label": 73, "_original_label": 73, "url_prob": 73, "cross_validated_predicted_prob": 73, "_pyx": 73, "num_part": 73, "datatset": 73, "bytesio": 73, "allow_pickl": 73, "pred_probs_part": 73, "url": 73, "_of_": 73, "nload": 73, "imdb": 73, "ve": [73, 76, 78, 80], "interpret": [73, 74, 76], "capit": 73, "50000": 73, "medic": [73, 87], "doctor": 73, "836": 73, "736842": 73, "282": [73, 80], "76": [73, 76, 79, 80, 83], "714286": 73, "265": [73, 79], "400000": 73, "782": 73, "74": [73, 80, 83, 85], "628571": 73, "620": 73, "36": [73, 87], "72": [73, 76, 79, 83, 85], "500000": 73, "995": 73, "522": 73, "038462": 73, "996": 73, "480": 73, "074074": 73, "997": 73, "716": 73, "998": 73, "722": 73, "466": 73, "987": 73, "44": [73, 75, 79, 80], "00088": 73, "435": 73, "876": 73, "00076": 73, "638": 73, "639": 73, "00072": 73, "681": 73, "00070": 73, "499495": 73, "183": 73, "717": 73, "00000": 73, "499496": 73, "499497": 73, "715": 73, "714": 73, "499499": 73, "729": 73, "499500": 73, "772": 73, "82": [73, 76, 80], "29780": 73, "256": [73, 74, 80], "29": [73, 75, 78, 79, 80, 84, 87], "780": 73, "254": [73, 80], "359223": 73, "333333": 73, "640777": 73, "184": [73, 76], "282609": 73, "341176": 73, "253333": 73, "658824": 73, "337349": 73, "246575": 73, "662651": 73, "248": 73, "330000": 73, "355769": 73, "670000": 73, "251": [73, 80], "112": 73, "252": 73, "253": [73, 80], "058824": 73, "167": [73, 76, 80], "255": [73, 75], "190": [73, 76, 80], "66": 73, "002216": 73, "000974": 73, "59": [73, 80], "88": [73, 75, 76, 79, 80, 83, 85], "000873": 73, "79": [73, 80], "000739": 73, "32635": 73, "47": [73, 80], "32636": 73, "32637": 73, "32638": 73, "32639": 73, "32640": 73, "420": 73, "002242": 73, "997758": 73, "002088": 73, "001045": 73, "997912": 73, "002053": 73, "997947": 73, "001980": 73, "000991": 73, "998020": 73, "001946": 73, "002915": 73, "998054": 73, "001938": 73, "002904": 73, "998062": 73, "001020": 73, "998980": 73, "001018": 73, "002035": 73, "998982": 73, "999009": 73, "0003": 73, "0002": 73, "27": [73, 76, 80, 87], "71": [73, 80, 85], "071": 73, "067269": 73, "929": 73, "046": 73, "057312": 73, "954": 73, "035": 73, "032096": 73, "965": 73, "031": 73, "012232": 73, "969": 73, "022": 73, "025896": 73, "978": 73, "020": [73, 76], "013092": 73, "018": 73, "013065": 73, "016": 73, "031496": 73, "984": 73, "013": 73, "020833": 73, "012": 73, "010020": 73, "988": 73, "0073": 73, "0020": 73, "0016": 73, "0015": 73, "0014": 73, "0013": 73, "0012": 73, "0010": 73, "0008": 73, "0007": 73, "0006": 73, "0005": 73, "0004": 73, "284": [73, 80], "97": [73, 74, 76, 80, 83, 85, 87], "452381": 73, "459770": 73, "518868": 73, "460784": 73, "446602": 73, "57": [73, 87], "68": [73, 76, 80, 85], "103774": 73, "030612": 73, "049020": 73, "98": [73, 74, 83], "110092": 73, "99": [73, 76, 85], "0034": 73, "0032": 73, "0026": 73, "0025": 73, "4945": 73, "4946": 73, "85": [73, 80, 83], "4947": 73, "4948": 73, "83": [73, 76, 80, 83, 85, 87], "4949": 73, "4950": 73, "25000": 73, "708": 73, "601": 73, "05664": 73, "048495": 73, "94336": 73, "04808": 73, "056159": 73, "95192": 73, "1309": 73, "05236": 73, "309": 73, "7532": 73, "532": 73, "034483": 73, "009646": 73, "965517": 73, "030457": 73, "020513": 73, "969543": 73, "028061": 73, "035443": 73, "971939": 73, "025316": 73, "005168": 73, "974684": 73, "049751": 73, "979487": 73, "019920": 73, "042802": 73, "980080": 73, "017677": 73, "005115": 73, "982323": 73, "012987": 73, "005236": 73, "987013": 73, "012723": 73, "025126": 73, "987277": 73, "010989": 73, "008264": 73, "989011": 73, "010283": 73, "027778": 73, "989717": 73, "009677": 73, "990323": 73, "007614": 73, "010127": 73, "992386": 73, "005051": 73, "994949": 73, "005025": 73, "994975": 73, "005013": 73, "994987": 73, "001859": 73, "001328": 73, "000929": 73, "000664": 73, "186": [73, 76], "187": 73, "188": [73, 76, 79], "189": [73, 76], "9996437": 73, "437": 73, "228667": 73, "287149": 73, "192393": 73, "230267": 73, "807607": 73, "142732": 73, "132872": 73, "155587": 73, "146413": 73, "844413": 73, "203006": 73, "154384": 73, "025728": 73, "019687": 73, "974272": 73, "298801": 73, "029891": 73, "217015": 73, "021709": 73, "58589": 73, "005861": 73, "574": 73, "405": 73, "snippet": 74, "nlp": [74, 87], "mind": [74, 76], "number_of_class": 74, "total_number_of_data_point": 74, "drop": [74, 78, 83, 86], "feed": 74, "alphabet": 74, "labels_proper_format": 74, "your_classifi": 74, "issues_datafram": 74, "class_predicted_for_flagged_exampl": 74, "class_predicted_for_all_exampl": 74, "grant": 74, "datataset": 74, "fair": [74, 76], "game": 74, "speedup": [74, 81], "flexibl": 74, "tempfil": 74, "mkdtemp": 74, "sped": 74, "anywai": 74, "pred_probs_merg": 74, "merge_rare_class": 74, "count_threshold": 74, "class_mapping_orig2new": 74, "heath_summari": 74, "num_examples_per_class": 74, "rare_class": 74, "num_classes_merg": 74, "other_class": 74, "labels_merg": 74, "new_c": 74, "merged_prob": 74, "keepdim": 74, "hstack": [74, 75, 76, 78], "new_class": 74, "original_class": 74, "num_check": 74, "ones_array_ref": 74, "isclos": 74, "though": [74, 76, 87], "successfulli": 74, "meaning": [74, 81], "virtuou": [74, 78], "cycl": [74, 78], "jointli": 74, "junk": 74, "clutter": 74, "unknown": 74, "caltech": 74, "intersect": 74, "combined_boolean_mask": 74, "mask1": 74, "mask2": 74, "gradientboostingclassifi": [74, 76], "true_error": [74, 76, 79], "101": [74, 80], "102": [74, 79, 80], "104": [74, 80], "model_to_find_error": 74, "model_to_return": 74, "cl0": 74, "randomizedsearchcv": 74, "expens": 74, "param_distribut": 74, "learning_r": [74, 76], "max_depth": [74, 76], "magnitud": 74, "coeffici": [74, 83], "optin": 74, "environ": [74, 76], "rerun": [74, 76], "cell": [74, 76], "On": [74, 76, 80], "unabl": [74, 76], "render": [74, 76], "nbviewer": [74, 76], "cleanlearningcleanlearn": [74, 76], "linearregressionlinearregress": 74, "assist": 74, "streamlin": 74, "ux": 74, "agpl": 74, "compani": 74, "commerci": 74, "alter": 74, "email": 74, "discuss": 74, "anywher": 74, "60": [75, 76], "excess": 75, "torchvis": [75, 81], "tensordataset": 75, "stratifiedkfold": [75, 79], "tqdm": 75, "fashion_mnist": 75, "0a671f063342996f19779d38c0ab4abef9c64f757b35af8134b331c294d7ba48": 75, "num_row": 75, "60000": 75, "pil": 75, "transformed_dataset": 75, "with_format": 75, "unsqueez": 75, "num_proc": 75, "cpu_count": 75, "torch_dataset": 75, "quick": [75, 79], "super": 75, "relu": 75, "batchnorm2d": 75, "maxpool2d": 75, "lazylinear": 75, "flatten": 75, "get_test_accuraci": 75, "testload": [75, 81], "energi": 75, "trainload": [75, 81], "n_epoch": 75, "patienc": 75, "criterion": 75, "crossentropyloss": 75, "adamw": 75, "best_test_accuraci": 75, "start_epoch": 75, "running_loss": 75, "best_epoch": 75, "end_epoch": 75, "3f": [75, 83], "acc": [75, 76], "time_taken": 75, "compute_embed": 75, "compute_pred_prob": 75, "train_batch_s": 75, "num_work": 75, "worker": [75, 87], "train_id_list": 75, "test_id_list": 75, "train_id": 75, "test_id": 75, "embeddings_model": 75, "ntrain": 75, "trainset": 75, "testset": 75, "pin_memori": 75, "fold_embed": 75, "fold_pred_prob": 75, "finish": 75, "483": 75, "775": 75, "233": 75, "329": [75, 80], "215": [75, 80], "796": 75, "82it": 75, "47it": 75, "492": 75, "87": [75, 80, 83, 85, 86], "095": 75, "298": 75, "415": 75, "934": 75, "38it": 75, "71it": 75, "476": 75, "181": 75, "327": [75, 80], "755": 75, "696": 75, "44it": 75, "99it": 75, "reorder": 75, "vision": 75, "low_inform": 75, "odd_aspect_ratio": 75, "odd_siz": 75, "grayscal": 75, "exce": 75, "max_preval": 75, "7797": 75, "3818": 75, "3486": 75, "310": 75, "166": 75, "9667": 75, "27080": 75, "715920": 75, "4156": 75, "718073": 75, "40378": 75, "721143": 75, "25316": 75, "725187": 75, "30820": 75, "731430": 75, "9410": 75, "19228": 75, "dress": 75, "32657": 75, "000007": 75, "53564": 75, "000010": 75, "pullov": 75, "21282": 75, "000021": 75, "54078": 75, "000022": [75, 87], "0262": 75, "54565": 75, "9762": 75, "47139": 75, "258": 75, "30968": 75, "30659": 75, "000026": 75, "0425": 75, "57620": 75, "647848": 75, "7475": 75, "663768": 75, "27513": 75, "672686": 75, "41556": 75, "674473": 75, "14509": 75, "675285": 75, "04246606876652691": 75, "069238": 75, "970188": 75, "997795": 75, "928584": 75, "999650": 75, "12076": 75, "trouser": 75, "11262": 75, "000028": 75, "plot_label_issue_exampl": 75, "ncol": [75, 81], "nrow": [75, 81], "ceil": 75, "axes_list": 75, "label_issue_indic": 75, "gl": 75, "sl": 75, "fontdict": 75, "imshow": [75, 81], "cmap": [75, 83], "grai": 75, "subplots_adjust": 75, "hspace": 75, "outsiz": 75, "outlier_issues_df": 75, "depict": [75, 79, 80, 81, 82, 84], "plot_outlier_issues_exampl": 75, "n_comparison_imag": 75, "sample_from_class": 75, "number_of_sampl": 75, "non_outlier_indic": 75, "isnul": 75, "non_outlier_indices_excluding_curr": 75, "sampled_indic": 75, "label_scores_of_sampl": 75, "top_score_indic": 75, "top_label_indic": 75, "sampled_imag": 75, "get_image_given_label_and_sampl": 75, "image_from_dataset": 75, "corresponding_label": 75, "comparison_imag": 75, "images_to_plot": 75, "idlist": 75, "iterrow": 75, "especi": [75, 83, 85, 86], "near_duplicate_issu": 75, "closest": 75, "counterpart": 75, "near_duplicate_issues_df": 75, "plot_near_duplicate_issue_exampl": 75, "seen_id_pair": 75, "get_image_and_given_label_and_predicted_label": 75, "duplicate_imag": 75, "nd_set": 75, "challeng": 75, "dark_issu": 75, "reveal": [75, 84], "dark_scor": 75, "dark_issues_df": 75, "is_dark_issu": 75, "34848": 75, "203922": 75, "50270": 75, "204588": 75, "3936": 75, "213098": 75, "733": 75, "217686": 75, "8094": 75, "230118": 75, "plot_image_issue_exampl": 75, "difficult": 75, "disproportion": 75, "lowinfo_issu": 75, "low_information_scor": 75, "lowinfo_issues_df": 75, "is_low_information_issu": 75, "53050": 75, "067975": 75, "40875": 75, "089929": 75, "9594": 75, "092601": 75, "34825": 75, "107744": 75, "37530": 75, "108516": 75, "lot": 75, "depth": 76, "survei": [76, 87], "focus": [76, 78], "scienc": 76, "multivariate_norm": [76, 78, 79], "make_data": [76, 78], "cov": [76, 78, 79], "avg_trac": [76, 79], "test_label": [76, 79, 81, 86], "py_tru": 76, "noise_matrix_tru": 76, "noise_marix": 76, "s_test": 76, "noisy_test_label": 76, "purpl": 76, "val": 76, "namespac": 76, "exec": 76, "markerfacecolor": [76, 79], "markeredgecolor": [76, 79, 83], "markers": [76, 79, 83], "markeredgewidth": [76, 79, 83], "realist": 76, "6000": 76, "638483e": 76, "897052e": 76, "548986e": 76, "924634e": 76, "374580e": 76, "4643": 76, "147": [76, 80], "050286": 76, "065420": 76, "109420": 76, "111687": 76, "115403": 76, "3312": 76, "007136": 76, "119": [76, 80], "033725": 76, "103": [76, 80], "033738": 76, "238": [76, 80], "037825": 76, "236": [76, 80], "037843": 76, "222": 76, "614915": 76, "122": [76, 80, 87], "624422": 76, "625965": 76, "626079": 76, "118": 76, "627675": 76, "695174": 76, "323529": 76, "522929": 76, "013722": 76, "675606": 76, "646438": 76, "anyth": 76, "enhanc": [76, 78, 80], "magic": 76, "liter": 76, "identif": 76, "x27": 76, "logisticregressionlogisticregress": 76, "ever": 76, "truth": [76, 78, 83], "092": 76, "040": 76, "024": 76, "004": 76, "surpris": 76, "arxiv": 76, "ab": 76, "1705": 76, "01936": 76, "ton": 76, "yourfavoritemodel1": 76, "merged_label": 76, "merged_test_label": 76, "newli": [76, 78], "yourfavoritemodel2": 76, "yourfavoritemodel3": 76, "cl3": 76, "takeawai": 76, "That": [76, 79], "randomli": 76, "my_test_pred_prob": 76, "my_test_pr": 76, "issues_test": 76, "corrected_test_label": 76, "pretend": 76, "cl_test_pr": 76, "69": [76, 83], "fairli": 76, "label_acc": 76, "percentag": 76, "offset": 76, "nquestion": 76, "overestim": 76, "answer": 76, "experienc": 76, "06": [76, 80, 87], "62": [76, 80, 83], "knowledg": 76, "quantiti": [76, 83], "prioiri": 76, "known": 76, "versatil": 76, "label_issues_indic": 76, "213": [76, 80], "212": [76, 85], "218": [76, 80], "152": 76, "197": [76, 80], "196": [76, 80], "170": 76, "214": 76, "164": [76, 79], "198": [76, 80], "191": [76, 80], "63": [76, 80], "121": [76, 86], "117": [76, 83], "206": [76, 80], "115": [76, 80], "193": 76, "194": 76, "201": [76, 80], "174": 76, "163": 76, "150": [76, 78, 80], "169": 76, "151": [76, 80], "precision_scor": 76, "recall_scor": 76, "f1_score": 76, "true_label_issu": 76, "filter_by_list": 76, "718750": [76, 78], "807018": 76, "912": 76, "733333": 76, "800000": 76, "721311": 76, "792793": 76, "908": 76, "676923": 76, "765217": 76, "892": 76, "567901": 76, "702290": 76, "844": 76, "gaug": 76, "label_issues_count": 76, "155": [76, 80], "156": 76, "172": [76, 79], "157": 76, "easiest": 76, "modular": 76, "penalti": 76, "l2": 76, "model3": 76, "n_estim": 76, "cv_pred_probs_1": 76, "cv_pred_probs_2": 76, "cv_pred_probs_3": 76, "label_quality_scores_best": 76, "cv_pred_probs_ensembl": 76, "label_quality_scores_bett": 76, "superior": [76, 82], "workflow": [77, 83], "speechbrain": 77, "timm": 77, "glad": 78, "multiannotator_label": 78, "300": [78, 87], "noisier": 78, "111": [78, 83], "local_data": [78, 79], "true_labels_train": [78, 79], "noise_matrix_bett": 78, "noise_matrix_wors": 78, "transpos": [78, 81], "dropna": 78, "zfill": 78, "row_na_check": 78, "notna": 78, "reset_index": 78, "a0001": 78, "a0002": 78, "a0003": 78, "a0004": 78, "a0005": 78, "a0006": 78, "a0007": 78, "a0008": 78, "a0009": 78, "a0010": 78, "a0041": 78, "a0042": 78, "a0043": 78, "a0044": 78, "a0045": 78, "a0046": 78, "a0047": 78, "a0048": 78, "a0049": 78, "a0050": 78, "na": 78, "60856743": 78, "41693214": 78, "40908785": 78, "87147629": 78, "64941785": 78, "10774851": 78, "0524466": 78, "71853246": 78, "37169848": 78, "66031048": 78, "multiannotator_util": 78, "crude": 78, "straight": 78, "majority_vote_label": 78, "736157": 78, "757738": 78, "782255": 78, "715585": 78, "824273": 78, "quality_annotator_a0001": 78, "quality_annotator_a0002": 78, "quality_annotator_a0003": 78, "quality_annotator_a0004": 78, "quality_annotator_a0005": 78, "quality_annotator_a0006": 78, "quality_annotator_a0007": 78, "quality_annotator_a0008": 78, "quality_annotator_a0009": 78, "quality_annotator_a0010": 78, "quality_annotator_a0041": 78, "quality_annotator_a0042": 78, "quality_annotator_a0043": 78, "quality_annotator_a0044": 78, "quality_annotator_a0045": 78, "quality_annotator_a0046": 78, "quality_annotator_a0047": 78, "quality_annotator_a0048": 78, "quality_annotator_a0049": 78, "quality_annotator_a0050": 78, "070551": 78, "216064": 78, "119178": 78, "alongisd": 78, "244982": 78, "208333": 78, "295978": 78, "294118": 78, "324194": 78, "310345": 78, "355315": 78, "346154": 78, "439728": 78, "480000": 78, "a0031": 78, "523205": 78, "580645": 78, "a0034": 78, "535313": 78, "607143": 78, "a0021": 78, "607002": 78, "a0015": 78, "609527": 78, "678571": 78, "a0011": 78, "621101": 78, "692308": 78, "wors": 78, "improved_consensus_label": 78, "majority_vote_accuraci": 78, "cleanlab_label_accuraci": 78, "8581081081081081": 78, "9797297297297297": 78, "besid": 78, "sorted_consensus_quality_scor": 78, "worst_qual": 78, "better_qu": 78, "worst_quality_accuraci": 78, "better_quality_accuraci": 78, "9893238434163701": 78, "improved_pred_prob": 78, "treat": [78, 79, 83, 87], "analzi": 78, "copyright": 79, "advertis": 79, "violenc": 79, "nsfw": 79, "ranked_label_issu": [79, 85, 86], "multioutput": 79, "multioutputclassifi": 79, "celeba": 79, "make_multilabel_data": 79, "boxes_coordin": 79, "box_multilabel": 79, "make_multi": 79, "bx1": 79, "by1": 79, "bx2": 79, "by2": 79, "label_list": 79, "ur": 79, "upper": 79, "inidx": 79, "logical_and": 79, "tolist": 79, "inv_d": 79, "labels_idx": 79, "true_labels_test": 79, "dict_unique_label": 79, "get_color_arrai": 79, "dcolor": 79, "aa4400": 79, "55227f": 79, "55a100": 79, "00ff00": 79, "007f7f": 79, "386b55": 79, "0000ff": 79, "simplic": 79, "advis": 79, "y_onehot": 79, "single_class_label": 79, "stratifi": [79, 82], "kf": 79, "train_index": 79, "test_index": 79, "clf_cv": 79, "x_train_cv": 79, "x_test_cv": 79, "y_train_cv": 79, "y_test_cv": 79, "y_pred_cv": 79, "saw": 79, "num_to_displai": 79, "09": [79, 80], "275": 79, "267": 79, "225": 79, "171": 79, "234": 79, "165": 79, "227": [79, 80], "262": [79, 80], "263": [79, 80], "266": [79, 80], "139": 79, "143": [79, 80], "216": [79, 80], "159": [79, 80], "despit": [79, 87], "suspect": 79, "888": 79, "8224": 79, "9632": 79, "968": 79, "6512": 79, "0444": 79, "774": 79, "labels_binary_format": 79, "labels_list_format": 79, "surround": 80, "scene": 80, "coco": 80, "everydai": 80, "has_label_issu": 80, "insal": 80, "nc": [80, 84, 87], "s3": [80, 84, 87], "amazonaw": [80, 84, 87], "objectdetectionbenchmark": 80, "tutorial_obj": 80, "pkl": 80, "example_imag": 80, "unzip": [80, 87], "begin": 80, "detectron2": 80, "image_path": 80, "rb": 80, "image_to_visu": 80, "seg_map": 80, "334": 80, "float32": 80, "bboxes_ignor": 80, "290": 80, "286": 80, "285": 80, "224": 80, "231": 80, "293": 80, "235": 80, "289": [80, 83], "281": 80, "271": 80, "280": 80, "277": 80, "93": [80, 83, 87], "279": 80, "287": 80, "299": 80, "276": 80, "307": 80, "321": 80, "326": 80, "330": 80, "333": 80, "261": 80, "319": 80, "257": 80, "295": 80, "283": 80, "243": 80, "303": 80, "316": 80, "247": 80, "323": 80, "328": 80, "226": 80, "232": 80, "239": 80, "240": 80, "209": 80, "242": 80, "202": 80, "230": 80, "220": 80, "229": 80, "217": [80, 87], "237": 80, "207": 80, "204": 80, "205": 80, "223": 80, "153": 80, "149": 80, "140": 80, "244": [80, 87], "124": 80, "268": 80, "273": 80, "108": 80, "110": 80, "136": 80, "145": 80, "173": 80, "297": 80, "317": 80, "192": 80, "332": 80, "324": 80, "203": 80, "320": 80, "314": 80, "199": 80, "291": 80, "000000481413": 80, "jpg": 80, "42398": 80, "44503": 80, "337": [80, 86], "29968": 80, "336": 80, "21005": 80, "9978472": 80, "forgot": 80, "drew": 80, "label_issue_idx": 80, "num_examples_to_show": 80, "113": [80, 83], "candid": 80, "97489622": 80, "70610878": 80, "98764951": 80, "88899237": 80, "99085805": 80, "issue_idx": 80, "95569726e": 80, "03354841e": 80, "57510169e": 80, "58447666e": 80, "39755858e": 80, "suppli": 80, "issue_to_visu": 80, "000000009483": 80, "955697261680538e": 80, "addition": [80, 84], "visibl": 80, "missmatch": 80, "likelei": 80, "agnost": 80, "vaidat": 80, "inconsist": 80, "000000395701": 80, "033548411774308e": 80, "armchair": 80, "tv": 80, "000000154004": 80, "38300759625496356": 80, "foreground": 80, "000000448410": 80, "0008575101690203273": 80, "crowd": 80, "alon": 80, "explor": [80, 81], "resembl": [80, 81], "contribut": 80, "000000499768": 80, "9748962231208227": 80, "000000521141": 80, "8889923658893665": 80, "000000143931": 80, "9876495074395957": 80, "train_feature_embed": 81, "ood_train_feature_scor": 81, "test_feature_embed": 81, "ood_test_feature_scor": 81, "ood_train_predictions_scor": 81, "train_pred_prob": 81, "ood_test_predictions_scor": 81, "test_pred_prob": 81, "pylab": 81, "rcparam": 81, "baggingclassifi": 81, "therebi": 81, "rescal": 81, "transform_norm": 81, "totensor": 81, "root": 81, "animal_class": 81, "non_animal_class": 81, "animal_idx": 81, "isin": 81, "test_idx": 81, "toronto": 81, "edu": 81, "kriz": 81, "5000": 81, "plot_imag": 81, "visualize_outli": 81, "txt_class": 81, "img": [81, 83], "npimg": 81, "show_label": 81, "data_subset": 81, "resnet50": 81, "corpu": 81, "2048": 81, "embed_imag": 81, "create_model": 81, "rwightman": 81, "v0": 81, "rsb": 81, "resnet50_a1_0": 81, "14fe96d1": 81, "pth": 81, "strang": 81, "odd": 81, "train_ood_features_scor": 81, "top_train_ood_features_idx": 81, "fun": 81, "negat": 81, "homogen": 81, "bottom_train_ood_features_idx": 81, "test_ood_features_scor": 81, "top_ood_features_idx": 81, "inevit": 81, "trade": 81, "5th": 81, "percentil": 81, "fifth_percentil": 81, "plt_rang": 81, "hist": 81, "train_outlier_scor": 81, "ylabel": 81, "axvlin": 81, "test_outlier_scor": 81, "ood_features_indic": 81, "revisit": 81, "unusu": 81, "return_invers": 81, "train_feature_embeddings_sc": 81, "test_feature_embeddings_sc": 81, "train_pred_label": 81, "9702": 81, "train_ood_predictions_scor": 81, "test_ood_predictions_scor": 81, "mainli": [81, 87], "lost": 81, "unsuit": 82, "ok": [82, 87], "convention": 82, "aforement": 82, "hypothet": 82, "contrast": 82, "tradit": 82, "disjoint": 82, "out_of_sample_pred_probs_for_a": 82, "out_of_sample_pred_probs_for_b": 82, "out_of_sample_pred_probs_for_c": 82, "out_of_sample_pred_prob": 82, "price": 83, "incom": 83, "ag": 83, "histgradientboostingregressor": 83, "r2_score": 83, "student_grades_r": 83, "final_scor": 83, "true_final_scor": 83, "homework": 83, "3d": 83, "hue": 83, "mpl_toolkit": 83, "mplot3d": 83, "axes3d": 83, "errors_idx": 83, "add_subplot": 83, "z": 83, "colorbar": 83, "errors_mask": 83, "feature_column": 83, "predicted_column": 83, "x_train_raw": 83, "x_test_raw": 83, "categorical_featur": [83, 85], "randomforestregressor": 83, "629763": 83, "521450": 83, "954607": 83, "547234": 83, "338296": 83, "754531": 83, "619090": 83, "312295": 83, "806626": 83, "784048": 83, "identified_issu": [83, 86], "659": 83, "367": 83, "560": 83, "318": 83, "305": 83, "688": 83, "657": 83, "view_datapoint": 83, "concat": 83, "consum": [83, 86], "baseline_model": [83, 86], "preds_og": 83, "r2_og": 83, "838": 83, "robustli": [83, 85, 86], "acceler": [83, 86], "found_label_issu": 83, "preds_cl": 83, "r2_cl": 83, "925": 83, "effort": [83, 85, 86], "favorit": 83, "64404888e": 83, "06755306e": 83, "05302732e": 83, "66635743e": 83, "53166364e": 83, "synthia": 84, "semantic_segment": 84, "imagesegment": 84, "given_mask": 84, "predicted_mask": 84, "set_printopt": [84, 87], "sky": 84, "sidewalk": 84, "veget": 84, "terrain": 84, "rider": 84, "pred_probs_filepath": 84, "1088": 84, "1920": 84, "label_filepath": 84, "synthia_class": 84, "maunal": 84, "100000": 84, "244800": 84, "system": 84, "leftmost": 84, "area": 84, "middl": [84, 87], "infact": 84, "rightmost": 84, "discrep": 84, "4997436": 84, "129080": 84, "15it": 84, "3263230": 84, "783379": 84, "275110": 84, "255792": 84, "78225": 84, "55990": 84, "54315": 84, "33591": 84, "24645": 84, "21054": 84, "15045": 84, "14171": 84, "13832": 84, "13498": 84, "11490": 84, "9149": 84, "8769": 84, "6999": 84, "6031": 84, "5011": 84, "mistakenli": 84, "class_issu": 84, "aim": [84, 87], "domin": 84, "extratreesclassifi": 85, "extratre": 85, "labelencod": [85, 86], "labels_raw": 85, "interg": [85, 86], "tress": 85, "928": 85, "911": 85, "cheat": 85, "0pt": 85, "864": 85, "498": 85, "labels_train": 85, "labels_test": 85, "acc_og": [85, 86], "783068783068783": 85, "acc_cl": [85, 86], "8095238095238095": 85, "earlier": [86, 87], "raw_label": 86, "raw_train_text": 86, "raw_test_text": 86, "raw_train_label": 86, "raw_test_label": 86, "encond": 86, "train_text": 86, "test_text": 86, "858043": 86, "545888": 86, "826290": 86, "965814": 86, "791937": 86, "646": 86, "390": 86, "628": 86, "702": 86, "863": 86, "135": 86, "735": 86, "print_as_df": 86, "inverse_transform": 86, "fight": 86, "bunch": 87, "conll": 87, "2003": 87, "love": 87, "n_i": 87, "optional_list_of_ordered_class_nam": 87, "deepai": 87, "conll2003": 87, "rm": 87, "tokenclassif": 87, "2023": 87, "2400": 87, "52e0": 87, "1a00": 87, "871": 87, "connect": 87, "443": 87, "await": 87, "982975": 87, "960k": 87, "959": 87, "94k": 87, "kb": 87, "mb": 87, "directori": 87, "inflat": 87, "182": 87, "17045998": 87, "16m": 87, "octet": 87, "26m": 87, "1mb": 87, "bert": 87, "read_npz": 87, "filepath": 87, "corrsespond": 87, "iob2": 87, "given_ent": 87, "entity_map": 87, "readfil": 87, "sep": 87, "startswith": 87, "docstart": 87, "isalpha": 87, "isupp": 87, "indices_to_preview": 87, "nsentenc": 87, "eu": 87, "reject": 87, "boycott": 87, "british": 87, "lamb": 87, "00030412": 87, "00023826": 87, "99936208": 87, "00007009": 87, "00002545": 87, "99998795": 87, "00000401": 87, "00000218": 87, "00000455": 87, "00000131": 87, "00000749": 87, "99996115": 87, "00001371": 87, "0000087": 87, "00000895": 87, "99998936": 87, "00000382": 87, "00000178": 87, "00000366": 87, "00000137": 87, "99999101": 87, "00000266": 87, "00000174": 87, "0000035": 87, "00000109": 87, "99998768": 87, "00000482": 87, "00000202": 87, "00000438": 87, "0000011": 87, "00000465": 87, "99996392": 87, "00001105": 87, "0000116": 87, "00000878": 87, "99998671": 87, "00000364": 87, "00000213": 87, "00000472": 87, "00000281": 87, "99999073": 87, "00000211": 87, "00000159": 87, "00000442": 87, "00000115": 87, "peter": 87, "blackburn": 87, "00000358": 87, "00000529": 87, "99995623": 87, "0000129": 87, "0000024": 87, "00001812": 87, "99994141": 87, "00001645": 87, "00002162": 87, "brussel": 87, "1996": 87, "00001172": 87, "00000821": 87, "00004661": 87, "0000618": 87, "99987167": 87, "99999061": 87, "00000201": 87, "00000195": 87, "00000408": 87, "00000135": 87, "2254": 87, "2907": 87, "19392": 87, "9962": 87, "8904": 87, "19303": 87, "12918": 87, "9256": 87, "11855": 87, "18392": 87, "20426": 87, "19402": 87, "14744": 87, "19371": 87, "4645": 87, "10331": 87, "9430": 87, "6143": 87, "18367": 87, "12914": 87, "todai": 87, "weather": 87, "march": 87, "scalfaro": 87, "northern": 87, "himself": 87, "said": 87, "germani": 87, "nastja": 87, "rysich": 87, "north": 87, "spla": 87, "fought": 87, "khartoum": 87, "govern": 87, "south": 87, "1983": 87, "autonomi": 87, "animist": 87, "region": 87, "moslem": 87, "arabis": 87, "mayor": 87, "antonio": 87, "gonzalez": 87, "garcia": 87, "revolutionari": 87, "parti": 87, "wednesdai": 87, "troop": 87, "raid": 87, "farm": 87, "stole": 87, "rape": 87, "women": 87, "spring": 87, "chg": 87, "hrw": 87, "12pct": 87, "princ": 87, "photo": 87, "moment": 87, "spokeswoman": 87, "rainier": 87, "told": 87, "reuter": 87, "danila": 87, "carib": 87, "w224": 87, "equip": 87, "radiomet": 87, "earn": 87, "19996": 87, "london": 87, "denom": 87, "sale": 87, "uk": 87, "jp": 87, "fr": 87, "maccabi": 87, "hapoel": 87, "haifa": 87, "tel": 87, "aviv": 87, "hospit": 87, "rever": 87, "roman": 87, "cathol": 87, "nun": 87, "admit": 87, "calcutta": 87, "week": 87, "ago": 87, "fever": 87, "vomit": 87, "allianc": 87, "embattl": 87, "kabul": 87, "salang": 87, "highwai": 87, "mondai": 87, "tuesdai": 87, "suprem": 87, "council": 87, "led": 87, "jumbish": 87, "milli": 87, "movement": 87, "warlord": 87, "abdul": 87, "rashid": 87, "dostum": 87, "dollar": 87, "exchang": 87, "3570": 87, "12049": 87, "born": 87, "1937": 87, "provinc": 87, "anhui": 87, "dai": 87, "came": 87, "shanghai": 87, "citi": 87, "prolif": 87, "author": 87, "teacher": 87, "chines": 87, "16764": 87, "1990": 87, "historian": 87, "alan": 87, "john": 87, "percival": 87, "taylor": 87, "di": 87, "20446": 87, "pace": 87, "bowler": 87, "ian": 87, "harvei": 87, "claim": 87, "victoria": 87, "15514": 87, "cotti": 87, "osc": 87, "foreign": 87, "minist": 87, "7525": 87, "sultan": 87, "specter": 87, "met": 87, "crown": 87, "abdullah": 87, "defenc": 87, "aviat": 87, "jeddah": 87, "saudi": 87, "agenc": 87, "2288": 87, "hi": 87, "customari": 87, "outfit": 87, "champion": 87, "damp": 87, "scalp": 87, "canada": 87, "reign": 87, "olymp": 87, "donovan": 87, "bailei": 87, "1992": 87, "linford": 87, "christi": 87, "britain": 87, "1984": 87, "1988": 87, "carl": 87, "lewi": 87, "ambigi": 87, "punctuat": 87, "chicago": 87, "digest": 87, "philadelphia": 87, "usda": 87, "york": 87, "token_issu": 87, "471": 87, "kean": 87, "year": 87, "contract": 87, "manchest": 87, "19072": 87, "societi": 87, "million": 87, "bite": 87, "deliv": 87, "19910": 87, "father": 87, "clarenc": 87, "woolmer": 87, "renam": 87, "uttar": 87, "pradesh": 87, "india": 87, "ranji": 87, "trophi": 87, "nation": 87, "championship": 87, "captain": 87, "1949": 87, "15658": 87, "19879": 87, "iii": 87, "brian": 87, "shimer": 87, "randi": 87, "jone": 87, "19104": 87}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [23, 0, 0, "-", "dataset"], [26, 0, 0, "-", "experimental"], [29, 0, 0, "-", "filter"], [30, 0, 0, "-", "internal"], [41, 0, 0, "-", "models"], [43, 0, 0, "-", "multiannotator"], [46, 0, 0, "-", "multilabel_classification"], [49, 0, 0, "-", "object_detection"], [52, 0, 0, "-", "outlier"], [53, 0, 0, "-", "rank"], [54, 0, 0, "-", "regression"], [58, 0, 0, "-", "segmentation"], [62, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [21, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[14, 0, 0, "-", "duplicate"], [15, 0, 0, "-", "imbalance"], [17, 0, 0, "-", "issue_manager"], [18, 0, 0, "-", "label"], [19, 0, 0, "-", "noniid"], [20, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[14, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[14, 3, 1, "", "collect_info"], [14, 6, 1, "", "description"], [14, 3, 1, "", "find_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_name"], [14, 6, 1, "", "issue_score_key"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "make_summary"], [14, 6, 1, "", "near_duplicate_sets"], [14, 3, 1, "", "report"], [14, 6, 1, "", "summary"], [14, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[15, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[17, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[18, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 3, 1, "", "get_health_summary"], [18, 6, 1, "", "health_summary_parameters"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[19, 2, 1, "", "NonIIDIssueManager"], [19, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[20, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[20, 6, 1, "", "DEFAULT_THRESHOLDS"], [20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "ood"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[21, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[21, 3, 1, "", "get_report"], [21, 3, 1, "", "report"]], "cleanlab.dataset": [[23, 1, 1, "", "find_overlapping_classes"], [23, 1, 1, "", "health_summary"], [23, 1, 1, "", "overall_label_health_score"], [23, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[24, 0, 0, "-", "cifar_cnn"], [25, 0, 0, "-", "coteaching"], [27, 0, 0, "-", "label_issues_batched"], [28, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[24, 2, 1, "", "CNN"], [24, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[24, 6, 1, "", "T_destination"], [24, 3, 1, "", "__call__"], [24, 3, 1, "", "add_module"], [24, 3, 1, "", "apply"], [24, 3, 1, "", "bfloat16"], [24, 3, 1, "", "buffers"], [24, 3, 1, "", "children"], [24, 3, 1, "", "cpu"], [24, 3, 1, "", "cuda"], [24, 3, 1, "", "double"], [24, 6, 1, "", "dump_patches"], [24, 3, 1, "", "eval"], [24, 3, 1, "", "extra_repr"], [24, 3, 1, "", "float"], [24, 3, 1, "id0", "forward"], [24, 3, 1, "", "get_buffer"], [24, 3, 1, "", "get_extra_state"], [24, 3, 1, "", "get_parameter"], [24, 3, 1, "", "get_submodule"], [24, 3, 1, "", "half"], [24, 3, 1, "", "ipu"], [24, 3, 1, "", "load_state_dict"], [24, 3, 1, "", "modules"], [24, 3, 1, "", "named_buffers"], [24, 3, 1, "", "named_children"], [24, 3, 1, "", "named_modules"], [24, 3, 1, "", "named_parameters"], [24, 3, 1, "", "parameters"], [24, 3, 1, "", "register_backward_hook"], [24, 3, 1, "", "register_buffer"], [24, 3, 1, "", "register_forward_hook"], [24, 3, 1, "", "register_forward_pre_hook"], [24, 3, 1, "", "register_full_backward_hook"], [24, 3, 1, "", "register_load_state_dict_post_hook"], [24, 3, 1, "", "register_module"], [24, 3, 1, "", "register_parameter"], [24, 3, 1, "", "requires_grad_"], [24, 3, 1, "", "set_extra_state"], [24, 3, 1, "", "share_memory"], [24, 3, 1, "", "state_dict"], [24, 3, 1, "", "to"], [24, 3, 1, "", "to_empty"], [24, 3, 1, "", "train"], [24, 6, 1, "", "training"], [24, 3, 1, "", "type"], [24, 3, 1, "", "xpu"], [24, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[25, 1, 1, "", "adjust_learning_rate"], [25, 1, 1, "", "evaluate"], [25, 1, 1, "", "forget_rate_scheduler"], [25, 1, 1, "", "initialize_lr_scheduler"], [25, 1, 1, "", "loss_coteaching"], [25, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[27, 2, 1, "", "LabelInspector"], [27, 7, 1, "", "adj_confident_thresholds_shared"], [27, 1, 1, "", "find_label_issues_batched"], [27, 7, 1, "", "labels_shared"], [27, 7, 1, "", "pred_probs_shared"], [27, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[27, 3, 1, "", "get_confident_thresholds"], [27, 3, 1, "", "get_label_issues"], [27, 3, 1, "", "get_num_issues"], [27, 3, 1, "", "get_quality_scores"], [27, 3, 1, "", "score_label_quality"], [27, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[28, 2, 1, "", "CNN"], [28, 2, 1, "", "SimpleNet"], [28, 1, 1, "", "get_mnist_dataset"], [28, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[28, 3, 1, "", "__init_subclass__"], [28, 6, 1, "", "batch_size"], [28, 6, 1, "", "dataset"], [28, 6, 1, "", "epochs"], [28, 3, 1, "id0", "fit"], [28, 3, 1, "", "get_metadata_routing"], [28, 3, 1, "", "get_params"], [28, 6, 1, "", "loader"], [28, 6, 1, "", "log_interval"], [28, 6, 1, "", "lr"], [28, 6, 1, "", "momentum"], [28, 6, 1, "", "no_cuda"], [28, 3, 1, "id1", "predict"], [28, 3, 1, "id4", "predict_proba"], [28, 6, 1, "", "seed"], [28, 3, 1, "", "set_fit_request"], [28, 3, 1, "", "set_params"], [28, 3, 1, "", "set_predict_proba_request"], [28, 3, 1, "", "set_predict_request"], [28, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[28, 6, 1, "", "T_destination"], [28, 3, 1, "", "__call__"], [28, 3, 1, "", "add_module"], [28, 3, 1, "", "apply"], [28, 3, 1, "", "bfloat16"], [28, 3, 1, "", "buffers"], [28, 3, 1, "", "children"], [28, 3, 1, "", "cpu"], [28, 3, 1, "", "cuda"], [28, 3, 1, "", "double"], [28, 6, 1, "", "dump_patches"], [28, 3, 1, "", "eval"], [28, 3, 1, "", "extra_repr"], [28, 3, 1, "", "float"], [28, 3, 1, "", "forward"], [28, 3, 1, "", "get_buffer"], [28, 3, 1, "", "get_extra_state"], [28, 3, 1, "", "get_parameter"], [28, 3, 1, "", "get_submodule"], [28, 3, 1, "", "half"], [28, 3, 1, "", "ipu"], [28, 3, 1, "", "load_state_dict"], [28, 3, 1, "", "modules"], [28, 3, 1, "", "named_buffers"], [28, 3, 1, "", "named_children"], [28, 3, 1, "", "named_modules"], [28, 3, 1, "", "named_parameters"], [28, 3, 1, "", "parameters"], [28, 3, 1, "", "register_backward_hook"], [28, 3, 1, "", "register_buffer"], [28, 3, 1, "", "register_forward_hook"], [28, 3, 1, "", "register_forward_pre_hook"], [28, 3, 1, "", "register_full_backward_hook"], [28, 3, 1, "", "register_load_state_dict_post_hook"], [28, 3, 1, "", "register_module"], [28, 3, 1, "", "register_parameter"], [28, 3, 1, "", "requires_grad_"], [28, 3, 1, "", "set_extra_state"], [28, 3, 1, "", "share_memory"], [28, 3, 1, "", "state_dict"], [28, 3, 1, "", "to"], [28, 3, 1, "", "to_empty"], [28, 3, 1, "", "train"], [28, 6, 1, "", "training"], [28, 3, 1, "", "type"], [28, 3, 1, "", "xpu"], [28, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[29, 1, 1, "", "find_label_issues"], [29, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [29, 1, 1, "", "find_predicted_neq_given"], [29, 7, 1, "", "pred_probs_by_class"], [29, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[31, 0, 0, "-", "label_quality_utils"], [32, 0, 0, "-", "latent_algebra"], [33, 0, 0, "-", "multiannotator_utils"], [34, 0, 0, "-", "multilabel_scorer"], [35, 0, 0, "-", "multilabel_utils"], [36, 0, 0, "-", "outlier"], [37, 0, 0, "-", "token_classification_utils"], [38, 0, 0, "-", "util"], [39, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[31, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[32, 1, 1, "", "compute_inv_noise_matrix"], [32, 1, 1, "", "compute_noise_matrix_from_inverse"], [32, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [32, 1, 1, "", "compute_py"], [32, 1, 1, "", "compute_py_inv_noise_matrix"], [32, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[33, 1, 1, "", "assert_valid_inputs_multiannotator"], [33, 1, 1, "", "assert_valid_pred_probs"], [33, 1, 1, "", "check_consensus_label_classes"], [33, 1, 1, "", "compute_soft_cross_entropy"], [33, 1, 1, "", "find_best_temp_scaler"], [33, 1, 1, "", "format_multiannotator_labels"], [33, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[34, 2, 1, "", "Aggregator"], [34, 2, 1, "", "ClassLabelScorer"], [34, 2, 1, "", "MultilabelScorer"], [34, 1, 1, "", "exponential_moving_average"], [34, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [34, 1, 1, "", "get_label_quality_scores"], [34, 1, 1, "", "multilabel_py"], [34, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[34, 3, 1, "", "__call__"], [34, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[34, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [34, 6, 1, "", "NORMALIZED_MARGIN"], [34, 6, 1, "", "SELF_CONFIDENCE"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[34, 3, 1, "", "__call__"], [34, 3, 1, "", "aggregate"], [34, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[35, 1, 1, "", "get_onehot_num_classes"], [35, 1, 1, "", "int2onehot"], [35, 1, 1, "", "onehot2int"], [35, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[36, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[37, 1, 1, "", "color_sentence"], [37, 1, 1, "", "filter_sentence"], [37, 1, 1, "", "get_sentence"], [37, 1, 1, "", "mapping"], [37, 1, 1, "", "merge_probs"], [37, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[38, 1, 1, "", "append_extra_datapoint"], [38, 1, 1, "", "clip_noise_rates"], [38, 1, 1, "", "clip_values"], [38, 1, 1, "", "compress_int_array"], [38, 1, 1, "", "confusion_matrix"], [38, 1, 1, "", "csr_vstack"], [38, 1, 1, "", "estimate_pu_f1"], [38, 1, 1, "", "extract_indices_tf"], [38, 1, 1, "", "force_two_dimensions"], [38, 1, 1, "", "format_labels"], [38, 1, 1, "", "get_missing_classes"], [38, 1, 1, "", "get_num_classes"], [38, 1, 1, "", "get_unique_classes"], [38, 1, 1, "", "is_tensorflow_dataset"], [38, 1, 1, "", "is_torch_dataset"], [38, 1, 1, "", "num_unique_classes"], [38, 1, 1, "", "print_inverse_noise_matrix"], [38, 1, 1, "", "print_joint_matrix"], [38, 1, 1, "", "print_noise_matrix"], [38, 1, 1, "", "print_square_matrix"], [38, 1, 1, "", "remove_noise_from_class"], [38, 1, 1, "", "round_preserving_row_totals"], [38, 1, 1, "", "round_preserving_sum"], [38, 1, 1, "", "smart_display_dataframe"], [38, 1, 1, "", "subset_X_y"], [38, 1, 1, "", "subset_data"], [38, 1, 1, "", "subset_labels"], [38, 1, 1, "", "train_val_split"], [38, 1, 1, "", "unshuffle_tensorflow_dataset"], [38, 1, 1, "", "value_counts"], [38, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[39, 1, 1, "", "assert_indexing_works"], [39, 1, 1, "", "assert_nonempty_input"], [39, 1, 1, "", "assert_valid_class_labels"], [39, 1, 1, "", "assert_valid_inputs"], [39, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[42, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[42, 2, 1, "", "KerasWrapperModel"], [42, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[42, 3, 1, "", "fit"], [42, 3, 1, "", "get_params"], [42, 3, 1, "", "predict"], [42, 3, 1, "", "predict_proba"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[43, 1, 1, "", "convert_long_to_wide_dataset"], [43, 1, 1, "", "get_active_learning_scores"], [43, 1, 1, "", "get_active_learning_scores_ensemble"], [43, 1, 1, "", "get_label_quality_multiannotator"], [43, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [43, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[44, 0, 0, "-", "dataset"], [45, 0, 0, "-", "filter"], [47, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[44, 1, 1, "", "common_multilabel_issues"], [44, 1, 1, "", "multilabel_health_summary"], [44, 1, 1, "", "overall_multilabel_health_score"], [44, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[47, 1, 1, "", "get_label_quality_scores"], [47, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[48, 0, 0, "-", "filter"], [50, 0, 0, "-", "rank"], [51, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[48, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[50, 1, 1, "", "compute_badloc_box_scores"], [50, 1, 1, "", "compute_overlooked_box_scores"], [50, 1, 1, "", "compute_swap_box_scores"], [50, 1, 1, "", "get_label_quality_scores"], [50, 1, 1, "", "issues_from_scores"], [50, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[51, 1, 1, "", "bounding_box_size_distribution"], [51, 1, 1, "", "class_label_distribution"], [51, 1, 1, "", "get_sorted_bbox_count_idxs"], [51, 1, 1, "", "object_counts_per_image"], [51, 1, 1, "", "plot_class_distribution"], [51, 1, 1, "", "plot_class_size_distributions"], [51, 1, 1, "", "visualize"]], "cleanlab.outlier": [[52, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "fit_score"], [52, 3, 1, "", "score"]], "cleanlab.rank": [[53, 1, 1, "", "find_top_issues"], [53, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [53, 1, 1, "", "get_label_quality_ensemble_scores"], [53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_normalized_margin_for_each_label"], [53, 1, 1, "", "get_self_confidence_for_each_label"], [53, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[55, 0, 0, "-", "learn"], [56, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[55, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[55, 3, 1, "", "__init_subclass__"], [55, 3, 1, "", "find_label_issues"], [55, 3, 1, "", "fit"], [55, 3, 1, "", "get_aleatoric_uncertainty"], [55, 3, 1, "", "get_epistemic_uncertainty"], [55, 3, 1, "", "get_label_issues"], [55, 3, 1, "", "get_metadata_routing"], [55, 3, 1, "", "get_params"], [55, 3, 1, "", "predict"], [55, 3, 1, "", "save_space"], [55, 3, 1, "", "score"], [55, 3, 1, "", "set_fit_request"], [55, 3, 1, "", "set_params"], [55, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[56, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[57, 0, 0, "-", "filter"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[57, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[60, 1, 1, "", "common_label_issues"], [60, 1, 1, "", "display_issues"], [60, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[61, 0, 0, "-", "filter"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[61, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[64, 1, 1, "", "common_label_issues"], [64, 1, 1, "", "display_issues"], [64, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 67, 71, 72, 74, 75, 76, 79, 85, 86, 87], "count": [3, 76], "datalab": [4, 5, 6, 7, 8, 68, 69, 70, 71, 72, 76], "creat": [5, 68, 69, 76, 78], "your": [5, 65, 68, 69, 72, 74, 76], "own": 5, "issu": [5, 6, 7, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 84, 85, 87], "manag": 5, "prerequisit": 5, "implement": 5, "issuemanag": [5, 68], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 68], "us": [5, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "guid": [6, 8], "type": [6, 7, 76], "custom": [6, 68], "can": [7, 69, 73, 74, 76, 78], "detect": [7, 69, 71, 72, 74, 76, 80, 81], "estim": [7, 76, 78], "each": 7, "label": [7, 18, 65, 67, 69, 71, 72, 74, 75, 76, 78, 79, 80, 83, 84, 85, 86, 87], "outlier": [7, 20, 36, 52, 71, 72, 75, 81], "Near": [7, 69, 71, 72, 75], "duplic": [7, 14, 69, 71, 72, 75], "non": 7, "iid": 7, "class": [7, 66, 76, 84], "imbal": [7, 15], "imag": [7, 75, 81], "specif": [7, 84], "option": 7, "paramet": [7, 76], "get": [8, 68, 69, 78, 79, 80, 84, 87], "start": [8, 73], "api": 8, "refer": 8, "data": [9, 65, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 81, 83, 84, 85, 87], "data_issu": 10, "factori": 11, "intern": [12, 30], "issue_find": 13, "issue_manag": [16, 17], "noniid": 19, "report": [21, 75], "dataset": [23, 44, 65, 69, 72, 73, 74, 75, 76, 79, 80, 81, 83, 84, 86, 87], "cifar_cnn": 24, "coteach": 25, "experiment": 26, "label_issues_batch": 27, "mnist_pytorch": 28, "filter": [29, 45, 48, 57, 61, 76], "label_quality_util": 31, "latent_algebra": 32, "multiannotator_util": 33, "multilabel_scor": 34, "multilabel_util": 35, "token_classification_util": 37, "util": 38, "valid": [39, 75, 82], "fasttext": 40, "model": [41, 65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86], "kera": 42, "multiannot": [43, 78], "multilabel_classif": 46, "rank": [47, 50, 53, 56, 59, 63, 76], "object_detect": 49, "summari": [51, 60, 64], "regress": [54, 55, 56, 74, 83], "learn": [55, 69, 74, 76, 85], "segment": [58, 84], "token_classif": [62, 87], "cleanlab": [65, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "open": [65, 74], "sourc": [65, 74], "document": 65, "quickstart": 65, "1": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "instal": [65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "2": [65, 66, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "find": [65, 67, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "common": [65, 66, 87], "3": [65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "handl": [65, 74], "error": [65, 74, 75, 76, 78, 79, 80, 83, 84, 86, 87], "train": [65, 67, 74, 81, 83, 85, 86], "robust": [65, 76, 83, 85, 86], "noisi": [65, 76, 83, 85, 86], "4": [65, 67, 68, 69, 71, 72, 75, 76, 78, 80, 81, 83, 85, 86], "curat": [65, 73], "fix": [65, 74], "level": [65, 73, 76, 87], "5": [65, 67, 69, 71, 75, 76, 78, 83, 85], "improv": [65, 78], "via": [65, 76, 78], "mani": [65, 76], "other": [65, 78, 80, 83], "techniqu": 65, "contribut": 65, "easi": 65, "mode": 65, "how": [66, 74, 76, 78, 79, 87], "migrat": 66, "version": 66, "0": 66, "from": [66, 68, 69, 76, 83, 85, 86], "pre": [66, 67, 81], "function": [66, 68], "name": 66, "chang": 66, "modul": [66, 76], "new": 66, "remov": 66, "argument": [66, 68], "variabl": 66, "audio": 67, "speechbrain": 67, "depend": [67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87], "import": [67, 68, 69, 73, 75, 76, 78], "them": [67, 73, 76], "load": [67, 68, 69, 71, 72, 83, 85, 86], "featur": [67, 75, 81], "fit": 67, "linear": 67, "comput": [67, 71, 72, 75, 78, 82, 85], "out": [67, 68, 69, 71, 72, 75, 78, 82, 85], "sampl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "predict": [67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85], "probabl": [67, 68, 69, 71, 72, 75, 78, 82, 85], "workflow": [68, 76], "audit": [68, 69], "requir": [68, 69, 71, 72, 75, 78, 79, 80, 81, 83, 84, 85, 86, 87], "classifi": [68, 69], "instanti": 68, "object": [68, 80], "increment": 68, "search": 68, "specifi": 68, "nondefault": 68, "save": 68, "ad": 68, "A": 69, "unifi": 69, "all": [69, 76], "kind": [69, 80], "skip": [69, 73, 76, 78], "detail": [69, 73, 76, 78], "more": [69, 76, 83, 85, 86], "about": 69, "addit": 69, "inform": [69, 75], "tutori": [70, 73, 77], "tabular": [71, 85], "numer": 71, "categor": 71, "column": 71, "process": [71, 81, 83, 85], "select": [71, 85], "construct": 71, "k": [71, 75, 82], "nearest": 71, "neighbour": 71, "graph": 71, "text": [72, 86, 87], "format": [72, 74, 79, 80, 86], "defin": [72, 75, 83, 86], "fetch": [73, 75], "evalu": 73, "health": [73, 76], "8": [73, 76], "popular": 73, "faq": 74, "what": [74, 76, 82], "do": [74, 76], "i": [74, 76, 82], "infer": 74, "correct": 74, "exampl": [74, 75, 76, 81], "ha": 74, "flag": 74, "should": 74, "v": 74, "test": [74, 76, 81], "big": 74, "limit": 74, "memori": 74, "why": 74, "isn": 74, "t": 74, "cleanlearn": [74, 76], "work": [74, 76, 78, 87], "me": 74, "differ": [74, 80], "clean": [74, 76], "final": 74, "hyperparamet": 74, "tune": 74, "onli": 74, "one": [74, 76, 79, 84], "doe": [74, 78, 87], "take": 74, "so": 74, "long": 74, "ml": [74, 76], "run": 74, "identifi": [74, 80], "licens": 74, "under": 74, "an": 74, "answer": 74, "question": 74, "pytorch": [75, 81], "normal": 75, "fashion": 75, "mnist": 75, "prepar": 75, "fold": [75, 82], "cross": [75, 82], "embed": [75, 81], "7": [75, 76], "view": 75, "most": [75, 87], "like": 75, "sever": 75, "set": [75, 76], "dark": 75, "top": [75, 84], "low": 75, "The": 76, "centric": 76, "ai": 76, "machin": 76, "find_label_issu": 76, "line": 76, "code": 76, "visual": [76, 80, 81, 84], "twenti": 76, "lowest": 76, "qualiti": [76, 78, 79, 80, 84, 87], "see": 76, "now": 76, "let": 76, "": 76, "happen": 76, "we": 76, "merg": 76, "seafoam": 76, "green": 76, "yellow": 76, "too": 76, "you": 76, "re": 76, "6": 76, "One": 76, "score": [76, 78, 79, 80, 84, 87], "rule": 76, "overal": [76, 84], "accur": 76, "thi": 76, "directli": 76, "fulli": 76, "character": 76, "nois": 76, "matrix": [76, 79], "joint": 76, "prior": 76, "true": 76, "distribut": 76, "flip": 76, "rate": 76, "ani": 76, "again": 76, "support": 76, "lot": 76, "method": 76, "filter_bi": 76, "automat": 76, "everi": 76, "uniqu": 76, "num_label_issu": 76, "threshold": 76, "found": 76, "Not": 76, "sure": 76, "when": 76, "ensembl": 76, "multipl": [76, 78], "predictor": 76, "consensu": 78, "annot": 78, "initi": 78, "major": 78, "vote": 78, "better": 78, "statist": 78, "compar": 78, "inspect": 78, "potenti": [78, 83, 86], "retrain": 78, "further": 78, "multi": 79, "given": 79, "hot": 79, "binari": 79, "download": [80, 84, 87], "objectlab": 80, "timm": 81, "cifar10": 81, "some": 81, "pred_prob": [81, 84, 87], "wai": 83, "semant": 84, "which": 84, "ar": 84, "commonli": 84, "mislabel": [84, 87], "focus": 84, "scikit": 85, "token": 87, "word": 87, "sentenc": 87, "contain": 87, "particular": 87}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index d2ae77623..1841aff24 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1482,7 +1482,7 @@

    5. Use cleanlab to find label issues -{"state": {"c48331fcf8384ca6859bca48ab3434ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6185d3bc54c94812a3cbc663dfc89b28": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4ccbde05f5884eed94b1402492ccb002": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c48331fcf8384ca6859bca48ab3434ec", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6185d3bc54c94812a3cbc663dfc89b28", "value": 2041.0}}, "bb26aed67e9046b296136b89d3415f4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20bf7e64f4d141779c20a29d383370e9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e7561f0c498841e985c64fefed22720e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bb26aed67e9046b296136b89d3415f4b", "placeholder": "\u200b", "style": "IPY_MODEL_20bf7e64f4d141779c20a29d383370e9", "value": "Downloading: 100%"}}, "675a8e3fbcfe45c5b334630cf0ff9a3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8508b05deaed4a69b3878b8efdedd135": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ba25e66cff5f431c9fa1a8bebbe8f1fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_675a8e3fbcfe45c5b334630cf0ff9a3a", "placeholder": "\u200b", "style": "IPY_MODEL_8508b05deaed4a69b3878b8efdedd135", "value": " 2.04k/2.04k [00:00<00:00, 214kB/s]"}}, "2f1366cc0649404d9bac4348ccd8f762": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c22933a4383477a8b8bfbd64da7ccdb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e7561f0c498841e985c64fefed22720e", "IPY_MODEL_4ccbde05f5884eed94b1402492ccb002", "IPY_MODEL_ba25e66cff5f431c9fa1a8bebbe8f1fc"], "layout": "IPY_MODEL_2f1366cc0649404d9bac4348ccd8f762"}}, "0027c119b27346b5a9122908121790de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e146121261044c668db0425f7bb45662": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27c01147d6204293aa04429cb37a7591": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0027c119b27346b5a9122908121790de", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e146121261044c668db0425f7bb45662", "value": 16887676.0}}, "a2efd27290bd49fda4a695050c09d651": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a045c8b730544fe94dd1ae09e787ebe": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2a327dc5aa514ff89c5980210fd0b7e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a2efd27290bd49fda4a695050c09d651", "placeholder": "\u200b", "style": "IPY_MODEL_2a045c8b730544fe94dd1ae09e787ebe", "value": "Downloading: 100%"}}, "01b99be9202344afa2fca7b9097b4f6a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b614a6ebaef9450f81881ef735d0f145": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "053f03c0670d4b3d89756894ea44f71e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_01b99be9202344afa2fca7b9097b4f6a", "placeholder": "\u200b", "style": "IPY_MODEL_b614a6ebaef9450f81881ef735d0f145", "value": " 16.9M/16.9M [00:00<00:00, 62.9MB/s]"}}, "f5e2468ab3aa4efdbf463f216898d425": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dfd6b878569944d4bf366d34e7b5e0fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2a327dc5aa514ff89c5980210fd0b7e0", "IPY_MODEL_27c01147d6204293aa04429cb37a7591", "IPY_MODEL_053f03c0670d4b3d89756894ea44f71e"], "layout": "IPY_MODEL_f5e2468ab3aa4efdbf463f216898d425"}}, "eb0b8b8f07314b5286dbba758ec095a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d1fc7fbbc2f414b83f3506c458a49a7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bdf9fe688faf4e408dc9c7482b2f3e9d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_eb0b8b8f07314b5286dbba758ec095a8", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8d1fc7fbbc2f414b83f3506c458a49a7", "value": 3201.0}}, "dfa39c12fab143cf9f284fade365bd44": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0d7733f4a2c4a759537115739a8ee72": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9e9881d0ecf84c7eb298547526b8b457": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dfa39c12fab143cf9f284fade365bd44", "placeholder": "\u200b", "style": "IPY_MODEL_f0d7733f4a2c4a759537115739a8ee72", "value": "Downloading: 100%"}}, "a17976dbcb9648ce9cd9c5422a8bf851": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5479135914d4952a413613ce0fb3e97": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d3e6d15adb75469f97d02f0a96dd4924": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a17976dbcb9648ce9cd9c5422a8bf851", "placeholder": "\u200b", "style": "IPY_MODEL_c5479135914d4952a413613ce0fb3e97", "value": " 3.20k/3.20k [00:00<00:00, 352kB/s]"}}, "7713457012f34cfdaeb25c9898669943": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "959119ababa045aa99d2630800ccf261": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9e9881d0ecf84c7eb298547526b8b457", "IPY_MODEL_bdf9fe688faf4e408dc9c7482b2f3e9d", "IPY_MODEL_d3e6d15adb75469f97d02f0a96dd4924"], "layout": "IPY_MODEL_7713457012f34cfdaeb25c9898669943"}}, "1d091ab6b62046dc8d93506bfa9e2878": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83a6368700a64f529740e6340dde33bc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3b888c35c73a47419808620d0c82ae82": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1d091ab6b62046dc8d93506bfa9e2878", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_83a6368700a64f529740e6340dde33bc", "value": 15856877.0}}, "e08f6767ee984da9a662aba844df0773": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6fb68318eb4a41a78b0c5b027c56b14a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2f1a8c6c6afc4c83b57b8d29f3d34403": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e08f6767ee984da9a662aba844df0773", "placeholder": "\u200b", "style": "IPY_MODEL_6fb68318eb4a41a78b0c5b027c56b14a", "value": "Downloading: 100%"}}, "9423006e795a4e30a15e78bc64993dbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbcf72fb7ad74787885ce5330c556176": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "96a776fbac844290bebd662cf1ee6fba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9423006e795a4e30a15e78bc64993dbf", "placeholder": "\u200b", "style": "IPY_MODEL_fbcf72fb7ad74787885ce5330c556176", "value": " 15.9M/15.9M [00:00<00:00, 70.9MB/s]"}}, "6a51e6163af54ca7ac1ea2677eb66bec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d017622fc604d82bf83ce808c23bf91": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2f1a8c6c6afc4c83b57b8d29f3d34403", "IPY_MODEL_3b888c35c73a47419808620d0c82ae82", "IPY_MODEL_96a776fbac844290bebd662cf1ee6fba"], "layout": "IPY_MODEL_6a51e6163af54ca7ac1ea2677eb66bec"}}, "965bebb5ed6a4acf80128eb6781ebb9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcbb944e88f14262a1f9ac5e11df8a87": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bc9b97a0e45a424daffad8fe42566be2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_965bebb5ed6a4acf80128eb6781ebb9d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fcbb944e88f14262a1f9ac5e11df8a87", "value": 128619.0}}, "9ebfd11429364a3c8b339d347809ff59": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98b46cc9bfbb4472a7316e2cf1457463": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a853924c9a474d1fb4629c67b40ac74b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9ebfd11429364a3c8b339d347809ff59", "placeholder": "\u200b", "style": "IPY_MODEL_98b46cc9bfbb4472a7316e2cf1457463", "value": "Downloading: 100%"}}, "542668a8e07a42289a45b395299549f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "824119667e2c424d979efa77fd425333": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5b0ae73079c040ceae91c08c51346bc6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_542668a8e07a42289a45b395299549f9", "placeholder": "\u200b", "style": "IPY_MODEL_824119667e2c424d979efa77fd425333", "value": " 129k/129k [00:00<00:00, 8.24MB/s]"}}, "892e0cfb5b09428f870d64f014530c00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "caa8308edaea489da086533325e26bf3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a853924c9a474d1fb4629c67b40ac74b", "IPY_MODEL_bc9b97a0e45a424daffad8fe42566be2", "IPY_MODEL_5b0ae73079c040ceae91c08c51346bc6"], "layout": "IPY_MODEL_892e0cfb5b09428f870d64f014530c00"}}}, "version_major": 2, "version_minor": 0} +{"state": {"edf5d4ff54c94b198e147394a7df6d4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcba2c73708e4672982371ec07148dc2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e20dccb2d7f844f485ab4eac6125f270": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_edf5d4ff54c94b198e147394a7df6d4b", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bcba2c73708e4672982371ec07148dc2", "value": 2041.0}}, "5fe9972d78d845609c798e0a6ca2a1dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aca4676e13ae4a0584a23c89e5e21eec": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6c66f59e75c4428eaf6b6f533acf4a80": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5fe9972d78d845609c798e0a6ca2a1dc", "placeholder": "\u200b", "style": "IPY_MODEL_aca4676e13ae4a0584a23c89e5e21eec", "value": "Downloading: 100%"}}, "b3fbec498294468ca4d9f1e3ef036b4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "484476708a6849aa8f3057f19eff95e8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "35a6f52e1d2c486e99b1bb3e86b2acda": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b3fbec498294468ca4d9f1e3ef036b4f", "placeholder": "\u200b", "style": "IPY_MODEL_484476708a6849aa8f3057f19eff95e8", "value": " 2.04k/2.04k [00:00<00:00, 296kB/s]"}}, "5d83576d3dbb4ae390b923a35778eda2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e07577453bb046e28404149d75e7e0b9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c66f59e75c4428eaf6b6f533acf4a80", "IPY_MODEL_e20dccb2d7f844f485ab4eac6125f270", "IPY_MODEL_35a6f52e1d2c486e99b1bb3e86b2acda"], "layout": "IPY_MODEL_5d83576d3dbb4ae390b923a35778eda2"}}, "a35437942bf648f0a5fa6d6f23bbd710": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d76c6731bd3a4e4786045ba2c8265abc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "03b6e9cad1f841e69c4598f2d484ac3f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a35437942bf648f0a5fa6d6f23bbd710", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d76c6731bd3a4e4786045ba2c8265abc", "value": 16887676.0}}, "ec6a872fbce848bbbba4963320eafa03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d2e35d73cbb41d19d77ea523b8ef719": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b84be24872bb4ee29633cc4fb8ae5ca9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec6a872fbce848bbbba4963320eafa03", "placeholder": "\u200b", "style": "IPY_MODEL_8d2e35d73cbb41d19d77ea523b8ef719", "value": "Downloading: 100%"}}, "b875d884823e4d82b383030822b22cb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63cfe10fa42e4c0da9c587f163e3ccef": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b0c4a39f621c49988cbf66b1a6f78124": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b875d884823e4d82b383030822b22cb3", "placeholder": "\u200b", "style": "IPY_MODEL_63cfe10fa42e4c0da9c587f163e3ccef", "value": " 16.9M/16.9M [00:00<00:00, 74.4MB/s]"}}, "1b727cd149574d658f0a75195b91073c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "770289629b03453cb0bd252b5e0a452a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b84be24872bb4ee29633cc4fb8ae5ca9", "IPY_MODEL_03b6e9cad1f841e69c4598f2d484ac3f", "IPY_MODEL_b0c4a39f621c49988cbf66b1a6f78124"], "layout": "IPY_MODEL_1b727cd149574d658f0a75195b91073c"}}, "f8159405dc854bc2b1226dadf5fd49ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1bc078cf3a604086ace5370dbca46fed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "744e829c5b4146109bebd02c36730ab5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f8159405dc854bc2b1226dadf5fd49ca", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1bc078cf3a604086ace5370dbca46fed", "value": 3201.0}}, "8b2284a1a0f247e38a1579b28f1e2860": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a41cc5549114dadb20a04fcc73dc5f5": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2d852b5509014b099bd6c1cbefe71662": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b2284a1a0f247e38a1579b28f1e2860", "placeholder": "\u200b", "style": "IPY_MODEL_0a41cc5549114dadb20a04fcc73dc5f5", "value": "Downloading: 100%"}}, "89c37b88ff1d4db885c172e1a5b39d41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d867d0f2f79740c3beec1fa772368e35": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5f03ef3fbf3c47f18518dfe1843dfbaf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_89c37b88ff1d4db885c172e1a5b39d41", "placeholder": "\u200b", "style": "IPY_MODEL_d867d0f2f79740c3beec1fa772368e35", "value": " 3.20k/3.20k [00:00<00:00, 478kB/s]"}}, "d9186b48d0154d2a84fbe302ae7f4014": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4dd6d80d303d479d87fd948585644ed5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2d852b5509014b099bd6c1cbefe71662", "IPY_MODEL_744e829c5b4146109bebd02c36730ab5", "IPY_MODEL_5f03ef3fbf3c47f18518dfe1843dfbaf"], "layout": "IPY_MODEL_d9186b48d0154d2a84fbe302ae7f4014"}}, "db62335881b845638bc47c8692113ce7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17433ef373ac4b23bccf79e7c10147ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "60f31913cc714deaa44c6711fc150f7f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_db62335881b845638bc47c8692113ce7", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_17433ef373ac4b23bccf79e7c10147ae", "value": 15856877.0}}, "18d4b8273b5845f3b6936211ed23ceb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73a39d745ef445319dee295558549b21": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4659666580ab4a958d240efda4bcb3e3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_18d4b8273b5845f3b6936211ed23ceb5", "placeholder": "\u200b", "style": "IPY_MODEL_73a39d745ef445319dee295558549b21", "value": "Downloading: 100%"}}, "b5678a0453d640e08d331c4e53e509cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0f5a15413774243936dce7eaadd5e25": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0d7613fe0642492dbc32b2715f27b36a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b5678a0453d640e08d331c4e53e509cb", "placeholder": "\u200b", "style": "IPY_MODEL_d0f5a15413774243936dce7eaadd5e25", "value": " 15.9M/15.9M [00:00<00:00, 77.4MB/s]"}}, "14a10514e3b54360b215831842f0f1e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "348ef23e945542b8b16068eb3f736267": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4659666580ab4a958d240efda4bcb3e3", "IPY_MODEL_60f31913cc714deaa44c6711fc150f7f", "IPY_MODEL_0d7613fe0642492dbc32b2715f27b36a"], "layout": "IPY_MODEL_14a10514e3b54360b215831842f0f1e1"}}, "ed3246b994084945bebe55e52f547779": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d23fe058d20a49f49e061a79298e4795": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "87dc2e870b2d49d6adde851a273d92c7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ed3246b994084945bebe55e52f547779", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d23fe058d20a49f49e061a79298e4795", "value": 128619.0}}, "ffdbeccf1d5a4422922702d8dde89c7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d58735d2326416b9bb69389ebaca261": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "be289196036c4019b7109c16fad6fa90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ffdbeccf1d5a4422922702d8dde89c7e", "placeholder": "\u200b", "style": "IPY_MODEL_3d58735d2326416b9bb69389ebaca261", "value": "Downloading: 100%"}}, "ba5ed3d97f154beea1f5f4fbf8b0005f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9325184194e4b88b52e54c0167ff1aa": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "04f9656a8e914272898f673b9dead023": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ba5ed3d97f154beea1f5f4fbf8b0005f", "placeholder": "\u200b", "style": "IPY_MODEL_e9325184194e4b88b52e54c0167ff1aa", "value": " 129k/129k [00:00<00:00, 4.33MB/s]"}}, "f88dac1d3efe4714945a5927a2a827b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20d5911c0b484656968eaadecdeedb64": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_be289196036c4019b7109c16fad6fa90", "IPY_MODEL_87dc2e870b2d49d6adde851a273d92c7", "IPY_MODEL_04f9656a8e914272898f673b9dead023"], "layout": "IPY_MODEL_f88dac1d3efe4714945a5927a2a827b5"}}}, "version_major": 2, "version_minor": 0}