diff --git a/master/.buildinfo b/master/.buildinfo index 8c222332a..7dfe6527d 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 6df7f2cdbf11624347f0764d501c0de5 +config: eb46f0eaf294316bbb75e1602de15cff tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index f6bd76da0..084990eca 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 26d877799..697d45d48 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index c873e8939..909584676 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 1ce803b85..248a31f8c 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index e297cbdd0..70f73edd0 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index d2ec7ad8c..4c224d16c 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 3d5f91530..ede29d222 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index a4255bc8f..3eb4e16c9 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index f4824e350..9e74fcf80 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index b3fb0b05c..b46b7783f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 2fb67c354..79ff2c20a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 4d4792385..3b030cbfa 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 77b4745f7..bcd03fb5f 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index e5a44e565..6a4fb00f7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index a84295d15..73842c00c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index fc8d1d384..d4341187e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 998996030..ab9eb4744 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 9c0cb819a..53cabfac0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a7bcc7023..9190ffe90 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 73092bd80..6f0c3759c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 08d6fe89c..31d1e885d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 15132ab0b..89fafe454 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index fd77ea030..4186b7281 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index ba73b110b..964e1417e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 845fc4d46..13a1113f1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 2bd4c567b..1dfbea328 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 07399c196..b19838665 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 96f7c76d9..2a09d3394 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 612418e8a..8bbe55284 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index cb7bf070c..48ccf85a6 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 0bf948a83..62ecc7cf0 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index b9a42fb5f..f9b511424 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 7f399efbf..ccdd8fd45 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 269cbe326..c1928666b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 5d57cafe6..9ff27b0a1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index c74a5062b..0a8db862f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 83d0c95a7..d4a4147f3 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index c7e8c2928..c45a889e3 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index b720d9f77..95673dba3 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 1b4249bc7..ea057f341 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 83509ecbf..108a88102 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index b68bc07ae..b5aa67890 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 672760a86..68f35e250 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 0e183b4e1..0f64b793c 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 4c11c1452..45ed862d1 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 1336161ce..3b6526f46 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 0de3d3b57..164f67782 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 7a3544450..ecae2366b 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 40fce4f3b..a53f21a0a 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index f07420f98..4cafa8163 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 877080f6b..d70290024 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 31f187d58..4081bd0e9 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 27bb2e0ce..e2593bba1 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index b6af3ff24..bb1ff51db 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 79453ced8..acc58e33b 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 2807bb332..c214b04e8 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 7027f6854..58614b03d 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index f82e60835..acf3b1281 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 4da86a71d..3b32bf8c9 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 8b97f302c..489727290 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 9676c869c..6aa4bf89f 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index f5ca7118c..c8a005eb7 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index ce1bdffdb..235b4f969 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index f2d079bfb..ff37e5839 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index ad0464411..944178a12 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 4fa6a7e80..90c28a1a9 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 5cfd58fc9..95f2d94d8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 553bc95b4..bbcdabd9d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 61805a36a..64cd44ed3 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 04defcdbf..7b16c3081 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 43470f04a..3e52af36c 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 0b7b3e5c4..84ddc99ab 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index b9d733a85..d4e5bb620 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 0b2134ef0..09468ef7d 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 067cac440..1ecfe07fe 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 73fdb1bd8..51eb22425 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 60e81e0ef..66f1e790a 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index e5cc504dd..da47a2856 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index da18d407e..7b9ed530d 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 470fd394a..f905a9d0d 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 2d4b664c9..c2558c3eb 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 4c5ebb36e..f34f9afec 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index d21808fc7..746babaf7 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 7c2ae86d7..b82d904c4 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 771954cf2..ce70654ac 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index a45c46f6f..f013f3ac9 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 68c86ea12..3910d569e 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 99cc5344e..ccf2e1080 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:05.992281Z", - "iopub.status.busy": "2024-06-19T19:13:05.992103Z", - "iopub.status.idle": "2024-06-19T19:13:07.220654Z", - "shell.execute_reply": "2024-06-19T19:13:07.220079Z" + "iopub.execute_input": "2024-06-25T15:01:44.210466Z", + "iopub.status.busy": "2024-06-25T15:01:44.210033Z", + "iopub.status.idle": "2024-06-25T15:01:45.515099Z", + "shell.execute_reply": "2024-06-25T15:01:45.514552Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.223345Z", - "iopub.status.busy": "2024-06-19T19:13:07.222936Z", - "iopub.status.idle": "2024-06-19T19:13:07.241828Z", - "shell.execute_reply": "2024-06-19T19:13:07.241338Z" + "iopub.execute_input": "2024-06-25T15:01:45.518064Z", + "iopub.status.busy": "2024-06-25T15:01:45.517573Z", + "iopub.status.idle": "2024-06-25T15:01:45.536889Z", + "shell.execute_reply": "2024-06-25T15:01:45.536276Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.244569Z", - "iopub.status.busy": "2024-06-19T19:13:07.244123Z", - "iopub.status.idle": "2024-06-19T19:13:07.353379Z", - "shell.execute_reply": "2024-06-19T19:13:07.352817Z" + "iopub.execute_input": "2024-06-25T15:01:45.539480Z", + "iopub.status.busy": "2024-06-25T15:01:45.539180Z", + "iopub.status.idle": "2024-06-25T15:01:45.675081Z", + "shell.execute_reply": "2024-06-25T15:01:45.674481Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.384426Z", - "iopub.status.busy": "2024-06-19T19:13:07.383909Z", - "iopub.status.idle": "2024-06-19T19:13:07.388104Z", - "shell.execute_reply": "2024-06-19T19:13:07.387619Z" + "iopub.execute_input": "2024-06-25T15:01:45.709224Z", + "iopub.status.busy": "2024-06-25T15:01:45.708793Z", + "iopub.status.idle": "2024-06-25T15:01:45.712610Z", + "shell.execute_reply": "2024-06-25T15:01:45.712119Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.390073Z", - "iopub.status.busy": "2024-06-19T19:13:07.389893Z", - "iopub.status.idle": "2024-06-19T19:13:07.398271Z", - "shell.execute_reply": "2024-06-19T19:13:07.397839Z" + "iopub.execute_input": "2024-06-25T15:01:45.714729Z", + "iopub.status.busy": "2024-06-25T15:01:45.714392Z", + "iopub.status.idle": "2024-06-25T15:01:45.722965Z", + "shell.execute_reply": "2024-06-25T15:01:45.722410Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.400568Z", - "iopub.status.busy": "2024-06-19T19:13:07.400144Z", - "iopub.status.idle": "2024-06-19T19:13:07.402970Z", - "shell.execute_reply": "2024-06-19T19:13:07.402425Z" + "iopub.execute_input": "2024-06-25T15:01:45.725077Z", + "iopub.status.busy": "2024-06-25T15:01:45.724896Z", + "iopub.status.idle": "2024-06-25T15:01:45.727695Z", + "shell.execute_reply": "2024-06-25T15:01:45.727101Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.405030Z", - "iopub.status.busy": "2024-06-19T19:13:07.404638Z", - "iopub.status.idle": "2024-06-19T19:13:07.932245Z", - "shell.execute_reply": "2024-06-19T19:13:07.931617Z" + "iopub.execute_input": "2024-06-25T15:01:45.729642Z", + "iopub.status.busy": "2024-06-25T15:01:45.729468Z", + "iopub.status.idle": "2024-06-25T15:01:46.265625Z", + "shell.execute_reply": "2024-06-25T15:01:46.264963Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.934938Z", - "iopub.status.busy": "2024-06-19T19:13:07.934682Z", - "iopub.status.idle": "2024-06-19T19:13:09.848580Z", - "shell.execute_reply": "2024-06-19T19:13:09.847980Z" + "iopub.execute_input": "2024-06-25T15:01:46.268663Z", + "iopub.status.busy": "2024-06-25T15:01:46.268173Z", + "iopub.status.idle": "2024-06-25T15:01:48.217776Z", + "shell.execute_reply": "2024-06-25T15:01:48.217164Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.851288Z", - "iopub.status.busy": "2024-06-19T19:13:09.850615Z", - "iopub.status.idle": "2024-06-19T19:13:09.860714Z", - "shell.execute_reply": "2024-06-19T19:13:09.860220Z" + "iopub.execute_input": "2024-06-25T15:01:48.220484Z", + "iopub.status.busy": "2024-06-25T15:01:48.219877Z", + "iopub.status.idle": "2024-06-25T15:01:48.230622Z", + "shell.execute_reply": "2024-06-25T15:01:48.230137Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.862808Z", - "iopub.status.busy": "2024-06-19T19:13:09.862555Z", - "iopub.status.idle": "2024-06-19T19:13:09.866600Z", - "shell.execute_reply": "2024-06-19T19:13:09.866193Z" + "iopub.execute_input": "2024-06-25T15:01:48.232874Z", + "iopub.status.busy": "2024-06-25T15:01:48.232674Z", + "iopub.status.idle": "2024-06-25T15:01:48.237233Z", + "shell.execute_reply": "2024-06-25T15:01:48.236692Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.868701Z", - "iopub.status.busy": "2024-06-19T19:13:09.868381Z", - "iopub.status.idle": "2024-06-19T19:13:09.875547Z", - "shell.execute_reply": "2024-06-19T19:13:09.875091Z" + "iopub.execute_input": "2024-06-25T15:01:48.239352Z", + "iopub.status.busy": "2024-06-25T15:01:48.239163Z", + "iopub.status.idle": "2024-06-25T15:01:48.246761Z", + "shell.execute_reply": "2024-06-25T15:01:48.246216Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.877745Z", - "iopub.status.busy": "2024-06-19T19:13:09.877337Z", - "iopub.status.idle": "2024-06-19T19:13:09.991009Z", - "shell.execute_reply": "2024-06-19T19:13:09.990354Z" + "iopub.execute_input": "2024-06-25T15:01:48.249302Z", + "iopub.status.busy": "2024-06-25T15:01:48.248895Z", + "iopub.status.idle": "2024-06-25T15:01:48.364612Z", + "shell.execute_reply": "2024-06-25T15:01:48.364100Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.993352Z", - "iopub.status.busy": "2024-06-19T19:13:09.992959Z", - "iopub.status.idle": "2024-06-19T19:13:09.995837Z", - "shell.execute_reply": "2024-06-19T19:13:09.995394Z" + "iopub.execute_input": "2024-06-25T15:01:48.366981Z", + "iopub.status.busy": "2024-06-25T15:01:48.366559Z", + "iopub.status.idle": "2024-06-25T15:01:48.369555Z", + "shell.execute_reply": "2024-06-25T15:01:48.369084Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.997958Z", - "iopub.status.busy": "2024-06-19T19:13:09.997634Z", - "iopub.status.idle": "2024-06-19T19:13:12.005175Z", - "shell.execute_reply": "2024-06-19T19:13:12.004490Z" + "iopub.execute_input": "2024-06-25T15:01:48.371662Z", + "iopub.status.busy": "2024-06-25T15:01:48.371309Z", + "iopub.status.idle": "2024-06-25T15:01:50.418139Z", + "shell.execute_reply": "2024-06-25T15:01:50.417343Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:12.008225Z", - "iopub.status.busy": "2024-06-19T19:13:12.007462Z", - "iopub.status.idle": "2024-06-19T19:13:12.019330Z", - "shell.execute_reply": "2024-06-19T19:13:12.018873Z" + "iopub.execute_input": "2024-06-25T15:01:50.421433Z", + "iopub.status.busy": "2024-06-25T15:01:50.420700Z", + "iopub.status.idle": "2024-06-25T15:01:50.433080Z", + "shell.execute_reply": "2024-06-25T15:01:50.432500Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:12.021679Z", - "iopub.status.busy": "2024-06-19T19:13:12.021283Z", - "iopub.status.idle": "2024-06-19T19:13:12.077773Z", - "shell.execute_reply": "2024-06-19T19:13:12.077172Z" + "iopub.execute_input": "2024-06-25T15:01:50.435410Z", + "iopub.status.busy": "2024-06-25T15:01:50.435087Z", + "iopub.status.idle": "2024-06-25T15:01:50.473924Z", + "shell.execute_reply": "2024-06-25T15:01:50.473290Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index f4eb558e7..4899defaa 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:16.581923Z", - "iopub.status.busy": "2024-06-19T19:13:16.581741Z", - "iopub.status.idle": "2024-06-19T19:13:19.609277Z", - "shell.execute_reply": "2024-06-19T19:13:19.608766Z" + "iopub.execute_input": "2024-06-25T15:01:53.780398Z", + "iopub.status.busy": "2024-06-25T15:01:53.780232Z", + "iopub.status.idle": "2024-06-25T15:01:56.912617Z", + "shell.execute_reply": "2024-06-25T15:01:56.911965Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.611940Z", - "iopub.status.busy": "2024-06-19T19:13:19.611485Z", - "iopub.status.idle": "2024-06-19T19:13:19.614760Z", - "shell.execute_reply": "2024-06-19T19:13:19.614336Z" + "iopub.execute_input": "2024-06-25T15:01:56.915217Z", + "iopub.status.busy": "2024-06-25T15:01:56.914879Z", + "iopub.status.idle": "2024-06-25T15:01:56.918507Z", + "shell.execute_reply": "2024-06-25T15:01:56.918065Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.616662Z", - "iopub.status.busy": "2024-06-19T19:13:19.616400Z", - "iopub.status.idle": "2024-06-19T19:13:19.619393Z", - "shell.execute_reply": "2024-06-19T19:13:19.618967Z" + "iopub.execute_input": "2024-06-25T15:01:56.920542Z", + "iopub.status.busy": "2024-06-25T15:01:56.920216Z", + "iopub.status.idle": "2024-06-25T15:01:56.923484Z", + "shell.execute_reply": "2024-06-25T15:01:56.922920Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.621501Z", - "iopub.status.busy": "2024-06-19T19:13:19.621077Z", - "iopub.status.idle": "2024-06-19T19:13:19.648165Z", - "shell.execute_reply": "2024-06-19T19:13:19.647618Z" + "iopub.execute_input": "2024-06-25T15:01:56.925653Z", + "iopub.status.busy": "2024-06-25T15:01:56.925222Z", + "iopub.status.idle": "2024-06-25T15:01:56.966287Z", + "shell.execute_reply": "2024-06-25T15:01:56.965678Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.650130Z", - "iopub.status.busy": "2024-06-19T19:13:19.649949Z", - "iopub.status.idle": "2024-06-19T19:13:19.653780Z", - "shell.execute_reply": "2024-06-19T19:13:19.653251Z" + "iopub.execute_input": "2024-06-25T15:01:56.968774Z", + "iopub.status.busy": "2024-06-25T15:01:56.968352Z", + "iopub.status.idle": "2024-06-25T15:01:56.972408Z", + "shell.execute_reply": "2024-06-25T15:01:56.971945Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.655728Z", - "iopub.status.busy": "2024-06-19T19:13:19.655462Z", - "iopub.status.idle": "2024-06-19T19:13:19.658726Z", - "shell.execute_reply": "2024-06-19T19:13:19.658213Z" + "iopub.execute_input": "2024-06-25T15:01:56.975695Z", + "iopub.status.busy": "2024-06-25T15:01:56.974365Z", + "iopub.status.idle": "2024-06-25T15:01:56.978956Z", + "shell.execute_reply": "2024-06-25T15:01:56.978424Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card'}\n" + "Classes: {'card_about_to_expire', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.660758Z", - "iopub.status.busy": "2024-06-19T19:13:19.660381Z", - "iopub.status.idle": "2024-06-19T19:13:19.663556Z", - "shell.execute_reply": "2024-06-19T19:13:19.663016Z" + "iopub.execute_input": "2024-06-25T15:01:56.981270Z", + "iopub.status.busy": "2024-06-25T15:01:56.980905Z", + "iopub.status.idle": "2024-06-25T15:01:56.984145Z", + "shell.execute_reply": "2024-06-25T15:01:56.983607Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.665629Z", - "iopub.status.busy": "2024-06-19T19:13:19.665315Z", - "iopub.status.idle": "2024-06-19T19:13:19.668463Z", - "shell.execute_reply": "2024-06-19T19:13:19.668008Z" + "iopub.execute_input": "2024-06-25T15:01:56.986343Z", + "iopub.status.busy": "2024-06-25T15:01:56.986027Z", + "iopub.status.idle": "2024-06-25T15:01:56.989549Z", + "shell.execute_reply": "2024-06-25T15:01:56.989071Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.670515Z", - "iopub.status.busy": "2024-06-19T19:13:19.670224Z", - "iopub.status.idle": "2024-06-19T19:13:24.058839Z", - "shell.execute_reply": "2024-06-19T19:13:24.058285Z" + "iopub.execute_input": "2024-06-25T15:01:56.991498Z", + "iopub.status.busy": "2024-06-25T15:01:56.991316Z", + "iopub.status.idle": "2024-06-25T15:02:01.303453Z", + "shell.execute_reply": "2024-06-25T15:02:01.302875Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2978d58647a4d4bb8cf666ca7ae71de", + "model_id": "766189f555ae4a1588fb3238bacfd209", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "99ce04b28e3a484b9933f72981a52419", + "model_id": "f87e6441b274424db0a957c4d8049d8a", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84987e7069a040deaa24f7856a4b01ad", + "model_id": "8e4573277feb4466af64443afc2abc3d", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9bb6466d1ba4951b164e17a33517554", + "model_id": "41475d21e4424b98b04954365f7fe679", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2e4d9efd9194dd095e532cb483d9267", + "model_id": "3dd8436734ce4436b531d61768cb7839", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "82afe5ac9f2d4168bb3efe4d261e47de", + "model_id": "e704dc9524764a4c866ac8dae48ee954", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb55b901c08d44869813de690e4758c4", + "model_id": "e9d78c3323c94ba99707e480b29e93ac", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.061588Z", - "iopub.status.busy": "2024-06-19T19:13:24.061202Z", - "iopub.status.idle": "2024-06-19T19:13:24.064282Z", - "shell.execute_reply": "2024-06-19T19:13:24.063765Z" + "iopub.execute_input": "2024-06-25T15:02:01.306248Z", + "iopub.status.busy": "2024-06-25T15:02:01.306035Z", + "iopub.status.idle": "2024-06-25T15:02:01.308879Z", + "shell.execute_reply": "2024-06-25T15:02:01.308447Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.066340Z", - "iopub.status.busy": "2024-06-19T19:13:24.066024Z", - "iopub.status.idle": "2024-06-19T19:13:24.068531Z", - "shell.execute_reply": "2024-06-19T19:13:24.068107Z" + "iopub.execute_input": "2024-06-25T15:02:01.310809Z", + "iopub.status.busy": "2024-06-25T15:02:01.310624Z", + "iopub.status.idle": "2024-06-25T15:02:01.313252Z", + "shell.execute_reply": "2024-06-25T15:02:01.312823Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.070448Z", - "iopub.status.busy": "2024-06-19T19:13:24.070116Z", - "iopub.status.idle": "2024-06-19T19:13:26.788727Z", - "shell.execute_reply": "2024-06-19T19:13:26.788094Z" + "iopub.execute_input": "2024-06-25T15:02:01.315044Z", + "iopub.status.busy": "2024-06-25T15:02:01.314867Z", + "iopub.status.idle": "2024-06-25T15:02:04.255254Z", + "shell.execute_reply": "2024-06-25T15:02:04.254621Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.791573Z", - "iopub.status.busy": "2024-06-19T19:13:26.790975Z", - "iopub.status.idle": "2024-06-19T19:13:26.798494Z", - "shell.execute_reply": "2024-06-19T19:13:26.798047Z" + "iopub.execute_input": "2024-06-25T15:02:04.258228Z", + "iopub.status.busy": "2024-06-25T15:02:04.257607Z", + "iopub.status.idle": "2024-06-25T15:02:04.265624Z", + "shell.execute_reply": "2024-06-25T15:02:04.265070Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.800704Z", - "iopub.status.busy": "2024-06-19T19:13:26.800287Z", - "iopub.status.idle": "2024-06-19T19:13:26.804097Z", - "shell.execute_reply": "2024-06-19T19:13:26.803615Z" + "iopub.execute_input": "2024-06-25T15:02:04.267797Z", + "iopub.status.busy": "2024-06-25T15:02:04.267592Z", + "iopub.status.idle": "2024-06-25T15:02:04.272257Z", + "shell.execute_reply": "2024-06-25T15:02:04.271790Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.805944Z", - "iopub.status.busy": "2024-06-19T19:13:26.805768Z", - "iopub.status.idle": "2024-06-19T19:13:26.808929Z", - "shell.execute_reply": "2024-06-19T19:13:26.808386Z" + "iopub.execute_input": "2024-06-25T15:02:04.274357Z", + "iopub.status.busy": "2024-06-25T15:02:04.274023Z", + "iopub.status.idle": "2024-06-25T15:02:04.277439Z", + "shell.execute_reply": "2024-06-25T15:02:04.276981Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.810898Z", - "iopub.status.busy": "2024-06-19T19:13:26.810717Z", - "iopub.status.idle": "2024-06-19T19:13:26.813841Z", - "shell.execute_reply": "2024-06-19T19:13:26.813387Z" + "iopub.execute_input": "2024-06-25T15:02:04.279542Z", + "iopub.status.busy": "2024-06-25T15:02:04.279223Z", + "iopub.status.idle": "2024-06-25T15:02:04.282312Z", + "shell.execute_reply": "2024-06-25T15:02:04.281833Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.815784Z", - "iopub.status.busy": "2024-06-19T19:13:26.815472Z", - "iopub.status.idle": "2024-06-19T19:13:26.822955Z", - "shell.execute_reply": "2024-06-19T19:13:26.822474Z" + "iopub.execute_input": "2024-06-25T15:02:04.284160Z", + "iopub.status.busy": "2024-06-25T15:02:04.283982Z", + "iopub.status.idle": "2024-06-25T15:02:04.291871Z", + "shell.execute_reply": "2024-06-25T15:02:04.291291Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.825079Z", - "iopub.status.busy": "2024-06-19T19:13:26.824777Z", - "iopub.status.idle": "2024-06-19T19:13:27.048002Z", - "shell.execute_reply": "2024-06-19T19:13:27.047481Z" + "iopub.execute_input": "2024-06-25T15:02:04.294132Z", + "iopub.status.busy": "2024-06-25T15:02:04.293943Z", + "iopub.status.idle": "2024-06-25T15:02:04.518751Z", + "shell.execute_reply": "2024-06-25T15:02:04.518138Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:27.050616Z", - "iopub.status.busy": "2024-06-19T19:13:27.050282Z", - "iopub.status.idle": "2024-06-19T19:13:27.224199Z", - "shell.execute_reply": "2024-06-19T19:13:27.223655Z" + "iopub.execute_input": "2024-06-25T15:02:04.522263Z", + "iopub.status.busy": "2024-06-25T15:02:04.521310Z", + "iopub.status.idle": "2024-06-25T15:02:04.704038Z", + "shell.execute_reply": "2024-06-25T15:02:04.703381Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:27.226897Z", - "iopub.status.busy": "2024-06-19T19:13:27.226516Z", - "iopub.status.idle": "2024-06-19T19:13:27.230301Z", - "shell.execute_reply": "2024-06-19T19:13:27.229822Z" + "iopub.execute_input": "2024-06-25T15:02:04.708764Z", + "iopub.status.busy": "2024-06-25T15:02:04.707611Z", + "iopub.status.idle": "2024-06-25T15:02:04.713261Z", + "shell.execute_reply": "2024-06-25T15:02:04.712723Z" }, "nbsphinx": "hidden" }, @@ -1113,60 +1113,59 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "023721162b29434b87cc232d38fa3476": { - "model_module": "@jupyter-widgets/base", + "09fa15614c0749f7b5c4a04bf7959a4e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0bb58a355d82497ea894ccdbfafe71cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0de620f757394311845c371a1a1cc264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0516e124235a47a1954f9e1a59b5024a": { + "0dec2fbd8c7b4117a75040ca1826f5ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1219,72 +1218,25 @@ "width": null } }, - "063a8b237a5c448998a34a83d51e36e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_960c4a81e2974870bb0d132ced734978", - "placeholder": "​", - "style": "IPY_MODEL_a521f8c32ed74a068a87e633d6a75de7", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" - } - }, - "07f14dbddfe34017accff07c5141725c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8b40a8aff9144b39b5c109b4133cecf", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6e4f671c9f34555be2b639a76f8bacf", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "08d4ee2eedb847ee921f28a01bdbf8ae": { + "0fe9aa5574b24552bd75f1f1750e26f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08f5b15a86734842b9655352a9d6e432": { + "115b5302d5bd48cdb188d06fa3c691d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1299,15 +1251,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_895829f141094d8d84105d898e10dbe4", + "layout": "IPY_MODEL_20047fae51454f0b8e0904f7ac0414ce", "placeholder": "​", - "style": "IPY_MODEL_5a16c10d82d64d479ad9f4628cdac10d", + "style": "IPY_MODEL_b38b5cfd4f4e4c2e80d00e9305b02585", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.79kB/s]" + "value": "tokenizer_config.json: 100%" } }, - "093e7045dda04a9cbca6f6ca3fc8534e": { + "1587f80f14a64e8f89ca925f4fca7d7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1360,46 +1312,7 @@ "width": null } }, - "0a634a7cdf354141991be6da4cb7e3e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0f96ba9e277f4f818b62dd02f5202ab1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b57642aea9924fb5b20bb2de8d171332", - "placeholder": "​", - "style": "IPY_MODEL_4755b944642f49deacb92f308a10b898", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "127a48217ba2403ba14efd4f4d54947b": { + "176f8576a0d740a3993ecf00e230504f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1415,56 +1328,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b974b4475657463f858fcec5e668be93", - "max": 2211.0, + "layout": "IPY_MODEL_db9b9c684bc3497d87a4f0563cb69e1a", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0a634a7cdf354141991be6da4cb7e3e8", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "14a06a56a047405db7c1b323e050c2f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1cef651877a5414d827d65b07c1c050c", - "placeholder": "​", - "style": "IPY_MODEL_6c151dd5b87145e9a99c2bed48c12462", + "style": "IPY_MODEL_d5b92983f9b44d03aa06c8c569cd59d1", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.9MB/s]" - } - }, - "193f2f0d42fd4677bef93cc1081b569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 391.0 } }, - "1cef651877a5414d827d65b07c1c050c": { + "1846fb6ac9d34bf184a560a817be8999": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1391,7 @@ "width": null } }, - "2cf5eba84b194ba6b4e3fdcbcde9cd31": { + "1907a62d96194091b0a8efe353ded09d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1535,23 +1409,7 @@ "text_color": null } }, - "32f56a2e636c46fb80289047303a35f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "377856eaf16047d9ba4ed2b7295f2d6e": { + "20047fae51454f0b8e0904f7ac0414ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,7 +1462,7 @@ "width": null } }, - "4307fa375f2a476c94ae12c1f66d085d": { + "27cf1512e10e485db3d33be1a2353298": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1657,25 +1515,7 @@ "width": null } }, - "4755b944642f49deacb92f308a10b898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "49312377f6374a0581adefad1e863cef": { + "2e6d799e61dd4036826fa3c89864f73d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1690,15 +1530,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a943a44d6cdd4ecd92e8e8ea5e2d5c49", + "layout": "IPY_MODEL_d57326b8ae6444839e8ac6161f2779ba", "placeholder": "​", - "style": "IPY_MODEL_a8f77329c48a462897a7c70fa6a90b41", + "style": "IPY_MODEL_fea7bd6269154a729f7ebff9eeeef18e", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 34.2MB/s]" } }, - "4cd84dec961f4d24a1fb2ac611788cbd": { + "2e9bac465fa047e2b43e8773234b5b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1713,136 +1553,180 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_023721162b29434b87cc232d38fa3476", + "layout": "IPY_MODEL_977c8bd757af40609cc2ce81c3743d46", "placeholder": "​", - "style": "IPY_MODEL_af6019329c1c4e5d91552e124ce72e01", + "style": "IPY_MODEL_1907a62d96194091b0a8efe353ded09d", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 289MB/s]" } }, - "546e37538d084cbe9897631127530216": { - "model_module": "@jupyter-widgets/controls", + "2ea66b46783543ee94f2b7f5dbd1a612": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5619bcffd7994dcdaac5111af7a8bfd2": { + "3090af089b244080912de0be777af886": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fde9beaf208645aa897899ef17fcde83", - "placeholder": "​", - "style": "IPY_MODEL_2cf5eba84b194ba6b4e3fdcbcde9cd31", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 395kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a16c10d82d64d479ad9f4628cdac10d": { + "3dd8436734ce4436b531d61768cb7839": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8f8f7a5ad214c03a38ecfec9dacfb67", + "IPY_MODEL_ee7b2c440349459a987d628c271588ff", + "IPY_MODEL_6f0f27a8970a4d3faaedd3defc6a4e37" + ], + "layout": "IPY_MODEL_4e6393cd330c4e9bbbca1cf65986715b", + "tabbable": null, + "tooltip": null } }, - "5af078cd3ebe4daf800f0a0014aec1f4": { + "41475d21e4424b98b04954365f7fe679": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_478d98a6b1e1427c890dc3c817bd84b8", + "IPY_MODEL_cb3b41b891ff4d6489bd574d558e370c", + "IPY_MODEL_2e9bac465fa047e2b43e8773234b5b75" + ], + "layout": "IPY_MODEL_0dec2fbd8c7b4117a75040ca1826f5ed", + "tabbable": null, + "tooltip": null } }, - "5dfffe6935c34f968d46bbb128d0c5bd": { + "44ef2bf22e2348448a29599244648f1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccf46aa6594c4867adfb401803ca72e6", + "placeholder": "​", + "style": "IPY_MODEL_0fe9aa5574b24552bd75f1f1750e26f5", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" } }, - "60a51870b1964eaebfdef1f4df5e702e": { + "478d98a6b1e1427c890dc3c817bd84b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b310c6dfc6141afa0b84180e8b2f19c", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_32f56a2e636c46fb80289047303a35f5", + "layout": "IPY_MODEL_2ea66b46783543ee94f2b7f5dbd1a612", + "placeholder": "​", + "style": "IPY_MODEL_0de620f757394311845c371a1a1cc264", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "pytorch_model.bin: 100%" } }, - "6b310c6dfc6141afa0b84180e8b2f19c": { + "4e6393cd330c4e9bbbca1cf65986715b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,25 +1779,53 @@ "width": null } }, - "6c151dd5b87145e9a99c2bed48c12462": { + "5163ac0069934de09b67bbc7b03ab6bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5a992d19edc4d6388ca00e8fe43adf4", + "placeholder": "​", + "style": "IPY_MODEL_5b1b563abc4b488b8eb0cbc23d603573", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 54.0kB/s]" + } + }, + "516558c6513d481bbc786661670eb003": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1846fb6ac9d34bf184a560a817be8999", + "placeholder": "​", + "style": "IPY_MODEL_bf0f6d37f6e64286af6506c42766edbc", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "6df1d15be0594a47a6ab03370bfe2d74": { + "5425f47f7f2a4130a38a762dde10c5a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1878,190 @@ "width": null } }, - "71e70fcae9c344caaba7c1df40406e33": { + "574637f0d90c4f999f79f83c7ab9ac25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_27cf1512e10e485db3d33be1a2353298", + "placeholder": "​", + "style": "IPY_MODEL_3090af089b244080912de0be777af886", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.48kB/s]" + } + }, + "5b1b563abc4b488b8eb0cbc23d603573": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5d3c842b12ba4ed291c7c44527416060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fc0d488bc754fee9c4de60e79480c02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8719aecc121e47b2bf937e7fa785f776", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09fa15614c0749f7b5c4a04bf7959a4e", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "6192e3a2b9dc40fc9e42d7022ccb6da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12db2f3a66249318ecf4d6536c8c928", + "placeholder": "​", + "style": "IPY_MODEL_7160430934ea4215b70100781b5e8bbb", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "6655841f611242b1b1b43ee49f4bbaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6d8fce2a0f6c44a592ff6d135648eb7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6f0f27a8970a4d3faaedd3defc6a4e37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d664717be6b24053b7ec4276a48423db", + "placeholder": "​", + "style": "IPY_MODEL_96d20096cfe6483990d1cd3ad69f449f", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 42.2MB/s]" + } + }, + "7160430934ea4215b70100781b5e8bbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "75492b527f1941c89c88c3d2d775b3aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2019,7 +2114,31 @@ "width": null } }, - "7a81168c6d1a45f49297311369ac1721": { + "766189f555ae4a1588fb3238bacfd209": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_516558c6513d481bbc786661670eb003", + "IPY_MODEL_176f8576a0d740a3993ecf00e230504f", + "IPY_MODEL_5163ac0069934de09b67bbc7b03ab6bf" + ], + "layout": "IPY_MODEL_ad71a537b18048f4bc623dc0cf2b5e1a", + "tabbable": null, + "tooltip": null + } + }, + "798ad98af1914ebfa76027c306b86885": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2072,7 +2191,7 @@ "width": null } }, - "7bd55153d5a045aca7c2e85a268dea5a": { + "7e18b26951b243b8baef48e4a8e40f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2088,7 +2207,7 @@ "description_width": "" } }, - "7e90510812da41ab9e5084a39d030a58": { + "8719aecc121e47b2bf937e7fa785f776": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2141,48 +2260,7 @@ "width": null } }, - "7eb5599da16b44018aa738c67ce80954": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfae98eaa151428daf8846f5892d4bf6", - "placeholder": "​", - "style": "IPY_MODEL_5dfffe6935c34f968d46bbb128d0c5bd", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "8142a1fbdf3e457b97aee4e3f86091f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8156041be7e0465c87e63813647312e0": { + "89a3f3a5e2bd4e71b08aa4958b447917": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2197,42 +2275,18 @@ "_view_name": "ProgressView", "bar_style": "success", "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_377856eaf16047d9ba4ed2b7295f2d6e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe64e87d5f4a48529cf0db06fa555e5f", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "82afe5ac9f2d4168bb3efe4d261e47de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6230d674f2d46e097f76c0535807beb", - "IPY_MODEL_fedea46176bb41148f55b5d28a2d7b61", - "IPY_MODEL_08f5b15a86734842b9655352a9d6e432" - ], - "layout": "IPY_MODEL_71e70fcae9c344caaba7c1df40406e33", + "description_allow_html": false, + "layout": "IPY_MODEL_75492b527f1941c89c88c3d2d775b3aa", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ffd93e7f2dce422f8713966a04342536", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 } }, - "84987e7069a040deaa24f7856a4b01ad": { + "8e4573277feb4466af64443afc2abc3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2247,16 +2301,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_49312377f6374a0581adefad1e863cef", - "IPY_MODEL_60a51870b1964eaebfdef1f4df5e702e", - "IPY_MODEL_063a8b237a5c448998a34a83d51e36e9" + "IPY_MODEL_dd4324aa872a4b82bc19aad38ee6b225", + "IPY_MODEL_f38245cf2ba8420db30db360e7b825b3", + "IPY_MODEL_bbc8a09a296144fba81b25d74eea0806" ], - "layout": "IPY_MODEL_8a2c590db6c8414d8babc757b67845f4", + "layout": "IPY_MODEL_a501af4904b6464d9111c023454647a0", "tabbable": null, "tooltip": null } }, - "86ee62a59ef645d2b27725072b9bc77b": { + "90565bb3d1194515ab0f76dac8212c2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2309,7 +2363,25 @@ "width": null } }, - "895829f141094d8d84105d898e10dbe4": { + "96d20096cfe6483990d1cd3ad69f449f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9741e57728b0428a94c4a371f799d3e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2362,7 +2434,7 @@ "width": null } }, - "8986a1b1965b4dac85f72d0b4861d9d9": { + "977c8bd757af40609cc2ce81c3743d46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,7 +2487,7 @@ "width": null } }, - "8a2c590db6c8414d8babc757b67845f4": { + "a501af4904b6464d9111c023454647a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2468,7 +2540,30 @@ "width": null } }, - "8fe28946422246bfb725f03c68436ceb": { + "a8f8f7a5ad214c03a38ecfec9dacfb67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d93f977e281e40ce97a8893e95f4bd1e", + "placeholder": "​", + "style": "IPY_MODEL_bc26b348a4754c20b4dc2908953948e3", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "ad71a537b18048f4bc623dc0cf2b5e1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,25 +2616,7 @@ "width": null } }, - "9067bb52ac4648bc90d93f18e438360b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "960c4a81e2974870bb0d132ced734978": { + "b1a6abc862634414b3d1d37309ef29cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2592,54 +2669,7 @@ "width": null } }, - "99ce04b28e3a484b9933f72981a52419": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e73b4a53022d4ea1a4a3eb06151216c3", - "IPY_MODEL_127a48217ba2403ba14efd4f4d54947b", - "IPY_MODEL_5619bcffd7994dcdaac5111af7a8bfd2" - ], - "layout": "IPY_MODEL_0516e124235a47a1954f9e1a59b5024a", - "tabbable": null, - "tooltip": null - } - }, - "9f9ed4926fdd4099a669a6edb91d9017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abaa9e67d2aa4e53b09c155f1e77c0ec", - "placeholder": "​", - "style": "IPY_MODEL_8142a1fbdf3e457b97aee4e3f86091f9", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 279MB/s]" - } - }, - "a521f8c32ed74a068a87e633d6a75de7": { + "b38b5cfd4f4e4c2e80d00e9305b02585": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2657,7 +2687,7 @@ "text_color": null } }, - "a59cedcb9ac34e5ba44cf8709ae1a153": { + "b413b2092a80494d91cf70bbeedb1e80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2710,7 +2740,92 @@ "width": null } }, - "a62c2dc7bac94e919e060151cb19edb1": { + "bbc8a09a296144fba81b25d74eea0806": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_90565bb3d1194515ab0f76dac8212c2f", + "placeholder": "​", + "style": "IPY_MODEL_6655841f611242b1b1b43ee49f4bbaf2", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 114kB/s]" + } + }, + "bc26b348a4754c20b4dc2908953948e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bf0f6d37f6e64286af6506c42766edbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bf51cc0a3c64473f8bccb569b7631e88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9741e57728b0428a94c4a371f799d3e5", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e04fb57010a449fa94d1288e6657137e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "c12db2f3a66249318ecf4d6536c8c928": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2763,25 +2878,7 @@ "width": null } }, - "a8f77329c48a462897a7c70fa6a90b41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a943a44d6cdd4ecd92e8e8ea5e2d5c49": { + "c7e5b48fd6bf4f7da153018fbee55842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,31 +2931,33 @@ "width": null } }, - "a9bb6466d1ba4951b164e17a33517554": { + "cb3b41b891ff4d6489bd574d558e370c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f96ba9e277f4f818b62dd02f5202ab1", - "IPY_MODEL_07f14dbddfe34017accff07c5141725c", - "IPY_MODEL_9f9ed4926fdd4099a669a6edb91d9017" - ], - "layout": "IPY_MODEL_8986a1b1965b4dac85f72d0b4861d9d9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1a6abc862634414b3d1d37309ef29cb", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d3c842b12ba4ed291c7c44527416060", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "abaa9e67d2aa4e53b09c155f1e77c0ec": { + "ccf46aa6594c4867adfb401803ca72e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,81 +2996,44 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "af6019329c1c4e5d91552e124ce72e01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afab22926aec404a880f2cb2671f11cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b2978d58647a4d4bb8cf666ca7ae71de": { + "d4673f560a3c4a17883f6dd9549e92f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d0bb8cb0d081404e91d5812d0828572c", - "IPY_MODEL_8156041be7e0465c87e63813647312e0", - "IPY_MODEL_f7b2b1b4d92748f4bf2596f690c04ac8" - ], - "layout": "IPY_MODEL_093e7045dda04a9cbca6f6ca3fc8534e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_798ad98af1914ebfa76027c306b86885", + "placeholder": "​", + "style": "IPY_MODEL_6d8fce2a0f6c44a592ff6d135648eb7e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 393kB/s]" } }, - "b57642aea9924fb5b20bb2de8d171332": { + "d524ebbb5d31420ebc500873dc871e43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3024,7 +3086,7 @@ "width": null } }, - "b974b4475657463f858fcec5e668be93": { + "d57326b8ae6444839e8ac6161f2779ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3077,33 +3139,7 @@ "width": null } }, - "bcd4e8ea61384bf7b9174188e65c97aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a81168c6d1a45f49297311369ac1721", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_193f2f0d42fd4677bef93cc1081b569b", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "c8b40a8aff9144b39b5c109b4133cecf": { + "d5a992d19edc4d6388ca00e8fe43adf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3156,30 +3192,23 @@ "width": null } }, - "d0bb8cb0d081404e91d5812d0828572c": { + "d5b92983f9b44d03aa06c8c569cd59d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4307fa375f2a476c94ae12c1f66d085d", - "placeholder": "​", - "style": "IPY_MODEL_9067bb52ac4648bc90d93f18e438360b", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d690ad0978314a15be693306fc6ab575": { + "d664717be6b24053b7ec4276a48423db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3232,7 +3261,7 @@ "width": null } }, - "d6e4f671c9f34555be2b639a76f8bacf": { + "d76426e2be9f466a9190b13ea2b587de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3248,30 +3277,7 @@ "description_width": "" } }, - "dc62d3342657453e81b68083fee06ce6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e90510812da41ab9e5084a39d030a58", - "placeholder": "​", - "style": "IPY_MODEL_f7a62d47cf9c4d389a3b4631df0a152f", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 15.0MB/s]" - } - }, - "dfae98eaa151428daf8846f5892d4bf6": { + "d93f977e281e40ce97a8893e95f4bd1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3324,53 +3330,7 @@ "width": null } }, - "e6230d674f2d46e097f76c0535807beb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86ee62a59ef645d2b27725072b9bc77b", - "placeholder": "​", - "style": "IPY_MODEL_5af078cd3ebe4daf800f0a0014aec1f4", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "e73b4a53022d4ea1a4a3eb06151216c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d690ad0978314a15be693306fc6ab575", - "placeholder": "​", - "style": "IPY_MODEL_afab22926aec404a880f2cb2671f11cc", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "eb1ccb7d3970425b8f298eda0f4ec13b": { + "db9b9c684bc3497d87a4f0563cb69e1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3423,57 +3383,70 @@ "width": null } }, - "eb55b901c08d44869813de690e4758c4": { + "dd4324aa872a4b82bc19aad38ee6b225": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7eb5599da16b44018aa738c67ce80954", - "IPY_MODEL_bcd4e8ea61384bf7b9174188e65c97aa", - "IPY_MODEL_14a06a56a047405db7c1b323e050c2f1" - ], - "layout": "IPY_MODEL_8fe28946422246bfb725f03c68436ceb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c7e5b48fd6bf4f7da153018fbee55842", + "placeholder": "​", + "style": "IPY_MODEL_0bb58a355d82497ea894ccdbfafe71cc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "ec854d51ef9a4510a09dbfe7141f9b37": { + "e04fb57010a449fa94d1288e6657137e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e704dc9524764a4c866ac8dae48ee954": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6df1d15be0594a47a6ab03370bfe2d74", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_08d4ee2eedb847ee921f28a01bdbf8ae", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_115b5302d5bd48cdb188d06fa3c691d3", + "IPY_MODEL_89a3f3a5e2bd4e71b08aa4958b447917", + "IPY_MODEL_574637f0d90c4f999f79f83c7ab9ac25" + ], + "layout": "IPY_MODEL_b413b2092a80494d91cf70bbeedb1e80", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null } }, - "f2e4d9efd9194dd095e532cb483d9267": { + "e9d78c3323c94ba99707e480b29e93ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3488,57 +3461,68 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4cd84dec961f4d24a1fb2ac611788cbd", - "IPY_MODEL_ec854d51ef9a4510a09dbfe7141f9b37", - "IPY_MODEL_dc62d3342657453e81b68083fee06ce6" + "IPY_MODEL_6192e3a2b9dc40fc9e42d7022ccb6da7", + "IPY_MODEL_bf51cc0a3c64473f8bccb569b7631e88", + "IPY_MODEL_2e6d799e61dd4036826fa3c89864f73d" ], - "layout": "IPY_MODEL_eb1ccb7d3970425b8f298eda0f4ec13b", + "layout": "IPY_MODEL_f5c851163e9f429abd2a8710a748f770", "tabbable": null, "tooltip": null } }, - "f7a62d47cf9c4d389a3b4631df0a152f": { + "ee7b2c440349459a987d628c271588ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d524ebbb5d31420ebc500873dc871e43", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d76426e2be9f466a9190b13ea2b587de", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "f7b2b1b4d92748f4bf2596f690c04ac8": { + "f38245cf2ba8420db30db360e7b825b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a62c2dc7bac94e919e060151cb19edb1", - "placeholder": "​", - "style": "IPY_MODEL_546e37538d084cbe9897631127530216", + "layout": "IPY_MODEL_1587f80f14a64e8f89ca925f4fca7d7e", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e18b26951b243b8baef48e4a8e40f69", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 64.7kB/s]" + "value": 665.0 } }, - "fde9beaf208645aa897899ef17fcde83": { + "f5c851163e9f429abd2a8710a748f770": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3591,46 +3575,62 @@ "width": null } }, - "fe64e87d5f4a48529cf0db06fa555e5f": { + "f87e6441b274424db0a957c4d8049d8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44ef2bf22e2348448a29599244648f1c", + "IPY_MODEL_5fc0d488bc754fee9c4de60e79480c02", + "IPY_MODEL_d4673f560a3c4a17883f6dd9549e92f2" + ], + "layout": "IPY_MODEL_5425f47f7f2a4130a38a762dde10c5a7", + "tabbable": null, + "tooltip": null + } + }, + "fea7bd6269154a729f7ebff9eeeef18e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fedea46176bb41148f55b5d28a2d7b61": { + "ffd93e7f2dce422f8713966a04342536": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a59cedcb9ac34e5ba44cf8709ae1a153", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7bd55153d5a045aca7c2e85a268dea5a", - "tabbable": null, - "tooltip": null, - "value": 48.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index dbb1daf78..dc239703c 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:31.724474Z", - "iopub.status.busy": "2024-06-19T19:13:31.723866Z", - "iopub.status.idle": "2024-06-19T19:13:37.133460Z", - "shell.execute_reply": "2024-06-19T19:13:37.132903Z" + "iopub.execute_input": "2024-06-25T15:02:08.176130Z", + "iopub.status.busy": "2024-06-25T15:02:08.175897Z", + "iopub.status.idle": "2024-06-25T15:02:15.244517Z", + "shell.execute_reply": "2024-06-25T15:02:15.243853Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.136175Z", - "iopub.status.busy": "2024-06-19T19:13:37.135678Z", - "iopub.status.idle": "2024-06-19T19:13:37.138925Z", - "shell.execute_reply": "2024-06-19T19:13:37.138480Z" + "iopub.execute_input": "2024-06-25T15:02:15.247297Z", + "iopub.status.busy": "2024-06-25T15:02:15.246795Z", + "iopub.status.idle": "2024-06-25T15:02:15.250165Z", + "shell.execute_reply": "2024-06-25T15:02:15.249626Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.141011Z", - "iopub.status.busy": "2024-06-19T19:13:37.140685Z", - "iopub.status.idle": "2024-06-19T19:13:37.145034Z", - "shell.execute_reply": "2024-06-19T19:13:37.144611Z" + "iopub.execute_input": "2024-06-25T15:02:15.252170Z", + "iopub.status.busy": "2024-06-25T15:02:15.251863Z", + "iopub.status.idle": "2024-06-25T15:02:15.256520Z", + "shell.execute_reply": "2024-06-25T15:02:15.255970Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.147096Z", - "iopub.status.busy": "2024-06-19T19:13:37.146770Z", - "iopub.status.idle": "2024-06-19T19:13:38.648451Z", - "shell.execute_reply": "2024-06-19T19:13:38.647790Z" + "iopub.execute_input": "2024-06-25T15:02:15.258543Z", + "iopub.status.busy": "2024-06-25T15:02:15.258235Z", + "iopub.status.idle": "2024-06-25T15:02:16.884738Z", + "shell.execute_reply": "2024-06-25T15:02:16.884101Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.651240Z", - "iopub.status.busy": "2024-06-19T19:13:38.650848Z", - "iopub.status.idle": "2024-06-19T19:13:38.661633Z", - "shell.execute_reply": "2024-06-19T19:13:38.661051Z" + "iopub.execute_input": "2024-06-25T15:02:16.887448Z", + "iopub.status.busy": "2024-06-25T15:02:16.887076Z", + "iopub.status.idle": "2024-06-25T15:02:16.897643Z", + "shell.execute_reply": "2024-06-25T15:02:16.897098Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.663800Z", - "iopub.status.busy": "2024-06-19T19:13:38.663531Z", - "iopub.status.idle": "2024-06-19T19:13:38.668825Z", - "shell.execute_reply": "2024-06-19T19:13:38.668374Z" + "iopub.execute_input": "2024-06-25T15:02:16.899757Z", + "iopub.status.busy": "2024-06-25T15:02:16.899558Z", + "iopub.status.idle": "2024-06-25T15:02:16.904954Z", + "shell.execute_reply": "2024-06-25T15:02:16.904415Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.670895Z", - "iopub.status.busy": "2024-06-19T19:13:38.670564Z", - "iopub.status.idle": "2024-06-19T19:13:39.134781Z", - "shell.execute_reply": "2024-06-19T19:13:39.134211Z" + "iopub.execute_input": "2024-06-25T15:02:16.907000Z", + "iopub.status.busy": "2024-06-25T15:02:16.906695Z", + "iopub.status.idle": "2024-06-25T15:02:17.344696Z", + "shell.execute_reply": "2024-06-25T15:02:17.344197Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.136921Z", - "iopub.status.busy": "2024-06-19T19:13:39.136731Z", - "iopub.status.idle": "2024-06-19T19:13:39.806863Z", - "shell.execute_reply": "2024-06-19T19:13:39.806234Z" + "iopub.execute_input": "2024-06-25T15:02:17.346815Z", + "iopub.status.busy": "2024-06-25T15:02:17.346622Z", + "iopub.status.idle": "2024-06-25T15:02:17.873302Z", + "shell.execute_reply": "2024-06-25T15:02:17.872795Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.809355Z", - "iopub.status.busy": "2024-06-19T19:13:39.809000Z", - "iopub.status.idle": "2024-06-19T19:13:39.827351Z", - "shell.execute_reply": "2024-06-19T19:13:39.826843Z" + "iopub.execute_input": "2024-06-25T15:02:17.875838Z", + "iopub.status.busy": "2024-06-25T15:02:17.875532Z", + "iopub.status.idle": "2024-06-25T15:02:17.894363Z", + "shell.execute_reply": "2024-06-25T15:02:17.893825Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.829649Z", - "iopub.status.busy": "2024-06-19T19:13:39.829305Z", - "iopub.status.idle": "2024-06-19T19:13:39.832484Z", - "shell.execute_reply": "2024-06-19T19:13:39.832008Z" + "iopub.execute_input": "2024-06-25T15:02:17.896418Z", + "iopub.status.busy": "2024-06-25T15:02:17.896157Z", + "iopub.status.idle": "2024-06-25T15:02:17.899239Z", + "shell.execute_reply": "2024-06-25T15:02:17.898819Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.834683Z", - "iopub.status.busy": "2024-06-19T19:13:39.834359Z", - "iopub.status.idle": "2024-06-19T19:13:54.632116Z", - "shell.execute_reply": "2024-06-19T19:13:54.631530Z" + "iopub.execute_input": "2024-06-25T15:02:17.901266Z", + "iopub.status.busy": "2024-06-25T15:02:17.900893Z", + "iopub.status.idle": "2024-06-25T15:02:33.164898Z", + "shell.execute_reply": "2024-06-25T15:02:33.164163Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:54.634785Z", - "iopub.status.busy": "2024-06-19T19:13:54.634403Z", - "iopub.status.idle": "2024-06-19T19:13:54.638244Z", - "shell.execute_reply": "2024-06-19T19:13:54.637698Z" + "iopub.execute_input": "2024-06-25T15:02:33.168417Z", + "iopub.status.busy": "2024-06-25T15:02:33.167943Z", + "iopub.status.idle": "2024-06-25T15:02:33.171955Z", + "shell.execute_reply": "2024-06-25T15:02:33.171347Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:54.640315Z", - "iopub.status.busy": "2024-06-19T19:13:54.640130Z", - "iopub.status.idle": "2024-06-19T19:13:55.362069Z", - "shell.execute_reply": "2024-06-19T19:13:55.361477Z" + "iopub.execute_input": "2024-06-25T15:02:33.174237Z", + "iopub.status.busy": "2024-06-25T15:02:33.173793Z", + "iopub.status.idle": "2024-06-25T15:02:33.908856Z", + "shell.execute_reply": "2024-06-25T15:02:33.908160Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.365099Z", - "iopub.status.busy": "2024-06-19T19:13:55.364531Z", - "iopub.status.idle": "2024-06-19T19:13:55.369403Z", - "shell.execute_reply": "2024-06-19T19:13:55.368920Z" + "iopub.execute_input": "2024-06-25T15:02:33.911831Z", + "iopub.status.busy": "2024-06-25T15:02:33.911585Z", + "iopub.status.idle": "2024-06-25T15:02:33.916537Z", + "shell.execute_reply": "2024-06-25T15:02:33.915984Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.371810Z", - "iopub.status.busy": "2024-06-19T19:13:55.371436Z", - "iopub.status.idle": "2024-06-19T19:13:55.471450Z", - "shell.execute_reply": "2024-06-19T19:13:55.470834Z" + "iopub.execute_input": "2024-06-25T15:02:33.919068Z", + "iopub.status.busy": "2024-06-25T15:02:33.918859Z", + "iopub.status.idle": "2024-06-25T15:02:34.024792Z", + "shell.execute_reply": "2024-06-25T15:02:34.024182Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.473967Z", - "iopub.status.busy": "2024-06-19T19:13:55.473588Z", - "iopub.status.idle": "2024-06-19T19:13:55.485513Z", - "shell.execute_reply": "2024-06-19T19:13:55.485058Z" + "iopub.execute_input": "2024-06-25T15:02:34.027300Z", + "iopub.status.busy": "2024-06-25T15:02:34.026886Z", + "iopub.status.idle": "2024-06-25T15:02:34.040210Z", + "shell.execute_reply": "2024-06-25T15:02:34.039705Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.487657Z", - "iopub.status.busy": "2024-06-19T19:13:55.487331Z", - "iopub.status.idle": "2024-06-19T19:13:55.494998Z", - "shell.execute_reply": "2024-06-19T19:13:55.494567Z" + "iopub.execute_input": "2024-06-25T15:02:34.042518Z", + "iopub.status.busy": "2024-06-25T15:02:34.042160Z", + "iopub.status.idle": "2024-06-25T15:02:34.050552Z", + "shell.execute_reply": "2024-06-25T15:02:34.049971Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.497125Z", - "iopub.status.busy": "2024-06-19T19:13:55.496800Z", - "iopub.status.idle": "2024-06-19T19:13:55.500807Z", - "shell.execute_reply": "2024-06-19T19:13:55.500265Z" + "iopub.execute_input": "2024-06-25T15:02:34.053043Z", + "iopub.status.busy": "2024-06-25T15:02:34.052548Z", + "iopub.status.idle": "2024-06-25T15:02:34.057420Z", + "shell.execute_reply": "2024-06-25T15:02:34.056944Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.502976Z", - "iopub.status.busy": "2024-06-19T19:13:55.502544Z", - "iopub.status.idle": "2024-06-19T19:13:55.508120Z", - "shell.execute_reply": "2024-06-19T19:13:55.507656Z" + "iopub.execute_input": "2024-06-25T15:02:34.059919Z", + "iopub.status.busy": "2024-06-25T15:02:34.059470Z", + "iopub.status.idle": "2024-06-25T15:02:34.065940Z", + "shell.execute_reply": "2024-06-25T15:02:34.065342Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.510246Z", - "iopub.status.busy": "2024-06-19T19:13:55.509919Z", - "iopub.status.idle": "2024-06-19T19:13:55.622133Z", - "shell.execute_reply": "2024-06-19T19:13:55.621564Z" + "iopub.execute_input": "2024-06-25T15:02:34.068297Z", + "iopub.status.busy": "2024-06-25T15:02:34.067933Z", + "iopub.status.idle": "2024-06-25T15:02:34.201047Z", + "shell.execute_reply": "2024-06-25T15:02:34.200381Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.624506Z", - "iopub.status.busy": "2024-06-19T19:13:55.624167Z", - "iopub.status.idle": "2024-06-19T19:13:55.729249Z", - "shell.execute_reply": "2024-06-19T19:13:55.728660Z" + "iopub.execute_input": "2024-06-25T15:02:34.203740Z", + "iopub.status.busy": "2024-06-25T15:02:34.203362Z", + "iopub.status.idle": "2024-06-25T15:02:34.314277Z", + "shell.execute_reply": "2024-06-25T15:02:34.313644Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.731529Z", - "iopub.status.busy": "2024-06-19T19:13:55.731114Z", - "iopub.status.idle": "2024-06-19T19:13:55.835603Z", - "shell.execute_reply": "2024-06-19T19:13:55.835028Z" + "iopub.execute_input": "2024-06-25T15:02:34.316726Z", + "iopub.status.busy": "2024-06-25T15:02:34.316376Z", + "iopub.status.idle": "2024-06-25T15:02:34.428040Z", + "shell.execute_reply": "2024-06-25T15:02:34.427365Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.837654Z", - "iopub.status.busy": "2024-06-19T19:13:55.837457Z", - "iopub.status.idle": "2024-06-19T19:13:55.943789Z", - "shell.execute_reply": "2024-06-19T19:13:55.943286Z" + "iopub.execute_input": "2024-06-25T15:02:34.430505Z", + "iopub.status.busy": "2024-06-25T15:02:34.430130Z", + "iopub.status.idle": "2024-06-25T15:02:34.540275Z", + "shell.execute_reply": "2024-06-25T15:02:34.539662Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.945995Z", - "iopub.status.busy": "2024-06-19T19:13:55.945670Z", - "iopub.status.idle": "2024-06-19T19:13:55.948721Z", - "shell.execute_reply": "2024-06-19T19:13:55.948284Z" + "iopub.execute_input": "2024-06-25T15:02:34.542600Z", + "iopub.status.busy": "2024-06-25T15:02:34.542291Z", + "iopub.status.idle": "2024-06-25T15:02:34.545643Z", + "shell.execute_reply": "2024-06-25T15:02:34.545177Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "056edd9d6e1647bebf20532471526fa7": { + "065665834fe849debf9577cd1fe479b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,94 +1455,73 @@ "width": null } }, - "057e9688008449a185ba2d598ac74d51": { - "model_module": "@jupyter-widgets/base", + "0a800a5b39634447b41d26c6b5958675": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c744cc2ba6f64bdfa5d2ab4e2a65f6c8", + "IPY_MODEL_b7548af9c7004b6fa8759aa9b32cafa1", + "IPY_MODEL_de679541b5b046aa90c292d86ff4fe2d" + ], + "layout": "IPY_MODEL_9f273f47b7bc4c90a9d940db2d2f037e", + "tabbable": null, + "tooltip": null } }, - "09c5eaeee6ef4cf98b3e2b4675cc0a18": { + "0a91f1a2e74245faa1360d48acfff410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b4a25f4a9144bb3a48cad0631b109b9": { + "0db169b1e1d3462390d173b724067154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_579d7bc4883b4ff894f161b5fa63ee1a", + "IPY_MODEL_31e95ee34185458dba463229bb4ede54", + "IPY_MODEL_f285b9a98169410685f5e404b9b80565" + ], + "layout": "IPY_MODEL_8dd789e197b3474398fd06ff31414b1d", + "tabbable": null, + "tooltip": null } }, - "0d17db4760fa4f3b9b3f148bf4f65fe4": { + "11c562034b884e55a3e61be21ac21f06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1557,68 +1536,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_638b5137fff848aabb9901d3b04242b7", + "layout": "IPY_MODEL_34966616702a456590d803c8c9128f61", "placeholder": "​", - "style": "IPY_MODEL_0b4a25f4a9144bb3a48cad0631b109b9", + "style": "IPY_MODEL_358153dd740c4cf7bb61755e1ca3474d", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 845kB/s]" - } - }, - "10c117c613194956b6f6ddde7137d199": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" } }, - "245cbb9caca646e8b155f2ac206f45a1": { + "1e3afea7da4541d39068c2d2feec934c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1633,16 +1559,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3d06c83d2d1b40cda29edccb743f5acd", - "IPY_MODEL_3b60c344c6834eb1b08bcc122b884dfc", - "IPY_MODEL_3808be597d8b4aabb8a4df9e7574e4b9" + "IPY_MODEL_5ac165ce71b5494aa1584e2f59deceb1", + "IPY_MODEL_dab4f6e5ef014c5793d577795eb603ae", + "IPY_MODEL_f8c5e1a6cd7641c59e7c58a8baad671c" ], - "layout": "IPY_MODEL_b74a4c950fb14e45850722bd8b9fe093", + "layout": "IPY_MODEL_4eaafaa912e04a9b8a77db25bb462943", "tabbable": null, "tooltip": null } }, - "24d1a6ba72ca41c5a60366dc131571de": { + "1f84e7b2a25e40b5b46cbd11d3340b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,7 +1621,56 @@ "width": null } }, - "3448d9704a4b4ba381b16b5f791d700e": { + "31e95ee34185458dba463229bb4ede54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b00c1cdc8eef4114b8bd4b9967c48227", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5f084769a7ea48ce93ebeca2eee3a2b9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "323585f014c648499e1e307a69af5d72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_84fd6a99c4c24cd5a5b917e62af1e5c0", + "placeholder": "​", + "style": "IPY_MODEL_4a58c2938b9c4bcab8f2d5daecc87257", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "34966616702a456590d803c8c9128f61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1748,31 +1723,23 @@ "width": null } }, - "34e0bb9aa250453a83d0a4cfe1a5619a": { + "34d5fbe58ab7438f9472333865f232c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e49fb8a35a944f279c8a35ff826a8b44", - "IPY_MODEL_8051d9f0c9124678a0a6128bbdba8dc7", - "IPY_MODEL_fd874dc09c36484f90d5c09348dbe00d" - ], - "layout": "IPY_MODEL_d3d2775d82364cdb9a8dd8e5a4235cbb", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "35709b82fbaf4bdb88a33fbf71976e3b": { + "358153dd740c4cf7bb61755e1ca3474d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1790,79 +1757,7 @@ "text_color": null } }, - "3808be597d8b4aabb8a4df9e7574e4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c73e0c4f691b43d1be5372aa5327324f", - "placeholder": "​", - "style": "IPY_MODEL_40acee1a203b407fb27d74c9826b4108", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.66MB/s]" - } - }, - "3b60c344c6834eb1b08bcc122b884dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_472d70d156a3480b82404c8bdac5f037", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f5f78f06f7043389009c3aede75e59f", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "3d06c83d2d1b40cda29edccb743f5acd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f0d5b1092d46208fcd48808c2ba1b8", - "placeholder": "​", - "style": "IPY_MODEL_99e4cf4c0f814bc2aea099d8a3adadae", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "40acee1a203b407fb27d74c9826b4108": { + "37d428f4223240a5976d73cd2a04368c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1880,7 +1775,7 @@ "text_color": null } }, - "472d70d156a3480b82404c8bdac5f037": { + "396e63732dfa425ca8a1cfd419f2b9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1933,7 +1828,43 @@ "width": null } }, - "48333476b2434e628c4faf13b043da4b": { + "42c45b3759ac4aaa9a7413e64eedfad7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a58c2938b9c4bcab8f2d5daecc87257": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b476270f08b41ddb459f73c37b1faf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1986,23 +1917,7 @@ "width": null } }, - "4f5f78f06f7043389009c3aede75e59f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "571bd96a3bc94f1eb7859cf617377e83": { + "4eaafaa912e04a9b8a77db25bb462943": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2055,43 +1970,30 @@ "width": null } }, - "5ceea46f16304503ad4d445f04203a37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5f66773d74264b90a693a2222d471113": { + "579d7bc4883b4ff894f161b5fa63ee1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a09c0a1e80c41a28a88b5ec0f4854c4", + "placeholder": "​", + "style": "IPY_MODEL_0a91f1a2e74245faa1360d48acfff410", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "638b5137fff848aabb9901d3b04242b7": { + "58a04ee857ce45b8bc79733e866170dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2144,7 +2046,7 @@ "width": null } }, - "68f0d5b1092d46208fcd48808c2ba1b8": { + "5a09c0a1e80c41a28a88b5ec0f4854c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2197,23 +2099,30 @@ "width": null } }, - "6e419bd62cb14c58b3b2d60da5337c89": { + "5ac165ce71b5494aa1584e2f59deceb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0f9d55995f24475833a8fa806821e82", + "placeholder": "​", + "style": "IPY_MODEL_42c45b3759ac4aaa9a7413e64eedfad7", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "759241a3fb7f463dbaaf67ea72e5ea6f": { + "5aec6faba3a0453daa6fc1e8a5beef6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2266,48 +2175,23 @@ "width": null } }, - "768c708c19fc45fab403a3fadb7eb092": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d994d94d6b04190b2229b45edd0906b", - "placeholder": "​", - "style": "IPY_MODEL_5ceea46f16304503ad4d445f04203a37", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "774f49c76d6b42df9cfce40371417b41": { + "5f084769a7ea48ce93ebeca2eee3a2b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7a7cdb36fcb34925897ccc16eef76cc0": { + "6718efb0af074cc89f39111e3becb775": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2322,82 +2206,73 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d2de5b7f7ef244b9b2518611582b28ca", - "IPY_MODEL_a0ff6c64f16241adb9a62f2b31bf6a15", - "IPY_MODEL_0d17db4760fa4f3b9b3f148bf4f65fe4" + "IPY_MODEL_323585f014c648499e1e307a69af5d72", + "IPY_MODEL_efefa9d436124a5fb57a4d83208ef311", + "IPY_MODEL_11c562034b884e55a3e61be21ac21f06" ], - "layout": "IPY_MODEL_48333476b2434e628c4faf13b043da4b", + "layout": "IPY_MODEL_4b476270f08b41ddb459f73c37b1faf7", "tabbable": null, "tooltip": null } }, - "8051d9f0c9124678a0a6128bbdba8dc7": { + "723db047c9e0426b8a9f9fa9beb87e81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3448d9704a4b4ba381b16b5f791d700e", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09c5eaeee6ef4cf98b3e2b4675cc0a18", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c969a432d7d40a7b684276a93b30304": { + "72ce49dfb6b84928be42099d69d5fe39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b83edc836cf544caad3eba8116bdc080", - "IPY_MODEL_be4e5e08b22448efbe55afd2e4b51f89", - "IPY_MODEL_b284cd154504485d995df54f507b71b5" - ], - "layout": "IPY_MODEL_bc7a726ed671410099a00758a473e139", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8d3673af4574385aea685a1b4012f4d", + "placeholder": "​", + "style": "IPY_MODEL_74bc1d3ac9574f7dabac7edeab90b4b9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 705kB/s]" } }, - "8d00d941fac547389deef7239d1568ef": { + "74bc1d3ac9574f7dabac7edeab90b4b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8d994d94d6b04190b2229b45edd0906b": { + "84fd6a99c4c24cd5a5b917e62af1e5c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2450,69 +2325,7 @@ "width": null } }, - "99838c76c7b4445989105ee0bb245613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "99e4cf4c0f814bc2aea099d8a3adadae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a0ff6c64f16241adb9a62f2b31bf6a15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_571bd96a3bc94f1eb7859cf617377e83", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d00d941fac547389deef7239d1568ef", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "abe63080525e48b1b5ce25e8afe4ae84": { + "8dd789e197b3474398fd06ff31414b1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2565,7 +2378,7 @@ "width": null } }, - "b22514b7d53a42b995a8ba93dad32244": { + "97ffe000864142a2a03d4fd0d069ccf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2618,48 +2431,60 @@ "width": null } }, - "b284cd154504485d995df54f507b71b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10c117c613194956b6f6ddde7137d199", - "placeholder": "​", - "style": "IPY_MODEL_35709b82fbaf4bdb88a33fbf71976e3b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 497kB/s]" - } - }, - "b467cabe9c8a48fc87a63ddcd38faf02": { - "model_module": "@jupyter-widgets/controls", + "9f273f47b7bc4c90a9d940db2d2f037e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b74a4c950fb14e45850722bd8b9fe093": { + "a8d3673af4574385aea685a1b4012f4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2712,30 +2537,60 @@ "width": null } }, - "b83edc836cf544caad3eba8116bdc080": { - "model_module": "@jupyter-widgets/controls", + "b00c1cdc8eef4114b8bd4b9967c48227": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abe63080525e48b1b5ce25e8afe4ae84", - "placeholder": "​", - "style": "IPY_MODEL_774f49c76d6b42df9cfce40371417b41", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc7a726ed671410099a00758a473e139": { + "b0f9d55995f24475833a8fa806821e82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2788,7 +2643,7 @@ "width": null } }, - "be4e5e08b22448efbe55afd2e4b51f89": { + "b6b74efd51244eebaa4f75545a8f0b07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2804,17 +2659,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bebba45631ee43268608990c60032228", - "max": 2041.0, + "layout": "IPY_MODEL_5aec6faba3a0453daa6fc1e8a5beef6a", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f4cb3a1f2c7c45b3a43d02391e30e63d", + "style": "IPY_MODEL_f42c0b8247414c8eab848966b58c5194", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 + } + }, + "b7548af9c7004b6fa8759aa9b32cafa1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97ffe000864142a2a03d4fd0d069ccf2", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_723db047c9e0426b8a9f9fa9beb87e81", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } }, - "bebba45631ee43268608990c60032228": { + "b7f81b33b5134256ac44aadfff208e44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2867,7 +2748,7 @@ "width": null } }, - "c73e0c4f691b43d1be5372aa5327324f": { + "b8925d88c37f4c3db56c82c078f6ed15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,48 +2801,31 @@ "width": null } }, - "ce700ebee333459985d574941ed1e24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d2de5b7f7ef244b9b2518611582b28ca": { + "b9b25423bf1543d7a52bde9e07e13d92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_056edd9d6e1647bebf20532471526fa7", - "placeholder": "​", - "style": "IPY_MODEL_99838c76c7b4445989105ee0bb245613", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce477f4edfe444d49c58863da5da46f6", + "IPY_MODEL_b6b74efd51244eebaa4f75545a8f0b07", + "IPY_MODEL_72ce49dfb6b84928be42099d69d5fe39" + ], + "layout": "IPY_MODEL_bf449faa888d49f1807839781d238881", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "d3d2775d82364cdb9a8dd8e5a4235cbb": { + "bf449faa888d49f1807839781d238881": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3014,7 +2878,136 @@ "width": null } }, - "d4aadd9f728946e8b9001a0252e3faff": { + "c744cc2ba6f64bdfa5d2ab4e2a65f6c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_396e63732dfa425ca8a1cfd419f2b9a6", + "placeholder": "​", + "style": "IPY_MODEL_37d428f4223240a5976d73cd2a04368c", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "ce477f4edfe444d49c58863da5da46f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7f81b33b5134256ac44aadfff208e44", + "placeholder": "​", + "style": "IPY_MODEL_ff090e6a397d40b5bb86f7c7d9726270", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "dab4f6e5ef014c5793d577795eb603ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_065665834fe849debf9577cd1fe479b3", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34d5fbe58ab7438f9472333865f232c9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "de679541b5b046aa90c292d86ff4fe2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58a04ee857ce45b8bc79733e866170dd", + "placeholder": "​", + "style": "IPY_MODEL_f62b42d901a048b3915eeaca96a2faaa", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 23.0MB/s]" + } + }, + "e0dda76d01c14ce2a77e244a41f18465": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e3d26e3e8bfe45e78a76ab0ecf508023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6028057e56442dcafbb47c7939e2051": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,31 +3060,25 @@ "width": null } }, - "e0323ef3772f4274b9d3f4598d073d3b": { + "ed2475bf5c0f4723bd7d2a4257459602": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_768c708c19fc45fab403a3fadb7eb092", - "IPY_MODEL_e3c3406ddb4747438106aacde8903910", - "IPY_MODEL_f218565da77041bdb8d190d21c24ae66" - ], - "layout": "IPY_MODEL_24d1a6ba72ca41c5a60366dc131571de", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3c3406ddb4747438106aacde8903910": { + "efefa9d436124a5fb57a4d83208ef311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3107,17 +3094,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b22514b7d53a42b995a8ba93dad32244", - "max": 16887676.0, + "layout": "IPY_MODEL_b8925d88c37f4c3db56c82c078f6ed15", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6e419bd62cb14c58b3b2d60da5337c89", + "style": "IPY_MODEL_e0dda76d01c14ce2a77e244a41f18465", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 2041.0 } }, - "e49fb8a35a944f279c8a35ff826a8b44": { + "f285b9a98169410685f5e404b9b80565": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3132,54 +3119,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_759241a3fb7f463dbaaf67ea72e5ea6f", + "layout": "IPY_MODEL_e6028057e56442dcafbb47c7939e2051", "placeholder": "​", - "style": "IPY_MODEL_5f66773d74264b90a693a2222d471113", + "style": "IPY_MODEL_e3d26e3e8bfe45e78a76ab0ecf508023", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 264MB/s]" } }, - "f218565da77041bdb8d190d21c24ae66": { + "f42c0b8247414c8eab848966b58c5194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aadd9f728946e8b9001a0252e3faff", - "placeholder": "​", - "style": "IPY_MODEL_b467cabe9c8a48fc87a63ddcd38faf02", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 258MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4cb3a1f2c7c45b3a43d02391e30e63d": { + "f62b42d901a048b3915eeaca96a2faaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fd874dc09c36484f90d5c09348dbe00d": { + "f8c5e1a6cd7641c59e7c58a8baad671c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3194,12 +3176,30 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_057e9688008449a185ba2d598ac74d51", + "layout": "IPY_MODEL_1f84e7b2a25e40b5b46cbd11d3340b7f", "placeholder": "​", - "style": "IPY_MODEL_ce700ebee333459985d574941ed1e24e", + "style": "IPY_MODEL_ed2475bf5c0f4723bd7d2a4257459602", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 235MB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 263MB/s]" + } + }, + "ff090e6a397d40b5bb86f7c7d9726270": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index b076c0a0e..5786e3a82 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:38.349159Z", - "iopub.status.busy": "2024-06-19T19:14:38.348809Z", - "iopub.status.idle": "2024-06-19T19:14:39.570916Z", - "shell.execute_reply": "2024-06-19T19:14:39.570353Z" + "iopub.execute_input": "2024-06-25T15:02:38.227581Z", + "iopub.status.busy": "2024-06-25T15:02:38.227225Z", + "iopub.status.idle": "2024-06-25T15:02:39.517377Z", + "shell.execute_reply": "2024-06-25T15:02:39.516789Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.573777Z", - "iopub.status.busy": "2024-06-19T19:14:39.573242Z", - "iopub.status.idle": "2024-06-19T19:14:39.576294Z", - "shell.execute_reply": "2024-06-19T19:14:39.575816Z" + "iopub.execute_input": "2024-06-25T15:02:39.520092Z", + "iopub.status.busy": "2024-06-25T15:02:39.519754Z", + "iopub.status.idle": "2024-06-25T15:02:39.523034Z", + "shell.execute_reply": "2024-06-25T15:02:39.522543Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.578592Z", - "iopub.status.busy": "2024-06-19T19:14:39.578201Z", - "iopub.status.idle": "2024-06-19T19:14:39.586848Z", - "shell.execute_reply": "2024-06-19T19:14:39.586392Z" + "iopub.execute_input": "2024-06-25T15:02:39.525370Z", + "iopub.status.busy": "2024-06-25T15:02:39.525170Z", + "iopub.status.idle": "2024-06-25T15:02:39.534786Z", + "shell.execute_reply": "2024-06-25T15:02:39.534330Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.588952Z", - "iopub.status.busy": "2024-06-19T19:14:39.588636Z", - "iopub.status.idle": "2024-06-19T19:14:39.593700Z", - "shell.execute_reply": "2024-06-19T19:14:39.593152Z" + "iopub.execute_input": "2024-06-25T15:02:39.537084Z", + "iopub.status.busy": "2024-06-25T15:02:39.536717Z", + "iopub.status.idle": "2024-06-25T15:02:39.541685Z", + "shell.execute_reply": "2024-06-25T15:02:39.541207Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.596110Z", - "iopub.status.busy": "2024-06-19T19:14:39.595573Z", - "iopub.status.idle": "2024-06-19T19:14:39.783618Z", - "shell.execute_reply": "2024-06-19T19:14:39.782990Z" + "iopub.execute_input": "2024-06-25T15:02:39.544239Z", + "iopub.status.busy": "2024-06-25T15:02:39.543809Z", + "iopub.status.idle": "2024-06-25T15:02:39.744513Z", + "shell.execute_reply": "2024-06-25T15:02:39.743889Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.786364Z", - "iopub.status.busy": "2024-06-19T19:14:39.785973Z", - "iopub.status.idle": "2024-06-19T19:14:40.163979Z", - "shell.execute_reply": "2024-06-19T19:14:40.163359Z" + "iopub.execute_input": "2024-06-25T15:02:39.747094Z", + "iopub.status.busy": "2024-06-25T15:02:39.746904Z", + "iopub.status.idle": "2024-06-25T15:02:40.122770Z", + "shell.execute_reply": "2024-06-25T15:02:40.122190Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.166733Z", - "iopub.status.busy": "2024-06-19T19:14:40.166236Z", - "iopub.status.idle": "2024-06-19T19:14:40.190230Z", - "shell.execute_reply": "2024-06-19T19:14:40.189618Z" + "iopub.execute_input": "2024-06-25T15:02:40.125205Z", + "iopub.status.busy": "2024-06-25T15:02:40.124842Z", + "iopub.status.idle": "2024-06-25T15:02:40.148454Z", + "shell.execute_reply": "2024-06-25T15:02:40.147926Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.193105Z", - "iopub.status.busy": "2024-06-19T19:14:40.192629Z", - "iopub.status.idle": "2024-06-19T19:14:40.204803Z", - "shell.execute_reply": "2024-06-19T19:14:40.204289Z" + "iopub.execute_input": "2024-06-25T15:02:40.151117Z", + "iopub.status.busy": "2024-06-25T15:02:40.150749Z", + "iopub.status.idle": "2024-06-25T15:02:40.162622Z", + "shell.execute_reply": "2024-06-25T15:02:40.162130Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.207374Z", - "iopub.status.busy": "2024-06-19T19:14:40.207004Z", - "iopub.status.idle": "2024-06-19T19:14:42.327628Z", - "shell.execute_reply": "2024-06-19T19:14:42.327010Z" + "iopub.execute_input": "2024-06-25T15:02:40.165202Z", + "iopub.status.busy": "2024-06-25T15:02:40.164846Z", + "iopub.status.idle": "2024-06-25T15:02:42.323570Z", + "shell.execute_reply": "2024-06-25T15:02:42.322965Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.330257Z", - "iopub.status.busy": "2024-06-19T19:14:42.329872Z", - "iopub.status.idle": "2024-06-19T19:14:42.352484Z", - "shell.execute_reply": "2024-06-19T19:14:42.351892Z" + "iopub.execute_input": "2024-06-25T15:02:42.326056Z", + "iopub.status.busy": "2024-06-25T15:02:42.325574Z", + "iopub.status.idle": "2024-06-25T15:02:42.347136Z", + "shell.execute_reply": "2024-06-25T15:02:42.346650Z" } }, "outputs": [ @@ -726,7 +726,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "\n", "Audit complete. 21 issues found in the dataset.\n", @@ -831,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.354808Z", - "iopub.status.busy": "2024-06-19T19:14:42.354519Z", - "iopub.status.idle": "2024-06-19T19:14:42.376546Z", - "shell.execute_reply": "2024-06-19T19:14:42.375933Z" + "iopub.execute_input": "2024-06-25T15:02:42.349258Z", + "iopub.status.busy": "2024-06-25T15:02:42.348922Z", + "iopub.status.idle": "2024-06-25T15:02:42.367539Z", + "shell.execute_reply": "2024-06-25T15:02:42.366917Z" } }, "outputs": [ @@ -843,7 +842,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "\n", "Audit complete. 22 issues found in the dataset.\n", "Dataset Information: num_examples: 132, num_classes: 3\n", @@ -925,7 +923,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -951,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.378962Z", - "iopub.status.busy": "2024-06-19T19:14:42.378573Z", - "iopub.status.idle": "2024-06-19T19:14:42.393909Z", - "shell.execute_reply": "2024-06-19T19:14:42.393398Z" + "iopub.execute_input": "2024-06-25T15:02:42.369670Z", + "iopub.status.busy": "2024-06-25T15:02:42.369339Z", + "iopub.status.idle": "2024-06-25T15:02:42.383457Z", + "shell.execute_reply": "2024-06-25T15:02:42.383007Z" } }, "outputs": [ @@ -1089,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.396372Z", - "iopub.status.busy": "2024-06-19T19:14:42.395848Z", - "iopub.status.idle": "2024-06-19T19:14:42.417274Z", - "shell.execute_reply": "2024-06-19T19:14:42.416690Z" + "iopub.execute_input": "2024-06-25T15:02:42.385718Z", + "iopub.status.busy": "2024-06-25T15:02:42.385385Z", + "iopub.status.idle": "2024-06-25T15:02:42.405625Z", + "shell.execute_reply": "2024-06-25T15:02:42.405042Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ba9f639f35744cea8fd1c930c4e3ca1", + "model_id": "50f6453298ef4a8294d8b6cecce817a2", "version_major": 2, "version_minor": 0 }, @@ -1135,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.419514Z", - "iopub.status.busy": "2024-06-19T19:14:42.419177Z", - "iopub.status.idle": "2024-06-19T19:14:42.435777Z", - "shell.execute_reply": "2024-06-19T19:14:42.435220Z" + "iopub.execute_input": "2024-06-25T15:02:42.408204Z", + "iopub.status.busy": "2024-06-25T15:02:42.407805Z", + "iopub.status.idle": "2024-06-25T15:02:42.423406Z", + "shell.execute_reply": "2024-06-25T15:02:42.422915Z" } }, "outputs": [ @@ -1261,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.437990Z", - "iopub.status.busy": "2024-06-19T19:14:42.437793Z", - "iopub.status.idle": "2024-06-19T19:14:42.443899Z", - "shell.execute_reply": "2024-06-19T19:14:42.443435Z" + "iopub.execute_input": "2024-06-25T15:02:42.425559Z", + "iopub.status.busy": "2024-06-25T15:02:42.425282Z", + "iopub.status.idle": "2024-06-25T15:02:42.431364Z", + "shell.execute_reply": "2024-06-25T15:02:42.430887Z" } }, "outputs": [], @@ -1321,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.446000Z", - "iopub.status.busy": "2024-06-19T19:14:42.445673Z", - "iopub.status.idle": "2024-06-19T19:14:42.463341Z", - "shell.execute_reply": "2024-06-19T19:14:42.462904Z" + "iopub.execute_input": "2024-06-25T15:02:42.433512Z", + "iopub.status.busy": "2024-06-25T15:02:42.433186Z", + "iopub.status.idle": "2024-06-25T15:02:42.451422Z", + "shell.execute_reply": "2024-06-25T15:02:42.450948Z" } }, "outputs": [ @@ -1461,70 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1d186cbf0db347ba9eb20cf6580cfc5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3e2966d514564c3b8b7eb92556b2bc08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e140ac629154dd69550a1d7118f62be", - "placeholder": "​", - "style": "IPY_MODEL_767a54ab1d494499b638d351aedc32c2", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 11786.27 examples/s]" - } - }, - "4ba9f639f35744cea8fd1c930c4e3ca1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_900743cc6cfa4b24932829d1a0eb0311", - "IPY_MODEL_a2c3230c2bd242e2a191ad7536a286a9", - "IPY_MODEL_3e2966d514564c3b8b7eb92556b2bc08" - ], - "layout": "IPY_MODEL_7ee6c367612b44ee8b9aae4fe1ff3556", - "tabbable": null, - "tooltip": null - } - }, - "55c6a16b93ea4ff089909e0fd3527c68": { + "05cbec62d95a422db845d1413acc3259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,25 +1512,7 @@ "width": null } }, - "767a54ab1d494499b638d351aedc32c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ee6c367612b44ee8b9aae4fe1ff3556": { + "31fc8349e731466a82d6a3440b491c5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,7 +1565,47 @@ "width": null } }, - "8e140ac629154dd69550a1d7118f62be": { + "44bff894324045e387bff14c1c159bdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50f6453298ef4a8294d8b6cecce817a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dbcdef4ae15b446cb6e7df11866712f0", + "IPY_MODEL_d64afb05b39046b09a6d5feae185679f", + "IPY_MODEL_9d5fc1047168494cb38211074412a3fe" + ], + "layout": "IPY_MODEL_9c635953966e429aad365d9e1bd53ef8", + "tabbable": null, + "tooltip": null + } + }, + "9c635953966e429aad365d9e1bd53ef8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1658,30 @@ "width": null } }, - "8ec4efa7cd5a4ffd83c5117af77a2bbf": { + "9d5fc1047168494cb38211074412a3fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05cbec62d95a422db845d1413acc3259", + "placeholder": "​", + "style": "IPY_MODEL_ac14b350c1a04c6fac1673a1ce22ae46", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12261.60 examples/s]" + } + }, + "ac14b350c1a04c6fac1673a1ce22ae46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1719,7 +1699,33 @@ "text_color": null } }, - "900743cc6cfa4b24932829d1a0eb0311": { + "d64afb05b39046b09a6d5feae185679f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31fc8349e731466a82d6a3440b491c5f", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44bff894324045e387bff14c1c159bdb", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "dbcdef4ae15b446cb6e7df11866712f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1734,15 +1740,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a179131e1a9a4d8a9f7cd5f8463a2c69", + "layout": "IPY_MODEL_fca68c87786843ff862b0bc4c1a1959f", "placeholder": "​", - "style": "IPY_MODEL_8ec4efa7cd5a4ffd83c5117af77a2bbf", + "style": "IPY_MODEL_e0dd3d107a6b45a9b734aa4ea1ea39e3", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "a179131e1a9a4d8a9f7cd5f8463a2c69": { + "e0dd3d107a6b45a9b734aa4ea1ea39e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fca68c87786843ff862b0bc4c1a1959f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,32 +1818,6 @@ "visibility": null, "width": null } - }, - "a2c3230c2bd242e2a191ad7536a286a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55c6a16b93ea4ff089909e0fd3527c68", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d186cbf0db347ba9eb20cf6580cfc5b", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index ec1f4b0c3..a870a82f5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:45.255382Z", - "iopub.status.busy": "2024-06-19T19:14:45.255201Z", - "iopub.status.idle": "2024-06-19T19:14:46.487948Z", - "shell.execute_reply": "2024-06-19T19:14:46.487303Z" + "iopub.execute_input": "2024-06-25T15:02:45.248373Z", + "iopub.status.busy": "2024-06-25T15:02:45.247929Z", + "iopub.status.idle": "2024-06-25T15:02:46.453643Z", + "shell.execute_reply": "2024-06-25T15:02:46.453087Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:46.490797Z", - "iopub.status.busy": "2024-06-19T19:14:46.490467Z", - "iopub.status.idle": "2024-06-19T19:14:46.493798Z", - "shell.execute_reply": "2024-06-19T19:14:46.493238Z" + "iopub.execute_input": "2024-06-25T15:02:46.456361Z", + "iopub.status.busy": "2024-06-25T15:02:46.455895Z", + "iopub.status.idle": "2024-06-25T15:02:46.458893Z", + "shell.execute_reply": "2024-06-25T15:02:46.458450Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:46.496105Z", - "iopub.status.busy": "2024-06-19T19:14:46.495683Z", - "iopub.status.idle": "2024-06-19T19:14:46.505006Z", - "shell.execute_reply": "2024-06-19T19:14:46.504407Z" + "iopub.execute_input": "2024-06-25T15:02:46.461227Z", + "iopub.status.busy": "2024-06-25T15:02:46.460897Z", + "iopub.status.idle": "2024-06-25T15:02:46.470054Z", + "shell.execute_reply": "2024-06-25T15:02:46.469541Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:46.507461Z", - "iopub.status.busy": "2024-06-19T19:14:46.507007Z", - "iopub.status.idle": "2024-06-19T19:14:46.512115Z", - "shell.execute_reply": "2024-06-19T19:14:46.511524Z" + "iopub.execute_input": "2024-06-25T15:02:46.472337Z", + "iopub.status.busy": "2024-06-25T15:02:46.471989Z", + "iopub.status.idle": "2024-06-25T15:02:46.476989Z", + "shell.execute_reply": "2024-06-25T15:02:46.476526Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:46.514491Z", - "iopub.status.busy": "2024-06-19T19:14:46.514177Z", - "iopub.status.idle": "2024-06-19T19:14:46.702508Z", - "shell.execute_reply": "2024-06-19T19:14:46.701904Z" + "iopub.execute_input": "2024-06-25T15:02:46.479195Z", + "iopub.status.busy": "2024-06-25T15:02:46.478830Z", + "iopub.status.idle": "2024-06-25T15:02:46.673454Z", + "shell.execute_reply": "2024-06-25T15:02:46.672819Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:46.705135Z", - "iopub.status.busy": "2024-06-19T19:14:46.704899Z", - "iopub.status.idle": "2024-06-19T19:14:47.021070Z", - "shell.execute_reply": "2024-06-19T19:14:47.020488Z" + "iopub.execute_input": "2024-06-25T15:02:46.676288Z", + "iopub.status.busy": "2024-06-25T15:02:46.675787Z", + "iopub.status.idle": "2024-06-25T15:02:47.008494Z", + "shell.execute_reply": "2024-06-25T15:02:47.007858Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:47.023389Z", - "iopub.status.busy": "2024-06-19T19:14:47.023036Z", - "iopub.status.idle": "2024-06-19T19:14:47.025937Z", - "shell.execute_reply": "2024-06-19T19:14:47.025487Z" + "iopub.execute_input": "2024-06-25T15:02:47.010766Z", + "iopub.status.busy": "2024-06-25T15:02:47.010428Z", + "iopub.status.idle": "2024-06-25T15:02:47.013373Z", + "shell.execute_reply": "2024-06-25T15:02:47.012814Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:47.027986Z", - "iopub.status.busy": "2024-06-19T19:14:47.027660Z", - "iopub.status.idle": "2024-06-19T19:14:47.062853Z", - "shell.execute_reply": "2024-06-19T19:14:47.062236Z" + "iopub.execute_input": "2024-06-25T15:02:47.015607Z", + "iopub.status.busy": "2024-06-25T15:02:47.015161Z", + "iopub.status.idle": "2024-06-25T15:02:47.051531Z", + "shell.execute_reply": "2024-06-25T15:02:47.050912Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:47.065219Z", - "iopub.status.busy": "2024-06-19T19:14:47.064875Z", - "iopub.status.idle": "2024-06-19T19:14:49.151071Z", - "shell.execute_reply": "2024-06-19T19:14:49.150385Z" + "iopub.execute_input": "2024-06-25T15:02:47.053946Z", + "iopub.status.busy": "2024-06-25T15:02:47.053574Z", + "iopub.status.idle": "2024-06-25T15:02:49.292243Z", + "shell.execute_reply": "2024-06-25T15:02:49.291506Z" } }, "outputs": [ @@ -675,7 +675,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", "Finding class_imbalance issues ...\n", @@ -711,10 +710,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.153752Z", - "iopub.status.busy": "2024-06-19T19:14:49.153141Z", - "iopub.status.idle": "2024-06-19T19:14:49.172188Z", - "shell.execute_reply": "2024-06-19T19:14:49.171647Z" + "iopub.execute_input": "2024-06-25T15:02:49.295008Z", + "iopub.status.busy": "2024-06-25T15:02:49.294444Z", + "iopub.status.idle": "2024-06-25T15:02:49.314500Z", + "shell.execute_reply": "2024-06-25T15:02:49.313993Z" } }, "outputs": [ @@ -847,10 +846,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.174433Z", - "iopub.status.busy": "2024-06-19T19:14:49.174102Z", - "iopub.status.idle": "2024-06-19T19:14:49.180787Z", - "shell.execute_reply": "2024-06-19T19:14:49.180322Z" + "iopub.execute_input": "2024-06-25T15:02:49.316847Z", + "iopub.status.busy": "2024-06-25T15:02:49.316489Z", + "iopub.status.idle": "2024-06-25T15:02:49.323651Z", + "shell.execute_reply": "2024-06-25T15:02:49.323169Z" } }, "outputs": [ @@ -961,10 +960,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.182996Z", - "iopub.status.busy": "2024-06-19T19:14:49.182607Z", - "iopub.status.idle": "2024-06-19T19:14:49.188887Z", - "shell.execute_reply": "2024-06-19T19:14:49.188329Z" + "iopub.execute_input": "2024-06-25T15:02:49.325682Z", + "iopub.status.busy": "2024-06-25T15:02:49.325501Z", + "iopub.status.idle": "2024-06-25T15:02:49.332101Z", + "shell.execute_reply": "2024-06-25T15:02:49.331645Z" } }, "outputs": [ @@ -1031,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.190983Z", - "iopub.status.busy": "2024-06-19T19:14:49.190705Z", - "iopub.status.idle": "2024-06-19T19:14:49.201506Z", - "shell.execute_reply": "2024-06-19T19:14:49.200977Z" + "iopub.execute_input": "2024-06-25T15:02:49.334117Z", + "iopub.status.busy": "2024-06-25T15:02:49.333735Z", + "iopub.status.idle": "2024-06-25T15:02:49.344479Z", + "shell.execute_reply": "2024-06-25T15:02:49.343901Z" } }, "outputs": [ @@ -1226,10 +1225,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.203682Z", - "iopub.status.busy": "2024-06-19T19:14:49.203334Z", - "iopub.status.idle": "2024-06-19T19:14:49.212604Z", - "shell.execute_reply": "2024-06-19T19:14:49.212065Z" + "iopub.execute_input": "2024-06-25T15:02:49.346708Z", + "iopub.status.busy": "2024-06-25T15:02:49.346367Z", + "iopub.status.idle": "2024-06-25T15:02:49.356147Z", + "shell.execute_reply": "2024-06-25T15:02:49.355551Z" } }, "outputs": [ @@ -1345,10 +1344,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.214826Z", - "iopub.status.busy": "2024-06-19T19:14:49.214481Z", - "iopub.status.idle": "2024-06-19T19:14:49.222292Z", - "shell.execute_reply": "2024-06-19T19:14:49.221776Z" + "iopub.execute_input": "2024-06-25T15:02:49.358388Z", + "iopub.status.busy": "2024-06-25T15:02:49.358071Z", + "iopub.status.idle": "2024-06-25T15:02:49.365013Z", + "shell.execute_reply": "2024-06-25T15:02:49.364533Z" }, "scrolled": true }, @@ -1473,10 +1472,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.224527Z", - "iopub.status.busy": "2024-06-19T19:14:49.224169Z", - "iopub.status.idle": "2024-06-19T19:14:49.234040Z", - "shell.execute_reply": "2024-06-19T19:14:49.233546Z" + "iopub.execute_input": "2024-06-25T15:02:49.367268Z", + "iopub.status.busy": "2024-06-25T15:02:49.366844Z", + "iopub.status.idle": "2024-06-25T15:02:49.376754Z", + "shell.execute_reply": "2024-06-25T15:02:49.376145Z" } }, "outputs": [ @@ -1579,10 +1578,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:49.236357Z", - "iopub.status.busy": "2024-06-19T19:14:49.235989Z", - "iopub.status.idle": "2024-06-19T19:14:49.248375Z", - "shell.execute_reply": "2024-06-19T19:14:49.247930Z" + "iopub.execute_input": "2024-06-25T15:02:49.379075Z", + "iopub.status.busy": "2024-06-25T15:02:49.378757Z", + "iopub.status.idle": "2024-06-25T15:02:49.391296Z", + "shell.execute_reply": "2024-06-25T15:02:49.390687Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index a86524a42..65ccc6a63 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:52.255232Z", - "iopub.status.busy": "2024-06-19T19:14:52.254822Z", - "iopub.status.idle": "2024-06-19T19:14:55.215396Z", - "shell.execute_reply": "2024-06-19T19:14:55.214843Z" + "iopub.execute_input": "2024-06-25T15:02:52.434923Z", + "iopub.status.busy": "2024-06-25T15:02:52.434761Z", + "iopub.status.idle": "2024-06-25T15:02:55.457582Z", + "shell.execute_reply": "2024-06-25T15:02:55.456965Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:55.218074Z", - "iopub.status.busy": "2024-06-19T19:14:55.217610Z", - "iopub.status.idle": "2024-06-19T19:14:55.221191Z", - "shell.execute_reply": "2024-06-19T19:14:55.220718Z" + "iopub.execute_input": "2024-06-25T15:02:55.460430Z", + "iopub.status.busy": "2024-06-25T15:02:55.459987Z", + "iopub.status.idle": "2024-06-25T15:02:55.463840Z", + "shell.execute_reply": "2024-06-25T15:02:55.463361Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:55.223147Z", - "iopub.status.busy": "2024-06-19T19:14:55.222834Z", - "iopub.status.idle": "2024-06-19T19:15:06.828476Z", - "shell.execute_reply": "2024-06-19T19:15:06.827911Z" + "iopub.execute_input": "2024-06-25T15:02:55.465902Z", + "iopub.status.busy": "2024-06-25T15:02:55.465566Z", + "iopub.status.idle": "2024-06-25T15:03:05.715335Z", + "shell.execute_reply": "2024-06-25T15:03:05.714792Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "349ee786df634788bc2d1161e9306302", + "model_id": "cb86652b122d4284addbacdbed8966b7", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "637d67c13ddb4c7d91633b5217a8a441", + "model_id": "572ae861928442c9b2d22ae8ce864337", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3b490f3753e4a26b5ee7f200e729450", + "model_id": "8416acb269134271b8af012e09301f14", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b448009da8c4e8483f886f2eb0e3030", + "model_id": "a0eef281a9b4456093538c260e709ed1", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4865b5b7656841e0a18dd009e4b0f40f", + "model_id": "9ee519db54124c56adb8ac7877404ad9", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "060c782bcc144c998d4ec99cf1693c59", + "model_id": "4666fbbe6c844793bab204564c644f4f", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "975d2ee3e62d4a2b9d66709c83444c6a", + "model_id": "a9d22fa9576940b49f5c0c6e41a5affc", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38f1190e08ab4e7e8697541bdfa2f88d", + "model_id": "8f3998c468104adfaba1ce14dbdbd750", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:06.830787Z", - "iopub.status.busy": "2024-06-19T19:15:06.830559Z", - "iopub.status.idle": "2024-06-19T19:15:06.834622Z", - "shell.execute_reply": "2024-06-19T19:15:06.834170Z" + "iopub.execute_input": "2024-06-25T15:03:05.717627Z", + "iopub.status.busy": "2024-06-25T15:03:05.717292Z", + "iopub.status.idle": "2024-06-25T15:03:05.721051Z", + "shell.execute_reply": "2024-06-25T15:03:05.720526Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:06.836831Z", - "iopub.status.busy": "2024-06-19T19:15:06.836373Z", - "iopub.status.idle": "2024-06-19T19:15:18.266161Z", - "shell.execute_reply": "2024-06-19T19:15:18.265599Z" + "iopub.execute_input": "2024-06-25T15:03:05.723003Z", + "iopub.status.busy": "2024-06-25T15:03:05.722728Z", + "iopub.status.idle": "2024-06-25T15:03:16.714815Z", + "shell.execute_reply": "2024-06-25T15:03:16.714239Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fe32cc7dd404642b1eb8ff34e416fb0", + "model_id": "a20698b6f5ac47bf8a90e5e27b8d7a1a", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:18.268783Z", - "iopub.status.busy": "2024-06-19T19:15:18.268465Z", - "iopub.status.idle": "2024-06-19T19:15:38.257972Z", - "shell.execute_reply": "2024-06-19T19:15:38.257351Z" + "iopub.execute_input": "2024-06-25T15:03:16.717468Z", + "iopub.status.busy": "2024-06-25T15:03:16.717224Z", + "iopub.status.idle": "2024-06-25T15:03:35.068691Z", + "shell.execute_reply": "2024-06-25T15:03:35.068089Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.260843Z", - "iopub.status.busy": "2024-06-19T19:15:38.260493Z", - "iopub.status.idle": "2024-06-19T19:15:38.265480Z", - "shell.execute_reply": "2024-06-19T19:15:38.264919Z" + "iopub.execute_input": "2024-06-25T15:03:35.072202Z", + "iopub.status.busy": "2024-06-25T15:03:35.071820Z", + "iopub.status.idle": "2024-06-25T15:03:35.077664Z", + "shell.execute_reply": "2024-06-25T15:03:35.077111Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.267318Z", - "iopub.status.busy": "2024-06-19T19:15:38.267141Z", - "iopub.status.idle": "2024-06-19T19:15:38.271766Z", - "shell.execute_reply": "2024-06-19T19:15:38.271329Z" + "iopub.execute_input": "2024-06-25T15:03:35.080077Z", + "iopub.status.busy": "2024-06-25T15:03:35.079655Z", + "iopub.status.idle": "2024-06-25T15:03:35.084617Z", + "shell.execute_reply": "2024-06-25T15:03:35.084045Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.273621Z", - "iopub.status.busy": "2024-06-19T19:15:38.273449Z", - "iopub.status.idle": "2024-06-19T19:15:38.282488Z", - "shell.execute_reply": "2024-06-19T19:15:38.281976Z" + "iopub.execute_input": "2024-06-25T15:03:35.087271Z", + "iopub.status.busy": "2024-06-25T15:03:35.086918Z", + "iopub.status.idle": "2024-06-25T15:03:35.096770Z", + "shell.execute_reply": "2024-06-25T15:03:35.096173Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.284725Z", - "iopub.status.busy": "2024-06-19T19:15:38.284321Z", - "iopub.status.idle": "2024-06-19T19:15:38.313283Z", - "shell.execute_reply": "2024-06-19T19:15:38.312791Z" + "iopub.execute_input": "2024-06-25T15:03:35.099193Z", + "iopub.status.busy": "2024-06-25T15:03:35.098831Z", + "iopub.status.idle": "2024-06-25T15:03:35.126786Z", + "shell.execute_reply": "2024-06-25T15:03:35.126252Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.315651Z", - "iopub.status.busy": "2024-06-19T19:15:38.315309Z", - "iopub.status.idle": "2024-06-19T19:16:11.760467Z", - "shell.execute_reply": "2024-06-19T19:16:11.759821Z" + "iopub.execute_input": "2024-06-25T15:03:35.129570Z", + "iopub.status.busy": "2024-06-25T15:03:35.129185Z", + "iopub.status.idle": "2024-06-25T15:04:08.787947Z", + "shell.execute_reply": "2024-06-25T15:04:08.787306Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.903\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.035\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.648\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.567\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f314808162a4162a1215e3829506cee", + "model_id": "571aad50ae0e454484ba5794a0c894a1", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5c5a31434b147c79a2ee3c8a0238542", + "model_id": "a1cf212f99ca47149f17b2ee8cd2fad9", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.057\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.090\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.709\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.729\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9200b83016e4f1d893d9679edcac1ea", + "model_id": "9b16c7a3da8d4c8b998a707e044b070a", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2161d0251584354a28b87992f624a0b", + "model_id": "e6b201d41be24978b1711d80d4442962", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.966\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.864\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.720\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.806\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d608bddcd7a54636a4b3dd9aeef5fcb2", + "model_id": "4929ccdcba92446cae04c897cf77041f", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1dd9aa845b104521b299bd515cdbc543", + "model_id": "16a24cc498124a6baa7035a049b39720", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:11.762922Z", - "iopub.status.busy": "2024-06-19T19:16:11.762584Z", - "iopub.status.idle": "2024-06-19T19:16:11.776866Z", - "shell.execute_reply": "2024-06-19T19:16:11.776374Z" + "iopub.execute_input": "2024-06-25T15:04:08.790655Z", + "iopub.status.busy": "2024-06-25T15:04:08.790140Z", + "iopub.status.idle": "2024-06-25T15:04:08.804356Z", + "shell.execute_reply": "2024-06-25T15:04:08.803915Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:11.779207Z", - "iopub.status.busy": "2024-06-19T19:16:11.778886Z", - "iopub.status.idle": "2024-06-19T19:16:12.249354Z", - "shell.execute_reply": "2024-06-19T19:16:12.248816Z" + "iopub.execute_input": "2024-06-25T15:04:08.806655Z", + "iopub.status.busy": "2024-06-25T15:04:08.806256Z", + "iopub.status.idle": "2024-06-25T15:04:09.295047Z", + "shell.execute_reply": "2024-06-25T15:04:09.294402Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:12.251845Z", - "iopub.status.busy": "2024-06-19T19:16:12.251517Z", - "iopub.status.idle": "2024-06-19T19:19:39.980925Z", - "shell.execute_reply": "2024-06-19T19:19:39.980256Z" + "iopub.execute_input": "2024-06-25T15:04:09.297623Z", + "iopub.status.busy": "2024-06-25T15:04:09.297428Z", + "iopub.status.idle": "2024-06-25T15:05:47.679934Z", + "shell.execute_reply": "2024-06-25T15:05:47.679254Z" } }, "outputs": [ @@ -1092,8 +1092,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n" + "Finding outlier issues ...\n" ] }, { @@ -1124,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2308418aed62421c9233f4e2fa36fb9f", + "model_id": "b5a738d901b14847af173bf44a11a398", "version_major": 2, "version_minor": 0 }, @@ -1163,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:39.983734Z", - "iopub.status.busy": "2024-06-19T19:19:39.983195Z", - "iopub.status.idle": "2024-06-19T19:19:40.447714Z", - "shell.execute_reply": "2024-06-19T19:19:40.447171Z" + "iopub.execute_input": "2024-06-25T15:05:47.682449Z", + "iopub.status.busy": "2024-06-25T15:05:47.681911Z", + "iopub.status.idle": "2024-06-25T15:05:48.146309Z", + "shell.execute_reply": "2024-06-25T15:05:48.145731Z" } }, "outputs": [ @@ -1312,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.450117Z", - "iopub.status.busy": "2024-06-19T19:19:40.449723Z", - "iopub.status.idle": "2024-06-19T19:19:40.512143Z", - "shell.execute_reply": "2024-06-19T19:19:40.511605Z" + "iopub.execute_input": "2024-06-25T15:05:48.149215Z", + "iopub.status.busy": "2024-06-25T15:05:48.148861Z", + "iopub.status.idle": "2024-06-25T15:05:48.212187Z", + "shell.execute_reply": "2024-06-25T15:05:48.211626Z" } }, "outputs": [ @@ -1419,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.514406Z", - "iopub.status.busy": "2024-06-19T19:19:40.514068Z", - "iopub.status.idle": "2024-06-19T19:19:40.523189Z", - "shell.execute_reply": "2024-06-19T19:19:40.522735Z" + "iopub.execute_input": "2024-06-25T15:05:48.214345Z", + "iopub.status.busy": "2024-06-25T15:05:48.214064Z", + "iopub.status.idle": "2024-06-25T15:05:48.223417Z", + "shell.execute_reply": "2024-06-25T15:05:48.222893Z" } }, "outputs": [ @@ -1552,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.525362Z", - "iopub.status.busy": "2024-06-19T19:19:40.525040Z", - "iopub.status.idle": "2024-06-19T19:19:40.529621Z", - "shell.execute_reply": "2024-06-19T19:19:40.529206Z" + "iopub.execute_input": "2024-06-25T15:05:48.225605Z", + "iopub.status.busy": "2024-06-25T15:05:48.225254Z", + "iopub.status.idle": "2024-06-25T15:05:48.229948Z", + "shell.execute_reply": "2024-06-25T15:05:48.229505Z" }, "nbsphinx": "hidden" }, @@ -1601,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.531669Z", - "iopub.status.busy": "2024-06-19T19:19:40.531264Z", - "iopub.status.idle": "2024-06-19T19:19:41.063093Z", - "shell.execute_reply": "2024-06-19T19:19:41.062479Z" + "iopub.execute_input": "2024-06-25T15:05:48.232009Z", + "iopub.status.busy": "2024-06-25T15:05:48.231676Z", + "iopub.status.idle": "2024-06-25T15:05:48.744254Z", + "shell.execute_reply": "2024-06-25T15:05:48.743663Z" } }, "outputs": [ @@ -1639,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.065685Z", - "iopub.status.busy": "2024-06-19T19:19:41.065259Z", - "iopub.status.idle": "2024-06-19T19:19:41.074202Z", - "shell.execute_reply": "2024-06-19T19:19:41.073628Z" + "iopub.execute_input": "2024-06-25T15:05:48.746722Z", + "iopub.status.busy": "2024-06-25T15:05:48.746346Z", + "iopub.status.idle": "2024-06-25T15:05:48.754911Z", + "shell.execute_reply": "2024-06-25T15:05:48.754430Z" } }, "outputs": [ @@ -1809,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.076872Z", - "iopub.status.busy": "2024-06-19T19:19:41.076293Z", - "iopub.status.idle": "2024-06-19T19:19:41.372691Z", - "shell.execute_reply": "2024-06-19T19:19:41.372060Z" + "iopub.execute_input": "2024-06-25T15:05:48.757038Z", + "iopub.status.busy": "2024-06-25T15:05:48.756726Z", + "iopub.status.idle": "2024-06-25T15:05:49.064663Z", + "shell.execute_reply": "2024-06-25T15:05:49.064032Z" }, "nbsphinx": "hidden" }, @@ -1888,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.375031Z", - "iopub.status.busy": "2024-06-19T19:19:41.374683Z", - "iopub.status.idle": "2024-06-19T19:19:41.859506Z", - "shell.execute_reply": "2024-06-19T19:19:41.858902Z" + "iopub.execute_input": "2024-06-25T15:05:49.067229Z", + "iopub.status.busy": "2024-06-25T15:05:49.066763Z", + "iopub.status.idle": "2024-06-25T15:05:49.549519Z", + "shell.execute_reply": "2024-06-25T15:05:49.548881Z" } }, "outputs": [ @@ -1928,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.861875Z", - "iopub.status.busy": "2024-06-19T19:19:41.861566Z", - "iopub.status.idle": "2024-06-19T19:19:41.877412Z", - "shell.execute_reply": "2024-06-19T19:19:41.876826Z" + "iopub.execute_input": "2024-06-25T15:05:49.552090Z", + "iopub.status.busy": "2024-06-25T15:05:49.551584Z", + "iopub.status.idle": "2024-06-25T15:05:49.568628Z", + "shell.execute_reply": "2024-06-25T15:05:49.568028Z" } }, "outputs": [ @@ -2088,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.879759Z", - "iopub.status.busy": "2024-06-19T19:19:41.879444Z", - "iopub.status.idle": "2024-06-19T19:19:41.886336Z", - "shell.execute_reply": "2024-06-19T19:19:41.885835Z" + "iopub.execute_input": "2024-06-25T15:05:49.571048Z", + "iopub.status.busy": "2024-06-25T15:05:49.570612Z", + "iopub.status.idle": "2024-06-25T15:05:49.577763Z", + "shell.execute_reply": "2024-06-25T15:05:49.577226Z" }, "nbsphinx": "hidden" }, @@ -2136,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.888292Z", - "iopub.status.busy": "2024-06-19T19:19:41.888114Z", - "iopub.status.idle": "2024-06-19T19:19:42.344609Z", - "shell.execute_reply": "2024-06-19T19:19:42.344179Z" + "iopub.execute_input": "2024-06-25T15:05:49.580013Z", + "iopub.status.busy": "2024-06-25T15:05:49.579534Z", + "iopub.status.idle": "2024-06-25T15:05:50.058319Z", + "shell.execute_reply": "2024-06-25T15:05:50.057750Z" } }, "outputs": [ @@ -2221,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.347419Z", - "iopub.status.busy": "2024-06-19T19:19:42.346917Z", - "iopub.status.idle": "2024-06-19T19:19:42.356274Z", - "shell.execute_reply": "2024-06-19T19:19:42.355769Z" + "iopub.execute_input": "2024-06-25T15:05:50.061328Z", + "iopub.status.busy": "2024-06-25T15:05:50.060814Z", + "iopub.status.idle": "2024-06-25T15:05:50.070861Z", + "shell.execute_reply": "2024-06-25T15:05:50.070350Z" } }, "outputs": [ @@ -2352,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.358785Z", - "iopub.status.busy": "2024-06-19T19:19:42.358304Z", - "iopub.status.idle": "2024-06-19T19:19:42.364090Z", - "shell.execute_reply": "2024-06-19T19:19:42.363584Z" + "iopub.execute_input": "2024-06-25T15:05:50.073505Z", + "iopub.status.busy": "2024-06-25T15:05:50.073030Z", + "iopub.status.idle": "2024-06-25T15:05:50.079311Z", + "shell.execute_reply": "2024-06-25T15:05:50.078716Z" }, "nbsphinx": "hidden" }, @@ -2392,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.366429Z", - "iopub.status.busy": "2024-06-19T19:19:42.365955Z", - "iopub.status.idle": "2024-06-19T19:19:42.572625Z", - "shell.execute_reply": "2024-06-19T19:19:42.572180Z" + "iopub.execute_input": "2024-06-25T15:05:50.081706Z", + "iopub.status.busy": "2024-06-25T15:05:50.081492Z", + "iopub.status.idle": "2024-06-25T15:05:50.286061Z", + "shell.execute_reply": "2024-06-25T15:05:50.285552Z" } }, "outputs": [ @@ -2437,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.574836Z", - "iopub.status.busy": "2024-06-19T19:19:42.574419Z", - "iopub.status.idle": "2024-06-19T19:19:42.582445Z", - "shell.execute_reply": "2024-06-19T19:19:42.581884Z" + "iopub.execute_input": "2024-06-25T15:05:50.288498Z", + "iopub.status.busy": "2024-06-25T15:05:50.288307Z", + "iopub.status.idle": "2024-06-25T15:05:50.296133Z", + "shell.execute_reply": "2024-06-25T15:05:50.295643Z" } }, "outputs": [ @@ -2526,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.584656Z", - "iopub.status.busy": "2024-06-19T19:19:42.584222Z", - "iopub.status.idle": "2024-06-19T19:19:42.761956Z", - "shell.execute_reply": "2024-06-19T19:19:42.761359Z" + "iopub.execute_input": "2024-06-25T15:05:50.298207Z", + "iopub.status.busy": "2024-06-25T15:05:50.298041Z", + "iopub.status.idle": "2024-06-25T15:05:50.494145Z", + "shell.execute_reply": "2024-06-25T15:05:50.493642Z" } }, "outputs": [ @@ -2569,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.764400Z", - "iopub.status.busy": "2024-06-19T19:19:42.763976Z", - "iopub.status.idle": "2024-06-19T19:19:42.768544Z", - "shell.execute_reply": "2024-06-19T19:19:42.767985Z" + "iopub.execute_input": "2024-06-25T15:05:50.496453Z", + "iopub.status.busy": "2024-06-25T15:05:50.496271Z", + "iopub.status.idle": "2024-06-25T15:05:50.500854Z", + "shell.execute_reply": "2024-06-25T15:05:50.500369Z" }, "nbsphinx": "hidden" }, @@ -2609,7 +2608,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0107b0d8b1a24cca96947d6098eff928": { + "03ecb693628c4124930196d0297637eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06e6850d93fb49d4bbd11b4fd3e1ca75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "08848ad8d39d411588ecd9b46acefa21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2662,7 +2695,7 @@ "width": null } }, - "033f493e73f24590864c7f59afcad66f": { + "0b7d66ee5d4748d7a0e1dfa3bccfe971": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2715,51 +2748,41 @@ "width": null } }, - "04cbb51a83ab4d29bb7d2bc48891cde7": { + "0bc1a45dfa2d4f3297cc6a89c0f8cf08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "050609e5a1a84d618fe372d525f40b1b": { + "0d7d7689a28b4e5c8c2016621e40b52b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6396db793ad4825bbaa4d29801b7809", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e05d0526e85a44f89fd238dd45c50889", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05ac159df6c246a7bf7b9c3f71ca5b57": { + "0dffca992eaa42c887c9d00519ba5f53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2812,65 +2835,60 @@ "width": null } }, - "060c782bcc144c998d4ec99cf1693c59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e23abd302b7a454dbd6bd104697ea299", - "IPY_MODEL_ad2a1b60fad1429d81edc0aba8ede4b8", - "IPY_MODEL_b1c5d2866d8c456690162391f2195ff4" - ], - "layout": "IPY_MODEL_bace7e2c2f504c198e9315599d9bf935", - "tabbable": null, - "tooltip": null - } - }, - "06fa86e7975e470481e3f8d6be3819dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09b3f6c02e9c47c880aac985ae36ad4e": { - "model_module": "@jupyter-widgets/controls", + "0eb57fabb06f4022b27feb0a4defc335": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0c42c97a003f447d88c2ee25b58ebe06": { + "11c4db7db74545679e07665f3bfb5548": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2923,79 +2941,25 @@ "width": null } }, - "0e5ef0d817134bd0a7ee4035b9a4489f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b84749267f544e9cb00e0ce58f683cea", - "placeholder": "​", - "style": "IPY_MODEL_b9f1b0d4abb5494592b524d18151c49b", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "0e6c2ec7e1634a80a2ea40a7b259cc5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d34f470b522c44a69218c16128ec45fc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbfd1db40c2e41aab71379c769ebaf96", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "0fa318b1e8754f539738d6265c1e1408": { + "14d55cf7052347938aa7197764c9a632": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35d2c06470124bd08628181e157f4e6b", - "placeholder": "​", - "style": "IPY_MODEL_04cbb51a83ab4d29bb7d2bc48891cde7", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.98it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "103493aadaa54df6ab0680dcfbc6ef0e": { + "161ba94342e547e38ea54a83a6ea7ffe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3011,30 +2975,7 @@ "description_width": "" } }, - "129e4d13c4fe4b6ba9f13d7b2ef31714": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9edc5c225099466ea8c311c2f9b23466", - "placeholder": "​", - "style": "IPY_MODEL_378cd4a5e3944a6db9ea0fd06554d3f8", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:37<00:00, 1587.85it/s]" - } - }, - "14f1a627e0554807b2dfd1f278b59234": { + "168da49d9f38427ea4e21721b8ca7d39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3087,7 +3028,31 @@ "width": null } }, - "155b87df2caf4ae1a353008a7c105268": { + "16a24cc498124a6baa7035a049b39720": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3cfd3cae30b9412fa59231f971bdb3f7", + "IPY_MODEL_2ed0db58607d4230b7fcfe519c2ff1b4", + "IPY_MODEL_f929f1038b664fe19b1056bfa896c287" + ], + "layout": "IPY_MODEL_44443997845f4696815250e9f8c30c6a", + "tabbable": null, + "tooltip": null + } + }, + "16d5a2e2ab504689aa98f991373745b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3140,7 +3105,7 @@ "width": null } }, - "174bd4d6a89c4067a65e673cb64c2949": { + "16d993b2afd0438a8357f9427f196009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3155,92 +3120,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ff5d53375cb4f70804ff93f9609ce7c", + "layout": "IPY_MODEL_8c35c0135537440f87eeaf27d59ade48", "placeholder": "​", - "style": "IPY_MODEL_2d656e75b6df40c69a6575fb86db18c2", + "style": "IPY_MODEL_a6a01caead5f43f2b18522b8c31cc491", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1baa07f289444b4b900cea00475d68f7": { - "model_module": "@jupyter-widgets/base", + "18c241f8a409427a9330d58dbd2e97ee": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1dd9aa845b104521b299bd515cdbc543": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea5cd57901264c999017084e6b274591", - "IPY_MODEL_9271524d79c24d62b59ef244f182ee17", - "IPY_MODEL_0fa318b1e8754f539738d6265c1e1408" - ], - "layout": "IPY_MODEL_0c42c97a003f447d88c2ee25b58ebe06", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c2c3a5ff7ab40bab00ba71748b8932f", + "placeholder": "​", + "style": "IPY_MODEL_d6c907c30f224d8e800555b9cf2b4780", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "1ee67c2b9b444cf2ad628aa54f462c4f": { + "18c587fb03c9448ca4166b437685f24d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3258,31 +3169,7 @@ "text_color": null } }, - "1fe32cc7dd404642b1eb8ff34e416fb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa5c129e74b549d8b1cffc48f61c2e44", - "IPY_MODEL_c11cc8f72d6f464d94016ddbc21d48c7", - "IPY_MODEL_9f5e622f6dc6496ba1f85c2f90324f5b" - ], - "layout": "IPY_MODEL_0107b0d8b1a24cca96947d6098eff928", - "tabbable": null, - "tooltip": null - } - }, - "20025f5f21ad46ae9933af70c6ce8f66": { + "195662754fc449748d12ce52dff976a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3335,7 +3222,7 @@ "width": null } }, - "21f4b1800e0f4c478295146f969088de": { + "1a00292928c4475eac297ba1b2f130d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3353,31 +3240,23 @@ "text_color": null } }, - "2308418aed62421c9233f4e2fa36fb9f": { + "1d42974bca9e4c198beebf72a0cb2bb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ae31b766918458a946d1a89353723d8", - "IPY_MODEL_050609e5a1a84d618fe372d525f40b1b", - "IPY_MODEL_129e4d13c4fe4b6ba9f13d7b2ef31714" - ], - "layout": "IPY_MODEL_30cf3567922144299effb1260f4ccc6e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2488a275f9214af681c6df38b306d8d0": { + "1f59330c32b6433fac3f46423f8b94b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3393,17 +3272,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9654dabe585a4b94b5338a39c46321a4", - "max": 4422102.0, + "layout": "IPY_MODEL_195662754fc449748d12ce52dff976a6", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7a01a3b42476413983d54e8b2435b4dc", + "style": "IPY_MODEL_0bc1a45dfa2d4f3297cc6a89c0f8cf08", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "28dd806be3cc4a0ab8599c1bfc70e1c6": { + "258064e389e84d56bbed83da7229d743": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3456,90 +3335,7 @@ "width": null } }, - "28fe14d27b9f4bee82c46ebd7f701209": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ede70051902c47bbbee0ec8ce84e60d6", - "placeholder": "​", - "style": "IPY_MODEL_69385dc4a0864d3f81a3b367ed83b3ea", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 108MB/s]" - } - }, - "2b448009da8c4e8483f886f2eb0e3030": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ca8d484f85474761a4b258face588e5f", - "IPY_MODEL_9431f426208f48ffb5f01a3eb668c5bf", - "IPY_MODEL_d7c937e63f0e456586a70c2e0ab54ee6" - ], - "layout": "IPY_MODEL_5bb0fcc7b4ae46fd9655b8c02e948e4e", - "tabbable": null, - "tooltip": null - } - }, - "2c329ee05fac4da89d5882a7574fba4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2d656e75b6df40c69a6575fb86db18c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2de9cfc9b1be419a83d077d8718e292f": { + "267916f39e1248ffa37c451896b914e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3592,30 +3388,7 @@ "width": null } }, - "2fee82f743f042c284ee25320b32b4a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cb7a878cf2941aa8c2eec320a0076da", - "placeholder": "​", - "style": "IPY_MODEL_21f4b1800e0f4c478295146f969088de", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "30cf3567922144299effb1260f4ccc6e": { + "2681ad45dfc640f29439d85acaed1f2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3668,7 +3441,7 @@ "width": null } }, - "3125e440e835485c9e1237ed93a62a81": { + "2817ee5e9b684111937138213dacfc46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3721,7 +3494,7 @@ "width": null } }, - "340052916d744ddabde25e2884583eb0": { + "283930b10c774a81933650606b847197": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,31 +3547,7 @@ "width": null } }, - "349ee786df634788bc2d1161e9306302": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9f6c4e87a6824a87a8df6cfb055aa22e", - "IPY_MODEL_d87166da6b3f49618504a4d6390bbd19", - "IPY_MODEL_9b04e15bc27549d6a62b0d988497df87" - ], - "layout": "IPY_MODEL_4b772782627c41e3909bd7612bb017ae", - "tabbable": null, - "tooltip": null - } - }, - "35d2c06470124bd08628181e157f4e6b": { + "2917e19ffe4548c28e56e186b09c90c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,30 +3600,7 @@ "width": null } }, - "367d2e07596f456bb0ee58168ecc8c15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d03d7e7f637340689777df5f0cb88e7c", - "placeholder": "​", - "style": "IPY_MODEL_5a106ce29e9f4aeeb7a5f5c111090022", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.76it/s]" - } - }, - "370b75c47f07476092648de268c0b9ac": { + "292c58520cc2431093d03168783eb516": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3927,49 +3653,176 @@ "width": null } }, - "378cd4a5e3944a6db9ea0fd06554d3f8": { + "2986ff265af34646942e2717be06b06c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2817ee5e9b684111937138213dacfc46", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92a184f68e68494a83b93599d27abff0", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "38f1190e08ab4e7e8697541bdfa2f88d": { - "model_module": "@jupyter-widgets/controls", + "2aff94576c42483c9a469fb53a2034e5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b0107b5d5ba4a92988ceef862c5d89a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e50dd77a41342c6bf4740935c0efd86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ed0db58607d4230b7fcfe519c2ff1b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4412e6e41f84926ae6eae30f13d439f", - "IPY_MODEL_e06850dbaf5a4f0c847798f6a35e0575", - "IPY_MODEL_90e936dab65f44d7a2a36ce8204dd7f1" - ], - "layout": "IPY_MODEL_3f0ba84d9f1744caaf2462d7d18f018d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54e8c463df0d41c5b0b40d9f698a8e58", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae0991f63f8547b98d4b9f20599ab848", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 + } + }, + "2ee3f5408180490c88441ae964af2989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3b2f6f89d32a4ad88bb857de79d017a3": { + "31107c0765124e31945c1519c8add872": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "32fdf8a1a4094ea58ba4a2d42172d21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4022,7 +3875,132 @@ "width": null } }, - "3f0ba84d9f1744caaf2462d7d18f018d": { + "35e284d303b34bc6b4165c2b8e6e21c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cbfeb72e0ab14e208fbcce42db44b42a", + "IPY_MODEL_69df9a9e381c4e478aee9954f4bb52ed", + "IPY_MODEL_386554ef7a8241d28d4f208a5ce6da87" + ], + "layout": "IPY_MODEL_a27fcfe4cb814cdc9a19bd05a2f04752", + "tabbable": null, + "tooltip": null + } + }, + "36ee012821864a1e8ccf7bdd7eeb03c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_267916f39e1248ffa37c451896b914e6", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31107c0765124e31945c1519c8add872", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "386554ef7a8241d28d4f208a5ce6da87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_258064e389e84d56bbed83da7229d743", + "placeholder": "​", + "style": "IPY_MODEL_e79ee501dc504372a4fe826b154719ff", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1351.80it/s]" + } + }, + "399057c9a88b4c2c934cde9431bb5a92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5776f0d116614fdb82b204edfaec0cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bfd6a90a93874318a481c658a6f84f84", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "39c9586267574e6a9807112c6b2403fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a51d98a36fc841379327db4fd4ac0ee5", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9cfa452bd1844899cac95b6a158f9f7", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "3a7ca130ea9e4011b8dcd0442a2117b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4075,7 +4053,25 @@ "width": null } }, - "40447487272e4933bc72a31d2673c6c1": { + "3b7f5d5812d14b1290bd6858cece2886": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3c7350c2fd584841b755b7f614995db0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4093,7 +4089,69 @@ "text_color": null } }, - "4460f6e0fbc24995b0f5a4a8df6a9054": { + "3cfd3cae30b9412fa59231f971bdb3f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d62278ab22b1406184d6dd7036f90ff3", + "placeholder": "​", + "style": "IPY_MODEL_646082b01c724da6bc72cdddb7f55304", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3e971a61b8af4bab9ef7f6b37d90bfe3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6cc4a201992f41fcbcf20b5e68a600f8", + "placeholder": "​", + "style": "IPY_MODEL_47bc65f90ac544d0b21b25670b2b3bb3", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.35it/s]" + } + }, + "404ba3b7cee6449bb761f798fb5a094f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "41bd794da4ab44feb94ce7d39205c4ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4146,7 +4204,7 @@ "width": null } }, - "47405fbf6f0741a6acd2b151e521cbca": { + "4217abfa42db46b1bbdf485198fad575": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4199,49 +4257,7 @@ "width": null } }, - "4865b5b7656841e0a18dd009e4b0f40f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60bdb8f13a8497f96075f52482fd1d1", - "IPY_MODEL_2488a275f9214af681c6df38b306d8d0", - "IPY_MODEL_51e39ffd35ce42b7812629dbfdc028a2" - ], - "layout": "IPY_MODEL_e9b41c25929b4802adedef2e104b6082", - "tabbable": null, - "tooltip": null - } - }, - "490bc32e5f434710b01bc3e36facbda0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b772782627c41e3909bd7612bb017ae": { + "4363db07a7744d32aea968aa9ce3ac2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4294,7 +4310,7 @@ "width": null } }, - "4bb08d5491504ef58e5a8f50c87e6531": { + "44443997845f4696815250e9f8c30c6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4347,7 +4363,31 @@ "width": null } }, - "4c399f33c86b473eafb79774d9e12b80": { + "4666fbbe6c844793bab204564c644f4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca7b7db2ba3b4f30afbad6dc409a1b67", + "IPY_MODEL_d27f24449da94b62a22f151e6c8c0f9c", + "IPY_MODEL_529eef2e319d48a2b8dbe8c98cb65365" + ], + "layout": "IPY_MODEL_639ad8282b094a10aaffc0c0007e6ed8", + "tabbable": null, + "tooltip": null + } + }, + "47bc65f90ac544d0b21b25670b2b3bb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4365,7 +4405,31 @@ "text_color": null } }, - "4d3d55930b414abbb766db2e56c6d990": { + "4929ccdcba92446cae04c897cf77041f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82ab1dd5ba614a60a8c82f04fa68cb82", + "IPY_MODEL_36ee012821864a1e8ccf7bdd7eeb03c4", + "IPY_MODEL_ce122506ece64083a0d36147af587c18" + ], + "layout": "IPY_MODEL_9209e4c691b74c5cbdc703a5cc7588fd", + "tabbable": null, + "tooltip": null + } + }, + "4b1181b2da5140a18657ae411f70f79c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4418,7 +4482,7 @@ "width": null } }, - "4d5a0c65733247adbdeeaf6e1ca4f2ea": { + "4b53fe74e97d411ba214c4fc1d55cd1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4471,33 +4535,7 @@ "width": null } }, - "4e0a0a54fc954c3c946460b30427b0f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc74adab28ec4d639b00c4330938d45d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a78f30f214134db5bec6f214c2ef4ab3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "4e6da63d860147c6b0f676f5e42468d1": { + "4db157fe72934617891615b52ca44800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4512,39 +4550,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14f1a627e0554807b2dfd1f278b59234", + "layout": "IPY_MODEL_b104360b176546a4b1a8b132f1266dbf", "placeholder": "​", - "style": "IPY_MODEL_c8cb065bd2c544f1bd6ef627538cbe5a", + "style": "IPY_MODEL_60a7f920bfe54f8390726ce1a6291313", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.26MB/s]" - } - }, - "4f314808162a4162a1215e3829506cee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db83816623194f619f64fddd6450f2e1", - "IPY_MODEL_0e6c2ec7e1634a80a2ea40a7b259cc5c", - "IPY_MODEL_a01acc0c264a400c9613151fc371507f" - ], - "layout": "IPY_MODEL_4460f6e0fbc24995b0f5a4a8df6a9054", - "tabbable": null, - "tooltip": null + "value": "Downloading readme: 100%" } }, - "509aaac86bc144058aeb11a22fd102bf": { + "50ebf388686148dba03947185149549f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4560,40 +4574,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f83debd5af0f45eb983f0def632ff6c7", + "layout": "IPY_MODEL_ece60d1bec4643c196d28b9c688cfbd9", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5390b99d3b24117917c5dc8026ede2d", + "style": "IPY_MODEL_ffbf7d3d22a54b1aab0084e7dcabbd9d", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "517aaf75b1144a1cbb3b22c37b3921e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93b65581844c4fdca8026e0ab14fbda6", - "placeholder": "​", - "style": "IPY_MODEL_bb6f276f5e564fbabf938c817e807159", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.56it/s]" - } - }, - "51e39ffd35ce42b7812629dbfdc028a2": { + "529eef2e319d48a2b8dbe8c98cb65365": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4608,49 +4599,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05ac159df6c246a7bf7b9c3f71ca5b57", + "layout": "IPY_MODEL_b6049b9c471f49d3be7f9c1cceb114be", "placeholder": "​", - "style": "IPY_MODEL_6554121f7fb14b01ab6f12453de2c1a1", + "style": "IPY_MODEL_18c587fb03c9448ca4166b437685f24d", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 111MB/s]" - } - }, - "538f86425e864f06b9a0cc739b143615": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "553395061a7b4b84a1a4195b6aba3a92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 5.15k/5.15k [00:00<00:00, 856kB/s]" } }, - "57015cf844ee4f0d91ca72954a570d14": { + "536f65abedef405d9fedc88056d3afc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4703,71 +4660,7 @@ "width": null } }, - "5a106ce29e9f4aeeb7a5f5c111090022": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ab99c706d1f43839033721d68743b02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fddb4849f5dc4892889f74a84993fb44", - "placeholder": "​", - "style": "IPY_MODEL_1ee67c2b9b444cf2ad628aa54f462c4f", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1285.61it/s]" - } - }, - "5ae31b766918458a946d1a89353723d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_155b87df2caf4ae1a353008a7c105268", - "placeholder": "​", - "style": "IPY_MODEL_d475a8dedce844a38b005b512941a761", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5b00684a08c640b49c07a594435e2822": { + "53a83cc5edb74e30b0e9788619d8c6af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4820,7 +4713,7 @@ "width": null } }, - "5bb0fcc7b4ae46fd9655b8c02e948e4e": { + "54e8c463df0d41c5b0b40d9f698a8e58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4873,7 +4766,78 @@ "width": null } }, - "5e9ee56d719a42edae98f3219f21c962": { + "566d9c28c51a4d17a8cfcdeee19fe946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b7d66ee5d4748d7a0e1dfa3bccfe971", + "placeholder": "​", + "style": "IPY_MODEL_06e6850d93fb49d4bbd11b4fd3e1ca75", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "571aad50ae0e454484ba5794a0c894a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98daa9be42e54008bc1ad6ae7d560ff0", + "IPY_MODEL_1f59330c32b6433fac3f46423f8b94b5", + "IPY_MODEL_7ba9433e4ce64d05a15cf714f99a5b16" + ], + "layout": "IPY_MODEL_7141e730ff154149b2c09c0d927f66a4", + "tabbable": null, + "tooltip": null + } + }, + "572ae861928442c9b2d22ae8ce864337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4db157fe72934617891615b52ca44800", + "IPY_MODEL_bde37aaf1e3a4efa83e1b0350f5bdfc6", + "IPY_MODEL_d9a6297fc39c4a59b74379a830aba915" + ], + "layout": "IPY_MODEL_11c4db7db74545679e07665f3bfb5548", + "tabbable": null, + "tooltip": null + } + }, + "5776f0d116614fdb82b204edfaec0cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4926,47 +4890,7 @@ "width": null } }, - "5f18784404624b63aae2e969fc3a375f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "637d67c13ddb4c7d91633b5217a8a441": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e5ef0d817134bd0a7ee4035b9a4489f", - "IPY_MODEL_c5cc8d1503ac44d9ac4938528ac45cea", - "IPY_MODEL_4e6da63d860147c6b0f676f5e42468d1" - ], - "layout": "IPY_MODEL_4d3d55930b414abbb766db2e56c6d990", - "tabbable": null, - "tooltip": null - } - }, - "6554121f7fb14b01ab6f12453de2c1a1": { + "59604ba3ffcc4e568d00e99115e5bf89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4984,7 +4908,7 @@ "text_color": null } }, - "6728b31035504345af190e1dcf4c9cb3": { + "5ac4300b24fb41b3a2e26eb5cf83b250": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5002,7 +4926,7 @@ "text_color": null } }, - "6765d4fe489244309762d16aae59f33d": { + "5ae8300c5f6145a5be6aa9eee0f8706b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5055,43 +4979,33 @@ "width": null } }, - "67ded11ee11d4ff694b503eb0c0f85e6": { + "5ba4fb2038f2429eb80aea1172695d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "69385dc4a0864d3f81a3b367ed83b3ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_41bd794da4ab44feb94ce7d39205c4ab", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0ee102c8159466593dee5d5a5013f5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "6ac89adfb9df489e9241b0c60bce9282": { + "5ddab51c0ed2436498b3631ae04df3dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5144,7 +5058,25 @@ "width": null } }, - "6c21fac1a6f6492fabe757442efc218e": { + "60a7f920bfe54f8390726ce1a6291313": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "639ad8282b094a10aaffc0c0007e6ed8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5197,7 +5129,48 @@ "width": null } }, - "6dc40ba336ca4a7bab63d547be3d08e8": { + "646082b01c724da6bc72cdddb7f55304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6914c379e43b4db1b46f5c0bb1a7e45a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_536f65abedef405d9fedc88056d3afc9", + "placeholder": "​", + "style": "IPY_MODEL_f04332d428f84a4893c5a625a66774cd", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "69df9a9e381c4e478aee9954f4bb52ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5213,51 +5186,84 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cd7ba69e1ea94c45a8ec271fc26e594f", + "layout": "IPY_MODEL_5ddab51c0ed2436498b3631ae04df3dd", "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0ac30e0bfb54792ab08b9d231f07612", + "style": "IPY_MODEL_03ecb693628c4124930196d0297637eb", "tabbable": null, "tooltip": null, "value": 4.0 } }, - "6eaf25c6fa52438aaea2d22ba9fb8210": { + "6a41d82e699b4be391482cdfb0766a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6fe71c53f9564a11bdf6b8a8cd69adf6": { + "6a5c3a04617e4d9fb27c01fb166bf751": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2681ad45dfc640f29439d85acaed1f2d", + "placeholder": "​", + "style": "IPY_MODEL_3c7350c2fd584841b755b7f614995db0", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 89.3MB/s]" + } + }, + "6bccb2b2b96d494f84e9cd8d150081a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7491b1fc124b46929aec68d4ae578535", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f48956b3fe4a4d70b587bb7b0c64b792", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "740dc53cb80048f59c785d8912a4c771": { + "6cc4a201992f41fcbcf20b5e68a600f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5310,7 +5316,7 @@ "width": null } }, - "75efa99d888d4aa992957c5086bbfd27": { + "706812e335854f079625c533426d2033": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5363,23 +5369,7 @@ "width": null } }, - "7a01a3b42476413983d54e8b2435b4dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b8ea5510fbc45e6b2eb5f413eb0f556": { + "70ff9e6bebde45e49fcadb599ae71fdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5432,25 +5422,7 @@ "width": null } }, - "7beb78d1d8b14ba28f819699daf30058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c7a7c98fb5e4759b4649dea5c4bc964": { + "7141e730ff154149b2c09c0d927f66a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5503,23 +5475,25 @@ "width": null } }, - "7d04d5b1581e4a4da80094425c191191": { + "7253feb41ce34e85be320641f57a2949": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e805f6a371f4b269bd878765c8c6aac": { + "72cd66b2e9ca40a8b7a53ce23b450e10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5572,7 +5546,53 @@ "width": null } }, - "7ff5d53375cb4f70804ff93f9609ce7c": { + "72e2c6df41cb432aac587b95f3b2f1f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae6179258b0f4607a4aa6ed018613d21", + "placeholder": "​", + "style": "IPY_MODEL_b9bef1d69e7b420ea0513e3238df0340", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7388a04bee194e18be2b4741e80f4dc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_acd7c9708855433499731f1f872bb73e", + "placeholder": "​", + "style": "IPY_MODEL_adaac74baf5841b9819f8a307cb1db64", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 53.94it/s]" + } + }, + "7491b1fc124b46929aec68d4ae578535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5625,7 +5645,7 @@ "width": null } }, - "87011875277d472eb3bc06a65a13ad2b": { + "78f9236dd2714449817b2e6fb2f514c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5678,7 +5698,30 @@ "width": null } }, - "89bad9890ead461fb1a95f61687342de": { + "7ba9433e4ce64d05a15cf714f99a5b16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be3017cf6cdf4f9f808fbfe4a2e5a71f", + "placeholder": "​", + "style": "IPY_MODEL_b3123d1a94144f8d9490c59181dc3029", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.87it/s]" + } + }, + "7de9200ad7524bfda0166b1d305a1cbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5731,7 +5774,48 @@ "width": null } }, - "8d00c919992b4381beb2d51ea26200b4": { + "82ab1dd5ba614a60a8c82f04fa68cb82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_868cb88968024c64bcb7d11baa43053f", + "placeholder": "​", + "style": "IPY_MODEL_a3f5051e4b6041819378cf5687b6ae32", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "82e82c717c964bedbeada47d76f0621f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83159d36d44f46019a43c8b2fc56d3d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5784,25 +5868,31 @@ "width": null } }, - "8dc091840a124380ab29865489aafd08": { + "8416acb269134271b8af012e09301f14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_18c241f8a409427a9330d58dbd2e97ee", + "IPY_MODEL_2986ff265af34646942e2717be06b06c", + "IPY_MODEL_ad72878b8efc4926afdb82645ba5a6a8" + ], + "layout": "IPY_MODEL_b4da483f54014ee2ac954c3e78982c55", + "tabbable": null, + "tooltip": null } }, - "8fc88d7fbc3f4ede900084cbc17085c0": { + "84a7668b0c6c4f599b64169e3cf91767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5817,39 +5907,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_370b75c47f07476092648de268c0b9ac", + "layout": "IPY_MODEL_08848ad8d39d411588ecd9b46acefa21", "placeholder": "​", - "style": "IPY_MODEL_9881c5a7bf934c59a98bdfee4f893445", + "style": "IPY_MODEL_5ac4300b24fb41b3a2e26eb5cf83b250", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.32it/s]" - } - }, - "8fffa7fbd72a4984914d209458973d89": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d35683be5c7a4f78b8cd9bb7d768611a", - "IPY_MODEL_6dc40ba336ca4a7bab63d547be3d08e8", - "IPY_MODEL_5ab99c706d1f43839033721d68743b02" - ], - "layout": "IPY_MODEL_ce9a7d940b4f4bf0b05f2ceac8dcccf7", - "tabbable": null, - "tooltip": null + "value": "Downloading builder script: 100%" } }, - "90e936dab65f44d7a2a36ce8204dd7f1": { + "8571f3d601b64bd2a08527f61af22bf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5864,41 +5930,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a023ca26b0924a1bb4afbb6e463617d4", + "layout": "IPY_MODEL_de61f79e53944cf4bf467b383882bebf", "placeholder": "​", - "style": "IPY_MODEL_6fe71c53f9564a11bdf6b8a8cd69adf6", + "style": "IPY_MODEL_a9b7c8fd460443f1bf1f1b03a0f42b40", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8527.73 examples/s]" + "value": "Generating test split: 100%" } }, - "9271524d79c24d62b59ef244f182ee17": { + "864f1485605149aa8fbfc5acebfda74a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2de9cfc9b1be419a83d077d8718e292f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09b3f6c02e9c47c880aac985ae36ad4e", + "layout": "IPY_MODEL_4363db07a7744d32aea968aa9ce3ac2b", + "placeholder": "​", + "style": "IPY_MODEL_ff88024102a04557ad75fd8dba7512fe", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "93b65581844c4fdca8026e0ab14fbda6": { + "868cb88968024c64bcb7d11baa43053f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,33 +6014,7 @@ "width": null } }, - "9431f426208f48ffb5f01a3eb668c5bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb08d5491504ef58e5a8f50c87e6531", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6eaf25c6fa52438aaea2d22ba9fb8210", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "9654dabe585a4b94b5338a39c46321a4": { + "8c2c3a5ff7ab40bab00ba71748b8932f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6030,90 +6067,86 @@ "width": null } }, - "975d2ee3e62d4a2b9d66709c83444c6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9d2986f173c49afab3dfedeae55524a", - "IPY_MODEL_bc61e57fd1ee4dab951d476ca40caa54", - "IPY_MODEL_f6142802ca624a37a0b08c7aefb28a45" - ], - "layout": "IPY_MODEL_6ac89adfb9df489e9241b0c60bce9282", - "tabbable": null, - "tooltip": null - } - }, - "9881c5a7bf934c59a98bdfee4f893445": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "998afaaa9d274ae4a2657ecd9e861366": { - "model_module": "@jupyter-widgets/controls", + "8c35c0135537440f87eeaf27d59ade48": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9b04e15bc27549d6a62b0d988497df87": { + "8dfb5150ec724464a11989b4b0f0718d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b65c1ff523be45679974db596accaec7", - "placeholder": "​", - "style": "IPY_MODEL_f1af546ed6784aa0be311c5f469d0560", + "layout": "IPY_MODEL_c14560b1c97f4b619bab201be3610373", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b0107b5d5ba4a92988ceef862c5d89a", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 467kB/s]" + "value": 40.0 } }, - "9cb7a878cf2941aa8c2eec320a0076da": { + "8e312fd824bd4b06b5554caec053888e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6166,7 +6199,31 @@ "width": null } }, - "9edc5c225099466ea8c311c2f9b23466": { + "8f3998c468104adfaba1ce14dbdbd750": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8571f3d601b64bd2a08527f61af22bf0", + "IPY_MODEL_e7b43a45709b48b89faed50dea966c4b", + "IPY_MODEL_ad3ccd507b424e7e8c481be38d332cc1" + ], + "layout": "IPY_MODEL_283930b10c774a81933650606b847197", + "tabbable": null, + "tooltip": null + } + }, + "9209e4c691b74c5cbdc703a5cc7588fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6219,7 +6276,23 @@ "width": null } }, - "9f5e622f6dc6496ba1f85c2f90324f5b": { + "92a184f68e68494a83b93599d27abff0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "98bf0a52f6a549199d93c76c2fd3ddda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6234,15 +6307,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c21fac1a6f6492fabe757442efc218e", + "layout": "IPY_MODEL_0dffca992eaa42c887c9d00519ba5f53", "placeholder": "​", - "style": "IPY_MODEL_40447487272e4933bc72a31d2673c6c1", + "style": "IPY_MODEL_82e82c717c964bedbeada47d76f0621f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7321.21 examples/s]" + "value": " 60000/60000 [00:10<00:00, 5902.62 examples/s]" } }, - "9f6c4e87a6824a87a8df6cfb055aa22e": { + "98daa9be42e54008bc1ad6ae7d560ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6257,15 +6330,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd491f1b4c0f4b20bd4fdd6d695c9e61", + "layout": "IPY_MODEL_3a7ca130ea9e4011b8dcd0442a2117b3", "placeholder": "​", - "style": "IPY_MODEL_b3567948269049a78ebd9183fcb8d358", + "style": "IPY_MODEL_d413f44e9e444f2c80722b77678e31dd", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": "100%" + } + }, + "9aab43c0644449758dc24d1be5a2f2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a01acc0c264a400c9613151fc371507f": { + "9ad3a922fa8e44158878912a0dd0ab43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6280,68 +6371,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbaaa364fece4d9380d7c95185a7e9b2", + "layout": "IPY_MODEL_32fdf8a1a4094ea58ba4a2d42172d21b", "placeholder": "​", - "style": "IPY_MODEL_e474d73df79d490eb5e80a6926ca532a", + "style": "IPY_MODEL_0d7d7689a28b4e5c8c2016621e40b52b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.54it/s]" - } - }, - "a023ca26b0924a1bb4afbb6e463617d4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 60000/60000 [00:38<00:00, 1568.36it/s]" } }, - "a5c5a31434b147c79a2ee3c8a0238542": { + "9b16c7a3da8d4c8b998a707e044b070a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6356,16 +6394,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa14125be65e453f96d706918d9fa174", - "IPY_MODEL_4e0a0a54fc954c3c946460b30427b0f0", - "IPY_MODEL_c8dd93d85e33426f93a1b86139f441c5" + "IPY_MODEL_16d993b2afd0438a8357f9427f196009", + "IPY_MODEL_8dfb5150ec724464a11989b4b0f0718d", + "IPY_MODEL_7388a04bee194e18be2b4741e80f4dc8" ], - "layout": "IPY_MODEL_87011875277d472eb3bc06a65a13ad2b", + "layout": "IPY_MODEL_292c58520cc2431093d03168783eb516", "tabbable": null, "tooltip": null } }, - "a6396db793ad4825bbaa4d29801b7809": { + "9c86f576115343d89edc12f116ed6a35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6418,7 +6456,7 @@ "width": null } }, - "a73a78a9c42e4f3fa44b246819b7c160": { + "9d26596c9da949c1ae96409c76187d63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6471,134 +6509,31 @@ "width": null } }, - "a78f30f214134db5bec6f214c2ef4ab3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9d2986f173c49afab3dfedeae55524a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1baa07f289444b4b900cea00475d68f7", - "placeholder": "​", - "style": "IPY_MODEL_b241a68f06be48679e644c10d50080f9", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "ab22057247b8456b8d271737b62f6ebd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad2a1b60fad1429d81edc0aba8ede4b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47405fbf6f0741a6acd2b151e521cbca", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d04d5b1581e4a4da80094425c191191", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "b0ab5f631572436b94241d2d8b73a322": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d00c919992b4381beb2d51ea26200b4", - "placeholder": "​", - "style": "IPY_MODEL_fe3a1b1f79214605ba2ac9404c7f1e83", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "b1c5d2866d8c456690162391f2195ff4": { + "9ee519db54124c56adb8ac7877404ad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e805f6a371f4b269bd878765c8c6aac", - "placeholder": "​", - "style": "IPY_MODEL_f95496d16b064105a195b3fbb5d8814b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f910134d744343ebb181478ee7c7267c", + "IPY_MODEL_c0d10ebaaaf849b296f255f937ea0744", + "IPY_MODEL_6a5c3a04617e4d9fb27c01fb166bf751" + ], + "layout": "IPY_MODEL_7de9200ad7524bfda0166b1d305a1cbc", "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 829kB/s]" + "tooltip": null } }, - "b2161d0251584354a28b87992f624a0b": { + "a0eef281a9b4456093538c260e709ed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6613,98 +6548,64 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_174bd4d6a89c4067a65e673cb64c2949", - "IPY_MODEL_ba78d4aa2f1b4b6cbd263be189dac201", - "IPY_MODEL_8fc88d7fbc3f4ede900084cbc17085c0" + "IPY_MODEL_b72b9a3d8434472991fbed0324b851b0", + "IPY_MODEL_f27659b8716b4c19b1aa073b1010e8e3", + "IPY_MODEL_f6270d27b55e45168a28d945962cf1ea" ], - "layout": "IPY_MODEL_3b2f6f89d32a4ad88bb857de79d017a3", + "layout": "IPY_MODEL_706812e335854f079625c533426d2033", "tabbable": null, "tooltip": null } }, - "b241a68f06be48679e644c10d50080f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3567948269049a78ebd9183fcb8d358": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b4412e6e41f84926ae6eae30f13d439f": { + "a1cf212f99ca47149f17b2ee8cd2fad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6765d4fe489244309762d16aae59f33d", - "placeholder": "​", - "style": "IPY_MODEL_c318f8800bf64c0687c73e07060ca2bb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6914c379e43b4db1b46f5c0bb1a7e45a", + "IPY_MODEL_50ebf388686148dba03947185149549f", + "IPY_MODEL_be73a7fb6ad146198b88df465ae9626e" + ], + "layout": "IPY_MODEL_db321377fada4bda85f41957699f1fa1", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "b60bdb8f13a8497f96075f52482fd1d1": { + "a20698b6f5ac47bf8a90e5e27b8d7a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a73a78a9c42e4f3fa44b246819b7c160", - "placeholder": "​", - "style": "IPY_MODEL_2c329ee05fac4da89d5882a7574fba4f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2361a5090594eafb2dcc81c8d97ce33", + "IPY_MODEL_b38e1a2f985f4c1794d65ced824761dc", + "IPY_MODEL_98bf0a52f6a549199d93c76c2fd3ddda" + ], + "layout": "IPY_MODEL_78f9236dd2714449817b2e6fb2f514c3", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "b65c1ff523be45679974db596accaec7": { + "a27fcfe4cb814cdc9a19bd05a2f04752": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6757,7 +6658,43 @@ "width": null } }, - "b84749267f544e9cb00e0ce58f683cea": { + "a3754f7fe7b44872a11196f152db28b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a3f5051e4b6041819378cf5687b6ae32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a4dd266b081d490aa10f9c2a5fdc8aec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6810,91 +6747,7 @@ "width": null } }, - "b9200b83016e4f1d893d9679edcac1ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf9b1f13485246aaa8df11f268f23c20", - "IPY_MODEL_db1cc09b196e4e0f972f268131d29bcf", - "IPY_MODEL_517aaf75b1144a1cbb3b22c37b3921e2" - ], - "layout": "IPY_MODEL_7c7a7c98fb5e4759b4649dea5c4bc964", - "tabbable": null, - "tooltip": null - } - }, - "b929ef137e0a4492bf3f44c2023e1b30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b9f1b0d4abb5494592b524d18151c49b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba78d4aa2f1b4b6cbd263be189dac201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5b00684a08c640b49c07a594435e2822", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_553395061a7b4b84a1a4195b6aba3a92", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "bace7e2c2f504c198e9315599d9bf935": { + "a51d98a36fc841379327db4fd4ac0ee5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6947,7 +6800,7 @@ "width": null } }, - "bb2221c1e1de4160a2c3e23c077228bc": { + "a637e2756d2e4dd2a9aaeb8cd7e79c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6965,7 +6818,7 @@ "text_color": null } }, - "bb6f276f5e564fbabf938c817e807159": { + "a6a01caead5f43f2b18522b8c31cc491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6983,49 +6836,49 @@ "text_color": null } }, - "bbaed05c1118421d8b44a9fd532ba64e": { + "a9b7c8fd460443f1bf1f1b03a0f42b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bc61e57fd1ee4dab951d476ca40caa54": { + "a9d22fa9576940b49f5c0c6e41a5affc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_740dc53cb80048f59c785d8912a4c771", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c67a052d8af74a59a9e590f7955a1ed6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_566d9c28c51a4d17a8cfcdeee19fe946", + "IPY_MODEL_5ba4fb2038f2429eb80aea1172695d82", + "IPY_MODEL_b31798513e9043e8be34070f5769cd50" + ], + "layout": "IPY_MODEL_d380b58d41494ff18038b8552662731b", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "bd491f1b4c0f4b20bd4fdd6d695c9e61": { + "acd7c9708855433499731f1f872bb73e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7078,7 +6931,87 @@ "width": null } }, - "bdd4f02b99b74863830a9e8f89298574": { + "ad3ccd507b424e7e8c481be38d332cc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d26596c9da949c1ae96409c76187d63", + "placeholder": "​", + "style": "IPY_MODEL_14d55cf7052347938aa7197764c9a632", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8645.54 examples/s]" + } + }, + "ad72878b8efc4926afdb82645ba5a6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72cd66b2e9ca40a8b7a53ce23b450e10", + "placeholder": "​", + "style": "IPY_MODEL_7253feb41ce34e85be320641f57a2949", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 130MB/s]" + } + }, + "adaac74baf5841b9819f8a307cb1db64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae0991f63f8547b98d4b9f20599ab848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ae6179258b0f4607a4aa6ed018613d21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7128,33 +7061,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "bf9b1f13485246aaa8df11f268f23c20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c20778fe5ff64bf08da28b9567d5446e", - "placeholder": "​", - "style": "IPY_MODEL_8dc091840a124380ab29865489aafd08", - "tabbable": null, - "tooltip": null, - "value": "100%" + "width": null } }, - "c0ac30e0bfb54792ab08b9d231f07612": { + "b0ee102c8159466593dee5d5a5013f5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7170,33 +7080,7 @@ "description_width": "" } }, - "c11cc8f72d6f464d94016ddbc21d48c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75efa99d888d4aa992957c5086bbfd27", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bbaed05c1118421d8b44a9fd532ba64e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c20778fe5ff64bf08da28b9567d5446e": { + "b104360b176546a4b1a8b132f1266dbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7249,67 +7133,7 @@ "width": null } }, - "c318f8800bf64c0687c73e07060ca2bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c5cc8d1503ac44d9ac4938528ac45cea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_340052916d744ddabde25e2884583eb0", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_103493aadaa54df6ab0680dcfbc6ef0e", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "c67a052d8af74a59a9e590f7955a1ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8cb065bd2c544f1bd6ef627538cbe5a": { + "b3123d1a94144f8d9490c59181dc3029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7327,7 +7151,7 @@ "text_color": null } }, - "c8dd93d85e33426f93a1b86139f441c5": { + "b31798513e9043e8be34070f5769cd50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7342,54 +7166,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57015cf844ee4f0d91ca72954a570d14", + "layout": "IPY_MODEL_83159d36d44f46019a43c8b2fc56d3d5", "placeholder": "​", - "style": "IPY_MODEL_7beb78d1d8b14ba28f819699daf30058", + "style": "IPY_MODEL_3b7f5d5812d14b1290bd6858cece2886", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.17it/s]" + "value": " 60000/60000 [00:07<00:00, 8710.25 examples/s]" } }, - "ca8d484f85474761a4b258face588e5f": { + "b38e1a2f985f4c1794d65ced824761dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_20025f5f21ad46ae9933af70c6ce8f66", - "placeholder": "​", - "style": "IPY_MODEL_ccfbe28c3dad462fb9d72ede70556484", + "layout": "IPY_MODEL_0eb57fabb06f4022b27feb0a4defc335", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d42974bca9e4c198beebf72a0cb2bb5", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "cbfd1db40c2e41aab71379c769ebaf96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 60000.0 } }, - "cc74adab28ec4d639b00c4330938d45d": { + "b3ca0ce900da4b64b5b066e7d4e6eddd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7442,25 +7253,7 @@ "width": null } }, - "ccfbe28c3dad462fb9d72ede70556484": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd7ba69e1ea94c45a8ec271fc26e594f": { + "b4da483f54014ee2ac954c3e78982c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7513,7 +7306,31 @@ "width": null } }, - "ce9a7d940b4f4bf0b05f2ceac8dcccf7": { + "b5a738d901b14847af173bf44a11a398": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_864f1485605149aa8fbfc5acebfda74a", + "IPY_MODEL_6bccb2b2b96d494f84e9cd8d150081a6", + "IPY_MODEL_9ad3a922fa8e44158878912a0dd0ab43" + ], + "layout": "IPY_MODEL_d8ebe1749a1644a9989243232e8c89cd", + "tabbable": null, + "tooltip": null + } + }, + "b6049b9c471f49d3be7f9c1cceb114be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7566,7 +7383,90 @@ "width": null } }, - "d03d7e7f637340689777df5f0cb88e7c": { + "b72b9a3d8434472991fbed0324b851b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4dd266b081d490aa10f9c2a5fdc8aec", + "placeholder": "​", + "style": "IPY_MODEL_9aab43c0644449758dc24d1be5a2f2d5", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "b9bef1d69e7b420ea0513e3238df0340": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9cfa452bd1844899cac95b6a158f9f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bde37aaf1e3a4efa83e1b0350f5bdfc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e312fd824bd4b06b5554caec053888e", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fbd18c0ac3fa4f879eb003b05b51f759", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "be3017cf6cdf4f9f808fbfe4a2e5a71f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7619,7 +7519,72 @@ "width": null } }, - "d34f470b522c44a69218c16128ec45fc": { + "be73a7fb6ad146198b88df465ae9626e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b53fe74e97d411ba214c4fc1d55cd1f", + "placeholder": "​", + "style": "IPY_MODEL_ccd3b9588c3a4c228e258aca595a6fc0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.21it/s]" + } + }, + "bfd6a90a93874318a481c658a6f84f84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0d10ebaaaf849b296f255f937ea0744": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f61fdeafd0374a429b09ef7fadeeb204", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e50dd77a41342c6bf4740935c0efd86", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "c14560b1c97f4b619bab201be3610373": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7672,7 +7637,43 @@ "width": null } }, - "d35683be5c7a4f78b8cd9bb7d768611a": { + "c42cabcc2eeb4a66b189387bc2307596": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4ce2bad018247f8b39f1d3073e5f42d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ca7b7db2ba3b4f30afbad6dc409a1b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7687,15 +7688,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e37bebcd19374aa2973336383bca9e62", + "layout": "IPY_MODEL_2917e19ffe4548c28e56e186b09c90c4", "placeholder": "​", - "style": "IPY_MODEL_998afaaa9d274ae4a2657ecd9e861366", + "style": "IPY_MODEL_a637e2756d2e4dd2a9aaeb8cd7e79c20", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Downloading data: 100%" } }, - "d475a8dedce844a38b005b512941a761": { + "cb2d55c3c67a4cc8b230cfc404c3754a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7713,7 +7714,7 @@ "text_color": null } }, - "d608bddcd7a54636a4b3dd9aeef5fcb2": { + "cb86652b122d4284addbacdbed8966b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7728,16 +7729,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2fee82f743f042c284ee25320b32b4a3", - "IPY_MODEL_509aaac86bc144058aeb11a22fd102bf", - "IPY_MODEL_367d2e07596f456bb0ee58168ecc8c15" + "IPY_MODEL_84a7668b0c6c4f599b64169e3cf91767", + "IPY_MODEL_39c9586267574e6a9807112c6b2403fd", + "IPY_MODEL_d1da43766e2d42e5ae51d00fe098cc12" ], - "layout": "IPY_MODEL_5e9ee56d719a42edae98f3219f21c962", + "layout": "IPY_MODEL_4b1181b2da5140a18657ae411f70f79c", "tabbable": null, "tooltip": null } }, - "d7c937e63f0e456586a70c2e0ab54ee6": { + "cbfeb72e0ab14e208fbcce42db44b42a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7752,67 +7753,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_28dd806be3cc4a0ab8599c1bfc70e1c6", + "layout": "IPY_MODEL_168da49d9f38427ea4e21721b8ca7d39", "placeholder": "​", - "style": "IPY_MODEL_538f86425e864f06b9a0cc739b143615", + "style": "IPY_MODEL_59604ba3ffcc4e568d00e99115e5bf89", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.09MB/s]" + "value": "Computing checksums: 100%" } }, - "d87166da6b3f49618504a4d6390bbd19": { + "ccd3b9588c3a4c228e258aca595a6fc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0a5bc8d62164ca7adc25636956cf5ee", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b929ef137e0a4492bf3f44c2023e1b30", - "tabbable": null, - "tooltip": null, - "value": 4833.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db1cc09b196e4e0f972f268131d29bcf": { + "ce122506ece64083a0d36147af587c18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4d5a0c65733247adbdeeaf6e1ca4f2ea", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f259205be3de4ec6a4156b901d8c45ae", + "layout": "IPY_MODEL_e1fc8352a75c4be0b6206e4eb451e814", + "placeholder": "​", + "style": "IPY_MODEL_f0de1733b4ce411a9c9a87a567e5f0c3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 58.75it/s]" } }, - "db83816623194f619f64fddd6450f2e1": { + "d1da43766e2d42e5ae51d00fe098cc12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7827,31 +7817,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bdd4f02b99b74863830a9e8f89298574", + "layout": "IPY_MODEL_2aff94576c42483c9a469fb53a2034e5", "placeholder": "​", - "style": "IPY_MODEL_bb2221c1e1de4160a2c3e23c077228bc", + "style": "IPY_MODEL_a3754f7fe7b44872a11196f152db28b0", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "e05d0526e85a44f89fd238dd45c50889": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 4.83k/4.83k [00:00<00:00, 540kB/s]" } }, - "e06850dbaf5a4f0c847798f6a35e0575": { + "d27f24449da94b62a22f151e6c8c0f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7867,40 +7841,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e8fbcb5732164a6b91d41f650e7d8820", - "max": 10000.0, + "layout": "IPY_MODEL_9c86f576115343d89edc12f116ed6a35", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5f18784404624b63aae2e969fc3a375f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "e23abd302b7a454dbd6bd104697ea299": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3125e440e835485c9e1237ed93a62a81", - "placeholder": "​", - "style": "IPY_MODEL_06fa86e7975e470481e3f8d6be3819dc", + "style": "IPY_MODEL_2ee3f5408180490c88441ae964af2989", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 5148.0 } }, - "e37bebcd19374aa2973336383bca9e62": { + "d380b58d41494ff18038b8552662731b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7953,31 +7904,7 @@ "width": null } }, - "e3b490f3753e4a26b5ee7f200e729450": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0ab5f631572436b94241d2d8b73a322", - "IPY_MODEL_f1941ea1c21f4f54a610543a50386d78", - "IPY_MODEL_28fe14d27b9f4bee82c46ebd7f701209" - ], - "layout": "IPY_MODEL_e5fc576aadb54072983d09b57b37c75b", - "tabbable": null, - "tooltip": null - } - }, - "e474d73df79d490eb5e80a6926ca532a": { + "d413f44e9e444f2c80722b77678e31dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7995,7 +7922,7 @@ "text_color": null } }, - "e4fcfe6cdfa24aa3a11ddf5359476a3e": { + "d62278ab22b1406184d6dd7036f90ff3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8048,60 +7975,25 @@ "width": null } }, - "e5fc576aadb54072983d09b57b37c75b": { - "model_module": "@jupyter-widgets/base", + "d6c907c30f224d8e800555b9cf2b4780": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e8fbcb5732164a6b91d41f650e7d8820": { + "d8ebe1749a1644a9989243232e8c89cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8154,7 +8046,30 @@ "width": null } }, - "e9b41c25929b4802adedef2e104b6082": { + "d9a6297fc39c4a59b74379a830aba915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3ca0ce900da4b64b5b066e7d4e6eddd", + "placeholder": "​", + "style": "IPY_MODEL_cb2d55c3c67a4cc8b230cfc404c3754a", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.35MB/s]" + } + }, + "db321377fada4bda85f41957699f1fa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8190,47 +8105,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ea5cd57901264c999017084e6b274591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b8ea5510fbc45e6b2eb5f413eb0f556", - "placeholder": "​", - "style": "IPY_MODEL_67ded11ee11d4ff694b503eb0c0f85e6", - "tabbable": null, - "tooltip": null, - "value": "100%" + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ede70051902c47bbbee0ec8ce84e60d6": { + "de61f79e53944cf4bf467b383882bebf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8283,7 +8175,7 @@ "width": null } }, - "f0a5bc8d62164ca7adc25636956cf5ee": { + "e1fc8352a75c4be0b6206e4eb451e814": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8336,33 +8228,54 @@ "width": null } }, - "f1941ea1c21f4f54a610543a50386d78": { + "e2361a5090594eafb2dcc81c8d97ce33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f807c35d88e04099919de487b7cfd328", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ab22057247b8456b8d271737b62f6ebd", + "layout": "IPY_MODEL_fcc335b1ecf144178dcebe58ec7c1868", + "placeholder": "​", + "style": "IPY_MODEL_c4ce2bad018247f8b39f1d3073e5f42d", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": "Map (num_proc=4): 100%" + } + }, + "e6b201d41be24978b1711d80d4442962": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72e2c6df41cb432aac587b95f3b2f1f3", + "IPY_MODEL_399057c9a88b4c2c934cde9431bb5a92", + "IPY_MODEL_3e971a61b8af4bab9ef7f6b37d90bfe3" + ], + "layout": "IPY_MODEL_f445d8f4630b437b99674b7d0b4a18c9", + "tabbable": null, + "tooltip": null } }, - "f1af546ed6784aa0be311c5f469d0560": { + "e79ee501dc504372a4fe826b154719ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8380,62 +8293,148 @@ "text_color": null } }, - "f259205be3de4ec6a4156b901d8c45ae": { + "e7b43a45709b48b89faed50dea966c4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53a83cc5edb74e30b0e9788619d8c6af", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_161ba94342e547e38ea54a83a6ea7ffe", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "ece60d1bec4643c196d28b9c688cfbd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f04332d428f84a4893c5a625a66774cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f5390b99d3b24117917c5dc8026ede2d": { + "f0de1733b4ce411a9c9a87a567e5f0c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f6142802ca624a37a0b08c7aefb28a45": { + "f27659b8716b4c19b1aa073b1010e8e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_89bad9890ead461fb1a95f61687342de", - "placeholder": "​", - "style": "IPY_MODEL_6728b31035504345af190e1dcf4c9cb3", + "layout": "IPY_MODEL_4217abfa42db46b1bbdf485198fad575", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_404ba3b7cee6449bb761f798fb5a094f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8530.99 examples/s]" + "value": 29515.0 } }, - "f807c35d88e04099919de487b7cfd328": { + "f445d8f4630b437b99674b7d0b4a18c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8488,7 +8487,23 @@ "width": null } }, - "f83debd5af0f45eb983f0def632ff6c7": { + "f48956b3fe4a4d70b587bb7b0c64b792": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f61fdeafd0374a429b09ef7fadeeb204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8541,25 +8556,30 @@ "width": null } }, - "f95496d16b064105a195b3fbb5d8814b": { + "f6270d27b55e45168a28d945962cf1ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_16d5a2e2ab504689aa98f991373745b7", + "placeholder": "​", + "style": "IPY_MODEL_1a00292928c4475eac297ba1b2f130d2", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.41MB/s]" } }, - "fa14125be65e453f96d706918d9fa174": { + "f910134d744343ebb181478ee7c7267c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8574,15 +8594,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_033f493e73f24590864c7f59afcad66f", + "layout": "IPY_MODEL_5ae8300c5f6145a5be6aa9eee0f8706b", "placeholder": "​", - "style": "IPY_MODEL_490bc32e5f434710b01bc3e36facbda0", + "style": "IPY_MODEL_c42cabcc2eeb4a66b189387bc2307596", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "fa5c129e74b549d8b1cffc48f61c2e44": { + "f929f1038b664fe19b1056bfa896c287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8597,68 +8617,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4fcfe6cdfa24aa3a11ddf5359476a3e", + "layout": "IPY_MODEL_70ff9e6bebde45e49fcadb599ae71fdd", "placeholder": "​", - "style": "IPY_MODEL_4c399f33c86b473eafb79774d9e12b80", + "style": "IPY_MODEL_6a41d82e699b4be391482cdfb0766a99", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 65.68it/s]" } }, - "fbaaa364fece4d9380d7c95185a7e9b2": { - "model_module": "@jupyter-widgets/base", + "fbd18c0ac3fa4f879eb003b05b51f759": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fddb4849f5dc4892889f74a84993fb44": { + "fcc335b1ecf144178dcebe58ec7c1868": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8711,7 +8694,7 @@ "width": null } }, - "fe3a1b1f79214605ba2ac9404c7f1e83": { + "ff88024102a04557ad75fd8dba7512fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8728,6 +8711,22 @@ "font_size": null, "text_color": null } + }, + "ffbf7d3d22a54b1aab0084e7dcabbd9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 6b4af65a3..e8a4df96f 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:46.667346Z", - "iopub.status.busy": "2024-06-19T19:19:46.667169Z", - "iopub.status.idle": "2024-06-19T19:19:47.816479Z", - "shell.execute_reply": "2024-06-19T19:19:47.815913Z" + "iopub.execute_input": "2024-06-25T15:05:54.306922Z", + "iopub.status.busy": "2024-06-25T15:05:54.306745Z", + "iopub.status.idle": "2024-06-25T15:05:55.467976Z", + "shell.execute_reply": "2024-06-25T15:05:55.467320Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.819102Z", - "iopub.status.busy": "2024-06-19T19:19:47.818587Z", - "iopub.status.idle": "2024-06-19T19:19:47.837002Z", - "shell.execute_reply": "2024-06-19T19:19:47.836447Z" + "iopub.execute_input": "2024-06-25T15:05:55.471079Z", + "iopub.status.busy": "2024-06-25T15:05:55.470348Z", + "iopub.status.idle": "2024-06-25T15:05:55.490834Z", + "shell.execute_reply": "2024-06-25T15:05:55.490219Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.839550Z", - "iopub.status.busy": "2024-06-19T19:19:47.839058Z", - "iopub.status.idle": "2024-06-19T19:19:47.863152Z", - "shell.execute_reply": "2024-06-19T19:19:47.862654Z" + "iopub.execute_input": "2024-06-25T15:05:55.493612Z", + "iopub.status.busy": "2024-06-25T15:05:55.493311Z", + "iopub.status.idle": "2024-06-25T15:05:55.517738Z", + "shell.execute_reply": "2024-06-25T15:05:55.517157Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.865268Z", - "iopub.status.busy": "2024-06-19T19:19:47.865045Z", - "iopub.status.idle": "2024-06-19T19:19:47.868720Z", - "shell.execute_reply": "2024-06-19T19:19:47.868230Z" + "iopub.execute_input": "2024-06-25T15:05:55.520011Z", + "iopub.status.busy": "2024-06-25T15:05:55.519777Z", + "iopub.status.idle": "2024-06-25T15:05:55.523257Z", + "shell.execute_reply": "2024-06-25T15:05:55.522815Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.870817Z", - "iopub.status.busy": "2024-06-19T19:19:47.870478Z", - "iopub.status.idle": "2024-06-19T19:19:47.878207Z", - "shell.execute_reply": "2024-06-19T19:19:47.877752Z" + "iopub.execute_input": "2024-06-25T15:05:55.525644Z", + "iopub.status.busy": "2024-06-25T15:05:55.525218Z", + "iopub.status.idle": "2024-06-25T15:05:55.533618Z", + "shell.execute_reply": "2024-06-25T15:05:55.533007Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.880333Z", - "iopub.status.busy": "2024-06-19T19:19:47.879984Z", - "iopub.status.idle": "2024-06-19T19:19:47.882488Z", - "shell.execute_reply": "2024-06-19T19:19:47.882076Z" + "iopub.execute_input": "2024-06-25T15:05:55.536190Z", + "iopub.status.busy": "2024-06-25T15:05:55.535771Z", + "iopub.status.idle": "2024-06-25T15:05:55.538695Z", + "shell.execute_reply": "2024-06-25T15:05:55.538108Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.884365Z", - "iopub.status.busy": "2024-06-19T19:19:47.884103Z", - "iopub.status.idle": "2024-06-19T19:19:50.909780Z", - "shell.execute_reply": "2024-06-19T19:19:50.909234Z" + "iopub.execute_input": "2024-06-25T15:05:55.541004Z", + "iopub.status.busy": "2024-06-25T15:05:55.540659Z", + "iopub.status.idle": "2024-06-25T15:05:58.495881Z", + "shell.execute_reply": "2024-06-25T15:05:58.495234Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:50.912867Z", - "iopub.status.busy": "2024-06-19T19:19:50.912330Z", - "iopub.status.idle": "2024-06-19T19:19:50.922196Z", - "shell.execute_reply": "2024-06-19T19:19:50.921748Z" + "iopub.execute_input": "2024-06-25T15:05:58.498548Z", + "iopub.status.busy": "2024-06-25T15:05:58.498203Z", + "iopub.status.idle": "2024-06-25T15:05:58.507784Z", + "shell.execute_reply": "2024-06-25T15:05:58.507216Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:50.924645Z", - "iopub.status.busy": "2024-06-19T19:19:50.924292Z", - "iopub.status.idle": "2024-06-19T19:19:52.940110Z", - "shell.execute_reply": "2024-06-19T19:19:52.939416Z" + "iopub.execute_input": "2024-06-25T15:05:58.510041Z", + "iopub.status.busy": "2024-06-25T15:05:58.509728Z", + "iopub.status.idle": "2024-06-25T15:06:00.491912Z", + "shell.execute_reply": "2024-06-25T15:06:00.491223Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.944415Z", - "iopub.status.busy": "2024-06-19T19:19:52.943217Z", - "iopub.status.idle": "2024-06-19T19:19:52.969078Z", - "shell.execute_reply": "2024-06-19T19:19:52.968546Z" + "iopub.execute_input": "2024-06-25T15:06:00.494590Z", + "iopub.status.busy": "2024-06-25T15:06:00.494034Z", + "iopub.status.idle": "2024-06-25T15:06:00.513034Z", + "shell.execute_reply": "2024-06-25T15:06:00.512539Z" }, "scrolled": true }, @@ -584,18 +584,18 @@ " \n", "\n", "Number of examples with this issue: 1\n", - "Overall dataset quality in terms of this issue: 0.0014\n", + "Overall dataset quality in terms of this issue: 0.0000\n", "\n", "Examples representing most severe instances of this issue:\n", " is_non_iid_issue non_iid_score\n", - "595 True 0.702427\n", - "147 False 0.711186\n", - "157 False 0.721394\n", - "771 False 0.731979\n", - "898 False 0.740335\n", + "865 True 0.515002\n", + "837 False 0.556480\n", + "622 False 0.593068\n", + "329 False 0.593207\n", + "920 False 0.618041\n", "\n", "Additional Information: \n", - "p-value: 0.0014153602099278074\n" + "p-value: 1.4386345844794593e-05\n" ] } ], @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.972783Z", - "iopub.status.busy": "2024-06-19T19:19:52.971838Z", - "iopub.status.idle": "2024-06-19T19:19:52.983218Z", - "shell.execute_reply": "2024-06-19T19:19:52.982732Z" + "iopub.execute_input": "2024-06-25T15:06:00.515386Z", + "iopub.status.busy": "2024-06-25T15:06:00.515022Z", + "iopub.status.idle": "2024-06-25T15:06:00.523252Z", + "shell.execute_reply": "2024-06-25T15:06:00.522727Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.986726Z", - "iopub.status.busy": "2024-06-19T19:19:52.985784Z", - "iopub.status.idle": "2024-06-19T19:19:52.997408Z", - "shell.execute_reply": "2024-06-19T19:19:52.996969Z" + "iopub.execute_input": "2024-06-25T15:06:00.525561Z", + "iopub.status.busy": "2024-06-25T15:06:00.525221Z", + "iopub.status.idle": "2024-06-25T15:06:00.534686Z", + "shell.execute_reply": "2024-06-25T15:06:00.534222Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.999597Z", - "iopub.status.busy": "2024-06-19T19:19:52.999222Z", - "iopub.status.idle": "2024-06-19T19:19:53.007248Z", - "shell.execute_reply": "2024-06-19T19:19:53.006767Z" + "iopub.execute_input": "2024-06-25T15:06:00.536849Z", + "iopub.status.busy": "2024-06-25T15:06:00.536513Z", + "iopub.status.idle": "2024-06-25T15:06:00.544451Z", + "shell.execute_reply": "2024-06-25T15:06:00.543983Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.009311Z", - "iopub.status.busy": "2024-06-19T19:19:53.009014Z", - "iopub.status.idle": "2024-06-19T19:19:53.017621Z", - "shell.execute_reply": "2024-06-19T19:19:53.017179Z" + "iopub.execute_input": "2024-06-25T15:06:00.546708Z", + "iopub.status.busy": "2024-06-25T15:06:00.546375Z", + "iopub.status.idle": "2024-06-25T15:06:00.555743Z", + "shell.execute_reply": "2024-06-25T15:06:00.555283Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.019530Z", - "iopub.status.busy": "2024-06-19T19:19:53.019357Z", - "iopub.status.idle": "2024-06-19T19:19:53.026882Z", - "shell.execute_reply": "2024-06-19T19:19:53.026349Z" + "iopub.execute_input": "2024-06-25T15:06:00.558037Z", + "iopub.status.busy": "2024-06-25T15:06:00.557741Z", + "iopub.status.idle": "2024-06-25T15:06:00.565082Z", + "shell.execute_reply": "2024-06-25T15:06:00.564551Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.028966Z", - "iopub.status.busy": "2024-06-19T19:19:53.028783Z", - "iopub.status.idle": "2024-06-19T19:19:53.037252Z", - "shell.execute_reply": "2024-06-19T19:19:53.036822Z" + "iopub.execute_input": "2024-06-25T15:06:00.567302Z", + "iopub.status.busy": "2024-06-25T15:06:00.566989Z", + "iopub.status.idle": "2024-06-25T15:06:00.574328Z", + "shell.execute_reply": "2024-06-25T15:06:00.573785Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.039425Z", - "iopub.status.busy": "2024-06-19T19:19:53.039101Z", - "iopub.status.idle": "2024-06-19T19:19:53.047347Z", - "shell.execute_reply": "2024-06-19T19:19:53.046924Z" + "iopub.execute_input": "2024-06-25T15:06:00.576415Z", + "iopub.status.busy": "2024-06-25T15:06:00.576086Z", + "iopub.status.idle": "2024-06-25T15:06:00.584022Z", + "shell.execute_reply": "2024-06-25T15:06:00.583560Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index bea79f700..e36d9f50d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:55.921461Z", - "iopub.status.busy": "2024-06-19T19:19:55.921065Z", - "iopub.status.idle": "2024-06-19T19:19:58.686540Z", - "shell.execute_reply": "2024-06-19T19:19:58.685973Z" + "iopub.execute_input": "2024-06-25T15:06:03.310140Z", + "iopub.status.busy": "2024-06-25T15:06:03.309948Z", + "iopub.status.idle": "2024-06-25T15:06:06.078244Z", + "shell.execute_reply": "2024-06-25T15:06:06.077724Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.689087Z", - "iopub.status.busy": "2024-06-19T19:19:58.688773Z", - "iopub.status.idle": "2024-06-19T19:19:58.692303Z", - "shell.execute_reply": "2024-06-19T19:19:58.691719Z" + "iopub.execute_input": "2024-06-25T15:06:06.080800Z", + "iopub.status.busy": "2024-06-25T15:06:06.080495Z", + "iopub.status.idle": "2024-06-25T15:06:06.083847Z", + "shell.execute_reply": "2024-06-25T15:06:06.083397Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.694348Z", - "iopub.status.busy": "2024-06-19T19:19:58.693956Z", - "iopub.status.idle": "2024-06-19T19:19:58.697133Z", - "shell.execute_reply": "2024-06-19T19:19:58.696583Z" + "iopub.execute_input": "2024-06-25T15:06:06.085931Z", + "iopub.status.busy": "2024-06-25T15:06:06.085521Z", + "iopub.status.idle": "2024-06-25T15:06:06.088570Z", + "shell.execute_reply": "2024-06-25T15:06:06.088138Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.699102Z", - "iopub.status.busy": "2024-06-19T19:19:58.698813Z", - "iopub.status.idle": "2024-06-19T19:19:58.720680Z", - "shell.execute_reply": "2024-06-19T19:19:58.720145Z" + "iopub.execute_input": "2024-06-25T15:06:06.090655Z", + "iopub.status.busy": "2024-06-25T15:06:06.090325Z", + "iopub.status.idle": "2024-06-25T15:06:06.112919Z", + "shell.execute_reply": "2024-06-25T15:06:06.112377Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.722797Z", - "iopub.status.busy": "2024-06-19T19:19:58.722460Z", - "iopub.status.idle": "2024-06-19T19:19:58.726351Z", - "shell.execute_reply": "2024-06-19T19:19:58.725883Z" + "iopub.execute_input": "2024-06-25T15:06:06.115003Z", + "iopub.status.busy": "2024-06-25T15:06:06.114659Z", + "iopub.status.idle": "2024-06-25T15:06:06.118309Z", + "shell.execute_reply": "2024-06-25T15:06:06.117792Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'getting_spare_card'}\n" + "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'card_about_to_expire', 'card_payment_fee_charged', 'visa_or_mastercard', 'cancel_transfer', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.728351Z", - "iopub.status.busy": "2024-06-19T19:19:58.728078Z", - "iopub.status.idle": "2024-06-19T19:19:58.731399Z", - "shell.execute_reply": "2024-06-19T19:19:58.730940Z" + "iopub.execute_input": "2024-06-25T15:06:06.120441Z", + "iopub.status.busy": "2024-06-25T15:06:06.120102Z", + "iopub.status.idle": "2024-06-25T15:06:06.123333Z", + "shell.execute_reply": "2024-06-25T15:06:06.122880Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:58.733284Z", - "iopub.status.busy": "2024-06-19T19:19:58.733115Z", - "iopub.status.idle": "2024-06-19T19:20:02.528585Z", - "shell.execute_reply": "2024-06-19T19:20:02.527923Z" + "iopub.execute_input": "2024-06-25T15:06:06.125271Z", + "iopub.status.busy": "2024-06-25T15:06:06.125091Z", + "iopub.status.idle": "2024-06-25T15:06:09.761405Z", + "shell.execute_reply": "2024-06-25T15:06:09.760777Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:02.531337Z", - "iopub.status.busy": "2024-06-19T19:20:02.531097Z", - "iopub.status.idle": "2024-06-19T19:20:03.392291Z", - "shell.execute_reply": "2024-06-19T19:20:03.391626Z" + "iopub.execute_input": "2024-06-25T15:06:09.764366Z", + "iopub.status.busy": "2024-06-25T15:06:09.763953Z", + "iopub.status.idle": "2024-06-25T15:06:10.672531Z", + "shell.execute_reply": "2024-06-25T15:06:10.671950Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:03.395386Z", - "iopub.status.busy": "2024-06-19T19:20:03.394909Z", - "iopub.status.idle": "2024-06-19T19:20:03.398263Z", - "shell.execute_reply": "2024-06-19T19:20:03.397746Z" + "iopub.execute_input": "2024-06-25T15:06:10.675311Z", + "iopub.status.busy": "2024-06-25T15:06:10.674902Z", + "iopub.status.idle": "2024-06-25T15:06:10.678030Z", + "shell.execute_reply": "2024-06-25T15:06:10.677538Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:03.400850Z", - "iopub.status.busy": "2024-06-19T19:20:03.400422Z", - "iopub.status.idle": "2024-06-19T19:20:05.480822Z", - "shell.execute_reply": "2024-06-19T19:20:05.480079Z" + "iopub.execute_input": "2024-06-25T15:06:10.681272Z", + "iopub.status.busy": "2024-06-25T15:06:10.680332Z", + "iopub.status.idle": "2024-06-25T15:06:12.710322Z", + "shell.execute_reply": "2024-06-25T15:06:12.709521Z" }, "scrolled": true }, @@ -503,7 +503,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", "Finding class_imbalance issues ...\n", @@ -538,10 +537,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.484259Z", - "iopub.status.busy": "2024-06-19T19:20:05.483575Z", - "iopub.status.idle": "2024-06-19T19:20:05.508414Z", - "shell.execute_reply": "2024-06-19T19:20:05.507836Z" + "iopub.execute_input": "2024-06-25T15:06:12.714094Z", + "iopub.status.busy": "2024-06-25T15:06:12.712733Z", + "iopub.status.idle": "2024-06-25T15:06:12.740871Z", + "shell.execute_reply": "2024-06-25T15:06:12.740336Z" }, "scrolled": true }, @@ -671,10 +670,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.511364Z", - "iopub.status.busy": "2024-06-19T19:20:05.510990Z", - "iopub.status.idle": "2024-06-19T19:20:05.520902Z", - "shell.execute_reply": "2024-06-19T19:20:05.520466Z" + "iopub.execute_input": "2024-06-25T15:06:12.744609Z", + "iopub.status.busy": "2024-06-25T15:06:12.743668Z", + "iopub.status.idle": "2024-06-25T15:06:12.753232Z", + "shell.execute_reply": "2024-06-25T15:06:12.752805Z" }, "scrolled": true }, @@ -784,10 +783,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.523270Z", - "iopub.status.busy": "2024-06-19T19:20:05.522920Z", - "iopub.status.idle": "2024-06-19T19:20:05.527585Z", - "shell.execute_reply": "2024-06-19T19:20:05.527115Z" + "iopub.execute_input": "2024-06-25T15:06:12.755556Z", + "iopub.status.busy": "2024-06-25T15:06:12.755179Z", + "iopub.status.idle": "2024-06-25T15:06:12.759708Z", + "shell.execute_reply": "2024-06-25T15:06:12.759225Z" } }, "outputs": [ @@ -825,10 +824,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.529707Z", - "iopub.status.busy": "2024-06-19T19:20:05.529365Z", - "iopub.status.idle": "2024-06-19T19:20:05.535772Z", - "shell.execute_reply": "2024-06-19T19:20:05.535340Z" + "iopub.execute_input": "2024-06-25T15:06:12.761666Z", + "iopub.status.busy": "2024-06-25T15:06:12.761482Z", + "iopub.status.idle": "2024-06-25T15:06:12.768857Z", + "shell.execute_reply": "2024-06-25T15:06:12.768424Z" } }, "outputs": [ @@ -945,10 +944,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.538086Z", - "iopub.status.busy": "2024-06-19T19:20:05.537700Z", - "iopub.status.idle": "2024-06-19T19:20:05.545632Z", - "shell.execute_reply": "2024-06-19T19:20:05.545077Z" + "iopub.execute_input": "2024-06-25T15:06:12.771073Z", + "iopub.status.busy": "2024-06-25T15:06:12.770731Z", + "iopub.status.idle": "2024-06-25T15:06:12.777805Z", + "shell.execute_reply": "2024-06-25T15:06:12.777209Z" } }, "outputs": [ @@ -1031,10 +1030,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.547822Z", - "iopub.status.busy": "2024-06-19T19:20:05.547618Z", - "iopub.status.idle": "2024-06-19T19:20:05.554294Z", - "shell.execute_reply": "2024-06-19T19:20:05.553704Z" + "iopub.execute_input": "2024-06-25T15:06:12.780008Z", + "iopub.status.busy": "2024-06-25T15:06:12.779662Z", + "iopub.status.idle": "2024-06-25T15:06:12.785862Z", + "shell.execute_reply": "2024-06-25T15:06:12.785305Z" } }, "outputs": [ @@ -1142,10 +1141,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.557004Z", - "iopub.status.busy": "2024-06-19T19:20:05.556418Z", - "iopub.status.idle": "2024-06-19T19:20:05.565793Z", - "shell.execute_reply": "2024-06-19T19:20:05.565255Z" + "iopub.execute_input": "2024-06-25T15:06:12.788039Z", + "iopub.status.busy": "2024-06-25T15:06:12.787695Z", + "iopub.status.idle": "2024-06-25T15:06:12.796598Z", + "shell.execute_reply": "2024-06-25T15:06:12.796117Z" } }, "outputs": [ @@ -1256,10 +1255,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.567814Z", - "iopub.status.busy": "2024-06-19T19:20:05.567501Z", - "iopub.status.idle": "2024-06-19T19:20:05.572808Z", - "shell.execute_reply": "2024-06-19T19:20:05.572370Z" + "iopub.execute_input": "2024-06-25T15:06:12.798761Z", + "iopub.status.busy": "2024-06-25T15:06:12.798339Z", + "iopub.status.idle": "2024-06-25T15:06:12.804198Z", + "shell.execute_reply": "2024-06-25T15:06:12.803596Z" } }, "outputs": [ @@ -1327,10 +1326,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.574638Z", - "iopub.status.busy": "2024-06-19T19:20:05.574461Z", - "iopub.status.idle": "2024-06-19T19:20:05.580053Z", - "shell.execute_reply": "2024-06-19T19:20:05.579492Z" + "iopub.execute_input": "2024-06-25T15:06:12.806290Z", + "iopub.status.busy": "2024-06-25T15:06:12.806023Z", + "iopub.status.idle": "2024-06-25T15:06:12.811848Z", + "shell.execute_reply": "2024-06-25T15:06:12.811245Z" } }, "outputs": [ @@ -1409,10 +1408,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.582357Z", - "iopub.status.busy": "2024-06-19T19:20:05.581930Z", - "iopub.status.idle": "2024-06-19T19:20:05.585841Z", - "shell.execute_reply": "2024-06-19T19:20:05.585309Z" + "iopub.execute_input": "2024-06-25T15:06:12.814135Z", + "iopub.status.busy": "2024-06-25T15:06:12.813789Z", + "iopub.status.idle": "2024-06-25T15:06:12.817516Z", + "shell.execute_reply": "2024-06-25T15:06:12.817009Z" } }, "outputs": [ @@ -1460,10 +1459,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:05.587908Z", - "iopub.status.busy": "2024-06-19T19:20:05.587587Z", - "iopub.status.idle": "2024-06-19T19:20:05.592575Z", - "shell.execute_reply": "2024-06-19T19:20:05.592115Z" + "iopub.execute_input": "2024-06-25T15:06:12.819727Z", + "iopub.status.busy": "2024-06-25T15:06:12.819372Z", + "iopub.status.idle": "2024-06-25T15:06:12.825056Z", + "shell.execute_reply": "2024-06-25T15:06:12.824565Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index e9f634a5d..59a8b0306 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.228939Z", - "iopub.status.busy": "2024-06-19T19:20:09.228470Z", - "iopub.status.idle": "2024-06-19T19:20:09.669818Z", - "shell.execute_reply": "2024-06-19T19:20:09.669215Z" + "iopub.execute_input": "2024-06-25T15:06:16.357511Z", + "iopub.status.busy": "2024-06-25T15:06:16.357338Z", + "iopub.status.idle": "2024-06-25T15:06:16.782125Z", + "shell.execute_reply": "2024-06-25T15:06:16.781616Z" } }, "outputs": [], @@ -87,18 +87,18 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.672744Z", - "iopub.status.busy": "2024-06-19T19:20:09.672210Z", - "iopub.status.idle": "2024-06-19T19:20:09.809087Z", - "shell.execute_reply": "2024-06-19T19:20:09.808481Z" + "iopub.execute_input": "2024-06-25T15:06:16.784661Z", + "iopub.status.busy": "2024-06-25T15:06:16.784422Z", + "iopub.status.idle": "2024-06-25T15:06:16.913303Z", + "shell.execute_reply": "2024-06-25T15:06:16.912723Z" } }, "outputs": [ { "data": { "text/plain": [ - "<5000x5000 sparse matrix of type ''\n", - "\twith 50000 stored elements in Compressed Sparse Row format>" + "" ] }, "execution_count": 2, @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.811391Z", - "iopub.status.busy": "2024-06-19T19:20:09.810983Z", - "iopub.status.idle": "2024-06-19T19:20:09.832181Z", - "shell.execute_reply": "2024-06-19T19:20:09.831496Z" + "iopub.execute_input": "2024-06-25T15:06:16.915807Z", + "iopub.status.busy": "2024-06-25T15:06:16.915394Z", + "iopub.status.idle": "2024-06-25T15:06:16.935663Z", + "shell.execute_reply": "2024-06-25T15:06:16.935129Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.835601Z", - "iopub.status.busy": "2024-06-19T19:20:09.835034Z", - "iopub.status.idle": "2024-06-19T19:20:12.770224Z", - "shell.execute_reply": "2024-06-19T19:20:12.769670Z" + "iopub.execute_input": "2024-06-25T15:06:16.938219Z", + "iopub.status.busy": "2024-06-25T15:06:16.937909Z", + "iopub.status.idle": "2024-06-25T15:06:19.826408Z", + "shell.execute_reply": "2024-06-25T15:06:19.825870Z" } }, "outputs": [ @@ -243,7 +243,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -296,13 +296,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -331,8 +331,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651929 0" @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:12.772861Z", - "iopub.status.busy": "2024-06-19T19:20:12.772291Z", - "iopub.status.idle": "2024-06-19T19:20:20.893235Z", - "shell.execute_reply": "2024-06-19T19:20:20.892612Z" + "iopub.execute_input": "2024-06-25T15:06:19.829102Z", + "iopub.status.busy": "2024-06-25T15:06:19.828547Z", + "iopub.status.idle": "2024-06-25T15:06:27.884424Z", + "shell.execute_reply": "2024-06-25T15:06:27.883802Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:20.895454Z", - "iopub.status.busy": "2024-06-19T19:20:20.895085Z", - "iopub.status.idle": "2024-06-19T19:20:21.080578Z", - "shell.execute_reply": "2024-06-19T19:20:21.079989Z" + "iopub.execute_input": "2024-06-25T15:06:27.886797Z", + "iopub.status.busy": "2024-06-25T15:06:27.886448Z", + "iopub.status.idle": "2024-06-25T15:06:28.036685Z", + "shell.execute_reply": "2024-06-25T15:06:28.036171Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:21.083140Z", - "iopub.status.busy": "2024-06-19T19:20:21.082757Z", - "iopub.status.idle": "2024-06-19T19:20:22.443060Z", - "shell.execute_reply": "2024-06-19T19:20:22.442549Z" + "iopub.execute_input": "2024-06-25T15:06:28.039086Z", + "iopub.status.busy": "2024-06-25T15:06:28.038885Z", + "iopub.status.idle": "2024-06-25T15:06:29.411474Z", + "shell.execute_reply": "2024-06-25T15:06:29.410868Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.445433Z", - "iopub.status.busy": "2024-06-19T19:20:22.445039Z", - "iopub.status.idle": "2024-06-19T19:20:22.912135Z", - "shell.execute_reply": "2024-06-19T19:20:22.911505Z" + "iopub.execute_input": "2024-06-25T15:06:29.414021Z", + "iopub.status.busy": "2024-06-25T15:06:29.413520Z", + "iopub.status.idle": "2024-06-25T15:06:29.844054Z", + "shell.execute_reply": "2024-06-25T15:06:29.843434Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.914513Z", - "iopub.status.busy": "2024-06-19T19:20:22.914016Z", - "iopub.status.idle": "2024-06-19T19:20:22.923076Z", - "shell.execute_reply": "2024-06-19T19:20:22.922641Z" + "iopub.execute_input": "2024-06-25T15:06:29.846611Z", + "iopub.status.busy": "2024-06-25T15:06:29.846082Z", + "iopub.status.idle": "2024-06-25T15:06:29.855501Z", + "shell.execute_reply": "2024-06-25T15:06:29.855053Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.925387Z", - "iopub.status.busy": "2024-06-19T19:20:22.924938Z", - "iopub.status.idle": "2024-06-19T19:20:22.950519Z", - "shell.execute_reply": "2024-06-19T19:20:22.949866Z" + "iopub.execute_input": "2024-06-25T15:06:29.857684Z", + "iopub.status.busy": "2024-06-25T15:06:29.857342Z", + "iopub.status.idle": "2024-06-25T15:06:29.876701Z", + "shell.execute_reply": "2024-06-25T15:06:29.876240Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.953417Z", - "iopub.status.busy": "2024-06-19T19:20:22.952958Z", - "iopub.status.idle": "2024-06-19T19:20:23.171694Z", - "shell.execute_reply": "2024-06-19T19:20:23.171151Z" + "iopub.execute_input": "2024-06-25T15:06:29.878886Z", + "iopub.status.busy": "2024-06-25T15:06:29.878539Z", + "iopub.status.idle": "2024-06-25T15:06:30.106388Z", + "shell.execute_reply": "2024-06-25T15:06:30.105851Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.174445Z", - "iopub.status.busy": "2024-06-19T19:20:23.174034Z", - "iopub.status.idle": "2024-06-19T19:20:23.193976Z", - "shell.execute_reply": "2024-06-19T19:20:23.193453Z" + "iopub.execute_input": "2024-06-25T15:06:30.109063Z", + "iopub.status.busy": "2024-06-25T15:06:30.108673Z", + "iopub.status.idle": "2024-06-25T15:06:30.128840Z", + "shell.execute_reply": "2024-06-25T15:06:30.128348Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.196426Z", - "iopub.status.busy": "2024-06-19T19:20:23.195868Z", - "iopub.status.idle": "2024-06-19T19:20:23.365274Z", - "shell.execute_reply": "2024-06-19T19:20:23.364696Z" + "iopub.execute_input": "2024-06-25T15:06:30.131036Z", + "iopub.status.busy": "2024-06-25T15:06:30.130679Z", + "iopub.status.idle": "2024-06-25T15:06:30.299607Z", + "shell.execute_reply": "2024-06-25T15:06:30.299018Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.367857Z", - "iopub.status.busy": "2024-06-19T19:20:23.367490Z", - "iopub.status.idle": "2024-06-19T19:20:23.378001Z", - "shell.execute_reply": "2024-06-19T19:20:23.377517Z" + "iopub.execute_input": "2024-06-25T15:06:30.302247Z", + "iopub.status.busy": "2024-06-25T15:06:30.301878Z", + "iopub.status.idle": "2024-06-25T15:06:30.312262Z", + "shell.execute_reply": "2024-06-25T15:06:30.311779Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.380131Z", - "iopub.status.busy": "2024-06-19T19:20:23.379763Z", - "iopub.status.idle": "2024-06-19T19:20:23.389467Z", - "shell.execute_reply": "2024-06-19T19:20:23.388989Z" + "iopub.execute_input": "2024-06-25T15:06:30.314328Z", + "iopub.status.busy": "2024-06-25T15:06:30.314138Z", + "iopub.status.idle": "2024-06-25T15:06:30.324056Z", + "shell.execute_reply": "2024-06-25T15:06:30.323583Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.391686Z", - "iopub.status.busy": "2024-06-19T19:20:23.391320Z", - "iopub.status.idle": "2024-06-19T19:20:23.422362Z", - "shell.execute_reply": "2024-06-19T19:20:23.421838Z" + "iopub.execute_input": "2024-06-25T15:06:30.326026Z", + "iopub.status.busy": "2024-06-25T15:06:30.325841Z", + "iopub.status.idle": "2024-06-25T15:06:30.369881Z", + "shell.execute_reply": "2024-06-25T15:06:30.369243Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.424816Z", - "iopub.status.busy": "2024-06-19T19:20:23.424440Z", - "iopub.status.idle": "2024-06-19T19:20:23.427346Z", - "shell.execute_reply": "2024-06-19T19:20:23.426883Z" + "iopub.execute_input": "2024-06-25T15:06:30.372404Z", + "iopub.status.busy": "2024-06-25T15:06:30.372025Z", + "iopub.status.idle": "2024-06-25T15:06:30.375453Z", + "shell.execute_reply": "2024-06-25T15:06:30.375013Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.429536Z", - "iopub.status.busy": "2024-06-19T19:20:23.429099Z", - "iopub.status.idle": "2024-06-19T19:20:23.449596Z", - "shell.execute_reply": "2024-06-19T19:20:23.449011Z" + "iopub.execute_input": "2024-06-25T15:06:30.377426Z", + "iopub.status.busy": "2024-06-25T15:06:30.377231Z", + "iopub.status.idle": "2024-06-25T15:06:30.399073Z", + "shell.execute_reply": "2024-06-25T15:06:30.398517Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.452107Z", - "iopub.status.busy": "2024-06-19T19:20:23.451668Z", - "iopub.status.idle": "2024-06-19T19:20:23.456230Z", - "shell.execute_reply": "2024-06-19T19:20:23.455738Z" + "iopub.execute_input": "2024-06-25T15:06:30.401795Z", + "iopub.status.busy": "2024-06-25T15:06:30.401389Z", + "iopub.status.idle": "2024-06-25T15:06:30.406701Z", + "shell.execute_reply": "2024-06-25T15:06:30.406177Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.458405Z", - "iopub.status.busy": "2024-06-19T19:20:23.458046Z", - "iopub.status.idle": "2024-06-19T19:20:23.486463Z", - "shell.execute_reply": "2024-06-19T19:20:23.485941Z" + "iopub.execute_input": "2024-06-25T15:06:30.409221Z", + "iopub.status.busy": "2024-06-25T15:06:30.408832Z", + "iopub.status.idle": "2024-06-25T15:06:30.439954Z", + "shell.execute_reply": "2024-06-25T15:06:30.439347Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.488681Z", - "iopub.status.busy": "2024-06-19T19:20:23.488318Z", - "iopub.status.idle": "2024-06-19T19:20:23.869947Z", - "shell.execute_reply": "2024-06-19T19:20:23.869318Z" + "iopub.execute_input": "2024-06-25T15:06:30.442144Z", + "iopub.status.busy": "2024-06-25T15:06:30.441952Z", + "iopub.status.idle": "2024-06-25T15:06:30.815142Z", + "shell.execute_reply": "2024-06-25T15:06:30.814539Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.872612Z", - "iopub.status.busy": "2024-06-19T19:20:23.872141Z", - "iopub.status.idle": "2024-06-19T19:20:23.875777Z", - "shell.execute_reply": "2024-06-19T19:20:23.875191Z" + "iopub.execute_input": "2024-06-25T15:06:30.817449Z", + "iopub.status.busy": "2024-06-25T15:06:30.817032Z", + "iopub.status.idle": "2024-06-25T15:06:30.820380Z", + "shell.execute_reply": "2024-06-25T15:06:30.819817Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.878097Z", - "iopub.status.busy": "2024-06-19T19:20:23.877890Z", - "iopub.status.idle": "2024-06-19T19:20:23.891740Z", - "shell.execute_reply": "2024-06-19T19:20:23.891169Z" + "iopub.execute_input": "2024-06-25T15:06:30.822583Z", + "iopub.status.busy": "2024-06-25T15:06:30.822235Z", + "iopub.status.idle": "2024-06-25T15:06:30.835457Z", + "shell.execute_reply": "2024-06-25T15:06:30.835004Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.893864Z", - "iopub.status.busy": "2024-06-19T19:20:23.893673Z", - "iopub.status.idle": "2024-06-19T19:20:23.907800Z", - "shell.execute_reply": "2024-06-19T19:20:23.907313Z" + "iopub.execute_input": "2024-06-25T15:06:30.837603Z", + "iopub.status.busy": "2024-06-25T15:06:30.837185Z", + "iopub.status.idle": "2024-06-25T15:06:30.850826Z", + "shell.execute_reply": "2024-06-25T15:06:30.850267Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.910005Z", - "iopub.status.busy": "2024-06-19T19:20:23.909657Z", - "iopub.status.idle": "2024-06-19T19:20:23.920159Z", - "shell.execute_reply": "2024-06-19T19:20:23.919682Z" + "iopub.execute_input": "2024-06-25T15:06:30.852964Z", + "iopub.status.busy": "2024-06-25T15:06:30.852527Z", + "iopub.status.idle": "2024-06-25T15:06:30.862344Z", + "shell.execute_reply": "2024-06-25T15:06:30.861912Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.922419Z", - "iopub.status.busy": "2024-06-19T19:20:23.922093Z", - "iopub.status.idle": "2024-06-19T19:20:23.931857Z", - "shell.execute_reply": "2024-06-19T19:20:23.931334Z" + "iopub.execute_input": "2024-06-25T15:06:30.864398Z", + "iopub.status.busy": "2024-06-25T15:06:30.864010Z", + "iopub.status.idle": "2024-06-25T15:06:30.873707Z", + "shell.execute_reply": "2024-06-25T15:06:30.873163Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.934010Z", - "iopub.status.busy": "2024-06-19T19:20:23.933660Z", - "iopub.status.idle": "2024-06-19T19:20:23.937719Z", - "shell.execute_reply": "2024-06-19T19:20:23.937199Z" + "iopub.execute_input": "2024-06-25T15:06:30.875692Z", + "iopub.status.busy": "2024-06-25T15:06:30.875500Z", + "iopub.status.idle": "2024-06-25T15:06:30.879148Z", + "shell.execute_reply": "2024-06-25T15:06:30.878702Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.940084Z", - "iopub.status.busy": "2024-06-19T19:20:23.939696Z", - "iopub.status.idle": "2024-06-19T19:20:23.992835Z", - "shell.execute_reply": "2024-06-19T19:20:23.992215Z" + "iopub.execute_input": "2024-06-25T15:06:30.881201Z", + "iopub.status.busy": "2024-06-25T15:06:30.880889Z", + "iopub.status.idle": "2024-06-25T15:06:30.933604Z", + "shell.execute_reply": "2024-06-25T15:06:30.933024Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.995486Z", - "iopub.status.busy": "2024-06-19T19:20:23.994935Z", - "iopub.status.idle": "2024-06-19T19:20:24.001075Z", - "shell.execute_reply": "2024-06-19T19:20:24.000509Z" + "iopub.execute_input": "2024-06-25T15:06:30.936004Z", + "iopub.status.busy": "2024-06-25T15:06:30.935597Z", + "iopub.status.idle": "2024-06-25T15:06:30.941530Z", + "shell.execute_reply": "2024-06-25T15:06:30.940983Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.003425Z", - "iopub.status.busy": "2024-06-19T19:20:24.003027Z", - "iopub.status.idle": "2024-06-19T19:20:24.015572Z", - "shell.execute_reply": "2024-06-19T19:20:24.014974Z" + "iopub.execute_input": "2024-06-25T15:06:30.943525Z", + "iopub.status.busy": "2024-06-25T15:06:30.943342Z", + "iopub.status.idle": "2024-06-25T15:06:30.955301Z", + "shell.execute_reply": "2024-06-25T15:06:30.954811Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.017952Z", - "iopub.status.busy": "2024-06-19T19:20:24.017605Z", - "iopub.status.idle": "2024-06-19T19:20:24.237620Z", - "shell.execute_reply": "2024-06-19T19:20:24.237034Z" + "iopub.execute_input": "2024-06-25T15:06:30.957425Z", + "iopub.status.busy": "2024-06-25T15:06:30.957237Z", + "iopub.status.idle": "2024-06-25T15:06:31.141088Z", + "shell.execute_reply": "2024-06-25T15:06:31.140485Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.239799Z", - "iopub.status.busy": "2024-06-19T19:20:24.239603Z", - "iopub.status.idle": "2024-06-19T19:20:24.247776Z", - "shell.execute_reply": "2024-06-19T19:20:24.247209Z" + "iopub.execute_input": "2024-06-25T15:06:31.143349Z", + "iopub.status.busy": "2024-06-25T15:06:31.143165Z", + "iopub.status.idle": "2024-06-25T15:06:31.151178Z", + "shell.execute_reply": "2024-06-25T15:06:31.150714Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 227b3b27f..0961ceb6a 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:27.778079Z", - "iopub.status.busy": "2024-06-19T19:20:27.777878Z", - "iopub.status.idle": "2024-06-19T19:20:28.926307Z", - "shell.execute_reply": "2024-06-19T19:20:28.925749Z" + "iopub.execute_input": "2024-06-25T15:06:34.657906Z", + "iopub.status.busy": "2024-06-25T15:06:34.657727Z", + "iopub.status.idle": "2024-06-25T15:06:35.814256Z", + "shell.execute_reply": "2024-06-25T15:06:35.813750Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.929078Z", - "iopub.status.busy": "2024-06-19T19:20:28.928525Z", - "iopub.status.idle": "2024-06-19T19:20:28.931516Z", - "shell.execute_reply": "2024-06-19T19:20:28.930965Z" + "iopub.execute_input": "2024-06-25T15:06:35.816783Z", + "iopub.status.busy": "2024-06-25T15:06:35.816461Z", + "iopub.status.idle": "2024-06-25T15:06:35.819405Z", + "shell.execute_reply": "2024-06-25T15:06:35.818866Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.933864Z", - "iopub.status.busy": "2024-06-19T19:20:28.933647Z", - "iopub.status.idle": "2024-06-19T19:20:28.945880Z", - "shell.execute_reply": "2024-06-19T19:20:28.945418Z" + "iopub.execute_input": "2024-06-25T15:06:35.821594Z", + "iopub.status.busy": "2024-06-25T15:06:35.821369Z", + "iopub.status.idle": "2024-06-25T15:06:35.833892Z", + "shell.execute_reply": "2024-06-25T15:06:35.833341Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.948011Z", - "iopub.status.busy": "2024-06-19T19:20:28.947713Z", - "iopub.status.idle": "2024-06-19T19:20:33.050909Z", - "shell.execute_reply": "2024-06-19T19:20:33.050438Z" + "iopub.execute_input": "2024-06-25T15:06:35.836172Z", + "iopub.status.busy": "2024-06-25T15:06:35.835850Z", + "iopub.status.idle": "2024-06-25T15:06:41.594468Z", + "shell.execute_reply": "2024-06-25T15:06:41.593884Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,7 +694,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index e3433290e..95950f3ed 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:35.348749Z", - "iopub.status.busy": "2024-06-19T19:20:35.348229Z", - "iopub.status.idle": "2024-06-19T19:20:36.499838Z", - "shell.execute_reply": "2024-06-19T19:20:36.499274Z" + "iopub.execute_input": "2024-06-25T15:06:43.789570Z", + "iopub.status.busy": "2024-06-25T15:06:43.789391Z", + "iopub.status.idle": "2024-06-25T15:06:44.946295Z", + "shell.execute_reply": "2024-06-25T15:06:44.945642Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:36.502640Z", - "iopub.status.busy": "2024-06-19T19:20:36.502173Z", - "iopub.status.idle": "2024-06-19T19:20:36.505598Z", - "shell.execute_reply": "2024-06-19T19:20:36.505129Z" + "iopub.execute_input": "2024-06-25T15:06:44.949199Z", + "iopub.status.busy": "2024-06-25T15:06:44.948725Z", + "iopub.status.idle": "2024-06-25T15:06:44.952300Z", + "shell.execute_reply": "2024-06-25T15:06:44.951754Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:36.507500Z", - "iopub.status.busy": "2024-06-19T19:20:36.507231Z", - "iopub.status.idle": "2024-06-19T19:20:39.749988Z", - "shell.execute_reply": "2024-06-19T19:20:39.749377Z" + "iopub.execute_input": "2024-06-25T15:06:44.955089Z", + "iopub.status.busy": "2024-06-25T15:06:44.954818Z", + "iopub.status.idle": "2024-06-25T15:06:48.262608Z", + "shell.execute_reply": "2024-06-25T15:06:48.261846Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.753092Z", - "iopub.status.busy": "2024-06-19T19:20:39.752345Z", - "iopub.status.idle": "2024-06-19T19:20:39.790210Z", - "shell.execute_reply": "2024-06-19T19:20:39.789626Z" + "iopub.execute_input": "2024-06-25T15:06:48.265713Z", + "iopub.status.busy": "2024-06-25T15:06:48.265081Z", + "iopub.status.idle": "2024-06-25T15:06:48.307221Z", + "shell.execute_reply": "2024-06-25T15:06:48.306620Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.792710Z", - "iopub.status.busy": "2024-06-19T19:20:39.792407Z", - "iopub.status.idle": "2024-06-19T19:20:39.824707Z", - "shell.execute_reply": "2024-06-19T19:20:39.824092Z" + "iopub.execute_input": "2024-06-25T15:06:48.309865Z", + "iopub.status.busy": "2024-06-25T15:06:48.309483Z", + "iopub.status.idle": "2024-06-25T15:06:48.345475Z", + "shell.execute_reply": "2024-06-25T15:06:48.344853Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.827297Z", - "iopub.status.busy": "2024-06-19T19:20:39.826994Z", - "iopub.status.idle": "2024-06-19T19:20:39.829929Z", - "shell.execute_reply": "2024-06-19T19:20:39.829489Z" + "iopub.execute_input": "2024-06-25T15:06:48.348514Z", + "iopub.status.busy": "2024-06-25T15:06:48.347972Z", + "iopub.status.idle": "2024-06-25T15:06:48.351300Z", + "shell.execute_reply": "2024-06-25T15:06:48.350810Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.831929Z", - "iopub.status.busy": "2024-06-19T19:20:39.831606Z", - "iopub.status.idle": "2024-06-19T19:20:39.834113Z", - "shell.execute_reply": "2024-06-19T19:20:39.833687Z" + "iopub.execute_input": "2024-06-25T15:06:48.353576Z", + "iopub.status.busy": "2024-06-25T15:06:48.353144Z", + "iopub.status.idle": "2024-06-25T15:06:48.356009Z", + "shell.execute_reply": "2024-06-25T15:06:48.355516Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.836224Z", - "iopub.status.busy": "2024-06-19T19:20:39.835895Z", - "iopub.status.idle": "2024-06-19T19:20:39.861835Z", - "shell.execute_reply": "2024-06-19T19:20:39.861261Z" + "iopub.execute_input": "2024-06-25T15:06:48.358153Z", + "iopub.status.busy": "2024-06-25T15:06:48.357768Z", + "iopub.status.idle": "2024-06-25T15:06:48.384527Z", + "shell.execute_reply": "2024-06-25T15:06:48.383935Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "065286a74e154e239323d7d6e8bd5aa1", + "model_id": "5e032993778040f9ad18b79b64feb24b", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38a86ba6b1f545fda4e24ffabf187487", + "model_id": "9218cc3eea7a4d8b904a7cd4bd943053", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.866602Z", - "iopub.status.busy": "2024-06-19T19:20:39.866304Z", - "iopub.status.idle": "2024-06-19T19:20:39.872843Z", - "shell.execute_reply": "2024-06-19T19:20:39.872361Z" + "iopub.execute_input": "2024-06-25T15:06:48.388922Z", + "iopub.status.busy": "2024-06-25T15:06:48.388562Z", + "iopub.status.idle": "2024-06-25T15:06:48.395503Z", + "shell.execute_reply": "2024-06-25T15:06:48.395071Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.874911Z", - "iopub.status.busy": "2024-06-19T19:20:39.874583Z", - "iopub.status.idle": "2024-06-19T19:20:39.878063Z", - "shell.execute_reply": "2024-06-19T19:20:39.877529Z" + "iopub.execute_input": "2024-06-25T15:06:48.397514Z", + "iopub.status.busy": "2024-06-25T15:06:48.397197Z", + "iopub.status.idle": "2024-06-25T15:06:48.400710Z", + "shell.execute_reply": "2024-06-25T15:06:48.400164Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.880046Z", - "iopub.status.busy": "2024-06-19T19:20:39.879744Z", - "iopub.status.idle": "2024-06-19T19:20:39.886042Z", - "shell.execute_reply": "2024-06-19T19:20:39.885587Z" + "iopub.execute_input": "2024-06-25T15:06:48.402718Z", + "iopub.status.busy": "2024-06-25T15:06:48.402392Z", + "iopub.status.idle": "2024-06-25T15:06:48.408634Z", + "shell.execute_reply": "2024-06-25T15:06:48.408184Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.887853Z", - "iopub.status.busy": "2024-06-19T19:20:39.887649Z", - "iopub.status.idle": "2024-06-19T19:20:39.925739Z", - "shell.execute_reply": "2024-06-19T19:20:39.925134Z" + "iopub.execute_input": "2024-06-25T15:06:48.410673Z", + "iopub.status.busy": "2024-06-25T15:06:48.410242Z", + "iopub.status.idle": "2024-06-25T15:06:48.452692Z", + "shell.execute_reply": "2024-06-25T15:06:48.452072Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.928431Z", - "iopub.status.busy": "2024-06-19T19:20:39.927979Z", - "iopub.status.idle": "2024-06-19T19:20:39.963990Z", - "shell.execute_reply": "2024-06-19T19:20:39.963389Z" + "iopub.execute_input": "2024-06-25T15:06:48.455295Z", + "iopub.status.busy": "2024-06-25T15:06:48.454984Z", + "iopub.status.idle": "2024-06-25T15:06:48.496629Z", + "shell.execute_reply": "2024-06-25T15:06:48.495955Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.966921Z", - "iopub.status.busy": "2024-06-19T19:20:39.966463Z", - "iopub.status.idle": "2024-06-19T19:20:40.093718Z", - "shell.execute_reply": "2024-06-19T19:20:40.093116Z" + "iopub.execute_input": "2024-06-25T15:06:48.499666Z", + "iopub.status.busy": "2024-06-25T15:06:48.499200Z", + "iopub.status.idle": "2024-06-25T15:06:48.626995Z", + "shell.execute_reply": "2024-06-25T15:06:48.626413Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:40.096444Z", - "iopub.status.busy": "2024-06-19T19:20:40.095877Z", - "iopub.status.idle": "2024-06-19T19:20:43.198768Z", - "shell.execute_reply": "2024-06-19T19:20:43.198152Z" + "iopub.execute_input": "2024-06-25T15:06:48.629793Z", + "iopub.status.busy": "2024-06-25T15:06:48.629137Z", + "iopub.status.idle": "2024-06-25T15:06:51.676502Z", + "shell.execute_reply": "2024-06-25T15:06:51.675817Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.201399Z", - "iopub.status.busy": "2024-06-19T19:20:43.200946Z", - "iopub.status.idle": "2024-06-19T19:20:43.265651Z", - "shell.execute_reply": "2024-06-19T19:20:43.265091Z" + "iopub.execute_input": "2024-06-25T15:06:51.679482Z", + "iopub.status.busy": "2024-06-25T15:06:51.678959Z", + "iopub.status.idle": "2024-06-25T15:06:51.739238Z", + "shell.execute_reply": "2024-06-25T15:06:51.738647Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.267919Z", - "iopub.status.busy": "2024-06-19T19:20:43.267572Z", - "iopub.status.idle": "2024-06-19T19:20:43.309659Z", - "shell.execute_reply": "2024-06-19T19:20:43.309121Z" + "iopub.execute_input": "2024-06-25T15:06:51.741437Z", + "iopub.status.busy": "2024-06-25T15:06:51.741240Z", + "iopub.status.idle": "2024-06-25T15:06:51.782843Z", + "shell.execute_reply": "2024-06-25T15:06:51.782290Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "fbacef5a", + "id": "d52f5db0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "f6481b70", + "id": "6bf6b75a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "9735d2e7", + "id": "c3402fd6", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "a68e9114", + "id": "311ad9c3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.312214Z", - "iopub.status.busy": "2024-06-19T19:20:43.311753Z", - "iopub.status.idle": "2024-06-19T19:20:43.319623Z", - "shell.execute_reply": "2024-06-19T19:20:43.319049Z" + "iopub.execute_input": "2024-06-25T15:06:51.785201Z", + "iopub.status.busy": "2024-06-25T15:06:51.785000Z", + "iopub.status.idle": "2024-06-25T15:06:51.793009Z", + "shell.execute_reply": "2024-06-25T15:06:51.792520Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "cfc6c771", + "id": "4b7ae88d", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "eef8ea41", + "id": "214c1a87", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.321962Z", - "iopub.status.busy": "2024-06-19T19:20:43.321591Z", - "iopub.status.idle": "2024-06-19T19:20:43.341421Z", - "shell.execute_reply": "2024-06-19T19:20:43.340818Z" + "iopub.execute_input": "2024-06-25T15:06:51.794999Z", + "iopub.status.busy": "2024-06-25T15:06:51.794816Z", + "iopub.status.idle": "2024-06-25T15:06:51.815495Z", + "shell.execute_reply": "2024-06-25T15:06:51.814899Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_8136/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7631/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7aa927b6", + "id": "a552d436", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.343688Z", - "iopub.status.busy": "2024-06-19T19:20:43.343287Z", - "iopub.status.idle": "2024-06-19T19:20:43.346791Z", - "shell.execute_reply": "2024-06-19T19:20:43.346258Z" + "iopub.execute_input": "2024-06-25T15:06:51.817589Z", + "iopub.status.busy": "2024-06-25T15:06:51.817394Z", + "iopub.status.idle": "2024-06-25T15:06:51.820759Z", + "shell.execute_reply": "2024-06-25T15:06:51.820237Z" } }, "outputs": [ @@ -1630,7 +1630,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0379a9a769b74f918f3cb1e7535b74c2": { + "021d7d409a774a92955e7e4fbdd2f000": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0bcbd8793ddd4cdeb051f08ed04b9385": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,31 +1701,7 @@ "width": null } }, - "065286a74e154e239323d7d6e8bd5aa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91184869d974411599f7d22092fa71d5", - "IPY_MODEL_7aee835444cb4e719704ba8cec2d71ea", - "IPY_MODEL_6fdeca701f4c4ed490499fdab12097ef" - ], - "layout": "IPY_MODEL_b113eb325eb94445a5344e3b6419b748", - "tabbable": null, - "tooltip": null - } - }, - "31e1e2830dac48dd8efccb81f276984f": { + "15521c25a13a4083819bf4151afb9b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1725,49 +1719,7 @@ "text_color": null } }, - "38a86ba6b1f545fda4e24ffabf187487": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1f23f6ea07d4916ba3a2b7366dfa354", - "IPY_MODEL_4009cb0e8c9f46cfb0a9912f89aae2ca", - "IPY_MODEL_a718961d498d486b898049ef5e121133" - ], - "layout": "IPY_MODEL_d363deb807ec434b86aafe7f186a05e9", - "tabbable": null, - "tooltip": null - } - }, - "3bc7b3f65d3d4ff4969a363e1d63ce50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4009cb0e8c9f46cfb0a9912f89aae2ca": { + "1cad3e8f23cb46838d56eb3bb482d365": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1783,17 +1735,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c79a61188788458092feaa4672e18721", + "layout": "IPY_MODEL_665709a5fb664212a4b3e452354806de", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c63e50796e4c474296733f011a6bcae4", + "style": "IPY_MODEL_2cffbc16e34645559f91f6c2a7a0ea80", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "6393691193e041689540195999dd9852": { + "2bcad44235454d4b933b889f3377f04d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1846,7 +1798,23 @@ "width": null } }, - "6fdeca701f4c4ed490499fdab12097ef": { + "2cffbc16e34645559f91f6c2a7a0ea80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e26f37e1d74477595f916b58bcce2c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1829,73 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6393691193e041689540195999dd9852", + "layout": "IPY_MODEL_6c9eb3c9cd4d491faf33d720bbd499d6", "placeholder": "​", - "style": "IPY_MODEL_3bc7b3f65d3d4ff4969a363e1d63ce50", + "style": "IPY_MODEL_021d7d409a774a92955e7e4fbdd2f000", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1055197.36it/s]" + "value": "number of examples processed for checking labels: " } }, - "779346d1717d45f3aadce49afada2dab": { + "544657382c5b4e24bb26a62e09b2f62c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5e032993778040f9ad18b79b64feb24b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c40fa21750714431a9d0ac108f473d48", + "IPY_MODEL_cbaa002f7e234f9b903fcff948128fea", + "IPY_MODEL_7754a951d9284bca8e675ac2cc8f4668" + ], + "layout": "IPY_MODEL_c5175b3abc6544ba9decd5667c4b1514", + "tabbable": null, + "tooltip": null + } + }, + "5fb9206d04154ab0bd66666c00f46db4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "665709a5fb664212a4b3e452354806de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,74 +1948,7 @@ "width": null } }, - "7ad20f8f998c403585a75194ba160a01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7aee835444cb4e719704ba8cec2d71ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2705c547fe645ffa993588e301cd016", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dad66d436eff42b5ad844b3b73be2827", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "91184869d974411599f7d22092fa71d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0379a9a769b74f918f3cb1e7535b74c2", - "placeholder": "​", - "style": "IPY_MODEL_31e1e2830dac48dd8efccb81f276984f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "a2705c547fe645ffa993588e301cd016": { + "6c9eb3c9cd4d491faf33d720bbd499d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +2001,30 @@ "width": null } }, - "a718961d498d486b898049ef5e121133": { + "7754a951d9284bca8e675ac2cc8f4668": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bcbd8793ddd4cdeb051f08ed04b9385", + "placeholder": "​", + "style": "IPY_MODEL_15521c25a13a4083819bf4151afb9b1a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1006987.42it/s]" + } + }, + "891b6d6adfa345b59909c32c02c65126": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2057,15 +2039,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f23484c0a94b4113adb47bbc627da1e4", + "layout": "IPY_MODEL_fc14769eac6641d49b287ee0e3abac63", "placeholder": "​", - "style": "IPY_MODEL_7ad20f8f998c403585a75194ba160a01", + "style": "IPY_MODEL_544657382c5b4e24bb26a62e09b2f62c", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1189502.28it/s]" + "value": " 10000/? [00:00<00:00, 1185635.46it/s]" + } + }, + "9218cc3eea7a4d8b904a7cd4bd943053": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3e26f37e1d74477595f916b58bcce2c7", + "IPY_MODEL_1cad3e8f23cb46838d56eb3bb482d365", + "IPY_MODEL_891b6d6adfa345b59909c32c02c65126" + ], + "layout": "IPY_MODEL_f8efbbca228241fda08fe59ab07dca2e", + "tabbable": null, + "tooltip": null } }, - "b113eb325eb94445a5344e3b6419b748": { + "bcab1c74d1be4ff5834ae04bcf9faf87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c3318601440c4b11b265d37824386c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2118,7 +2142,7 @@ "width": null } }, - "c1f23f6ea07d4916ba3a2b7366dfa354": { + "c40fa21750714431a9d0ac108f473d48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2133,31 +2157,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_779346d1717d45f3aadce49afada2dab", + "layout": "IPY_MODEL_c3318601440c4b11b265d37824386c92", "placeholder": "​", - "style": "IPY_MODEL_cfe3e2112f5d427e958fed4aceffdbd6", + "style": "IPY_MODEL_bcab1c74d1be4ff5834ae04bcf9faf87", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "c63e50796e4c474296733f011a6bcae4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "number of examples processed for estimating thresholds: " } }, - "c79a61188788458092feaa4672e18721": { + "c5175b3abc6544ba9decd5667c4b1514": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2210,25 +2218,33 @@ "width": null } }, - "cfe3e2112f5d427e958fed4aceffdbd6": { + "cbaa002f7e234f9b903fcff948128fea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2bcad44235454d4b933b889f3377f04d", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5fb9206d04154ab0bd66666c00f46db4", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "d363deb807ec434b86aafe7f186a05e9": { + "f8efbbca228241fda08fe59ab07dca2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,23 +2297,7 @@ "width": null } }, - "dad66d436eff42b5ad844b3b73be2827": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f23484c0a94b4113adb47bbc627da1e4": { + "fc14769eac6641d49b287ee0e3abac63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index dd5f94ccc..441bd069e 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:46.679639Z", - "iopub.status.busy": "2024-06-19T19:20:46.679461Z", - "iopub.status.idle": "2024-06-19T19:20:47.903917Z", - "shell.execute_reply": "2024-06-19T19:20:47.903271Z" + "iopub.execute_input": "2024-06-25T15:06:56.198338Z", + "iopub.status.busy": "2024-06-25T15:06:56.198154Z", + "iopub.status.idle": "2024-06-25T15:06:57.416276Z", + "shell.execute_reply": "2024-06-25T15:06:57.415743Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:47.906691Z", - "iopub.status.busy": "2024-06-19T19:20:47.906382Z", - "iopub.status.idle": "2024-06-19T19:20:48.091307Z", - "shell.execute_reply": "2024-06-19T19:20:48.090799Z" + "iopub.execute_input": "2024-06-25T15:06:57.418992Z", + "iopub.status.busy": "2024-06-25T15:06:57.418469Z", + "iopub.status.idle": "2024-06-25T15:06:57.603628Z", + "shell.execute_reply": "2024-06-25T15:06:57.602960Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:48.093933Z", - "iopub.status.busy": "2024-06-19T19:20:48.093572Z", - "iopub.status.idle": "2024-06-19T19:20:48.105342Z", - "shell.execute_reply": "2024-06-19T19:20:48.104742Z" + "iopub.execute_input": "2024-06-25T15:06:57.606530Z", + "iopub.status.busy": "2024-06-25T15:06:57.606182Z", + "iopub.status.idle": "2024-06-25T15:06:57.618153Z", + "shell.execute_reply": "2024-06-25T15:06:57.617552Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:48.107427Z", - "iopub.status.busy": "2024-06-19T19:20:48.107207Z", - "iopub.status.idle": "2024-06-19T19:20:48.351270Z", - "shell.execute_reply": "2024-06-19T19:20:48.350688Z" + "iopub.execute_input": "2024-06-25T15:06:57.620362Z", + "iopub.status.busy": "2024-06-25T15:06:57.620050Z", + "iopub.status.idle": "2024-06-25T15:06:57.856822Z", + "shell.execute_reply": "2024-06-25T15:06:57.856247Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:48.353499Z", - "iopub.status.busy": "2024-06-19T19:20:48.353267Z", - "iopub.status.idle": "2024-06-19T19:20:48.380085Z", - "shell.execute_reply": "2024-06-19T19:20:48.379406Z" + "iopub.execute_input": "2024-06-25T15:06:57.859296Z", + "iopub.status.busy": "2024-06-25T15:06:57.858883Z", + "iopub.status.idle": "2024-06-25T15:06:57.885163Z", + "shell.execute_reply": "2024-06-25T15:06:57.884717Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:48.383088Z", - "iopub.status.busy": "2024-06-19T19:20:48.382588Z", - "iopub.status.idle": "2024-06-19T19:20:50.542210Z", - "shell.execute_reply": "2024-06-19T19:20:50.541508Z" + "iopub.execute_input": "2024-06-25T15:06:57.887331Z", + "iopub.status.busy": "2024-06-25T15:06:57.886988Z", + "iopub.status.idle": "2024-06-25T15:07:00.010464Z", + "shell.execute_reply": "2024-06-25T15:07:00.009745Z" } }, "outputs": [ @@ -448,7 +448,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", "Finding class_imbalance issues ...\n", @@ -483,10 +482,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:50.544692Z", - "iopub.status.busy": "2024-06-19T19:20:50.544286Z", - "iopub.status.idle": "2024-06-19T19:20:50.562826Z", - "shell.execute_reply": "2024-06-19T19:20:50.562355Z" + "iopub.execute_input": "2024-06-25T15:07:00.013198Z", + "iopub.status.busy": "2024-06-25T15:07:00.012556Z", + "iopub.status.idle": "2024-06-25T15:07:00.031025Z", + "shell.execute_reply": "2024-06-25T15:07:00.030516Z" }, "scrolled": true }, @@ -616,10 +615,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:50.564933Z", - "iopub.status.busy": "2024-06-19T19:20:50.564649Z", - "iopub.status.idle": "2024-06-19T19:20:52.059433Z", - "shell.execute_reply": "2024-06-19T19:20:52.058785Z" + "iopub.execute_input": "2024-06-25T15:07:00.033254Z", + "iopub.status.busy": "2024-06-25T15:07:00.032893Z", + "iopub.status.idle": "2024-06-25T15:07:01.534909Z", + "shell.execute_reply": "2024-06-25T15:07:01.534300Z" }, "id": "AaHC5MRKjruT" }, @@ -738,10 +737,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.062065Z", - "iopub.status.busy": "2024-06-19T19:20:52.061422Z", - "iopub.status.idle": "2024-06-19T19:20:52.075172Z", - "shell.execute_reply": "2024-06-19T19:20:52.074613Z" + "iopub.execute_input": "2024-06-25T15:07:01.537933Z", + "iopub.status.busy": "2024-06-25T15:07:01.537031Z", + "iopub.status.idle": "2024-06-25T15:07:01.551935Z", + "shell.execute_reply": "2024-06-25T15:07:01.551303Z" }, "id": "Wy27rvyhjruU" }, @@ -790,10 +789,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.077626Z", - "iopub.status.busy": "2024-06-19T19:20:52.077214Z", - "iopub.status.idle": "2024-06-19T19:20:52.157318Z", - "shell.execute_reply": "2024-06-19T19:20:52.156769Z" + "iopub.execute_input": "2024-06-25T15:07:01.554622Z", + "iopub.status.busy": "2024-06-25T15:07:01.554067Z", + "iopub.status.idle": "2024-06-25T15:07:01.631257Z", + "shell.execute_reply": "2024-06-25T15:07:01.630631Z" }, "id": "Db8YHnyVjruU" }, @@ -900,10 +899,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.159728Z", - "iopub.status.busy": "2024-06-19T19:20:52.159472Z", - "iopub.status.idle": "2024-06-19T19:20:52.373426Z", - "shell.execute_reply": "2024-06-19T19:20:52.372850Z" + "iopub.execute_input": "2024-06-25T15:07:01.633752Z", + "iopub.status.busy": "2024-06-25T15:07:01.633260Z", + "iopub.status.idle": "2024-06-25T15:07:01.847350Z", + "shell.execute_reply": "2024-06-25T15:07:01.846755Z" }, "id": "iJqAHuS2jruV" }, @@ -940,10 +939,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.375832Z", - "iopub.status.busy": "2024-06-19T19:20:52.375463Z", - "iopub.status.idle": "2024-06-19T19:20:52.392379Z", - "shell.execute_reply": "2024-06-19T19:20:52.391877Z" + "iopub.execute_input": "2024-06-25T15:07:01.849570Z", + "iopub.status.busy": "2024-06-25T15:07:01.849219Z", + "iopub.status.idle": "2024-06-25T15:07:01.865860Z", + "shell.execute_reply": "2024-06-25T15:07:01.865431Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1409,10 +1408,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.394713Z", - "iopub.status.busy": "2024-06-19T19:20:52.394306Z", - "iopub.status.idle": "2024-06-19T19:20:52.404781Z", - "shell.execute_reply": "2024-06-19T19:20:52.404195Z" + "iopub.execute_input": "2024-06-25T15:07:01.868012Z", + "iopub.status.busy": "2024-06-25T15:07:01.867662Z", + "iopub.status.idle": "2024-06-25T15:07:01.877379Z", + "shell.execute_reply": "2024-06-25T15:07:01.876934Z" }, "id": "0lonvOYvjruV" }, @@ -1559,10 +1558,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.407003Z", - "iopub.status.busy": "2024-06-19T19:20:52.406578Z", - "iopub.status.idle": "2024-06-19T19:20:52.496137Z", - "shell.execute_reply": "2024-06-19T19:20:52.495451Z" + "iopub.execute_input": "2024-06-25T15:07:01.879436Z", + "iopub.status.busy": "2024-06-25T15:07:01.879105Z", + "iopub.status.idle": "2024-06-25T15:07:01.965751Z", + "shell.execute_reply": "2024-06-25T15:07:01.965154Z" }, "id": "MfqTCa3kjruV" }, @@ -1643,10 +1642,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.498540Z", - "iopub.status.busy": "2024-06-19T19:20:52.498290Z", - "iopub.status.idle": "2024-06-19T19:20:52.636664Z", - "shell.execute_reply": "2024-06-19T19:20:52.636002Z" + "iopub.execute_input": "2024-06-25T15:07:01.968199Z", + "iopub.status.busy": "2024-06-25T15:07:01.967997Z", + "iopub.status.idle": "2024-06-25T15:07:02.099956Z", + "shell.execute_reply": "2024-06-25T15:07:02.099291Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1706,10 +1705,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.639186Z", - "iopub.status.busy": "2024-06-19T19:20:52.638681Z", - "iopub.status.idle": "2024-06-19T19:20:52.642571Z", - "shell.execute_reply": "2024-06-19T19:20:52.642046Z" + "iopub.execute_input": "2024-06-25T15:07:02.102583Z", + "iopub.status.busy": "2024-06-25T15:07:02.102121Z", + "iopub.status.idle": "2024-06-25T15:07:02.106255Z", + "shell.execute_reply": "2024-06-25T15:07:02.105793Z" }, "id": "0rXP3ZPWjruW" }, @@ -1747,10 +1746,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.644692Z", - "iopub.status.busy": "2024-06-19T19:20:52.644298Z", - "iopub.status.idle": "2024-06-19T19:20:52.647876Z", - "shell.execute_reply": "2024-06-19T19:20:52.647357Z" + "iopub.execute_input": "2024-06-25T15:07:02.108453Z", + "iopub.status.busy": "2024-06-25T15:07:02.108023Z", + "iopub.status.idle": "2024-06-25T15:07:02.112070Z", + "shell.execute_reply": "2024-06-25T15:07:02.111504Z" }, "id": "-iRPe8KXjruW" }, @@ -1805,10 +1804,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.649873Z", - "iopub.status.busy": "2024-06-19T19:20:52.649697Z", - "iopub.status.idle": "2024-06-19T19:20:52.686051Z", - "shell.execute_reply": "2024-06-19T19:20:52.685604Z" + "iopub.execute_input": "2024-06-25T15:07:02.114167Z", + "iopub.status.busy": "2024-06-25T15:07:02.113833Z", + "iopub.status.idle": "2024-06-25T15:07:02.150987Z", + "shell.execute_reply": "2024-06-25T15:07:02.150479Z" }, "id": "ZpipUliyjruW" }, @@ -1859,10 +1858,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.688070Z", - "iopub.status.busy": "2024-06-19T19:20:52.687878Z", - "iopub.status.idle": "2024-06-19T19:20:52.729480Z", - "shell.execute_reply": "2024-06-19T19:20:52.728913Z" + "iopub.execute_input": "2024-06-25T15:07:02.153026Z", + "iopub.status.busy": "2024-06-25T15:07:02.152845Z", + "iopub.status.idle": "2024-06-25T15:07:02.194285Z", + "shell.execute_reply": "2024-06-25T15:07:02.193809Z" }, "id": "SLq-3q4xjruX" }, @@ -1931,10 +1930,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.731679Z", - "iopub.status.busy": "2024-06-19T19:20:52.731478Z", - "iopub.status.idle": "2024-06-19T19:20:52.830866Z", - "shell.execute_reply": "2024-06-19T19:20:52.830267Z" + "iopub.execute_input": "2024-06-25T15:07:02.196262Z", + "iopub.status.busy": "2024-06-25T15:07:02.196081Z", + "iopub.status.idle": "2024-06-25T15:07:02.289276Z", + "shell.execute_reply": "2024-06-25T15:07:02.288673Z" }, "id": "g5LHhhuqFbXK" }, @@ -1966,10 +1965,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.833551Z", - "iopub.status.busy": "2024-06-19T19:20:52.833309Z", - "iopub.status.idle": "2024-06-19T19:20:52.930238Z", - "shell.execute_reply": "2024-06-19T19:20:52.929667Z" + "iopub.execute_input": "2024-06-25T15:07:02.291780Z", + "iopub.status.busy": "2024-06-25T15:07:02.291578Z", + "iopub.status.idle": "2024-06-25T15:07:02.390445Z", + "shell.execute_reply": "2024-06-25T15:07:02.389792Z" }, "id": "p7w8F8ezBcet" }, @@ -2026,10 +2025,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:52.932747Z", - "iopub.status.busy": "2024-06-19T19:20:52.932357Z", - "iopub.status.idle": "2024-06-19T19:20:53.145057Z", - "shell.execute_reply": "2024-06-19T19:20:53.144389Z" + "iopub.execute_input": "2024-06-25T15:07:02.392985Z", + "iopub.status.busy": "2024-06-25T15:07:02.392768Z", + "iopub.status.idle": "2024-06-25T15:07:02.605867Z", + "shell.execute_reply": "2024-06-25T15:07:02.605297Z" }, "id": "WETRL74tE_sU" }, @@ -2064,10 +2063,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:53.147632Z", - "iopub.status.busy": "2024-06-19T19:20:53.147255Z", - "iopub.status.idle": "2024-06-19T19:20:53.345125Z", - "shell.execute_reply": "2024-06-19T19:20:53.344471Z" + "iopub.execute_input": "2024-06-25T15:07:02.608214Z", + "iopub.status.busy": "2024-06-25T15:07:02.607882Z", + "iopub.status.idle": "2024-06-25T15:07:02.806615Z", + "shell.execute_reply": "2024-06-25T15:07:02.806024Z" }, "id": "kCfdx2gOLmXS" }, @@ -2229,10 +2228,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:53.347652Z", - "iopub.status.busy": "2024-06-19T19:20:53.347263Z", - "iopub.status.idle": "2024-06-19T19:20:53.353721Z", - "shell.execute_reply": "2024-06-19T19:20:53.353256Z" + "iopub.execute_input": "2024-06-25T15:07:02.809107Z", + "iopub.status.busy": "2024-06-25T15:07:02.808734Z", + "iopub.status.idle": "2024-06-25T15:07:02.815104Z", + "shell.execute_reply": "2024-06-25T15:07:02.814537Z" }, "id": "-uogYRWFYnuu" }, @@ -2286,10 +2285,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:53.355834Z", - "iopub.status.busy": "2024-06-19T19:20:53.355420Z", - "iopub.status.idle": "2024-06-19T19:20:53.570921Z", - "shell.execute_reply": "2024-06-19T19:20:53.570326Z" + "iopub.execute_input": "2024-06-25T15:07:02.817178Z", + "iopub.status.busy": "2024-06-25T15:07:02.816775Z", + "iopub.status.idle": "2024-06-25T15:07:03.034521Z", + "shell.execute_reply": "2024-06-25T15:07:03.033876Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2336,10 +2335,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:53.573411Z", - "iopub.status.busy": "2024-06-19T19:20:53.573035Z", - "iopub.status.idle": "2024-06-19T19:20:54.634984Z", - "shell.execute_reply": "2024-06-19T19:20:54.634337Z" + "iopub.execute_input": "2024-06-25T15:07:03.036917Z", + "iopub.status.busy": "2024-06-25T15:07:03.036498Z", + "iopub.status.idle": "2024-06-25T15:07:04.125059Z", + "shell.execute_reply": "2024-06-25T15:07:04.124546Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 2e5b4a134..f9ba2d011 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:59.336949Z", - "iopub.status.busy": "2024-06-19T19:20:59.336772Z", - "iopub.status.idle": "2024-06-19T19:21:00.470631Z", - "shell.execute_reply": "2024-06-19T19:21:00.470086Z" + "iopub.execute_input": "2024-06-25T15:07:08.642587Z", + "iopub.status.busy": "2024-06-25T15:07:08.642145Z", + "iopub.status.idle": "2024-06-25T15:07:09.804900Z", + "shell.execute_reply": "2024-06-25T15:07:09.804347Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.473161Z", - "iopub.status.busy": "2024-06-19T19:21:00.472784Z", - "iopub.status.idle": "2024-06-19T19:21:00.475825Z", - "shell.execute_reply": "2024-06-19T19:21:00.475398Z" + "iopub.execute_input": "2024-06-25T15:07:09.807562Z", + "iopub.status.busy": "2024-06-25T15:07:09.807255Z", + "iopub.status.idle": "2024-06-25T15:07:09.810441Z", + "shell.execute_reply": "2024-06-25T15:07:09.810012Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.477909Z", - "iopub.status.busy": "2024-06-19T19:21:00.477652Z", - "iopub.status.idle": "2024-06-19T19:21:00.486153Z", - "shell.execute_reply": "2024-06-19T19:21:00.485631Z" + "iopub.execute_input": "2024-06-25T15:07:09.812616Z", + "iopub.status.busy": "2024-06-25T15:07:09.812351Z", + "iopub.status.idle": "2024-06-25T15:07:09.821532Z", + "shell.execute_reply": "2024-06-25T15:07:09.821044Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.488190Z", - "iopub.status.busy": "2024-06-19T19:21:00.487795Z", - "iopub.status.idle": "2024-06-19T19:21:00.536783Z", - "shell.execute_reply": "2024-06-19T19:21:00.536204Z" + "iopub.execute_input": "2024-06-25T15:07:09.823610Z", + "iopub.status.busy": "2024-06-25T15:07:09.823271Z", + "iopub.status.idle": "2024-06-25T15:07:09.871190Z", + "shell.execute_reply": "2024-06-25T15:07:09.870640Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.539343Z", - "iopub.status.busy": "2024-06-19T19:21:00.538971Z", - "iopub.status.idle": "2024-06-19T19:21:00.556529Z", - "shell.execute_reply": "2024-06-19T19:21:00.555903Z" + "iopub.execute_input": "2024-06-25T15:07:09.873837Z", + "iopub.status.busy": "2024-06-25T15:07:09.873483Z", + "iopub.status.idle": "2024-06-25T15:07:09.890855Z", + "shell.execute_reply": "2024-06-25T15:07:09.890366Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.558864Z", - "iopub.status.busy": "2024-06-19T19:21:00.558424Z", - "iopub.status.idle": "2024-06-19T19:21:00.562638Z", - "shell.execute_reply": "2024-06-19T19:21:00.562088Z" + "iopub.execute_input": "2024-06-25T15:07:09.893179Z", + "iopub.status.busy": "2024-06-25T15:07:09.892813Z", + "iopub.status.idle": "2024-06-25T15:07:09.896981Z", + "shell.execute_reply": "2024-06-25T15:07:09.896525Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.564645Z", - "iopub.status.busy": "2024-06-19T19:21:00.564470Z", - "iopub.status.idle": "2024-06-19T19:21:00.581641Z", - "shell.execute_reply": "2024-06-19T19:21:00.581040Z" + "iopub.execute_input": "2024-06-25T15:07:09.899090Z", + "iopub.status.busy": "2024-06-25T15:07:09.898808Z", + "iopub.status.idle": "2024-06-25T15:07:09.914548Z", + "shell.execute_reply": "2024-06-25T15:07:09.914081Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.583888Z", - "iopub.status.busy": "2024-06-19T19:21:00.583668Z", - "iopub.status.idle": "2024-06-19T19:21:00.610755Z", - "shell.execute_reply": "2024-06-19T19:21:00.610129Z" + "iopub.execute_input": "2024-06-25T15:07:09.916754Z", + "iopub.status.busy": "2024-06-25T15:07:09.916393Z", + "iopub.status.idle": "2024-06-25T15:07:09.943780Z", + "shell.execute_reply": "2024-06-25T15:07:09.943129Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:00.613262Z", - "iopub.status.busy": "2024-06-19T19:21:00.612832Z", - "iopub.status.idle": "2024-06-19T19:21:02.591236Z", - "shell.execute_reply": "2024-06-19T19:21:02.590564Z" + "iopub.execute_input": "2024-06-25T15:07:09.946554Z", + "iopub.status.busy": "2024-06-25T15:07:09.946130Z", + "iopub.status.idle": "2024-06-25T15:07:12.015752Z", + "shell.execute_reply": "2024-06-25T15:07:12.015070Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.594039Z", - "iopub.status.busy": "2024-06-19T19:21:02.593538Z", - "iopub.status.idle": "2024-06-19T19:21:02.600572Z", - "shell.execute_reply": "2024-06-19T19:21:02.600147Z" + "iopub.execute_input": "2024-06-25T15:07:12.018816Z", + "iopub.status.busy": "2024-06-25T15:07:12.018085Z", + "iopub.status.idle": "2024-06-25T15:07:12.025314Z", + "shell.execute_reply": "2024-06-25T15:07:12.024826Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.602723Z", - "iopub.status.busy": "2024-06-19T19:21:02.602312Z", - "iopub.status.idle": "2024-06-19T19:21:02.615162Z", - "shell.execute_reply": "2024-06-19T19:21:02.614591Z" + "iopub.execute_input": "2024-06-25T15:07:12.027513Z", + "iopub.status.busy": "2024-06-25T15:07:12.027097Z", + "iopub.status.idle": "2024-06-25T15:07:12.039771Z", + "shell.execute_reply": "2024-06-25T15:07:12.039321Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.617398Z", - "iopub.status.busy": "2024-06-19T19:21:02.616994Z", - "iopub.status.idle": "2024-06-19T19:21:02.623696Z", - "shell.execute_reply": "2024-06-19T19:21:02.623160Z" + "iopub.execute_input": "2024-06-25T15:07:12.041671Z", + "iopub.status.busy": "2024-06-25T15:07:12.041494Z", + "iopub.status.idle": "2024-06-25T15:07:12.047820Z", + "shell.execute_reply": "2024-06-25T15:07:12.047373Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.625861Z", - "iopub.status.busy": "2024-06-19T19:21:02.625469Z", - "iopub.status.idle": "2024-06-19T19:21:02.628298Z", - "shell.execute_reply": "2024-06-19T19:21:02.627730Z" + "iopub.execute_input": "2024-06-25T15:07:12.049931Z", + "iopub.status.busy": "2024-06-25T15:07:12.049605Z", + "iopub.status.idle": "2024-06-25T15:07:12.052339Z", + "shell.execute_reply": "2024-06-25T15:07:12.051879Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.630244Z", - "iopub.status.busy": "2024-06-19T19:21:02.629950Z", - "iopub.status.idle": "2024-06-19T19:21:02.633518Z", - "shell.execute_reply": "2024-06-19T19:21:02.632968Z" + "iopub.execute_input": "2024-06-25T15:07:12.054385Z", + "iopub.status.busy": "2024-06-25T15:07:12.054076Z", + "iopub.status.idle": "2024-06-25T15:07:12.057808Z", + "shell.execute_reply": "2024-06-25T15:07:12.057370Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.635555Z", - "iopub.status.busy": "2024-06-19T19:21:02.635256Z", - "iopub.status.idle": "2024-06-19T19:21:02.637937Z", - "shell.execute_reply": "2024-06-19T19:21:02.637400Z" + "iopub.execute_input": "2024-06-25T15:07:12.059892Z", + "iopub.status.busy": "2024-06-25T15:07:12.059558Z", + "iopub.status.idle": "2024-06-25T15:07:12.062215Z", + "shell.execute_reply": "2024-06-25T15:07:12.061776Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.639918Z", - "iopub.status.busy": "2024-06-19T19:21:02.639597Z", - "iopub.status.idle": "2024-06-19T19:21:02.643581Z", - "shell.execute_reply": "2024-06-19T19:21:02.643061Z" + "iopub.execute_input": "2024-06-25T15:07:12.064364Z", + "iopub.status.busy": "2024-06-25T15:07:12.063845Z", + "iopub.status.idle": "2024-06-25T15:07:12.068175Z", + "shell.execute_reply": "2024-06-25T15:07:12.067646Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.645553Z", - "iopub.status.busy": "2024-06-19T19:21:02.645382Z", - "iopub.status.idle": "2024-06-19T19:21:02.673934Z", - "shell.execute_reply": "2024-06-19T19:21:02.673475Z" + "iopub.execute_input": "2024-06-25T15:07:12.070450Z", + "iopub.status.busy": "2024-06-25T15:07:12.069967Z", + "iopub.status.idle": "2024-06-25T15:07:12.099724Z", + "shell.execute_reply": "2024-06-25T15:07:12.099117Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:02.676241Z", - "iopub.status.busy": "2024-06-19T19:21:02.675895Z", - "iopub.status.idle": "2024-06-19T19:21:02.680515Z", - "shell.execute_reply": "2024-06-19T19:21:02.680077Z" + "iopub.execute_input": "2024-06-25T15:07:12.102455Z", + "iopub.status.busy": "2024-06-25T15:07:12.101990Z", + "iopub.status.idle": "2024-06-25T15:07:12.106803Z", + "shell.execute_reply": "2024-06-25T15:07:12.106372Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 1e5cdb7bb..2a385a800 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:05.737763Z", - "iopub.status.busy": "2024-06-19T19:21:05.737604Z", - "iopub.status.idle": "2024-06-19T19:21:06.921266Z", - "shell.execute_reply": "2024-06-19T19:21:06.920724Z" + "iopub.execute_input": "2024-06-25T15:07:15.161294Z", + "iopub.status.busy": "2024-06-25T15:07:15.160843Z", + "iopub.status.idle": "2024-06-25T15:07:16.396109Z", + "shell.execute_reply": "2024-06-25T15:07:16.395526Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:06.923658Z", - "iopub.status.busy": "2024-06-19T19:21:06.923392Z", - "iopub.status.idle": "2024-06-19T19:21:07.116623Z", - "shell.execute_reply": "2024-06-19T19:21:07.116062Z" + "iopub.execute_input": "2024-06-25T15:07:16.398556Z", + "iopub.status.busy": "2024-06-25T15:07:16.398262Z", + "iopub.status.idle": "2024-06-25T15:07:16.602007Z", + "shell.execute_reply": "2024-06-25T15:07:16.601352Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:07.119614Z", - "iopub.status.busy": "2024-06-19T19:21:07.119001Z", - "iopub.status.idle": "2024-06-19T19:21:07.132530Z", - "shell.execute_reply": "2024-06-19T19:21:07.132058Z" + "iopub.execute_input": "2024-06-25T15:07:16.605365Z", + "iopub.status.busy": "2024-06-25T15:07:16.604792Z", + "iopub.status.idle": "2024-06-25T15:07:16.619883Z", + "shell.execute_reply": "2024-06-25T15:07:16.619218Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:07.134699Z", - "iopub.status.busy": "2024-06-19T19:21:07.134293Z", - "iopub.status.idle": "2024-06-19T19:21:09.784859Z", - "shell.execute_reply": "2024-06-19T19:21:09.784285Z" + "iopub.execute_input": "2024-06-25T15:07:16.622507Z", + "iopub.status.busy": "2024-06-25T15:07:16.622050Z", + "iopub.status.idle": "2024-06-25T15:07:19.331683Z", + "shell.execute_reply": "2024-06-25T15:07:19.331043Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:09.787043Z", - "iopub.status.busy": "2024-06-19T19:21:09.786819Z", - "iopub.status.idle": "2024-06-19T19:21:11.133504Z", - "shell.execute_reply": "2024-06-19T19:21:11.132922Z" + "iopub.execute_input": "2024-06-25T15:07:19.334095Z", + "iopub.status.busy": "2024-06-25T15:07:19.333632Z", + "iopub.status.idle": "2024-06-25T15:07:20.695098Z", + "shell.execute_reply": "2024-06-25T15:07:20.694431Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:11.136124Z", - "iopub.status.busy": "2024-06-19T19:21:11.135706Z", - "iopub.status.idle": "2024-06-19T19:21:11.139851Z", - "shell.execute_reply": "2024-06-19T19:21:11.139326Z" + "iopub.execute_input": "2024-06-25T15:07:20.698027Z", + "iopub.status.busy": "2024-06-25T15:07:20.697606Z", + "iopub.status.idle": "2024-06-25T15:07:20.702061Z", + "shell.execute_reply": "2024-06-25T15:07:20.701485Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:11.142237Z", - "iopub.status.busy": "2024-06-19T19:21:11.141904Z", - "iopub.status.idle": "2024-06-19T19:21:13.214775Z", - "shell.execute_reply": "2024-06-19T19:21:13.214170Z" + "iopub.execute_input": "2024-06-25T15:07:20.704302Z", + "iopub.status.busy": "2024-06-25T15:07:20.703863Z", + "iopub.status.idle": "2024-06-25T15:07:22.821137Z", + "shell.execute_reply": "2024-06-25T15:07:22.820487Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:13.217170Z", - "iopub.status.busy": "2024-06-19T19:21:13.216746Z", - "iopub.status.idle": "2024-06-19T19:21:13.224579Z", - "shell.execute_reply": "2024-06-19T19:21:13.224114Z" + "iopub.execute_input": "2024-06-25T15:07:22.823942Z", + "iopub.status.busy": "2024-06-25T15:07:22.823306Z", + "iopub.status.idle": "2024-06-25T15:07:22.831204Z", + "shell.execute_reply": "2024-06-25T15:07:22.830701Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:13.226697Z", - "iopub.status.busy": "2024-06-19T19:21:13.226384Z", - "iopub.status.idle": "2024-06-19T19:21:15.787195Z", - "shell.execute_reply": "2024-06-19T19:21:15.786617Z" + "iopub.execute_input": "2024-06-25T15:07:22.833189Z", + "iopub.status.busy": "2024-06-25T15:07:22.833007Z", + "iopub.status.idle": "2024-06-25T15:07:25.445455Z", + "shell.execute_reply": "2024-06-25T15:07:25.444862Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:15.789496Z", - "iopub.status.busy": "2024-06-19T19:21:15.789157Z", - "iopub.status.idle": "2024-06-19T19:21:15.792457Z", - "shell.execute_reply": "2024-06-19T19:21:15.791904Z" + "iopub.execute_input": "2024-06-25T15:07:25.447720Z", + "iopub.status.busy": "2024-06-25T15:07:25.447380Z", + "iopub.status.idle": "2024-06-25T15:07:25.450904Z", + "shell.execute_reply": "2024-06-25T15:07:25.450365Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:15.794547Z", - "iopub.status.busy": "2024-06-19T19:21:15.794236Z", - "iopub.status.idle": "2024-06-19T19:21:15.797504Z", - "shell.execute_reply": "2024-06-19T19:21:15.797081Z" + "iopub.execute_input": "2024-06-25T15:07:25.453112Z", + "iopub.status.busy": "2024-06-25T15:07:25.452698Z", + "iopub.status.idle": "2024-06-25T15:07:25.456299Z", + "shell.execute_reply": "2024-06-25T15:07:25.455766Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:15.799473Z", - "iopub.status.busy": "2024-06-19T19:21:15.799147Z", - "iopub.status.idle": "2024-06-19T19:21:15.802700Z", - "shell.execute_reply": "2024-06-19T19:21:15.802286Z" + "iopub.execute_input": "2024-06-25T15:07:25.458515Z", + "iopub.status.busy": "2024-06-25T15:07:25.458117Z", + "iopub.status.idle": "2024-06-25T15:07:25.461348Z", + "shell.execute_reply": "2024-06-25T15:07:25.460806Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index e8b4774c9..e61b30b24 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:18.392691Z", - "iopub.status.busy": "2024-06-19T19:21:18.392530Z", - "iopub.status.idle": "2024-06-19T19:21:19.573191Z", - "shell.execute_reply": "2024-06-19T19:21:19.572638Z" + "iopub.execute_input": "2024-06-25T15:07:28.174424Z", + "iopub.status.busy": "2024-06-25T15:07:28.174247Z", + "iopub.status.idle": "2024-06-25T15:07:29.399224Z", + "shell.execute_reply": "2024-06-25T15:07:29.398721Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:19.575713Z", - "iopub.status.busy": "2024-06-19T19:21:19.575427Z", - "iopub.status.idle": "2024-06-19T19:21:20.706011Z", - "shell.execute_reply": "2024-06-19T19:21:20.705227Z" + "iopub.execute_input": "2024-06-25T15:07:29.401978Z", + "iopub.status.busy": "2024-06-25T15:07:29.401413Z", + "iopub.status.idle": "2024-06-25T15:07:30.442022Z", + "shell.execute_reply": "2024-06-25T15:07:30.441314Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:20.708660Z", - "iopub.status.busy": "2024-06-19T19:21:20.708453Z", - "iopub.status.idle": "2024-06-19T19:21:20.711964Z", - "shell.execute_reply": "2024-06-19T19:21:20.711499Z" + "iopub.execute_input": "2024-06-25T15:07:30.444924Z", + "iopub.status.busy": "2024-06-25T15:07:30.444556Z", + "iopub.status.idle": "2024-06-25T15:07:30.448150Z", + "shell.execute_reply": "2024-06-25T15:07:30.447560Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:20.714168Z", - "iopub.status.busy": "2024-06-19T19:21:20.713752Z", - "iopub.status.idle": "2024-06-19T19:21:20.720128Z", - "shell.execute_reply": "2024-06-19T19:21:20.719580Z" + "iopub.execute_input": "2024-06-25T15:07:30.450246Z", + "iopub.status.busy": "2024-06-25T15:07:30.449925Z", + "iopub.status.idle": "2024-06-25T15:07:30.456231Z", + "shell.execute_reply": "2024-06-25T15:07:30.455669Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:20.722330Z", - "iopub.status.busy": "2024-06-19T19:21:20.721998Z", - "iopub.status.idle": "2024-06-19T19:21:21.211440Z", - "shell.execute_reply": "2024-06-19T19:21:21.210858Z" + "iopub.execute_input": "2024-06-25T15:07:30.458485Z", + "iopub.status.busy": "2024-06-25T15:07:30.458066Z", + "iopub.status.idle": "2024-06-25T15:07:30.962904Z", + "shell.execute_reply": "2024-06-25T15:07:30.962275Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:21.214256Z", - "iopub.status.busy": "2024-06-19T19:21:21.213911Z", - "iopub.status.idle": "2024-06-19T19:21:21.219015Z", - "shell.execute_reply": "2024-06-19T19:21:21.218600Z" + "iopub.execute_input": "2024-06-25T15:07:30.965455Z", + "iopub.status.busy": "2024-06-25T15:07:30.965022Z", + "iopub.status.idle": "2024-06-25T15:07:30.970398Z", + "shell.execute_reply": "2024-06-25T15:07:30.969860Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:21.220950Z", - "iopub.status.busy": "2024-06-19T19:21:21.220779Z", - "iopub.status.idle": "2024-06-19T19:21:21.224424Z", - "shell.execute_reply": "2024-06-19T19:21:21.223999Z" + "iopub.execute_input": "2024-06-25T15:07:30.972484Z", + "iopub.status.busy": "2024-06-25T15:07:30.972035Z", + "iopub.status.idle": "2024-06-25T15:07:30.975938Z", + "shell.execute_reply": "2024-06-25T15:07:30.975385Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:21.226254Z", - "iopub.status.busy": "2024-06-19T19:21:21.226080Z", - "iopub.status.idle": "2024-06-19T19:21:22.115032Z", - "shell.execute_reply": "2024-06-19T19:21:22.114380Z" + "iopub.execute_input": "2024-06-25T15:07:30.977970Z", + "iopub.status.busy": "2024-06-25T15:07:30.977564Z", + "iopub.status.idle": "2024-06-25T15:07:31.919227Z", + "shell.execute_reply": "2024-06-25T15:07:31.918669Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:22.117461Z", - "iopub.status.busy": "2024-06-19T19:21:22.117007Z", - "iopub.status.idle": "2024-06-19T19:21:22.380419Z", - "shell.execute_reply": "2024-06-19T19:21:22.379814Z" + "iopub.execute_input": "2024-06-25T15:07:31.921696Z", + "iopub.status.busy": "2024-06-25T15:07:31.921290Z", + "iopub.status.idle": "2024-06-25T15:07:32.145817Z", + "shell.execute_reply": "2024-06-25T15:07:32.145280Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:22.382648Z", - "iopub.status.busy": "2024-06-19T19:21:22.382297Z", - "iopub.status.idle": "2024-06-19T19:21:22.386482Z", - "shell.execute_reply": "2024-06-19T19:21:22.386021Z" + "iopub.execute_input": "2024-06-25T15:07:32.148278Z", + "iopub.status.busy": "2024-06-25T15:07:32.147806Z", + "iopub.status.idle": "2024-06-25T15:07:32.152324Z", + "shell.execute_reply": "2024-06-25T15:07:32.151771Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:22.388619Z", - "iopub.status.busy": "2024-06-19T19:21:22.388287Z", - "iopub.status.idle": "2024-06-19T19:21:22.848617Z", - "shell.execute_reply": "2024-06-19T19:21:22.847987Z" + "iopub.execute_input": "2024-06-25T15:07:32.154660Z", + "iopub.status.busy": "2024-06-25T15:07:32.154327Z", + "iopub.status.idle": "2024-06-25T15:07:32.615786Z", + "shell.execute_reply": "2024-06-25T15:07:32.615079Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:22.851442Z", - "iopub.status.busy": "2024-06-19T19:21:22.851261Z", - "iopub.status.idle": "2024-06-19T19:21:23.157971Z", - "shell.execute_reply": "2024-06-19T19:21:23.157376Z" + "iopub.execute_input": "2024-06-25T15:07:32.619201Z", + "iopub.status.busy": "2024-06-25T15:07:32.618983Z", + "iopub.status.idle": "2024-06-25T15:07:32.939594Z", + "shell.execute_reply": "2024-06-25T15:07:32.938922Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:23.160284Z", - "iopub.status.busy": "2024-06-19T19:21:23.160104Z", - "iopub.status.idle": "2024-06-19T19:21:23.495427Z", - "shell.execute_reply": "2024-06-19T19:21:23.494830Z" + "iopub.execute_input": "2024-06-25T15:07:32.942158Z", + "iopub.status.busy": "2024-06-25T15:07:32.941948Z", + "iopub.status.idle": "2024-06-25T15:07:33.317002Z", + "shell.execute_reply": "2024-06-25T15:07:33.316469Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:23.498528Z", - "iopub.status.busy": "2024-06-19T19:21:23.497900Z", - "iopub.status.idle": "2024-06-19T19:21:23.913525Z", - "shell.execute_reply": "2024-06-19T19:21:23.912931Z" + "iopub.execute_input": "2024-06-25T15:07:33.319292Z", + "iopub.status.busy": "2024-06-25T15:07:33.319076Z", + "iopub.status.idle": "2024-06-25T15:07:33.762140Z", + "shell.execute_reply": "2024-06-25T15:07:33.761516Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:23.917767Z", - "iopub.status.busy": "2024-06-19T19:21:23.917563Z", - "iopub.status.idle": "2024-06-19T19:21:24.344535Z", - "shell.execute_reply": "2024-06-19T19:21:24.343907Z" + "iopub.execute_input": "2024-06-25T15:07:33.766241Z", + "iopub.status.busy": "2024-06-25T15:07:33.765880Z", + "iopub.status.idle": "2024-06-25T15:07:34.218058Z", + "shell.execute_reply": "2024-06-25T15:07:34.217390Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:24.347416Z", - "iopub.status.busy": "2024-06-19T19:21:24.346958Z", - "iopub.status.idle": "2024-06-19T19:21:24.563823Z", - "shell.execute_reply": "2024-06-19T19:21:24.563248Z" + "iopub.execute_input": "2024-06-25T15:07:34.221265Z", + "iopub.status.busy": "2024-06-25T15:07:34.220913Z", + "iopub.status.idle": "2024-06-25T15:07:34.443447Z", + "shell.execute_reply": "2024-06-25T15:07:34.442862Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:24.565975Z", - "iopub.status.busy": "2024-06-19T19:21:24.565664Z", - "iopub.status.idle": "2024-06-19T19:21:24.765308Z", - "shell.execute_reply": "2024-06-19T19:21:24.764793Z" + "iopub.execute_input": "2024-06-25T15:07:34.445847Z", + "iopub.status.busy": "2024-06-25T15:07:34.445492Z", + "iopub.status.idle": "2024-06-25T15:07:34.649016Z", + "shell.execute_reply": "2024-06-25T15:07:34.648520Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:24.767492Z", - "iopub.status.busy": "2024-06-19T19:21:24.767088Z", - "iopub.status.idle": "2024-06-19T19:21:24.769960Z", - "shell.execute_reply": "2024-06-19T19:21:24.769525Z" + "iopub.execute_input": "2024-06-25T15:07:34.651410Z", + "iopub.status.busy": "2024-06-25T15:07:34.651034Z", + "iopub.status.idle": "2024-06-25T15:07:34.654615Z", + "shell.execute_reply": "2024-06-25T15:07:34.654190Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:24.771744Z", - "iopub.status.busy": "2024-06-19T19:21:24.771572Z", - "iopub.status.idle": "2024-06-19T19:21:25.699619Z", - "shell.execute_reply": "2024-06-19T19:21:25.698928Z" + "iopub.execute_input": "2024-06-25T15:07:34.656732Z", + "iopub.status.busy": "2024-06-25T15:07:34.656395Z", + "iopub.status.idle": "2024-06-25T15:07:35.733686Z", + "shell.execute_reply": "2024-06-25T15:07:35.733102Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:25.702305Z", - "iopub.status.busy": "2024-06-19T19:21:25.702119Z", - "iopub.status.idle": "2024-06-19T19:21:25.844475Z", - "shell.execute_reply": "2024-06-19T19:21:25.843871Z" + "iopub.execute_input": "2024-06-25T15:07:35.736680Z", + "iopub.status.busy": "2024-06-25T15:07:35.736286Z", + "iopub.status.idle": "2024-06-25T15:07:35.879525Z", + "shell.execute_reply": "2024-06-25T15:07:35.878954Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:25.846804Z", - "iopub.status.busy": "2024-06-19T19:21:25.846491Z", - "iopub.status.idle": "2024-06-19T19:21:26.036943Z", - "shell.execute_reply": "2024-06-19T19:21:26.036322Z" + "iopub.execute_input": "2024-06-25T15:07:35.881842Z", + "iopub.status.busy": "2024-06-25T15:07:35.881503Z", + "iopub.status.idle": "2024-06-25T15:07:36.052853Z", + "shell.execute_reply": "2024-06-25T15:07:36.052254Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:26.038981Z", - "iopub.status.busy": "2024-06-19T19:21:26.038808Z", - "iopub.status.idle": "2024-06-19T19:21:26.745847Z", - "shell.execute_reply": "2024-06-19T19:21:26.745290Z" + "iopub.execute_input": "2024-06-25T15:07:36.055160Z", + "iopub.status.busy": "2024-06-25T15:07:36.054805Z", + "iopub.status.idle": "2024-06-25T15:07:36.816947Z", + "shell.execute_reply": "2024-06-25T15:07:36.816448Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:26.747946Z", - "iopub.status.busy": "2024-06-19T19:21:26.747762Z", - "iopub.status.idle": "2024-06-19T19:21:26.751701Z", - "shell.execute_reply": "2024-06-19T19:21:26.751150Z" + "iopub.execute_input": "2024-06-25T15:07:36.819372Z", + "iopub.status.busy": "2024-06-25T15:07:36.818979Z", + "iopub.status.idle": "2024-06-25T15:07:36.823481Z", + "shell.execute_reply": "2024-06-25T15:07:36.823038Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index c3f7f1e62..628e37325 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:29.120493Z", - "iopub.status.busy": "2024-06-19T19:21:29.119912Z", - "iopub.status.idle": "2024-06-19T19:21:31.933775Z", - "shell.execute_reply": "2024-06-19T19:21:31.933128Z" + "iopub.execute_input": "2024-06-25T15:07:39.206096Z", + "iopub.status.busy": "2024-06-25T15:07:39.205590Z", + "iopub.status.idle": "2024-06-25T15:07:42.210777Z", + "shell.execute_reply": "2024-06-25T15:07:42.210255Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:31.936732Z", - "iopub.status.busy": "2024-06-19T19:21:31.936246Z", - "iopub.status.idle": "2024-06-19T19:21:32.274001Z", - "shell.execute_reply": "2024-06-19T19:21:32.273500Z" + "iopub.execute_input": "2024-06-25T15:07:42.213460Z", + "iopub.status.busy": "2024-06-25T15:07:42.213004Z", + "iopub.status.idle": "2024-06-25T15:07:42.560062Z", + "shell.execute_reply": "2024-06-25T15:07:42.559409Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:32.276508Z", - "iopub.status.busy": "2024-06-19T19:21:32.276105Z", - "iopub.status.idle": "2024-06-19T19:21:32.280247Z", - "shell.execute_reply": "2024-06-19T19:21:32.279783Z" + "iopub.execute_input": "2024-06-25T15:07:42.562840Z", + "iopub.status.busy": "2024-06-25T15:07:42.562287Z", + "iopub.status.idle": "2024-06-25T15:07:42.566702Z", + "shell.execute_reply": "2024-06-25T15:07:42.566159Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:32.282254Z", - "iopub.status.busy": "2024-06-19T19:21:32.281985Z", - "iopub.status.idle": "2024-06-19T19:21:36.710600Z", - "shell.execute_reply": "2024-06-19T19:21:36.710069Z" + "iopub.execute_input": "2024-06-25T15:07:42.569125Z", + "iopub.status.busy": "2024-06-25T15:07:42.568681Z", + "iopub.status.idle": "2024-06-25T15:07:47.162636Z", + "shell.execute_reply": "2024-06-25T15:07:47.162050Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1802240/170498071 [00:00<00:09, 18017949.54it/s]" + " 1%| | 1441792/170498071 [00:00<00:11, 14265089.86it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11632640/170498071 [00:00<00:02, 65094219.10it/s]" + " 6%|▌ | 10321920/170498071 [00:00<00:02, 57876720.06it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20742144/170498071 [00:00<00:01, 76902331.31it/s]" + " 12%|█▏ | 20414464/170498071 [00:00<00:01, 77367913.49it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30113792/170498071 [00:00<00:01, 83516379.16it/s]" + " 18%|█▊ | 30932992/170498071 [00:00<00:01, 88273292.38it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 39419904/170498071 [00:00<00:01, 86703889.29it/s]" + " 24%|██▍ | 41320448/170498071 [00:00<00:01, 93828843.91it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48726016/170498071 [00:00<00:01, 88771798.18it/s]" + " 30%|███ | 51904512/170498071 [00:00<00:01, 97766525.28it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 59015168/170498071 [00:00<00:01, 93366717.63it/s]" + " 36%|███▋ | 62095360/170498071 [00:00<00:01, 99063313.45it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 68354048/170498071 [00:00<00:01, 90460697.58it/s]" + " 42%|████▏ | 72450048/170498071 [00:00<00:00, 100483151.75it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 79069184/170498071 [00:00<00:00, 95349758.18it/s]" + " 48%|████▊ | 82608128/170498071 [00:00<00:00, 100537532.88it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88637440/170498071 [00:01<00:00, 92585510.28it/s]" + " 54%|█████▍ | 92667904/170498071 [00:01<00:00, 97249164.32it/s] " ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99778560/170498071 [00:01<00:00, 98045186.44it/s]" + " 60%|██████ | 102432768/170498071 [00:01<00:00, 95386720.52it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109641728/170498071 [00:01<00:00, 94260473.23it/s]" + " 66%|██████▌ | 112001024/170498071 [00:01<00:00, 93763598.44it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 120717312/170498071 [00:01<00:00, 99011912.12it/s]" + " 71%|███████ | 121405440/170498071 [00:01<00:00, 90762304.11it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130678784/170498071 [00:01<00:00, 94682120.53it/s]" + " 77%|███████▋ | 130514944/170498071 [00:01<00:00, 88997803.93it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141754368/170498071 [00:01<00:00, 99100549.00it/s]" + " 82%|████████▏ | 139460608/170498071 [00:01<00:00, 85560327.60it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 151748608/170498071 [00:01<00:00, 95388325.55it/s]" + " 87%|████████▋ | 148045824/170498071 [00:01<00:00, 85139512.24it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 162889728/170498071 [00:01<00:00, 99924151.59it/s]" + " 92%|█████████▏| 156991488/170498071 [00:01<00:00, 86219496.23it/s]" ] }, { @@ -388,7 +388,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 91550653.75it/s]" + " 97%|█████████▋| 165969920/170498071 [00:01<00:00, 87041053.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 88744795.96it/s]" ] }, { @@ -506,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:36.712936Z", - "iopub.status.busy": "2024-06-19T19:21:36.712655Z", - "iopub.status.idle": "2024-06-19T19:21:36.717328Z", - "shell.execute_reply": "2024-06-19T19:21:36.716904Z" + "iopub.execute_input": "2024-06-25T15:07:47.164941Z", + "iopub.status.busy": "2024-06-25T15:07:47.164716Z", + "iopub.status.idle": "2024-06-25T15:07:47.169619Z", + "shell.execute_reply": "2024-06-25T15:07:47.169146Z" }, "nbsphinx": "hidden" }, @@ -560,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:36.719368Z", - "iopub.status.busy": "2024-06-19T19:21:36.719054Z", - "iopub.status.idle": "2024-06-19T19:21:37.267753Z", - "shell.execute_reply": "2024-06-19T19:21:37.267211Z" + "iopub.execute_input": "2024-06-25T15:07:47.171722Z", + "iopub.status.busy": "2024-06-25T15:07:47.171382Z", + "iopub.status.idle": "2024-06-25T15:07:47.738760Z", + "shell.execute_reply": "2024-06-25T15:07:47.738088Z" } }, "outputs": [ @@ -596,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.270008Z", - "iopub.status.busy": "2024-06-19T19:21:37.269658Z", - "iopub.status.idle": "2024-06-19T19:21:37.771584Z", - "shell.execute_reply": "2024-06-19T19:21:37.771009Z" + "iopub.execute_input": "2024-06-25T15:07:47.741125Z", + "iopub.status.busy": "2024-06-25T15:07:47.740746Z", + "iopub.status.idle": "2024-06-25T15:07:48.261248Z", + "shell.execute_reply": "2024-06-25T15:07:48.260672Z" } }, "outputs": [ @@ -637,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.773694Z", - "iopub.status.busy": "2024-06-19T19:21:37.773502Z", - "iopub.status.idle": "2024-06-19T19:21:37.777253Z", - "shell.execute_reply": "2024-06-19T19:21:37.776701Z" + "iopub.execute_input": "2024-06-25T15:07:48.263378Z", + "iopub.status.busy": "2024-06-25T15:07:48.263183Z", + "iopub.status.idle": "2024-06-25T15:07:48.267023Z", + "shell.execute_reply": "2024-06-25T15:07:48.266572Z" } }, "outputs": [], @@ -663,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.779279Z", - "iopub.status.busy": "2024-06-19T19:21:37.778976Z", - "iopub.status.idle": "2024-06-19T19:21:50.625364Z", - "shell.execute_reply": "2024-06-19T19:21:50.624781Z" + "iopub.execute_input": "2024-06-25T15:07:48.268899Z", + "iopub.status.busy": "2024-06-25T15:07:48.268728Z", + "iopub.status.idle": "2024-06-25T15:08:00.626265Z", + "shell.execute_reply": "2024-06-25T15:08:00.625732Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5a3224df4122414dbc965e4870dbbda1", + "model_id": "b21e9d68df194288ae90e0c8135c4ae7", "version_major": 2, "version_minor": 0 }, @@ -732,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:50.628005Z", - "iopub.status.busy": "2024-06-19T19:21:50.627513Z", - "iopub.status.idle": "2024-06-19T19:21:52.712045Z", - "shell.execute_reply": "2024-06-19T19:21:52.711492Z" + "iopub.execute_input": "2024-06-25T15:08:00.628642Z", + "iopub.status.busy": "2024-06-25T15:08:00.628254Z", + "iopub.status.idle": "2024-06-25T15:08:02.761210Z", + "shell.execute_reply": "2024-06-25T15:08:02.760608Z" } }, "outputs": [ @@ -779,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:52.714529Z", - "iopub.status.busy": "2024-06-19T19:21:52.713991Z", - "iopub.status.idle": "2024-06-19T19:21:52.962218Z", - "shell.execute_reply": "2024-06-19T19:21:52.961618Z" + "iopub.execute_input": "2024-06-25T15:08:02.763626Z", + "iopub.status.busy": "2024-06-25T15:08:02.763245Z", + "iopub.status.idle": "2024-06-25T15:08:03.022141Z", + "shell.execute_reply": "2024-06-25T15:08:03.021575Z" } }, "outputs": [ @@ -818,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:52.964783Z", - "iopub.status.busy": "2024-06-19T19:21:52.964455Z", - "iopub.status.idle": "2024-06-19T19:21:53.652657Z", - "shell.execute_reply": "2024-06-19T19:21:53.652090Z" + "iopub.execute_input": "2024-06-25T15:08:03.025107Z", + "iopub.status.busy": "2024-06-25T15:08:03.024724Z", + "iopub.status.idle": "2024-06-25T15:08:03.686604Z", + "shell.execute_reply": "2024-06-25T15:08:03.686062Z" } }, "outputs": [ @@ -871,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:53.655637Z", - "iopub.status.busy": "2024-06-19T19:21:53.655191Z", - "iopub.status.idle": "2024-06-19T19:21:53.997788Z", - "shell.execute_reply": "2024-06-19T19:21:53.997182Z" + "iopub.execute_input": "2024-06-25T15:08:03.689638Z", + "iopub.status.busy": "2024-06-25T15:08:03.689263Z", + "iopub.status.idle": "2024-06-25T15:08:04.028975Z", + "shell.execute_reply": "2024-06-25T15:08:04.028446Z" } }, "outputs": [ @@ -922,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:53.999907Z", - "iopub.status.busy": "2024-06-19T19:21:53.999721Z", - "iopub.status.idle": "2024-06-19T19:21:54.237511Z", - "shell.execute_reply": "2024-06-19T19:21:54.236817Z" + "iopub.execute_input": "2024-06-25T15:08:04.031274Z", + "iopub.status.busy": "2024-06-25T15:08:04.030954Z", + "iopub.status.idle": "2024-06-25T15:08:04.277500Z", + "shell.execute_reply": "2024-06-25T15:08:04.276887Z" } }, "outputs": [ @@ -981,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:54.239898Z", - "iopub.status.busy": "2024-06-19T19:21:54.239706Z", - "iopub.status.idle": "2024-06-19T19:21:54.320356Z", - "shell.execute_reply": "2024-06-19T19:21:54.319739Z" + "iopub.execute_input": "2024-06-25T15:08:04.280546Z", + "iopub.status.busy": "2024-06-25T15:08:04.280101Z", + "iopub.status.idle": "2024-06-25T15:08:04.364340Z", + "shell.execute_reply": "2024-06-25T15:08:04.363675Z" } }, "outputs": [], @@ -1005,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:54.323090Z", - "iopub.status.busy": "2024-06-19T19:21:54.322572Z", - "iopub.status.idle": "2024-06-19T19:22:04.687477Z", - "shell.execute_reply": "2024-06-19T19:22:04.686893Z" + "iopub.execute_input": "2024-06-25T15:08:04.366792Z", + "iopub.status.busy": "2024-06-25T15:08:04.366374Z", + "iopub.status.idle": "2024-06-25T15:08:14.914279Z", + "shell.execute_reply": "2024-06-25T15:08:14.913604Z" } }, "outputs": [ @@ -1045,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:04.689967Z", - "iopub.status.busy": "2024-06-19T19:22:04.689573Z", - "iopub.status.idle": "2024-06-19T19:22:06.934115Z", - "shell.execute_reply": "2024-06-19T19:22:06.933562Z" + "iopub.execute_input": "2024-06-25T15:08:14.916776Z", + "iopub.status.busy": "2024-06-25T15:08:14.916511Z", + "iopub.status.idle": "2024-06-25T15:08:17.293821Z", + "shell.execute_reply": "2024-06-25T15:08:17.293306Z" } }, "outputs": [ @@ -1079,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:06.936708Z", - "iopub.status.busy": "2024-06-19T19:22:06.936252Z", - "iopub.status.idle": "2024-06-19T19:22:07.138884Z", - "shell.execute_reply": "2024-06-19T19:22:07.138371Z" + "iopub.execute_input": "2024-06-25T15:08:17.296752Z", + "iopub.status.busy": "2024-06-25T15:08:17.296141Z", + "iopub.status.idle": "2024-06-25T15:08:17.508879Z", + "shell.execute_reply": "2024-06-25T15:08:17.508351Z" } }, "outputs": [], @@ -1096,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:07.141191Z", - "iopub.status.busy": "2024-06-19T19:22:07.141008Z", - "iopub.status.idle": "2024-06-19T19:22:07.144139Z", - "shell.execute_reply": "2024-06-19T19:22:07.143685Z" + "iopub.execute_input": "2024-06-25T15:08:17.511428Z", + "iopub.status.busy": "2024-06-25T15:08:17.511052Z", + "iopub.status.idle": "2024-06-25T15:08:17.514355Z", + "shell.execute_reply": "2024-06-25T15:08:17.513890Z" } }, "outputs": [], @@ -1121,10 +1129,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:07.146103Z", - "iopub.status.busy": "2024-06-19T19:22:07.145788Z", - "iopub.status.idle": "2024-06-19T19:22:07.153730Z", - "shell.execute_reply": "2024-06-19T19:22:07.153317Z" + "iopub.execute_input": "2024-06-25T15:08:17.516595Z", + "iopub.status.busy": "2024-06-25T15:08:17.516250Z", + "iopub.status.idle": "2024-06-25T15:08:17.525161Z", + "shell.execute_reply": "2024-06-25T15:08:17.524636Z" }, "nbsphinx": "hidden" }, @@ -1169,7 +1177,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "301fd8815bef49a3bc22dadd797c8328": { + "029ab5bdf8b94b57bc553b34f4933dae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10d41885d1794e74b48d2f5349e9c4a0", + "placeholder": "​", + "style": "IPY_MODEL_208a128034214ed29c17b113189b0786", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 321MB/s]" + } + }, + "10d41885d1794e74b48d2f5349e9c4a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1222,7 +1253,7 @@ "width": null } }, - "36f34a2fa98e421fbce75cf94d0f00a3": { + "1ec747a023f5460b9e03ca0529a36abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1306,25 @@ "width": null } }, - "4ef52584d74240ea9c356bd673cd88e9": { + "208a128034214ed29c17b113189b0786": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3371b9df5e604a5e9f36f07eedf21b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1290,15 +1339,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_301fd8815bef49a3bc22dadd797c8328", + "layout": "IPY_MODEL_1ec747a023f5460b9e03ca0529a36abd", "placeholder": "​", - "style": "IPY_MODEL_a61bb392daf6435985434d24e28023bd", + "style": "IPY_MODEL_3a260ba4de9b430daed701ad5f4221a7", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "4f798f621fd1463497fa70b6bbe93712": { + "3a260ba4de9b430daed701ad5f4221a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1316,7 +1365,49 @@ "text_color": null } }, - "5860d43662fe4e0c94deadd06df5a37c": { + "6812d796b1474a84a2fe7749359cf057": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a2a7e1b541584749aa693e1422171551": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c29375cc4b9541b3be4c914b39a169f7", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6812d796b1474a84a2fe7749359cf057", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "a31e8cb85d144a88b82782a73f756e42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1369,7 +1460,7 @@ "width": null } }, - "5a3224df4122414dbc965e4870dbbda1": { + "b21e9d68df194288ae90e0c8135c4ae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1384,99 +1475,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4ef52584d74240ea9c356bd673cd88e9", - "IPY_MODEL_a0e445a93efa475b9bbe14f70502c89c", - "IPY_MODEL_bbb7509c489f48e2b72aef01319c01ab" + "IPY_MODEL_3371b9df5e604a5e9f36f07eedf21b70", + "IPY_MODEL_a2a7e1b541584749aa693e1422171551", + "IPY_MODEL_029ab5bdf8b94b57bc553b34f4933dae" ], - "layout": "IPY_MODEL_36f34a2fa98e421fbce75cf94d0f00a3", + "layout": "IPY_MODEL_a31e8cb85d144a88b82782a73f756e42", "tabbable": null, "tooltip": null } }, - "6d96f96c2e2e4ad7bd81f250b1896acc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a0e445a93efa475b9bbe14f70502c89c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f2d744a291ba4b818d1bbb561fa9c9de", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d96f96c2e2e4ad7bd81f250b1896acc", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a61bb392daf6435985434d24e28023bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bbb7509c489f48e2b72aef01319c01ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5860d43662fe4e0c94deadd06df5a37c", - "placeholder": "​", - "style": "IPY_MODEL_4f798f621fd1463497fa70b6bbe93712", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 226MB/s]" - } - }, - "f2d744a291ba4b818d1bbb561fa9c9de": { + "c29375cc4b9541b3be4c914b39a169f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 8e0b24218..05b280ee8 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:11.368000Z", - "iopub.status.busy": "2024-06-19T19:22:11.367563Z", - "iopub.status.idle": "2024-06-19T19:22:12.556140Z", - "shell.execute_reply": "2024-06-19T19:22:12.555541Z" + "iopub.execute_input": "2024-06-25T15:08:21.910070Z", + "iopub.status.busy": "2024-06-25T15:08:21.909651Z", + "iopub.status.idle": "2024-06-25T15:08:23.187736Z", + "shell.execute_reply": "2024-06-25T15:08:23.187169Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.558871Z", - "iopub.status.busy": "2024-06-19T19:22:12.558417Z", - "iopub.status.idle": "2024-06-19T19:22:12.576339Z", - "shell.execute_reply": "2024-06-19T19:22:12.575860Z" + "iopub.execute_input": "2024-06-25T15:08:23.190350Z", + "iopub.status.busy": "2024-06-25T15:08:23.189889Z", + "iopub.status.idle": "2024-06-25T15:08:23.207895Z", + "shell.execute_reply": "2024-06-25T15:08:23.207262Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.578755Z", - "iopub.status.busy": "2024-06-19T19:22:12.578312Z", - "iopub.status.idle": "2024-06-19T19:22:12.581293Z", - "shell.execute_reply": "2024-06-19T19:22:12.580876Z" + "iopub.execute_input": "2024-06-25T15:08:23.210550Z", + "iopub.status.busy": "2024-06-25T15:08:23.210049Z", + "iopub.status.idle": "2024-06-25T15:08:23.213182Z", + "shell.execute_reply": "2024-06-25T15:08:23.212753Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.583418Z", - "iopub.status.busy": "2024-06-19T19:22:12.583095Z", - "iopub.status.idle": "2024-06-19T19:22:12.639379Z", - "shell.execute_reply": "2024-06-19T19:22:12.638871Z" + "iopub.execute_input": "2024-06-25T15:08:23.215212Z", + "iopub.status.busy": "2024-06-25T15:08:23.214881Z", + "iopub.status.idle": "2024-06-25T15:08:23.265186Z", + "shell.execute_reply": "2024-06-25T15:08:23.264656Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.641740Z", - "iopub.status.busy": "2024-06-19T19:22:12.641362Z", - "iopub.status.idle": "2024-06-19T19:22:12.827521Z", - "shell.execute_reply": "2024-06-19T19:22:12.826903Z" + "iopub.execute_input": "2024-06-25T15:08:23.267602Z", + "iopub.status.busy": "2024-06-25T15:08:23.267302Z", + "iopub.status.idle": "2024-06-25T15:08:23.451923Z", + "shell.execute_reply": "2024-06-25T15:08:23.451390Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.830369Z", - "iopub.status.busy": "2024-06-19T19:22:12.830016Z", - "iopub.status.idle": "2024-06-19T19:22:13.074224Z", - "shell.execute_reply": "2024-06-19T19:22:13.073596Z" + "iopub.execute_input": "2024-06-25T15:08:23.454459Z", + "iopub.status.busy": "2024-06-25T15:08:23.453993Z", + "iopub.status.idle": "2024-06-25T15:08:23.699181Z", + "shell.execute_reply": "2024-06-25T15:08:23.698584Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.076680Z", - "iopub.status.busy": "2024-06-19T19:22:13.076327Z", - "iopub.status.idle": "2024-06-19T19:22:13.080626Z", - "shell.execute_reply": "2024-06-19T19:22:13.080195Z" + "iopub.execute_input": "2024-06-25T15:08:23.701383Z", + "iopub.status.busy": "2024-06-25T15:08:23.701192Z", + "iopub.status.idle": "2024-06-25T15:08:23.705748Z", + "shell.execute_reply": "2024-06-25T15:08:23.705281Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.082759Z", - "iopub.status.busy": "2024-06-19T19:22:13.082433Z", - "iopub.status.idle": "2024-06-19T19:22:13.089315Z", - "shell.execute_reply": "2024-06-19T19:22:13.088864Z" + "iopub.execute_input": "2024-06-25T15:08:23.707589Z", + "iopub.status.busy": "2024-06-25T15:08:23.707408Z", + "iopub.status.idle": "2024-06-25T15:08:23.714463Z", + "shell.execute_reply": "2024-06-25T15:08:23.714035Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.091654Z", - "iopub.status.busy": "2024-06-19T19:22:13.091228Z", - "iopub.status.idle": "2024-06-19T19:22:13.094109Z", - "shell.execute_reply": "2024-06-19T19:22:13.093535Z" + "iopub.execute_input": "2024-06-25T15:08:23.716435Z", + "iopub.status.busy": "2024-06-25T15:08:23.716265Z", + "iopub.status.idle": "2024-06-25T15:08:23.718977Z", + "shell.execute_reply": "2024-06-25T15:08:23.718528Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.096306Z", - "iopub.status.busy": "2024-06-19T19:22:13.095966Z", - "iopub.status.idle": "2024-06-19T19:22:21.895748Z", - "shell.execute_reply": "2024-06-19T19:22:21.895130Z" + "iopub.execute_input": "2024-06-25T15:08:23.720735Z", + "iopub.status.busy": "2024-06-25T15:08:23.720567Z", + "iopub.status.idle": "2024-06-25T15:08:32.515041Z", + "shell.execute_reply": "2024-06-25T15:08:32.514475Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.899003Z", - "iopub.status.busy": "2024-06-19T19:22:21.898445Z", - "iopub.status.idle": "2024-06-19T19:22:21.906807Z", - "shell.execute_reply": "2024-06-19T19:22:21.906261Z" + "iopub.execute_input": "2024-06-25T15:08:32.517892Z", + "iopub.status.busy": "2024-06-25T15:08:32.517520Z", + "iopub.status.idle": "2024-06-25T15:08:32.524602Z", + "shell.execute_reply": "2024-06-25T15:08:32.524143Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.909145Z", - "iopub.status.busy": "2024-06-19T19:22:21.908763Z", - "iopub.status.idle": "2024-06-19T19:22:21.913043Z", - "shell.execute_reply": "2024-06-19T19:22:21.912526Z" + "iopub.execute_input": "2024-06-25T15:08:32.526466Z", + "iopub.status.busy": "2024-06-25T15:08:32.526292Z", + "iopub.status.idle": "2024-06-25T15:08:32.529994Z", + "shell.execute_reply": "2024-06-25T15:08:32.529547Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.915123Z", - "iopub.status.busy": "2024-06-19T19:22:21.914799Z", - "iopub.status.idle": "2024-06-19T19:22:21.917957Z", - "shell.execute_reply": "2024-06-19T19:22:21.917446Z" + "iopub.execute_input": "2024-06-25T15:08:32.531872Z", + "iopub.status.busy": "2024-06-25T15:08:32.531697Z", + "iopub.status.idle": "2024-06-25T15:08:32.534822Z", + "shell.execute_reply": "2024-06-25T15:08:32.534343Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.919978Z", - "iopub.status.busy": "2024-06-19T19:22:21.919659Z", - "iopub.status.idle": "2024-06-19T19:22:21.922593Z", - "shell.execute_reply": "2024-06-19T19:22:21.922161Z" + "iopub.execute_input": "2024-06-25T15:08:32.536822Z", + "iopub.status.busy": "2024-06-25T15:08:32.536509Z", + "iopub.status.idle": "2024-06-25T15:08:32.539371Z", + "shell.execute_reply": "2024-06-25T15:08:32.538939Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.924610Z", - "iopub.status.busy": "2024-06-19T19:22:21.924299Z", - "iopub.status.idle": "2024-06-19T19:22:21.932480Z", - "shell.execute_reply": "2024-06-19T19:22:21.931974Z" + "iopub.execute_input": "2024-06-25T15:08:32.541374Z", + "iopub.status.busy": "2024-06-25T15:08:32.541053Z", + "iopub.status.idle": "2024-06-25T15:08:32.549080Z", + "shell.execute_reply": "2024-06-25T15:08:32.548529Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.934561Z", - "iopub.status.busy": "2024-06-19T19:22:21.934233Z", - "iopub.status.idle": "2024-06-19T19:22:21.936737Z", - "shell.execute_reply": "2024-06-19T19:22:21.936319Z" + "iopub.execute_input": "2024-06-25T15:08:32.551190Z", + "iopub.status.busy": "2024-06-25T15:08:32.550875Z", + "iopub.status.idle": "2024-06-25T15:08:32.553349Z", + "shell.execute_reply": "2024-06-25T15:08:32.552920Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.938712Z", - "iopub.status.busy": "2024-06-19T19:22:21.938393Z", - "iopub.status.idle": "2024-06-19T19:22:22.058825Z", - "shell.execute_reply": "2024-06-19T19:22:22.058317Z" + "iopub.execute_input": "2024-06-25T15:08:32.555270Z", + "iopub.status.busy": "2024-06-25T15:08:32.555009Z", + "iopub.status.idle": "2024-06-25T15:08:32.675129Z", + "shell.execute_reply": "2024-06-25T15:08:32.674535Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.061120Z", - "iopub.status.busy": "2024-06-19T19:22:22.060820Z", - "iopub.status.idle": "2024-06-19T19:22:22.164669Z", - "shell.execute_reply": "2024-06-19T19:22:22.164078Z" + "iopub.execute_input": "2024-06-25T15:08:32.677505Z", + "iopub.status.busy": "2024-06-25T15:08:32.677100Z", + "iopub.status.idle": "2024-06-25T15:08:32.780745Z", + "shell.execute_reply": "2024-06-25T15:08:32.780144Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.167253Z", - "iopub.status.busy": "2024-06-19T19:22:22.166777Z", - "iopub.status.idle": "2024-06-19T19:22:22.650043Z", - "shell.execute_reply": "2024-06-19T19:22:22.649427Z" + "iopub.execute_input": "2024-06-25T15:08:32.783226Z", + "iopub.status.busy": "2024-06-25T15:08:32.782916Z", + "iopub.status.idle": "2024-06-25T15:08:33.275114Z", + "shell.execute_reply": "2024-06-25T15:08:33.274476Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.652862Z", - "iopub.status.busy": "2024-06-19T19:22:22.652413Z", - "iopub.status.idle": "2024-06-19T19:22:22.724418Z", - "shell.execute_reply": "2024-06-19T19:22:22.723819Z" + "iopub.execute_input": "2024-06-25T15:08:33.278038Z", + "iopub.status.busy": "2024-06-25T15:08:33.277650Z", + "iopub.status.idle": "2024-06-25T15:08:33.355571Z", + "shell.execute_reply": "2024-06-25T15:08:33.354907Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.726761Z", - "iopub.status.busy": "2024-06-19T19:22:22.726434Z", - "iopub.status.idle": "2024-06-19T19:22:22.735576Z", - "shell.execute_reply": "2024-06-19T19:22:22.735001Z" + "iopub.execute_input": "2024-06-25T15:08:33.357938Z", + "iopub.status.busy": "2024-06-25T15:08:33.357576Z", + "iopub.status.idle": "2024-06-25T15:08:33.366390Z", + "shell.execute_reply": "2024-06-25T15:08:33.365818Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.737867Z", - "iopub.status.busy": "2024-06-19T19:22:22.737447Z", - "iopub.status.idle": "2024-06-19T19:22:22.740374Z", - "shell.execute_reply": "2024-06-19T19:22:22.739827Z" + "iopub.execute_input": "2024-06-25T15:08:33.368557Z", + "iopub.status.busy": "2024-06-25T15:08:33.368144Z", + "iopub.status.idle": "2024-06-25T15:08:33.371002Z", + "shell.execute_reply": "2024-06-25T15:08:33.370446Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.742417Z", - "iopub.status.busy": "2024-06-19T19:22:22.742026Z", - "iopub.status.idle": "2024-06-19T19:22:28.181125Z", - "shell.execute_reply": "2024-06-19T19:22:28.180362Z" + "iopub.execute_input": "2024-06-25T15:08:33.372993Z", + "iopub.status.busy": "2024-06-25T15:08:33.372669Z", + "iopub.status.idle": "2024-06-25T15:08:38.777735Z", + "shell.execute_reply": "2024-06-25T15:08:38.777132Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:28.183472Z", - "iopub.status.busy": "2024-06-19T19:22:28.183097Z", - "iopub.status.idle": "2024-06-19T19:22:28.191490Z", - "shell.execute_reply": "2024-06-19T19:22:28.191032Z" + "iopub.execute_input": "2024-06-25T15:08:38.779921Z", + "iopub.status.busy": "2024-06-25T15:08:38.779740Z", + "iopub.status.idle": "2024-06-25T15:08:38.788666Z", + "shell.execute_reply": "2024-06-25T15:08:38.788200Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:28.193665Z", - "iopub.status.busy": "2024-06-19T19:22:28.193310Z", - "iopub.status.idle": "2024-06-19T19:22:28.264774Z", - "shell.execute_reply": "2024-06-19T19:22:28.264140Z" + "iopub.execute_input": "2024-06-25T15:08:38.790794Z", + "iopub.status.busy": "2024-06-25T15:08:38.790455Z", + "iopub.status.idle": "2024-06-25T15:08:38.856329Z", + "shell.execute_reply": "2024-06-25T15:08:38.855659Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 93500f81b..d9260f9a6 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:31.222727Z", - "iopub.status.busy": "2024-06-19T19:22:31.222541Z", - "iopub.status.idle": "2024-06-19T19:22:32.657497Z", - "shell.execute_reply": "2024-06-19T19:22:32.656841Z" + "iopub.execute_input": "2024-06-25T15:08:42.880799Z", + "iopub.status.busy": "2024-06-25T15:08:42.880586Z", + "iopub.status.idle": "2024-06-25T15:08:44.512863Z", + "shell.execute_reply": "2024-06-25T15:08:44.512159Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:32.660212Z", - "iopub.status.busy": "2024-06-19T19:22:32.659832Z", - "iopub.status.idle": "2024-06-19T19:23:28.505248Z", - "shell.execute_reply": "2024-06-19T19:23:28.504612Z" + "iopub.execute_input": "2024-06-25T15:08:44.515546Z", + "iopub.status.busy": "2024-06-25T15:08:44.515142Z", + "iopub.status.idle": "2024-06-25T15:09:30.026971Z", + "shell.execute_reply": "2024-06-25T15:09:30.026285Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:28.507912Z", - "iopub.status.busy": "2024-06-19T19:23:28.507529Z", - "iopub.status.idle": "2024-06-19T19:23:29.657502Z", - "shell.execute_reply": "2024-06-19T19:23:29.656999Z" + "iopub.execute_input": "2024-06-25T15:09:30.030165Z", + "iopub.status.busy": "2024-06-25T15:09:30.029717Z", + "iopub.status.idle": "2024-06-25T15:09:31.216800Z", + "shell.execute_reply": "2024-06-25T15:09:31.216232Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.659836Z", - "iopub.status.busy": "2024-06-19T19:23:29.659557Z", - "iopub.status.idle": "2024-06-19T19:23:29.662860Z", - "shell.execute_reply": "2024-06-19T19:23:29.662401Z" + "iopub.execute_input": "2024-06-25T15:09:31.219451Z", + "iopub.status.busy": "2024-06-25T15:09:31.218947Z", + "iopub.status.idle": "2024-06-25T15:09:31.222257Z", + "shell.execute_reply": "2024-06-25T15:09:31.221814Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.664918Z", - "iopub.status.busy": "2024-06-19T19:23:29.664596Z", - "iopub.status.idle": "2024-06-19T19:23:29.668370Z", - "shell.execute_reply": "2024-06-19T19:23:29.667881Z" + "iopub.execute_input": "2024-06-25T15:09:31.224354Z", + "iopub.status.busy": "2024-06-25T15:09:31.224015Z", + "iopub.status.idle": "2024-06-25T15:09:31.227897Z", + "shell.execute_reply": "2024-06-25T15:09:31.227400Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.670605Z", - "iopub.status.busy": "2024-06-19T19:23:29.670205Z", - "iopub.status.idle": "2024-06-19T19:23:29.673912Z", - "shell.execute_reply": "2024-06-19T19:23:29.673443Z" + "iopub.execute_input": "2024-06-25T15:09:31.230054Z", + "iopub.status.busy": "2024-06-25T15:09:31.229723Z", + "iopub.status.idle": "2024-06-25T15:09:31.233461Z", + "shell.execute_reply": "2024-06-25T15:09:31.232999Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.675914Z", - "iopub.status.busy": "2024-06-19T19:23:29.675587Z", - "iopub.status.idle": "2024-06-19T19:23:29.678333Z", - "shell.execute_reply": "2024-06-19T19:23:29.677897Z" + "iopub.execute_input": "2024-06-25T15:09:31.235398Z", + "iopub.status.busy": "2024-06-25T15:09:31.235075Z", + "iopub.status.idle": "2024-06-25T15:09:31.237798Z", + "shell.execute_reply": "2024-06-25T15:09:31.237382Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.680372Z", - "iopub.status.busy": "2024-06-19T19:23:29.680015Z", - "iopub.status.idle": "2024-06-19T19:24:04.370495Z", - "shell.execute_reply": "2024-06-19T19:24:04.369871Z" + "iopub.execute_input": "2024-06-25T15:09:31.239942Z", + "iopub.status.busy": "2024-06-25T15:09:31.239523Z", + "iopub.status.idle": "2024-06-25T15:10:05.521047Z", + "shell.execute_reply": "2024-06-25T15:10:05.520436Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f16fbb37d5f64b6089cc7bad6951549a", + "model_id": "d8bb0abd0b0e4ce2a3b837494e657378", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "adc0e1d5f5bb4c5c98db5ffa8c144114", + "model_id": "abe1f21afc4d435289106661aee2ee3b", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:04.373320Z", - "iopub.status.busy": "2024-06-19T19:24:04.372917Z", - "iopub.status.idle": "2024-06-19T19:24:05.053326Z", - "shell.execute_reply": "2024-06-19T19:24:05.052777Z" + "iopub.execute_input": "2024-06-25T15:10:05.524098Z", + "iopub.status.busy": "2024-06-25T15:10:05.523624Z", + "iopub.status.idle": "2024-06-25T15:10:06.216385Z", + "shell.execute_reply": "2024-06-25T15:10:06.215884Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:05.055584Z", - "iopub.status.busy": "2024-06-19T19:24:05.055277Z", - "iopub.status.idle": "2024-06-19T19:24:07.843866Z", - "shell.execute_reply": "2024-06-19T19:24:07.843293Z" + "iopub.execute_input": "2024-06-25T15:10:06.218780Z", + "iopub.status.busy": "2024-06-25T15:10:06.218307Z", + "iopub.status.idle": "2024-06-25T15:10:09.074914Z", + "shell.execute_reply": "2024-06-25T15:10:09.074351Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:07.846114Z", - "iopub.status.busy": "2024-06-19T19:24:07.845756Z", - "iopub.status.idle": "2024-06-19T19:24:41.329407Z", - "shell.execute_reply": "2024-06-19T19:24:41.328911Z" + "iopub.execute_input": "2024-06-25T15:10:09.077257Z", + "iopub.status.busy": "2024-06-25T15:10:09.076910Z", + "iopub.status.idle": "2024-06-25T15:10:42.339710Z", + "shell.execute_reply": "2024-06-25T15:10:42.339079Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0d307b2a1e54d44a17d6b06d1f03193", + "model_id": "ab225329c1d94699a17a957f78ab4f31", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:41.331678Z", - "iopub.status.busy": "2024-06-19T19:24:41.331379Z", - "iopub.status.idle": "2024-06-19T19:24:55.728948Z", - "shell.execute_reply": "2024-06-19T19:24:55.728375Z" + "iopub.execute_input": "2024-06-25T15:10:42.342108Z", + "iopub.status.busy": "2024-06-25T15:10:42.341723Z", + "iopub.status.idle": "2024-06-25T15:10:57.343819Z", + "shell.execute_reply": "2024-06-25T15:10:57.343149Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:55.731616Z", - "iopub.status.busy": "2024-06-19T19:24:55.731092Z", - "iopub.status.idle": "2024-06-19T19:24:59.507529Z", - "shell.execute_reply": "2024-06-19T19:24:59.506988Z" + "iopub.execute_input": "2024-06-25T15:10:57.346478Z", + "iopub.status.busy": "2024-06-25T15:10:57.346223Z", + "iopub.status.idle": "2024-06-25T15:11:01.208354Z", + "shell.execute_reply": "2024-06-25T15:11:01.207791Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:59.509865Z", - "iopub.status.busy": "2024-06-19T19:24:59.509459Z", - "iopub.status.idle": "2024-06-19T19:25:00.983754Z", - "shell.execute_reply": "2024-06-19T19:25:00.983189Z" + "iopub.execute_input": "2024-06-25T15:11:01.210581Z", + "iopub.status.busy": "2024-06-25T15:11:01.210395Z", + "iopub.status.idle": "2024-06-25T15:11:02.777349Z", + "shell.execute_reply": "2024-06-25T15:11:02.776715Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e791a5b271354694ba0d9bdd80aeca08", + "model_id": "4e74d548cc8049558040f706a96a6ec5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:00.986310Z", - "iopub.status.busy": "2024-06-19T19:25:00.986108Z", - "iopub.status.idle": "2024-06-19T19:25:01.016127Z", - "shell.execute_reply": "2024-06-19T19:25:01.015517Z" + "iopub.execute_input": "2024-06-25T15:11:02.779757Z", + "iopub.status.busy": "2024-06-25T15:11:02.779295Z", + "iopub.status.idle": "2024-06-25T15:11:02.812842Z", + "shell.execute_reply": "2024-06-25T15:11:02.812316Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:01.018576Z", - "iopub.status.busy": "2024-06-19T19:25:01.018242Z", - "iopub.status.idle": "2024-06-19T19:25:07.073409Z", - "shell.execute_reply": "2024-06-19T19:25:07.072865Z" + "iopub.execute_input": "2024-06-25T15:11:02.815211Z", + "iopub.status.busy": "2024-06-25T15:11:02.814997Z", + "iopub.status.idle": "2024-06-25T15:11:08.832516Z", + "shell.execute_reply": "2024-06-25T15:11:08.831917Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:07.075441Z", - "iopub.status.busy": "2024-06-19T19:25:07.075262Z", - "iopub.status.idle": "2024-06-19T19:25:07.131942Z", - "shell.execute_reply": "2024-06-19T19:25:07.131406Z" + "iopub.execute_input": "2024-06-25T15:11:08.834659Z", + "iopub.status.busy": "2024-06-25T15:11:08.834477Z", + "iopub.status.idle": "2024-06-25T15:11:08.890881Z", + "shell.execute_reply": "2024-06-25T15:11:08.890377Z" }, "nbsphinx": "hidden" }, @@ -1038,23 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "052d426b4fc5417a88ce7e6bb18734e5": { + "07c5a37f381d4685935d06a0353f8a63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0867140c0c81420680d96facad8bea21", + "placeholder": "​", + "style": "IPY_MODEL_d4efcf1bff9a4c7fb8b7e9c7632f1fa7", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151432.57it/s]" } }, - "09c08efda4c84ba290b22653eeef183f": { + "0867140c0c81420680d96facad8bea21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1107,190 +1114,113 @@ "width": null } }, - "0ab5166222ef4a749fe3dce28a18f1eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "145d62f7e2074375bd4e398fd17d0d93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1755dd7dbad34589b399759bdcb6b60e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_09c08efda4c84ba290b22653eeef183f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_846406ba41b24bf8b49ecb4effd06fc3", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "1de1dc8ff57049119c3ff29f4991b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf364e76d001438f834a15bcd3a99cba", - "placeholder": "​", - "style": "IPY_MODEL_2943331cf1c64d409dc3a1a88c414837", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "2943331cf1c64d409dc3a1a88c414837": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "38ccb42504874b6d9ecfe82f8e9fbebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d7093cf4af304c6994183570f3989c16", - "placeholder": "​", - "style": "IPY_MODEL_465367c77389437e94396bcd60dbeea6", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "3d6d486fefbc4f3086d0a63d860feb84": { - "model_module": "@jupyter-widgets/controls", + "0ada31bf68874fa8893724d0b4333465": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "465367c77389437e94396bcd60dbeea6": { - "model_module": "@jupyter-widgets/controls", + "0fc7ec521ea8413688415df09241e879": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b0a2cee76ca4294a5bad5da775cdef5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c156518ea58945bfa801ad800f83f0f7", - "placeholder": "​", - "style": "IPY_MODEL_63e3bd05667042f1b341bd957c6db6fd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 798.84it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4ee37ef8c1364d839de4df0a67143eb7": { + "10ac21b057e64893a7cddb966154ec2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1343,25 +1273,23 @@ "width": null } }, - "56d4ffa1a94e436b92a58f713e59e906": { + "1718fa767d7547dc96dc6f938c02ef59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5767b167ba0442e18891e52453b65cf8": { + "1a2f589b0ea24682b1982b1b835a59fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,33 +1342,7 @@ "width": null } }, - "5f34a0ccaa1c494fb8c53601f18aba30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8b5a15cd7784d1aa229ce7c012ca428", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_052d426b4fc5417a88ce7e6bb18734e5", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "60226dc1699348e09785f8a4bfe8bd48": { + "28c3895a3ec74ddc9b2eaea192f782ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1458,43 +1360,30 @@ "text_color": null } }, - "6114d1aa946446b7a2c503fefe3dc6ff": { + "2a622e8f6bcd47368c373db5fbe3d892": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63e3bd05667042f1b341bd957c6db6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1a2f589b0ea24682b1982b1b835a59fb", + "placeholder": "​", + "style": "IPY_MODEL_9644bbe10aac4ed883f7b8d6caffea64", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "70dd909f51f04ee096eb01aa47ed27ce": { + "3523dbdd79454982986a0162392ef5db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,23 +1436,7 @@ "width": null } }, - "78cbc7756ec041fe8a95963b53dd6e5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82256646c2d145079b76365f8e38a8f6": { + "3e51dabac4984bce8db6887b151c33f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1616,7 +1489,25 @@ "width": null } }, - "83ae7a0dc8a64d24afb0e13ea521814e": { + "3f5fa5eec6bf461db3549a0bf677d275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "43f8bb56272043bfb2bcdc97d409c609": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1669,7 +1560,7 @@ "width": null } }, - "846406ba41b24bf8b49ecb4effd06fc3": { + "46eaa77b1598437f9b00f5784aec8ad7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1685,7 +1576,31 @@ "description_width": "" } }, - "86b718251a394e2694338a7c7c8113e0": { + "4e74d548cc8049558040f706a96a6ec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6cee1f011ef402e8a61f49c9c4d4d1f", + "IPY_MODEL_bff9376c76054d9b95eef2da0815be6f", + "IPY_MODEL_b0671990bcec446a97c3d1191433f6f3" + ], + "layout": "IPY_MODEL_3523dbdd79454982986a0162392ef5db", + "tabbable": null, + "tooltip": null + } + }, + "5122e30fd4b446e085c76dc8be05b698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1701,17 +1616,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70dd909f51f04ee096eb01aa47ed27ce", - "max": 30.0, + "layout": "IPY_MODEL_6487d02cebec4fe2a82aff5ad6b218dd", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_78cbc7756ec041fe8a95963b53dd6e5c", + "style": "IPY_MODEL_8ab4abbe49944d9ba85287aae5c3a466", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 + } + }, + "60a0ee181a7b43bebe253d9dd7f438b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ada31bf68874fa8893724d0b4333465", + "placeholder": "​", + "style": "IPY_MODEL_d556cba9162243cfa28461ee6dff2dcd", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 774.90it/s]" } }, - "9acc5d459a4841dcae2518f36ef89691": { + "6487d02cebec4fe2a82aff5ad6b218dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,60 +1702,49 @@ "width": null } }, - "9c0077943def4c6d9d05da501dde521b": { - "model_module": "@jupyter-widgets/base", + "683c7149ec9e41869b84f3f757c5a096": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10ac21b057e64893a7cddb966154ec2b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f69fe8585a54d78974826e2c0407418", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6f69fe8585a54d78974826e2c0407418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a072a575aacb4e1a83395772d21a5a11": { + "7b90bc1ada25432a84b3fd4cabce0d0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1870,30 +1797,59 @@ "width": null } }, - "a119f62acd724a63aa2e0bed9921ad55": { + "81025bda46ff40bca0ebe30959a20d46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ab4abbe49944d9ba85287aae5c3a466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9644bbe10aac4ed883f7b8d6caffea64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa78f9667dfb49df92d53e59bdb75efa", - "placeholder": "​", - "style": "IPY_MODEL_6114d1aa946446b7a2c503fefe3dc6ff", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a36303d4eee74c60bf5eb3a0cdf8cf91": { + "9928ad60b1d14f7db1723674e10a0bce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1908,15 +1864,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ee37ef8c1364d839de4df0a67143eb7", + "layout": "IPY_MODEL_0fc7ec521ea8413688415df09241e879", "placeholder": "​", - "style": "IPY_MODEL_0ab5166222ef4a749fe3dce28a18f1eb", + "style": "IPY_MODEL_81025bda46ff40bca0ebe30959a20d46", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:33<00:00, 150079.58it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "a8b5a15cd7784d1aa229ce7c012ca428": { + "9bcf0fb6aa354d8a9f53abd6741930c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,60 +1925,54 @@ "width": null } }, - "aa78f9667dfb49df92d53e59bdb75efa": { - "model_module": "@jupyter-widgets/base", + "9f138a2e6545447c8a0326d4663671b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_43f8bb56272043bfb2bcdc97d409c609", + "placeholder": "​", + "style": "IPY_MODEL_d9c852407244454e9dd8de4f3e45b1d7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.34it/s]" + } + }, + "ab225329c1d94699a17a957f78ab4f31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb5fb1370d6741df9452912434e16278", + "IPY_MODEL_5122e30fd4b446e085c76dc8be05b698", + "IPY_MODEL_07c5a37f381d4685935d06a0353f8a63" + ], + "layout": "IPY_MODEL_cea0c91b0c4d4228b4303431a003d4fc", + "tabbable": null, + "tooltip": null } }, - "adc0e1d5f5bb4c5c98db5ffa8c144114": { + "abe1f21afc4d435289106661aee2ee3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2037,16 +1987,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a119f62acd724a63aa2e0bed9921ad55", - "IPY_MODEL_86b718251a394e2694338a7c7c8113e0", - "IPY_MODEL_fe1aa018d6ff48a6843b31a722ad02b7" + "IPY_MODEL_9928ad60b1d14f7db1723674e10a0bce", + "IPY_MODEL_c44ae0aab8714109bd68f7321b0c1b59", + "IPY_MODEL_9f138a2e6545447c8a0326d4663671b6" ], - "layout": "IPY_MODEL_9acc5d459a4841dcae2518f36ef89691", + "layout": "IPY_MODEL_3e51dabac4984bce8db6887b151c33f0", "tabbable": null, "tooltip": null } }, - "bbfdd438fbb84630b07fbae818daa140": { + "b0671990bcec446a97c3d1191433f6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2061,15 +2011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82256646c2d145079b76365f8e38a8f6", + "layout": "IPY_MODEL_d31eb53b229b4432a2e2401ece47345a", "placeholder": "​", - "style": "IPY_MODEL_56d4ffa1a94e436b92a58f713e59e906", + "style": "IPY_MODEL_28c3895a3ec74ddc9b2eaea192f782ea", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.40it/s]" + "value": " 30/30 [00:01<00:00, 19.31it/s]" } }, - "c156518ea58945bfa801ad800f83f0f7": { + "b76916644feb48af8029013a8632fe49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,7 +2072,30 @@ "width": null } }, - "cf364e76d001438f834a15bcd3a99cba": { + "bb5fb1370d6741df9452912434e16278": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bcf0fb6aa354d8a9f53abd6741930c3", + "placeholder": "​", + "style": "IPY_MODEL_3f5fa5eec6bf461db3549a0bf677d275", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bbbb7e956ced43899f4a680b3688d28b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,7 +2148,59 @@ "width": null } }, - "d7093cf4af304c6994183570f3989c16": { + "bff9376c76054d9b95eef2da0815be6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b76916644feb48af8029013a8632fe49", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1718fa767d7547dc96dc6f938c02ef59", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c44ae0aab8714109bd68f7321b0c1b59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbbb7e956ced43899f4a680b3688d28b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_46eaa77b1598437f9b00f5784aec8ad7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "cea0c91b0c4d4228b4303431a003d4fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2228,7 +2253,7 @@ "width": null } }, - "d822c9a2798c4d87b95b3bb58b9ea163": { + "d31eb53b229b4432a2e2401ece47345a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,81 +2306,43 @@ "width": null } }, - "e0d307b2a1e54d44a17d6b06d1f03193": { + "d4efcf1bff9a4c7fb8b7e9c7632f1fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f5a4dc61ba504655931659e0a983ef18", - "IPY_MODEL_5f34a0ccaa1c494fb8c53601f18aba30", - "IPY_MODEL_a36303d4eee74c60bf5eb3a0cdf8cf91" - ], - "layout": "IPY_MODEL_83ae7a0dc8a64d24afb0e13ea521814e", - "tabbable": null, - "tooltip": null - } - }, - "e791a5b271354694ba0d9bdd80aeca08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_38ccb42504874b6d9ecfe82f8e9fbebe", - "IPY_MODEL_eb32f8b2cd4a46728df33c029b14f406", - "IPY_MODEL_bbfdd438fbb84630b07fbae818daa140" - ], - "layout": "IPY_MODEL_d822c9a2798c4d87b95b3bb58b9ea163", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "eb32f8b2cd4a46728df33c029b14f406": { + "d556cba9162243cfa28461ee6dff2dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa6eba9239b84d0bb1efdf529449496d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_145d62f7e2074375bd4e398fd17d0d93", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f16fbb37d5f64b6089cc7bad6951549a": { + "d8bb0abd0b0e4ce2a3b837494e657378": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2370,39 +2357,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1de1dc8ff57049119c3ff29f4991b422", - "IPY_MODEL_1755dd7dbad34589b399759bdcb6b60e", - "IPY_MODEL_4b0a2cee76ca4294a5bad5da775cdef5" + "IPY_MODEL_2a622e8f6bcd47368c373db5fbe3d892", + "IPY_MODEL_683c7149ec9e41869b84f3f757c5a096", + "IPY_MODEL_60a0ee181a7b43bebe253d9dd7f438b3" ], - "layout": "IPY_MODEL_9c0077943def4c6d9d05da501dde521b", + "layout": "IPY_MODEL_7b90bc1ada25432a84b3fd4cabce0d0c", "tabbable": null, "tooltip": null } }, - "f5a4dc61ba504655931659e0a983ef18": { + "d9c852407244454e9dd8de4f3e45b1d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a072a575aacb4e1a83395772d21a5a11", - "placeholder": "​", - "style": "IPY_MODEL_60226dc1699348e09785f8a4bfe8bd48", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa6eba9239b84d0bb1efdf529449496d": { + "e490094404384e069419afa8636b15b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2437,7 @@ "width": null } }, - "fe1aa018d6ff48a6843b31a722ad02b7": { + "e6cee1f011ef402e8a61f49c9c4d4d1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2470,12 +2452,30 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5767b167ba0442e18891e52453b65cf8", + "layout": "IPY_MODEL_e490094404384e069419afa8636b15b4", "placeholder": "​", - "style": "IPY_MODEL_3d6d486fefbc4f3086d0a63d860feb84", + "style": "IPY_MODEL_e8f4528787a3401c8ea684eb606bd17b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.31it/s]" + "value": "images processed using softmin: 100%" + } + }, + "e8f4528787a3401c8ea684eb606bd17b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 2d42f5e88..f016ba70f 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:09.578962Z", - "iopub.status.busy": "2024-06-19T19:25:09.578560Z", - "iopub.status.idle": "2024-06-19T19:25:10.928643Z", - "shell.execute_reply": "2024-06-19T19:25:10.928022Z" + "iopub.execute_input": "2024-06-25T15:11:11.232355Z", + "iopub.status.busy": "2024-06-25T15:11:11.231865Z", + "iopub.status.idle": "2024-06-25T15:11:12.478175Z", + "shell.execute_reply": "2024-06-25T15:11:12.477547Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-19 19:25:09-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 15:11:11-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.99, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... " + "169.150.236.97, 2400:52e0:1a00::845:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, { @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.97MB/s in 0.2s \r\n", "\r\n", - "2024-06-19 19:25:10 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 15:11:11 (4.97 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-19 19:25:10-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.206.91, 52.217.206.81, 52.216.77.4, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.206.91|:443... connected.\r\n", + "--2024-06-25 15:11:12-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.184.163, 3.5.21.123, 52.217.91.12, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.184.163|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -168,17 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 53%[=========> ] 8.71M 43.3MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 64.2MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-06-19 19:25:10 (64.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 15:11:12 (198 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -195,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:10.931072Z", - "iopub.status.busy": "2024-06-19T19:25:10.930882Z", - "iopub.status.idle": "2024-06-19T19:25:12.255881Z", - "shell.execute_reply": "2024-06-19T19:25:12.255242Z" + "iopub.execute_input": "2024-06-25T15:11:12.480956Z", + "iopub.status.busy": "2024-06-25T15:11:12.480566Z", + "iopub.status.idle": "2024-06-25T15:11:13.767885Z", + "shell.execute_reply": "2024-06-25T15:11:13.767217Z" }, "nbsphinx": "hidden" }, @@ -209,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -235,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.258491Z", - "iopub.status.busy": "2024-06-19T19:25:12.258068Z", - "iopub.status.idle": "2024-06-19T19:25:12.261536Z", - "shell.execute_reply": "2024-06-19T19:25:12.260999Z" + "iopub.execute_input": "2024-06-25T15:11:13.770729Z", + "iopub.status.busy": "2024-06-25T15:11:13.770175Z", + "iopub.status.idle": "2024-06-25T15:11:13.773709Z", + "shell.execute_reply": "2024-06-25T15:11:13.773187Z" } }, "outputs": [], @@ -288,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.263644Z", - "iopub.status.busy": "2024-06-19T19:25:12.263314Z", - "iopub.status.idle": "2024-06-19T19:25:12.266277Z", - "shell.execute_reply": "2024-06-19T19:25:12.265838Z" + "iopub.execute_input": "2024-06-25T15:11:13.775785Z", + "iopub.status.busy": "2024-06-25T15:11:13.775587Z", + "iopub.status.idle": "2024-06-25T15:11:13.778748Z", + "shell.execute_reply": "2024-06-25T15:11:13.778221Z" }, "nbsphinx": "hidden" }, @@ -309,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.268426Z", - "iopub.status.busy": "2024-06-19T19:25:12.268094Z", - "iopub.status.idle": "2024-06-19T19:25:21.221848Z", - "shell.execute_reply": "2024-06-19T19:25:21.221207Z" + "iopub.execute_input": "2024-06-25T15:11:13.780778Z", + "iopub.status.busy": "2024-06-25T15:11:13.780480Z", + "iopub.status.idle": "2024-06-25T15:11:22.781293Z", + "shell.execute_reply": "2024-06-25T15:11:22.780651Z" } }, "outputs": [], @@ -386,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.224443Z", - "iopub.status.busy": "2024-06-19T19:25:21.224239Z", - "iopub.status.idle": "2024-06-19T19:25:21.229958Z", - "shell.execute_reply": "2024-06-19T19:25:21.229399Z" + "iopub.execute_input": "2024-06-25T15:11:22.784081Z", + "iopub.status.busy": "2024-06-25T15:11:22.783689Z", + "iopub.status.idle": "2024-06-25T15:11:22.789584Z", + "shell.execute_reply": "2024-06-25T15:11:22.789006Z" }, "nbsphinx": "hidden" }, @@ -429,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.232073Z", - "iopub.status.busy": "2024-06-19T19:25:21.231743Z", - "iopub.status.idle": "2024-06-19T19:25:21.588833Z", - "shell.execute_reply": "2024-06-19T19:25:21.588318Z" + "iopub.execute_input": "2024-06-25T15:11:22.791718Z", + "iopub.status.busy": "2024-06-25T15:11:22.791435Z", + "iopub.status.idle": "2024-06-25T15:11:23.158255Z", + "shell.execute_reply": "2024-06-25T15:11:23.157611Z" } }, "outputs": [], @@ -469,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.591367Z", - "iopub.status.busy": "2024-06-19T19:25:21.591001Z", - "iopub.status.idle": "2024-06-19T19:25:21.595636Z", - "shell.execute_reply": "2024-06-19T19:25:21.595165Z" + "iopub.execute_input": "2024-06-25T15:11:23.160978Z", + "iopub.status.busy": "2024-06-25T15:11:23.160622Z", + "iopub.status.idle": "2024-06-25T15:11:23.165103Z", + "shell.execute_reply": "2024-06-25T15:11:23.164546Z" } }, "outputs": [ @@ -544,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.597855Z", - "iopub.status.busy": "2024-06-19T19:25:21.597528Z", - "iopub.status.idle": "2024-06-19T19:25:24.308109Z", - "shell.execute_reply": "2024-06-19T19:25:24.307365Z" + "iopub.execute_input": "2024-06-25T15:11:23.167082Z", + "iopub.status.busy": "2024-06-25T15:11:23.166903Z", + "iopub.status.idle": "2024-06-25T15:11:25.807866Z", + "shell.execute_reply": "2024-06-25T15:11:25.807169Z" } }, "outputs": [], @@ -569,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.311307Z", - "iopub.status.busy": "2024-06-19T19:25:24.310534Z", - "iopub.status.idle": "2024-06-19T19:25:24.314791Z", - "shell.execute_reply": "2024-06-19T19:25:24.314231Z" + "iopub.execute_input": "2024-06-25T15:11:25.810816Z", + "iopub.status.busy": "2024-06-25T15:11:25.810265Z", + "iopub.status.idle": "2024-06-25T15:11:25.814390Z", + "shell.execute_reply": "2024-06-25T15:11:25.813844Z" } }, "outputs": [ @@ -608,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.317102Z", - "iopub.status.busy": "2024-06-19T19:25:24.316721Z", - "iopub.status.idle": "2024-06-19T19:25:24.322157Z", - "shell.execute_reply": "2024-06-19T19:25:24.321609Z" + "iopub.execute_input": "2024-06-25T15:11:25.816460Z", + "iopub.status.busy": "2024-06-25T15:11:25.816134Z", + "iopub.status.idle": "2024-06-25T15:11:25.825923Z", + "shell.execute_reply": "2024-06-25T15:11:25.825448Z" } }, "outputs": [ @@ -789,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.324400Z", - "iopub.status.busy": "2024-06-19T19:25:24.324051Z", - "iopub.status.idle": "2024-06-19T19:25:24.350801Z", - "shell.execute_reply": "2024-06-19T19:25:24.350207Z" + "iopub.execute_input": "2024-06-25T15:11:25.828061Z", + "iopub.status.busy": "2024-06-25T15:11:25.827881Z", + "iopub.status.idle": "2024-06-25T15:11:25.855389Z", + "shell.execute_reply": "2024-06-25T15:11:25.854872Z" } }, "outputs": [ @@ -894,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.353082Z", - "iopub.status.busy": "2024-06-19T19:25:24.352886Z", - "iopub.status.idle": "2024-06-19T19:25:24.358648Z", - "shell.execute_reply": "2024-06-19T19:25:24.358046Z" + "iopub.execute_input": "2024-06-25T15:11:25.857590Z", + "iopub.status.busy": "2024-06-25T15:11:25.857393Z", + "iopub.status.idle": "2024-06-25T15:11:25.862898Z", + "shell.execute_reply": "2024-06-25T15:11:25.862402Z" } }, "outputs": [ @@ -971,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.361008Z", - "iopub.status.busy": "2024-06-19T19:25:24.360612Z", - "iopub.status.idle": "2024-06-19T19:25:25.829277Z", - "shell.execute_reply": "2024-06-19T19:25:25.828716Z" + "iopub.execute_input": "2024-06-25T15:11:25.864896Z", + "iopub.status.busy": "2024-06-25T15:11:25.864699Z", + "iopub.status.idle": "2024-06-25T15:11:27.322386Z", + "shell.execute_reply": "2024-06-25T15:11:27.321860Z" } }, "outputs": [ @@ -1146,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:25.831678Z", - "iopub.status.busy": "2024-06-19T19:25:25.831298Z", - "iopub.status.idle": "2024-06-19T19:25:25.835492Z", - "shell.execute_reply": "2024-06-19T19:25:25.835011Z" + "iopub.execute_input": "2024-06-25T15:11:27.324657Z", + "iopub.status.busy": "2024-06-25T15:11:27.324344Z", + "iopub.status.idle": "2024-06-25T15:11:27.328757Z", + "shell.execute_reply": "2024-06-25T15:11:27.328193Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 1f0e9d9c1..85d56df7d 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 81d0b1622..3882e5955 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 5fc59e1dc..d16e95660 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index edada4fd7..84fc58ca9 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index ac4db9529..8e8ef2e2f 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index a6dcfd39d..5bcf46701 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index f578f84eb..dd32f4a5d 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 51a84e724..c19f46fd1 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 8f3febda1..1ca902548 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index e64babc77..027922546 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index c56036ece..7ae1aaea5 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 441f4791a..9ba7f0555 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index ec3a43dae..7f804bfde 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 2443e651a..ae35bd984 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 8c861f9c5..1cf6dfbf2 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index d96ebb9d1..f6bae712e 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 7c5c2e51e..344431709 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index f50260a7f..13fda1d9d 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index ff05a54f6..607eb5054 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 3942bfd97..0461efff9 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index c4e684f78..1189e2946 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index a56d92095..c8172f19b 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 054465af2..c2924626e 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html b/master/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html index 30ec2537d..1ea6b2606 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/data_valuation.html @@ -638,7 +638,10 @@

Source code for cleanlab.datalab.internal.issue_manager.data_valuation

< from cleanlab.data_valuation import data_shapley_knn from cleanlab.datalab.internal.issue_manager import IssueManager -from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index +from cleanlab.datalab.internal.issue_manager.knn_graph_helpers import ( + num_neighbors_in_knn_graph, + set_knn_graph, +) if TYPE_CHECKING: # pragma: no cover import numpy.typing as npt @@ -728,10 +731,6 @@

Source code for cleanlab.datalab.internal.issue_manager.data_valuation

< knn_graph : csr_matrix A sparse matrix representing the knn graph. """ - self.k = kwargs.get("k", self.k) - knn_graph = self._process_knn_graph_from_inputs(kwargs) - old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") - metric_changes = self.metric and self.metric != old_knn_metric labels = self.datalab.labels if not isinstance(labels, np.ndarray): error_msg = ( @@ -739,11 +738,22 @@

Source code for cleanlab.datalab.internal.issue_manager.data_valuation

< f"but got {type(labels)} instead." ) raise TypeError(error_msg) - if knn_graph is None or metric_changes: - knn_graph, knn = create_knn_graph_and_index( - features, n_neighbors=self.k, metric=self.metric + + knn_graph, self.metric = set_knn_graph( + features=features, + find_issues_kwargs=kwargs, + metric=self.metric, + k=self.k, + statistics=self.datalab.get_info("statistics"), + ) + + # TODO: Check self.k against user-provided knn-graphs across all issue managers + num_neighbors = num_neighbors_in_knn_graph(knn_graph) + if self.k > num_neighbors: + raise ValueError( + f"The provided knn graph has {num_neighbors} neighbors, which is less than the required {self.k} neighbors. " + "Please ensure that the knn graph you provide has at least as many neighbors as the required value of k." ) - self.metric = knn.metric scores = data_shapley_knn(labels, knn_graph=knn_graph, k=self.k) @@ -757,24 +767,6 @@

Source code for cleanlab.datalab.internal.issue_manager.data_valuation

< self.info = self.collect_info(issues=self.issues, knn_graph=knn_graph) - def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: - """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" - knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) - knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - knn_graph: Optional[csr_matrix] = None - if knn_graph_kwargs is not None: - knn_graph = knn_graph_kwargs - elif knn_graph_stats is not None: - knn_graph = knn_graph_stats - - if isinstance(knn_graph, csr_matrix) and self.k > (knn_graph.nnz // knn_graph.shape[0]): - self.k = knn_graph.nnz // knn_graph.shape[0] - Warning( - f"k is larger than the number of neighbors in the knn graph. Using k={self.k} instead." - ) - return knn_graph -
[docs] def collect_info(self, issues: pd.DataFrame, knn_graph: csr_matrix) -> dict: issues_info = { "num_low_valuation_issues": sum(issues[f"is_{self.issue_name}_issue"]), diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html index 12d251a39..9c83b1d1b 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html @@ -629,7 +629,7 @@

Source code for cleanlab.datalab.internal.issue_manager.duplicate

from cleanlab.datalab.internal.issue_manager import IssueManager -from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index +from cleanlab.datalab.internal.issue_manager.knn_graph_helpers import set_knn_graph from cleanlab.internal.constants import EPSILON if TYPE_CHECKING: # pragma: no cover @@ -674,15 +674,14 @@

Source code for cleanlab.datalab.internal.issue_manager.duplicate

features: Optional[npt.NDArray] = None, **kwargs, ) -> None: - knn_graph = self._process_knn_graph_from_inputs(kwargs) - old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") - metric_changes = self.metric and self.metric != old_knn_metric + knn_graph, self.metric = set_knn_graph( + features=features, + find_issues_kwargs=kwargs, + metric=self.metric, + k=self.k, + statistics=self.datalab.get_info("statistics"), + ) - if knn_graph is None or metric_changes: - knn_graph, knn = create_knn_graph_and_index( - features, n_neighbors=self.k, metric=self.metric - ) - self.metric = knn.metric N = knn_graph.shape[0] nn_distances = knn_graph.data.reshape(N, -1)[:, 0] median_nn_distance = max(np.median(nn_distances), EPSILON) # avoid threshold = 0 @@ -740,25 +739,6 @@

Source code for cleanlab.datalab.internal.issue_manager.duplicate

return near_duplicate_sets - def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: - """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" - knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) - knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - knn_graph: Optional[csr_matrix] = None - if knn_graph_kwargs is not None: - knn_graph = knn_graph_kwargs - elif knn_graph_stats is not None: - knn_graph = knn_graph_stats - - if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( - knn_graph.nnz // knn_graph.shape[0] - ): - # If the provided knn graph is insufficient, then we need to recompute the knn graph - # with the provided features - knn_graph = None - return knn_graph -
[docs] def collect_info(self, knn_graph: csr_matrix, median_nn_distance: float) -> dict: issues_dict = { "average_near_duplicate_score": self.issues[self.issue_score_key].mean(), diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html index e5db4008f..c69291f27 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html @@ -614,7 +614,7 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

from scipy.sparse import csr_matrix from cleanlab.datalab.internal.issue_manager import IssueManager -from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index +from cleanlab.datalab.internal.issue_manager.knn_graph_helpers import knn_exists, set_knn_graph if TYPE_CHECKING: # pragma: no cover import numpy.typing as npt @@ -731,12 +731,13 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

self._skip_storing_knn_graph_for_pred_probs: bool = False @staticmethod - def _determine_features( + def _determine_optional_features( features: Optional[npt.NDArray], pred_probs: Optional[np.ndarray], - ) -> npt.NDArray: + ) -> Optional[npt.NDArray]: """ - Determines the feature array to be used for the non-IID check. Prioritizing the original features array over pred_probs. + Determines the feature array to be used for constructing a knn-graph. Prioritizing the original features array over pred_probs. + If neither are provided, returns None. Parameters ---------- @@ -750,12 +751,12 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

------- features_to_use : Either the original feature array or the predicted probabilities array, - intended to be used for the non-IID check. + intended for constructing the knn-graph. - Raises - ------ - ValueError : - If both `features` and `pred_probs` are None. + Notes + ----- + A knn-graph constructed from predicted probabilities should not be stored in the statistics. But this kind + of knn-graph is allowed for the purpose of running a non-IID check. """ if features is not None: return features @@ -763,9 +764,7 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

if pred_probs is not None: return pred_probs - raise ValueError( - "If a knn_graph is not provided, either 'features' or 'pred_probs' must be provided to fit a new knn." - ) + return None
[docs] def find_issues( self, @@ -773,19 +772,21 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

pred_probs: Optional[np.ndarray] = None, **kwargs, ) -> None: - knn_graph = self._process_knn_graph_from_inputs(kwargs) - old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") - metric_changes = bool(self.metric and self.metric != old_knn_metric) + statistics = self.datalab.get_info("statistics") - if knn_graph is None or metric_changes: - if features is None and pred_probs is not None: - self._skip_storing_knn_graph_for_pred_probs = True + # Crucial when building knn graphs with pred_probs instead of features, where only the + # latter is preferred for storage. + self._determine_if_knn_graph_storage_should_be_skipped( + features, pred_probs, kwargs, statistics, self.k + ) - features_to_use = self._determine_features(features, pred_probs) - knn_graph, knn = create_knn_graph_and_index( - features=features_to_use, n_neighbors=self.k, metric=self.metric - ) - self.metric = knn.metric # Update the metric to the one used in the KNN object. + knn_graph, self.metric = set_knn_graph( + features=self._determine_optional_features(features, pred_probs), + find_issues_kwargs=kwargs, + metric=self.metric, + k=self.k, + statistics=statistics, + ) self.neighbor_index_choices = self._get_neighbors(knn_graph=knn_graph) @@ -813,27 +814,20 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

self.info = self.collect_info(knn_graph=knn_graph)
- def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: - """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" - knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) - knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - knn_graph: Optional[csr_matrix] = None - if knn_graph_kwargs is not None: - knn_graph = knn_graph_kwargs - elif knn_graph_stats is not None: - knn_graph = knn_graph_stats + def _determine_if_knn_graph_storage_should_be_skipped( + self, features, pred_probs, kwargs, statistics, k + ) -> None: + """Decide whether to skip storing the knn graph based on the availability of pred_probs. - need_to_recompute_knn = isinstance(knn_graph, csr_matrix) and ( - kwargs.get("k", 0) > knn_graph.nnz // knn_graph.shape[0] - or self.k > knn_graph.nnz // knn_graph.shape[0] + Should only happend when a new knn graph needs to be computed, and that it + can only be computed from pred_probs. + """ + sufficient_knn_graph_available = knn_exists(kwargs, statistics, k) + pred_probs_needed = ( + not sufficient_knn_graph_available and features is None and pred_probs is not None ) - - if need_to_recompute_knn: - # If the provided knn graph is insufficient, then we need to recompute the knn graph - # with the provided features - knn_graph = None - return knn_graph + if pred_probs_needed: + self._skip_storing_knn_graph_for_pred_probs = True
[docs] def collect_info(self, knn_graph: csr_matrix) -> dict: issues_dict = { diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html index 1ca6d5d63..1603d2140 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html @@ -620,7 +620,7 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

# along with cleanlab. If not, see <https://www.gnu.org/licenses/>. from __future__ import annotations -from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Tuple, Union, cast +from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Tuple from scipy.sparse import csr_matrix from scipy.stats import iqr @@ -628,13 +628,14 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

import pandas as pd from cleanlab.datalab.internal.issue_manager import IssueManager -from cleanlab.internal.neighbor.knn_graph import construct_knn_graph_from_index +from cleanlab.datalab.internal.issue_manager.knn_graph_helpers import knn_exists, set_knn_graph +from cleanlab.internal.outlier import correct_precision_errors from cleanlab.outlier import OutOfDistribution, transform_distances_to_scores if TYPE_CHECKING: # pragma: no cover import numpy.typing as npt - from sklearn.neighbors import NearestNeighbors from cleanlab.datalab.datalab import Datalab + from cleanlab.typing import Metric
[docs]class OutlierIssueManager(IssueManager): @@ -671,6 +672,9 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

def __init__( self, datalab: Datalab, + k: int = 10, + t: int = 1, + metric: Optional[Metric] = None, threshold: Optional[float] = None, **kwargs, ): @@ -685,73 +689,80 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

if value is not None } + # Simplified API: directly specify k and metric instead of NearestNeighbors object + # This reduces dependency on OutOfDistribution and aligns with Datalab's approach + params["k"] = k + self.k = k + self.t = t + self.metric: Optional[Metric] = metric + if params: ood_kwargs["params"] = params + # OutOfDistribution still used for pred-prob based outlier detection self.ood: OutOfDistribution = OutOfDistribution(**ood_kwargs) - self.threshold = threshold - self._embeddings: Optional[np.ndarray] = None - self._metric: str = None # type: ignore self._find_issues_inputs: Dict[str, bool] = { "features": False, "pred_probs": False, "knn_graph": False, } + # Used for both methods of outlier detection + self.threshold = threshold +
[docs] def find_issues( self, features: Optional[npt.NDArray] = None, pred_probs: Optional[np.ndarray] = None, **kwargs, ) -> None: - knn_graph = self._process_knn_graph_from_inputs(kwargs) - distances: Optional[np.ndarray] = None + statistics = self.datalab.get_info("statistics") + + # Determine if we can use kNN-based outlier detection + knn_graph_works: bool = self._knn_graph_works(features, kwargs, statistics, self.k) + knn_graph = None + if knn_graph_works: + # Set up or retrieve the kNN graph + knn_graph, self.metric = set_knn_graph( + features=features, + find_issues_kwargs=kwargs, + metric=self.metric, + k=self.k, + statistics=statistics, + ) - if knn_graph is not None: - N = knn_graph.shape[0] - k = knn_graph.nnz // N - t = cast(int, self.ood.params["t"]) - distances = knn_graph.data.reshape(-1, k) + # Compute distances and thresholds for outlier detection + distances = knn_graph.data.reshape(knn_graph.shape[0], -1) assert isinstance(distances, np.ndarray) + ( + self.threshold, + issue_threshold, # Useful info for detecting issues in test data + is_issue_column, + ) = self._compute_threshold_and_issue_column_from_distances(distances, self.threshold) + + # Calculate outlier scores based on average distances avg_distances = distances.mean(axis=1) median_avg_distance = np.median(avg_distances) self._find_issues_inputs.update({"knn_graph": True}) + + # Ensure scaling factor is not too small to avoid numerical issues + scaling_factor = float(max(median_avg_distance, 100 * np.finfo(np.float_).eps)) scores = transform_distances_to_scores( - avg_distances, t=t, scaling_factor=median_avg_distance + avg_distances, t=self.t, scaling_factor=scaling_factor ) - elif features is not None: - scores = self._score_with_features(features, **kwargs) - self._find_issues_inputs.update({"features": True}) + + # Apply precision error correction if metric is available + _metric = self.metric + if _metric is not None: + _metric = _metric if isinstance(_metric, str) else _metric.__name__ + scores = correct_precision_errors(scores, avg_distances, _metric) elif pred_probs is not None: + # Fallback to prediction probabilities-based outlier detection scores = self._score_with_pred_probs(pred_probs, **kwargs) self._find_issues_inputs.update({"pred_probs": True}) - else: - if kwargs.get("knn_graph", None) is not None: - raise ValueError( - "knn_graph is provided, but not sufficiently large to compute the scores based on the provided hyperparameters." - ) - raise ValueError(f"Either features pred_probs must be provided.") - - if features is not None or knn_graph is not None: - if knn_graph is None: - assert ( - features is not None - ), "features must be provided so that we can compute the knn graph." - knn_graph = self._process_knn_graph_from_features(features, kwargs) - distances = knn_graph.data.reshape(knn_graph.shape[0], -1) - - assert isinstance(distances, np.ndarray) - ( - self.threshold, - issue_threshold, # Useful info for detecting issues in test data - is_issue_column, - ) = self._compute_threshold_and_issue_column_from_distances(distances, self.threshold) - - else: - assert pred_probs is not None - # Threshold based on pred_probs, very small scores are outliers + # Set threshold for pred_probs-based detection if self.threshold is None: self.threshold = self.DEFAULT_THRESHOLDS["pred_probs"] if not 0 <= self.threshold: @@ -761,6 +772,18 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

) # Useful info for detecting issues in test data is_issue_column = scores < issue_threshold + else: + # Handle case where neither kNN nor pred_probs-based detection is possible + if ( + kwargs.get("knn_graph", None) is not None + or statistics.get("weighted_knn_graph", None) is not None + ): + raise ValueError( + "knn_graph is provided, but not sufficiently large to compute the scores based on the provided hyperparameters." + ) + raise ValueError(f"Either features pred_probs must be provided.") + + # Store results self.issues = pd.DataFrame( { f"is_{self.issue_name}_issue": is_issue_column, @@ -772,24 +795,10 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

self.info = self.collect_info(issue_threshold=issue_threshold, knn_graph=knn_graph)
- def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: - """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" - knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) - knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - knn_graph: Optional[csr_matrix] = None - if knn_graph_kwargs is not None: - knn_graph = knn_graph_kwargs - elif knn_graph_stats is not None: - knn_graph = knn_graph_stats - - if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( - knn_graph.nnz // knn_graph.shape[0] - ): - # If the provided knn graph is insufficient, then we need to recompute the knn graph - # with the provided features - knn_graph = None - return knn_graph + def _knn_graph_works(self, features, kwargs, statistics, k: int) -> bool: + """Decide whether to skip the knn-based outlier detection and rely on pred_probs instead.""" + sufficient_knn_graph_available = knn_exists(kwargs, statistics, k) + return (features is not None) or sufficient_knn_graph_available def _compute_threshold_and_issue_column_from_distances( self, distances: np.ndarray, threshold: Optional[float] = None @@ -812,30 +821,11 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

issue_threshold = compute_issue_threshold(avg_distances, threshold) return threshold, issue_threshold, avg_distances > issue_threshold - def _process_knn_graph_from_features(self, features: np.ndarray, kwargs: Dict) -> csr_matrix: - # Check if the weighted knn graph exists in info - knn_graph = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - # Used to check if the knn graph needs to be recomputed, already set in the knn object - k: int = 0 - if knn_graph is not None: - k = knn_graph.nnz // knn_graph.shape[0] - - knn: NearestNeighbors = self.ood.params["knn"] # type: ignore - if kwargs.get("knn", None) is not None or knn.n_neighbors > k: # type: ignore[union-attr] - # If the pre-existing knn graph has fewer neighbors than the knn object, - # then we need to recompute the knn graph - assert knn == self.ood.params["knn"] # type: ignore[union-attr] - knn_graph = construct_knn_graph_from_index(knn, correction_features=features) - self._metric = knn.metric # type: ignore[union-attr] - - return knn_graph -
[docs] def collect_info( self, *, issue_threshold: float, - knn_graph: Optional[csr_matrix] = None, + knn_graph: Optional[csr_matrix], ) -> dict: issues_dict = { "average_ood_score": self.issues[self.issue_score_key].mean(), @@ -846,7 +836,6 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

feature_issues_dict = {} if knn_graph is not None: - knn = self.ood.params["knn"] # type: ignore N = knn_graph.shape[0] k = knn_graph.nnz // N dists = knn_graph.data.reshape(N, -1)[:, 0] @@ -854,14 +843,13 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

feature_issues_dict.update( { - "k": k, # type: ignore[union-attr] + "k": self.k, # type: ignore[union-attr] "nearest_neighbor": nn_ids.tolist(), "distance_to_nearest_neighbor": dists.tolist(), + "metric": self.metric, # type: ignore[union-attr] + "t": self.t, } ) - if self.ood.params["knn"] is not None: - knn = self.ood.params["knn"] - feature_issues_dict.update({"metric": knn.metric}) # type: ignore[union-attr] if self.ood.params["confident_thresholds"] is not None: pass # @@ -895,13 +883,13 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

prefer_new_graph = ( not old_graph_exists or (isinstance(knn_graph, csr_matrix) and knn_graph.nnz > old_knn_graph.nnz) - or self._metric != self.datalab.get_info("statistics").get("knn_metric", None) + or self.metric != self.datalab.get_info("statistics").get("knn_metric", None) ) if prefer_new_graph: if knn_graph is not None: statistics_dict["statistics"][graph_key] = knn_graph - if self._metric is not None: - statistics_dict["statistics"]["knn_metric"] = self._metric + if self.metric is not None: + statistics_dict["statistics"]["knn_metric"] = self.metric return statistics_dict @@ -916,10 +904,6 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

) raise TypeError(error_msg) scores = self.ood.fit_score(pred_probs=pred_probs, labels=labels, **kwargs) - return scores - - def _score_with_features(self, features: npt.NDArray, **kwargs) -> npt.NDArray: - scores = self.ood.fit_score(features=features) return scores
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html index bb5d5cef5..045e00382 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html @@ -630,7 +630,7 @@

Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou from sklearn.cluster import DBSCAN from cleanlab.datalab.internal.issue_manager import IssueManager -from cleanlab.internal.neighbor.knn_graph import create_knn_graph_and_index +from cleanlab.datalab.internal.issue_manager.knn_graph_helpers import set_knn_graph from cleanlab.rank import get_self_confidence_for_each_label if TYPE_CHECKING: # pragma: no cover @@ -711,7 +711,10 @@

Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou ) raise TypeError(error_msg) if cluster_ids is None: - knn_graph = self.set_knn_graph(features, kwargs) + statistics = self.datalab.get_info("statistics") + knn_graph, self.metric = set_knn_graph( + features, kwargs, self.metric, self.k, statistics + ) cluster_ids = self.perform_clustering(knn_graph) performed_clustering = True else: @@ -747,20 +750,6 @@

Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou worst_cluster_id=worst_cluster_id, )

-
[docs] def set_knn_graph( - self, features: Optional[npt.NDArray], find_issues_kwargs: Dict[str, Any] - ) -> csr_matrix: - knn_graph = self._process_knn_graph_from_inputs(find_issues_kwargs) - old_knn_metric = self.datalab.get_info("statistics").get("knn_metric") - metric_changes = self.metric and self.metric != old_knn_metric - - if knn_graph is None or metric_changes: - knn_graph, knn = create_knn_graph_and_index( - features, n_neighbors=self.k, metric=self.metric - ) - self.metric = knn.metric - return knn_graph
-
[docs] def perform_clustering(self, knn_graph: csr_matrix) -> npt.NDArray[np.int_]: """Perform clustering of datapoints using a knn graph as distance matrix. @@ -847,26 +836,6 @@

Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou ) return worst_cluster_id, worst_cluster_ratio

- def _process_knn_graph_from_inputs(self, kwargs: Dict[str, Any]) -> Union[csr_matrix, None]: - """Determine if a knn_graph is provided in the kwargs or if one is already stored in the associated Datalab instance.""" - knn_graph_kwargs: Optional[csr_matrix] = kwargs.get("knn_graph", None) - knn_graph_stats = self.datalab.get_info("statistics").get("weighted_knn_graph", None) - - knn_graph: Optional[csr_matrix] = None - if knn_graph_kwargs is not None: - knn_graph = knn_graph_kwargs - elif knn_graph_stats is not None: - knn_graph = knn_graph_stats - - if isinstance(knn_graph, csr_matrix) and kwargs.get("k", 0) > ( - knn_graph.nnz // knn_graph.shape[0] - ): - # If the provided knn graph is insufficient, then we need to recompute the knn graph - # with the provided features - knn_graph = None - - return knn_graph -
[docs] def collect_info( self, knn_graph: csr_matrix, diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index df4ab143f..0883e728b 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 42d1182e7..c075c72cb 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index dc8c374ba..45c649c22 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index c44b4dae1..823bcaf4c 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index e80628e4e..f23911619 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 4e5fb9450..a9c21b730 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index cb7e222d1..4b75adbd7 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 03afac7ae..97638ce93 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 266f9cef5..8eb969c1f 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index e749ec9b7..6c931d1c9 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 0ab6fa0b3..484d7738d 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index d4e641d64..ca9448ceb 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 93db3c181..2bf76bd81 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index c62867dae..db2048b88 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 2f7f87697..7527d7971 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index e053b58c1..f27a88b47 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/internal/issue_manager/index.html b/master/cleanlab/datalab/internal/issue_manager/index.html index eddfe2e3e..1d25d2031 100644 --- a/master/cleanlab/datalab/internal/issue_manager/index.html +++ b/master/cleanlab/datalab/internal/issue_manager/index.html @@ -665,6 +665,7 @@

Registered issue managersOutlierIssueManager.issue_name
  • OutlierIssueManager.verbosity_levels
  • OutlierIssueManager.DEFAULT_THRESHOLDS
  • +
  • OutlierIssueManager.metric
  • OutlierIssueManager.ood
  • OutlierIssueManager.find_issues()
  • OutlierIssueManager.collect_info()
  • @@ -739,7 +740,6 @@

    Registered issue managersUnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS
  • UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID
  • UnderperformingGroupIssueManager.find_issues()
  • -
  • UnderperformingGroupIssueManager.set_knn_graph()
  • UnderperformingGroupIssueManager.perform_clustering()
  • UnderperformingGroupIssueManager.filter_cluster_ids()
  • UnderperformingGroupIssueManager.get_worst_cluster()
  • diff --git a/master/cleanlab/datalab/internal/issue_manager/outlier.html b/master/cleanlab/datalab/internal/issue_manager/outlier.html index 9b438bf5e..ee069eba0 100644 --- a/master/cleanlab/datalab/internal/issue_manager/outlier.html +++ b/master/cleanlab/datalab/internal/issue_manager/outlier.html @@ -618,7 +618,7 @@
    - + @@ -626,7 +626,7 @@
    -class cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager(datalab, threshold=None, **kwargs)[source]#
    +class cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager(datalab, k=10, t=1, metric=None, threshold=None, **kwargs)[source]#

    Bases: IssueManager

    Manages issues related to out-of-distribution examples.

    Attributes:

    @@ -667,7 +667,7 @@
    - + @@ -722,6 +722,11 @@ considered an outlier.

    +
    +
    +metric: Optional[Metric]#
    +
    +
    ood: OutOfDistribution#
    @@ -741,7 +746,7 @@
    -collect_info(*, issue_threshold, knn_graph=None)[source]#
    +collect_info(*, issue_threshold, knn_graph)[source]#

    Collects data for the info attribute of the Datalab. :rtype: dict

    @@ -927,6 +932,7 @@
  • OutlierIssueManager.issue_name
  • OutlierIssueManager.verbosity_levels
  • OutlierIssueManager.DEFAULT_THRESHOLDS
  • +
  • OutlierIssueManager.metric
  • OutlierIssueManager.ood
  • OutlierIssueManager.find_issues()
  • OutlierIssueManager.collect_info()
  • diff --git a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html index a24f8ab16..f13287697 100644 --- a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html +++ b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html @@ -684,30 +684,22 @@

    underperforming_group

    - - - - + - + - + - + - + - + @@ -768,16 +760,6 @@

    underperforming_group -
    -
    -set_knn_graph(features, find_issues_kwargs)[source]#
    -
    -
    Return type:
    -

    csr_matrix

    -
    -
    -
    -
    perform_clustering(knn_graph)[source]#
    @@ -1024,7 +1006,6 @@

    underperforming_groupUnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS
  • UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID
  • UnderperformingGroupIssueManager.find_issues()
  • -
  • UnderperformingGroupIssueManager.set_knn_graph()
  • UnderperformingGroupIssueManager.perform_clustering()
  • UnderperformingGroupIssueManager.filter_cluster_ids()
  • UnderperformingGroupIssueManager.get_worst_cluster()
  • diff --git a/master/genindex.html b/master/genindex.html index cab29028e..4e59ae740 100644 --- a/master/genindex.html +++ b/master/genindex.html @@ -2115,6 +2115,8 @@

    M

  • mapping() (in module cleanlab.internal.token_classification_utils)
  • merge_probs() (in module cleanlab.internal.token_classification_utils) +
  • +
  • metric (cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager attribute)
  • ModelOutput (class in cleanlab.datalab.internal.model_outputs)
  • @@ -2616,8 +2618,6 @@

    S

  • set_health_score() (cleanlab.datalab.internal.data_issues.DataIssues method) -
  • -
  • set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager method)
  • set_params() (cleanlab.classification.CleanLearning method) diff --git a/master/objects.inv b/master/objects.inv index 305a02320..fec4fd240 100644 Binary files a/master/objects.inv and b/master/objects.inv differ diff --git a/master/searchindex.js b/master/searchindex.js index 5c11d6388..1ede528b2 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 92, 100, 102, 103], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 92, 100, 102, 103], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 92, 100, 102, 103], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 93, 97, 98, 109], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 91, 98, 106], "benchmark": [1, 38, 84, 85, 90, 91, 92, 100, 102, 103], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 97, 99, 100, 102, 109], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "introduc": [1, 89, 99, 100], "synthet": [1, 102, 103, 108], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 92, 97, 98, 102, 107], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 91, 97, 101, 105, 106], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 97, 101, 102, 105, 106, 107, 108], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 91, 95, 101, 102, 106], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 93, 95, 96, 97, 100, 104, 109], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 93, 99, 103], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "matric": [1, 3, 47, 99], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 91, 93, 95, 96, 97, 98, 102, 103, 107], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107, 108, 109], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 90, 92, 97, 99, 100, 102, 103, 104, 107, 108, 109], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 92, 95, 96, 97, 99, 101, 102], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 95, 97, 104, 105], "trace": [1, 90, 91, 92, 100, 102, 103], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 90, 92, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 108, 109], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 92, 100, 102, 103], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 91, 100, 102], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 104, 105, 107, 108], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 109], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 95, 96, 97, 100, 102, 109], "true_label": [1, 2, 3, 37, 47, 57, 100, 102], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 92, 97, 99, 100, 102, 103, 104, 105, 108, 109], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 99, 100, 102, 103, 107], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107], "achiev": [1, 2, 38, 39, 42, 74, 99, 102, 109], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 92, 95, 96, 97, 99, 100, 103, 104, 105, 109], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 93, 95, 97, 99, 100, 102, 103, 105], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 91, 99, 100, 102, 103, 106, 107], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 99, 102, 105], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 92, 93, 96, 97], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 97, 109], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 108, 109], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 97, 98, 99, 100, 103, 104, 105, 108, 109], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 93, 100, 109], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 98, 99, 100, 101, 103, 104, 105, 108, 109], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 95, 99], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108, 109], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 93, 95, 96, 99, 102, 104, 106, 108, 109], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107, 109], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 105, 108, 109], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 99, 103, 105, 107, 108, 109], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 93, 99, 100, 102, 103, 108, 109], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 98, 99, 106], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 103, 104, 107, 108, 109], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 107, 109], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 108, 109], "perfect": [1, 2, 37, 74, 100, 104], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 91, 92, 93, 95, 96, 100], "yield": [1, 38, 42, 90], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "loop": [1, 3, 47, 57, 93, 104], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 91, 95, 105, 106], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 91, 92, 93, 95, 96, 98, 103, 107, 108], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 42, 61, 74, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105], "pseudocod": [1, 106], "happen": [1, 10, 44, 64, 90, 96, 102, 108], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 90, 93, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 90, 96, 97, 99, 100, 104, 105], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108], "distinct": [1, 19, 57, 109], "natur": [1, 10, 102, 105], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 108, 109], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 92, 95, 97, 99, 100, 102, 103, 105, 107], "round": [1, 41, 44, 57, 74, 97, 99, 107], "astyp": [1, 102], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 91, 93, 97, 104, 105], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 90, 93, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "pragma": 1, "cover": [1, 3, 85, 97, 98, 99], "choic": [1, 8, 44, 53, 55, 93, 99, 103, 105], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 105], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91, 92], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 95, 98, 99, 100, 104], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 92, 100, 102, 103], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 93, 97, 99, 100, 102, 103, 108], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 92, 95, 97, 98, 100, 102, 103], "max_it": [1, 88, 89, 96, 105], "10000": [1, 41, 98, 99], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 107], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 106], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 93, 95, 96, 97, 99, 108, 109], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 92, 100, 102, 103], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 95, 96, 100, 103, 104, 107], "maximum": [1, 10, 71, 79, 83, 108], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 91, 99, 100, 102, 104, 105], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 91, 93, 97, 99, 107, 108], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 91, 97], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 90, 92, 96, 99, 102, 103, 105, 107], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 97, 98, 99, 100, 106], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 90, 92, 93, 96, 97, 98, 99, 103, 104, 107, 109], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 102, 106, 107, 108, 109], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109], "rate": [1, 2, 3, 10, 39, 57, 89, 109], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 92, 95, 96, 97, 99, 102, 103, 105, 106, 107, 108, 109], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 93, 97, 98, 100, 104, 107, 108, 109], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "imposs": [1, 10, 100], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "low": [1, 10, 57, 62, 84, 90, 91, 92, 96, 97, 100, 104, 108], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 91, 93, 103, 104, 105], "forc": [1, 2, 3, 5, 42, 91, 109], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 93, 95, 96, 97, 99, 100, 103, 104, 105, 107, 108, 109], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 91, 92, 93, 96, 97, 102, 103, 104, 105, 106, 107, 108, 109], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 108, 109], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 92, 96, 97, 99, 104], "opposit": [1, 109], "occur": [1, 3, 10, 37, 56, 69, 91, 92, 93, 99, 105], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 93, 96, 98, 103, 105], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "max": [1, 44, 71, 72, 92, 93, 97, 105], "tri": [1, 38, 42, 106], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 90, 96, 97, 99, 100, 102, 105, 107], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 91, 92, 93, 95, 99, 100, 103, 107, 108], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 92, 103, 104, 105, 108], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 92, 98, 102, 103, 104, 109], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 99, 100, 108], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 103, 105, 108, 109], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 93, 97, 102, 106, 108, 109], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 99, 102, 103, 104, 108, 109], "ball": [1, 98], "bin": [1, 3, 64, 90, 91, 92, 105], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100, 105, 106, 107], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 93, 99, 102, 105, 108], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 103, 104, 105, 106, 107, 108, 109], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106, 108, 109], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 97, 99, 100, 101], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 90, 96, 97, 98, 99, 100, 103, 105, 107, 108, 109], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 107], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 92, 95, 96, 100, 107], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 104], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 95, 96, 99, 102, 103, 105, 106, 108, 109], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 97, 99, 107], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 91, 92, 95, 98, 99, 102, 105, 109], "four": [2, 10, 98, 100, 109], "clf": [2, 3, 5, 49, 74, 84, 87, 95, 97, 99, 100, 103], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107, 109], "sample_weight": [2, 42, 74, 100], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 105], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 98, 99, 100, 101, 105, 107, 108, 109], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 105, 107], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 93, 94, 101, 106], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 107], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 96, 97, 99, 109], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 91, 93, 95, 97, 99, 102, 103, 104, 105, 107, 108, 109], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108, 109], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 90, 93, 95, 99, 100, 102, 103, 104, 106, 108], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 91, 95, 96, 99, 107, 108, 109], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 92, 96], "loss": [2, 39, 61, 72, 74, 93], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 93, 97, 99, 100, 102, 103, 107], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 106, 108, 109], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 90, 93, 95, 98, 102, 103, 104, 105, 106, 107, 108, 109], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 91, 92, 93, 97, 99, 106, 107], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 93, 96, 97, 99, 103, 104, 107, 108], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "clone": [2, 74, 103], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 91, 97, 99, 100, 102, 103, 104, 105, 107, 109], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 91, 92, 93, 95, 99, 101, 103, 104, 107], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "manual": [2, 74, 87, 88, 89, 97, 99, 105, 106, 107, 109], "pytorch": [2, 38, 39, 42, 74, 84, 89, 93, 99, 101, 103, 108], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 92, 96, 99, 100, 103, 105, 106, 107, 108, 109], "__init__": [2, 39, 74, 93], "independ": [2, 3, 10, 63, 74, 96, 97, 106, 107, 109], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 97, 99, 106, 107], "neural": [2, 39, 61, 71, 74, 89, 93, 99, 103, 105, 107], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 93, 96, 99, 103, 105, 107], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 92, 93, 95, 96, 105, 106], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 96, 99], "insid": [2, 42, 74, 99, 100], "There": [2, 3, 7, 52, 84, 100, 102], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107, 108, 109], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 91, 96, 98, 99, 105, 106, 109], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 93, 95, 96, 100, 102, 103, 104, 106, 108, 109], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "prune": [2, 3, 44, 64, 74, 85, 104], "everyth": [2, 70, 100], "els": [2, 70, 90, 91, 93, 97, 98, 99, 102, 103, 104], "mathemat": [2, 3, 10, 47, 103], "keep": [2, 14, 15, 57, 84, 90, 91, 97, 98, 99, 108], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 92, 93, 100, 103, 105, 108, 109], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 98, 99, 106], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 92, 95, 96, 97, 98, 101], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 105, 107], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 95, 96, 97, 99, 103, 104, 105, 107, 108, 109], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 99, 100, 107], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 104, 105, 107], "x_train": [2, 87, 90, 91, 92, 100, 102, 103, 107], "labels_maybe_with_error": 2, "had": [2, 3, 74, 104], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 94, 101, 102, 106, 107], "pred": [2, 44, 57, 87, 88, 106, 107], "x_test": [2, 87, 90, 91, 92, 100, 103, 107], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 91, 92, 93, 97, 99, 104], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 105, 107, 109], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 91, 92, 95, 98, 100, 104], "adapt": [2, 38, 40, 57, 60, 74, 105], "skorch": [2, 74, 84, 99], "kera": [2, 60, 67, 70, 74, 84, 99, 104], "scikera": [2, 61, 74, 99], "open": [2, 41, 98, 104, 109], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 107, 109], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 104, 105, 107], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 91, 92, 96, 102, 109], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 93, 96, 97, 99, 102, 104, 106, 107], "easi": [2, 12, 47, 74, 91, 92, 98, 99, 100, 103], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 93, 97, 98, 99, 100, 102, 103, 105, 107, 109], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 91, 93, 96, 97, 98, 103, 108, 109], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 91, 92, 93, 95, 96, 97, 99, 100, 103, 106, 107], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 91, 93, 95, 96, 97, 99, 100, 104, 105, 107, 109], "total": [2, 3, 4, 37, 41, 57, 63, 83, 90, 93, 99, 108], "state": [2, 3, 5, 38, 39, 42, 48, 74, 100, 103, 104, 109], "art": [2, 39, 100, 103], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 91, 92, 99, 102], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 91, 101, 106], "uncertainti": [2, 10, 46, 71, 74, 99, 105, 107], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 91, 92, 93, 96, 99, 100, 103, 106], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 92, 97, 98, 105, 107], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 109], "deep": [2, 40, 42, 60, 61, 74, 96], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "subfield": 2, "theori": [2, 100], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 91, 92, 97, 98, 102], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 107], "varieti": [2, 87, 88, 99], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 91, 92, 93, 95, 96, 100, 103, 104, 105, 108, 109], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 91, 93, 99, 100, 105, 107, 109], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 92, 96, 99, 102, 104, 106, 108, 109], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 91, 95, 99, 100, 102, 103, 104, 105, 108, 109], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 90, 95, 96, 97, 99, 100, 103, 106, 107, 109], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 98, 100, 102, 105, 107, 109], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 91, 96, 98, 99, 103, 104, 105, 106, 108, 109], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 99, 100], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 99], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 92, 98, 107], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 97, 99, 100, 102, 103, 104], "messi": [2, 74, 100], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 92, 98, 99], "robust": [2, 47, 52, 74, 92, 99], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 92, 99, 102, 104], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 91, 92, 96, 100], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 104, 106, 109], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 90, 99], "wrapper": [2, 61, 87, 88, 89, 107], "around": [2, 69, 90, 91, 92, 104, 105, 109], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 90, 95, 96, 97, 98, 99, 108, 109], "along": [2, 49, 64, 82, 90, 91, 92, 93, 97, 99, 105], "dimens": [2, 57, 76, 79, 93, 99, 105, 108], "select": [2, 9, 10, 27, 51, 62, 72, 93, 99, 102, 105], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 106, 109], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 95, 98, 99, 104, 108], "By": [2, 37, 63, 64, 74, 91, 97, 108], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 91, 92, 96, 97, 99, 100, 102, 103, 104, 108], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 91, 92, 98, 100, 101, 104, 105, 107, 108], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 108, 109], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 102, 103, 105, 107], "consist": [2, 3, 38, 42, 51, 57, 62, 97, 108, 109], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107, 109], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 92, 96, 97], "close": [2, 3, 10, 41, 47, 71, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 99], "equival": [2, 3, 38, 42, 47, 71, 105, 107], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 90, 99, 102, 108], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 100], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 92, 97, 98, 104, 105], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 93, 99, 109], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 91], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 93, 96, 98, 99, 103, 104, 107, 108, 109], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 99, 103, 104, 107, 108, 109], "particularli": [2, 84, 102, 105], "filter_bi": [2, 3, 41, 44, 64, 85, 99], "frac_nois": [2, 44, 64, 80, 99], "min_examples_per_class": [2, 44, 64, 92, 99, 100], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 91, 92, 93, 95, 96, 97, 102, 103, 107], "accuraci": [2, 39, 72, 87, 88, 89, 93, 99, 100, 102, 105, 107, 108], "n_job": [2, 41, 44, 64, 76, 78, 80, 99, 105, 108], "disabl": [2, 38, 42, 44, 105], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 91, 97, 99, 102, 106], "caus": [2, 44, 49, 91, 92, 97, 99], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 91, 92, 98, 99, 103, 104, 105, 108, 109], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 99, 100, 103, 104, 108, 109], "adjust_pred_prob": [2, 10, 66, 71, 72, 100], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 104, 105, 106, 107, 108], "much": [2, 10, 37, 41, 44, 74, 90, 97, 98, 99, 100, 102, 105], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 91, 93, 96, 98, 99, 104, 105, 106, 107], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 108, 109], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 100], "limit": [2, 5, 17, 41, 52, 64, 90, 97, 104, 108, 109], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 91, 108], "label_issues_batch": [2, 40, 64, 99], "find_label_issues_batch": [2, 40, 41, 64, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 91, 97, 104, 105, 108, 109], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 100], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 93, 96, 99, 100, 103, 107], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 93, 95, 96, 100, 102, 104, 106, 107], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 107, 108, 109], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 103, 105, 107, 108, 109], "final": [2, 10, 74, 87, 95, 97, 104, 106, 107], "remain": [2, 74, 85, 87, 88, 93, 103, 107, 109], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 107, 108], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 91, 92, 95, 96, 97, 99, 100, 102, 107, 109], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 107, 108, 109], "scipi": [2, 4, 5, 14, 53, 57, 71, 97], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 92, 93, 95, 96, 97, 100], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 97], "torch": [2, 38, 39, 42, 88, 89, 93, 96, 98, 105], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 91, 92, 93, 99, 100, 105], "tensorflow": [2, 57, 61, 84, 89, 99], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 92, 93, 95, 99, 100, 101, 103, 107], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 93, 98, 99, 100, 103, 104, 107, 109], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 109], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 106, 108, 109], "abl": [2, 3, 10, 74, 89, 99, 100, 102, 103], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 91, 92, 93, 95, 97, 98, 102, 107, 108, 109], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107], "shuffl": [2, 10, 57, 89, 93, 96, 97, 103, 105], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 109], "batch": [2, 41, 57, 61, 62, 76, 78, 90, 93, 99, 105], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 107, 108, 109], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 96, 99, 105], "eg": [2, 5, 10, 57, 67, 70, 91, 92, 99], "repeat": [2, 57, 62, 102, 105], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 93, 95, 97, 99, 102, 103, 105, 106, 107, 108], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "seri": [2, 3, 41, 57, 58, 74, 82, 99], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 105, 109], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 98, 102, 106, 107, 108, 109], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 92, 99, 104, 109], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 91, 97, 99, 102, 104, 105, 107], "cutoff": [2, 3, 53, 105], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108], "section": [2, 3, 7, 10, 85, 93, 95, 97, 99, 104], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 98, 99, 106], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 92, 94, 97, 99, 100], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 90, 100], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 92, 93, 96, 102, 104, 107], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 93, 95, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 92, 98, 99, 109], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 93, 97, 99, 104], "observ": [2, 3, 47, 54, 89, 90, 91, 92, 102, 105, 107], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 93, 95, 96, 99, 100, 104, 107], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 105, 106, 107, 109], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 100, 107], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 90, 92, 97, 99, 103, 104], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 92, 93, 96, 99, 104, 107, 108], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 106, 107, 108, 109], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 99, 100], "significantli": [2, 10, 93, 97, 100, 102, 106], "reduc": [2, 41, 44, 57, 89, 99], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 91, 93, 95, 98, 99, 100, 104, 105, 107, 108, 109], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 90, 93, 95, 102, 103, 104, 109], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 109], "skip": [2, 10, 38, 42, 74, 89, 97, 99, 103, 109], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 90, 93, 97, 100, 102, 106], "caution": [2, 5, 99], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 91, 95, 96, 102, 106], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 91, 93, 95, 97, 99, 107, 108, 109], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 92, 95, 97, 98, 99, 102, 103, 104, 109], "still": [2, 41, 42, 57, 71, 87, 89, 93, 99, 105], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 93, 96, 99, 102, 105], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 92, 104], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 93, 97, 99, 100, 103, 109], "appropri": [2, 10, 17, 35, 53, 64, 72, 91, 95, 103, 104], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 91, 93, 95, 103, 107, 109], "f": [2, 7, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 90, 93, 97, 99, 106, 108], "access": [2, 10, 14, 38, 42, 74, 88, 92, 93, 96, 98, 103], "hyperparamet": [2, 66, 71, 93], "purpos": [2, 52, 91, 92, 97, 99, 103, 107], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 91, 93, 96, 98, 102, 104, 105, 106, 108, 109], "explicitli": [2, 8, 10, 42, 52, 74, 99], "yourself": [2, 5, 41, 92, 97], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 93, 95, 96, 98, 99, 100, 102, 103, 105, 107], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 108], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 93, 95, 96, 97, 99, 105], "offer": [2, 5, 9, 10, 88, 89, 91, 92, 96, 99, 100, 103], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 91, 93, 96, 97, 99, 100, 102, 104, 105, 106, 107, 108], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 91, 97], "label_issues_df": [2, 74, 93], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 108], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 91, 92], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 95, 97, 99, 100, 102, 104, 106, 108], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 93, 97, 99, 105], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 92, 99, 100, 109], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 105], "uniqu": [2, 32, 57, 79, 91, 97, 99, 103, 105], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108, 109], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 97, 99, 100, 105], "trick": [2, 99], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 93, 95, 96, 97, 104, 105], "account": [2, 37, 62, 66, 71, 72, 88, 96, 99, 100, 102, 103, 105, 107], "word": [2, 3, 56, 82, 83, 99], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 107], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 91, 92, 93, 96, 97, 100, 103, 105, 108], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 93, 96, 97, 98, 99, 100, 105, 106, 107], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 91, 94, 98, 101, 103, 107, 108, 109], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 99], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 106, 107, 109], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 99, 100, 102, 103, 104, 107, 109], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 91, 92, 93, 99, 100, 102, 106, 107, 108], "simpli": [2, 10, 37, 72, 88, 91, 92, 95, 96, 99, 100, 103, 107, 108, 109], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 92, 93, 95, 96, 97, 100, 104], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "cach": [2, 88, 96], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 100, 102, 107, 108], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 91, 102, 103, 105, 107], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 91, 93, 97, 99, 100, 102, 109], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 90, 98, 99, 102, 104, 108, 109], "prefer": [2, 72, 80, 97, 103], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 96, 99, 100, 104], "invok": [2, 38, 42, 100, 106], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 103, 107], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 96, 99, 104], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 92, 97, 98, 109], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 105], "docstr": [2, 37, 38, 42, 57, 74, 98, 100], "unless": [2, 38, 42, 52, 74, 99], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 92, 97, 99, 104, 105, 106, 108, 109], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 92, 93, 95, 96, 97, 99, 102, 107], "label_qu": [2, 62, 74, 88, 100, 102, 107], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 98, 99, 100, 102, 103, 107, 108, 109], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 107], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "eas": 2, "comparison": [2, 38, 42, 70, 100, 102], "against": [2, 38, 42, 91, 95, 97, 99, 102, 103], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108], "ad": [2, 38, 42, 90, 92, 102, 107], "precis": [2, 53, 55, 64, 67, 70, 97, 98, 99, 100, 108, 109], "definit": [2, 7, 35, 49, 74, 87, 95], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 100, 102, 103, 104, 106, 109], "precomput": [2, 4, 5, 47, 52, 74, 92, 93, 95, 96, 97, 98, 100], "clear": [2, 38, 42, 54, 74, 88, 96, 107], "save": [2, 5, 17, 38, 41, 42, 70, 74, 99, 104, 108, 109], "space": [2, 5, 10, 71, 74, 93, 95, 97, 98], "place": [2, 38, 42, 52, 57, 74, 87, 102], "larg": [2, 9, 10, 41, 52, 74, 93, 95, 96, 99, 104, 105, 108, 109], "deploi": [2, 9, 10, 74, 93, 95, 96, 99], "care": [2, 10, 38, 42, 52, 74, 96, 97, 99, 100], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 90, 99, 100, 102, 104, 107], "cannot": [2, 5, 13, 15, 57, 106, 109], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 91, 92, 95, 96, 99, 100, 102, 103, 104, 105, 108, 109], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 91, 95, 96, 97, 98, 100, 102, 105, 108, 109], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 93, 102, 103], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 91, 92, 99], "metadata": [2, 10, 42, 74, 93, 95, 96, 109], "through": [2, 5, 7, 42, 74, 88, 89, 90, 92, 96, 97, 98, 99, 102, 104, 105], "develop": [2, 9, 42, 54, 74, 99, 100, 109], "request": [2, 42, 74, 87, 88, 92, 96, 97, 98, 103, 109], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 93, 97, 99, 104, 108], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "www": [2, 42, 74, 105], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 99, 100, 109], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 105, 107, 109], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 100], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 99], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 107, 108, 109], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 91, 99, 102, 103, 104, 109], "unchang": [2, 38, 42, 74, 109], "relev": [2, 17, 27, 42, 74, 93, 95, 97], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 99], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 91, 96, 99, 104, 105, 109], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 109], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 107], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 96, 99], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 91, 93], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 93, 95, 96, 102, 105, 107], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 109], "latter": [2, 38, 42, 74, 105], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 90, 95, 97, 99], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 93, 95, 97, 98, 99, 100, 104, 109], "channel": [3, 89, 100], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 92, 98], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 99, 100], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 92, 97, 105], "joint": [3, 37, 44, 47, 57, 63, 64, 98], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 103], "don": [3, 84, 92, 93, 95, 96, 100, 104, 107], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 100], "off": [3, 44, 57, 69, 93, 100, 104, 105], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 92, 100, 108, 109], "confident_learn": [3, 44, 64, 100], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 102], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 93, 97, 99, 100, 102, 103, 105, 107, 108], "bincount": [3, 90, 91, 92, 100, 102, 103], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 100, 107], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 92, 93, 95, 97, 98, 99, 100, 105, 107], "As": [3, 7, 84, 91, 92, 96, 100, 107, 109], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 103], "approach": [3, 37, 41, 44, 61, 87, 90, 95, 97, 100, 103, 105, 107], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 92, 93, 96, 97, 100, 107], "know": [3, 10, 91, 92, 93, 95, 96, 99, 100, 102, 107], "cut": [3, 69, 84, 100], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 104, 105, 109], "underestim": 3, "few": [3, 9, 10, 70, 84, 92, 97, 99, 102, 103, 104, 105, 109], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 98, 99, 103, 108, 109], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 99, 103, 105, 109], "num_issu": [3, 7, 41, 89, 90, 91, 92, 93, 95, 96, 97, 100], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 90, 98, 99, 104, 107, 109], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 100], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 92, 103, 104, 105, 106], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 107], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 95, 109], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 104, 105, 108, 109], "truli": [3, 105, 108], "estimate_joint": [3, 37, 100], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 100, 104, 106, 108, 109], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 104, 105], "done": [3, 10, 61, 74, 91, 99, 100, 103, 105, 106], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 93, 95, 96, 106], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 91, 97, 99, 100, 103, 104], "baselin": [3, 38, 44, 88, 105, 107], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 99], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 109], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 90, 93, 97, 99, 108], "practic": [3, 87, 88, 92, 93, 100, 105, 107], "complet": [3, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "gist": 3, "cj_ish": 3, "guess": [3, 47, 100, 102], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "parallel": [3, 44, 70, 80, 98], "again": [3, 61, 87, 99, 105], "simplifi": [3, 15, 99], "understand": [3, 9, 10, 37, 63, 70, 92, 97, 100, 101, 107, 108, 109], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 91, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 109], "optim": [3, 38, 39, 42, 61, 93, 97, 102], "speed": [3, 44, 88, 98, 99, 107], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 97, 104], "enumer": [3, 38, 42, 89, 90, 91, 92, 93, 97, 109], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 97, 99, 100, 104, 105, 108], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 97], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 100, 106], "poorli": [3, 47, 87, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 100], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 91, 95, 100, 103, 107], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 93, 95, 97], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 91, 92, 93, 99, 104, 108], "percent": 3, "often": [3, 37, 47, 63, 99, 100, 106, 108], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 91, 93, 95, 96, 99, 103, 104, 105, 107], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 99, 100, 102, 103, 104, 106], "pro": 3, "con": 3, "pred_proba": [3, 106], "combin": [3, 37, 91, 93, 97, 98, 99, 100, 106, 107], "becaus": [3, 47, 53, 57, 69, 96, 97, 99, 100, 102, 104], "littl": [3, 41, 98, 104, 109], "uniform": [3, 72, 98, 99, 100], "20": [3, 7, 43, 83, 89, 90, 93, 96, 97, 98, 99, 100, 104, 107, 108, 109], "Such": [3, 93, 105], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 104], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 97, 109], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 91, 95, 96, 98, 99, 104, 105, 108, 109], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 100], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 100, 108, 109], "five": [3, 67, 70, 100, 104], "estimate_cv_predicted_prob": [3, 100], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 104], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108, 109], "u": [4, 87, 88, 89, 91, 93, 95, 97, 99, 100, 102, 103, 106, 107, 108, 109], "assess": [4, 10, 97, 104], "contribut": [4, 10, 19, 97, 104], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 95, 97], "metric": [4, 5, 10, 19, 20, 27, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 93, 95, 96, 97, 100, 107], "10": [4, 10, 19, 20, 24, 27, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 92, 96, 97, 105], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 91, 92, 93, 95, 96, 97, 99, 100, 105], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 95, 105], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 93, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 92, 96, 97, 99, 103, 104, 107], "lowest": [4, 10, 62, 70, 92, 93, 95, 97, 99, 102, 103, 104, 108], "fall": [4, 10, 69, 78, 82, 100, 105], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 105, 107, 108], "approxim": [4, 10, 19, 41, 54, 71, 97, 102], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 105, 107, 109], "arxiv": [4, 19, 100], "ab": [4, 19, 100, 104], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 91, 92, 95, 96, 97, 100, 103, 107], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 91, 92, 93, 96, 99, 100, 105], "suppli": [4, 103, 104, 107], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 97, 103], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 93, 95, 96, 100], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 95, 97, 105], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 97], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 95, 105], "cosin": [4, 10, 52, 53, 55, 71, 97, 105], "dim": [4, 71, 93, 108], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 95], "dimension": [4, 27, 53, 57, 89, 100, 105], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 107], "fewer": [4, 10, 44, 57, 71, 97, 104], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 93, 95, 96, 100], "exce": [4, 52, 90, 93, 97], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 92, 93, 96, 97, 105, 109], "rel": [4, 10, 37, 52, 62, 63, 71, 91, 92, 93, 95, 96, 100, 105], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 97, 100], "closer": [4, 10, 69, 104], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 97, 98, 105], "convers": 4, "neg": [4, 10, 69, 70, 91, 92, 97, 98], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 99], "neither": [4, 5, 10, 15, 53, 104], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 90, 93, 96, 98, 99], "55": [4, 56, 97, 98, 104, 107], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 93, 94, 95, 96, 97, 99, 100, 103, 104, 107], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 91, 95, 96, 97, 100, 102, 105, 106], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 97], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "egg": [5, 7, 9, 12, 36, 84, 98], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "image_kei": [5, 10, 93], "interfac": [5, 9, 10, 54, 84, 99, 100], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 91, 96, 97, 98, 99], "goal": [5, 107], "track": [5, 7, 14, 15, 84, 90, 91, 98, 99, 100], "intermedi": [5, 9, 92], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 92, 95, 96, 97, 100], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 93, 96, 97, 98, 99, 102, 103, 104], "hug": [5, 10, 13, 93], "face": [5, 10, 13, 17, 93, 98, 103], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 93, 96, 99, 100, 102, 104], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 95, 96, 97, 99, 102, 103, 109], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 91, 92, 95, 96, 100, 102, 103, 104], "path": [5, 13, 38, 41, 42, 70, 89, 91, 99, 104], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 91, 92, 94, 98, 99, 100, 101, 102, 105], "txt": [5, 13, 109], "csv": [5, 13, 87, 88, 95, 96, 107], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 103], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 92, 96, 101, 102, 105], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 103], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 91, 92, 94, 98, 99, 101, 102, 103, 104, 106, 108], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 97, 107], "pil": [5, 93], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 92, 93, 99, 101, 103, 108], "load_dataset": [5, 13, 93], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 90], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 98, 100, 104, 108, 109], "empti": [5, 13, 47, 62, 92, 97, 99, 103], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 107, 108, 109], "common": [5, 10, 14, 17, 92, 94, 97, 98, 99, 100, 103, 104, 108], "real": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "world": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "interact": [5, 17, 96, 99], "thereof": [5, 17], "insight": [5, 17, 70, 102], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 109], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 105, 107, 108], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 93, 95, 96, 100, 103, 104], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 93, 95, 96, 100, 103], "squar": [5, 57, 74, 98, 107], "csr": [5, 52, 97], "evenli": 5, "omit": [5, 69, 70, 93, 97, 104], "itself": [5, 33, 38, 42, 52, 97, 104], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 92, 95, 98, 100, 102, 106, 107, 108, 109], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 103, 109], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 96, 103, 104, 109], "ascend": [5, 37, 63, 93, 100], "segment": [5, 76, 78, 79, 101], "reflect": [5, 10, 52, 87, 88, 95, 96, 102, 104, 105, 107], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 95], "illustr": [5, 97], "todens": 5, "second": [5, 49, 57, 70, 72, 91, 95, 99, 100, 109], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 91, 97, 100, 107], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 97, 99, 102, 109], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 96, 97, 100, 107, 108, 109], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 98, 107, 109], "random_st": [5, 87, 89, 90, 91, 92, 93, 97, 100, 103, 105], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107], "comprehens": [5, 84, 93, 103, 107], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 97], "mode": [5, 12, 19, 38, 41, 42, 105], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 97], "toarrai": [5, 52, 97], "NOT": [5, 41, 96], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 92], "suppos": [5, 10, 67, 87, 88, 105, 107], "who": [5, 69, 87, 95, 97, 100, 109], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 91, 97, 99], "clean_learning_kwarg": [5, 10, 11, 24, 31, 99, 107], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 100], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 92, 95, 96, 99, 100, 103, 107, 109], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 107, 108, 109], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 105, 107, 108, 109], "suffer": [5, 10, 14, 23, 64, 72, 83, 97, 109], "onc": [5, 23, 37, 38, 42, 87, 90, 91, 99, 100, 103, 104], "familiar": [5, 97], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 109], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 109], "compar": [5, 62, 71, 82, 91, 92, 95, 97, 100, 104], "issue_summari": [5, 7, 10, 14, 90, 91, 97], "With": [5, 9, 10, 41, 88, 96, 99, 100, 102, 107, 108, 109], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 93, 102, 107], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 93, 95, 96, 100, 104], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 97], "wherea": [5, 10, 57, 64, 87, 88, 106], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 91, 92, 97, 100, 101, 107], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 100, 107], "global": [5, 7, 10, 23, 38, 42, 98], "non_iid": [5, 10, 11, 15, 27, 92, 93, 95, 96, 97, 100], "hypothesi": [5, 97], "iid": [5, 7, 9, 27, 95, 100], "never": [5, 89, 100, 103, 105, 106], "someth": [5, 7, 10, 38, 42, 72, 104], "123": [5, 90, 91, 92], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 93, 95, 96, 100], "focu": [5, 10, 14, 96, 97, 108, 109], "full": [5, 10, 14, 41, 61, 70, 90, 93, 109], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 108], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 91, 92, 93, 95, 96, 97, 100], "get_issue_summari": [5, 10, 14, 90, 92, 97], "get_info": [5, 14, 92, 96, 97, 98], "yet": [5, 18, 28, 61, 98, 102], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 91], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 91, 93], "load": [5, 13, 41, 70, 93, 98, 99, 100, 104, 105, 108, 109], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 91, 93, 96, 99], "overwrit": [5, 91], "separ": [5, 37, 49, 66, 91, 92, 93, 97, 99, 104, 106], "static": 5, "rememb": [5, 96, 99, 100], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 91, 97, 98, 108, 109], "ident": [5, 10, 23, 57, 90, 96, 97], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 98, 102, 107], "walk": 7, "alongsid": [7, 38, 42, 91, 99], "pre": [7, 8, 10, 38, 42, 91, 92, 107], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 93, 99], "issue_manager_factori": [7, 15, 91], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "thing": [7, 42, 88, 97, 100, 107], "next": [7, 62, 84, 87, 88, 89, 90, 93, 95, 96, 97, 99, 102, 104, 107, 109], "dummi": 7, "randint": [7, 32, 49, 90, 91, 92, 97], "mark": [7, 10, 85, 104, 105, 107], "regard": [7, 92, 100], "rand": [7, 49, 52, 90, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "whole": [7, 10, 27, 38, 42, 92, 97], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "popul": [7, 92, 96], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 104], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 90, 97, 99, 103], "intermediate_arg": 7, "min": [7, 49, 69, 82, 91, 99, 105], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 38, 42, 53, 76, 82, 96, 97, 99], "easili": [7, 47, 85, 87, 88, 89, 90, 92, 95, 96, 100, 102, 103, 105, 106, 107, 108], "hard": [7, 42, 98, 105], "sai": [7, 10, 38, 42, 97, 103, 108], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 95, 96, 97, 99, 100, 102, 105], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 90, 92, 93, 95, 96, 99, 100, 108], "won": [7, 38, 42, 91, 92, 99, 103], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 91], "instanti": [7, 17, 41, 61, 71, 88, 89, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 93, 95, 96, 100], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 104, 105, 107, 108, 109], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "169312": 7, "17": [7, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 98, 104, 109], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 91, 92, 95, 96, 99, 100, 103, 107], "sensit": [8, 10, 55, 97], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 90], "n_cluster": [8, 32, 97], "cluster_id": [8, 10, 11, 32, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 92, 93, 95, 96, 97, 100], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 97, 99, 106], "nondefault": 9, "Near": [9, 99], "imbal": [9, 22, 66, 71, 72, 92], "null": [9, 11, 15, 22, 92, 93, 96, 100], "togeth": [9, 10, 47, 88, 91, 92, 93, 95, 96, 100, 107, 109], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 107, 108, 109], "prerequisit": 9, "basic": [9, 42, 61, 95, 96, 97, 105], "fulli": [9, 10, 38, 42, 61, 99], "platform": [9, 10, 84, 93, 95, 96, 99], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 95, 99, 100, 107, 108], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 99, 100], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 93, 95, 96, 99, 103, 105, 108, 109], "fix": [9, 10, 62, 88, 90, 96, 97, 100, 107], "scientist": [9, 10], "million": [9, 10, 109], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 107, 109], "suggest": [9, 10, 37, 62, 63, 69, 88, 93, 96, 99, 107], "power": [9, 10, 93, 95, 96, 98, 100, 109], "automl": [9, 10, 84, 99], "system": [9, 10, 89, 90, 93, 95, 96, 108], "foundat": [9, 10, 84, 97], "improv": [9, 10, 62, 87, 88, 92, 93, 98, 99, 100, 107, 108], "click": [9, 10, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "tune": [9, 10, 88, 89, 96, 98, 105], "serv": [9, 10, 14, 17, 102], "auto": [9, 10, 87, 88, 90, 92, 98, 99, 107], "free": [9, 10, 84, 89, 92, 93, 95, 96, 99, 100], "page": [10, 92, 99, 100], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104], "why": [10, 90, 96], "matter": [10, 37, 63, 88, 96], "didn": [10, 97], "plu": [10, 107], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 93, 95, 96, 97, 99, 100], "class_imbal": [10, 11, 15, 21, 92, 93, 95, 96, 97, 100], "data_valu": [10, 11, 15, 22, 97], "No": [10, 11, 87, 88, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 109], "issue_scor": 10, "atyp": [10, 71, 91, 92, 93, 95, 96, 100, 105], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 91, 92, 95, 96, 99, 106, 107], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89, 90], "expertis": 10, "interpret": [10, 98, 99, 100, 103, 107], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 93, 95, 96, 97, 100, 104, 107], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 93, 95, 96, 100, 107], "appear": [10, 37, 48, 63, 64, 67, 75, 92, 93, 95, 96, 97, 107, 108], "now": [10, 41, 85, 87, 88, 89, 90, 92, 97, 99, 102, 104, 105, 107, 109], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 99, 100, 101], "hamper": [10, 93, 98], "analyt": [10, 84, 97, 99, 102], "lead": [10, 69, 72, 93, 97, 104], "draw": [10, 90, 91, 92], "conclus": [10, 96], "let": [10, 38, 42, 71, 72, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "sort_valu": [10, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 107], "head": [10, 87, 88, 89, 92, 93, 95, 96, 97, 98, 100, 102, 107], "97": [10, 87, 98, 99, 100, 104, 107, 109], "064045": 10, "58": [10, 87, 92, 97, 98, 100, 104], "680894": 10, "41": [10, 97, 98, 104, 107], "746043": 10, "794894": 10, "98": [10, 98, 99, 107], "802911": 10, "give": [10, 49, 72, 100, 102, 108], "li": [10, 71], "especi": [10, 87, 88, 90, 93, 97, 99, 107], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107], "rare": [10, 44, 70, 90, 91, 92, 93, 95, 96, 99, 100], "anomal": [10, 72, 90, 91, 92, 93, 95, 96, 100], "articl": [10, 41, 99], "blog": 10, "unexpect": [10, 38, 42, 96], "consequ": 10, "inspect": [10, 88, 89, 90, 92, 93, 100, 104, 107], "011562": 10, "62": [10, 97, 100, 104, 107], "019657": 10, "22": [10, 89, 90, 91, 93, 97, 98, 100, 103, 104, 109], "035243": 10, "040907": 10, "42": [10, 49, 96, 97, 98, 104, 109], "056865": 10, "smaller": [10, 71, 90, 103, 104], "extrem": [10, 91, 92, 93, 95, 96, 97, 99, 100], "record": [10, 38, 42, 89, 95, 107], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 95, 96, 97, 99, 100, 103, 107, 109], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 100], "nearli": [10, 23, 92, 93, 95, 96], "awar": [10, 85, 100], "presenc": [10, 52, 54, 100], "36": [10, 97, 98, 109], "066009": 10, "80": [10, 39, 87, 95, 103, 107], "003906": 10, "093245": 10, "005599": 10, "27": [10, 90, 95, 97, 98, 100, 104, 109], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 103, 107], "signific": [10, 95, 96, 100], "violat": [10, 95, 96, 97, 100], "assumpt": [10, 95, 96, 97, 100], "changepoint": [10, 95, 96, 100], "shift": [10, 52, 54, 95, 96, 100], "drift": [10, 92, 95, 97, 100], "autocorrel": [10, 95, 96, 100], "almost": [10, 95, 96, 100], "adjac": [10, 52, 95, 96, 100], "tend": [10, 37, 47, 95, 96, 100, 108, 109], "sequenti": [10, 38, 42, 61, 93], "pai": [10, 96], "attent": [10, 97], "realli": [10, 88, 96, 102, 108], "mere": 10, "highlight": [10, 79, 83, 90, 91, 92, 95, 97, 108], "necessarili": [10, 62, 70, 96, 100], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 92, 96, 99, 100, 104], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 95, 96, 97, 98, 99, 100, 106, 109], "x1": [10, 67, 70, 104], "x2": [10, 67, 70, 104], "10th": 10, "100th": 10, "90": [10, 82, 87, 95, 100, 106, 107], "similarli": [10, 38, 42, 91, 93, 95, 99, 104], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 102], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 93, 96, 99, 102, 104], "scenario": [10, 52, 54, 72, 90, 91, 92], "underli": [10, 43, 54, 71, 80, 82, 109], "stem": [10, 71, 105], "evolv": 10, "influenc": 10, "act": [10, 69, 91], "accordingli": [10, 33, 52], "emploi": [10, 103, 105], "partit": [10, 106], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 90, 93, 95, 96], "problem": [10, 33, 41, 49, 79, 84, 91, 92, 93, 96, 99], "deploy": [10, 87, 88, 100, 107], "overlook": [10, 69, 104], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 95, 96, 100, 106, 109], "diagnos": [10, 92, 99], "24": [10, 89, 90, 97, 98, 100, 102, 104, 107], "681458": 10, "37": [10, 91, 97, 98], "804582": 10, "64": [10, 42, 87, 93, 95, 97, 100, 104, 109], "810646": 10, "815691": 10, "78": [10, 87, 95, 98, 100, 104, 107], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 90, 99], "rarest": [10, 92], "q": [10, 104], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 104], "smote": 10, "asymmetr": [10, 37], "28": [10, 93, 96, 97, 98, 100, 102, 109], "75": [10, 49, 90, 91, 92, 97, 98, 102, 103, 104, 107, 109], "33": [10, 38, 42, 97, 98, 104], "68": [10, 87, 98, 100, 104], "excess": [10, 93], "dark": [10, 108], "bright": [10, 109], "blurri": [10, 93], "lack": [10, 61, 97], "unusu": [10, 104, 105], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 92, 93, 95, 96, 101], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 92, 97, 107, 108], "tabular": [10, 84, 86, 91, 92, 94, 97, 99, 102], "categor": [10, 71, 86, 87, 91, 92, 94, 99, 107], "encod": [10, 50, 70, 76, 79, 87, 88, 95, 96, 99, 107, 108], "71": [10, 97, 98, 100, 104, 107], "70": [10, 82, 95, 97], "69": [10, 100, 107], "subgroup": [10, 97], "wors": [10, 97, 102], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 90, 99, 104, 107], "pattern": [10, 97], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 99], "quantif": 10, "39": [10, 88, 89, 91, 93, 96, 97, 98, 99, 104, 107, 108, 109], "32": [10, 89, 91, 97, 98, 102, 104], "valuabl": [10, 19, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 109], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 105], "outsid": [10, 99, 103], "outlierissuemanag": [10, 15, 22, 29, 91], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 93, 95, 96, 97, 102, 106, 108], "mandatori": [10, 93], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 93, 98, 104, 108], "29": [10, 90, 93, 97, 98, 102, 103, 104, 108, 109], "low_inform": [10, 93], "odd_aspect_ratio": [10, 93], "35": [10, 90, 91, 97, 98, 102, 103, 104], "odd_siz": [10, 93], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "is_outlier_issu": [11, 90, 91, 92, 93, 95, 96, 97, 100], "outlier_scor": [11, 29, 90, 91, 92, 93, 95, 96, 97, 100, 105], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_scor": [11, 20, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_set": [11, 20, 22, 91, 92, 93, 95, 96, 99, 100], "is_non_iid_issu": [11, 92, 95, 96, 97, 100], "non_iid_scor": [11, 27, 92, 95, 96, 97, 100], "is_class_imbalance_issu": [11, 92, 97], "class_imbalance_scor": [11, 21, 92, 97], "is_underperforming_group_issu": [11, 92, 97], "underperforming_group_scor": [11, 32, 92, 97], "is_null_issu": [11, 92, 97], "null_scor": [11, 28, 92, 97], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 19, 97], "studio": [12, 84, 92, 93, 95, 96, 99], "data_issu": [12, 16, 17, 34, 91], "issue_find": [12, 16, 97], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 93, 102], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 93], "dataissu": [14, 16, 17, 34], "central": [14, 109], "repositori": [14, 93], "strategi": [14, 49, 97, 99], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 93, 99], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 91], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 97, 100, 104, 108, 109], "creation": [17, 42, 97], "execut": [17, 38, 42, 91, 93, 99, 104], "coordin": [17, 67, 69, 70, 104, 109], "At": [17, 70, 99], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 93, 98, 99, 100, 102, 103], "25": [19, 27, 38, 49, 55, 90, 92, 93, 97, 98, 100, 102, 103, 104, 109], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 93, 99, 100, 102, 103], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 96, 105], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 91, 93, 97, 98, 100, 103], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 100, 109], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 90, 91, 92, 93, 96, 100, 105], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "set_knn_graph": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 108], "priori": [23, 100], "abstract": [23, 33], "applic": [24, 62, 99, 100, 102, 109], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 107], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 104, 108], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 95, 97, 107], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 93, 97, 104, 105, 109], "superclass": 28, "arbitrari": [28, 37, 78, 82, 91, 105, 107], "prompt": 28, "address": [28, 88, 91, 92, 96, 99], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 109], "50": [32, 42, 90, 97, 99, 100, 102, 104, 105, 107], "keepdim": [32, 99], "signifi": 32, "absenc": 32, "find_issues_kwarg": 32, "int64": [32, 89, 102], "npt": 32, "int_": 32, "id": [32, 62, 91, 93, 97, 99, 102], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 105, 109], "content": [33, 71, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "fetch": [33, 41, 89, 92, 99], "datset": 34, "exclud": [34, 43, 79, 83, 91, 99, 109], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91, 92], "continu": [35, 61, 87, 88, 93, 96, 99, 102, 104, 107, 109], "binari": [35, 49, 57, 64, 66, 100, 109], "simultan": [35, 107], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 91, 92], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 93, 98, 104, 106, 108], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 92, 93, 95, 96, 102, 104, 105, 107, 109], "modifi": [37, 38, 41, 42, 52, 54, 57, 99, 100], "rank_classes_by_label_qu": [37, 92], "merg": [37, 52, 56, 84, 98, 99, 109], "find_overlapping_class": [37, 99, 100], "problemat": [37, 63, 79, 83, 89, 104, 109], "unnorm": [37, 63, 100], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108, 109], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 107], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 92, 95, 96, 97, 100, 102, 106, 107], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 100], "cv": [37, 49, 87, 89, 90, 91, 92, 95, 97, 100, 102], "df": [37, 57, 83, 89, 97, 99], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 100, 106], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 98, 108, 109], "clearli": [37, 72, 93, 104, 108], "num": [37, 63, 98, 100], "overlap": [37, 84, 98, 99, 100], "ontolog": 37, "publish": [37, 109], "therefor": [37, 72, 97], "vehicl": [37, 98], "truck": [37, 98, 105, 108], "intuit": [37, 63, 90], "car": [37, 98, 104, 108], "frequent": [37, 62, 97, 99, 107], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 98, 99, 105, 106, 109], "cat": [37, 57, 63, 65, 98, 99, 105, 106], "captur": [37, 89, 104, 105, 108], "co": [37, 38, 39, 93], "noisy_label": [37, 90, 91, 92, 103], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 100], "half": [37, 38, 40, 42, 63, 98, 109], "health_scor": [37, 63], "classes_by_label_qu": [37, 92], "cnn": [38, 40, 42, 93], "cifar": [38, 39, 98, 105], "teach": [38, 39], "bhanml": 38, "blob": [38, 97], "master": [38, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 106, 108, 109], "forward": [38, 39, 40, 42, 93, 102], "overridden": [38, 42], "although": [38, 42, 71, 87, 95], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 99, 102, 103, 104, 106, 109], "hook": [38, 42, 98], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 109], "nn": [38, 39, 42, 52, 93], "init": [38, 42, 100], "no_grad": [38, 42, 93, 105], "init_weight": [38, 42], "linear": [38, 42, 88, 93, 96], "fill_": [38, 42], "net": [38, 42, 89, 93, 98], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 93], "tensor": [38, 39, 42, 88, 89, 93, 96, 105], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 105], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 93], "move": [38, 42, 49, 85, 98], "cuda": [38, 40, 42, 89, 93], "devic": [38, 42, 89, 93], "gpu": [38, 42, 88, 89, 96], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 92, 95, 97, 99, 103, 106, 107], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 93, 103, 105], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 91, 97, 98, 102, 105, 109], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 97, 105, 107], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 96], "resolv": [38, 42, 90, 109], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 93, 97, 108], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 93], "break": [38, 42, 93, 104], "pickl": [38, 42, 104], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 93], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 108, 109], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 90, 98, 104, 109], "diagram": [38, 42, 106], "degre": [38, 42], "queri": [38, 42, 52, 54, 92, 93, 97, 99, 103], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 92, 98, 99, 100, 103, 104, 109], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 97, 102], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 91, 93, 97, 99, 100, 102, 104, 105], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 109], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 96, 99], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 95], "fire": [38, 42, 98], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 91, 92], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 93, 95, 107], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 96], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 93, 99], "design": [38, 42, 52, 90], "ordereddict": [38, 42], "detach": [38, 42, 93], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 99], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 96, 98], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 96], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 93], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 104], "noisili": [39, 100], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 93], "decim": [39, 57], "forget": [39, 49, 109], "rate_schedul": 39, "epoch": [39, 40, 42, 93, 99], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 97, 99], "250": [39, 91, 92, 100, 104], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 93, 96, 100], "train_load": [39, 42], "model1": [39, 100], "optimizer1": 39, "model2": [39, 100], "optimizer2": 39, "dataload": [39, 93, 105], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 97, 109], "wish": [40, 60, 105, 108, 109], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 99], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 108, 109], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 90, 93, 99, 105, 108], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 93], "loader": [40, 42, 93], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 99], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 99, 100], "conveni": [41, 54, 87, 88, 89, 96], "script": 41, "labels_fil": [41, 99], "pred_probs_fil": [41, 99], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 108], "read": [41, 46, 92, 99, 100, 105, 109], "zarr": [41, 99], "memmap": [41, 108], "pythonspe": 41, "mmap": [41, 99], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 99], "yourfil": 41, "npy": [41, 98, 99, 108], "mmap_mod": [41, 108], "tip": [41, 44, 61, 99], "save_arrai": 41, "your_arrai": 41, "disk": [41, 98, 99], "npz": [41, 109], "maxim": [41, 62, 76, 78, 108], "multiprocess": [41, 44, 64, 76, 78, 93, 99], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 104], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 91, 99, 104, 105], "store_result": 41, "becom": [41, 97, 105], "verifi": [41, 54, 99, 102, 105], "long": [41, 62, 71, 102], "enough": [41, 57, 97, 99], "chunk": [41, 106], "ram": [41, 98], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 99], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 96, 99, 105], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 99, 100, 102], "seen": [41, 90, 99, 105, 109], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 100, 104], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 93], "update_num_issu": 41, "arr": [41, 99], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 99, 105], "mnist": [42, 84, 89, 98], "handwritten": 42, "digit": [42, 89, 98], "last": [42, 49, 67, 70, 90, 91, 92, 99, 102, 104, 109], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 97, 100, 103, 104, 105], "templat": 42, "flexibli": 42, "among": [42, 62, 100], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 105], "train_label": [42, 88, 105], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 96], "token_classif": [43, 56, 80, 82, 83, 99], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 99, 103], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 100], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 96, 99], "seem": [44, 100, 103], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 100], "predicted_neq_given": [44, 64, 100], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 99], "too": [44, 49, 52, 71, 92, 93, 99, 104], "thread": [44, 64], "window": [44, 89, 98], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 99], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 100], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 100], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 103], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 103], "onehot2int": [45, 50, 103], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 109], "get_sent": [45, 56, 109], "filter_sent": [45, 56, 109], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 102], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 97], "behav": 46, "unnecessari": [46, 99], "slightli": [46, 87, 88, 90], "interv": [46, 49, 105], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 102, 108, 109], "increas": [47, 55, 69, 71, 72, 89, 91, 97, 99, 102, 103, 109], "dot": [47, 82, 99], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 95, 99, 103, 105, 107], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 102], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 98], "check_consensus_label_class": 48, "consensus_label": [48, 62, 102], "consensus_method": [48, 62], "consensu": [48, 62, 84, 101, 109], "establish": [48, 61, 88, 107], "compute_soft_cross_entropi": 48, "soft": [48, 98], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 99], "fine_search_s": [48, 74, 99], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 97, 98, 99, 105, 108], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 105], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 98], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 92, 97, 100, 103, 107], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 95, 96, 100, 109], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 109], "success": 49, "previou": [49, 52, 93, 95, 99, 104], "discount": 49, "s_ema": 49, "175": [49, 93, 100, 104], "underflow": 49, "nan": [49, 62, 87, 95, 97, 102, 107], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 97], "n_label": 49, "worst": [49, 102], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 93], "onevsrestclassifi": [49, 103], "randomforestclassifi": [49, 100, 103], "n_split": [49, 92, 93, 103], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 95, 98, 99, 107, 108], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 92, 96, 104, 105, 107], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 99], "manner": [52, 66, 87, 88, 97, 102, 107], "701": 52, "900": [52, 87, 95, 107], "436": 52, "000": [52, 88, 93, 96, 98, 109], "idea": [52, 72, 90, 104], "dens": [52, 61, 97], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 103], "vari": [52, 69, 92], "exact_duplicate_set": 52, "main": [52, 62, 90], "front": [52, 98], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 92, 99, 108], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 95, 97], "slower": 53, "decid": [53, 62, 88, 96, 98, 102, 107, 109], "predefin": 53, "met": [53, 109], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91, 92], "That": [53, 100, 103], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 93, 95, 96, 99, 100], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 91], "dt": 55, "right": [55, 67, 70, 88, 96, 103, 104, 105], "strength": [55, 70, 97], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 98], "thumb": 55, "ood_features_scor": [55, 71, 105], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 91, 99, 102], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 99, 109], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 93, 95, 97, 109], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 92, 95, 97, 100, 103, 105, 107, 108], "red": [56, 70, 90, 91, 92, 97, 98, 100, 103, 104, 105, 108], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 95, 99, 100, 107], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 90, 93, 105], "versu": [57, 100], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 96, 100], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 92, 97, 100, 103, 105], "short_titl": 57, "round_plac": 57, "pretti": [57, 90, 100], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 95, 96, 102, 105, 108], "allow_shuffl": 57, "turn": [57, 84, 104], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 90, 93, 98, 99, 100, 102, 103, 104, 105, 109], "bottom": [57, 67, 70, 97, 104], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 90, 95, 96, 97, 100, 109], "jupyt": [57, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "notebook": [57, 62, 89, 90, 92, 98, 99, 100, 102, 103, 104, 108, 109], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 103], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 109], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 96, 105], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 100, 102, 103], "get_label_quality_multiannot": [62, 102], "vote": 62, "crowdsourc": [62, 84, 102], "dawid": [62, 102], "skene": [62, 102], "analog": [62, 90, 98, 102], "chosen": [62, 72, 99, 102], "crowdlab": [62, 102], "unlabel": [62, 93, 95, 96, 102, 105, 108], "get_active_learning_scor": [62, 102], "activelab": [62, 102], "priorit": [62, 69, 104, 108, 109], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 95, 100, 102, 107], "majority_vot": 62, "broken": [62, 70, 98, 107], "highest": [62, 70, 91, 93, 106], "0th": 62, "consensus_quality_scor": [62, 102], "annotator_agr": [62, 102], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 98], "agreement": [62, 102], "agre": 62, "prevent": [62, 99], "overconfid": [62, 106], "detailed_label_qu": [62, 102], "annotator_stat": [62, 102], "model_weight": 62, "annotator_weight": 62, "warn": [62, 91, 92, 93, 95, 96, 97, 99, 100], "labels_info": 62, "num_annot": [62, 102], "deriv": [62, 102], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 102], "num_examples_label": [62, 102], "agreement_with_consensu": [62, 102], "worst_class": [62, 102], "trustworthi": [62, 102, 107], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 107], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 91, 102], "get_majority_vote_label": [62, 102], "event": 62, "lastli": [62, 95], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 103], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 97], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 93, 100], "anim": [65, 105], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 98, 104], "object_detect": [67, 69, 70, 104], "return_indices_ranked_by_scor": [67, 104], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 97, 104, 108, 109], "bbox": [67, 70, 104], "image_nam": [67, 70], "y1": [67, 70, 104], "y2": [67, 70, 104], "later": [67, 70, 71, 88, 109], "corner": [67, 70, 104], "xyxi": [67, 70, 104], "io": [67, 70, 89, 97, 98], "keras_cv": [67, 70], "bounding_box": [67, 70, 104], "detectron": [67, 70, 104], "detectron2": [67, 70, 104], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 93, 107, 109], "draw_box": [67, 70], "mmdetect": [67, 70, 104], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 92], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 104, 108, 109], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 104], "bounding_box_size_distribut": [68, 70, 104], "class_label_distribut": [68, 70, 104], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 99], "chose": [69, 102, 104], "imperfectli": [69, 104], "dirti": [69, 72, 75, 107], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 95, 96, 99], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 108], "discov": [70, 92, 97, 109], "abnorm": [70, 93, 104], "auxiliari": [70, 105, 108], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 92, 97, 100, 103, 105, 107, 108], "sorted_idx": [70, 105], "class_to_show": 70, "hidden": [70, 90, 105], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "matplotlib": [70, 79, 90, 91, 92, 93, 97, 100, 103, 104, 105, 107], "pyplot": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "prediction_threshold": 70, "overlai": [70, 104], "figsiz": [70, 90, 91, 92, 93, 97, 100, 103, 105], "save_path": [70, 104], "blue": [70, 98, 100, 104], "overlaid": 70, "side": [70, 98, 104], "figur": [70, 97, 100, 103, 105, 107], "extens": [70, 100, 102], "png": [70, 104], "pdf": [70, 71], "svg": 70, "num_proc": [70, 93], "intersect": [70, 99], "tp": 70, "fp": 70, "ground": [70, 98, 100, 102, 107], "truth": [70, 100, 102, 107], "bias": [70, 97], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 95, 98, 100, 107], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 105], "behind": [71, 100], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 99], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 93], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 105], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 96, 105], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 91, 92, 95, 96, 105, 106], "order_label_issu": [72, 85], "whichev": [72, 106], "argsort": [72, 88, 93, 96, 100, 104, 105, 107], "max_": 72, "get_label_quality_ensemble_scor": [72, 99, 100], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 98], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 96], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 105], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 96], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 107], "linearregress": [74, 99, 107], "y_with_nois": 74, "n_boot": [74, 99], "include_aleatoric_uncertainti": [74, 99], "sole": [74, 87, 91, 102, 105], "bootstrap": [74, 99, 107], "resampl": [74, 89, 99], "epistem": [74, 99, 105, 107], "aleator": [74, 99, 107], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 99], "fine": [74, 88, 89, 96, 105], "grain": 74, "grid": 74, "varianc": [74, 100], "epistemic_uncertainti": 74, "residu": [74, 75, 99], "deviat": [74, 104, 107], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 92, 93, 98, 99, 102, 104, 105, 107], "aka": [75, 89, 100, 104, 107, 109], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 101], "pixel": [76, 78, 79, 93, 105, 108], "h": [76, 78, 79, 108], "height": [76, 78, 79, 108], "w": [76, 78, 79, 108], "width": [76, 78, 79, 108], "labels_one_hot": [76, 79, 108], "stream": [76, 90, 105, 109], "downsampl": [76, 78, 108], "shrink": [76, 78], "divis": [76, 78, 91], "common_label_issu": [77, 79, 81, 83, 108, 109], "filter_by_class": [77, 79, 108], "segmant": [78, 79], "num_pixel_issu": [78, 108], "product": [78, 93, 97, 99], "pixel_scor": [78, 108], "enter": 79, "legend": [79, 90, 91, 92, 97, 103, 104, 107, 108], "colormap": 79, "background": [79, 97], "person": [79, 99, 104, 108, 109], "ambigu": [79, 83, 88, 89, 96, 98, 100, 109], "systemat": [79, 83, 102], "misunderstood": [79, 83], "issues_df": [79, 93], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 109], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 109], "converg": 82, "toward": [82, 97], "_softmin_sentence_scor": 82, "sentence_scor": [82, 109], "token_info": 82, "02": [82, 91, 92, 97, 100, 104], "03": [82, 95, 97, 98, 100, 104, 109], "04": [82, 95, 97, 104], "08": [82, 97, 100, 104, 107, 109], "commonli": [83, 85, 91, 92, 103, 109], "But": [83, 96, 100, 107, 109], "restrict": [83, 99], "reliabl": [84, 87, 89, 97, 99, 102, 108], "thousand": 84, "imagenet": [84, 98], "popular": [84, 102, 104], "centric": [84, 93, 95, 96, 101], "minut": [84, 87, 88, 89, 95, 96, 98, 102, 103, 104, 107, 108, 109], "conda": 84, "feature_embed": [84, 105], "Then": [84, 87, 88, 93, 99], "your_dataset": [84, 89, 91, 92, 93, 95, 96, 99], "column_name_of_label": [84, 89, 91, 92, 93, 95, 96], "plagu": [84, 92], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 92], "sklearn_compatible_model": 84, "framework": [84, 103, 104], "complianc": 84, "tag": [84, 103, 109], "sequenc": 84, "recognit": [84, 89, 99, 109], "train_data": [84, 87, 88, 105, 107], "gotten": 84, "test_data": [84, 87, 88, 90, 100, 103, 105, 107], "deal": [84, 92, 97], "tutori": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "feel": [84, 89, 92, 99], "ask": [84, 99], "slack": [84, 99], "project": [84, 107], "welcom": 84, "commun": [84, 99], "guidelin": [84, 104], "piec": 84, "smart": [84, 93, 95, 96, 99], "edit": [84, 99], "easier": [84, 97, 100], "unreli": [84, 87, 89, 95, 96], "link": [84, 89, 98, 104], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 95], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 95, 98, 109], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 100], "research": [85, 100], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 105, 107, 108, 109], "sql": [87, 95], "databas": [87, 95], "excel": [87, 95], "parquet": [87, 95], "student": [87, 95, 107, 109], "grade": [87, 95, 107], "exam": [87, 95, 107], "letter": [87, 95, 109], "hundr": [87, 95], "mistak": [87, 88, 93, 95, 96], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "preprocess": [87, 88, 92, 95, 97, 105, 107], "standardscal": [87, 95, 105], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 92, 105], "accuracy_scor": [87, 88, 89, 96, 100], "grades_data": [87, 95], "read_csv": [87, 88, 95, 96, 97, 107], "demo": [87, 92, 95, 103], "stud_id": [87, 95], "exam_1": [87, 95, 107], "exam_2": [87, 95, 107], "exam_3": [87, 95, 107], "letter_grad": [87, 95], "f48f73": [87, 95], "53": [87, 90, 91, 92, 95, 97, 98, 103, 104], "00": [87, 91, 92, 95, 97, 98, 105], "77": [87, 91, 92, 95, 104, 109], "0bd4e7": [87, 95], "81": [87, 95, 96, 104, 107, 109], "great": [87, 90, 95, 98], "particip": [87, 95], "cb9d7a": [87, 95], "61": [87, 95, 97, 100, 104, 107], "94": [87, 95, 98, 100, 104, 107], "9acca4": [87, 95], "48": [87, 95, 97, 98, 100, 104], "x_raw": [87, 95], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 107], "x_encod": [87, 95], "get_dummi": [87, 95, 107], "drop_first": [87, 95], "numeric_featur": [87, 95], "scaler": [87, 95, 105], "x_process": [87, 95], "fit_transform": [87, 95, 97], "bring": [87, 88, 93, 95, 96, 102, 107], "byod": [87, 88, 93, 95, 96, 102, 107], "tress": 87, "held": [87, 89, 95, 96, 98, 104, 105, 106], "straightforward": [87, 89, 95], "benefit": [87, 89, 106, 108], "num_crossval_fold": [87, 89, 95, 102], "tabl": [87, 95, 98, 102], "212": [87, 100], "review": [87, 88, 92, 95, 96, 98, 99, 100, 104, 107, 108, 109], "iloc": [87, 88, 89, 95, 96, 107], "92": [87, 91, 100, 104], "93": [87, 98, 104, 107], "827": 87, "99": [87, 97, 98, 100, 109], "86": [87, 92, 93, 95, 100, 104, 107], "74": [87, 97, 104, 107], "637": [87, 95], "79": [87, 98, 104], "65": [87, 91, 97, 104], "cheat": 87, "0pt": 87, "120": [87, 91, 92], "233": 87, "83": [87, 100, 104, 107, 109], "76": [87, 90, 100, 103, 104, 107], "suspici": [87, 95], "carefulli": [87, 93, 95, 96], "examin": [87, 90, 91, 92, 95, 97, 104], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91, 92], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 107], "14": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 99, 107], "trust": [87, 88, 89, 99, 100, 102, 106, 107], "effort": [87, 88, 107], "intent": [88, 96], "servic": [88, 96, 99], "onlin": [88, 96], "bank": [88, 96, 98], "banking77": [88, 96], "oo": [88, 96], "categori": [88, 93, 96, 97], "shortlist": [88, 96, 107], "scope": [88, 96], "logist": [88, 90, 91, 92, 96, 102, 105], "probabilit": [88, 89], "drop": [88, 95, 97, 99, 102, 107], "earlier": [88, 109], "sentence_transform": [88, 96], "sentencetransform": [88, 96], "payment": [88, 96], "cancel_transf": [88, 96], "transfer": [88, 96], "fund": [88, 96], "cancel": [88, 96], "transact": [88, 96], "my": [88, 96], "revert": [88, 96], "morn": [88, 96], "realis": [88, 96], "yesterdai": [88, 96], "rent": [88, 96], "tomorrow": [88, 96], "raw_text": [88, 96], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_payment_fee_charg": [88, 96], "apple_pay_or_google_pai": [88, 96], "change_pin": [88, 96], "supported_cards_and_curr": [88, 96], "visa_or_mastercard": [88, 96], "beneficiary_not_allow": [88, 96], "card_about_to_expir": [88, 96], "lost_or_stolen_phon": [88, 96], "getting_spare_card": [88, 96], "card": [88, 96, 98], "utter": [88, 96], "encond": 88, "test_label": [88, 100, 103, 105], "suit": [88, 96, 97, 98, 99], "electra": [88, 96], "discrimin": [88, 96], "googl": [88, 90, 96], "train_text": 88, "test_text": 88, "home": [88, 91, 92, 96, 97, 98], "runner": [88, 91, 92, 96, 97], "google_electra": [88, 96], "pool": [88, 96, 99, 105], "opt": [88, 89, 92, 93, 95, 96, 97, 100], "hostedtoolcach": [88, 89, 92, 93, 95, 96, 97, 100], "x64": [88, 89, 92, 93, 95, 96, 97, 100], "lib": [88, 89, 92, 93, 95, 96, 97, 100], "python3": [88, 89, 92, 93, 95, 96, 97, 100], "site": [88, 89, 92, 93, 95, 96, 97, 100], "_util": [88, 96], "831": [88, 96], "userwarn": [88, 89, 91, 92, 96, 97], "typedstorag": [88, 96], "untypedstorag": [88, 96], "untyped_storag": [88, 96], "fget": [88, 96], "__get__": [88, 96], "owner": [88, 96], "leverag": [88, 89, 96, 99, 100, 102], "computation": [88, 89, 96], "intens": [88, 89, 96], "400": [88, 90, 96], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 107], "lowest_quality_label": [88, 89, 96, 100, 107], "to_numpi": [88, 96, 97, 107], "44": [88, 97, 98, 103, 104], "646": 88, "390": 88, "628": 88, "121": [88, 90, 100], "702": 88, "863": [88, 89], "135": 88, "337": [88, 104], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 96], "cash": [88, 96], "holidai": [88, 96], "sent": [88, 96, 109], "mine": [88, 96], "expir": [88, 96], "fight": 88, "hors": [88, 98, 105], "duck": [88, 98], "me": [88, 96, 97], "whoever": [88, 96], "consum": [88, 107], "18": [88, 89, 90, 96, 97, 98, 99, 100, 104, 105, 107, 108], "baseline_model": [88, 107], "87": [88, 92, 93, 104, 107], "acceler": [88, 107], "19": [88, 89, 90, 93, 96, 97, 98, 99, 100, 104, 105, 107, 108, 109], "89": [88, 90, 91, 95, 104, 107], "spoken": 89, "500": [89, 105, 109], "english": [89, 98], "pronunci": 89, "wav": 89, "huggingfac": [89, 91, 92, 93, 99], "voxceleb": 89, "speech": [89, 109], "your_pred_prob": [89, 90, 91, 92, 95, 96], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 95, 97, 100, 102], "command": 89, "wget": [89, 104, 108, 109], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 109], "v1": 89, "tar": [89, 105], "gz": [89, 105], "mkdir": [89, 109], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 90, 93, 97, 99], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "pulldown": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "colab": [89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 98, 99], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 97], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 93], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 93], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 93], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 91, 97, 98, 100, 104, 107, 109], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 90, 93, 97, 98, 100, 104, 107], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 99], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 93, 95, 96, 100], "lt": [89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 105], "gt": [89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 109], "9976": 89, "986": 89, "002161": 89, "176": [89, 98, 100, 103], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 96], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 100], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 105], "load_ext": 90, "autoreload": 90, "ve": [90, 98, 99, 100, 102, 104], "prove": 90, "monitor": [90, 98], "ran": 90, "data_monitor": 90, "your_datalab": 90, "new_data_batch": 90, "your_label": 90, "get_your_label": 90, "your_featur": [90, 96], "get_featur": 90, "websit": [90, 98], "todo": 90, "get_ipython": 90, "18dfb0db7c17aa398779ce653a9dc9d7f7b7df62": 90, "cmd": 90, "dep": 90, "dependencies_test": 90, "missing_depend": 90, "__import__": 90, "importerror": 90, "sep": [90, 97, 109], "npleas": 90, "toi": [90, 91, 92, 93, 97, 98, 100, 102], "mid": [90, 91, 92], "workflow": [90, 94, 99, 101, 107], "unseen": 90, "inf": [90, 91, 92], "bins_map": [90, 91, 92], "create_data": [90, 91, 92], "800": 90, "y_bin": [90, 91, 92], "y_i": [90, 91, 92], "y_bin_idx": [90, 91, 92], "y_train": [90, 91, 92, 100, 107], "y_test": [90, 91, 92, 100, 107], "y_train_idx": [90, 91, 92], "y_test_idx": [90, 91, 92], "slide": [90, 91, 92, 98], "frame": [90, 91, 92], "x_out": [90, 91, 92], "tini": [90, 91, 92], "concaten": [90, 91, 92, 106], "y_out": [90, 91, 92], "y_out_bin": [90, 91, 92], "y_out_bin_idx": [90, 91, 92], "exact_duplicate_idx": [90, 91, 92], "x_duplic": [90, 91, 92], "y_duplic": [90, 91, 92], "y_duplicate_idx": [90, 91, 92], "noisy_labels_idx": [90, 91, 92, 103], "train_x": 90, "test_x": 90, "train_y_tru": 90, "test_y_tru": 90, "train_i": 90, "test_i": 90, "train_y_idx": 90, "test_y_idx": 90, "scatter": [90, 91, 92, 97, 100, 103, 107], "black": [90, 91, 92, 98, 107], "cyan": [90, 91, 92], "plot_data": [90, 91, 92, 97, 100, 103, 107], "fig": [90, 91, 92, 93, 98, 105, 107], "ax": [90, 91, 92, 93, 97, 105, 107], "subplot": [90, 91, 92, 93, 105], "set_titl": [90, 91, 92, 93, 105], "set_xlabel": [90, 91, 92], "x_1": [90, 91, 92], "fontsiz": [90, 91, 92, 93, 97, 100, 103], "set_ylabel": [90, 91, 92], "x_2": [90, 91, 92], "set_xlim": [90, 91, 92], "set_ylim": [90, 91, 92], "linestyl": [90, 91, 92, 97], "circl": [90, 91, 92, 100, 103], "misclassifi": [90, 91, 92], "zip": [90, 91, 92, 93, 104, 109], "label_err": [90, 91, 92], "180": [90, 91, 92, 104], "marker": [90, 91, 92], "facecolor": [90, 91, 92, 97], "edgecolor": [90, 91, 92, 97], "linewidth": [90, 91, 92, 97, 105], "title_fontproperti": [90, 91, 92], "semibold": [90, 91, 92], "first_legend": [90, 91, 92], "align": [90, 91, 92], "markerscal": 90, "second_legend": [90, 91, 92], "46": [90, 95, 97, 98, 100, 104], "gca": [90, 91, 92], "add_artist": [90, 91, 92], "tight_layout": [90, 91, 92, 97], "ideal": [90, 91, 92], "simplic": [90, 97, 103], "327": [90, 104], "9297": 90, "000124": 90, "259": 90, "000725": 90, "269": 90, "000794": 90, "002061": 90, "125": [90, 91], "002908": 90, "fly": [90, 98], "feed": [90, 99], "simul": 90, "tqdm": [90, 93], "sleep": [90, 98], "generate_stream": 90, "sleep_tim": 90, "desc": 90, "singleton_stream": 90, "seamless": [90, 99], "singleton": 90, "batched_stream": 90, "processed_singleton": 90, "suggested_label": [90, 96], "250997": 90, "285757": 90, "43": [90, 91, 97, 98, 100, 104], "120906": 90, "principl": 90, "processed_batch": 90, "51": [90, 91, 92, 95, 97, 98, 100, 104], "002748": 90, "189996": 90, "093505": 90, "037250": 90, "149": [90, 104], "076397": 90, "154": 90, "294010": 90, "160": [90, 96, 107], "073622": 90, "166": [90, 93], "140832": 90, "167": [90, 98, 100, 104], "041743": 90, "181": 90, "169429": 90, "127304": 90, "235": [90, 104], "090310": 90, "254": [90, 98, 104], "183343": 90, "256": [90, 98, 99, 104], "048720": 90, "263": [90, 103, 104], "138820": 90, "292": 90, "239609": 90, "295": [90, 104], "022075": 90, "306": 90, "103040": 90, "343": 90, "234755": 90, "354": 90, "001612": 90, "359": 90, "068359": 90, "367": [90, 107], "015793": 90, "368": 90, "029022": 90, "391": 90, "106761": 90, "troublesom": 90, "623844": 90, "812647": 90, "816854": 90, "661968": 90, "632244": 90, "395": 90, "474599": 90, "396": 90, "653901": 90, "397": 90, "584554": 90, "398": 90, "817287": 90, "399": 90, "881545": 90, "183": 90, "937927": 90, "309": 90, "939505": 90, "133": 90, "947290": 90, "177": 90, "952187": 90, "314": [90, 104], "997293": 90, "655501": 90, "3603": 90, "173": [90, 104], "000330": 90, "000626": 90, "296": 90, "002004": 90, "304": 90, "165496": 90, "275": [90, 103], "179811": 90, "001317": 90, "005943": 90, "001426": 90, "320": [90, 104], "186355": 90, "349": 90, "187305": 90, "393": 90, "169838": 90, "185770": 90, "369889": 90, "285297": 90, "406162": 90, "516543": 90, "440142": 90, "476283": 90, "382757": 90, "466786": 90, "522078": 90, "276298": 90, "328181": 90, "409633": 90, "281425": 90, "518102": 90, "360596": 90, "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "dup": [91, 92], "45": [91, 92, 97, 98, 100, 104], "remaind": 91, "modal": [91, 92, 99, 102], "132": [91, 92, 100, 104], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98], "014828": 91, "107": [91, 92, 100, 103], "021241": 91, "026407": 91, "notic": [91, 100, 102, 104], "3558": [91, 92], "126": [91, 92, 100, 104], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 108], "000000e": [91, 92], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 100, 104, 107], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 103, 108, 109], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "348": 91, "378": 91, "357": 91, "34": [91, 97, 98, 100, 102, 104, 109], "54": [91, 97, 98, 100, 104], "039122": 91, "044598": 91, "105": [91, 104], "105196": 91, "133654": 91, "168033": 91, "101107": 91, "183382": 91, "109": [91, 98, 104], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 104, 109], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 104, 109], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 100, 104], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 102, 104], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100], "_split": 92, "776": 92, "thoroughli": 92, "904": 92, "_base": [92, 93, 95, 96, 97, 100], "246": [92, 93, 95, 96, 97, 100, 104], "efficiencywarn": [92, 93, 95, 96, 97, 100], "sort_graph_by_row_valu": [92, 93, 95, 96, 97, 100], "warn_when_not_sort": [92, 93, 95, 96, 97, 100], "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "901562": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 109], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 100], "worri": [92, 96], "critic": 92, "60": [93, 97, 100, 107], "torchvis": [93, 105], "tensordataset": 93, "stratifiedkfold": [93, 103], "autonotebook": 93, "math": 93, "fashion_mnist": 93, "1486": 93, "futurewarn": 93, "hf": 93, "messag": 93, "trust_remote_cod": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 103, 105], "super": [93, 95, 96], "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 105], "energi": 93, "trainload": [93, 105], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 107], "acc": [93, 100], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 109], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "903": 93, "329": [93, 104], "88": [93, 98, 99, 100, 103, 104, 107], "195": 93, "648": 93, "493": 93, "060": 93, "057": 93, "330": [93, 104], "505": 93, "709": [93, 95], "476": 93, "340": 93, "966": 93, "328": [93, 104], "310": 93, "reorder": 93, "hstack": [93, 99, 100, 102], "vision": 93, "grayscal": 93, "max_preval": 93, "7714": 93, "3772": 93, "3585": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 104, 109], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 105, 106], "21282": 93, "000016": 93, "53564": 93, "000018": 93, "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 109], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "ncol": [93, 105], "nrow": [93, 105], "ceil": 93, "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 105], "cmap": [93, 97, 107], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 103, 104, 105, 106, 108], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 104, 108], "dark_scor": 93, "dark_issues_df": 93, "is_dark_issu": 93, "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "low_information_scor": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 102, 107], "xgboost": [95, 99, 107], "think": [95, 96, 99, 103, 108, 109], "nonzero": 95, "358": 95, "941": 95, "294": [95, 104], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "000104": 95, "723": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": 95, "185": [95, 98, 104], "187": [95, 98], "898": 95, "0014": [95, 98], "595": 95, "702427": 95, "147": [95, 97, 100, 104], "711186": 95, "157": [95, 100], "721394": 95, "771": 95, "731979": 95, "740335": 95, "0014153602099278074": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 103, 104, 107], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 107], "96": [95, 97, 98, 100, 103, 104, 107], "style": [95, 97, 108], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "unintend": [95, 96], "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 103], "perhap": [95, 100, 102], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "dive": [96, 97], "text_embed": 96, "data_dict": [96, 100, 102], "85": [96, 104], "38": [96, 97, 98, 104], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "095724": 96, "148": 96, "006237": 96, "546": 96, "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "0000": [96, 98, 100], "313": [96, 104], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 102, 104], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 109], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 100], "strongli": 96, "p_valu": 96, "benign": 96, "curat": 96, "bigger": 97, "make_classif": 97, "5000": [97, 105], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 104], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "5000x5000": 97, "50000": 97, "116": 97, "523": 97, "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 104], "500000": 97, "651929": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 104, 105], "third": 97, "parti": [97, 109], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": 97, "strip": 97, "stripplot": 97, "hue": [97, 107], "dodg": 97, "jitter": 97, "axvlin": [97, 105], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 105], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": 97, "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 100], "dataset_tsv": 97, "ag": [97, 107], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100], "california": 97, "59": [97, 98, 104], "63": [97, 100, 104, 107], "47": [97, 98, 104], "stringio": 97, "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 105], "coolwarm": 97, "colorbar": [97, 107], "strong": 97, "evid": 97, "inter": 97, "mitig": 97, "risk": 97, "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 109], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98], "3467": 97, "67": [97, 98, 104, 107], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 104, 107], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 102], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 102, 103, 107], "null_issu": 97, "833333": 97, "sorted_indic": [97, 104], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 107], "highlight_null_valu": 97, "val": [97, 100], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "refin": 98, "instruct": [98, 99], "studi": [98, 104], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 109], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 109], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 104], "axolotl": 98, "bullfrog": 98, "tree": 98, "frog": [98, 105], "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 109], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 105], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 109], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 109], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 109], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 108], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 109], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 104], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 108], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 104], "carousel": 98, "tool": [98, 100, 102], "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 109], "chain": 98, "fenc": [98, 108], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 105], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 108], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 100], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 104], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 109], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 108], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 108], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 109], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 109], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 108], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 109], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": 98, "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 108], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 104, 108], "sign": [98, 108, 109], "dust": 98, "jacket": [98, 104], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 105], "automobil": [98, 105], "deer": [98, 105], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 109], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 108], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 108], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 104], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 107], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 104], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 109], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 108], "misc": [98, 109], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 109], "talk": [98, 109], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "capit": 98, "29780": 98, "780": 98, "medic": [98, 109], "doctor": 98, "359223": 98, "640777": 98, "184": [98, 100], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 104], "252": 98, "112": 98, "253": [98, 104], "022989": 98, "049505": 98, "190": [98, 100, 104], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 100], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 104], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 100], "188": [98, 100, 103], "189": [98, 100], "snippet": 99, "nlp": [99, 109], "mind": [99, 100], "alphanumer": 99, "facilit": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "from_dict": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 104], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 100], "game": 99, "speedup": [99, 105], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 100, 109], "successfulli": 99, "virtuou": [99, 102], "cycl": [99, 102], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 100], "true_error": [99, 100, 103], "101": [99, 104], "102": [99, 103, 104], "104": [99, 100, 104], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100], "max_depth": [99, 100], "magnitud": 99, "coeffici": [99, 107], "optin": 99, "environ": [99, 100], "rerun": [99, 100], "cell": [99, 100], "unabl": [99, 100], "render": [99, 100], "nbviewer": [99, 100], "cleanlearninginot": [99, 100], "fittedcleanlearn": [99, 100], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": 99, "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 105], "kept": 99, "ids_to_remove_seri": 99, "tmp": 99, "ipykernel_8136": 99, "1995098996": 99, "deprecationwarn": 99, "dataframegroupbi": 99, "include_group": 99, "silenc": 99, "assist": 99, "streamlin": 99, "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": 99, "email": 99, "team": 99, "discuss": 99, "anywher": 99, "profession": 99, "expert": 99, "depth": 100, "survei": [100, 109], "scienc": 100, "multivariate_norm": [100, 102, 103], "make_data": [100, 102], "cov": [100, 102, 103], "avg_trac": [100, 103], "py_tru": 100, "noise_matrix_tru": 100, "noise_marix": 100, "s_test": 100, "noisy_test_label": 100, "purpl": 100, "namespac": 100, "exec": 100, "markerfacecolor": [100, 103], "markeredgecolor": [100, 103, 107], "markers": [100, 103, 107], "markeredgewidth": [100, 103, 107], "realist": 100, "7560": 100, "637318e": 100, "896262e": 100, "548391e": 100, "923417e": 100, "375075e": 100, "3454": 100, "014051": 100, "020451": 100, "249": [100, 104], "042594": 100, "043859": 100, "045954": 100, "6120": 100, "023714": 100, "007136": 100, "119": [100, 104], "107266": 100, "103": [100, 104], "033738": 100, "238": [100, 104], "119505": 100, "236": [100, 104, 109], "037843": 100, "222": 100, "614915": 100, "122": [100, 104], "624422": 100, "625965": 100, "626079": 100, "118": 100, "627675": 100, "695223": 100, "323529": 100, "523015": 100, "013720": 100, "675727": 100, "646521": 100, "anyth": 100, "enhanc": [100, 102, 104], "magic": 100, "liter": 100, "identif": 100, "x27": 100, "logisticregressionlogisticregress": 100, "ever": 100, "092": 100, "040": 100, "024": 100, "004": 100, "surpris": 100, "1705": 100, "01936": 100, "ton": 100, "yourfavoritemodel1": 100, "merged_label": 100, "merged_test_label": 100, "newli": [100, 102], "yourfavoritemodel2": 100, "yourfavoritemodel3": 100, "cl3": 100, "takeawai": 100, "my_test_pred_prob": 100, "my_test_pr": 100, "issues_test": 100, "corrected_test_label": 100, "pretend": 100, "cl_test_pr": 100, "fairli": 100, "label_acc": 100, "percentag": 100, "offset": 100, "nquestion": 100, "overestim": 100, "answer": 100, "experienc": 100, "prioiri": 100, "known": 100, "versatil": 100, "label_issues_indic": 100, "213": [100, 104], "218": [100, 104], "152": 100, "197": [100, 104], "196": [100, 104], "170": 100, "214": 100, "164": [100, 103], "198": [100, 104], "191": [100, 104], "117": [100, 107], "206": [100, 104, 109], "115": [100, 104], "193": 100, "194": 100, "201": [100, 104], "174": 100, "163": 100, "150": [100, 102, 104, 109], "169": [100, 109], "151": [100, 104], "168": 100, "precision_scor": 100, "recall_scor": 100, "f1_score": 100, "true_label_issu": 100, "filter_by_list": 100, "718750": [100, 102], "807018": 100, "912": 100, "733333": 100, "800000": 100, "721311": 100, "792793": 100, "908": 100, "676923": 100, "765217": 100, "892": 100, "567901": 100, "702290": 100, "844": 100, "gaug": 100, "label_issues_count": 100, "155": [100, 104], "156": 100, "172": [100, 103], "easiest": 100, "modular": 100, "penalti": 100, "l2": 100, "model3": 100, "n_estim": 100, "cv_pred_probs_1": 100, "cv_pred_probs_2": 100, "cv_pred_probs_3": 100, "label_quality_scores_best": 100, "cv_pred_probs_ensembl": 100, "label_quality_scores_bett": 100, "superior": [100, 106], "timm": 101, "glad": 102, "multiannotator_label": 102, "300": [102, 109], "noisier": 102, "111": [102, 107], "local_data": [102, 103], "true_labels_train": [102, 103], "noise_matrix_bett": 102, "noise_matrix_wors": 102, "transpos": [102, 105], "zfill": 102, "row_na_check": 102, "notna": 102, "reset_index": 102, "a0001": 102, "a0002": 102, "a0003": 102, "a0004": 102, "a0005": 102, "a0006": 102, "a0007": 102, "a0008": 102, "a0009": 102, "a0010": 102, "a0041": 102, "a0042": 102, "a0043": 102, "a0044": 102, "a0045": 102, "a0046": 102, "a0047": 102, "a0048": 102, "a0049": 102, "a0050": 102, "na": 102, "60856743": 102, "41693214": 102, "40908785": 102, "87147629": 102, "64941785": 102, "10774851": 102, "0524466": 102, "71853246": 102, "37169848": 102, "66031048": 102, "multiannotator_util": 102, "crude": 102, "straight": 102, "majority_vote_label": 102, "736118": 102, "757751": 102, "782232": 102, "715565": 102, "824256": 102, "quality_annotator_a0001": 102, "quality_annotator_a0002": 102, "quality_annotator_a0003": 102, "quality_annotator_a0004": 102, "quality_annotator_a0005": 102, "quality_annotator_a0006": 102, "quality_annotator_a0007": 102, "quality_annotator_a0008": 102, "quality_annotator_a0009": 102, "quality_annotator_a0010": 102, "quality_annotator_a0041": 102, "quality_annotator_a0042": 102, "quality_annotator_a0043": 102, "quality_annotator_a0044": 102, "quality_annotator_a0045": 102, "quality_annotator_a0046": 102, "quality_annotator_a0047": 102, "quality_annotator_a0048": 102, "quality_annotator_a0049": 102, "quality_annotator_a0050": 102, "070564": 102, "216078": 102, "119188": 102, "alongisd": 102, "244981": 102, "208333": 102, "295979": 102, "294118": 102, "324197": 102, "310345": 102, "355316": 102, "346154": 102, "439732": 102, "480000": 102, "a0031": 102, "523205": 102, "580645": 102, "a0034": 102, "535313": 102, "607143": 102, "a0021": 102, "606999": 102, "a0015": 102, "609526": 102, "678571": 102, "a0011": 102, "621103": 102, "692308": 102, "improved_consensus_label": 102, "majority_vote_accuraci": 102, "cleanlab_label_accuraci": 102, "8581081081081081": 102, "9797297297297297": 102, "besid": 102, "sorted_consensus_quality_scor": 102, "worst_qual": 102, "better_qu": 102, "worst_quality_accuraci": 102, "better_quality_accuraci": 102, "9893238434163701": 102, "improved_pred_prob": 102, "treat": [102, 103, 107, 109], "analzi": 102, "copyright": 103, "advertis": 103, "violenc": 103, "nsfw": 103, "celeba": 103, "make_multilabel_data": 103, "boxes_coordin": 103, "box_multilabel": 103, "make_multi": 103, "bx1": 103, "by1": 103, "bx2": 103, "by2": 103, "label_list": 103, "ur": 103, "upper": 103, "inidx": 103, "logical_and": 103, "inv_d": 103, "labels_idx": 103, "true_labels_test": 103, "dict_unique_label": 103, "get_color_arrai": 103, "dcolor": 103, "aa4400": 103, "55227f": 103, "55a100": 103, "00ff00": 103, "007f7f": 103, "386b55": 103, "0000ff": 103, "y_onehot": 103, "single_class_label": 103, "stratifi": [103, 106], "kf": 103, "train_index": 103, "test_index": 103, "clf_cv": 103, "x_train_cv": 103, "x_test_cv": 103, "y_train_cv": 103, "y_test_cv": 103, "y_pred_cv": 103, "saw": 103, "num_to_displai": 103, "09": [103, 104, 107, 109], "267": 103, "225": 103, "171": 103, "234": 103, "165": 103, "227": [103, 104], "262": [103, 104], "266": [103, 104], "139": 103, "143": [103, 104], "216": [103, 104, 109], "265": 103, "159": [103, 104], "despit": [103, 109], "suspect": 103, "888": 103, "8224": 103, "9632": 103, "968": 103, "6512": 103, "0444": 103, "774": 103, "labels_binary_format": 103, "labels_list_format": 103, "surround": 104, "scene": 104, "coco": 104, "everydai": 104, "has_label_issu": 104, "nc": [104, 108, 109], "s3": [104, 108, 109], "amazonaw": [104, 108, 109], "objectdetectionbenchmark": 104, "tutorial_obj": 104, "pkl": 104, "example_imag": 104, "unzip": [104, 109], "_separate_label": 104, "_separate_predict": 104, "begin": 104, "image_path": 104, "rb": 104, "image_to_visu": 104, "seg_map": 104, "334": 104, "bboxes_ignor": 104, "290": 104, "286": 104, "285": 104, "224": 104, "231": 104, "293": 104, "289": 104, "282": 104, "281": 104, "271": 104, "280": 104, "277": 104, "279": 104, "287": 104, "299": 104, "276": 104, "307": 104, "321": 104, "326": 104, "333": 104, "261": 104, "319": 104, "257": 104, "283": 104, "243": 104, "303": 104, "316": 104, "247": 104, "323": 104, "226": 104, "228": 104, "232": 104, "219": 104, "239": 104, "240": 104, "209": 104, "242": 104, "202": 104, "230": 104, "215": 104, "220": 104, "229": 104, "217": [104, 109], "237": 104, "207": 104, "204": 104, "84": [104, 107], "205": 104, "223": 104, "153": 104, "140": 104, "124": 104, "268": 104, "273": 104, "284": 104, "110": 104, "136": 104, "145": 104, "297": 104, "317": 104, "192": 104, "332": 104, "324": 104, "203": 104, "199": 104, "291": 104, "000000481413": 104, "jpg": 104, "42398": 104, "44503": 104, "29968": 104, "336": 104, "21005": 104, "9978472": 104, "forgot": 104, "drew": 104, "label_issue_idx": 104, "num_examples_to_show": 104, "138": 104, "candid": 104, "97489622": 104, "70610878": 104, "98764951": 104, "88899237": 104, "99085805": 104, "issue_idx": 104, "95569726e": 104, "03354841e": 104, "57510169e": 104, "58447666e": 104, "39755858e": 104, "issue_to_visu": 104, "000000009483": 104, "95569726168054e": 104, "addition": [104, 108], "visibl": 104, "missmatch": 104, "likelei": 104, "agnost": 104, "vaidat": 104, "inconsist": 104, "000000395701": 104, "033548411774308e": 104, "armchair": 104, "tv": 104, "000000154004": 104, "38300759625496356": 104, "foreground": 104, "000000448410": 104, "0008575101690203273": 104, "crowd": 104, "alon": 104, "resembl": [104, 105], "000000499768": 104, "9748962231208227": 104, "000000521141": 104, "8889923658893665": 104, "000000143931": 104, "9876495074395956": 104, "bonu": 104, "uncov": 104, "irregular": 104, "anomali": 104, "object_detection_util": 104, "calculate_bounding_box_area": 104, "num_imgs_to_show": 104, "lab_object_count": 104, "pred_object_count": 104, "000000430073": 104, "000000183709": 104, "000000189475": 104, "label_norm": 104, "pred_norm": 104, "area": [104, 108], "lab_area": 104, "pred_area": 104, "lab_area_mean": 104, "lab_area_std": 104, "max_deviation_valu": 104, "max_deviation_class": 104, "deviation_valu": 104, "deviation_class": 104, "mean_area": 104, "std_area": 104, "class_area": 104, "deviations_awai": 104, "max_deviation_index": 104, "num_imgs_to_show_per_class": 104, "class_num": 104, "000000422886": 104, "000000341828": 104, "000000461009": 104, "train_feature_embed": 105, "ood_train_feature_scor": 105, "test_feature_embed": 105, "ood_test_feature_scor": 105, "ood_train_predictions_scor": 105, "train_pred_prob": 105, "ood_test_predictions_scor": 105, "test_pred_prob": 105, "pylab": 105, "rcparam": 105, "baggingclassifi": 105, "therebi": 105, "rescal": 105, "transform_norm": 105, "totensor": 105, "root": 105, "animal_class": 105, "non_animal_class": 105, "animal_idx": 105, "test_idx": 105, "toronto": 105, "edu": 105, "kriz": 105, "170498071": 105, "91550653": 105, "75it": 105, "plot_imag": 105, "visualize_outli": 105, "txt_class": 105, "img": [105, 107], "npimg": 105, "show_label": 105, "data_subset": 105, "resnet50": 105, "corpu": 105, "2048": 105, "embed_imag": 105, "create_model": 105, "strang": 105, "odd": 105, "train_ood_features_scor": 105, "top_train_ood_features_idx": 105, "fun": 105, "negat": 105, "homogen": 105, "bottom_train_ood_features_idx": 105, "test_ood_features_scor": 105, "top_ood_features_idx": 105, "inevit": 105, "trade": 105, "5th": 105, "percentil": 105, "fifth_percentil": 105, "plt_rang": 105, "hist": 105, "train_outlier_scor": 105, "test_outlier_scor": 105, "ood_features_indic": 105, "revisit": 105, "return_invers": 105, "train_feature_embeddings_sc": 105, "test_feature_embeddings_sc": 105, "train_pred_label": 105, "9702": 105, "train_ood_predictions_scor": 105, "test_ood_predictions_scor": 105, "lost": 105, "unsuit": 106, "ok": [106, 109], "convention": 106, "aforement": 106, "hypothet": 106, "contrast": 106, "tradit": 106, "disjoint": 106, "out_of_sample_pred_probs_for_a": 106, "out_of_sample_pred_probs_for_b": 106, "out_of_sample_pred_probs_for_c": 106, "out_of_sample_pred_prob": 106, "price": 107, "incom": 107, "sensor": 107, "histgradientboostingregressor": 107, "r2_score": 107, "student_grades_r": 107, "final_scor": 107, "true_final_scor": 107, "homework": 107, "3d": 107, "mpl_toolkit": 107, "mplot3d": 107, "axes3d": 107, "errors_idx": 107, "add_subplot": 107, "z": 107, "errors_mask": 107, "feature_column": 107, "predicted_column": 107, "x_train_raw": 107, "x_test_raw": 107, "randomforestregressor": 107, "385101": 107, "499503": 107, "698255": 107, "776647": 107, "109373": 107, "170547": 107, "481096": 107, "984759": 107, "645270": 107, "795928": 107, "141": 107, "659": 107, "318": 107, "305": 107, "560": 107, "657": 107, "688": 107, "view_datapoint": 107, "preds_og": 107, "r2_og": 107, "838": 107, "found_label_issu": 107, "preds_cl": 107, "r2_cl": 107, "926": 107, "favorit": 107, "968627e": 107, "228799": 107, "646674e": 107, "402962": 107, "323818e": 107, "952758": 107, "422144e": 107, "456908": 107, "465815e": 107, "753968": 107, "791186e": 107, "110719": 107, "485156e": 107, "670640": 107, "225300e": 107, "749976": 107, "499679e": 107, "947007": 107, "067882e": 107, "648396": 107, "synthia": 108, "imagesegment": 108, "given_mask": 108, "predicted_mask": 108, "set_printopt": [108, 109], "sky": 108, "sidewalk": 108, "veget": 108, "terrain": 108, "rider": 108, "pred_probs_filepath": 108, "1088": 108, "1920": 108, "label_filepath": 108, "synthia_class": 108, "maunal": 108, "100000": 108, "244800": 108, "leftmost": 108, "middl": [108, 109], "infact": 108, "rightmost": 108, "discrep": 108, "3263230": 108, "783381": 108, "275110": 108, "255917": 108, "78225": 108, "55990": 108, "54315": 108, "33591": 108, "24645": 108, "21054": 108, "15045": 108, "14171": 108, "13832": 108, "13498": 108, "11490": 108, "9164": 108, "8769": 108, "6999": 108, "6031": 108, "5011": 108, "mistakenli": 108, "class_issu": 108, "aim": [108, 109], "domin": 108, "bunch": 109, "conll": 109, "2003": 109, "love": 109, "n_i": 109, "optional_list_of_ordered_class_nam": 109, "deepai": 109, "conll2003": 109, "rm": 109, "tokenclassif": 109, "2400": 109, "52e0": 109, "1a00": 109, "718": 109, "connect": 109, "443": 109, "await": 109, "982975": 109, "960k": 109, "959": 109, "94k": 109, "kb": 109, "mb": 109, "directori": 109, "inflat": 109, "17045998": 109, "16m": 109, "octet": 109, "26m": 109, "2mb": 109, "bert": 109, "read_npz": 109, "filepath": 109, "corrsespond": 109, "iob2": 109, "given_ent": 109, "entity_map": 109, "readfil": 109, "startswith": 109, "docstart": 109, "isalpha": 109, "isupp": 109, "indices_to_preview": 109, "nsentenc": 109, "eu": 109, "reject": 109, "boycott": 109, "british": 109, "lamb": 109, "00030412": 109, "00023826": 109, "99936208": 109, "00007009": 109, "00002545": 109, "99998795": 109, "00000401": 109, "00000218": 109, "00000455": 109, "00000131": 109, "00000749": 109, "99996115": 109, "00001371": 109, "0000087": 109, "00000895": 109, "99998936": 109, "00000382": 109, "00000178": 109, "00000366": 109, "00000137": 109, "99999101": 109, "00000266": 109, "00000174": 109, "0000035": 109, "00000109": 109, "99998768": 109, "00000482": 109, "00000202": 109, "00000438": 109, "0000011": 109, "00000465": 109, "99996392": 109, "00001105": 109, "0000116": 109, "00000878": 109, "99998671": 109, "00000364": 109, "00000213": 109, "00000472": 109, "00000281": 109, "99999073": 109, "00000211": 109, "00000159": 109, "00000442": 109, "00000115": 109, "peter": 109, "blackburn": 109, "00000358": 109, "00000529": 109, "99995623": 109, "0000129": 109, "0000024": 109, "00001812": 109, "99994141": 109, "00001645": 109, "00002162": 109, "brussel": 109, "1996": 109, "00001172": 109, "00000821": 109, "00004661": 109, "0000618": 109, "99987167": 109, "99999061": 109, "00000201": 109, "00000195": 109, "00000408": 109, "00000135": 109, "2254": 109, "2907": 109, "19392": 109, "9962": 109, "8904": 109, "19303": 109, "12918": 109, "9256": 109, "11855": 109, "18392": 109, "20426": 109, "19402": 109, "14744": 109, "19371": 109, "4645": 109, "10331": 109, "9430": 109, "6143": 109, "18367": 109, "12914": 109, "todai": 109, "weather": 109, "march": 109, "scalfaro": 109, "northern": 109, "himself": 109, "said": 109, "germani": 109, "nastja": 109, "rysich": 109, "north": 109, "spla": 109, "fought": 109, "khartoum": 109, "govern": 109, "south": 109, "1983": 109, "autonomi": 109, "animist": 109, "region": 109, "moslem": 109, "arabis": 109, "mayor": 109, "antonio": 109, "gonzalez": 109, "garcia": 109, "revolutionari": 109, "wednesdai": 109, "troop": 109, "raid": 109, "farm": 109, "stole": 109, "rape": 109, "women": 109, "spring": 109, "chg": 109, "hrw": 109, "12pct": 109, "princ": 109, "photo": 109, "moment": 109, "spokeswoman": 109, "rainier": 109, "told": 109, "reuter": 109, "danila": 109, "carib": 109, "w224": 109, "equip": 109, "radiomet": 109, "earn": 109, "19996": 109, "london": 109, "denom": 109, "sale": 109, "uk": 109, "jp": 109, "fr": 109, "maccabi": 109, "hapoel": 109, "haifa": 109, "tel": 109, "aviv": 109, "hospit": 109, "rever": 109, "roman": 109, "cathol": 109, "nun": 109, "admit": 109, "calcutta": 109, "week": 109, "ago": 109, "fever": 109, "vomit": 109, "allianc": 109, "embattl": 109, "kabul": 109, "salang": 109, "highwai": 109, "mondai": 109, "tuesdai": 109, "suprem": 109, "council": 109, "led": 109, "jumbish": 109, "milli": 109, "movement": 109, "warlord": 109, "abdul": 109, "rashid": 109, "dostum": 109, "dollar": 109, "exchang": 109, "3570": 109, "12049": 109, "born": 109, "1937": 109, "provinc": 109, "anhui": 109, "dai": 109, "came": 109, "shanghai": 109, "citi": 109, "prolif": 109, "author": 109, "teacher": 109, "chines": 109, "16764": 109, "1990": 109, "historian": 109, "alan": 109, "john": 109, "percival": 109, "taylor": 109, "di": 109, "20446": 109, "pace": 109, "bowler": 109, "ian": 109, "harvei": 109, "claim": 109, "victoria": 109, "15514": 109, "cotti": 109, "osc": 109, "foreign": 109, "minist": 109, "7525": 109, "sultan": 109, "specter": 109, "crown": 109, "abdullah": 109, "defenc": 109, "aviat": 109, "jeddah": 109, "saudi": 109, "agenc": 109, "2288": 109, "hi": 109, "customari": 109, "outfit": 109, "champion": 109, "damp": 109, "scalp": 109, "canada": 109, "reign": 109, "olymp": 109, "donovan": 109, "bailei": 109, "1992": 109, "linford": 109, "christi": 109, "britain": 109, "1984": 109, "1988": 109, "carl": 109, "lewi": 109, "ambigi": 109, "punctuat": 109, "chicago": 109, "digest": 109, "philadelphia": 109, "usda": 109, "york": 109, "token_issu": 109, "471": 109, "kean": 109, "year": 109, "contract": 109, "manchest": 109, "19072": 109, "societi": 109, "bite": 109, "deliv": 109, "19910": 109, "father": 109, "clarenc": 109, "woolmer": 109, "renam": 109, "uttar": 109, "pradesh": 109, "india": 109, "ranji": 109, "trophi": 109, "nation": 109, "championship": 109, "captain": 109, "1949": 109, "15658": 109, "19879": 109, "iii": 109, "brian": 109, "shimer": 109, "randi": 109, "jone": 109, "19104": 109}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 3, 1, "", "set_knn_graph"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 93, 95, 96, 99, 100, 103, 109], "count": [3, 100], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 103], "creat": [7, 90, 91, 92, 100, 102], "your": [7, 84, 91, 92, 96, 97, 99, 100], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 97], "intermedi": 7, "advanc": [7, 91], "us": [7, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 100], "custom": [9, 91], "cleanlab": [9, 10, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "studio": [9, 10], "easi": [9, 10, 84, 93, 95, 96], "mode": [9, 10, 84, 93, 95, 96], "can": [10, 90, 92, 98, 99, 100, 102], "detect": [10, 89, 92, 93, 95, 96, 97, 99, 100, 104, 105], "estim": [10, 100, 102, 103], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 107, 108, 109], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 90, 93, 95, 96, 103, 105], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 20, 92, 93, 95, 96, 99, 103], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 97, 100, 108], "imbal": [10, 21, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 105], "specif": [10, 22, 108], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 100], "get": [12, 90, 91, 92, 102, 103, 104, 108, 109], "start": [12, 98], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 99, 100], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 99, 107], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "underperforming_group": 32, "model_output": 33, "report": [34, 93], "dataset": [37, 63, 84, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 100], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 91], "token_classification_util": 56, "util": 57, "valid": [58, 93, 106], "fasttext": 59, "model": [60, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107], "kera": 61, "multiannot": [62, 102], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 100], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 90, 92, 99, 100], "segment": [77, 108], "token_classif": [81, 109], "open": [84, 99], "sourc": [84, 99], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "instal": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "2": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "common": [84, 85, 109], "3": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "handl": [84, 99], "error": [84, 88, 93, 99, 100, 102, 103, 104, 107, 108, 109], "train": [84, 87, 88, 89, 97, 99, 105, 107], "robust": [84, 87, 88, 100, 107], "noisi": [84, 87, 88, 100, 107], "4": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 104, 105, 107], "curat": 84, "fix": [84, 99], "level": [84, 98, 100, 109], "5": [84, 87, 89, 90, 92, 93, 95, 97, 100, 102, 107], "improv": [84, 102], "via": [84, 100, 102], "mani": [84, 100], "other": [84, 102, 104, 107], "techniqu": 84, "contribut": 84, "how": [85, 99, 100, 102, 103, 109], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 92, 100, 107], "pre": [85, 89, 97, 99, 105], "function": [85, 91], "name": 85, "chang": 85, "modul": [85, 100], "new": [85, 90], "remov": 85, "argument": [85, 91], "variabl": 85, "cleanlearn": [86, 99, 100], "tutori": [86, 94, 98, 101], "structur": 87, "tabular": [87, 95], "requir": [87, 88, 90, 91, 92, 93, 95, 96, 102, 103, 104, 105, 107, 108, 109], "depend": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "load": [87, 88, 89, 90, 91, 92, 95, 96, 97, 107], "process": [87, 95, 105, 107], "select": [87, 95], "comput": [87, 89, 93, 95, 96, 97, 99, 102, 106], "out": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "sampl": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "predict": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 106], "probabl": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 106], "more": [87, 88, 90, 92, 100, 107], "text": [88, 96, 97, 109], "format": [88, 96, 99, 103, 104], "defin": [88, 93, 96, 97, 107], "potenti": [88, 102, 107], "an": [89, 93, 99], "audio": 89, "import": [89, 90, 91, 92, 93, 98, 100, 102], "them": [89, 98, 100], "speechbrain": 89, "featur": [89, 93, 105], "fit": 89, "linear": 89, "datamonitor": 90, "leverag": 90, "statist": [90, 102], "audit": [90, 91, 92], "skip": [90, 92, 98, 100, 102], "detail": [90, 92, 98, 100, 102], "classifi": [90, 91, 92, 97], "6": [90, 97, 100], "about": [90, 92], "addit": [90, 92], "7": [90, 93, 100], "8": [90, 98, 100], "look": 90, "both": 90, "workflow": [91, 97, 100], "instanti": 91, "object": [91, 104], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "all": [92, 100], "kind": [92, 104], "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 106], "fold": [93, 106], "cross": [93, 106], "embed": [93, 105], "view": 93, "most": [93, 109], "like": 93, "exampl": [93, 99, 100, 105], "sever": 93, "set": [93, 100], "dark": 93, "top": [93, 108], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 103], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 104], "explan": 97, "vector": 97, "perform": 97, "visual": [97, 100, 104, 105, 108], "score": [97, 100, 102, 103, 104, 108, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 100, 106], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 102], "sort": 97, "understand": 98, "evalu": 98, "health": [98, 100], "popular": 98, "faq": 99, "what": [99, 100, 106], "do": [99, 100], "infer": 99, "correct": 99, "ha": 99, "flag": 99, "should": 99, "v": 99, "test": [99, 100, 105], "big": 99, "limit": 99, "memori": 99, "why": 99, "isn": 99, "t": 99, "work": [99, 100, 102, 109], "me": 99, "differ": [99, 104], "clean": [99, 100], "final": 99, "hyperparamet": 99, "tune": 99, "onli": 99, "one": [99, 100, 103, 108], "doe": [99, 102, 109], "take": 99, "so": 99, "long": 99, "when": [99, 100], "run": 99, "licens": 99, "under": 99, "answer": 99, "question": 99, "The": 100, "centric": 100, "ai": 100, "machin": 100, "find_label_issu": 100, "line": 100, "code": 100, "twenti": 100, "lowest": 100, "qualiti": [100, 102, 103, 104, 108, 109], "see": 100, "now": 100, "let": 100, "": 100, "happen": 100, "we": 100, "merg": 100, "seafoam": 100, "green": 100, "yellow": 100, "too": 100, "you": 100, "re": 100, "One": 100, "rule": 100, "overal": [100, 108], "accur": 100, "thi": 100, "directli": 100, "fulli": 100, "character": 100, "nois": 100, "matrix": [100, 103], "joint": 100, "prior": 100, "true": 100, "distribut": 100, "flip": 100, "rate": 100, "ani": 100, "again": 100, "support": 100, "lot": 100, "method": 100, "filter_bi": 100, "automat": 100, "everi": 100, "uniqu": 100, "num_label_issu": 100, "threshold": 100, "found": 100, "Not": 100, "sure": 100, "ensembl": 100, "multipl": [100, 102], "predictor": 100, "consensu": 102, "annot": 102, "major": 102, "vote": 102, "better": 102, "compar": 102, "inspect": 102, "retrain": 102, "further": 102, "multi": 103, "beyond": 103, "mislabel": [103, 108, 109], "given": 103, "hot": 103, "binari": 103, "without": 103, "applic": 103, "real": 103, "download": [104, 108, 109], "objectlab": 104, "exploratori": 104, "analysi": 104, "pytorch": 105, "timm": 105, "cifar10": 105, "some": 105, "pred_prob": [105, 108, 109], "wai": 107, "semant": 108, "which": 108, "ar": 108, "commonli": 108, "focus": 108, "token": 109, "word": 109, "sentenc": 109, "contain": 109, "particular": 109}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [93, "Easy-Mode"], [95, "Easy-Mode"], [96, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [107, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [107, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [107, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[90, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [102, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"], [92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[90, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[90, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[90, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[90, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [100, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[100, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[100, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[100, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[100, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[100, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[100, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[100, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[100, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[100, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[100, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[100, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[100, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[100, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[100, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[100, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[100, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[100, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[100, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[100, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[101, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[102, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[102, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[102, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[102, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[102, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[102, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[102, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[102, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[102, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[103, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[103, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[103, "2.-Format-data,-labels,-and-model-predictions"], [104, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[103, "3.-Use-cleanlab-to-find-label-issues"], [104, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[103, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[103, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[103, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[103, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[103, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[104, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[104, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[104, "Get-label-quality-scores"], [108, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[104, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[104, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[104, "Other-uses-of-visualize"]], "Exploratory data analysis": [[104, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[105, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[105, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[105, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[105, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[105, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[105, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[106, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[106, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[106, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[107, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[107, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[107, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[108, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[108, "2.-Get-data,-labels,-and-pred_probs"], [109, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[108, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[108, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[108, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[109, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[109, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[109, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[109, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[109, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 92, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 91, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 92, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 90, 92, 95, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 90, 91, 92, 95, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95, 96], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 95, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 91, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 91, 92, 94, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 91, 92, 95, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 96, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 91, 92, 94, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 96, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 96, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 90, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 91, 92, 94, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 91, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 92, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 91, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 96, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91, 108], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 90, 92, 95, 98], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 92, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 91, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63, 88, 95], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 92], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 90], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": [10, 92], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34, 90], "issue_find": [12, 16, 96], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 92], "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 92, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90, 91], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 92], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 88, 89, 92, 95, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 95, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 92, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 95], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 91, 92, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 90, 91, 92, 94, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_about_to_expir": [88, 95], "getting_spare_card": [88, 95], "change_pin": [88, 95], "beneficiary_not_allow": [88, 95], "supported_cards_and_curr": [88, 95], "visa_or_mastercard": [88, 95], "card_payment_fee_charg": [88, 95], "apple_pay_or_google_pai": [88, 95], "lost_or_stolen_phon": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 90, 91, 95, 96, 97], "runner": [88, 90, 91, 95, 96], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "opt": [88, 89, 91, 92, 94, 95, 96, 99], "hostedtoolcach": [88, 89, 91, 92, 94, 95, 96, 99], "x64": [88, 89, 91, 92, 94, 95, 96, 99], "lib": [88, 89, 91, 92, 94, 95, 96, 99], "python3": [88, 89, 91, 92, 94, 95, 96, 99], "site": [88, 89, 91, 92, 94, 95, 96, 99], "_util": [88, 95], "831": [88, 95], "userwarn": [88, 89, 90, 91, 95, 96], "typedstorag": [88, 95], "untypedstorag": [88, 95], "untyped_storag": [88, 95], "fget": [88, 95], "__get__": [88, 95], "owner": [88, 95], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 104], "set_titl": [90, 91, 92, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 97, 99, 101, 103, 108], "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103, 108], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 96, 99], "246": [91, 92, 94, 95, 96, 99, 103], "efficiencywarn": [91, 92, 94, 95, 96, 99], "sort_graph_by_row_valu": [91, 92, 94, 95, 96, 99], "warn_when_not_sort": [91, 92, 94, 95, 96, 99], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "1486": 92, "futurewarn": 92, "hf": 92, "messag": 92, "trust_remote_cod": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "035": [92, 97], "329": [92, 94, 103], "88": [92, 97, 98, 99, 102, 103, 106], "195": 92, "567": 92, "493": 92, "060": 92, "090": 92, "330": [92, 103], "505": 92, "729": 92, "476": 92, "340": 92, "864": 92, "328": [92, 103], "310": 92, "806": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "50000": 96, "116": 96, "524": 96, "991400": 96, "356924": 96, "363": 96, "619581": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99, 108], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7631": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103, 108], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": [99, 108], "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "295": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "88744795": 104, "96it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "845": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "97mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 104], "specif": [10, 22, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": 92, "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 99cc5344e..ccf2e1080 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:05.992281Z", - "iopub.status.busy": "2024-06-19T19:13:05.992103Z", - "iopub.status.idle": "2024-06-19T19:13:07.220654Z", - "shell.execute_reply": "2024-06-19T19:13:07.220079Z" + "iopub.execute_input": "2024-06-25T15:01:44.210466Z", + "iopub.status.busy": "2024-06-25T15:01:44.210033Z", + "iopub.status.idle": "2024-06-25T15:01:45.515099Z", + "shell.execute_reply": "2024-06-25T15:01:45.514552Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.223345Z", - "iopub.status.busy": "2024-06-19T19:13:07.222936Z", - "iopub.status.idle": "2024-06-19T19:13:07.241828Z", - "shell.execute_reply": "2024-06-19T19:13:07.241338Z" + "iopub.execute_input": "2024-06-25T15:01:45.518064Z", + "iopub.status.busy": "2024-06-25T15:01:45.517573Z", + "iopub.status.idle": "2024-06-25T15:01:45.536889Z", + "shell.execute_reply": "2024-06-25T15:01:45.536276Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.244569Z", - "iopub.status.busy": "2024-06-19T19:13:07.244123Z", - "iopub.status.idle": "2024-06-19T19:13:07.353379Z", - "shell.execute_reply": "2024-06-19T19:13:07.352817Z" + "iopub.execute_input": "2024-06-25T15:01:45.539480Z", + "iopub.status.busy": "2024-06-25T15:01:45.539180Z", + "iopub.status.idle": "2024-06-25T15:01:45.675081Z", + "shell.execute_reply": "2024-06-25T15:01:45.674481Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.384426Z", - "iopub.status.busy": "2024-06-19T19:13:07.383909Z", - "iopub.status.idle": "2024-06-19T19:13:07.388104Z", - "shell.execute_reply": "2024-06-19T19:13:07.387619Z" + "iopub.execute_input": "2024-06-25T15:01:45.709224Z", + "iopub.status.busy": "2024-06-25T15:01:45.708793Z", + "iopub.status.idle": "2024-06-25T15:01:45.712610Z", + "shell.execute_reply": "2024-06-25T15:01:45.712119Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.390073Z", - "iopub.status.busy": "2024-06-19T19:13:07.389893Z", - "iopub.status.idle": "2024-06-19T19:13:07.398271Z", - "shell.execute_reply": "2024-06-19T19:13:07.397839Z" + "iopub.execute_input": "2024-06-25T15:01:45.714729Z", + "iopub.status.busy": "2024-06-25T15:01:45.714392Z", + "iopub.status.idle": "2024-06-25T15:01:45.722965Z", + "shell.execute_reply": "2024-06-25T15:01:45.722410Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.400568Z", - "iopub.status.busy": "2024-06-19T19:13:07.400144Z", - "iopub.status.idle": "2024-06-19T19:13:07.402970Z", - "shell.execute_reply": "2024-06-19T19:13:07.402425Z" + "iopub.execute_input": "2024-06-25T15:01:45.725077Z", + "iopub.status.busy": "2024-06-25T15:01:45.724896Z", + "iopub.status.idle": "2024-06-25T15:01:45.727695Z", + "shell.execute_reply": "2024-06-25T15:01:45.727101Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.405030Z", - "iopub.status.busy": "2024-06-19T19:13:07.404638Z", - "iopub.status.idle": "2024-06-19T19:13:07.932245Z", - "shell.execute_reply": "2024-06-19T19:13:07.931617Z" + "iopub.execute_input": "2024-06-25T15:01:45.729642Z", + "iopub.status.busy": "2024-06-25T15:01:45.729468Z", + "iopub.status.idle": "2024-06-25T15:01:46.265625Z", + "shell.execute_reply": "2024-06-25T15:01:46.264963Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:07.934938Z", - "iopub.status.busy": "2024-06-19T19:13:07.934682Z", - "iopub.status.idle": "2024-06-19T19:13:09.848580Z", - "shell.execute_reply": "2024-06-19T19:13:09.847980Z" + "iopub.execute_input": "2024-06-25T15:01:46.268663Z", + "iopub.status.busy": "2024-06-25T15:01:46.268173Z", + "iopub.status.idle": "2024-06-25T15:01:48.217776Z", + "shell.execute_reply": "2024-06-25T15:01:48.217164Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.851288Z", - "iopub.status.busy": "2024-06-19T19:13:09.850615Z", - "iopub.status.idle": "2024-06-19T19:13:09.860714Z", - "shell.execute_reply": "2024-06-19T19:13:09.860220Z" + "iopub.execute_input": "2024-06-25T15:01:48.220484Z", + "iopub.status.busy": "2024-06-25T15:01:48.219877Z", + "iopub.status.idle": "2024-06-25T15:01:48.230622Z", + "shell.execute_reply": "2024-06-25T15:01:48.230137Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.862808Z", - "iopub.status.busy": "2024-06-19T19:13:09.862555Z", - "iopub.status.idle": "2024-06-19T19:13:09.866600Z", - "shell.execute_reply": "2024-06-19T19:13:09.866193Z" + "iopub.execute_input": "2024-06-25T15:01:48.232874Z", + "iopub.status.busy": "2024-06-25T15:01:48.232674Z", + "iopub.status.idle": "2024-06-25T15:01:48.237233Z", + "shell.execute_reply": "2024-06-25T15:01:48.236692Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.868701Z", - "iopub.status.busy": "2024-06-19T19:13:09.868381Z", - "iopub.status.idle": "2024-06-19T19:13:09.875547Z", - "shell.execute_reply": "2024-06-19T19:13:09.875091Z" + "iopub.execute_input": "2024-06-25T15:01:48.239352Z", + "iopub.status.busy": "2024-06-25T15:01:48.239163Z", + "iopub.status.idle": "2024-06-25T15:01:48.246761Z", + "shell.execute_reply": "2024-06-25T15:01:48.246216Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.877745Z", - "iopub.status.busy": "2024-06-19T19:13:09.877337Z", - "iopub.status.idle": "2024-06-19T19:13:09.991009Z", - "shell.execute_reply": "2024-06-19T19:13:09.990354Z" + "iopub.execute_input": "2024-06-25T15:01:48.249302Z", + "iopub.status.busy": "2024-06-25T15:01:48.248895Z", + "iopub.status.idle": "2024-06-25T15:01:48.364612Z", + "shell.execute_reply": "2024-06-25T15:01:48.364100Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.993352Z", - "iopub.status.busy": "2024-06-19T19:13:09.992959Z", - "iopub.status.idle": "2024-06-19T19:13:09.995837Z", - "shell.execute_reply": "2024-06-19T19:13:09.995394Z" + "iopub.execute_input": "2024-06-25T15:01:48.366981Z", + "iopub.status.busy": "2024-06-25T15:01:48.366559Z", + "iopub.status.idle": "2024-06-25T15:01:48.369555Z", + "shell.execute_reply": "2024-06-25T15:01:48.369084Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:09.997958Z", - "iopub.status.busy": "2024-06-19T19:13:09.997634Z", - "iopub.status.idle": "2024-06-19T19:13:12.005175Z", - "shell.execute_reply": "2024-06-19T19:13:12.004490Z" + "iopub.execute_input": "2024-06-25T15:01:48.371662Z", + "iopub.status.busy": "2024-06-25T15:01:48.371309Z", + "iopub.status.idle": "2024-06-25T15:01:50.418139Z", + "shell.execute_reply": "2024-06-25T15:01:50.417343Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:12.008225Z", - "iopub.status.busy": "2024-06-19T19:13:12.007462Z", - "iopub.status.idle": "2024-06-19T19:13:12.019330Z", - "shell.execute_reply": "2024-06-19T19:13:12.018873Z" + "iopub.execute_input": "2024-06-25T15:01:50.421433Z", + "iopub.status.busy": "2024-06-25T15:01:50.420700Z", + "iopub.status.idle": "2024-06-25T15:01:50.433080Z", + "shell.execute_reply": "2024-06-25T15:01:50.432500Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:12.021679Z", - "iopub.status.busy": "2024-06-19T19:13:12.021283Z", - "iopub.status.idle": "2024-06-19T19:13:12.077773Z", - "shell.execute_reply": "2024-06-19T19:13:12.077172Z" + "iopub.execute_input": "2024-06-25T15:01:50.435410Z", + "iopub.status.busy": "2024-06-25T15:01:50.435087Z", + "iopub.status.idle": "2024-06-25T15:01:50.473924Z", + "shell.execute_reply": "2024-06-25T15:01:50.473290Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index c12012b25..e637eea9a 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -808,7 +808,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card'}
    +Classes: {'card_about_to_expire', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone'}
     

    Let’s print the first example in the train set.

    @@ -871,43 +871,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1206,7 +1206,7 @@

    4. Train a more robust model from noisy labels -{"state": {"377856eaf16047d9ba4ed2b7295f2d6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe64e87d5f4a48529cf0db06fa555e5f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8156041be7e0465c87e63813647312e0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_377856eaf16047d9ba4ed2b7295f2d6e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fe64e87d5f4a48529cf0db06fa555e5f", "tabbable": null, "tooltip": null, "value": 391.0}}, "4307fa375f2a476c94ae12c1f66d085d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9067bb52ac4648bc90d93f18e438360b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d0bb8cb0d081404e91d5812d0828572c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4307fa375f2a476c94ae12c1f66d085d", "placeholder": "\u200b", "style": "IPY_MODEL_9067bb52ac4648bc90d93f18e438360b", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "a62c2dc7bac94e919e060151cb19edb1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "546e37538d084cbe9897631127530216": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f7b2b1b4d92748f4bf2596f690c04ac8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a62c2dc7bac94e919e060151cb19edb1", "placeholder": "\u200b", "style": "IPY_MODEL_546e37538d084cbe9897631127530216", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200764.7kB/s]"}}, "093e7045dda04a9cbca6f6ca3fc8534e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2978d58647a4d4bb8cf666ca7ae71de": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d0bb8cb0d081404e91d5812d0828572c", "IPY_MODEL_8156041be7e0465c87e63813647312e0", "IPY_MODEL_f7b2b1b4d92748f4bf2596f690c04ac8"], "layout": "IPY_MODEL_093e7045dda04a9cbca6f6ca3fc8534e", "tabbable": null, "tooltip": null}}, "b974b4475657463f858fcec5e668be93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a634a7cdf354141991be6da4cb7e3e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "127a48217ba2403ba14efd4f4d54947b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b974b4475657463f858fcec5e668be93", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0a634a7cdf354141991be6da4cb7e3e8", "tabbable": null, "tooltip": null, "value": 2211.0}}, "d690ad0978314a15be693306fc6ab575": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "afab22926aec404a880f2cb2671f11cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e73b4a53022d4ea1a4a3eb06151216c3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d690ad0978314a15be693306fc6ab575", "placeholder": "\u200b", "style": "IPY_MODEL_afab22926aec404a880f2cb2671f11cc", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "fde9beaf208645aa897899ef17fcde83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2cf5eba84b194ba6b4e3fdcbcde9cd31": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5619bcffd7994dcdaac5111af7a8bfd2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fde9beaf208645aa897899ef17fcde83", "placeholder": "\u200b", "style": "IPY_MODEL_2cf5eba84b194ba6b4e3fdcbcde9cd31", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007395kB/s]"}}, "0516e124235a47a1954f9e1a59b5024a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99ce04b28e3a484b9933f72981a52419": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e73b4a53022d4ea1a4a3eb06151216c3", "IPY_MODEL_127a48217ba2403ba14efd4f4d54947b", "IPY_MODEL_5619bcffd7994dcdaac5111af7a8bfd2"], "layout": "IPY_MODEL_0516e124235a47a1954f9e1a59b5024a", "tabbable": null, "tooltip": null}}, "6b310c6dfc6141afa0b84180e8b2f19c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32f56a2e636c46fb80289047303a35f5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "60a51870b1964eaebfdef1f4df5e702e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b310c6dfc6141afa0b84180e8b2f19c", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_32f56a2e636c46fb80289047303a35f5", "tabbable": null, "tooltip": null, "value": 665.0}}, "a943a44d6cdd4ecd92e8e8ea5e2d5c49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8f77329c48a462897a7c70fa6a90b41": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "49312377f6374a0581adefad1e863cef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a943a44d6cdd4ecd92e8e8ea5e2d5c49", "placeholder": "\u200b", "style": "IPY_MODEL_a8f77329c48a462897a7c70fa6a90b41", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "960c4a81e2974870bb0d132ced734978": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a521f8c32ed74a068a87e633d6a75de7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "063a8b237a5c448998a34a83d51e36e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_960c4a81e2974870bb0d132ced734978", "placeholder": "\u200b", "style": "IPY_MODEL_a521f8c32ed74a068a87e633d6a75de7", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007128kB/s]"}}, "8a2c590db6c8414d8babc757b67845f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84987e7069a040deaa24f7856a4b01ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_49312377f6374a0581adefad1e863cef", "IPY_MODEL_60a51870b1964eaebfdef1f4df5e702e", "IPY_MODEL_063a8b237a5c448998a34a83d51e36e9"], "layout": "IPY_MODEL_8a2c590db6c8414d8babc757b67845f4", "tabbable": null, "tooltip": null}}, "c8b40a8aff9144b39b5c109b4133cecf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6e4f671c9f34555be2b639a76f8bacf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "07f14dbddfe34017accff07c5141725c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c8b40a8aff9144b39b5c109b4133cecf", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6e4f671c9f34555be2b639a76f8bacf", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "b57642aea9924fb5b20bb2de8d171332": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4755b944642f49deacb92f308a10b898": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f96ba9e277f4f818b62dd02f5202ab1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b57642aea9924fb5b20bb2de8d171332", "placeholder": "\u200b", "style": "IPY_MODEL_4755b944642f49deacb92f308a10b898", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "abaa9e67d2aa4e53b09c155f1e77c0ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8142a1fbdf3e457b97aee4e3f86091f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f9ed4926fdd4099a669a6edb91d9017": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abaa9e67d2aa4e53b09c155f1e77c0ec", "placeholder": "\u200b", "style": "IPY_MODEL_8142a1fbdf3e457b97aee4e3f86091f9", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007279MB/s]"}}, "8986a1b1965b4dac85f72d0b4861d9d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9bb6466d1ba4951b164e17a33517554": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0f96ba9e277f4f818b62dd02f5202ab1", "IPY_MODEL_07f14dbddfe34017accff07c5141725c", "IPY_MODEL_9f9ed4926fdd4099a669a6edb91d9017"], "layout": "IPY_MODEL_8986a1b1965b4dac85f72d0b4861d9d9", "tabbable": null, "tooltip": null}}, "6df1d15be0594a47a6ab03370bfe2d74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08d4ee2eedb847ee921f28a01bdbf8ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec854d51ef9a4510a09dbfe7141f9b37": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6df1d15be0594a47a6ab03370bfe2d74", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_08d4ee2eedb847ee921f28a01bdbf8ae", "tabbable": null, "tooltip": null, "value": 466062.0}}, "023721162b29434b87cc232d38fa3476": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af6019329c1c4e5d91552e124ce72e01": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cd84dec961f4d24a1fb2ac611788cbd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_023721162b29434b87cc232d38fa3476", "placeholder": "\u200b", "style": "IPY_MODEL_af6019329c1c4e5d91552e124ce72e01", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "7e90510812da41ab9e5084a39d030a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7a62d47cf9c4d389a3b4631df0a152f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc62d3342657453e81b68083fee06ce6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e90510812da41ab9e5084a39d030a58", "placeholder": "\u200b", "style": "IPY_MODEL_f7a62d47cf9c4d389a3b4631df0a152f", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200715.0MB/s]"}}, "eb1ccb7d3970425b8f298eda0f4ec13b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2e4d9efd9194dd095e532cb483d9267": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4cd84dec961f4d24a1fb2ac611788cbd", "IPY_MODEL_ec854d51ef9a4510a09dbfe7141f9b37", "IPY_MODEL_dc62d3342657453e81b68083fee06ce6"], "layout": "IPY_MODEL_eb1ccb7d3970425b8f298eda0f4ec13b", "tabbable": null, "tooltip": null}}, "a59cedcb9ac34e5ba44cf8709ae1a153": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bd55153d5a045aca7c2e85a268dea5a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fedea46176bb41148f55b5d28a2d7b61": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a59cedcb9ac34e5ba44cf8709ae1a153", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7bd55153d5a045aca7c2e85a268dea5a", "tabbable": null, "tooltip": null, "value": 48.0}}, "86ee62a59ef645d2b27725072b9bc77b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5af078cd3ebe4daf800f0a0014aec1f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6230d674f2d46e097f76c0535807beb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_86ee62a59ef645d2b27725072b9bc77b", "placeholder": "\u200b", "style": "IPY_MODEL_5af078cd3ebe4daf800f0a0014aec1f4", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "895829f141094d8d84105d898e10dbe4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a16c10d82d64d479ad9f4628cdac10d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08f5b15a86734842b9655352a9d6e432": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_895829f141094d8d84105d898e10dbe4", "placeholder": "\u200b", "style": "IPY_MODEL_5a16c10d82d64d479ad9f4628cdac10d", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.79kB/s]"}}, "71e70fcae9c344caaba7c1df40406e33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82afe5ac9f2d4168bb3efe4d261e47de": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6230d674f2d46e097f76c0535807beb", "IPY_MODEL_fedea46176bb41148f55b5d28a2d7b61", "IPY_MODEL_08f5b15a86734842b9655352a9d6e432"], "layout": "IPY_MODEL_71e70fcae9c344caaba7c1df40406e33", "tabbable": null, "tooltip": null}}, "7a81168c6d1a45f49297311369ac1721": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "193f2f0d42fd4677bef93cc1081b569b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bcd4e8ea61384bf7b9174188e65c97aa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a81168c6d1a45f49297311369ac1721", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_193f2f0d42fd4677bef93cc1081b569b", "tabbable": null, "tooltip": null, "value": 231508.0}}, "dfae98eaa151428daf8846f5892d4bf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5dfffe6935c34f968d46bbb128d0c5bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7eb5599da16b44018aa738c67ce80954": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfae98eaa151428daf8846f5892d4bf6", "placeholder": "\u200b", "style": "IPY_MODEL_5dfffe6935c34f968d46bbb128d0c5bd", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "1cef651877a5414d827d65b07c1c050c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c151dd5b87145e9a99c2bed48c12462": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "14a06a56a047405db7c1b323e050c2f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1cef651877a5414d827d65b07c1c050c", "placeholder": "\u200b", "style": "IPY_MODEL_6c151dd5b87145e9a99c2bed48c12462", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.9MB/s]"}}, "8fe28946422246bfb725f03c68436ceb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb55b901c08d44869813de690e4758c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7eb5599da16b44018aa738c67ce80954", "IPY_MODEL_bcd4e8ea61384bf7b9174188e65c97aa", "IPY_MODEL_14a06a56a047405db7c1b323e050c2f1"], "layout": "IPY_MODEL_8fe28946422246bfb725f03c68436ceb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"db9b9c684bc3497d87a4f0563cb69e1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5b92983f9b44d03aa06c8c569cd59d1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "176f8576a0d740a3993ecf00e230504f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db9b9c684bc3497d87a4f0563cb69e1a", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d5b92983f9b44d03aa06c8c569cd59d1", "tabbable": null, "tooltip": null, "value": 391.0}}, "1846fb6ac9d34bf184a560a817be8999": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf0f6d37f6e64286af6506c42766edbc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "516558c6513d481bbc786661670eb003": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1846fb6ac9d34bf184a560a817be8999", "placeholder": "\u200b", "style": "IPY_MODEL_bf0f6d37f6e64286af6506c42766edbc", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "d5a992d19edc4d6388ca00e8fe43adf4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b1b563abc4b488b8eb0cbc23d603573": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5163ac0069934de09b67bbc7b03ab6bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d5a992d19edc4d6388ca00e8fe43adf4", "placeholder": "\u200b", "style": "IPY_MODEL_5b1b563abc4b488b8eb0cbc23d603573", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200754.0kB/s]"}}, "ad71a537b18048f4bc623dc0cf2b5e1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "766189f555ae4a1588fb3238bacfd209": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_516558c6513d481bbc786661670eb003", "IPY_MODEL_176f8576a0d740a3993ecf00e230504f", "IPY_MODEL_5163ac0069934de09b67bbc7b03ab6bf"], "layout": "IPY_MODEL_ad71a537b18048f4bc623dc0cf2b5e1a", "tabbable": null, "tooltip": null}}, "8719aecc121e47b2bf937e7fa785f776": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09fa15614c0749f7b5c4a04bf7959a4e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5fc0d488bc754fee9c4de60e79480c02": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8719aecc121e47b2bf937e7fa785f776", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_09fa15614c0749f7b5c4a04bf7959a4e", "tabbable": null, "tooltip": null, "value": 2211.0}}, "ccf46aa6594c4867adfb401803ca72e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fe9aa5574b24552bd75f1f1750e26f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44ef2bf22e2348448a29599244648f1c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ccf46aa6594c4867adfb401803ca72e6", "placeholder": "\u200b", "style": "IPY_MODEL_0fe9aa5574b24552bd75f1f1750e26f5", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "798ad98af1914ebfa76027c306b86885": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d8fce2a0f6c44a592ff6d135648eb7e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d4673f560a3c4a17883f6dd9549e92f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_798ad98af1914ebfa76027c306b86885", "placeholder": "\u200b", "style": "IPY_MODEL_6d8fce2a0f6c44a592ff6d135648eb7e", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007393kB/s]"}}, "5425f47f7f2a4130a38a762dde10c5a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f87e6441b274424db0a957c4d8049d8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_44ef2bf22e2348448a29599244648f1c", "IPY_MODEL_5fc0d488bc754fee9c4de60e79480c02", "IPY_MODEL_d4673f560a3c4a17883f6dd9549e92f2"], "layout": "IPY_MODEL_5425f47f7f2a4130a38a762dde10c5a7", "tabbable": null, "tooltip": null}}, "1587f80f14a64e8f89ca925f4fca7d7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e18b26951b243b8baef48e4a8e40f69": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f38245cf2ba8420db30db360e7b825b3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1587f80f14a64e8f89ca925f4fca7d7e", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7e18b26951b243b8baef48e4a8e40f69", "tabbable": null, "tooltip": null, "value": 665.0}}, "c7e5b48fd6bf4f7da153018fbee55842": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bb58a355d82497ea894ccdbfafe71cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd4324aa872a4b82bc19aad38ee6b225": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7e5b48fd6bf4f7da153018fbee55842", "placeholder": "\u200b", "style": "IPY_MODEL_0bb58a355d82497ea894ccdbfafe71cc", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "90565bb3d1194515ab0f76dac8212c2f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6655841f611242b1b1b43ee49f4bbaf2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbc8a09a296144fba81b25d74eea0806": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_90565bb3d1194515ab0f76dac8212c2f", "placeholder": "\u200b", "style": "IPY_MODEL_6655841f611242b1b1b43ee49f4bbaf2", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007114kB/s]"}}, "a501af4904b6464d9111c023454647a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e4573277feb4466af64443afc2abc3d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dd4324aa872a4b82bc19aad38ee6b225", "IPY_MODEL_f38245cf2ba8420db30db360e7b825b3", "IPY_MODEL_bbc8a09a296144fba81b25d74eea0806"], "layout": "IPY_MODEL_a501af4904b6464d9111c023454647a0", "tabbable": null, "tooltip": null}}, "b1a6abc862634414b3d1d37309ef29cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d3c842b12ba4ed291c7c44527416060": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cb3b41b891ff4d6489bd574d558e370c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1a6abc862634414b3d1d37309ef29cb", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5d3c842b12ba4ed291c7c44527416060", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "2ea66b46783543ee94f2b7f5dbd1a612": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0de620f757394311845c371a1a1cc264": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "478d98a6b1e1427c890dc3c817bd84b8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ea66b46783543ee94f2b7f5dbd1a612", "placeholder": "\u200b", "style": "IPY_MODEL_0de620f757394311845c371a1a1cc264", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "977c8bd757af40609cc2ce81c3743d46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1907a62d96194091b0a8efe353ded09d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e9bac465fa047e2b43e8773234b5b75": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_977c8bd757af40609cc2ce81c3743d46", "placeholder": "\u200b", "style": "IPY_MODEL_1907a62d96194091b0a8efe353ded09d", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007289MB/s]"}}, "0dec2fbd8c7b4117a75040ca1826f5ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41475d21e4424b98b04954365f7fe679": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_478d98a6b1e1427c890dc3c817bd84b8", "IPY_MODEL_cb3b41b891ff4d6489bd574d558e370c", "IPY_MODEL_2e9bac465fa047e2b43e8773234b5b75"], "layout": "IPY_MODEL_0dec2fbd8c7b4117a75040ca1826f5ed", "tabbable": null, "tooltip": null}}, "d524ebbb5d31420ebc500873dc871e43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d76426e2be9f466a9190b13ea2b587de": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ee7b2c440349459a987d628c271588ff": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d524ebbb5d31420ebc500873dc871e43", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d76426e2be9f466a9190b13ea2b587de", "tabbable": null, "tooltip": null, "value": 466062.0}}, "d93f977e281e40ce97a8893e95f4bd1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc26b348a4754c20b4dc2908953948e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8f8f7a5ad214c03a38ecfec9dacfb67": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d93f977e281e40ce97a8893e95f4bd1e", "placeholder": "\u200b", "style": "IPY_MODEL_bc26b348a4754c20b4dc2908953948e3", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "d664717be6b24053b7ec4276a48423db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96d20096cfe6483990d1cd3ad69f449f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f0f27a8970a4d3faaedd3defc6a4e37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d664717be6b24053b7ec4276a48423db", "placeholder": "\u200b", "style": "IPY_MODEL_96d20096cfe6483990d1cd3ad69f449f", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200742.2MB/s]"}}, "4e6393cd330c4e9bbbca1cf65986715b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dd8436734ce4436b531d61768cb7839": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a8f8f7a5ad214c03a38ecfec9dacfb67", "IPY_MODEL_ee7b2c440349459a987d628c271588ff", "IPY_MODEL_6f0f27a8970a4d3faaedd3defc6a4e37"], "layout": "IPY_MODEL_4e6393cd330c4e9bbbca1cf65986715b", "tabbable": null, "tooltip": null}}, "75492b527f1941c89c88c3d2d775b3aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffd93e7f2dce422f8713966a04342536": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "89a3f3a5e2bd4e71b08aa4958b447917": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75492b527f1941c89c88c3d2d775b3aa", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ffd93e7f2dce422f8713966a04342536", "tabbable": null, "tooltip": null, "value": 48.0}}, "20047fae51454f0b8e0904f7ac0414ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b38b5cfd4f4e4c2e80d00e9305b02585": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "115b5302d5bd48cdb188d06fa3c691d3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_20047fae51454f0b8e0904f7ac0414ce", "placeholder": "\u200b", "style": "IPY_MODEL_b38b5cfd4f4e4c2e80d00e9305b02585", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "27cf1512e10e485db3d33be1a2353298": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3090af089b244080912de0be777af886": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "574637f0d90c4f999f79f83c7ab9ac25": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27cf1512e10e485db3d33be1a2353298", "placeholder": "\u200b", "style": "IPY_MODEL_3090af089b244080912de0be777af886", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.48kB/s]"}}, "b413b2092a80494d91cf70bbeedb1e80": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e704dc9524764a4c866ac8dae48ee954": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_115b5302d5bd48cdb188d06fa3c691d3", "IPY_MODEL_89a3f3a5e2bd4e71b08aa4958b447917", "IPY_MODEL_574637f0d90c4f999f79f83c7ab9ac25"], "layout": "IPY_MODEL_b413b2092a80494d91cf70bbeedb1e80", "tabbable": null, "tooltip": null}}, "9741e57728b0428a94c4a371f799d3e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e04fb57010a449fa94d1288e6657137e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bf51cc0a3c64473f8bccb569b7631e88": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9741e57728b0428a94c4a371f799d3e5", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e04fb57010a449fa94d1288e6657137e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "c12db2f3a66249318ecf4d6536c8c928": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7160430934ea4215b70100781b5e8bbb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6192e3a2b9dc40fc9e42d7022ccb6da7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c12db2f3a66249318ecf4d6536c8c928", "placeholder": "\u200b", "style": "IPY_MODEL_7160430934ea4215b70100781b5e8bbb", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d57326b8ae6444839e8ac6161f2779ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fea7bd6269154a729f7ebff9eeeef18e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e6d799e61dd4036826fa3c89864f73d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d57326b8ae6444839e8ac6161f2779ba", "placeholder": "\u200b", "style": "IPY_MODEL_fea7bd6269154a729f7ebff9eeeef18e", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.2MB/s]"}}, "f5c851163e9f429abd2a8710a748f770": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9d78c3323c94ba99707e480b29e93ac": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6192e3a2b9dc40fc9e42d7022ccb6da7", "IPY_MODEL_bf51cc0a3c64473f8bccb569b7631e88", "IPY_MODEL_2e6d799e61dd4036826fa3c89864f73d"], "layout": "IPY_MODEL_f5c851163e9f429abd2a8710a748f770", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index f4eb558e7..4899defaa 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:16.581923Z", - "iopub.status.busy": "2024-06-19T19:13:16.581741Z", - "iopub.status.idle": "2024-06-19T19:13:19.609277Z", - "shell.execute_reply": "2024-06-19T19:13:19.608766Z" + "iopub.execute_input": "2024-06-25T15:01:53.780398Z", + "iopub.status.busy": "2024-06-25T15:01:53.780232Z", + "iopub.status.idle": "2024-06-25T15:01:56.912617Z", + "shell.execute_reply": "2024-06-25T15:01:56.911965Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.611940Z", - "iopub.status.busy": "2024-06-19T19:13:19.611485Z", - "iopub.status.idle": "2024-06-19T19:13:19.614760Z", - "shell.execute_reply": "2024-06-19T19:13:19.614336Z" + "iopub.execute_input": "2024-06-25T15:01:56.915217Z", + "iopub.status.busy": "2024-06-25T15:01:56.914879Z", + "iopub.status.idle": "2024-06-25T15:01:56.918507Z", + "shell.execute_reply": "2024-06-25T15:01:56.918065Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.616662Z", - "iopub.status.busy": "2024-06-19T19:13:19.616400Z", - "iopub.status.idle": "2024-06-19T19:13:19.619393Z", - "shell.execute_reply": "2024-06-19T19:13:19.618967Z" + "iopub.execute_input": "2024-06-25T15:01:56.920542Z", + "iopub.status.busy": "2024-06-25T15:01:56.920216Z", + "iopub.status.idle": "2024-06-25T15:01:56.923484Z", + "shell.execute_reply": "2024-06-25T15:01:56.922920Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.621501Z", - "iopub.status.busy": "2024-06-19T19:13:19.621077Z", - "iopub.status.idle": "2024-06-19T19:13:19.648165Z", - "shell.execute_reply": "2024-06-19T19:13:19.647618Z" + "iopub.execute_input": "2024-06-25T15:01:56.925653Z", + "iopub.status.busy": "2024-06-25T15:01:56.925222Z", + "iopub.status.idle": "2024-06-25T15:01:56.966287Z", + "shell.execute_reply": "2024-06-25T15:01:56.965678Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.650130Z", - "iopub.status.busy": "2024-06-19T19:13:19.649949Z", - "iopub.status.idle": "2024-06-19T19:13:19.653780Z", - "shell.execute_reply": "2024-06-19T19:13:19.653251Z" + "iopub.execute_input": "2024-06-25T15:01:56.968774Z", + "iopub.status.busy": "2024-06-25T15:01:56.968352Z", + "iopub.status.idle": "2024-06-25T15:01:56.972408Z", + "shell.execute_reply": "2024-06-25T15:01:56.971945Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.655728Z", - "iopub.status.busy": "2024-06-19T19:13:19.655462Z", - "iopub.status.idle": "2024-06-19T19:13:19.658726Z", - "shell.execute_reply": "2024-06-19T19:13:19.658213Z" + "iopub.execute_input": "2024-06-25T15:01:56.975695Z", + "iopub.status.busy": "2024-06-25T15:01:56.974365Z", + "iopub.status.idle": "2024-06-25T15:01:56.978956Z", + "shell.execute_reply": "2024-06-25T15:01:56.978424Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card'}\n" + "Classes: {'card_about_to_expire', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'apple_pay_or_google_pay', 'lost_or_stolen_phone'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.660758Z", - "iopub.status.busy": "2024-06-19T19:13:19.660381Z", - "iopub.status.idle": "2024-06-19T19:13:19.663556Z", - "shell.execute_reply": "2024-06-19T19:13:19.663016Z" + "iopub.execute_input": "2024-06-25T15:01:56.981270Z", + "iopub.status.busy": "2024-06-25T15:01:56.980905Z", + "iopub.status.idle": "2024-06-25T15:01:56.984145Z", + "shell.execute_reply": "2024-06-25T15:01:56.983607Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.665629Z", - "iopub.status.busy": "2024-06-19T19:13:19.665315Z", - "iopub.status.idle": "2024-06-19T19:13:19.668463Z", - "shell.execute_reply": "2024-06-19T19:13:19.668008Z" + "iopub.execute_input": "2024-06-25T15:01:56.986343Z", + "iopub.status.busy": "2024-06-25T15:01:56.986027Z", + "iopub.status.idle": "2024-06-25T15:01:56.989549Z", + "shell.execute_reply": "2024-06-25T15:01:56.989071Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:19.670515Z", - "iopub.status.busy": "2024-06-19T19:13:19.670224Z", - "iopub.status.idle": "2024-06-19T19:13:24.058839Z", - "shell.execute_reply": "2024-06-19T19:13:24.058285Z" + "iopub.execute_input": "2024-06-25T15:01:56.991498Z", + "iopub.status.busy": "2024-06-25T15:01:56.991316Z", + "iopub.status.idle": "2024-06-25T15:02:01.303453Z", + "shell.execute_reply": "2024-06-25T15:02:01.302875Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2978d58647a4d4bb8cf666ca7ae71de", + "model_id": "766189f555ae4a1588fb3238bacfd209", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "99ce04b28e3a484b9933f72981a52419", + "model_id": "f87e6441b274424db0a957c4d8049d8a", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84987e7069a040deaa24f7856a4b01ad", + "model_id": "8e4573277feb4466af64443afc2abc3d", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9bb6466d1ba4951b164e17a33517554", + "model_id": "41475d21e4424b98b04954365f7fe679", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2e4d9efd9194dd095e532cb483d9267", + "model_id": "3dd8436734ce4436b531d61768cb7839", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "82afe5ac9f2d4168bb3efe4d261e47de", + "model_id": "e704dc9524764a4c866ac8dae48ee954", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb55b901c08d44869813de690e4758c4", + "model_id": "e9d78c3323c94ba99707e480b29e93ac", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.061588Z", - "iopub.status.busy": "2024-06-19T19:13:24.061202Z", - "iopub.status.idle": "2024-06-19T19:13:24.064282Z", - "shell.execute_reply": "2024-06-19T19:13:24.063765Z" + "iopub.execute_input": "2024-06-25T15:02:01.306248Z", + "iopub.status.busy": "2024-06-25T15:02:01.306035Z", + "iopub.status.idle": "2024-06-25T15:02:01.308879Z", + "shell.execute_reply": "2024-06-25T15:02:01.308447Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.066340Z", - "iopub.status.busy": "2024-06-19T19:13:24.066024Z", - "iopub.status.idle": "2024-06-19T19:13:24.068531Z", - "shell.execute_reply": "2024-06-19T19:13:24.068107Z" + "iopub.execute_input": "2024-06-25T15:02:01.310809Z", + "iopub.status.busy": "2024-06-25T15:02:01.310624Z", + "iopub.status.idle": "2024-06-25T15:02:01.313252Z", + "shell.execute_reply": "2024-06-25T15:02:01.312823Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:24.070448Z", - "iopub.status.busy": "2024-06-19T19:13:24.070116Z", - "iopub.status.idle": "2024-06-19T19:13:26.788727Z", - "shell.execute_reply": "2024-06-19T19:13:26.788094Z" + "iopub.execute_input": "2024-06-25T15:02:01.315044Z", + "iopub.status.busy": "2024-06-25T15:02:01.314867Z", + "iopub.status.idle": "2024-06-25T15:02:04.255254Z", + "shell.execute_reply": "2024-06-25T15:02:04.254621Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.791573Z", - "iopub.status.busy": "2024-06-19T19:13:26.790975Z", - "iopub.status.idle": "2024-06-19T19:13:26.798494Z", - "shell.execute_reply": "2024-06-19T19:13:26.798047Z" + "iopub.execute_input": "2024-06-25T15:02:04.258228Z", + "iopub.status.busy": "2024-06-25T15:02:04.257607Z", + "iopub.status.idle": "2024-06-25T15:02:04.265624Z", + "shell.execute_reply": "2024-06-25T15:02:04.265070Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.800704Z", - "iopub.status.busy": "2024-06-19T19:13:26.800287Z", - "iopub.status.idle": "2024-06-19T19:13:26.804097Z", - "shell.execute_reply": "2024-06-19T19:13:26.803615Z" + "iopub.execute_input": "2024-06-25T15:02:04.267797Z", + "iopub.status.busy": "2024-06-25T15:02:04.267592Z", + "iopub.status.idle": "2024-06-25T15:02:04.272257Z", + "shell.execute_reply": "2024-06-25T15:02:04.271790Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.805944Z", - "iopub.status.busy": "2024-06-19T19:13:26.805768Z", - "iopub.status.idle": "2024-06-19T19:13:26.808929Z", - "shell.execute_reply": "2024-06-19T19:13:26.808386Z" + "iopub.execute_input": "2024-06-25T15:02:04.274357Z", + "iopub.status.busy": "2024-06-25T15:02:04.274023Z", + "iopub.status.idle": "2024-06-25T15:02:04.277439Z", + "shell.execute_reply": "2024-06-25T15:02:04.276981Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.810898Z", - "iopub.status.busy": "2024-06-19T19:13:26.810717Z", - "iopub.status.idle": "2024-06-19T19:13:26.813841Z", - "shell.execute_reply": "2024-06-19T19:13:26.813387Z" + "iopub.execute_input": "2024-06-25T15:02:04.279542Z", + "iopub.status.busy": "2024-06-25T15:02:04.279223Z", + "iopub.status.idle": "2024-06-25T15:02:04.282312Z", + "shell.execute_reply": "2024-06-25T15:02:04.281833Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.815784Z", - "iopub.status.busy": "2024-06-19T19:13:26.815472Z", - "iopub.status.idle": "2024-06-19T19:13:26.822955Z", - "shell.execute_reply": "2024-06-19T19:13:26.822474Z" + "iopub.execute_input": "2024-06-25T15:02:04.284160Z", + "iopub.status.busy": "2024-06-25T15:02:04.283982Z", + "iopub.status.idle": "2024-06-25T15:02:04.291871Z", + "shell.execute_reply": "2024-06-25T15:02:04.291291Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:26.825079Z", - "iopub.status.busy": "2024-06-19T19:13:26.824777Z", - "iopub.status.idle": "2024-06-19T19:13:27.048002Z", - "shell.execute_reply": "2024-06-19T19:13:27.047481Z" + "iopub.execute_input": "2024-06-25T15:02:04.294132Z", + "iopub.status.busy": "2024-06-25T15:02:04.293943Z", + "iopub.status.idle": "2024-06-25T15:02:04.518751Z", + "shell.execute_reply": "2024-06-25T15:02:04.518138Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:27.050616Z", - "iopub.status.busy": "2024-06-19T19:13:27.050282Z", - "iopub.status.idle": "2024-06-19T19:13:27.224199Z", - "shell.execute_reply": "2024-06-19T19:13:27.223655Z" + "iopub.execute_input": "2024-06-25T15:02:04.522263Z", + "iopub.status.busy": "2024-06-25T15:02:04.521310Z", + "iopub.status.idle": "2024-06-25T15:02:04.704038Z", + "shell.execute_reply": "2024-06-25T15:02:04.703381Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:27.226897Z", - "iopub.status.busy": "2024-06-19T19:13:27.226516Z", - "iopub.status.idle": "2024-06-19T19:13:27.230301Z", - "shell.execute_reply": "2024-06-19T19:13:27.229822Z" + "iopub.execute_input": "2024-06-25T15:02:04.708764Z", + "iopub.status.busy": "2024-06-25T15:02:04.707611Z", + "iopub.status.idle": "2024-06-25T15:02:04.713261Z", + "shell.execute_reply": "2024-06-25T15:02:04.712723Z" }, "nbsphinx": "hidden" }, @@ -1113,60 +1113,59 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "023721162b29434b87cc232d38fa3476": { - "model_module": "@jupyter-widgets/base", + "09fa15614c0749f7b5c4a04bf7959a4e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0bb58a355d82497ea894ccdbfafe71cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0de620f757394311845c371a1a1cc264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0516e124235a47a1954f9e1a59b5024a": { + "0dec2fbd8c7b4117a75040ca1826f5ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1219,72 +1218,25 @@ "width": null } }, - "063a8b237a5c448998a34a83d51e36e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_960c4a81e2974870bb0d132ced734978", - "placeholder": "​", - "style": "IPY_MODEL_a521f8c32ed74a068a87e633d6a75de7", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 128kB/s]" - } - }, - "07f14dbddfe34017accff07c5141725c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8b40a8aff9144b39b5c109b4133cecf", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6e4f671c9f34555be2b639a76f8bacf", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "08d4ee2eedb847ee921f28a01bdbf8ae": { + "0fe9aa5574b24552bd75f1f1750e26f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "08f5b15a86734842b9655352a9d6e432": { + "115b5302d5bd48cdb188d06fa3c691d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1299,15 +1251,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_895829f141094d8d84105d898e10dbe4", + "layout": "IPY_MODEL_20047fae51454f0b8e0904f7ac0414ce", "placeholder": "​", - "style": "IPY_MODEL_5a16c10d82d64d479ad9f4628cdac10d", + "style": "IPY_MODEL_b38b5cfd4f4e4c2e80d00e9305b02585", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.79kB/s]" + "value": "tokenizer_config.json: 100%" } }, - "093e7045dda04a9cbca6f6ca3fc8534e": { + "1587f80f14a64e8f89ca925f4fca7d7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1360,46 +1312,7 @@ "width": null } }, - "0a634a7cdf354141991be6da4cb7e3e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0f96ba9e277f4f818b62dd02f5202ab1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b57642aea9924fb5b20bb2de8d171332", - "placeholder": "​", - "style": "IPY_MODEL_4755b944642f49deacb92f308a10b898", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "127a48217ba2403ba14efd4f4d54947b": { + "176f8576a0d740a3993ecf00e230504f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1415,56 +1328,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b974b4475657463f858fcec5e668be93", - "max": 2211.0, + "layout": "IPY_MODEL_db9b9c684bc3497d87a4f0563cb69e1a", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0a634a7cdf354141991be6da4cb7e3e8", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "14a06a56a047405db7c1b323e050c2f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1cef651877a5414d827d65b07c1c050c", - "placeholder": "​", - "style": "IPY_MODEL_6c151dd5b87145e9a99c2bed48c12462", + "style": "IPY_MODEL_d5b92983f9b44d03aa06c8c569cd59d1", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.9MB/s]" - } - }, - "193f2f0d42fd4677bef93cc1081b569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 391.0 } }, - "1cef651877a5414d827d65b07c1c050c": { + "1846fb6ac9d34bf184a560a817be8999": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1391,7 @@ "width": null } }, - "2cf5eba84b194ba6b4e3fdcbcde9cd31": { + "1907a62d96194091b0a8efe353ded09d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1535,23 +1409,7 @@ "text_color": null } }, - "32f56a2e636c46fb80289047303a35f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "377856eaf16047d9ba4ed2b7295f2d6e": { + "20047fae51454f0b8e0904f7ac0414ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,7 +1462,7 @@ "width": null } }, - "4307fa375f2a476c94ae12c1f66d085d": { + "27cf1512e10e485db3d33be1a2353298": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1657,25 +1515,7 @@ "width": null } }, - "4755b944642f49deacb92f308a10b898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "49312377f6374a0581adefad1e863cef": { + "2e6d799e61dd4036826fa3c89864f73d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1690,15 +1530,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a943a44d6cdd4ecd92e8e8ea5e2d5c49", + "layout": "IPY_MODEL_d57326b8ae6444839e8ac6161f2779ba", "placeholder": "​", - "style": "IPY_MODEL_a8f77329c48a462897a7c70fa6a90b41", + "style": "IPY_MODEL_fea7bd6269154a729f7ebff9eeeef18e", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 34.2MB/s]" } }, - "4cd84dec961f4d24a1fb2ac611788cbd": { + "2e9bac465fa047e2b43e8773234b5b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1713,136 +1553,180 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_023721162b29434b87cc232d38fa3476", + "layout": "IPY_MODEL_977c8bd757af40609cc2ce81c3743d46", "placeholder": "​", - "style": "IPY_MODEL_af6019329c1c4e5d91552e124ce72e01", + "style": "IPY_MODEL_1907a62d96194091b0a8efe353ded09d", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 289MB/s]" } }, - "546e37538d084cbe9897631127530216": { - "model_module": "@jupyter-widgets/controls", + "2ea66b46783543ee94f2b7f5dbd1a612": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5619bcffd7994dcdaac5111af7a8bfd2": { + "3090af089b244080912de0be777af886": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fde9beaf208645aa897899ef17fcde83", - "placeholder": "​", - "style": "IPY_MODEL_2cf5eba84b194ba6b4e3fdcbcde9cd31", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 395kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a16c10d82d64d479ad9f4628cdac10d": { + "3dd8436734ce4436b531d61768cb7839": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8f8f7a5ad214c03a38ecfec9dacfb67", + "IPY_MODEL_ee7b2c440349459a987d628c271588ff", + "IPY_MODEL_6f0f27a8970a4d3faaedd3defc6a4e37" + ], + "layout": "IPY_MODEL_4e6393cd330c4e9bbbca1cf65986715b", + "tabbable": null, + "tooltip": null } }, - "5af078cd3ebe4daf800f0a0014aec1f4": { + "41475d21e4424b98b04954365f7fe679": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_478d98a6b1e1427c890dc3c817bd84b8", + "IPY_MODEL_cb3b41b891ff4d6489bd574d558e370c", + "IPY_MODEL_2e9bac465fa047e2b43e8773234b5b75" + ], + "layout": "IPY_MODEL_0dec2fbd8c7b4117a75040ca1826f5ed", + "tabbable": null, + "tooltip": null } }, - "5dfffe6935c34f968d46bbb128d0c5bd": { + "44ef2bf22e2348448a29599244648f1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccf46aa6594c4867adfb401803ca72e6", + "placeholder": "​", + "style": "IPY_MODEL_0fe9aa5574b24552bd75f1f1750e26f5", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" } }, - "60a51870b1964eaebfdef1f4df5e702e": { + "478d98a6b1e1427c890dc3c817bd84b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b310c6dfc6141afa0b84180e8b2f19c", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_32f56a2e636c46fb80289047303a35f5", + "layout": "IPY_MODEL_2ea66b46783543ee94f2b7f5dbd1a612", + "placeholder": "​", + "style": "IPY_MODEL_0de620f757394311845c371a1a1cc264", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "pytorch_model.bin: 100%" } }, - "6b310c6dfc6141afa0b84180e8b2f19c": { + "4e6393cd330c4e9bbbca1cf65986715b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,25 +1779,53 @@ "width": null } }, - "6c151dd5b87145e9a99c2bed48c12462": { + "5163ac0069934de09b67bbc7b03ab6bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5a992d19edc4d6388ca00e8fe43adf4", + "placeholder": "​", + "style": "IPY_MODEL_5b1b563abc4b488b8eb0cbc23d603573", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 54.0kB/s]" + } + }, + "516558c6513d481bbc786661670eb003": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1846fb6ac9d34bf184a560a817be8999", + "placeholder": "​", + "style": "IPY_MODEL_bf0f6d37f6e64286af6506c42766edbc", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "6df1d15be0594a47a6ab03370bfe2d74": { + "5425f47f7f2a4130a38a762dde10c5a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1878,190 @@ "width": null } }, - "71e70fcae9c344caaba7c1df40406e33": { + "574637f0d90c4f999f79f83c7ab9ac25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_27cf1512e10e485db3d33be1a2353298", + "placeholder": "​", + "style": "IPY_MODEL_3090af089b244080912de0be777af886", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.48kB/s]" + } + }, + "5b1b563abc4b488b8eb0cbc23d603573": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5d3c842b12ba4ed291c7c44527416060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fc0d488bc754fee9c4de60e79480c02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8719aecc121e47b2bf937e7fa785f776", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09fa15614c0749f7b5c4a04bf7959a4e", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "6192e3a2b9dc40fc9e42d7022ccb6da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c12db2f3a66249318ecf4d6536c8c928", + "placeholder": "​", + "style": "IPY_MODEL_7160430934ea4215b70100781b5e8bbb", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "6655841f611242b1b1b43ee49f4bbaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6d8fce2a0f6c44a592ff6d135648eb7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6f0f27a8970a4d3faaedd3defc6a4e37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d664717be6b24053b7ec4276a48423db", + "placeholder": "​", + "style": "IPY_MODEL_96d20096cfe6483990d1cd3ad69f449f", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 42.2MB/s]" + } + }, + "7160430934ea4215b70100781b5e8bbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "75492b527f1941c89c88c3d2d775b3aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2019,7 +2114,31 @@ "width": null } }, - "7a81168c6d1a45f49297311369ac1721": { + "766189f555ae4a1588fb3238bacfd209": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_516558c6513d481bbc786661670eb003", + "IPY_MODEL_176f8576a0d740a3993ecf00e230504f", + "IPY_MODEL_5163ac0069934de09b67bbc7b03ab6bf" + ], + "layout": "IPY_MODEL_ad71a537b18048f4bc623dc0cf2b5e1a", + "tabbable": null, + "tooltip": null + } + }, + "798ad98af1914ebfa76027c306b86885": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2072,7 +2191,7 @@ "width": null } }, - "7bd55153d5a045aca7c2e85a268dea5a": { + "7e18b26951b243b8baef48e4a8e40f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2088,7 +2207,7 @@ "description_width": "" } }, - "7e90510812da41ab9e5084a39d030a58": { + "8719aecc121e47b2bf937e7fa785f776": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2141,48 +2260,7 @@ "width": null } }, - "7eb5599da16b44018aa738c67ce80954": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfae98eaa151428daf8846f5892d4bf6", - "placeholder": "​", - "style": "IPY_MODEL_5dfffe6935c34f968d46bbb128d0c5bd", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "8142a1fbdf3e457b97aee4e3f86091f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8156041be7e0465c87e63813647312e0": { + "89a3f3a5e2bd4e71b08aa4958b447917": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2197,42 +2275,18 @@ "_view_name": "ProgressView", "bar_style": "success", "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_377856eaf16047d9ba4ed2b7295f2d6e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe64e87d5f4a48529cf0db06fa555e5f", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "82afe5ac9f2d4168bb3efe4d261e47de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6230d674f2d46e097f76c0535807beb", - "IPY_MODEL_fedea46176bb41148f55b5d28a2d7b61", - "IPY_MODEL_08f5b15a86734842b9655352a9d6e432" - ], - "layout": "IPY_MODEL_71e70fcae9c344caaba7c1df40406e33", + "description_allow_html": false, + "layout": "IPY_MODEL_75492b527f1941c89c88c3d2d775b3aa", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ffd93e7f2dce422f8713966a04342536", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 } }, - "84987e7069a040deaa24f7856a4b01ad": { + "8e4573277feb4466af64443afc2abc3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2247,16 +2301,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_49312377f6374a0581adefad1e863cef", - "IPY_MODEL_60a51870b1964eaebfdef1f4df5e702e", - "IPY_MODEL_063a8b237a5c448998a34a83d51e36e9" + "IPY_MODEL_dd4324aa872a4b82bc19aad38ee6b225", + "IPY_MODEL_f38245cf2ba8420db30db360e7b825b3", + "IPY_MODEL_bbc8a09a296144fba81b25d74eea0806" ], - "layout": "IPY_MODEL_8a2c590db6c8414d8babc757b67845f4", + "layout": "IPY_MODEL_a501af4904b6464d9111c023454647a0", "tabbable": null, "tooltip": null } }, - "86ee62a59ef645d2b27725072b9bc77b": { + "90565bb3d1194515ab0f76dac8212c2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2309,7 +2363,25 @@ "width": null } }, - "895829f141094d8d84105d898e10dbe4": { + "96d20096cfe6483990d1cd3ad69f449f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9741e57728b0428a94c4a371f799d3e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2362,7 +2434,7 @@ "width": null } }, - "8986a1b1965b4dac85f72d0b4861d9d9": { + "977c8bd757af40609cc2ce81c3743d46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,7 +2487,7 @@ "width": null } }, - "8a2c590db6c8414d8babc757b67845f4": { + "a501af4904b6464d9111c023454647a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2468,7 +2540,30 @@ "width": null } }, - "8fe28946422246bfb725f03c68436ceb": { + "a8f8f7a5ad214c03a38ecfec9dacfb67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d93f977e281e40ce97a8893e95f4bd1e", + "placeholder": "​", + "style": "IPY_MODEL_bc26b348a4754c20b4dc2908953948e3", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "ad71a537b18048f4bc623dc0cf2b5e1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2521,25 +2616,7 @@ "width": null } }, - "9067bb52ac4648bc90d93f18e438360b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "960c4a81e2974870bb0d132ced734978": { + "b1a6abc862634414b3d1d37309ef29cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2592,54 +2669,7 @@ "width": null } }, - "99ce04b28e3a484b9933f72981a52419": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e73b4a53022d4ea1a4a3eb06151216c3", - "IPY_MODEL_127a48217ba2403ba14efd4f4d54947b", - "IPY_MODEL_5619bcffd7994dcdaac5111af7a8bfd2" - ], - "layout": "IPY_MODEL_0516e124235a47a1954f9e1a59b5024a", - "tabbable": null, - "tooltip": null - } - }, - "9f9ed4926fdd4099a669a6edb91d9017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abaa9e67d2aa4e53b09c155f1e77c0ec", - "placeholder": "​", - "style": "IPY_MODEL_8142a1fbdf3e457b97aee4e3f86091f9", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 279MB/s]" - } - }, - "a521f8c32ed74a068a87e633d6a75de7": { + "b38b5cfd4f4e4c2e80d00e9305b02585": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2657,7 +2687,7 @@ "text_color": null } }, - "a59cedcb9ac34e5ba44cf8709ae1a153": { + "b413b2092a80494d91cf70bbeedb1e80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2710,7 +2740,92 @@ "width": null } }, - "a62c2dc7bac94e919e060151cb19edb1": { + "bbc8a09a296144fba81b25d74eea0806": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_90565bb3d1194515ab0f76dac8212c2f", + "placeholder": "​", + "style": "IPY_MODEL_6655841f611242b1b1b43ee49f4bbaf2", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 114kB/s]" + } + }, + "bc26b348a4754c20b4dc2908953948e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bf0f6d37f6e64286af6506c42766edbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bf51cc0a3c64473f8bccb569b7631e88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9741e57728b0428a94c4a371f799d3e5", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e04fb57010a449fa94d1288e6657137e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "c12db2f3a66249318ecf4d6536c8c928": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2763,25 +2878,7 @@ "width": null } }, - "a8f77329c48a462897a7c70fa6a90b41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a943a44d6cdd4ecd92e8e8ea5e2d5c49": { + "c7e5b48fd6bf4f7da153018fbee55842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2834,31 +2931,33 @@ "width": null } }, - "a9bb6466d1ba4951b164e17a33517554": { + "cb3b41b891ff4d6489bd574d558e370c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0f96ba9e277f4f818b62dd02f5202ab1", - "IPY_MODEL_07f14dbddfe34017accff07c5141725c", - "IPY_MODEL_9f9ed4926fdd4099a669a6edb91d9017" - ], - "layout": "IPY_MODEL_8986a1b1965b4dac85f72d0b4861d9d9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1a6abc862634414b3d1d37309ef29cb", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d3c842b12ba4ed291c7c44527416060", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "abaa9e67d2aa4e53b09c155f1e77c0ec": { + "ccf46aa6594c4867adfb401803ca72e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,81 +2996,44 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "af6019329c1c4e5d91552e124ce72e01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afab22926aec404a880f2cb2671f11cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b2978d58647a4d4bb8cf666ca7ae71de": { + "d4673f560a3c4a17883f6dd9549e92f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d0bb8cb0d081404e91d5812d0828572c", - "IPY_MODEL_8156041be7e0465c87e63813647312e0", - "IPY_MODEL_f7b2b1b4d92748f4bf2596f690c04ac8" - ], - "layout": "IPY_MODEL_093e7045dda04a9cbca6f6ca3fc8534e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_798ad98af1914ebfa76027c306b86885", + "placeholder": "​", + "style": "IPY_MODEL_6d8fce2a0f6c44a592ff6d135648eb7e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 393kB/s]" } }, - "b57642aea9924fb5b20bb2de8d171332": { + "d524ebbb5d31420ebc500873dc871e43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3024,7 +3086,7 @@ "width": null } }, - "b974b4475657463f858fcec5e668be93": { + "d57326b8ae6444839e8ac6161f2779ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3077,33 +3139,7 @@ "width": null } }, - "bcd4e8ea61384bf7b9174188e65c97aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a81168c6d1a45f49297311369ac1721", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_193f2f0d42fd4677bef93cc1081b569b", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "c8b40a8aff9144b39b5c109b4133cecf": { + "d5a992d19edc4d6388ca00e8fe43adf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3156,30 +3192,23 @@ "width": null } }, - "d0bb8cb0d081404e91d5812d0828572c": { + "d5b92983f9b44d03aa06c8c569cd59d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4307fa375f2a476c94ae12c1f66d085d", - "placeholder": "​", - "style": "IPY_MODEL_9067bb52ac4648bc90d93f18e438360b", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d690ad0978314a15be693306fc6ab575": { + "d664717be6b24053b7ec4276a48423db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3232,7 +3261,7 @@ "width": null } }, - "d6e4f671c9f34555be2b639a76f8bacf": { + "d76426e2be9f466a9190b13ea2b587de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3248,30 +3277,7 @@ "description_width": "" } }, - "dc62d3342657453e81b68083fee06ce6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e90510812da41ab9e5084a39d030a58", - "placeholder": "​", - "style": "IPY_MODEL_f7a62d47cf9c4d389a3b4631df0a152f", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 15.0MB/s]" - } - }, - "dfae98eaa151428daf8846f5892d4bf6": { + "d93f977e281e40ce97a8893e95f4bd1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3324,53 +3330,7 @@ "width": null } }, - "e6230d674f2d46e097f76c0535807beb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86ee62a59ef645d2b27725072b9bc77b", - "placeholder": "​", - "style": "IPY_MODEL_5af078cd3ebe4daf800f0a0014aec1f4", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "e73b4a53022d4ea1a4a3eb06151216c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d690ad0978314a15be693306fc6ab575", - "placeholder": "​", - "style": "IPY_MODEL_afab22926aec404a880f2cb2671f11cc", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "eb1ccb7d3970425b8f298eda0f4ec13b": { + "db9b9c684bc3497d87a4f0563cb69e1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3423,57 +3383,70 @@ "width": null } }, - "eb55b901c08d44869813de690e4758c4": { + "dd4324aa872a4b82bc19aad38ee6b225": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7eb5599da16b44018aa738c67ce80954", - "IPY_MODEL_bcd4e8ea61384bf7b9174188e65c97aa", - "IPY_MODEL_14a06a56a047405db7c1b323e050c2f1" - ], - "layout": "IPY_MODEL_8fe28946422246bfb725f03c68436ceb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c7e5b48fd6bf4f7da153018fbee55842", + "placeholder": "​", + "style": "IPY_MODEL_0bb58a355d82497ea894ccdbfafe71cc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "ec854d51ef9a4510a09dbfe7141f9b37": { + "e04fb57010a449fa94d1288e6657137e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e704dc9524764a4c866ac8dae48ee954": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6df1d15be0594a47a6ab03370bfe2d74", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_08d4ee2eedb847ee921f28a01bdbf8ae", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_115b5302d5bd48cdb188d06fa3c691d3", + "IPY_MODEL_89a3f3a5e2bd4e71b08aa4958b447917", + "IPY_MODEL_574637f0d90c4f999f79f83c7ab9ac25" + ], + "layout": "IPY_MODEL_b413b2092a80494d91cf70bbeedb1e80", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null } }, - "f2e4d9efd9194dd095e532cb483d9267": { + "e9d78c3323c94ba99707e480b29e93ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3488,57 +3461,68 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4cd84dec961f4d24a1fb2ac611788cbd", - "IPY_MODEL_ec854d51ef9a4510a09dbfe7141f9b37", - "IPY_MODEL_dc62d3342657453e81b68083fee06ce6" + "IPY_MODEL_6192e3a2b9dc40fc9e42d7022ccb6da7", + "IPY_MODEL_bf51cc0a3c64473f8bccb569b7631e88", + "IPY_MODEL_2e6d799e61dd4036826fa3c89864f73d" ], - "layout": "IPY_MODEL_eb1ccb7d3970425b8f298eda0f4ec13b", + "layout": "IPY_MODEL_f5c851163e9f429abd2a8710a748f770", "tabbable": null, "tooltip": null } }, - "f7a62d47cf9c4d389a3b4631df0a152f": { + "ee7b2c440349459a987d628c271588ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d524ebbb5d31420ebc500873dc871e43", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d76426e2be9f466a9190b13ea2b587de", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "f7b2b1b4d92748f4bf2596f690c04ac8": { + "f38245cf2ba8420db30db360e7b825b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a62c2dc7bac94e919e060151cb19edb1", - "placeholder": "​", - "style": "IPY_MODEL_546e37538d084cbe9897631127530216", + "layout": "IPY_MODEL_1587f80f14a64e8f89ca925f4fca7d7e", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e18b26951b243b8baef48e4a8e40f69", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 64.7kB/s]" + "value": 665.0 } }, - "fde9beaf208645aa897899ef17fcde83": { + "f5c851163e9f429abd2a8710a748f770": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3591,46 +3575,62 @@ "width": null } }, - "fe64e87d5f4a48529cf0db06fa555e5f": { + "f87e6441b274424db0a957c4d8049d8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44ef2bf22e2348448a29599244648f1c", + "IPY_MODEL_5fc0d488bc754fee9c4de60e79480c02", + "IPY_MODEL_d4673f560a3c4a17883f6dd9549e92f2" + ], + "layout": "IPY_MODEL_5425f47f7f2a4130a38a762dde10c5a7", + "tabbable": null, + "tooltip": null + } + }, + "fea7bd6269154a729f7ebff9eeeef18e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fedea46176bb41148f55b5d28a2d7b61": { + "ffd93e7f2dce422f8713966a04342536": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a59cedcb9ac34e5ba44cf8709ae1a153", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7bd55153d5a045aca7c2e85a268dea5a", - "tabbable": null, - "tooltip": null, - "value": 48.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 209cba97e..67a213b57 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1348,7 +1348,7 @@

    5. Use cleanlab to find label issues -{"state": {"bebba45631ee43268608990c60032228": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4cb3a1f2c7c45b3a43d02391e30e63d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be4e5e08b22448efbe55afd2e4b51f89": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bebba45631ee43268608990c60032228", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f4cb3a1f2c7c45b3a43d02391e30e63d", "tabbable": null, "tooltip": null, "value": 2041.0}}, "abe63080525e48b1b5ce25e8afe4ae84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "774f49c76d6b42df9cfce40371417b41": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b83edc836cf544caad3eba8116bdc080": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abe63080525e48b1b5ce25e8afe4ae84", "placeholder": "\u200b", "style": "IPY_MODEL_774f49c76d6b42df9cfce40371417b41", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "10c117c613194956b6f6ddde7137d199": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35709b82fbaf4bdb88a33fbf71976e3b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b284cd154504485d995df54f507b71b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_10c117c613194956b6f6ddde7137d199", "placeholder": "\u200b", "style": "IPY_MODEL_35709b82fbaf4bdb88a33fbf71976e3b", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007497kB/s]"}}, "bc7a726ed671410099a00758a473e139": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c969a432d7d40a7b684276a93b30304": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b83edc836cf544caad3eba8116bdc080", "IPY_MODEL_be4e5e08b22448efbe55afd2e4b51f89", "IPY_MODEL_b284cd154504485d995df54f507b71b5"], "layout": "IPY_MODEL_bc7a726ed671410099a00758a473e139", "tabbable": null, "tooltip": null}}, "b22514b7d53a42b995a8ba93dad32244": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e419bd62cb14c58b3b2d60da5337c89": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e3c3406ddb4747438106aacde8903910": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b22514b7d53a42b995a8ba93dad32244", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6e419bd62cb14c58b3b2d60da5337c89", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "8d994d94d6b04190b2229b45edd0906b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ceea46f16304503ad4d445f04203a37": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "768c708c19fc45fab403a3fadb7eb092": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d994d94d6b04190b2229b45edd0906b", "placeholder": "\u200b", "style": "IPY_MODEL_5ceea46f16304503ad4d445f04203a37", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d4aadd9f728946e8b9001a0252e3faff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b467cabe9c8a48fc87a63ddcd38faf02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f218565da77041bdb8d190d21c24ae66": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4aadd9f728946e8b9001a0252e3faff", "placeholder": "\u200b", "style": "IPY_MODEL_b467cabe9c8a48fc87a63ddcd38faf02", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007258MB/s]"}}, "24d1a6ba72ca41c5a60366dc131571de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0323ef3772f4274b9d3f4598d073d3b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_768c708c19fc45fab403a3fadb7eb092", "IPY_MODEL_e3c3406ddb4747438106aacde8903910", "IPY_MODEL_f218565da77041bdb8d190d21c24ae66"], "layout": "IPY_MODEL_24d1a6ba72ca41c5a60366dc131571de", "tabbable": null, "tooltip": null}}, "571bd96a3bc94f1eb7859cf617377e83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d00d941fac547389deef7239d1568ef": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a0ff6c64f16241adb9a62f2b31bf6a15": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_571bd96a3bc94f1eb7859cf617377e83", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8d00d941fac547389deef7239d1568ef", "tabbable": null, "tooltip": null, "value": 3201.0}}, "056edd9d6e1647bebf20532471526fa7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99838c76c7b4445989105ee0bb245613": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2de5b7f7ef244b9b2518611582b28ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_056edd9d6e1647bebf20532471526fa7", "placeholder": "\u200b", "style": "IPY_MODEL_99838c76c7b4445989105ee0bb245613", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "638b5137fff848aabb9901d3b04242b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b4a25f4a9144bb3a48cad0631b109b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0d17db4760fa4f3b9b3f148bf4f65fe4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_638b5137fff848aabb9901d3b04242b7", "placeholder": "\u200b", "style": "IPY_MODEL_0b4a25f4a9144bb3a48cad0631b109b9", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007845kB/s]"}}, "48333476b2434e628c4faf13b043da4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a7cdb36fcb34925897ccc16eef76cc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2de5b7f7ef244b9b2518611582b28ca", "IPY_MODEL_a0ff6c64f16241adb9a62f2b31bf6a15", "IPY_MODEL_0d17db4760fa4f3b9b3f148bf4f65fe4"], "layout": "IPY_MODEL_48333476b2434e628c4faf13b043da4b", "tabbable": null, "tooltip": null}}, "3448d9704a4b4ba381b16b5f791d700e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09c5eaeee6ef4cf98b3e2b4675cc0a18": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8051d9f0c9124678a0a6128bbdba8dc7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3448d9704a4b4ba381b16b5f791d700e", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_09c5eaeee6ef4cf98b3e2b4675cc0a18", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "759241a3fb7f463dbaaf67ea72e5ea6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f66773d74264b90a693a2222d471113": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e49fb8a35a944f279c8a35ff826a8b44": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_759241a3fb7f463dbaaf67ea72e5ea6f", "placeholder": "\u200b", "style": "IPY_MODEL_5f66773d74264b90a693a2222d471113", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "057e9688008449a185ba2d598ac74d51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce700ebee333459985d574941ed1e24e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fd874dc09c36484f90d5c09348dbe00d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_057e9688008449a185ba2d598ac74d51", "placeholder": "\u200b", "style": "IPY_MODEL_ce700ebee333459985d574941ed1e24e", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007235MB/s]"}}, "d3d2775d82364cdb9a8dd8e5a4235cbb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34e0bb9aa250453a83d0a4cfe1a5619a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e49fb8a35a944f279c8a35ff826a8b44", "IPY_MODEL_8051d9f0c9124678a0a6128bbdba8dc7", "IPY_MODEL_fd874dc09c36484f90d5c09348dbe00d"], "layout": "IPY_MODEL_d3d2775d82364cdb9a8dd8e5a4235cbb", "tabbable": null, "tooltip": null}}, "472d70d156a3480b82404c8bdac5f037": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f5f78f06f7043389009c3aede75e59f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3b60c344c6834eb1b08bcc122b884dfc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_472d70d156a3480b82404c8bdac5f037", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f5f78f06f7043389009c3aede75e59f", "tabbable": null, "tooltip": null, "value": 128619.0}}, "68f0d5b1092d46208fcd48808c2ba1b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99e4cf4c0f814bc2aea099d8a3adadae": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3d06c83d2d1b40cda29edccb743f5acd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68f0d5b1092d46208fcd48808c2ba1b8", "placeholder": "\u200b", "style": "IPY_MODEL_99e4cf4c0f814bc2aea099d8a3adadae", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "c73e0c4f691b43d1be5372aa5327324f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40acee1a203b407fb27d74c9826b4108": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3808be597d8b4aabb8a4df9e7574e4b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c73e0c4f691b43d1be5372aa5327324f", "placeholder": "\u200b", "style": "IPY_MODEL_40acee1a203b407fb27d74c9826b4108", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.66MB/s]"}}, "b74a4c950fb14e45850722bd8b9fe093": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "245cbb9caca646e8b155f2ac206f45a1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3d06c83d2d1b40cda29edccb743f5acd", "IPY_MODEL_3b60c344c6834eb1b08bcc122b884dfc", "IPY_MODEL_3808be597d8b4aabb8a4df9e7574e4b9"], "layout": "IPY_MODEL_b74a4c950fb14e45850722bd8b9fe093", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"b8925d88c37f4c3db56c82c078f6ed15": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0dda76d01c14ce2a77e244a41f18465": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "efefa9d436124a5fb57a4d83208ef311": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b8925d88c37f4c3db56c82c078f6ed15", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e0dda76d01c14ce2a77e244a41f18465", "tabbable": null, "tooltip": null, "value": 2041.0}}, "84fd6a99c4c24cd5a5b917e62af1e5c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a58c2938b9c4bcab8f2d5daecc87257": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "323585f014c648499e1e307a69af5d72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_84fd6a99c4c24cd5a5b917e62af1e5c0", "placeholder": "\u200b", "style": "IPY_MODEL_4a58c2938b9c4bcab8f2d5daecc87257", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "34966616702a456590d803c8c9128f61": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "358153dd740c4cf7bb61755e1ca3474d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11c562034b884e55a3e61be21ac21f06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34966616702a456590d803c8c9128f61", "placeholder": "\u200b", "style": "IPY_MODEL_358153dd740c4cf7bb61755e1ca3474d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007482kB/s]"}}, "4b476270f08b41ddb459f73c37b1faf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6718efb0af074cc89f39111e3becb775": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_323585f014c648499e1e307a69af5d72", "IPY_MODEL_efefa9d436124a5fb57a4d83208ef311", "IPY_MODEL_11c562034b884e55a3e61be21ac21f06"], "layout": "IPY_MODEL_4b476270f08b41ddb459f73c37b1faf7", "tabbable": null, "tooltip": null}}, "b00c1cdc8eef4114b8bd4b9967c48227": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f084769a7ea48ce93ebeca2eee3a2b9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "31e95ee34185458dba463229bb4ede54": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b00c1cdc8eef4114b8bd4b9967c48227", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5f084769a7ea48ce93ebeca2eee3a2b9", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "5a09c0a1e80c41a28a88b5ec0f4854c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a91f1a2e74245faa1360d48acfff410": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "579d7bc4883b4ff894f161b5fa63ee1a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5a09c0a1e80c41a28a88b5ec0f4854c4", "placeholder": "\u200b", "style": "IPY_MODEL_0a91f1a2e74245faa1360d48acfff410", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "e6028057e56442dcafbb47c7939e2051": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3d26e3e8bfe45e78a76ab0ecf508023": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f285b9a98169410685f5e404b9b80565": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6028057e56442dcafbb47c7939e2051", "placeholder": "\u200b", "style": "IPY_MODEL_e3d26e3e8bfe45e78a76ab0ecf508023", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007264MB/s]"}}, "8dd789e197b3474398fd06ff31414b1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0db169b1e1d3462390d173b724067154": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_579d7bc4883b4ff894f161b5fa63ee1a", "IPY_MODEL_31e95ee34185458dba463229bb4ede54", "IPY_MODEL_f285b9a98169410685f5e404b9b80565"], "layout": "IPY_MODEL_8dd789e197b3474398fd06ff31414b1d", "tabbable": null, "tooltip": null}}, "5aec6faba3a0453daa6fc1e8a5beef6a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f42c0b8247414c8eab848966b58c5194": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b6b74efd51244eebaa4f75545a8f0b07": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5aec6faba3a0453daa6fc1e8a5beef6a", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f42c0b8247414c8eab848966b58c5194", "tabbable": null, "tooltip": null, "value": 3201.0}}, "b7f81b33b5134256ac44aadfff208e44": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff090e6a397d40b5bb86f7c7d9726270": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce477f4edfe444d49c58863da5da46f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7f81b33b5134256ac44aadfff208e44", "placeholder": "\u200b", "style": "IPY_MODEL_ff090e6a397d40b5bb86f7c7d9726270", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "a8d3673af4574385aea685a1b4012f4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74bc1d3ac9574f7dabac7edeab90b4b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72ce49dfb6b84928be42099d69d5fe39": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8d3673af4574385aea685a1b4012f4d", "placeholder": "\u200b", "style": "IPY_MODEL_74bc1d3ac9574f7dabac7edeab90b4b9", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007705kB/s]"}}, "bf449faa888d49f1807839781d238881": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9b25423bf1543d7a52bde9e07e13d92": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ce477f4edfe444d49c58863da5da46f6", "IPY_MODEL_b6b74efd51244eebaa4f75545a8f0b07", "IPY_MODEL_72ce49dfb6b84928be42099d69d5fe39"], "layout": "IPY_MODEL_bf449faa888d49f1807839781d238881", "tabbable": null, "tooltip": null}}, "065665834fe849debf9577cd1fe479b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34d5fbe58ab7438f9472333865f232c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dab4f6e5ef014c5793d577795eb603ae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_065665834fe849debf9577cd1fe479b3", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_34d5fbe58ab7438f9472333865f232c9", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "b0f9d55995f24475833a8fa806821e82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42c45b3759ac4aaa9a7413e64eedfad7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ac165ce71b5494aa1584e2f59deceb1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b0f9d55995f24475833a8fa806821e82", "placeholder": "\u200b", "style": "IPY_MODEL_42c45b3759ac4aaa9a7413e64eedfad7", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "1f84e7b2a25e40b5b46cbd11d3340b7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed2475bf5c0f4723bd7d2a4257459602": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f8c5e1a6cd7641c59e7c58a8baad671c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f84e7b2a25e40b5b46cbd11d3340b7f", "placeholder": "\u200b", "style": "IPY_MODEL_ed2475bf5c0f4723bd7d2a4257459602", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007263MB/s]"}}, "4eaafaa912e04a9b8a77db25bb462943": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e3afea7da4541d39068c2d2feec934c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ac165ce71b5494aa1584e2f59deceb1", "IPY_MODEL_dab4f6e5ef014c5793d577795eb603ae", "IPY_MODEL_f8c5e1a6cd7641c59e7c58a8baad671c"], "layout": "IPY_MODEL_4eaafaa912e04a9b8a77db25bb462943", "tabbable": null, "tooltip": null}}, "97ffe000864142a2a03d4fd0d069ccf2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "723db047c9e0426b8a9f9fa9beb87e81": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b7548af9c7004b6fa8759aa9b32cafa1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97ffe000864142a2a03d4fd0d069ccf2", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_723db047c9e0426b8a9f9fa9beb87e81", "tabbable": null, "tooltip": null, "value": 128619.0}}, "396e63732dfa425ca8a1cfd419f2b9a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37d428f4223240a5976d73cd2a04368c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c744cc2ba6f64bdfa5d2ab4e2a65f6c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_396e63732dfa425ca8a1cfd419f2b9a6", "placeholder": "\u200b", "style": "IPY_MODEL_37d428f4223240a5976d73cd2a04368c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "58a04ee857ce45b8bc79733e866170dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f62b42d901a048b3915eeaca96a2faaa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de679541b5b046aa90c292d86ff4fe2d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58a04ee857ce45b8bc79733e866170dd", "placeholder": "\u200b", "style": "IPY_MODEL_f62b42d901a048b3915eeaca96a2faaa", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200723.0MB/s]"}}, "9f273f47b7bc4c90a9d940db2d2f037e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a800a5b39634447b41d26c6b5958675": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c744cc2ba6f64bdfa5d2ab4e2a65f6c8", "IPY_MODEL_b7548af9c7004b6fa8759aa9b32cafa1", "IPY_MODEL_de679541b5b046aa90c292d86ff4fe2d"], "layout": "IPY_MODEL_9f273f47b7bc4c90a9d940db2d2f037e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index dbb1daf78..dc239703c 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:31.724474Z", - "iopub.status.busy": "2024-06-19T19:13:31.723866Z", - "iopub.status.idle": "2024-06-19T19:13:37.133460Z", - "shell.execute_reply": "2024-06-19T19:13:37.132903Z" + "iopub.execute_input": "2024-06-25T15:02:08.176130Z", + "iopub.status.busy": "2024-06-25T15:02:08.175897Z", + "iopub.status.idle": "2024-06-25T15:02:15.244517Z", + "shell.execute_reply": "2024-06-25T15:02:15.243853Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.136175Z", - "iopub.status.busy": "2024-06-19T19:13:37.135678Z", - "iopub.status.idle": "2024-06-19T19:13:37.138925Z", - "shell.execute_reply": "2024-06-19T19:13:37.138480Z" + "iopub.execute_input": "2024-06-25T15:02:15.247297Z", + "iopub.status.busy": "2024-06-25T15:02:15.246795Z", + "iopub.status.idle": "2024-06-25T15:02:15.250165Z", + "shell.execute_reply": "2024-06-25T15:02:15.249626Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.141011Z", - "iopub.status.busy": "2024-06-19T19:13:37.140685Z", - "iopub.status.idle": "2024-06-19T19:13:37.145034Z", - "shell.execute_reply": "2024-06-19T19:13:37.144611Z" + "iopub.execute_input": "2024-06-25T15:02:15.252170Z", + "iopub.status.busy": "2024-06-25T15:02:15.251863Z", + "iopub.status.idle": "2024-06-25T15:02:15.256520Z", + "shell.execute_reply": "2024-06-25T15:02:15.255970Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:37.147096Z", - "iopub.status.busy": "2024-06-19T19:13:37.146770Z", - "iopub.status.idle": "2024-06-19T19:13:38.648451Z", - "shell.execute_reply": "2024-06-19T19:13:38.647790Z" + "iopub.execute_input": "2024-06-25T15:02:15.258543Z", + "iopub.status.busy": "2024-06-25T15:02:15.258235Z", + "iopub.status.idle": "2024-06-25T15:02:16.884738Z", + "shell.execute_reply": "2024-06-25T15:02:16.884101Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.651240Z", - "iopub.status.busy": "2024-06-19T19:13:38.650848Z", - "iopub.status.idle": "2024-06-19T19:13:38.661633Z", - "shell.execute_reply": "2024-06-19T19:13:38.661051Z" + "iopub.execute_input": "2024-06-25T15:02:16.887448Z", + "iopub.status.busy": "2024-06-25T15:02:16.887076Z", + "iopub.status.idle": "2024-06-25T15:02:16.897643Z", + "shell.execute_reply": "2024-06-25T15:02:16.897098Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.663800Z", - "iopub.status.busy": "2024-06-19T19:13:38.663531Z", - "iopub.status.idle": "2024-06-19T19:13:38.668825Z", - "shell.execute_reply": "2024-06-19T19:13:38.668374Z" + "iopub.execute_input": "2024-06-25T15:02:16.899757Z", + "iopub.status.busy": "2024-06-25T15:02:16.899558Z", + "iopub.status.idle": "2024-06-25T15:02:16.904954Z", + "shell.execute_reply": "2024-06-25T15:02:16.904415Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:38.670895Z", - "iopub.status.busy": "2024-06-19T19:13:38.670564Z", - "iopub.status.idle": "2024-06-19T19:13:39.134781Z", - "shell.execute_reply": "2024-06-19T19:13:39.134211Z" + "iopub.execute_input": "2024-06-25T15:02:16.907000Z", + "iopub.status.busy": "2024-06-25T15:02:16.906695Z", + "iopub.status.idle": "2024-06-25T15:02:17.344696Z", + "shell.execute_reply": "2024-06-25T15:02:17.344197Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.136921Z", - "iopub.status.busy": "2024-06-19T19:13:39.136731Z", - "iopub.status.idle": "2024-06-19T19:13:39.806863Z", - "shell.execute_reply": "2024-06-19T19:13:39.806234Z" + "iopub.execute_input": "2024-06-25T15:02:17.346815Z", + "iopub.status.busy": "2024-06-25T15:02:17.346622Z", + "iopub.status.idle": "2024-06-25T15:02:17.873302Z", + "shell.execute_reply": "2024-06-25T15:02:17.872795Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.809355Z", - "iopub.status.busy": "2024-06-19T19:13:39.809000Z", - "iopub.status.idle": "2024-06-19T19:13:39.827351Z", - "shell.execute_reply": "2024-06-19T19:13:39.826843Z" + "iopub.execute_input": "2024-06-25T15:02:17.875838Z", + "iopub.status.busy": "2024-06-25T15:02:17.875532Z", + "iopub.status.idle": "2024-06-25T15:02:17.894363Z", + "shell.execute_reply": "2024-06-25T15:02:17.893825Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.829649Z", - "iopub.status.busy": "2024-06-19T19:13:39.829305Z", - "iopub.status.idle": "2024-06-19T19:13:39.832484Z", - "shell.execute_reply": "2024-06-19T19:13:39.832008Z" + "iopub.execute_input": "2024-06-25T15:02:17.896418Z", + "iopub.status.busy": "2024-06-25T15:02:17.896157Z", + "iopub.status.idle": "2024-06-25T15:02:17.899239Z", + "shell.execute_reply": "2024-06-25T15:02:17.898819Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:39.834683Z", - "iopub.status.busy": "2024-06-19T19:13:39.834359Z", - "iopub.status.idle": "2024-06-19T19:13:54.632116Z", - "shell.execute_reply": "2024-06-19T19:13:54.631530Z" + "iopub.execute_input": "2024-06-25T15:02:17.901266Z", + "iopub.status.busy": "2024-06-25T15:02:17.900893Z", + "iopub.status.idle": "2024-06-25T15:02:33.164898Z", + "shell.execute_reply": "2024-06-25T15:02:33.164163Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:54.634785Z", - "iopub.status.busy": "2024-06-19T19:13:54.634403Z", - "iopub.status.idle": "2024-06-19T19:13:54.638244Z", - "shell.execute_reply": "2024-06-19T19:13:54.637698Z" + "iopub.execute_input": "2024-06-25T15:02:33.168417Z", + "iopub.status.busy": "2024-06-25T15:02:33.167943Z", + "iopub.status.idle": "2024-06-25T15:02:33.171955Z", + "shell.execute_reply": "2024-06-25T15:02:33.171347Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:54.640315Z", - "iopub.status.busy": "2024-06-19T19:13:54.640130Z", - "iopub.status.idle": "2024-06-19T19:13:55.362069Z", - "shell.execute_reply": "2024-06-19T19:13:55.361477Z" + "iopub.execute_input": "2024-06-25T15:02:33.174237Z", + "iopub.status.busy": "2024-06-25T15:02:33.173793Z", + "iopub.status.idle": "2024-06-25T15:02:33.908856Z", + "shell.execute_reply": "2024-06-25T15:02:33.908160Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.365099Z", - "iopub.status.busy": "2024-06-19T19:13:55.364531Z", - "iopub.status.idle": "2024-06-19T19:13:55.369403Z", - "shell.execute_reply": "2024-06-19T19:13:55.368920Z" + "iopub.execute_input": "2024-06-25T15:02:33.911831Z", + "iopub.status.busy": "2024-06-25T15:02:33.911585Z", + "iopub.status.idle": "2024-06-25T15:02:33.916537Z", + "shell.execute_reply": "2024-06-25T15:02:33.915984Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.371810Z", - "iopub.status.busy": "2024-06-19T19:13:55.371436Z", - "iopub.status.idle": "2024-06-19T19:13:55.471450Z", - "shell.execute_reply": "2024-06-19T19:13:55.470834Z" + "iopub.execute_input": "2024-06-25T15:02:33.919068Z", + "iopub.status.busy": "2024-06-25T15:02:33.918859Z", + "iopub.status.idle": "2024-06-25T15:02:34.024792Z", + "shell.execute_reply": "2024-06-25T15:02:34.024182Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.473967Z", - "iopub.status.busy": "2024-06-19T19:13:55.473588Z", - "iopub.status.idle": "2024-06-19T19:13:55.485513Z", - "shell.execute_reply": "2024-06-19T19:13:55.485058Z" + "iopub.execute_input": "2024-06-25T15:02:34.027300Z", + "iopub.status.busy": "2024-06-25T15:02:34.026886Z", + "iopub.status.idle": "2024-06-25T15:02:34.040210Z", + "shell.execute_reply": "2024-06-25T15:02:34.039705Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.487657Z", - "iopub.status.busy": "2024-06-19T19:13:55.487331Z", - "iopub.status.idle": "2024-06-19T19:13:55.494998Z", - "shell.execute_reply": "2024-06-19T19:13:55.494567Z" + "iopub.execute_input": "2024-06-25T15:02:34.042518Z", + "iopub.status.busy": "2024-06-25T15:02:34.042160Z", + "iopub.status.idle": "2024-06-25T15:02:34.050552Z", + "shell.execute_reply": "2024-06-25T15:02:34.049971Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.497125Z", - "iopub.status.busy": "2024-06-19T19:13:55.496800Z", - "iopub.status.idle": "2024-06-19T19:13:55.500807Z", - "shell.execute_reply": "2024-06-19T19:13:55.500265Z" + "iopub.execute_input": "2024-06-25T15:02:34.053043Z", + "iopub.status.busy": "2024-06-25T15:02:34.052548Z", + "iopub.status.idle": "2024-06-25T15:02:34.057420Z", + "shell.execute_reply": "2024-06-25T15:02:34.056944Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.502976Z", - "iopub.status.busy": "2024-06-19T19:13:55.502544Z", - "iopub.status.idle": "2024-06-19T19:13:55.508120Z", - "shell.execute_reply": "2024-06-19T19:13:55.507656Z" + "iopub.execute_input": "2024-06-25T15:02:34.059919Z", + "iopub.status.busy": "2024-06-25T15:02:34.059470Z", + "iopub.status.idle": "2024-06-25T15:02:34.065940Z", + "shell.execute_reply": "2024-06-25T15:02:34.065342Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.510246Z", - "iopub.status.busy": "2024-06-19T19:13:55.509919Z", - "iopub.status.idle": "2024-06-19T19:13:55.622133Z", - "shell.execute_reply": "2024-06-19T19:13:55.621564Z" + "iopub.execute_input": "2024-06-25T15:02:34.068297Z", + "iopub.status.busy": "2024-06-25T15:02:34.067933Z", + "iopub.status.idle": "2024-06-25T15:02:34.201047Z", + "shell.execute_reply": "2024-06-25T15:02:34.200381Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.624506Z", - "iopub.status.busy": "2024-06-19T19:13:55.624167Z", - "iopub.status.idle": "2024-06-19T19:13:55.729249Z", - "shell.execute_reply": "2024-06-19T19:13:55.728660Z" + "iopub.execute_input": "2024-06-25T15:02:34.203740Z", + "iopub.status.busy": "2024-06-25T15:02:34.203362Z", + "iopub.status.idle": "2024-06-25T15:02:34.314277Z", + "shell.execute_reply": "2024-06-25T15:02:34.313644Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.731529Z", - "iopub.status.busy": "2024-06-19T19:13:55.731114Z", - "iopub.status.idle": "2024-06-19T19:13:55.835603Z", - "shell.execute_reply": "2024-06-19T19:13:55.835028Z" + "iopub.execute_input": "2024-06-25T15:02:34.316726Z", + "iopub.status.busy": "2024-06-25T15:02:34.316376Z", + "iopub.status.idle": "2024-06-25T15:02:34.428040Z", + "shell.execute_reply": "2024-06-25T15:02:34.427365Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.837654Z", - "iopub.status.busy": "2024-06-19T19:13:55.837457Z", - "iopub.status.idle": "2024-06-19T19:13:55.943789Z", - "shell.execute_reply": "2024-06-19T19:13:55.943286Z" + "iopub.execute_input": "2024-06-25T15:02:34.430505Z", + "iopub.status.busy": "2024-06-25T15:02:34.430130Z", + "iopub.status.idle": "2024-06-25T15:02:34.540275Z", + "shell.execute_reply": "2024-06-25T15:02:34.539662Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:13:55.945995Z", - "iopub.status.busy": "2024-06-19T19:13:55.945670Z", - "iopub.status.idle": "2024-06-19T19:13:55.948721Z", - "shell.execute_reply": "2024-06-19T19:13:55.948284Z" + "iopub.execute_input": "2024-06-25T15:02:34.542600Z", + "iopub.status.busy": "2024-06-25T15:02:34.542291Z", + "iopub.status.idle": "2024-06-25T15:02:34.545643Z", + "shell.execute_reply": "2024-06-25T15:02:34.545177Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "056edd9d6e1647bebf20532471526fa7": { + "065665834fe849debf9577cd1fe479b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,94 +1455,73 @@ "width": null } }, - "057e9688008449a185ba2d598ac74d51": { - "model_module": "@jupyter-widgets/base", + "0a800a5b39634447b41d26c6b5958675": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c744cc2ba6f64bdfa5d2ab4e2a65f6c8", + "IPY_MODEL_b7548af9c7004b6fa8759aa9b32cafa1", + "IPY_MODEL_de679541b5b046aa90c292d86ff4fe2d" + ], + "layout": "IPY_MODEL_9f273f47b7bc4c90a9d940db2d2f037e", + "tabbable": null, + "tooltip": null } }, - "09c5eaeee6ef4cf98b3e2b4675cc0a18": { + "0a91f1a2e74245faa1360d48acfff410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b4a25f4a9144bb3a48cad0631b109b9": { + "0db169b1e1d3462390d173b724067154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_579d7bc4883b4ff894f161b5fa63ee1a", + "IPY_MODEL_31e95ee34185458dba463229bb4ede54", + "IPY_MODEL_f285b9a98169410685f5e404b9b80565" + ], + "layout": "IPY_MODEL_8dd789e197b3474398fd06ff31414b1d", + "tabbable": null, + "tooltip": null } }, - "0d17db4760fa4f3b9b3f148bf4f65fe4": { + "11c562034b884e55a3e61be21ac21f06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1557,68 +1536,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_638b5137fff848aabb9901d3b04242b7", + "layout": "IPY_MODEL_34966616702a456590d803c8c9128f61", "placeholder": "​", - "style": "IPY_MODEL_0b4a25f4a9144bb3a48cad0631b109b9", + "style": "IPY_MODEL_358153dd740c4cf7bb61755e1ca3474d", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 845kB/s]" - } - }, - "10c117c613194956b6f6ddde7137d199": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" } }, - "245cbb9caca646e8b155f2ac206f45a1": { + "1e3afea7da4541d39068c2d2feec934c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1633,16 +1559,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3d06c83d2d1b40cda29edccb743f5acd", - "IPY_MODEL_3b60c344c6834eb1b08bcc122b884dfc", - "IPY_MODEL_3808be597d8b4aabb8a4df9e7574e4b9" + "IPY_MODEL_5ac165ce71b5494aa1584e2f59deceb1", + "IPY_MODEL_dab4f6e5ef014c5793d577795eb603ae", + "IPY_MODEL_f8c5e1a6cd7641c59e7c58a8baad671c" ], - "layout": "IPY_MODEL_b74a4c950fb14e45850722bd8b9fe093", + "layout": "IPY_MODEL_4eaafaa912e04a9b8a77db25bb462943", "tabbable": null, "tooltip": null } }, - "24d1a6ba72ca41c5a60366dc131571de": { + "1f84e7b2a25e40b5b46cbd11d3340b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,7 +1621,56 @@ "width": null } }, - "3448d9704a4b4ba381b16b5f791d700e": { + "31e95ee34185458dba463229bb4ede54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b00c1cdc8eef4114b8bd4b9967c48227", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5f084769a7ea48ce93ebeca2eee3a2b9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "323585f014c648499e1e307a69af5d72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_84fd6a99c4c24cd5a5b917e62af1e5c0", + "placeholder": "​", + "style": "IPY_MODEL_4a58c2938b9c4bcab8f2d5daecc87257", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "34966616702a456590d803c8c9128f61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1748,31 +1723,23 @@ "width": null } }, - "34e0bb9aa250453a83d0a4cfe1a5619a": { + "34d5fbe58ab7438f9472333865f232c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e49fb8a35a944f279c8a35ff826a8b44", - "IPY_MODEL_8051d9f0c9124678a0a6128bbdba8dc7", - "IPY_MODEL_fd874dc09c36484f90d5c09348dbe00d" - ], - "layout": "IPY_MODEL_d3d2775d82364cdb9a8dd8e5a4235cbb", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "35709b82fbaf4bdb88a33fbf71976e3b": { + "358153dd740c4cf7bb61755e1ca3474d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1790,79 +1757,7 @@ "text_color": null } }, - "3808be597d8b4aabb8a4df9e7574e4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c73e0c4f691b43d1be5372aa5327324f", - "placeholder": "​", - "style": "IPY_MODEL_40acee1a203b407fb27d74c9826b4108", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.66MB/s]" - } - }, - "3b60c344c6834eb1b08bcc122b884dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_472d70d156a3480b82404c8bdac5f037", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f5f78f06f7043389009c3aede75e59f", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "3d06c83d2d1b40cda29edccb743f5acd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f0d5b1092d46208fcd48808c2ba1b8", - "placeholder": "​", - "style": "IPY_MODEL_99e4cf4c0f814bc2aea099d8a3adadae", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "40acee1a203b407fb27d74c9826b4108": { + "37d428f4223240a5976d73cd2a04368c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1880,7 +1775,7 @@ "text_color": null } }, - "472d70d156a3480b82404c8bdac5f037": { + "396e63732dfa425ca8a1cfd419f2b9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1933,7 +1828,43 @@ "width": null } }, - "48333476b2434e628c4faf13b043da4b": { + "42c45b3759ac4aaa9a7413e64eedfad7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a58c2938b9c4bcab8f2d5daecc87257": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b476270f08b41ddb459f73c37b1faf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1986,23 +1917,7 @@ "width": null } }, - "4f5f78f06f7043389009c3aede75e59f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "571bd96a3bc94f1eb7859cf617377e83": { + "4eaafaa912e04a9b8a77db25bb462943": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2055,43 +1970,30 @@ "width": null } }, - "5ceea46f16304503ad4d445f04203a37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5f66773d74264b90a693a2222d471113": { + "579d7bc4883b4ff894f161b5fa63ee1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a09c0a1e80c41a28a88b5ec0f4854c4", + "placeholder": "​", + "style": "IPY_MODEL_0a91f1a2e74245faa1360d48acfff410", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "638b5137fff848aabb9901d3b04242b7": { + "58a04ee857ce45b8bc79733e866170dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2144,7 +2046,7 @@ "width": null } }, - "68f0d5b1092d46208fcd48808c2ba1b8": { + "5a09c0a1e80c41a28a88b5ec0f4854c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2197,23 +2099,30 @@ "width": null } }, - "6e419bd62cb14c58b3b2d60da5337c89": { + "5ac165ce71b5494aa1584e2f59deceb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b0f9d55995f24475833a8fa806821e82", + "placeholder": "​", + "style": "IPY_MODEL_42c45b3759ac4aaa9a7413e64eedfad7", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "759241a3fb7f463dbaaf67ea72e5ea6f": { + "5aec6faba3a0453daa6fc1e8a5beef6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2266,48 +2175,23 @@ "width": null } }, - "768c708c19fc45fab403a3fadb7eb092": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d994d94d6b04190b2229b45edd0906b", - "placeholder": "​", - "style": "IPY_MODEL_5ceea46f16304503ad4d445f04203a37", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "774f49c76d6b42df9cfce40371417b41": { + "5f084769a7ea48ce93ebeca2eee3a2b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7a7cdb36fcb34925897ccc16eef76cc0": { + "6718efb0af074cc89f39111e3becb775": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2322,82 +2206,73 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d2de5b7f7ef244b9b2518611582b28ca", - "IPY_MODEL_a0ff6c64f16241adb9a62f2b31bf6a15", - "IPY_MODEL_0d17db4760fa4f3b9b3f148bf4f65fe4" + "IPY_MODEL_323585f014c648499e1e307a69af5d72", + "IPY_MODEL_efefa9d436124a5fb57a4d83208ef311", + "IPY_MODEL_11c562034b884e55a3e61be21ac21f06" ], - "layout": "IPY_MODEL_48333476b2434e628c4faf13b043da4b", + "layout": "IPY_MODEL_4b476270f08b41ddb459f73c37b1faf7", "tabbable": null, "tooltip": null } }, - "8051d9f0c9124678a0a6128bbdba8dc7": { + "723db047c9e0426b8a9f9fa9beb87e81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3448d9704a4b4ba381b16b5f791d700e", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09c5eaeee6ef4cf98b3e2b4675cc0a18", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c969a432d7d40a7b684276a93b30304": { + "72ce49dfb6b84928be42099d69d5fe39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b83edc836cf544caad3eba8116bdc080", - "IPY_MODEL_be4e5e08b22448efbe55afd2e4b51f89", - "IPY_MODEL_b284cd154504485d995df54f507b71b5" - ], - "layout": "IPY_MODEL_bc7a726ed671410099a00758a473e139", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8d3673af4574385aea685a1b4012f4d", + "placeholder": "​", + "style": "IPY_MODEL_74bc1d3ac9574f7dabac7edeab90b4b9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 705kB/s]" } }, - "8d00d941fac547389deef7239d1568ef": { + "74bc1d3ac9574f7dabac7edeab90b4b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8d994d94d6b04190b2229b45edd0906b": { + "84fd6a99c4c24cd5a5b917e62af1e5c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2450,69 +2325,7 @@ "width": null } }, - "99838c76c7b4445989105ee0bb245613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "99e4cf4c0f814bc2aea099d8a3adadae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a0ff6c64f16241adb9a62f2b31bf6a15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_571bd96a3bc94f1eb7859cf617377e83", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d00d941fac547389deef7239d1568ef", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "abe63080525e48b1b5ce25e8afe4ae84": { + "8dd789e197b3474398fd06ff31414b1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2565,7 +2378,7 @@ "width": null } }, - "b22514b7d53a42b995a8ba93dad32244": { + "97ffe000864142a2a03d4fd0d069ccf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2618,48 +2431,60 @@ "width": null } }, - "b284cd154504485d995df54f507b71b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10c117c613194956b6f6ddde7137d199", - "placeholder": "​", - "style": "IPY_MODEL_35709b82fbaf4bdb88a33fbf71976e3b", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 497kB/s]" - } - }, - "b467cabe9c8a48fc87a63ddcd38faf02": { - "model_module": "@jupyter-widgets/controls", + "9f273f47b7bc4c90a9d940db2d2f037e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b74a4c950fb14e45850722bd8b9fe093": { + "a8d3673af4574385aea685a1b4012f4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2712,30 +2537,60 @@ "width": null } }, - "b83edc836cf544caad3eba8116bdc080": { - "model_module": "@jupyter-widgets/controls", + "b00c1cdc8eef4114b8bd4b9967c48227": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abe63080525e48b1b5ce25e8afe4ae84", - "placeholder": "​", - "style": "IPY_MODEL_774f49c76d6b42df9cfce40371417b41", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc7a726ed671410099a00758a473e139": { + "b0f9d55995f24475833a8fa806821e82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2788,7 +2643,7 @@ "width": null } }, - "be4e5e08b22448efbe55afd2e4b51f89": { + "b6b74efd51244eebaa4f75545a8f0b07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2804,17 +2659,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bebba45631ee43268608990c60032228", - "max": 2041.0, + "layout": "IPY_MODEL_5aec6faba3a0453daa6fc1e8a5beef6a", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f4cb3a1f2c7c45b3a43d02391e30e63d", + "style": "IPY_MODEL_f42c0b8247414c8eab848966b58c5194", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 + } + }, + "b7548af9c7004b6fa8759aa9b32cafa1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97ffe000864142a2a03d4fd0d069ccf2", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_723db047c9e0426b8a9f9fa9beb87e81", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } }, - "bebba45631ee43268608990c60032228": { + "b7f81b33b5134256ac44aadfff208e44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2867,7 +2748,7 @@ "width": null } }, - "c73e0c4f691b43d1be5372aa5327324f": { + "b8925d88c37f4c3db56c82c078f6ed15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,48 +2801,31 @@ "width": null } }, - "ce700ebee333459985d574941ed1e24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d2de5b7f7ef244b9b2518611582b28ca": { + "b9b25423bf1543d7a52bde9e07e13d92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_056edd9d6e1647bebf20532471526fa7", - "placeholder": "​", - "style": "IPY_MODEL_99838c76c7b4445989105ee0bb245613", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce477f4edfe444d49c58863da5da46f6", + "IPY_MODEL_b6b74efd51244eebaa4f75545a8f0b07", + "IPY_MODEL_72ce49dfb6b84928be42099d69d5fe39" + ], + "layout": "IPY_MODEL_bf449faa888d49f1807839781d238881", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "d3d2775d82364cdb9a8dd8e5a4235cbb": { + "bf449faa888d49f1807839781d238881": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3014,7 +2878,136 @@ "width": null } }, - "d4aadd9f728946e8b9001a0252e3faff": { + "c744cc2ba6f64bdfa5d2ab4e2a65f6c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_396e63732dfa425ca8a1cfd419f2b9a6", + "placeholder": "​", + "style": "IPY_MODEL_37d428f4223240a5976d73cd2a04368c", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "ce477f4edfe444d49c58863da5da46f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7f81b33b5134256ac44aadfff208e44", + "placeholder": "​", + "style": "IPY_MODEL_ff090e6a397d40b5bb86f7c7d9726270", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "dab4f6e5ef014c5793d577795eb603ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_065665834fe849debf9577cd1fe479b3", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34d5fbe58ab7438f9472333865f232c9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "de679541b5b046aa90c292d86ff4fe2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_58a04ee857ce45b8bc79733e866170dd", + "placeholder": "​", + "style": "IPY_MODEL_f62b42d901a048b3915eeaca96a2faaa", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 23.0MB/s]" + } + }, + "e0dda76d01c14ce2a77e244a41f18465": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e3d26e3e8bfe45e78a76ab0ecf508023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6028057e56442dcafbb47c7939e2051": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3067,31 +3060,25 @@ "width": null } }, - "e0323ef3772f4274b9d3f4598d073d3b": { + "ed2475bf5c0f4723bd7d2a4257459602": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_768c708c19fc45fab403a3fadb7eb092", - "IPY_MODEL_e3c3406ddb4747438106aacde8903910", - "IPY_MODEL_f218565da77041bdb8d190d21c24ae66" - ], - "layout": "IPY_MODEL_24d1a6ba72ca41c5a60366dc131571de", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3c3406ddb4747438106aacde8903910": { + "efefa9d436124a5fb57a4d83208ef311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3107,17 +3094,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b22514b7d53a42b995a8ba93dad32244", - "max": 16887676.0, + "layout": "IPY_MODEL_b8925d88c37f4c3db56c82c078f6ed15", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6e419bd62cb14c58b3b2d60da5337c89", + "style": "IPY_MODEL_e0dda76d01c14ce2a77e244a41f18465", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 2041.0 } }, - "e49fb8a35a944f279c8a35ff826a8b44": { + "f285b9a98169410685f5e404b9b80565": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3132,54 +3119,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_759241a3fb7f463dbaaf67ea72e5ea6f", + "layout": "IPY_MODEL_e6028057e56442dcafbb47c7939e2051", "placeholder": "​", - "style": "IPY_MODEL_5f66773d74264b90a693a2222d471113", + "style": "IPY_MODEL_e3d26e3e8bfe45e78a76ab0ecf508023", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 264MB/s]" } }, - "f218565da77041bdb8d190d21c24ae66": { + "f42c0b8247414c8eab848966b58c5194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aadd9f728946e8b9001a0252e3faff", - "placeholder": "​", - "style": "IPY_MODEL_b467cabe9c8a48fc87a63ddcd38faf02", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 258MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f4cb3a1f2c7c45b3a43d02391e30e63d": { + "f62b42d901a048b3915eeaca96a2faaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fd874dc09c36484f90d5c09348dbe00d": { + "f8c5e1a6cd7641c59e7c58a8baad671c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3194,12 +3176,30 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_057e9688008449a185ba2d598ac74d51", + "layout": "IPY_MODEL_1f84e7b2a25e40b5b46cbd11d3340b7f", "placeholder": "​", - "style": "IPY_MODEL_ce700ebee333459985d574941ed1e24e", + "style": "IPY_MODEL_ed2475bf5c0f4723bd7d2a4257459602", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 235MB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 263MB/s]" + } + }, + "ff090e6a397d40b5bb86f7c7d9726270": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 23787f5a8..1f7da9b98 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -979,7 +979,6 @@

    Functionality 1: Incremental issue search
    @@ -1572,7 +1570,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"55c6a16b93ea4ff089909e0fd3527c68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d186cbf0db347ba9eb20cf6580cfc5b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a2c3230c2bd242e2a191ad7536a286a9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55c6a16b93ea4ff089909e0fd3527c68", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1d186cbf0db347ba9eb20cf6580cfc5b", "tabbable": null, "tooltip": null, "value": 132.0}}, "a179131e1a9a4d8a9f7cd5f8463a2c69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ec4efa7cd5a4ffd83c5117af77a2bbf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "900743cc6cfa4b24932829d1a0eb0311": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a179131e1a9a4d8a9f7cd5f8463a2c69", "placeholder": "\u200b", "style": "IPY_MODEL_8ec4efa7cd5a4ffd83c5117af77a2bbf", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "8e140ac629154dd69550a1d7118f62be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "767a54ab1d494499b638d351aedc32c2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e2966d514564c3b8b7eb92556b2bc08": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e140ac629154dd69550a1d7118f62be", "placeholder": "\u200b", "style": "IPY_MODEL_767a54ab1d494499b638d351aedc32c2", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711786.27\u2007examples/s]"}}, "7ee6c367612b44ee8b9aae4fe1ff3556": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ba9f639f35744cea8fd1c930c4e3ca1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_900743cc6cfa4b24932829d1a0eb0311", "IPY_MODEL_a2c3230c2bd242e2a191ad7536a286a9", "IPY_MODEL_3e2966d514564c3b8b7eb92556b2bc08"], "layout": "IPY_MODEL_7ee6c367612b44ee8b9aae4fe1ff3556", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"31fc8349e731466a82d6a3440b491c5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44bff894324045e387bff14c1c159bdb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d64afb05b39046b09a6d5feae185679f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31fc8349e731466a82d6a3440b491c5f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_44bff894324045e387bff14c1c159bdb", "tabbable": null, "tooltip": null, "value": 132.0}}, "fca68c87786843ff862b0bc4c1a1959f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0dd3d107a6b45a9b734aa4ea1ea39e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dbcdef4ae15b446cb6e7df11866712f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fca68c87786843ff862b0bc4c1a1959f", "placeholder": "\u200b", "style": "IPY_MODEL_e0dd3d107a6b45a9b734aa4ea1ea39e3", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "05cbec62d95a422db845d1413acc3259": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac14b350c1a04c6fac1673a1ce22ae46": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d5fc1047168494cb38211074412a3fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05cbec62d95a422db845d1413acc3259", "placeholder": "\u200b", "style": "IPY_MODEL_ac14b350c1a04c6fac1673a1ce22ae46", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712261.60\u2007examples/s]"}}, "9c635953966e429aad365d9e1bd53ef8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50f6453298ef4a8294d8b6cecce817a2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dbcdef4ae15b446cb6e7df11866712f0", "IPY_MODEL_d64afb05b39046b09a6d5feae185679f", "IPY_MODEL_9d5fc1047168494cb38211074412a3fe"], "layout": "IPY_MODEL_9c635953966e429aad365d9e1bd53ef8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index b076c0a0e..5786e3a82 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:38.349159Z", - "iopub.status.busy": "2024-06-19T19:14:38.348809Z", - "iopub.status.idle": "2024-06-19T19:14:39.570916Z", - "shell.execute_reply": "2024-06-19T19:14:39.570353Z" + "iopub.execute_input": "2024-06-25T15:02:38.227581Z", + "iopub.status.busy": "2024-06-25T15:02:38.227225Z", + "iopub.status.idle": "2024-06-25T15:02:39.517377Z", + "shell.execute_reply": "2024-06-25T15:02:39.516789Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.573777Z", - "iopub.status.busy": "2024-06-19T19:14:39.573242Z", - "iopub.status.idle": "2024-06-19T19:14:39.576294Z", - "shell.execute_reply": "2024-06-19T19:14:39.575816Z" + "iopub.execute_input": "2024-06-25T15:02:39.520092Z", + "iopub.status.busy": "2024-06-25T15:02:39.519754Z", + "iopub.status.idle": "2024-06-25T15:02:39.523034Z", + "shell.execute_reply": "2024-06-25T15:02:39.522543Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.578592Z", - "iopub.status.busy": "2024-06-19T19:14:39.578201Z", - "iopub.status.idle": "2024-06-19T19:14:39.586848Z", - "shell.execute_reply": "2024-06-19T19:14:39.586392Z" + "iopub.execute_input": "2024-06-25T15:02:39.525370Z", + "iopub.status.busy": "2024-06-25T15:02:39.525170Z", + "iopub.status.idle": "2024-06-25T15:02:39.534786Z", + "shell.execute_reply": "2024-06-25T15:02:39.534330Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.588952Z", - "iopub.status.busy": "2024-06-19T19:14:39.588636Z", - "iopub.status.idle": "2024-06-19T19:14:39.593700Z", - "shell.execute_reply": "2024-06-19T19:14:39.593152Z" + "iopub.execute_input": "2024-06-25T15:02:39.537084Z", + "iopub.status.busy": "2024-06-25T15:02:39.536717Z", + "iopub.status.idle": "2024-06-25T15:02:39.541685Z", + "shell.execute_reply": "2024-06-25T15:02:39.541207Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.596110Z", - "iopub.status.busy": "2024-06-19T19:14:39.595573Z", - "iopub.status.idle": "2024-06-19T19:14:39.783618Z", - "shell.execute_reply": "2024-06-19T19:14:39.782990Z" + "iopub.execute_input": "2024-06-25T15:02:39.544239Z", + "iopub.status.busy": "2024-06-25T15:02:39.543809Z", + "iopub.status.idle": "2024-06-25T15:02:39.744513Z", + "shell.execute_reply": "2024-06-25T15:02:39.743889Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:39.786364Z", - "iopub.status.busy": "2024-06-19T19:14:39.785973Z", - "iopub.status.idle": "2024-06-19T19:14:40.163979Z", - "shell.execute_reply": "2024-06-19T19:14:40.163359Z" + "iopub.execute_input": "2024-06-25T15:02:39.747094Z", + "iopub.status.busy": "2024-06-25T15:02:39.746904Z", + "iopub.status.idle": "2024-06-25T15:02:40.122770Z", + "shell.execute_reply": "2024-06-25T15:02:40.122190Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.166733Z", - "iopub.status.busy": "2024-06-19T19:14:40.166236Z", - "iopub.status.idle": "2024-06-19T19:14:40.190230Z", - "shell.execute_reply": "2024-06-19T19:14:40.189618Z" + "iopub.execute_input": "2024-06-25T15:02:40.125205Z", + "iopub.status.busy": "2024-06-25T15:02:40.124842Z", + "iopub.status.idle": "2024-06-25T15:02:40.148454Z", + "shell.execute_reply": "2024-06-25T15:02:40.147926Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.193105Z", - "iopub.status.busy": "2024-06-19T19:14:40.192629Z", - "iopub.status.idle": "2024-06-19T19:14:40.204803Z", - "shell.execute_reply": "2024-06-19T19:14:40.204289Z" + "iopub.execute_input": "2024-06-25T15:02:40.151117Z", + "iopub.status.busy": "2024-06-25T15:02:40.150749Z", + "iopub.status.idle": "2024-06-25T15:02:40.162622Z", + "shell.execute_reply": "2024-06-25T15:02:40.162130Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:40.207374Z", - "iopub.status.busy": "2024-06-19T19:14:40.207004Z", - "iopub.status.idle": "2024-06-19T19:14:42.327628Z", - "shell.execute_reply": "2024-06-19T19:14:42.327010Z" + "iopub.execute_input": "2024-06-25T15:02:40.165202Z", + "iopub.status.busy": "2024-06-25T15:02:40.164846Z", + "iopub.status.idle": "2024-06-25T15:02:42.323570Z", + "shell.execute_reply": "2024-06-25T15:02:42.322965Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.330257Z", - "iopub.status.busy": "2024-06-19T19:14:42.329872Z", - "iopub.status.idle": "2024-06-19T19:14:42.352484Z", - "shell.execute_reply": "2024-06-19T19:14:42.351892Z" + "iopub.execute_input": "2024-06-25T15:02:42.326056Z", + "iopub.status.busy": "2024-06-25T15:02:42.325574Z", + "iopub.status.idle": "2024-06-25T15:02:42.347136Z", + "shell.execute_reply": "2024-06-25T15:02:42.346650Z" } }, "outputs": [ @@ -726,7 +726,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "\n", "Audit complete. 21 issues found in the dataset.\n", @@ -831,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.354808Z", - "iopub.status.busy": "2024-06-19T19:14:42.354519Z", - "iopub.status.idle": "2024-06-19T19:14:42.376546Z", - "shell.execute_reply": "2024-06-19T19:14:42.375933Z" + "iopub.execute_input": "2024-06-25T15:02:42.349258Z", + "iopub.status.busy": "2024-06-25T15:02:42.348922Z", + "iopub.status.idle": "2024-06-25T15:02:42.367539Z", + "shell.execute_reply": "2024-06-25T15:02:42.366917Z" } }, "outputs": [ @@ -843,7 +842,6 @@ "output_type": "stream", "text": [ "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n", "\n", "Audit complete. 22 issues found in the dataset.\n", "Dataset Information: num_examples: 132, num_classes: 3\n", @@ -925,7 +923,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -951,10 +949,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.378962Z", - "iopub.status.busy": "2024-06-19T19:14:42.378573Z", - "iopub.status.idle": "2024-06-19T19:14:42.393909Z", - "shell.execute_reply": "2024-06-19T19:14:42.393398Z" + "iopub.execute_input": "2024-06-25T15:02:42.369670Z", + "iopub.status.busy": "2024-06-25T15:02:42.369339Z", + "iopub.status.idle": "2024-06-25T15:02:42.383457Z", + "shell.execute_reply": "2024-06-25T15:02:42.383007Z" } }, "outputs": [ @@ -1089,17 +1087,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.396372Z", - "iopub.status.busy": "2024-06-19T19:14:42.395848Z", - "iopub.status.idle": "2024-06-19T19:14:42.417274Z", - "shell.execute_reply": "2024-06-19T19:14:42.416690Z" + "iopub.execute_input": "2024-06-25T15:02:42.385718Z", + "iopub.status.busy": "2024-06-25T15:02:42.385385Z", + "iopub.status.idle": "2024-06-25T15:02:42.405625Z", + "shell.execute_reply": "2024-06-25T15:02:42.405042Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ba9f639f35744cea8fd1c930c4e3ca1", + "model_id": "50f6453298ef4a8294d8b6cecce817a2", "version_major": 2, "version_minor": 0 }, @@ -1135,10 +1133,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.419514Z", - "iopub.status.busy": "2024-06-19T19:14:42.419177Z", - "iopub.status.idle": "2024-06-19T19:14:42.435777Z", - "shell.execute_reply": "2024-06-19T19:14:42.435220Z" + "iopub.execute_input": "2024-06-25T15:02:42.408204Z", + "iopub.status.busy": "2024-06-25T15:02:42.407805Z", + "iopub.status.idle": "2024-06-25T15:02:42.423406Z", + "shell.execute_reply": "2024-06-25T15:02:42.422915Z" } }, "outputs": [ @@ -1261,10 +1259,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.437990Z", - "iopub.status.busy": "2024-06-19T19:14:42.437793Z", - "iopub.status.idle": "2024-06-19T19:14:42.443899Z", - "shell.execute_reply": "2024-06-19T19:14:42.443435Z" + "iopub.execute_input": "2024-06-25T15:02:42.425559Z", + "iopub.status.busy": "2024-06-25T15:02:42.425282Z", + "iopub.status.idle": "2024-06-25T15:02:42.431364Z", + "shell.execute_reply": "2024-06-25T15:02:42.430887Z" } }, "outputs": [], @@ -1321,10 +1319,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:42.446000Z", - "iopub.status.busy": "2024-06-19T19:14:42.445673Z", - "iopub.status.idle": "2024-06-19T19:14:42.463341Z", - "shell.execute_reply": "2024-06-19T19:14:42.462904Z" + "iopub.execute_input": "2024-06-25T15:02:42.433512Z", + "iopub.status.busy": "2024-06-25T15:02:42.433186Z", + "iopub.status.idle": "2024-06-25T15:02:42.451422Z", + "shell.execute_reply": "2024-06-25T15:02:42.450948Z" } }, "outputs": [ @@ -1461,70 +1459,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1d186cbf0db347ba9eb20cf6580cfc5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3e2966d514564c3b8b7eb92556b2bc08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e140ac629154dd69550a1d7118f62be", - "placeholder": "​", - "style": "IPY_MODEL_767a54ab1d494499b638d351aedc32c2", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 11786.27 examples/s]" - } - }, - "4ba9f639f35744cea8fd1c930c4e3ca1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_900743cc6cfa4b24932829d1a0eb0311", - "IPY_MODEL_a2c3230c2bd242e2a191ad7536a286a9", - "IPY_MODEL_3e2966d514564c3b8b7eb92556b2bc08" - ], - "layout": "IPY_MODEL_7ee6c367612b44ee8b9aae4fe1ff3556", - "tabbable": null, - "tooltip": null - } - }, - "55c6a16b93ea4ff089909e0fd3527c68": { + "05cbec62d95a422db845d1413acc3259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,25 +1512,7 @@ "width": null } }, - "767a54ab1d494499b638d351aedc32c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ee6c367612b44ee8b9aae4fe1ff3556": { + "31fc8349e731466a82d6a3440b491c5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,7 +1565,47 @@ "width": null } }, - "8e140ac629154dd69550a1d7118f62be": { + "44bff894324045e387bff14c1c159bdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50f6453298ef4a8294d8b6cecce817a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dbcdef4ae15b446cb6e7df11866712f0", + "IPY_MODEL_d64afb05b39046b09a6d5feae185679f", + "IPY_MODEL_9d5fc1047168494cb38211074412a3fe" + ], + "layout": "IPY_MODEL_9c635953966e429aad365d9e1bd53ef8", + "tabbable": null, + "tooltip": null + } + }, + "9c635953966e429aad365d9e1bd53ef8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1658,30 @@ "width": null } }, - "8ec4efa7cd5a4ffd83c5117af77a2bbf": { + "9d5fc1047168494cb38211074412a3fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05cbec62d95a422db845d1413acc3259", + "placeholder": "​", + "style": "IPY_MODEL_ac14b350c1a04c6fac1673a1ce22ae46", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12261.60 examples/s]" + } + }, + "ac14b350c1a04c6fac1673a1ce22ae46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1719,7 +1699,33 @@ "text_color": null } }, - "900743cc6cfa4b24932829d1a0eb0311": { + "d64afb05b39046b09a6d5feae185679f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31fc8349e731466a82d6a3440b491c5f", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44bff894324045e387bff14c1c159bdb", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "dbcdef4ae15b446cb6e7df11866712f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1734,15 +1740,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a179131e1a9a4d8a9f7cd5f8463a2c69", + "layout": "IPY_MODEL_fca68c87786843ff862b0bc4c1a1959f", "placeholder": "​", - "style": "IPY_MODEL_8ec4efa7cd5a4ffd83c5117af77a2bbf", + "style": "IPY_MODEL_e0dd3d107a6b45a9b734aa4ea1ea39e3", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "a179131e1a9a4d8a9f7cd5f8463a2c69": { + "e0dd3d107a6b45a9b734aa4ea1ea39e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fca68c87786843ff862b0bc4c1a1959f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,32 +1818,6 @@ "visibility": null, "width": null } - }, - "a2c3230c2bd242e2a191ad7536a286a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55c6a16b93ea4ff089909e0fd3527c68", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d186cbf0db347ba9eb20cf6580cfc5b", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index 1d6d02cba..f00df6bef 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -949,7 +949,6 @@

    4. Use Datalab to find issues in the dataset
     Finding outlier issues ...
    -Fitting OOD estimator based on provided features ...
     Finding near_duplicate issues ...
     Finding non_iid issues ...
     Finding class_imbalance issues ...
    diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb
    index ec1f4b0c3..a870a82f5 100644
    --- a/master/tutorials/datalab/datalab_quickstart.ipynb
    +++ b/master/tutorials/datalab/datalab_quickstart.ipynb
    @@ -78,10 +78,10 @@
        "execution_count": 1,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:45.255382Z",
    -     "iopub.status.busy": "2024-06-19T19:14:45.255201Z",
    -     "iopub.status.idle": "2024-06-19T19:14:46.487948Z",
    -     "shell.execute_reply": "2024-06-19T19:14:46.487303Z"
    +     "iopub.execute_input": "2024-06-25T15:02:45.248373Z",
    +     "iopub.status.busy": "2024-06-25T15:02:45.247929Z",
    +     "iopub.status.idle": "2024-06-25T15:02:46.453643Z",
    +     "shell.execute_reply": "2024-06-25T15:02:46.453087Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -91,7 +91,7 @@
         "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -116,10 +116,10 @@
        "execution_count": 2,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:46.490797Z",
    -     "iopub.status.busy": "2024-06-19T19:14:46.490467Z",
    -     "iopub.status.idle": "2024-06-19T19:14:46.493798Z",
    -     "shell.execute_reply": "2024-06-19T19:14:46.493238Z"
    +     "iopub.execute_input": "2024-06-25T15:02:46.456361Z",
    +     "iopub.status.busy": "2024-06-25T15:02:46.455895Z",
    +     "iopub.status.idle": "2024-06-25T15:02:46.458893Z",
    +     "shell.execute_reply": "2024-06-25T15:02:46.458450Z"
         }
        },
        "outputs": [],
    @@ -250,10 +250,10 @@
        "execution_count": 3,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:46.496105Z",
    -     "iopub.status.busy": "2024-06-19T19:14:46.495683Z",
    -     "iopub.status.idle": "2024-06-19T19:14:46.505006Z",
    -     "shell.execute_reply": "2024-06-19T19:14:46.504407Z"
    +     "iopub.execute_input": "2024-06-25T15:02:46.461227Z",
    +     "iopub.status.busy": "2024-06-25T15:02:46.460897Z",
    +     "iopub.status.idle": "2024-06-25T15:02:46.470054Z",
    +     "shell.execute_reply": "2024-06-25T15:02:46.469541Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -356,10 +356,10 @@
        "execution_count": 4,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:46.507461Z",
    -     "iopub.status.busy": "2024-06-19T19:14:46.507007Z",
    -     "iopub.status.idle": "2024-06-19T19:14:46.512115Z",
    -     "shell.execute_reply": "2024-06-19T19:14:46.511524Z"
    +     "iopub.execute_input": "2024-06-25T15:02:46.472337Z",
    +     "iopub.status.busy": "2024-06-25T15:02:46.471989Z",
    +     "iopub.status.idle": "2024-06-25T15:02:46.476989Z",
    +     "shell.execute_reply": "2024-06-25T15:02:46.476526Z"
         }
        },
        "outputs": [],
    @@ -448,10 +448,10 @@
        "execution_count": 5,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:46.514491Z",
    -     "iopub.status.busy": "2024-06-19T19:14:46.514177Z",
    -     "iopub.status.idle": "2024-06-19T19:14:46.702508Z",
    -     "shell.execute_reply": "2024-06-19T19:14:46.701904Z"
    +     "iopub.execute_input": "2024-06-25T15:02:46.479195Z",
    +     "iopub.status.busy": "2024-06-25T15:02:46.478830Z",
    +     "iopub.status.idle": "2024-06-25T15:02:46.673454Z",
    +     "shell.execute_reply": "2024-06-25T15:02:46.672819Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -520,10 +520,10 @@
        "execution_count": 6,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:46.705135Z",
    -     "iopub.status.busy": "2024-06-19T19:14:46.704899Z",
    -     "iopub.status.idle": "2024-06-19T19:14:47.021070Z",
    -     "shell.execute_reply": "2024-06-19T19:14:47.020488Z"
    +     "iopub.execute_input": "2024-06-25T15:02:46.676288Z",
    +     "iopub.status.busy": "2024-06-25T15:02:46.675787Z",
    +     "iopub.status.idle": "2024-06-25T15:02:47.008494Z",
    +     "shell.execute_reply": "2024-06-25T15:02:47.007858Z"
         }
        },
        "outputs": [
    @@ -559,10 +559,10 @@
        "execution_count": 7,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:47.023389Z",
    -     "iopub.status.busy": "2024-06-19T19:14:47.023036Z",
    -     "iopub.status.idle": "2024-06-19T19:14:47.025937Z",
    -     "shell.execute_reply": "2024-06-19T19:14:47.025487Z"
    +     "iopub.execute_input": "2024-06-25T15:02:47.010766Z",
    +     "iopub.status.busy": "2024-06-25T15:02:47.010428Z",
    +     "iopub.status.idle": "2024-06-25T15:02:47.013373Z",
    +     "shell.execute_reply": "2024-06-25T15:02:47.012814Z"
         }
        },
        "outputs": [],
    @@ -602,10 +602,10 @@
        "execution_count": 8,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:47.027986Z",
    -     "iopub.status.busy": "2024-06-19T19:14:47.027660Z",
    -     "iopub.status.idle": "2024-06-19T19:14:47.062853Z",
    -     "shell.execute_reply": "2024-06-19T19:14:47.062236Z"
    +     "iopub.execute_input": "2024-06-25T15:02:47.015607Z",
    +     "iopub.status.busy": "2024-06-25T15:02:47.015161Z",
    +     "iopub.status.idle": "2024-06-25T15:02:47.051531Z",
    +     "shell.execute_reply": "2024-06-25T15:02:47.050912Z"
         }
        },
        "outputs": [
    @@ -647,10 +647,10 @@
        "execution_count": 9,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:47.065219Z",
    -     "iopub.status.busy": "2024-06-19T19:14:47.064875Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.151071Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.150385Z"
    +     "iopub.execute_input": "2024-06-25T15:02:47.053946Z",
    +     "iopub.status.busy": "2024-06-25T15:02:47.053574Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.292243Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.291506Z"
         }
        },
        "outputs": [
    @@ -675,7 +675,6 @@
          "output_type": "stream",
          "text": [
           "Finding outlier issues ...\n",
    -      "Fitting OOD estimator based on provided features ...\n",
           "Finding near_duplicate issues ...\n",
           "Finding non_iid issues ...\n",
           "Finding class_imbalance issues ...\n",
    @@ -711,10 +710,10 @@
        "execution_count": 10,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.153752Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.153141Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.172188Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.171647Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.295008Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.294444Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.314500Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.313993Z"
         }
        },
        "outputs": [
    @@ -847,10 +846,10 @@
        "execution_count": 11,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.174433Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.174102Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.180787Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.180322Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.316847Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.316489Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.323651Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.323169Z"
         }
        },
        "outputs": [
    @@ -961,10 +960,10 @@
        "execution_count": 12,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.182996Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.182607Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.188887Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.188329Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.325682Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.325501Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.332101Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.331645Z"
         }
        },
        "outputs": [
    @@ -1031,10 +1030,10 @@
        "execution_count": 13,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.190983Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.190705Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.201506Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.200977Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.334117Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.333735Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.344479Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.343901Z"
         }
        },
        "outputs": [
    @@ -1226,10 +1225,10 @@
        "execution_count": 14,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.203682Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.203334Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.212604Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.212065Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.346708Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.346367Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.356147Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.355551Z"
         }
        },
        "outputs": [
    @@ -1345,10 +1344,10 @@
        "execution_count": 15,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.214826Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.214481Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.222292Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.221776Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.358388Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.358071Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.365013Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.364533Z"
         },
         "scrolled": true
        },
    @@ -1473,10 +1472,10 @@
        "execution_count": 16,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.224527Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.224169Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.234040Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.233546Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.367268Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.366844Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.376754Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.376145Z"
         }
        },
        "outputs": [
    @@ -1579,10 +1578,10 @@
        "execution_count": 17,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-06-19T19:14:49.236357Z",
    -     "iopub.status.busy": "2024-06-19T19:14:49.235989Z",
    -     "iopub.status.idle": "2024-06-19T19:14:49.248375Z",
    -     "shell.execute_reply": "2024-06-19T19:14:49.247930Z"
    +     "iopub.execute_input": "2024-06-25T15:02:49.379075Z",
    +     "iopub.status.busy": "2024-06-25T15:02:49.378757Z",
    +     "iopub.status.idle": "2024-06-25T15:02:49.391296Z",
    +     "shell.execute_reply": "2024-06-25T15:02:49.390687Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html
    index 2c001d684..4363460ba 100644
    --- a/master/tutorials/datalab/image.html
    +++ b/master/tutorials/datalab/image.html
    @@ -729,49 +729,49 @@ 

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +

    -
    +

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1084,7 +1084,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1116,7 +1116,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1148,7 +1148,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -2127,7 +2126,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index a86524a42..65ccc6a63 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:52.255232Z", - "iopub.status.busy": "2024-06-19T19:14:52.254822Z", - "iopub.status.idle": "2024-06-19T19:14:55.215396Z", - "shell.execute_reply": "2024-06-19T19:14:55.214843Z" + "iopub.execute_input": "2024-06-25T15:02:52.434923Z", + "iopub.status.busy": "2024-06-25T15:02:52.434761Z", + "iopub.status.idle": "2024-06-25T15:02:55.457582Z", + "shell.execute_reply": "2024-06-25T15:02:55.456965Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:55.218074Z", - "iopub.status.busy": "2024-06-19T19:14:55.217610Z", - "iopub.status.idle": "2024-06-19T19:14:55.221191Z", - "shell.execute_reply": "2024-06-19T19:14:55.220718Z" + "iopub.execute_input": "2024-06-25T15:02:55.460430Z", + "iopub.status.busy": "2024-06-25T15:02:55.459987Z", + "iopub.status.idle": "2024-06-25T15:02:55.463840Z", + "shell.execute_reply": "2024-06-25T15:02:55.463361Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:14:55.223147Z", - "iopub.status.busy": "2024-06-19T19:14:55.222834Z", - "iopub.status.idle": "2024-06-19T19:15:06.828476Z", - "shell.execute_reply": "2024-06-19T19:15:06.827911Z" + "iopub.execute_input": "2024-06-25T15:02:55.465902Z", + "iopub.status.busy": "2024-06-25T15:02:55.465566Z", + "iopub.status.idle": "2024-06-25T15:03:05.715335Z", + "shell.execute_reply": "2024-06-25T15:03:05.714792Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "349ee786df634788bc2d1161e9306302", + "model_id": "cb86652b122d4284addbacdbed8966b7", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "637d67c13ddb4c7d91633b5217a8a441", + "model_id": "572ae861928442c9b2d22ae8ce864337", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3b490f3753e4a26b5ee7f200e729450", + "model_id": "8416acb269134271b8af012e09301f14", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b448009da8c4e8483f886f2eb0e3030", + "model_id": "a0eef281a9b4456093538c260e709ed1", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4865b5b7656841e0a18dd009e4b0f40f", + "model_id": "9ee519db54124c56adb8ac7877404ad9", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "060c782bcc144c998d4ec99cf1693c59", + "model_id": "4666fbbe6c844793bab204564c644f4f", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "975d2ee3e62d4a2b9d66709c83444c6a", + "model_id": "a9d22fa9576940b49f5c0c6e41a5affc", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38f1190e08ab4e7e8697541bdfa2f88d", + "model_id": "8f3998c468104adfaba1ce14dbdbd750", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:06.830787Z", - "iopub.status.busy": "2024-06-19T19:15:06.830559Z", - "iopub.status.idle": "2024-06-19T19:15:06.834622Z", - "shell.execute_reply": "2024-06-19T19:15:06.834170Z" + "iopub.execute_input": "2024-06-25T15:03:05.717627Z", + "iopub.status.busy": "2024-06-25T15:03:05.717292Z", + "iopub.status.idle": "2024-06-25T15:03:05.721051Z", + "shell.execute_reply": "2024-06-25T15:03:05.720526Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:06.836831Z", - "iopub.status.busy": "2024-06-19T19:15:06.836373Z", - "iopub.status.idle": "2024-06-19T19:15:18.266161Z", - "shell.execute_reply": "2024-06-19T19:15:18.265599Z" + "iopub.execute_input": "2024-06-25T15:03:05.723003Z", + "iopub.status.busy": "2024-06-25T15:03:05.722728Z", + "iopub.status.idle": "2024-06-25T15:03:16.714815Z", + "shell.execute_reply": "2024-06-25T15:03:16.714239Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fe32cc7dd404642b1eb8ff34e416fb0", + "model_id": "a20698b6f5ac47bf8a90e5e27b8d7a1a", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:18.268783Z", - "iopub.status.busy": "2024-06-19T19:15:18.268465Z", - "iopub.status.idle": "2024-06-19T19:15:38.257972Z", - "shell.execute_reply": "2024-06-19T19:15:38.257351Z" + "iopub.execute_input": "2024-06-25T15:03:16.717468Z", + "iopub.status.busy": "2024-06-25T15:03:16.717224Z", + "iopub.status.idle": "2024-06-25T15:03:35.068691Z", + "shell.execute_reply": "2024-06-25T15:03:35.068089Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.260843Z", - "iopub.status.busy": "2024-06-19T19:15:38.260493Z", - "iopub.status.idle": "2024-06-19T19:15:38.265480Z", - "shell.execute_reply": "2024-06-19T19:15:38.264919Z" + "iopub.execute_input": "2024-06-25T15:03:35.072202Z", + "iopub.status.busy": "2024-06-25T15:03:35.071820Z", + "iopub.status.idle": "2024-06-25T15:03:35.077664Z", + "shell.execute_reply": "2024-06-25T15:03:35.077111Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.267318Z", - "iopub.status.busy": "2024-06-19T19:15:38.267141Z", - "iopub.status.idle": "2024-06-19T19:15:38.271766Z", - "shell.execute_reply": "2024-06-19T19:15:38.271329Z" + "iopub.execute_input": "2024-06-25T15:03:35.080077Z", + "iopub.status.busy": "2024-06-25T15:03:35.079655Z", + "iopub.status.idle": "2024-06-25T15:03:35.084617Z", + "shell.execute_reply": "2024-06-25T15:03:35.084045Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.273621Z", - "iopub.status.busy": "2024-06-19T19:15:38.273449Z", - "iopub.status.idle": "2024-06-19T19:15:38.282488Z", - "shell.execute_reply": "2024-06-19T19:15:38.281976Z" + "iopub.execute_input": "2024-06-25T15:03:35.087271Z", + "iopub.status.busy": "2024-06-25T15:03:35.086918Z", + "iopub.status.idle": "2024-06-25T15:03:35.096770Z", + "shell.execute_reply": "2024-06-25T15:03:35.096173Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.284725Z", - "iopub.status.busy": "2024-06-19T19:15:38.284321Z", - "iopub.status.idle": "2024-06-19T19:15:38.313283Z", - "shell.execute_reply": "2024-06-19T19:15:38.312791Z" + "iopub.execute_input": "2024-06-25T15:03:35.099193Z", + "iopub.status.busy": "2024-06-25T15:03:35.098831Z", + "iopub.status.idle": "2024-06-25T15:03:35.126786Z", + "shell.execute_reply": "2024-06-25T15:03:35.126252Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:15:38.315651Z", - "iopub.status.busy": "2024-06-19T19:15:38.315309Z", - "iopub.status.idle": "2024-06-19T19:16:11.760467Z", - "shell.execute_reply": "2024-06-19T19:16:11.759821Z" + "iopub.execute_input": "2024-06-25T15:03:35.129570Z", + "iopub.status.busy": "2024-06-25T15:03:35.129185Z", + "iopub.status.idle": "2024-06-25T15:04:08.787947Z", + "shell.execute_reply": "2024-06-25T15:04:08.787306Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.903\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.035\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.648\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.567\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f314808162a4162a1215e3829506cee", + "model_id": "571aad50ae0e454484ba5794a0c894a1", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5c5a31434b147c79a2ee3c8a0238542", + "model_id": "a1cf212f99ca47149f17b2ee8cd2fad9", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.057\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.090\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.709\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.729\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9200b83016e4f1d893d9679edcac1ea", + "model_id": "9b16c7a3da8d4c8b998a707e044b070a", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2161d0251584354a28b87992f624a0b", + "model_id": "e6b201d41be24978b1711d80d4442962", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.966\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.864\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.720\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.806\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d608bddcd7a54636a4b3dd9aeef5fcb2", + "model_id": "4929ccdcba92446cae04c897cf77041f", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1dd9aa845b104521b299bd515cdbc543", + "model_id": "16a24cc498124a6baa7035a049b39720", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:11.762922Z", - "iopub.status.busy": "2024-06-19T19:16:11.762584Z", - "iopub.status.idle": "2024-06-19T19:16:11.776866Z", - "shell.execute_reply": "2024-06-19T19:16:11.776374Z" + "iopub.execute_input": "2024-06-25T15:04:08.790655Z", + "iopub.status.busy": "2024-06-25T15:04:08.790140Z", + "iopub.status.idle": "2024-06-25T15:04:08.804356Z", + "shell.execute_reply": "2024-06-25T15:04:08.803915Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:11.779207Z", - "iopub.status.busy": "2024-06-19T19:16:11.778886Z", - "iopub.status.idle": "2024-06-19T19:16:12.249354Z", - "shell.execute_reply": "2024-06-19T19:16:12.248816Z" + "iopub.execute_input": "2024-06-25T15:04:08.806655Z", + "iopub.status.busy": "2024-06-25T15:04:08.806256Z", + "iopub.status.idle": "2024-06-25T15:04:09.295047Z", + "shell.execute_reply": "2024-06-25T15:04:09.294402Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:16:12.251845Z", - "iopub.status.busy": "2024-06-19T19:16:12.251517Z", - "iopub.status.idle": "2024-06-19T19:19:39.980925Z", - "shell.execute_reply": "2024-06-19T19:19:39.980256Z" + "iopub.execute_input": "2024-06-25T15:04:09.297623Z", + "iopub.status.busy": "2024-06-25T15:04:09.297428Z", + "iopub.status.idle": "2024-06-25T15:05:47.679934Z", + "shell.execute_reply": "2024-06-25T15:05:47.679254Z" } }, "outputs": [ @@ -1092,8 +1092,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding outlier issues ...\n", - "Fitting OOD estimator based on provided features ...\n" + "Finding outlier issues ...\n" ] }, { @@ -1124,7 +1123,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2308418aed62421c9233f4e2fa36fb9f", + "model_id": "b5a738d901b14847af173bf44a11a398", "version_major": 2, "version_minor": 0 }, @@ -1163,10 +1162,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:39.983734Z", - "iopub.status.busy": "2024-06-19T19:19:39.983195Z", - "iopub.status.idle": "2024-06-19T19:19:40.447714Z", - "shell.execute_reply": "2024-06-19T19:19:40.447171Z" + "iopub.execute_input": "2024-06-25T15:05:47.682449Z", + "iopub.status.busy": "2024-06-25T15:05:47.681911Z", + "iopub.status.idle": "2024-06-25T15:05:48.146309Z", + "shell.execute_reply": "2024-06-25T15:05:48.145731Z" } }, "outputs": [ @@ -1312,10 +1311,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.450117Z", - "iopub.status.busy": "2024-06-19T19:19:40.449723Z", - "iopub.status.idle": "2024-06-19T19:19:40.512143Z", - "shell.execute_reply": "2024-06-19T19:19:40.511605Z" + "iopub.execute_input": "2024-06-25T15:05:48.149215Z", + "iopub.status.busy": "2024-06-25T15:05:48.148861Z", + "iopub.status.idle": "2024-06-25T15:05:48.212187Z", + "shell.execute_reply": "2024-06-25T15:05:48.211626Z" } }, "outputs": [ @@ -1419,10 +1418,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.514406Z", - "iopub.status.busy": "2024-06-19T19:19:40.514068Z", - "iopub.status.idle": "2024-06-19T19:19:40.523189Z", - "shell.execute_reply": "2024-06-19T19:19:40.522735Z" + "iopub.execute_input": "2024-06-25T15:05:48.214345Z", + "iopub.status.busy": "2024-06-25T15:05:48.214064Z", + "iopub.status.idle": "2024-06-25T15:05:48.223417Z", + "shell.execute_reply": "2024-06-25T15:05:48.222893Z" } }, "outputs": [ @@ -1552,10 +1551,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.525362Z", - "iopub.status.busy": "2024-06-19T19:19:40.525040Z", - "iopub.status.idle": "2024-06-19T19:19:40.529621Z", - "shell.execute_reply": "2024-06-19T19:19:40.529206Z" + "iopub.execute_input": "2024-06-25T15:05:48.225605Z", + "iopub.status.busy": "2024-06-25T15:05:48.225254Z", + "iopub.status.idle": "2024-06-25T15:05:48.229948Z", + "shell.execute_reply": "2024-06-25T15:05:48.229505Z" }, "nbsphinx": "hidden" }, @@ -1601,10 +1600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:40.531669Z", - "iopub.status.busy": "2024-06-19T19:19:40.531264Z", - "iopub.status.idle": "2024-06-19T19:19:41.063093Z", - "shell.execute_reply": "2024-06-19T19:19:41.062479Z" + "iopub.execute_input": "2024-06-25T15:05:48.232009Z", + "iopub.status.busy": "2024-06-25T15:05:48.231676Z", + "iopub.status.idle": "2024-06-25T15:05:48.744254Z", + "shell.execute_reply": "2024-06-25T15:05:48.743663Z" } }, "outputs": [ @@ -1639,10 +1638,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.065685Z", - "iopub.status.busy": "2024-06-19T19:19:41.065259Z", - "iopub.status.idle": "2024-06-19T19:19:41.074202Z", - "shell.execute_reply": "2024-06-19T19:19:41.073628Z" + "iopub.execute_input": "2024-06-25T15:05:48.746722Z", + "iopub.status.busy": "2024-06-25T15:05:48.746346Z", + "iopub.status.idle": "2024-06-25T15:05:48.754911Z", + "shell.execute_reply": "2024-06-25T15:05:48.754430Z" } }, "outputs": [ @@ -1809,10 +1808,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.076872Z", - "iopub.status.busy": "2024-06-19T19:19:41.076293Z", - "iopub.status.idle": "2024-06-19T19:19:41.372691Z", - "shell.execute_reply": "2024-06-19T19:19:41.372060Z" + "iopub.execute_input": "2024-06-25T15:05:48.757038Z", + "iopub.status.busy": "2024-06-25T15:05:48.756726Z", + "iopub.status.idle": "2024-06-25T15:05:49.064663Z", + "shell.execute_reply": "2024-06-25T15:05:49.064032Z" }, "nbsphinx": "hidden" }, @@ -1888,10 +1887,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.375031Z", - "iopub.status.busy": "2024-06-19T19:19:41.374683Z", - "iopub.status.idle": "2024-06-19T19:19:41.859506Z", - "shell.execute_reply": "2024-06-19T19:19:41.858902Z" + "iopub.execute_input": "2024-06-25T15:05:49.067229Z", + "iopub.status.busy": "2024-06-25T15:05:49.066763Z", + "iopub.status.idle": "2024-06-25T15:05:49.549519Z", + "shell.execute_reply": "2024-06-25T15:05:49.548881Z" } }, "outputs": [ @@ -1928,10 +1927,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.861875Z", - "iopub.status.busy": "2024-06-19T19:19:41.861566Z", - "iopub.status.idle": "2024-06-19T19:19:41.877412Z", - "shell.execute_reply": "2024-06-19T19:19:41.876826Z" + "iopub.execute_input": "2024-06-25T15:05:49.552090Z", + "iopub.status.busy": "2024-06-25T15:05:49.551584Z", + "iopub.status.idle": "2024-06-25T15:05:49.568628Z", + "shell.execute_reply": "2024-06-25T15:05:49.568028Z" } }, "outputs": [ @@ -2088,10 +2087,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.879759Z", - "iopub.status.busy": "2024-06-19T19:19:41.879444Z", - "iopub.status.idle": "2024-06-19T19:19:41.886336Z", - "shell.execute_reply": "2024-06-19T19:19:41.885835Z" + "iopub.execute_input": "2024-06-25T15:05:49.571048Z", + "iopub.status.busy": "2024-06-25T15:05:49.570612Z", + "iopub.status.idle": "2024-06-25T15:05:49.577763Z", + "shell.execute_reply": "2024-06-25T15:05:49.577226Z" }, "nbsphinx": "hidden" }, @@ -2136,10 +2135,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:41.888292Z", - "iopub.status.busy": "2024-06-19T19:19:41.888114Z", - "iopub.status.idle": "2024-06-19T19:19:42.344609Z", - "shell.execute_reply": "2024-06-19T19:19:42.344179Z" + "iopub.execute_input": "2024-06-25T15:05:49.580013Z", + "iopub.status.busy": "2024-06-25T15:05:49.579534Z", + "iopub.status.idle": "2024-06-25T15:05:50.058319Z", + "shell.execute_reply": "2024-06-25T15:05:50.057750Z" } }, "outputs": [ @@ -2221,10 +2220,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.347419Z", - "iopub.status.busy": "2024-06-19T19:19:42.346917Z", - "iopub.status.idle": "2024-06-19T19:19:42.356274Z", - "shell.execute_reply": "2024-06-19T19:19:42.355769Z" + "iopub.execute_input": "2024-06-25T15:05:50.061328Z", + "iopub.status.busy": "2024-06-25T15:05:50.060814Z", + "iopub.status.idle": "2024-06-25T15:05:50.070861Z", + "shell.execute_reply": "2024-06-25T15:05:50.070350Z" } }, "outputs": [ @@ -2352,10 +2351,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.358785Z", - "iopub.status.busy": "2024-06-19T19:19:42.358304Z", - "iopub.status.idle": "2024-06-19T19:19:42.364090Z", - "shell.execute_reply": "2024-06-19T19:19:42.363584Z" + "iopub.execute_input": "2024-06-25T15:05:50.073505Z", + "iopub.status.busy": "2024-06-25T15:05:50.073030Z", + "iopub.status.idle": "2024-06-25T15:05:50.079311Z", + "shell.execute_reply": "2024-06-25T15:05:50.078716Z" }, "nbsphinx": "hidden" }, @@ -2392,10 +2391,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.366429Z", - "iopub.status.busy": "2024-06-19T19:19:42.365955Z", - "iopub.status.idle": "2024-06-19T19:19:42.572625Z", - "shell.execute_reply": "2024-06-19T19:19:42.572180Z" + "iopub.execute_input": "2024-06-25T15:05:50.081706Z", + "iopub.status.busy": "2024-06-25T15:05:50.081492Z", + "iopub.status.idle": "2024-06-25T15:05:50.286061Z", + "shell.execute_reply": "2024-06-25T15:05:50.285552Z" } }, "outputs": [ @@ -2437,10 +2436,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.574836Z", - "iopub.status.busy": "2024-06-19T19:19:42.574419Z", - "iopub.status.idle": "2024-06-19T19:19:42.582445Z", - "shell.execute_reply": "2024-06-19T19:19:42.581884Z" + "iopub.execute_input": "2024-06-25T15:05:50.288498Z", + "iopub.status.busy": "2024-06-25T15:05:50.288307Z", + "iopub.status.idle": "2024-06-25T15:05:50.296133Z", + "shell.execute_reply": "2024-06-25T15:05:50.295643Z" } }, "outputs": [ @@ -2526,10 +2525,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.584656Z", - "iopub.status.busy": "2024-06-19T19:19:42.584222Z", - "iopub.status.idle": "2024-06-19T19:19:42.761956Z", - "shell.execute_reply": "2024-06-19T19:19:42.761359Z" + "iopub.execute_input": "2024-06-25T15:05:50.298207Z", + "iopub.status.busy": "2024-06-25T15:05:50.298041Z", + "iopub.status.idle": "2024-06-25T15:05:50.494145Z", + "shell.execute_reply": "2024-06-25T15:05:50.493642Z" } }, "outputs": [ @@ -2569,10 +2568,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:42.764400Z", - "iopub.status.busy": "2024-06-19T19:19:42.763976Z", - "iopub.status.idle": "2024-06-19T19:19:42.768544Z", - "shell.execute_reply": "2024-06-19T19:19:42.767985Z" + "iopub.execute_input": "2024-06-25T15:05:50.496453Z", + "iopub.status.busy": "2024-06-25T15:05:50.496271Z", + "iopub.status.idle": "2024-06-25T15:05:50.500854Z", + "shell.execute_reply": "2024-06-25T15:05:50.500369Z" }, "nbsphinx": "hidden" }, @@ -2609,7 +2608,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0107b0d8b1a24cca96947d6098eff928": { + "03ecb693628c4124930196d0297637eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06e6850d93fb49d4bbd11b4fd3e1ca75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "08848ad8d39d411588ecd9b46acefa21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2662,7 +2695,7 @@ "width": null } }, - "033f493e73f24590864c7f59afcad66f": { + "0b7d66ee5d4748d7a0e1dfa3bccfe971": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2715,51 +2748,41 @@ "width": null } }, - "04cbb51a83ab4d29bb7d2bc48891cde7": { + "0bc1a45dfa2d4f3297cc6a89c0f8cf08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "050609e5a1a84d618fe372d525f40b1b": { + "0d7d7689a28b4e5c8c2016621e40b52b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6396db793ad4825bbaa4d29801b7809", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e05d0526e85a44f89fd238dd45c50889", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05ac159df6c246a7bf7b9c3f71ca5b57": { + "0dffca992eaa42c887c9d00519ba5f53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2812,65 +2835,60 @@ "width": null } }, - "060c782bcc144c998d4ec99cf1693c59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e23abd302b7a454dbd6bd104697ea299", - "IPY_MODEL_ad2a1b60fad1429d81edc0aba8ede4b8", - "IPY_MODEL_b1c5d2866d8c456690162391f2195ff4" - ], - "layout": "IPY_MODEL_bace7e2c2f504c198e9315599d9bf935", - "tabbable": null, - "tooltip": null - } - }, - "06fa86e7975e470481e3f8d6be3819dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09b3f6c02e9c47c880aac985ae36ad4e": { - "model_module": "@jupyter-widgets/controls", + "0eb57fabb06f4022b27feb0a4defc335": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0c42c97a003f447d88c2ee25b58ebe06": { + "11c4db7db74545679e07665f3bfb5548": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2923,79 +2941,25 @@ "width": null } }, - "0e5ef0d817134bd0a7ee4035b9a4489f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b84749267f544e9cb00e0ce58f683cea", - "placeholder": "​", - "style": "IPY_MODEL_b9f1b0d4abb5494592b524d18151c49b", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "0e6c2ec7e1634a80a2ea40a7b259cc5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d34f470b522c44a69218c16128ec45fc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbfd1db40c2e41aab71379c769ebaf96", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "0fa318b1e8754f539738d6265c1e1408": { + "14d55cf7052347938aa7197764c9a632": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35d2c06470124bd08628181e157f4e6b", - "placeholder": "​", - "style": "IPY_MODEL_04cbb51a83ab4d29bb7d2bc48891cde7", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.98it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "103493aadaa54df6ab0680dcfbc6ef0e": { + "161ba94342e547e38ea54a83a6ea7ffe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3011,30 +2975,7 @@ "description_width": "" } }, - "129e4d13c4fe4b6ba9f13d7b2ef31714": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9edc5c225099466ea8c311c2f9b23466", - "placeholder": "​", - "style": "IPY_MODEL_378cd4a5e3944a6db9ea0fd06554d3f8", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:37<00:00, 1587.85it/s]" - } - }, - "14f1a627e0554807b2dfd1f278b59234": { + "168da49d9f38427ea4e21721b8ca7d39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3087,7 +3028,31 @@ "width": null } }, - "155b87df2caf4ae1a353008a7c105268": { + "16a24cc498124a6baa7035a049b39720": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3cfd3cae30b9412fa59231f971bdb3f7", + "IPY_MODEL_2ed0db58607d4230b7fcfe519c2ff1b4", + "IPY_MODEL_f929f1038b664fe19b1056bfa896c287" + ], + "layout": "IPY_MODEL_44443997845f4696815250e9f8c30c6a", + "tabbable": null, + "tooltip": null + } + }, + "16d5a2e2ab504689aa98f991373745b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3140,7 +3105,7 @@ "width": null } }, - "174bd4d6a89c4067a65e673cb64c2949": { + "16d993b2afd0438a8357f9427f196009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3155,92 +3120,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ff5d53375cb4f70804ff93f9609ce7c", + "layout": "IPY_MODEL_8c35c0135537440f87eeaf27d59ade48", "placeholder": "​", - "style": "IPY_MODEL_2d656e75b6df40c69a6575fb86db18c2", + "style": "IPY_MODEL_a6a01caead5f43f2b18522b8c31cc491", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1baa07f289444b4b900cea00475d68f7": { - "model_module": "@jupyter-widgets/base", + "18c241f8a409427a9330d58dbd2e97ee": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1dd9aa845b104521b299bd515cdbc543": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea5cd57901264c999017084e6b274591", - "IPY_MODEL_9271524d79c24d62b59ef244f182ee17", - "IPY_MODEL_0fa318b1e8754f539738d6265c1e1408" - ], - "layout": "IPY_MODEL_0c42c97a003f447d88c2ee25b58ebe06", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c2c3a5ff7ab40bab00ba71748b8932f", + "placeholder": "​", + "style": "IPY_MODEL_d6c907c30f224d8e800555b9cf2b4780", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "1ee67c2b9b444cf2ad628aa54f462c4f": { + "18c587fb03c9448ca4166b437685f24d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3258,31 +3169,7 @@ "text_color": null } }, - "1fe32cc7dd404642b1eb8ff34e416fb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa5c129e74b549d8b1cffc48f61c2e44", - "IPY_MODEL_c11cc8f72d6f464d94016ddbc21d48c7", - "IPY_MODEL_9f5e622f6dc6496ba1f85c2f90324f5b" - ], - "layout": "IPY_MODEL_0107b0d8b1a24cca96947d6098eff928", - "tabbable": null, - "tooltip": null - } - }, - "20025f5f21ad46ae9933af70c6ce8f66": { + "195662754fc449748d12ce52dff976a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3335,7 +3222,7 @@ "width": null } }, - "21f4b1800e0f4c478295146f969088de": { + "1a00292928c4475eac297ba1b2f130d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3353,31 +3240,23 @@ "text_color": null } }, - "2308418aed62421c9233f4e2fa36fb9f": { + "1d42974bca9e4c198beebf72a0cb2bb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ae31b766918458a946d1a89353723d8", - "IPY_MODEL_050609e5a1a84d618fe372d525f40b1b", - "IPY_MODEL_129e4d13c4fe4b6ba9f13d7b2ef31714" - ], - "layout": "IPY_MODEL_30cf3567922144299effb1260f4ccc6e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2488a275f9214af681c6df38b306d8d0": { + "1f59330c32b6433fac3f46423f8b94b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3393,17 +3272,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9654dabe585a4b94b5338a39c46321a4", - "max": 4422102.0, + "layout": "IPY_MODEL_195662754fc449748d12ce52dff976a6", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7a01a3b42476413983d54e8b2435b4dc", + "style": "IPY_MODEL_0bc1a45dfa2d4f3297cc6a89c0f8cf08", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "28dd806be3cc4a0ab8599c1bfc70e1c6": { + "258064e389e84d56bbed83da7229d743": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3456,90 +3335,7 @@ "width": null } }, - "28fe14d27b9f4bee82c46ebd7f701209": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ede70051902c47bbbee0ec8ce84e60d6", - "placeholder": "​", - "style": "IPY_MODEL_69385dc4a0864d3f81a3b367ed83b3ea", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 108MB/s]" - } - }, - "2b448009da8c4e8483f886f2eb0e3030": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ca8d484f85474761a4b258face588e5f", - "IPY_MODEL_9431f426208f48ffb5f01a3eb668c5bf", - "IPY_MODEL_d7c937e63f0e456586a70c2e0ab54ee6" - ], - "layout": "IPY_MODEL_5bb0fcc7b4ae46fd9655b8c02e948e4e", - "tabbable": null, - "tooltip": null - } - }, - "2c329ee05fac4da89d5882a7574fba4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2d656e75b6df40c69a6575fb86db18c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2de9cfc9b1be419a83d077d8718e292f": { + "267916f39e1248ffa37c451896b914e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3592,30 +3388,7 @@ "width": null } }, - "2fee82f743f042c284ee25320b32b4a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cb7a878cf2941aa8c2eec320a0076da", - "placeholder": "​", - "style": "IPY_MODEL_21f4b1800e0f4c478295146f969088de", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "30cf3567922144299effb1260f4ccc6e": { + "2681ad45dfc640f29439d85acaed1f2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3668,7 +3441,7 @@ "width": null } }, - "3125e440e835485c9e1237ed93a62a81": { + "2817ee5e9b684111937138213dacfc46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3721,7 +3494,7 @@ "width": null } }, - "340052916d744ddabde25e2884583eb0": { + "283930b10c774a81933650606b847197": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,31 +3547,7 @@ "width": null } }, - "349ee786df634788bc2d1161e9306302": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9f6c4e87a6824a87a8df6cfb055aa22e", - "IPY_MODEL_d87166da6b3f49618504a4d6390bbd19", - "IPY_MODEL_9b04e15bc27549d6a62b0d988497df87" - ], - "layout": "IPY_MODEL_4b772782627c41e3909bd7612bb017ae", - "tabbable": null, - "tooltip": null - } - }, - "35d2c06470124bd08628181e157f4e6b": { + "2917e19ffe4548c28e56e186b09c90c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,30 +3600,7 @@ "width": null } }, - "367d2e07596f456bb0ee58168ecc8c15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d03d7e7f637340689777df5f0cb88e7c", - "placeholder": "​", - "style": "IPY_MODEL_5a106ce29e9f4aeeb7a5f5c111090022", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.76it/s]" - } - }, - "370b75c47f07476092648de268c0b9ac": { + "292c58520cc2431093d03168783eb516": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3927,49 +3653,176 @@ "width": null } }, - "378cd4a5e3944a6db9ea0fd06554d3f8": { + "2986ff265af34646942e2717be06b06c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2817ee5e9b684111937138213dacfc46", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92a184f68e68494a83b93599d27abff0", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "38f1190e08ab4e7e8697541bdfa2f88d": { - "model_module": "@jupyter-widgets/controls", + "2aff94576c42483c9a469fb53a2034e5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b0107b5d5ba4a92988ceef862c5d89a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e50dd77a41342c6bf4740935c0efd86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ed0db58607d4230b7fcfe519c2ff1b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4412e6e41f84926ae6eae30f13d439f", - "IPY_MODEL_e06850dbaf5a4f0c847798f6a35e0575", - "IPY_MODEL_90e936dab65f44d7a2a36ce8204dd7f1" - ], - "layout": "IPY_MODEL_3f0ba84d9f1744caaf2462d7d18f018d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54e8c463df0d41c5b0b40d9f698a8e58", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae0991f63f8547b98d4b9f20599ab848", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 + } + }, + "2ee3f5408180490c88441ae964af2989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3b2f6f89d32a4ad88bb857de79d017a3": { + "31107c0765124e31945c1519c8add872": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "32fdf8a1a4094ea58ba4a2d42172d21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4022,7 +3875,132 @@ "width": null } }, - "3f0ba84d9f1744caaf2462d7d18f018d": { + "35e284d303b34bc6b4165c2b8e6e21c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cbfeb72e0ab14e208fbcce42db44b42a", + "IPY_MODEL_69df9a9e381c4e478aee9954f4bb52ed", + "IPY_MODEL_386554ef7a8241d28d4f208a5ce6da87" + ], + "layout": "IPY_MODEL_a27fcfe4cb814cdc9a19bd05a2f04752", + "tabbable": null, + "tooltip": null + } + }, + "36ee012821864a1e8ccf7bdd7eeb03c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_267916f39e1248ffa37c451896b914e6", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31107c0765124e31945c1519c8add872", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "386554ef7a8241d28d4f208a5ce6da87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_258064e389e84d56bbed83da7229d743", + "placeholder": "​", + "style": "IPY_MODEL_e79ee501dc504372a4fe826b154719ff", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1351.80it/s]" + } + }, + "399057c9a88b4c2c934cde9431bb5a92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5776f0d116614fdb82b204edfaec0cdf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bfd6a90a93874318a481c658a6f84f84", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "39c9586267574e6a9807112c6b2403fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a51d98a36fc841379327db4fd4ac0ee5", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9cfa452bd1844899cac95b6a158f9f7", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "3a7ca130ea9e4011b8dcd0442a2117b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4075,7 +4053,25 @@ "width": null } }, - "40447487272e4933bc72a31d2673c6c1": { + "3b7f5d5812d14b1290bd6858cece2886": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3c7350c2fd584841b755b7f614995db0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4093,7 +4089,69 @@ "text_color": null } }, - "4460f6e0fbc24995b0f5a4a8df6a9054": { + "3cfd3cae30b9412fa59231f971bdb3f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d62278ab22b1406184d6dd7036f90ff3", + "placeholder": "​", + "style": "IPY_MODEL_646082b01c724da6bc72cdddb7f55304", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3e971a61b8af4bab9ef7f6b37d90bfe3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6cc4a201992f41fcbcf20b5e68a600f8", + "placeholder": "​", + "style": "IPY_MODEL_47bc65f90ac544d0b21b25670b2b3bb3", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.35it/s]" + } + }, + "404ba3b7cee6449bb761f798fb5a094f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "41bd794da4ab44feb94ce7d39205c4ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4146,7 +4204,7 @@ "width": null } }, - "47405fbf6f0741a6acd2b151e521cbca": { + "4217abfa42db46b1bbdf485198fad575": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4199,49 +4257,7 @@ "width": null } }, - "4865b5b7656841e0a18dd009e4b0f40f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60bdb8f13a8497f96075f52482fd1d1", - "IPY_MODEL_2488a275f9214af681c6df38b306d8d0", - "IPY_MODEL_51e39ffd35ce42b7812629dbfdc028a2" - ], - "layout": "IPY_MODEL_e9b41c25929b4802adedef2e104b6082", - "tabbable": null, - "tooltip": null - } - }, - "490bc32e5f434710b01bc3e36facbda0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b772782627c41e3909bd7612bb017ae": { + "4363db07a7744d32aea968aa9ce3ac2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4294,7 +4310,7 @@ "width": null } }, - "4bb08d5491504ef58e5a8f50c87e6531": { + "44443997845f4696815250e9f8c30c6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4347,7 +4363,31 @@ "width": null } }, - "4c399f33c86b473eafb79774d9e12b80": { + "4666fbbe6c844793bab204564c644f4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca7b7db2ba3b4f30afbad6dc409a1b67", + "IPY_MODEL_d27f24449da94b62a22f151e6c8c0f9c", + "IPY_MODEL_529eef2e319d48a2b8dbe8c98cb65365" + ], + "layout": "IPY_MODEL_639ad8282b094a10aaffc0c0007e6ed8", + "tabbable": null, + "tooltip": null + } + }, + "47bc65f90ac544d0b21b25670b2b3bb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4365,7 +4405,31 @@ "text_color": null } }, - "4d3d55930b414abbb766db2e56c6d990": { + "4929ccdcba92446cae04c897cf77041f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82ab1dd5ba614a60a8c82f04fa68cb82", + "IPY_MODEL_36ee012821864a1e8ccf7bdd7eeb03c4", + "IPY_MODEL_ce122506ece64083a0d36147af587c18" + ], + "layout": "IPY_MODEL_9209e4c691b74c5cbdc703a5cc7588fd", + "tabbable": null, + "tooltip": null + } + }, + "4b1181b2da5140a18657ae411f70f79c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4418,7 +4482,7 @@ "width": null } }, - "4d5a0c65733247adbdeeaf6e1ca4f2ea": { + "4b53fe74e97d411ba214c4fc1d55cd1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4471,33 +4535,7 @@ "width": null } }, - "4e0a0a54fc954c3c946460b30427b0f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc74adab28ec4d639b00c4330938d45d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a78f30f214134db5bec6f214c2ef4ab3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "4e6da63d860147c6b0f676f5e42468d1": { + "4db157fe72934617891615b52ca44800": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4512,39 +4550,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14f1a627e0554807b2dfd1f278b59234", + "layout": "IPY_MODEL_b104360b176546a4b1a8b132f1266dbf", "placeholder": "​", - "style": "IPY_MODEL_c8cb065bd2c544f1bd6ef627538cbe5a", + "style": "IPY_MODEL_60a7f920bfe54f8390726ce1a6291313", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.26MB/s]" - } - }, - "4f314808162a4162a1215e3829506cee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db83816623194f619f64fddd6450f2e1", - "IPY_MODEL_0e6c2ec7e1634a80a2ea40a7b259cc5c", - "IPY_MODEL_a01acc0c264a400c9613151fc371507f" - ], - "layout": "IPY_MODEL_4460f6e0fbc24995b0f5a4a8df6a9054", - "tabbable": null, - "tooltip": null + "value": "Downloading readme: 100%" } }, - "509aaac86bc144058aeb11a22fd102bf": { + "50ebf388686148dba03947185149549f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4560,40 +4574,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f83debd5af0f45eb983f0def632ff6c7", + "layout": "IPY_MODEL_ece60d1bec4643c196d28b9c688cfbd9", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5390b99d3b24117917c5dc8026ede2d", + "style": "IPY_MODEL_ffbf7d3d22a54b1aab0084e7dcabbd9d", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "517aaf75b1144a1cbb3b22c37b3921e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93b65581844c4fdca8026e0ab14fbda6", - "placeholder": "​", - "style": "IPY_MODEL_bb6f276f5e564fbabf938c817e807159", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.56it/s]" - } - }, - "51e39ffd35ce42b7812629dbfdc028a2": { + "529eef2e319d48a2b8dbe8c98cb65365": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4608,49 +4599,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05ac159df6c246a7bf7b9c3f71ca5b57", + "layout": "IPY_MODEL_b6049b9c471f49d3be7f9c1cceb114be", "placeholder": "​", - "style": "IPY_MODEL_6554121f7fb14b01ab6f12453de2c1a1", + "style": "IPY_MODEL_18c587fb03c9448ca4166b437685f24d", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 111MB/s]" - } - }, - "538f86425e864f06b9a0cc739b143615": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "553395061a7b4b84a1a4195b6aba3a92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 5.15k/5.15k [00:00<00:00, 856kB/s]" } }, - "57015cf844ee4f0d91ca72954a570d14": { + "536f65abedef405d9fedc88056d3afc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4703,71 +4660,7 @@ "width": null } }, - "5a106ce29e9f4aeeb7a5f5c111090022": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5ab99c706d1f43839033721d68743b02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fddb4849f5dc4892889f74a84993fb44", - "placeholder": "​", - "style": "IPY_MODEL_1ee67c2b9b444cf2ad628aa54f462c4f", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1285.61it/s]" - } - }, - "5ae31b766918458a946d1a89353723d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_155b87df2caf4ae1a353008a7c105268", - "placeholder": "​", - "style": "IPY_MODEL_d475a8dedce844a38b005b512941a761", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5b00684a08c640b49c07a594435e2822": { + "53a83cc5edb74e30b0e9788619d8c6af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4820,7 +4713,7 @@ "width": null } }, - "5bb0fcc7b4ae46fd9655b8c02e948e4e": { + "54e8c463df0d41c5b0b40d9f698a8e58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4873,7 +4766,78 @@ "width": null } }, - "5e9ee56d719a42edae98f3219f21c962": { + "566d9c28c51a4d17a8cfcdeee19fe946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b7d66ee5d4748d7a0e1dfa3bccfe971", + "placeholder": "​", + "style": "IPY_MODEL_06e6850d93fb49d4bbd11b4fd3e1ca75", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "571aad50ae0e454484ba5794a0c894a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98daa9be42e54008bc1ad6ae7d560ff0", + "IPY_MODEL_1f59330c32b6433fac3f46423f8b94b5", + "IPY_MODEL_7ba9433e4ce64d05a15cf714f99a5b16" + ], + "layout": "IPY_MODEL_7141e730ff154149b2c09c0d927f66a4", + "tabbable": null, + "tooltip": null + } + }, + "572ae861928442c9b2d22ae8ce864337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4db157fe72934617891615b52ca44800", + "IPY_MODEL_bde37aaf1e3a4efa83e1b0350f5bdfc6", + "IPY_MODEL_d9a6297fc39c4a59b74379a830aba915" + ], + "layout": "IPY_MODEL_11c4db7db74545679e07665f3bfb5548", + "tabbable": null, + "tooltip": null + } + }, + "5776f0d116614fdb82b204edfaec0cdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4926,47 +4890,7 @@ "width": null } }, - "5f18784404624b63aae2e969fc3a375f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "637d67c13ddb4c7d91633b5217a8a441": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e5ef0d817134bd0a7ee4035b9a4489f", - "IPY_MODEL_c5cc8d1503ac44d9ac4938528ac45cea", - "IPY_MODEL_4e6da63d860147c6b0f676f5e42468d1" - ], - "layout": "IPY_MODEL_4d3d55930b414abbb766db2e56c6d990", - "tabbable": null, - "tooltip": null - } - }, - "6554121f7fb14b01ab6f12453de2c1a1": { + "59604ba3ffcc4e568d00e99115e5bf89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4984,7 +4908,7 @@ "text_color": null } }, - "6728b31035504345af190e1dcf4c9cb3": { + "5ac4300b24fb41b3a2e26eb5cf83b250": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5002,7 +4926,7 @@ "text_color": null } }, - "6765d4fe489244309762d16aae59f33d": { + "5ae8300c5f6145a5be6aa9eee0f8706b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5055,43 +4979,33 @@ "width": null } }, - "67ded11ee11d4ff694b503eb0c0f85e6": { + "5ba4fb2038f2429eb80aea1172695d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "69385dc4a0864d3f81a3b367ed83b3ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_41bd794da4ab44feb94ce7d39205c4ab", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0ee102c8159466593dee5d5a5013f5a", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "6ac89adfb9df489e9241b0c60bce9282": { + "5ddab51c0ed2436498b3631ae04df3dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5144,7 +5058,25 @@ "width": null } }, - "6c21fac1a6f6492fabe757442efc218e": { + "60a7f920bfe54f8390726ce1a6291313": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "639ad8282b094a10aaffc0c0007e6ed8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5197,7 +5129,48 @@ "width": null } }, - "6dc40ba336ca4a7bab63d547be3d08e8": { + "646082b01c724da6bc72cdddb7f55304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6914c379e43b4db1b46f5c0bb1a7e45a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_536f65abedef405d9fedc88056d3afc9", + "placeholder": "​", + "style": "IPY_MODEL_f04332d428f84a4893c5a625a66774cd", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "69df9a9e381c4e478aee9954f4bb52ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5213,51 +5186,84 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cd7ba69e1ea94c45a8ec271fc26e594f", + "layout": "IPY_MODEL_5ddab51c0ed2436498b3631ae04df3dd", "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0ac30e0bfb54792ab08b9d231f07612", + "style": "IPY_MODEL_03ecb693628c4124930196d0297637eb", "tabbable": null, "tooltip": null, "value": 4.0 } }, - "6eaf25c6fa52438aaea2d22ba9fb8210": { + "6a41d82e699b4be391482cdfb0766a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6fe71c53f9564a11bdf6b8a8cd69adf6": { + "6a5c3a04617e4d9fb27c01fb166bf751": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2681ad45dfc640f29439d85acaed1f2d", + "placeholder": "​", + "style": "IPY_MODEL_3c7350c2fd584841b755b7f614995db0", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 89.3MB/s]" + } + }, + "6bccb2b2b96d494f84e9cd8d150081a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7491b1fc124b46929aec68d4ae578535", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f48956b3fe4a4d70b587bb7b0c64b792", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "740dc53cb80048f59c785d8912a4c771": { + "6cc4a201992f41fcbcf20b5e68a600f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5310,7 +5316,7 @@ "width": null } }, - "75efa99d888d4aa992957c5086bbfd27": { + "706812e335854f079625c533426d2033": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5363,23 +5369,7 @@ "width": null } }, - "7a01a3b42476413983d54e8b2435b4dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b8ea5510fbc45e6b2eb5f413eb0f556": { + "70ff9e6bebde45e49fcadb599ae71fdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5432,25 +5422,7 @@ "width": null } }, - "7beb78d1d8b14ba28f819699daf30058": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c7a7c98fb5e4759b4649dea5c4bc964": { + "7141e730ff154149b2c09c0d927f66a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5503,23 +5475,25 @@ "width": null } }, - "7d04d5b1581e4a4da80094425c191191": { + "7253feb41ce34e85be320641f57a2949": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e805f6a371f4b269bd878765c8c6aac": { + "72cd66b2e9ca40a8b7a53ce23b450e10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5572,7 +5546,53 @@ "width": null } }, - "7ff5d53375cb4f70804ff93f9609ce7c": { + "72e2c6df41cb432aac587b95f3b2f1f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae6179258b0f4607a4aa6ed018613d21", + "placeholder": "​", + "style": "IPY_MODEL_b9bef1d69e7b420ea0513e3238df0340", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7388a04bee194e18be2b4741e80f4dc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_acd7c9708855433499731f1f872bb73e", + "placeholder": "​", + "style": "IPY_MODEL_adaac74baf5841b9819f8a307cb1db64", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 53.94it/s]" + } + }, + "7491b1fc124b46929aec68d4ae578535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5625,7 +5645,7 @@ "width": null } }, - "87011875277d472eb3bc06a65a13ad2b": { + "78f9236dd2714449817b2e6fb2f514c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5678,7 +5698,30 @@ "width": null } }, - "89bad9890ead461fb1a95f61687342de": { + "7ba9433e4ce64d05a15cf714f99a5b16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be3017cf6cdf4f9f808fbfe4a2e5a71f", + "placeholder": "​", + "style": "IPY_MODEL_b3123d1a94144f8d9490c59181dc3029", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.87it/s]" + } + }, + "7de9200ad7524bfda0166b1d305a1cbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5731,7 +5774,48 @@ "width": null } }, - "8d00c919992b4381beb2d51ea26200b4": { + "82ab1dd5ba614a60a8c82f04fa68cb82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_868cb88968024c64bcb7d11baa43053f", + "placeholder": "​", + "style": "IPY_MODEL_a3f5051e4b6041819378cf5687b6ae32", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "82e82c717c964bedbeada47d76f0621f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83159d36d44f46019a43c8b2fc56d3d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5784,25 +5868,31 @@ "width": null } }, - "8dc091840a124380ab29865489aafd08": { + "8416acb269134271b8af012e09301f14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_18c241f8a409427a9330d58dbd2e97ee", + "IPY_MODEL_2986ff265af34646942e2717be06b06c", + "IPY_MODEL_ad72878b8efc4926afdb82645ba5a6a8" + ], + "layout": "IPY_MODEL_b4da483f54014ee2ac954c3e78982c55", + "tabbable": null, + "tooltip": null } }, - "8fc88d7fbc3f4ede900084cbc17085c0": { + "84a7668b0c6c4f599b64169e3cf91767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5817,39 +5907,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_370b75c47f07476092648de268c0b9ac", + "layout": "IPY_MODEL_08848ad8d39d411588ecd9b46acefa21", "placeholder": "​", - "style": "IPY_MODEL_9881c5a7bf934c59a98bdfee4f893445", + "style": "IPY_MODEL_5ac4300b24fb41b3a2e26eb5cf83b250", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.32it/s]" - } - }, - "8fffa7fbd72a4984914d209458973d89": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d35683be5c7a4f78b8cd9bb7d768611a", - "IPY_MODEL_6dc40ba336ca4a7bab63d547be3d08e8", - "IPY_MODEL_5ab99c706d1f43839033721d68743b02" - ], - "layout": "IPY_MODEL_ce9a7d940b4f4bf0b05f2ceac8dcccf7", - "tabbable": null, - "tooltip": null + "value": "Downloading builder script: 100%" } }, - "90e936dab65f44d7a2a36ce8204dd7f1": { + "8571f3d601b64bd2a08527f61af22bf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5864,41 +5930,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a023ca26b0924a1bb4afbb6e463617d4", + "layout": "IPY_MODEL_de61f79e53944cf4bf467b383882bebf", "placeholder": "​", - "style": "IPY_MODEL_6fe71c53f9564a11bdf6b8a8cd69adf6", + "style": "IPY_MODEL_a9b7c8fd460443f1bf1f1b03a0f42b40", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8527.73 examples/s]" + "value": "Generating test split: 100%" } }, - "9271524d79c24d62b59ef244f182ee17": { + "864f1485605149aa8fbfc5acebfda74a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2de9cfc9b1be419a83d077d8718e292f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09b3f6c02e9c47c880aac985ae36ad4e", + "layout": "IPY_MODEL_4363db07a7744d32aea968aa9ce3ac2b", + "placeholder": "​", + "style": "IPY_MODEL_ff88024102a04557ad75fd8dba7512fe", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "93b65581844c4fdca8026e0ab14fbda6": { + "868cb88968024c64bcb7d11baa43053f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5951,33 +6014,7 @@ "width": null } }, - "9431f426208f48ffb5f01a3eb668c5bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4bb08d5491504ef58e5a8f50c87e6531", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6eaf25c6fa52438aaea2d22ba9fb8210", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "9654dabe585a4b94b5338a39c46321a4": { + "8c2c3a5ff7ab40bab00ba71748b8932f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6030,90 +6067,86 @@ "width": null } }, - "975d2ee3e62d4a2b9d66709c83444c6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9d2986f173c49afab3dfedeae55524a", - "IPY_MODEL_bc61e57fd1ee4dab951d476ca40caa54", - "IPY_MODEL_f6142802ca624a37a0b08c7aefb28a45" - ], - "layout": "IPY_MODEL_6ac89adfb9df489e9241b0c60bce9282", - "tabbable": null, - "tooltip": null - } - }, - "9881c5a7bf934c59a98bdfee4f893445": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "998afaaa9d274ae4a2657ecd9e861366": { - "model_module": "@jupyter-widgets/controls", + "8c35c0135537440f87eeaf27d59ade48": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9b04e15bc27549d6a62b0d988497df87": { + "8dfb5150ec724464a11989b4b0f0718d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b65c1ff523be45679974db596accaec7", - "placeholder": "​", - "style": "IPY_MODEL_f1af546ed6784aa0be311c5f469d0560", + "layout": "IPY_MODEL_c14560b1c97f4b619bab201be3610373", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b0107b5d5ba4a92988ceef862c5d89a", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 467kB/s]" + "value": 40.0 } }, - "9cb7a878cf2941aa8c2eec320a0076da": { + "8e312fd824bd4b06b5554caec053888e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6166,7 +6199,31 @@ "width": null } }, - "9edc5c225099466ea8c311c2f9b23466": { + "8f3998c468104adfaba1ce14dbdbd750": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8571f3d601b64bd2a08527f61af22bf0", + "IPY_MODEL_e7b43a45709b48b89faed50dea966c4b", + "IPY_MODEL_ad3ccd507b424e7e8c481be38d332cc1" + ], + "layout": "IPY_MODEL_283930b10c774a81933650606b847197", + "tabbable": null, + "tooltip": null + } + }, + "9209e4c691b74c5cbdc703a5cc7588fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6219,7 +6276,23 @@ "width": null } }, - "9f5e622f6dc6496ba1f85c2f90324f5b": { + "92a184f68e68494a83b93599d27abff0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "98bf0a52f6a549199d93c76c2fd3ddda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6234,15 +6307,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c21fac1a6f6492fabe757442efc218e", + "layout": "IPY_MODEL_0dffca992eaa42c887c9d00519ba5f53", "placeholder": "​", - "style": "IPY_MODEL_40447487272e4933bc72a31d2673c6c1", + "style": "IPY_MODEL_82e82c717c964bedbeada47d76f0621f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7321.21 examples/s]" + "value": " 60000/60000 [00:10<00:00, 5902.62 examples/s]" } }, - "9f6c4e87a6824a87a8df6cfb055aa22e": { + "98daa9be42e54008bc1ad6ae7d560ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6257,15 +6330,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd491f1b4c0f4b20bd4fdd6d695c9e61", + "layout": "IPY_MODEL_3a7ca130ea9e4011b8dcd0442a2117b3", "placeholder": "​", - "style": "IPY_MODEL_b3567948269049a78ebd9183fcb8d358", + "style": "IPY_MODEL_d413f44e9e444f2c80722b77678e31dd", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": "100%" + } + }, + "9aab43c0644449758dc24d1be5a2f2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a01acc0c264a400c9613151fc371507f": { + "9ad3a922fa8e44158878912a0dd0ab43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6280,68 +6371,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbaaa364fece4d9380d7c95185a7e9b2", + "layout": "IPY_MODEL_32fdf8a1a4094ea58ba4a2d42172d21b", "placeholder": "​", - "style": "IPY_MODEL_e474d73df79d490eb5e80a6926ca532a", + "style": "IPY_MODEL_0d7d7689a28b4e5c8c2016621e40b52b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.54it/s]" - } - }, - "a023ca26b0924a1bb4afbb6e463617d4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 60000/60000 [00:38<00:00, 1568.36it/s]" } }, - "a5c5a31434b147c79a2ee3c8a0238542": { + "9b16c7a3da8d4c8b998a707e044b070a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6356,16 +6394,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa14125be65e453f96d706918d9fa174", - "IPY_MODEL_4e0a0a54fc954c3c946460b30427b0f0", - "IPY_MODEL_c8dd93d85e33426f93a1b86139f441c5" + "IPY_MODEL_16d993b2afd0438a8357f9427f196009", + "IPY_MODEL_8dfb5150ec724464a11989b4b0f0718d", + "IPY_MODEL_7388a04bee194e18be2b4741e80f4dc8" ], - "layout": "IPY_MODEL_87011875277d472eb3bc06a65a13ad2b", + "layout": "IPY_MODEL_292c58520cc2431093d03168783eb516", "tabbable": null, "tooltip": null } }, - "a6396db793ad4825bbaa4d29801b7809": { + "9c86f576115343d89edc12f116ed6a35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6418,7 +6456,7 @@ "width": null } }, - "a73a78a9c42e4f3fa44b246819b7c160": { + "9d26596c9da949c1ae96409c76187d63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6471,134 +6509,31 @@ "width": null } }, - "a78f30f214134db5bec6f214c2ef4ab3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9d2986f173c49afab3dfedeae55524a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1baa07f289444b4b900cea00475d68f7", - "placeholder": "​", - "style": "IPY_MODEL_b241a68f06be48679e644c10d50080f9", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "ab22057247b8456b8d271737b62f6ebd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ad2a1b60fad1429d81edc0aba8ede4b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47405fbf6f0741a6acd2b151e521cbca", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d04d5b1581e4a4da80094425c191191", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "b0ab5f631572436b94241d2d8b73a322": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d00c919992b4381beb2d51ea26200b4", - "placeholder": "​", - "style": "IPY_MODEL_fe3a1b1f79214605ba2ac9404c7f1e83", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "b1c5d2866d8c456690162391f2195ff4": { + "9ee519db54124c56adb8ac7877404ad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e805f6a371f4b269bd878765c8c6aac", - "placeholder": "​", - "style": "IPY_MODEL_f95496d16b064105a195b3fbb5d8814b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f910134d744343ebb181478ee7c7267c", + "IPY_MODEL_c0d10ebaaaf849b296f255f937ea0744", + "IPY_MODEL_6a5c3a04617e4d9fb27c01fb166bf751" + ], + "layout": "IPY_MODEL_7de9200ad7524bfda0166b1d305a1cbc", "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 829kB/s]" + "tooltip": null } }, - "b2161d0251584354a28b87992f624a0b": { + "a0eef281a9b4456093538c260e709ed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6613,98 +6548,64 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_174bd4d6a89c4067a65e673cb64c2949", - "IPY_MODEL_ba78d4aa2f1b4b6cbd263be189dac201", - "IPY_MODEL_8fc88d7fbc3f4ede900084cbc17085c0" + "IPY_MODEL_b72b9a3d8434472991fbed0324b851b0", + "IPY_MODEL_f27659b8716b4c19b1aa073b1010e8e3", + "IPY_MODEL_f6270d27b55e45168a28d945962cf1ea" ], - "layout": "IPY_MODEL_3b2f6f89d32a4ad88bb857de79d017a3", + "layout": "IPY_MODEL_706812e335854f079625c533426d2033", "tabbable": null, "tooltip": null } }, - "b241a68f06be48679e644c10d50080f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3567948269049a78ebd9183fcb8d358": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b4412e6e41f84926ae6eae30f13d439f": { + "a1cf212f99ca47149f17b2ee8cd2fad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6765d4fe489244309762d16aae59f33d", - "placeholder": "​", - "style": "IPY_MODEL_c318f8800bf64c0687c73e07060ca2bb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6914c379e43b4db1b46f5c0bb1a7e45a", + "IPY_MODEL_50ebf388686148dba03947185149549f", + "IPY_MODEL_be73a7fb6ad146198b88df465ae9626e" + ], + "layout": "IPY_MODEL_db321377fada4bda85f41957699f1fa1", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "b60bdb8f13a8497f96075f52482fd1d1": { + "a20698b6f5ac47bf8a90e5e27b8d7a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a73a78a9c42e4f3fa44b246819b7c160", - "placeholder": "​", - "style": "IPY_MODEL_2c329ee05fac4da89d5882a7574fba4f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2361a5090594eafb2dcc81c8d97ce33", + "IPY_MODEL_b38e1a2f985f4c1794d65ced824761dc", + "IPY_MODEL_98bf0a52f6a549199d93c76c2fd3ddda" + ], + "layout": "IPY_MODEL_78f9236dd2714449817b2e6fb2f514c3", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "b65c1ff523be45679974db596accaec7": { + "a27fcfe4cb814cdc9a19bd05a2f04752": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6757,7 +6658,43 @@ "width": null } }, - "b84749267f544e9cb00e0ce58f683cea": { + "a3754f7fe7b44872a11196f152db28b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a3f5051e4b6041819378cf5687b6ae32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a4dd266b081d490aa10f9c2a5fdc8aec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6810,91 +6747,7 @@ "width": null } }, - "b9200b83016e4f1d893d9679edcac1ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf9b1f13485246aaa8df11f268f23c20", - "IPY_MODEL_db1cc09b196e4e0f972f268131d29bcf", - "IPY_MODEL_517aaf75b1144a1cbb3b22c37b3921e2" - ], - "layout": "IPY_MODEL_7c7a7c98fb5e4759b4649dea5c4bc964", - "tabbable": null, - "tooltip": null - } - }, - "b929ef137e0a4492bf3f44c2023e1b30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b9f1b0d4abb5494592b524d18151c49b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba78d4aa2f1b4b6cbd263be189dac201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5b00684a08c640b49c07a594435e2822", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_553395061a7b4b84a1a4195b6aba3a92", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "bace7e2c2f504c198e9315599d9bf935": { + "a51d98a36fc841379327db4fd4ac0ee5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6947,7 +6800,7 @@ "width": null } }, - "bb2221c1e1de4160a2c3e23c077228bc": { + "a637e2756d2e4dd2a9aaeb8cd7e79c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6965,7 +6818,7 @@ "text_color": null } }, - "bb6f276f5e564fbabf938c817e807159": { + "a6a01caead5f43f2b18522b8c31cc491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6983,49 +6836,49 @@ "text_color": null } }, - "bbaed05c1118421d8b44a9fd532ba64e": { + "a9b7c8fd460443f1bf1f1b03a0f42b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bc61e57fd1ee4dab951d476ca40caa54": { + "a9d22fa9576940b49f5c0c6e41a5affc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_740dc53cb80048f59c785d8912a4c771", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c67a052d8af74a59a9e590f7955a1ed6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_566d9c28c51a4d17a8cfcdeee19fe946", + "IPY_MODEL_5ba4fb2038f2429eb80aea1172695d82", + "IPY_MODEL_b31798513e9043e8be34070f5769cd50" + ], + "layout": "IPY_MODEL_d380b58d41494ff18038b8552662731b", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "bd491f1b4c0f4b20bd4fdd6d695c9e61": { + "acd7c9708855433499731f1f872bb73e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7078,7 +6931,87 @@ "width": null } }, - "bdd4f02b99b74863830a9e8f89298574": { + "ad3ccd507b424e7e8c481be38d332cc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d26596c9da949c1ae96409c76187d63", + "placeholder": "​", + "style": "IPY_MODEL_14d55cf7052347938aa7197764c9a632", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8645.54 examples/s]" + } + }, + "ad72878b8efc4926afdb82645ba5a6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72cd66b2e9ca40a8b7a53ce23b450e10", + "placeholder": "​", + "style": "IPY_MODEL_7253feb41ce34e85be320641f57a2949", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 130MB/s]" + } + }, + "adaac74baf5841b9819f8a307cb1db64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae0991f63f8547b98d4b9f20599ab848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ae6179258b0f4607a4aa6ed018613d21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7128,33 +7061,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "bf9b1f13485246aaa8df11f268f23c20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c20778fe5ff64bf08da28b9567d5446e", - "placeholder": "​", - "style": "IPY_MODEL_8dc091840a124380ab29865489aafd08", - "tabbable": null, - "tooltip": null, - "value": "100%" + "width": null } }, - "c0ac30e0bfb54792ab08b9d231f07612": { + "b0ee102c8159466593dee5d5a5013f5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7170,33 +7080,7 @@ "description_width": "" } }, - "c11cc8f72d6f464d94016ddbc21d48c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75efa99d888d4aa992957c5086bbfd27", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bbaed05c1118421d8b44a9fd532ba64e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c20778fe5ff64bf08da28b9567d5446e": { + "b104360b176546a4b1a8b132f1266dbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7249,67 +7133,7 @@ "width": null } }, - "c318f8800bf64c0687c73e07060ca2bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c5cc8d1503ac44d9ac4938528ac45cea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_340052916d744ddabde25e2884583eb0", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_103493aadaa54df6ab0680dcfbc6ef0e", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "c67a052d8af74a59a9e590f7955a1ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8cb065bd2c544f1bd6ef627538cbe5a": { + "b3123d1a94144f8d9490c59181dc3029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7327,7 +7151,7 @@ "text_color": null } }, - "c8dd93d85e33426f93a1b86139f441c5": { + "b31798513e9043e8be34070f5769cd50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7342,54 +7166,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57015cf844ee4f0d91ca72954a570d14", + "layout": "IPY_MODEL_83159d36d44f46019a43c8b2fc56d3d5", "placeholder": "​", - "style": "IPY_MODEL_7beb78d1d8b14ba28f819699daf30058", + "style": "IPY_MODEL_3b7f5d5812d14b1290bd6858cece2886", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.17it/s]" + "value": " 60000/60000 [00:07<00:00, 8710.25 examples/s]" } }, - "ca8d484f85474761a4b258face588e5f": { + "b38e1a2f985f4c1794d65ced824761dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_20025f5f21ad46ae9933af70c6ce8f66", - "placeholder": "​", - "style": "IPY_MODEL_ccfbe28c3dad462fb9d72ede70556484", + "layout": "IPY_MODEL_0eb57fabb06f4022b27feb0a4defc335", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d42974bca9e4c198beebf72a0cb2bb5", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "cbfd1db40c2e41aab71379c769ebaf96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 60000.0 } }, - "cc74adab28ec4d639b00c4330938d45d": { + "b3ca0ce900da4b64b5b066e7d4e6eddd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7442,25 +7253,7 @@ "width": null } }, - "ccfbe28c3dad462fb9d72ede70556484": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd7ba69e1ea94c45a8ec271fc26e594f": { + "b4da483f54014ee2ac954c3e78982c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7513,7 +7306,31 @@ "width": null } }, - "ce9a7d940b4f4bf0b05f2ceac8dcccf7": { + "b5a738d901b14847af173bf44a11a398": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_864f1485605149aa8fbfc5acebfda74a", + "IPY_MODEL_6bccb2b2b96d494f84e9cd8d150081a6", + "IPY_MODEL_9ad3a922fa8e44158878912a0dd0ab43" + ], + "layout": "IPY_MODEL_d8ebe1749a1644a9989243232e8c89cd", + "tabbable": null, + "tooltip": null + } + }, + "b6049b9c471f49d3be7f9c1cceb114be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7566,7 +7383,90 @@ "width": null } }, - "d03d7e7f637340689777df5f0cb88e7c": { + "b72b9a3d8434472991fbed0324b851b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4dd266b081d490aa10f9c2a5fdc8aec", + "placeholder": "​", + "style": "IPY_MODEL_9aab43c0644449758dc24d1be5a2f2d5", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "b9bef1d69e7b420ea0513e3238df0340": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9cfa452bd1844899cac95b6a158f9f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bde37aaf1e3a4efa83e1b0350f5bdfc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e312fd824bd4b06b5554caec053888e", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fbd18c0ac3fa4f879eb003b05b51f759", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "be3017cf6cdf4f9f808fbfe4a2e5a71f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7619,7 +7519,72 @@ "width": null } }, - "d34f470b522c44a69218c16128ec45fc": { + "be73a7fb6ad146198b88df465ae9626e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b53fe74e97d411ba214c4fc1d55cd1f", + "placeholder": "​", + "style": "IPY_MODEL_ccd3b9588c3a4c228e258aca595a6fc0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.21it/s]" + } + }, + "bfd6a90a93874318a481c658a6f84f84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0d10ebaaaf849b296f255f937ea0744": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f61fdeafd0374a429b09ef7fadeeb204", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e50dd77a41342c6bf4740935c0efd86", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "c14560b1c97f4b619bab201be3610373": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7672,7 +7637,43 @@ "width": null } }, - "d35683be5c7a4f78b8cd9bb7d768611a": { + "c42cabcc2eeb4a66b189387bc2307596": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4ce2bad018247f8b39f1d3073e5f42d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ca7b7db2ba3b4f30afbad6dc409a1b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7687,15 +7688,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e37bebcd19374aa2973336383bca9e62", + "layout": "IPY_MODEL_2917e19ffe4548c28e56e186b09c90c4", "placeholder": "​", - "style": "IPY_MODEL_998afaaa9d274ae4a2657ecd9e861366", + "style": "IPY_MODEL_a637e2756d2e4dd2a9aaeb8cd7e79c20", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Downloading data: 100%" } }, - "d475a8dedce844a38b005b512941a761": { + "cb2d55c3c67a4cc8b230cfc404c3754a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7713,7 +7714,7 @@ "text_color": null } }, - "d608bddcd7a54636a4b3dd9aeef5fcb2": { + "cb86652b122d4284addbacdbed8966b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7728,16 +7729,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2fee82f743f042c284ee25320b32b4a3", - "IPY_MODEL_509aaac86bc144058aeb11a22fd102bf", - "IPY_MODEL_367d2e07596f456bb0ee58168ecc8c15" + "IPY_MODEL_84a7668b0c6c4f599b64169e3cf91767", + "IPY_MODEL_39c9586267574e6a9807112c6b2403fd", + "IPY_MODEL_d1da43766e2d42e5ae51d00fe098cc12" ], - "layout": "IPY_MODEL_5e9ee56d719a42edae98f3219f21c962", + "layout": "IPY_MODEL_4b1181b2da5140a18657ae411f70f79c", "tabbable": null, "tooltip": null } }, - "d7c937e63f0e456586a70c2e0ab54ee6": { + "cbfeb72e0ab14e208fbcce42db44b42a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7752,67 +7753,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_28dd806be3cc4a0ab8599c1bfc70e1c6", + "layout": "IPY_MODEL_168da49d9f38427ea4e21721b8ca7d39", "placeholder": "​", - "style": "IPY_MODEL_538f86425e864f06b9a0cc739b143615", + "style": "IPY_MODEL_59604ba3ffcc4e568d00e99115e5bf89", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.09MB/s]" + "value": "Computing checksums: 100%" } }, - "d87166da6b3f49618504a4d6390bbd19": { + "ccd3b9588c3a4c228e258aca595a6fc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0a5bc8d62164ca7adc25636956cf5ee", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b929ef137e0a4492bf3f44c2023e1b30", - "tabbable": null, - "tooltip": null, - "value": 4833.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db1cc09b196e4e0f972f268131d29bcf": { + "ce122506ece64083a0d36147af587c18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4d5a0c65733247adbdeeaf6e1ca4f2ea", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f259205be3de4ec6a4156b901d8c45ae", + "layout": "IPY_MODEL_e1fc8352a75c4be0b6206e4eb451e814", + "placeholder": "​", + "style": "IPY_MODEL_f0de1733b4ce411a9c9a87a567e5f0c3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 58.75it/s]" } }, - "db83816623194f619f64fddd6450f2e1": { + "d1da43766e2d42e5ae51d00fe098cc12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7827,31 +7817,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bdd4f02b99b74863830a9e8f89298574", + "layout": "IPY_MODEL_2aff94576c42483c9a469fb53a2034e5", "placeholder": "​", - "style": "IPY_MODEL_bb2221c1e1de4160a2c3e23c077228bc", + "style": "IPY_MODEL_a3754f7fe7b44872a11196f152db28b0", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "e05d0526e85a44f89fd238dd45c50889": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 4.83k/4.83k [00:00<00:00, 540kB/s]" } }, - "e06850dbaf5a4f0c847798f6a35e0575": { + "d27f24449da94b62a22f151e6c8c0f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7867,40 +7841,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e8fbcb5732164a6b91d41f650e7d8820", - "max": 10000.0, + "layout": "IPY_MODEL_9c86f576115343d89edc12f116ed6a35", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5f18784404624b63aae2e969fc3a375f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "e23abd302b7a454dbd6bd104697ea299": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3125e440e835485c9e1237ed93a62a81", - "placeholder": "​", - "style": "IPY_MODEL_06fa86e7975e470481e3f8d6be3819dc", + "style": "IPY_MODEL_2ee3f5408180490c88441ae964af2989", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 5148.0 } }, - "e37bebcd19374aa2973336383bca9e62": { + "d380b58d41494ff18038b8552662731b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7953,31 +7904,7 @@ "width": null } }, - "e3b490f3753e4a26b5ee7f200e729450": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0ab5f631572436b94241d2d8b73a322", - "IPY_MODEL_f1941ea1c21f4f54a610543a50386d78", - "IPY_MODEL_28fe14d27b9f4bee82c46ebd7f701209" - ], - "layout": "IPY_MODEL_e5fc576aadb54072983d09b57b37c75b", - "tabbable": null, - "tooltip": null - } - }, - "e474d73df79d490eb5e80a6926ca532a": { + "d413f44e9e444f2c80722b77678e31dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7995,7 +7922,7 @@ "text_color": null } }, - "e4fcfe6cdfa24aa3a11ddf5359476a3e": { + "d62278ab22b1406184d6dd7036f90ff3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8048,60 +7975,25 @@ "width": null } }, - "e5fc576aadb54072983d09b57b37c75b": { - "model_module": "@jupyter-widgets/base", + "d6c907c30f224d8e800555b9cf2b4780": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e8fbcb5732164a6b91d41f650e7d8820": { + "d8ebe1749a1644a9989243232e8c89cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8154,7 +8046,30 @@ "width": null } }, - "e9b41c25929b4802adedef2e104b6082": { + "d9a6297fc39c4a59b74379a830aba915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3ca0ce900da4b64b5b066e7d4e6eddd", + "placeholder": "​", + "style": "IPY_MODEL_cb2d55c3c67a4cc8b230cfc404c3754a", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.35MB/s]" + } + }, + "db321377fada4bda85f41957699f1fa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8190,47 +8105,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ea5cd57901264c999017084e6b274591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b8ea5510fbc45e6b2eb5f413eb0f556", - "placeholder": "​", - "style": "IPY_MODEL_67ded11ee11d4ff694b503eb0c0f85e6", - "tabbable": null, - "tooltip": null, - "value": "100%" + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ede70051902c47bbbee0ec8ce84e60d6": { + "de61f79e53944cf4bf467b383882bebf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8283,7 +8175,7 @@ "width": null } }, - "f0a5bc8d62164ca7adc25636956cf5ee": { + "e1fc8352a75c4be0b6206e4eb451e814": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8336,33 +8228,54 @@ "width": null } }, - "f1941ea1c21f4f54a610543a50386d78": { + "e2361a5090594eafb2dcc81c8d97ce33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f807c35d88e04099919de487b7cfd328", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ab22057247b8456b8d271737b62f6ebd", + "layout": "IPY_MODEL_fcc335b1ecf144178dcebe58ec7c1868", + "placeholder": "​", + "style": "IPY_MODEL_c4ce2bad018247f8b39f1d3073e5f42d", "tabbable": null, "tooltip": null, - "value": 26421880.0 + "value": "Map (num_proc=4): 100%" + } + }, + "e6b201d41be24978b1711d80d4442962": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72e2c6df41cb432aac587b95f3b2f1f3", + "IPY_MODEL_399057c9a88b4c2c934cde9431bb5a92", + "IPY_MODEL_3e971a61b8af4bab9ef7f6b37d90bfe3" + ], + "layout": "IPY_MODEL_f445d8f4630b437b99674b7d0b4a18c9", + "tabbable": null, + "tooltip": null } }, - "f1af546ed6784aa0be311c5f469d0560": { + "e79ee501dc504372a4fe826b154719ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8380,62 +8293,148 @@ "text_color": null } }, - "f259205be3de4ec6a4156b901d8c45ae": { + "e7b43a45709b48b89faed50dea966c4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53a83cc5edb74e30b0e9788619d8c6af", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_161ba94342e547e38ea54a83a6ea7ffe", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "ece60d1bec4643c196d28b9c688cfbd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f04332d428f84a4893c5a625a66774cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f5390b99d3b24117917c5dc8026ede2d": { + "f0de1733b4ce411a9c9a87a567e5f0c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f6142802ca624a37a0b08c7aefb28a45": { + "f27659b8716b4c19b1aa073b1010e8e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_89bad9890ead461fb1a95f61687342de", - "placeholder": "​", - "style": "IPY_MODEL_6728b31035504345af190e1dcf4c9cb3", + "layout": "IPY_MODEL_4217abfa42db46b1bbdf485198fad575", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_404ba3b7cee6449bb761f798fb5a094f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8530.99 examples/s]" + "value": 29515.0 } }, - "f807c35d88e04099919de487b7cfd328": { + "f445d8f4630b437b99674b7d0b4a18c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8488,7 +8487,23 @@ "width": null } }, - "f83debd5af0f45eb983f0def632ff6c7": { + "f48956b3fe4a4d70b587bb7b0c64b792": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f61fdeafd0374a429b09ef7fadeeb204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8541,25 +8556,30 @@ "width": null } }, - "f95496d16b064105a195b3fbb5d8814b": { + "f6270d27b55e45168a28d945962cf1ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_16d5a2e2ab504689aa98f991373745b7", + "placeholder": "​", + "style": "IPY_MODEL_1a00292928c4475eac297ba1b2f130d2", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.41MB/s]" } }, - "fa14125be65e453f96d706918d9fa174": { + "f910134d744343ebb181478ee7c7267c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8574,15 +8594,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_033f493e73f24590864c7f59afcad66f", + "layout": "IPY_MODEL_5ae8300c5f6145a5be6aa9eee0f8706b", "placeholder": "​", - "style": "IPY_MODEL_490bc32e5f434710b01bc3e36facbda0", + "style": "IPY_MODEL_c42cabcc2eeb4a66b189387bc2307596", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "fa5c129e74b549d8b1cffc48f61c2e44": { + "f929f1038b664fe19b1056bfa896c287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8597,68 +8617,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4fcfe6cdfa24aa3a11ddf5359476a3e", + "layout": "IPY_MODEL_70ff9e6bebde45e49fcadb599ae71fdd", "placeholder": "​", - "style": "IPY_MODEL_4c399f33c86b473eafb79774d9e12b80", + "style": "IPY_MODEL_6a41d82e699b4be391482cdfb0766a99", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 65.68it/s]" } }, - "fbaaa364fece4d9380d7c95185a7e9b2": { - "model_module": "@jupyter-widgets/base", + "fbd18c0ac3fa4f879eb003b05b51f759": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fddb4849f5dc4892889f74a84993fb44": { + "fcc335b1ecf144178dcebe58ec7c1868": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8711,7 +8694,7 @@ "width": null } }, - "fe3a1b1f79214605ba2ac9404c7f1e83": { + "ff88024102a04557ad75fd8dba7512fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8728,6 +8711,22 @@ "font_size": null, "text_color": null } + }, + "ffbf7d3d22a54b1aab0084e7dcabbd9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index 80229c6eb..276fb54c1 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -1007,18 +1007,18 @@

    5. Use cleanlab to find label issues diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 6b4af65a3..e8a4df96f 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:46.667346Z", - "iopub.status.busy": "2024-06-19T19:19:46.667169Z", - "iopub.status.idle": "2024-06-19T19:19:47.816479Z", - "shell.execute_reply": "2024-06-19T19:19:47.815913Z" + "iopub.execute_input": "2024-06-25T15:05:54.306922Z", + "iopub.status.busy": "2024-06-25T15:05:54.306745Z", + "iopub.status.idle": "2024-06-25T15:05:55.467976Z", + "shell.execute_reply": "2024-06-25T15:05:55.467320Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.819102Z", - "iopub.status.busy": "2024-06-19T19:19:47.818587Z", - "iopub.status.idle": "2024-06-19T19:19:47.837002Z", - "shell.execute_reply": "2024-06-19T19:19:47.836447Z" + "iopub.execute_input": "2024-06-25T15:05:55.471079Z", + "iopub.status.busy": "2024-06-25T15:05:55.470348Z", + "iopub.status.idle": "2024-06-25T15:05:55.490834Z", + "shell.execute_reply": "2024-06-25T15:05:55.490219Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.839550Z", - "iopub.status.busy": "2024-06-19T19:19:47.839058Z", - "iopub.status.idle": "2024-06-19T19:19:47.863152Z", - "shell.execute_reply": "2024-06-19T19:19:47.862654Z" + "iopub.execute_input": "2024-06-25T15:05:55.493612Z", + "iopub.status.busy": "2024-06-25T15:05:55.493311Z", + "iopub.status.idle": "2024-06-25T15:05:55.517738Z", + "shell.execute_reply": "2024-06-25T15:05:55.517157Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.865268Z", - "iopub.status.busy": "2024-06-19T19:19:47.865045Z", - "iopub.status.idle": "2024-06-19T19:19:47.868720Z", - "shell.execute_reply": "2024-06-19T19:19:47.868230Z" + "iopub.execute_input": "2024-06-25T15:05:55.520011Z", + "iopub.status.busy": "2024-06-25T15:05:55.519777Z", + "iopub.status.idle": "2024-06-25T15:05:55.523257Z", + "shell.execute_reply": "2024-06-25T15:05:55.522815Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.870817Z", - "iopub.status.busy": "2024-06-19T19:19:47.870478Z", - "iopub.status.idle": "2024-06-19T19:19:47.878207Z", - "shell.execute_reply": "2024-06-19T19:19:47.877752Z" + "iopub.execute_input": "2024-06-25T15:05:55.525644Z", + "iopub.status.busy": "2024-06-25T15:05:55.525218Z", + "iopub.status.idle": "2024-06-25T15:05:55.533618Z", + "shell.execute_reply": "2024-06-25T15:05:55.533007Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.880333Z", - "iopub.status.busy": "2024-06-19T19:19:47.879984Z", - "iopub.status.idle": "2024-06-19T19:19:47.882488Z", - "shell.execute_reply": "2024-06-19T19:19:47.882076Z" + "iopub.execute_input": "2024-06-25T15:05:55.536190Z", + "iopub.status.busy": "2024-06-25T15:05:55.535771Z", + "iopub.status.idle": "2024-06-25T15:05:55.538695Z", + "shell.execute_reply": "2024-06-25T15:05:55.538108Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:47.884365Z", - "iopub.status.busy": "2024-06-19T19:19:47.884103Z", - "iopub.status.idle": "2024-06-19T19:19:50.909780Z", - "shell.execute_reply": "2024-06-19T19:19:50.909234Z" + "iopub.execute_input": "2024-06-25T15:05:55.541004Z", + "iopub.status.busy": "2024-06-25T15:05:55.540659Z", + "iopub.status.idle": "2024-06-25T15:05:58.495881Z", + "shell.execute_reply": "2024-06-25T15:05:58.495234Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:50.912867Z", - "iopub.status.busy": "2024-06-19T19:19:50.912330Z", - "iopub.status.idle": "2024-06-19T19:19:50.922196Z", - "shell.execute_reply": "2024-06-19T19:19:50.921748Z" + "iopub.execute_input": "2024-06-25T15:05:58.498548Z", + "iopub.status.busy": "2024-06-25T15:05:58.498203Z", + "iopub.status.idle": "2024-06-25T15:05:58.507784Z", + "shell.execute_reply": "2024-06-25T15:05:58.507216Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:50.924645Z", - "iopub.status.busy": "2024-06-19T19:19:50.924292Z", - "iopub.status.idle": "2024-06-19T19:19:52.940110Z", - "shell.execute_reply": "2024-06-19T19:19:52.939416Z" + "iopub.execute_input": "2024-06-25T15:05:58.510041Z", + "iopub.status.busy": "2024-06-25T15:05:58.509728Z", + "iopub.status.idle": "2024-06-25T15:06:00.491912Z", + "shell.execute_reply": "2024-06-25T15:06:00.491223Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.944415Z", - "iopub.status.busy": "2024-06-19T19:19:52.943217Z", - "iopub.status.idle": "2024-06-19T19:19:52.969078Z", - "shell.execute_reply": "2024-06-19T19:19:52.968546Z" + "iopub.execute_input": "2024-06-25T15:06:00.494590Z", + "iopub.status.busy": "2024-06-25T15:06:00.494034Z", + "iopub.status.idle": "2024-06-25T15:06:00.513034Z", + "shell.execute_reply": "2024-06-25T15:06:00.512539Z" }, "scrolled": true }, @@ -584,18 +584,18 @@ " \n", "\n", "Number of examples with this issue: 1\n", - "Overall dataset quality in terms of this issue: 0.0014\n", + "Overall dataset quality in terms of this issue: 0.0000\n", "\n", "Examples representing most severe instances of this issue:\n", " is_non_iid_issue non_iid_score\n", - "595 True 0.702427\n", - "147 False 0.711186\n", - "157 False 0.721394\n", - "771 False 0.731979\n", - "898 False 0.740335\n", + "865 True 0.515002\n", + "837 False 0.556480\n", + "622 False 0.593068\n", + "329 False 0.593207\n", + "920 False 0.618041\n", "\n", "Additional Information: \n", - "p-value: 0.0014153602099278074\n" + "p-value: 1.4386345844794593e-05\n" ] } ], @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.972783Z", - "iopub.status.busy": "2024-06-19T19:19:52.971838Z", - "iopub.status.idle": "2024-06-19T19:19:52.983218Z", - "shell.execute_reply": "2024-06-19T19:19:52.982732Z" + "iopub.execute_input": "2024-06-25T15:06:00.515386Z", + "iopub.status.busy": "2024-06-25T15:06:00.515022Z", + "iopub.status.idle": "2024-06-25T15:06:00.523252Z", + "shell.execute_reply": "2024-06-25T15:06:00.522727Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.986726Z", - "iopub.status.busy": "2024-06-19T19:19:52.985784Z", - "iopub.status.idle": "2024-06-19T19:19:52.997408Z", - "shell.execute_reply": "2024-06-19T19:19:52.996969Z" + "iopub.execute_input": "2024-06-25T15:06:00.525561Z", + "iopub.status.busy": "2024-06-25T15:06:00.525221Z", + "iopub.status.idle": "2024-06-25T15:06:00.534686Z", + "shell.execute_reply": "2024-06-25T15:06:00.534222Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:52.999597Z", - "iopub.status.busy": "2024-06-19T19:19:52.999222Z", - "iopub.status.idle": "2024-06-19T19:19:53.007248Z", - "shell.execute_reply": "2024-06-19T19:19:53.006767Z" + "iopub.execute_input": "2024-06-25T15:06:00.536849Z", + "iopub.status.busy": "2024-06-25T15:06:00.536513Z", + "iopub.status.idle": "2024-06-25T15:06:00.544451Z", + "shell.execute_reply": "2024-06-25T15:06:00.543983Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.009311Z", - "iopub.status.busy": "2024-06-19T19:19:53.009014Z", - "iopub.status.idle": "2024-06-19T19:19:53.017621Z", - "shell.execute_reply": "2024-06-19T19:19:53.017179Z" + "iopub.execute_input": "2024-06-25T15:06:00.546708Z", + "iopub.status.busy": "2024-06-25T15:06:00.546375Z", + "iopub.status.idle": "2024-06-25T15:06:00.555743Z", + "shell.execute_reply": "2024-06-25T15:06:00.555283Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.019530Z", - "iopub.status.busy": "2024-06-19T19:19:53.019357Z", - "iopub.status.idle": "2024-06-19T19:19:53.026882Z", - "shell.execute_reply": "2024-06-19T19:19:53.026349Z" + "iopub.execute_input": "2024-06-25T15:06:00.558037Z", + "iopub.status.busy": "2024-06-25T15:06:00.557741Z", + "iopub.status.idle": "2024-06-25T15:06:00.565082Z", + "shell.execute_reply": "2024-06-25T15:06:00.564551Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.028966Z", - "iopub.status.busy": "2024-06-19T19:19:53.028783Z", - "iopub.status.idle": "2024-06-19T19:19:53.037252Z", - "shell.execute_reply": "2024-06-19T19:19:53.036822Z" + "iopub.execute_input": "2024-06-25T15:06:00.567302Z", + "iopub.status.busy": "2024-06-25T15:06:00.566989Z", + "iopub.status.idle": "2024-06-25T15:06:00.574328Z", + "shell.execute_reply": "2024-06-25T15:06:00.573785Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:19:53.039425Z", - "iopub.status.busy": "2024-06-19T19:19:53.039101Z", - "iopub.status.idle": "2024-06-19T19:19:53.047347Z", - "shell.execute_reply": "2024-06-19T19:19:53.046924Z" + "iopub.execute_input": "2024-06-25T15:06:00.576415Z", + "iopub.status.busy": "2024-06-25T15:06:00.576086Z", + "iopub.status.idle": "2024-06-25T15:06:00.584022Z", + "shell.execute_reply": "2024-06-25T15:06:00.583560Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index ba72d8e31..6e0e074dd 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -782,7 +782,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'getting_spare_card'}
    +Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'getting_spare_card', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'card_about_to_expire', 'card_payment_fee_charged', 'visa_or_mastercard', 'cancel_transfer', 'change_pin'}
     

    Let’s view the i-th example in the dataset:

    @@ -883,7 +883,6 @@

    4. Use cleanlab to find issues in your dataset2. Compute kNN Graph
    -<5000x5000 sparse matrix of type '<class 'numpy.float32'>'
    -        with 50000 stored elements in Compressed Sparse Row format>
    +<Compressed Sparse Row sparse matrix of dtype 'float32'
    +        with 50000 stored elements and shape (5000, 5000)>
     
    @@ -833,7 +833,7 @@

    4. Identify Data Issues Using Datalab @@ -888,13 +888,13 @@

    4. Identify Data Issues Using Datalab -

  • OutlierIssueManager(datalab[, threshold])

    OutlierIssueManager(datalab[, k, t, metric, ...])

    Manages issues related to out-of-distribution examples.

    find_issues([features, pred_probs])

    Finds occurrences of this particular issue in the dataset.

    collect_info(*, issue_threshold[, knn_graph])

    collect_info(*, issue_threshold, knn_graph)

    Collects data for the info attribute of the Datalab.

    make_summary(score)

    find_issues(pred_probs[, features, cluster_ids])

    Finds occurrences of this particular issue in the dataset.

    set_knn_graph(features, find_issues_kwargs)

    -
    rtype:
    -

    csr_matrix

    -
    -
    -

    perform_clustering(knn_graph)

    perform_clustering(knn_graph)

    Perform clustering of datapoints using a knn graph as distance matrix.

    filter_cluster_ids(cluster_ids)

    filter_cluster_ids(cluster_ids)

    Remove outlier clusters and return IDs of clusters with at least self.min_cluster_samples number of datapoints.

    get_worst_cluster(cluster_ids, ...)

    get_worst_cluster(cluster_ids, ...)

    Get ID and quality score of underperforming cluster.

    collect_info(knn_graph, n_clusters, ...)

    collect_info(knn_graph, n_clusters, ...)

    Collects data for the info attribute of the Datalab.

    make_summary(score)

    make_summary(score)

    Construct a summary dataframe.

    report(issues, summary, info[, ...])

    report(issues, summary, info[, ...])

    Compose a report of the issues found by this IssueManager.

    +
    - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index e9f634a5d..59a8b0306 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.228939Z", - "iopub.status.busy": "2024-06-19T19:20:09.228470Z", - "iopub.status.idle": "2024-06-19T19:20:09.669818Z", - "shell.execute_reply": "2024-06-19T19:20:09.669215Z" + "iopub.execute_input": "2024-06-25T15:06:16.357511Z", + "iopub.status.busy": "2024-06-25T15:06:16.357338Z", + "iopub.status.idle": "2024-06-25T15:06:16.782125Z", + "shell.execute_reply": "2024-06-25T15:06:16.781616Z" } }, "outputs": [], @@ -87,18 +87,18 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.672744Z", - "iopub.status.busy": "2024-06-19T19:20:09.672210Z", - "iopub.status.idle": "2024-06-19T19:20:09.809087Z", - "shell.execute_reply": "2024-06-19T19:20:09.808481Z" + "iopub.execute_input": "2024-06-25T15:06:16.784661Z", + "iopub.status.busy": "2024-06-25T15:06:16.784422Z", + "iopub.status.idle": "2024-06-25T15:06:16.913303Z", + "shell.execute_reply": "2024-06-25T15:06:16.912723Z" } }, "outputs": [ { "data": { "text/plain": [ - "<5000x5000 sparse matrix of type ''\n", - "\twith 50000 stored elements in Compressed Sparse Row format>" + "" ] }, "execution_count": 2, @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.811391Z", - "iopub.status.busy": "2024-06-19T19:20:09.810983Z", - "iopub.status.idle": "2024-06-19T19:20:09.832181Z", - "shell.execute_reply": "2024-06-19T19:20:09.831496Z" + "iopub.execute_input": "2024-06-25T15:06:16.915807Z", + "iopub.status.busy": "2024-06-25T15:06:16.915394Z", + "iopub.status.idle": "2024-06-25T15:06:16.935663Z", + "shell.execute_reply": "2024-06-25T15:06:16.935129Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:09.835601Z", - "iopub.status.busy": "2024-06-19T19:20:09.835034Z", - "iopub.status.idle": "2024-06-19T19:20:12.770224Z", - "shell.execute_reply": "2024-06-19T19:20:12.769670Z" + "iopub.execute_input": "2024-06-25T15:06:16.938219Z", + "iopub.status.busy": "2024-06-25T15:06:16.937909Z", + "iopub.status.idle": "2024-06-25T15:06:19.826408Z", + "shell.execute_reply": "2024-06-25T15:06:19.825870Z" } }, "outputs": [ @@ -243,7 +243,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -296,13 +296,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -331,8 +331,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651929 0" @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:12.772861Z", - "iopub.status.busy": "2024-06-19T19:20:12.772291Z", - "iopub.status.idle": "2024-06-19T19:20:20.893235Z", - "shell.execute_reply": "2024-06-19T19:20:20.892612Z" + "iopub.execute_input": "2024-06-25T15:06:19.829102Z", + "iopub.status.busy": "2024-06-25T15:06:19.828547Z", + "iopub.status.idle": "2024-06-25T15:06:27.884424Z", + "shell.execute_reply": "2024-06-25T15:06:27.883802Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:20.895454Z", - "iopub.status.busy": "2024-06-19T19:20:20.895085Z", - "iopub.status.idle": "2024-06-19T19:20:21.080578Z", - "shell.execute_reply": "2024-06-19T19:20:21.079989Z" + "iopub.execute_input": "2024-06-25T15:06:27.886797Z", + "iopub.status.busy": "2024-06-25T15:06:27.886448Z", + "iopub.status.idle": "2024-06-25T15:06:28.036685Z", + "shell.execute_reply": "2024-06-25T15:06:28.036171Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:21.083140Z", - "iopub.status.busy": "2024-06-19T19:20:21.082757Z", - "iopub.status.idle": "2024-06-19T19:20:22.443060Z", - "shell.execute_reply": "2024-06-19T19:20:22.442549Z" + "iopub.execute_input": "2024-06-25T15:06:28.039086Z", + "iopub.status.busy": "2024-06-25T15:06:28.038885Z", + "iopub.status.idle": "2024-06-25T15:06:29.411474Z", + "shell.execute_reply": "2024-06-25T15:06:29.410868Z" } }, "outputs": [ @@ -1016,10 +1016,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.445433Z", - "iopub.status.busy": "2024-06-19T19:20:22.445039Z", - "iopub.status.idle": "2024-06-19T19:20:22.912135Z", - "shell.execute_reply": "2024-06-19T19:20:22.911505Z" + "iopub.execute_input": "2024-06-25T15:06:29.414021Z", + "iopub.status.busy": "2024-06-25T15:06:29.413520Z", + "iopub.status.idle": "2024-06-25T15:06:29.844054Z", + "shell.execute_reply": "2024-06-25T15:06:29.843434Z" } }, "outputs": [ @@ -1098,10 +1098,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.914513Z", - "iopub.status.busy": "2024-06-19T19:20:22.914016Z", - "iopub.status.idle": "2024-06-19T19:20:22.923076Z", - "shell.execute_reply": "2024-06-19T19:20:22.922641Z" + "iopub.execute_input": "2024-06-25T15:06:29.846611Z", + "iopub.status.busy": "2024-06-25T15:06:29.846082Z", + "iopub.status.idle": "2024-06-25T15:06:29.855501Z", + "shell.execute_reply": "2024-06-25T15:06:29.855053Z" } }, "outputs": [], @@ -1131,10 +1131,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.925387Z", - "iopub.status.busy": "2024-06-19T19:20:22.924938Z", - "iopub.status.idle": "2024-06-19T19:20:22.950519Z", - "shell.execute_reply": "2024-06-19T19:20:22.949866Z" + "iopub.execute_input": "2024-06-25T15:06:29.857684Z", + "iopub.status.busy": "2024-06-25T15:06:29.857342Z", + "iopub.status.idle": "2024-06-25T15:06:29.876701Z", + "shell.execute_reply": "2024-06-25T15:06:29.876240Z" } }, "outputs": [], @@ -1162,10 +1162,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:22.953417Z", - "iopub.status.busy": "2024-06-19T19:20:22.952958Z", - "iopub.status.idle": "2024-06-19T19:20:23.171694Z", - "shell.execute_reply": "2024-06-19T19:20:23.171151Z" + "iopub.execute_input": "2024-06-25T15:06:29.878886Z", + "iopub.status.busy": "2024-06-25T15:06:29.878539Z", + "iopub.status.idle": "2024-06-25T15:06:30.106388Z", + "shell.execute_reply": "2024-06-25T15:06:30.105851Z" } }, "outputs": [], @@ -1205,10 +1205,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.174445Z", - "iopub.status.busy": "2024-06-19T19:20:23.174034Z", - "iopub.status.idle": "2024-06-19T19:20:23.193976Z", - "shell.execute_reply": "2024-06-19T19:20:23.193453Z" + "iopub.execute_input": "2024-06-25T15:06:30.109063Z", + "iopub.status.busy": "2024-06-25T15:06:30.108673Z", + "iopub.status.idle": "2024-06-25T15:06:30.128840Z", + "shell.execute_reply": "2024-06-25T15:06:30.128348Z" } }, "outputs": [ @@ -1406,10 +1406,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.196426Z", - "iopub.status.busy": "2024-06-19T19:20:23.195868Z", - "iopub.status.idle": "2024-06-19T19:20:23.365274Z", - "shell.execute_reply": "2024-06-19T19:20:23.364696Z" + "iopub.execute_input": "2024-06-25T15:06:30.131036Z", + "iopub.status.busy": "2024-06-25T15:06:30.130679Z", + "iopub.status.idle": "2024-06-25T15:06:30.299607Z", + "shell.execute_reply": "2024-06-25T15:06:30.299018Z" } }, "outputs": [ @@ -1476,10 +1476,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.367857Z", - "iopub.status.busy": "2024-06-19T19:20:23.367490Z", - "iopub.status.idle": "2024-06-19T19:20:23.378001Z", - "shell.execute_reply": "2024-06-19T19:20:23.377517Z" + "iopub.execute_input": "2024-06-25T15:06:30.302247Z", + "iopub.status.busy": "2024-06-25T15:06:30.301878Z", + "iopub.status.idle": "2024-06-25T15:06:30.312262Z", + "shell.execute_reply": "2024-06-25T15:06:30.311779Z" } }, "outputs": [ @@ -1745,10 +1745,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.380131Z", - "iopub.status.busy": "2024-06-19T19:20:23.379763Z", - "iopub.status.idle": "2024-06-19T19:20:23.389467Z", - "shell.execute_reply": "2024-06-19T19:20:23.388989Z" + "iopub.execute_input": "2024-06-25T15:06:30.314328Z", + "iopub.status.busy": "2024-06-25T15:06:30.314138Z", + "iopub.status.idle": "2024-06-25T15:06:30.324056Z", + "shell.execute_reply": "2024-06-25T15:06:30.323583Z" } }, "outputs": [ @@ -1935,10 +1935,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.391686Z", - "iopub.status.busy": "2024-06-19T19:20:23.391320Z", - "iopub.status.idle": "2024-06-19T19:20:23.422362Z", - "shell.execute_reply": "2024-06-19T19:20:23.421838Z" + "iopub.execute_input": "2024-06-25T15:06:30.326026Z", + "iopub.status.busy": "2024-06-25T15:06:30.325841Z", + "iopub.status.idle": "2024-06-25T15:06:30.369881Z", + "shell.execute_reply": "2024-06-25T15:06:30.369243Z" } }, "outputs": [], @@ -1972,10 +1972,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.424816Z", - "iopub.status.busy": "2024-06-19T19:20:23.424440Z", - "iopub.status.idle": "2024-06-19T19:20:23.427346Z", - "shell.execute_reply": "2024-06-19T19:20:23.426883Z" + "iopub.execute_input": "2024-06-25T15:06:30.372404Z", + "iopub.status.busy": "2024-06-25T15:06:30.372025Z", + "iopub.status.idle": "2024-06-25T15:06:30.375453Z", + "shell.execute_reply": "2024-06-25T15:06:30.375013Z" } }, "outputs": [], @@ -1997,10 +1997,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.429536Z", - "iopub.status.busy": "2024-06-19T19:20:23.429099Z", - "iopub.status.idle": "2024-06-19T19:20:23.449596Z", - "shell.execute_reply": "2024-06-19T19:20:23.449011Z" + "iopub.execute_input": "2024-06-25T15:06:30.377426Z", + "iopub.status.busy": "2024-06-25T15:06:30.377231Z", + "iopub.status.idle": "2024-06-25T15:06:30.399073Z", + "shell.execute_reply": "2024-06-25T15:06:30.398517Z" } }, "outputs": [ @@ -2158,10 +2158,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.452107Z", - "iopub.status.busy": "2024-06-19T19:20:23.451668Z", - "iopub.status.idle": "2024-06-19T19:20:23.456230Z", - "shell.execute_reply": "2024-06-19T19:20:23.455738Z" + "iopub.execute_input": "2024-06-25T15:06:30.401795Z", + "iopub.status.busy": "2024-06-25T15:06:30.401389Z", + "iopub.status.idle": "2024-06-25T15:06:30.406701Z", + "shell.execute_reply": "2024-06-25T15:06:30.406177Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.458405Z", - "iopub.status.busy": "2024-06-19T19:20:23.458046Z", - "iopub.status.idle": "2024-06-19T19:20:23.486463Z", - "shell.execute_reply": "2024-06-19T19:20:23.485941Z" + "iopub.execute_input": "2024-06-25T15:06:30.409221Z", + "iopub.status.busy": "2024-06-25T15:06:30.408832Z", + "iopub.status.idle": "2024-06-25T15:06:30.439954Z", + "shell.execute_reply": "2024-06-25T15:06:30.439347Z" } }, "outputs": [ @@ -2343,10 +2343,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.488681Z", - "iopub.status.busy": "2024-06-19T19:20:23.488318Z", - "iopub.status.idle": "2024-06-19T19:20:23.869947Z", - "shell.execute_reply": "2024-06-19T19:20:23.869318Z" + "iopub.execute_input": "2024-06-25T15:06:30.442144Z", + "iopub.status.busy": "2024-06-25T15:06:30.441952Z", + "iopub.status.idle": "2024-06-25T15:06:30.815142Z", + "shell.execute_reply": "2024-06-25T15:06:30.814539Z" } }, "outputs": [ @@ -2413,10 +2413,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.872612Z", - "iopub.status.busy": "2024-06-19T19:20:23.872141Z", - "iopub.status.idle": "2024-06-19T19:20:23.875777Z", - "shell.execute_reply": "2024-06-19T19:20:23.875191Z" + "iopub.execute_input": "2024-06-25T15:06:30.817449Z", + "iopub.status.busy": "2024-06-25T15:06:30.817032Z", + "iopub.status.idle": "2024-06-25T15:06:30.820380Z", + "shell.execute_reply": "2024-06-25T15:06:30.819817Z" } }, "outputs": [ @@ -2467,10 +2467,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.878097Z", - "iopub.status.busy": "2024-06-19T19:20:23.877890Z", - "iopub.status.idle": "2024-06-19T19:20:23.891740Z", - "shell.execute_reply": "2024-06-19T19:20:23.891169Z" + "iopub.execute_input": "2024-06-25T15:06:30.822583Z", + "iopub.status.busy": "2024-06-25T15:06:30.822235Z", + "iopub.status.idle": "2024-06-25T15:06:30.835457Z", + "shell.execute_reply": "2024-06-25T15:06:30.835004Z" } }, "outputs": [ @@ -2749,10 +2749,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.893864Z", - "iopub.status.busy": "2024-06-19T19:20:23.893673Z", - "iopub.status.idle": "2024-06-19T19:20:23.907800Z", - "shell.execute_reply": "2024-06-19T19:20:23.907313Z" + "iopub.execute_input": "2024-06-25T15:06:30.837603Z", + "iopub.status.busy": "2024-06-25T15:06:30.837185Z", + "iopub.status.idle": "2024-06-25T15:06:30.850826Z", + "shell.execute_reply": "2024-06-25T15:06:30.850267Z" } }, "outputs": [ @@ -3019,10 +3019,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.910005Z", - "iopub.status.busy": "2024-06-19T19:20:23.909657Z", - "iopub.status.idle": "2024-06-19T19:20:23.920159Z", - "shell.execute_reply": "2024-06-19T19:20:23.919682Z" + "iopub.execute_input": "2024-06-25T15:06:30.852964Z", + "iopub.status.busy": "2024-06-25T15:06:30.852527Z", + "iopub.status.idle": "2024-06-25T15:06:30.862344Z", + "shell.execute_reply": "2024-06-25T15:06:30.861912Z" } }, "outputs": [], @@ -3047,10 +3047,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.922419Z", - "iopub.status.busy": "2024-06-19T19:20:23.922093Z", - "iopub.status.idle": "2024-06-19T19:20:23.931857Z", - "shell.execute_reply": "2024-06-19T19:20:23.931334Z" + "iopub.execute_input": "2024-06-25T15:06:30.864398Z", + "iopub.status.busy": "2024-06-25T15:06:30.864010Z", + "iopub.status.idle": "2024-06-25T15:06:30.873707Z", + "shell.execute_reply": "2024-06-25T15:06:30.873163Z" } }, "outputs": [ @@ -3222,10 +3222,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.934010Z", - "iopub.status.busy": "2024-06-19T19:20:23.933660Z", - "iopub.status.idle": "2024-06-19T19:20:23.937719Z", - "shell.execute_reply": "2024-06-19T19:20:23.937199Z" + "iopub.execute_input": "2024-06-25T15:06:30.875692Z", + "iopub.status.busy": "2024-06-25T15:06:30.875500Z", + "iopub.status.idle": "2024-06-25T15:06:30.879148Z", + "shell.execute_reply": "2024-06-25T15:06:30.878702Z" } }, "outputs": [], @@ -3257,10 +3257,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.940084Z", - "iopub.status.busy": "2024-06-19T19:20:23.939696Z", - "iopub.status.idle": "2024-06-19T19:20:23.992835Z", - "shell.execute_reply": "2024-06-19T19:20:23.992215Z" + "iopub.execute_input": "2024-06-25T15:06:30.881201Z", + "iopub.status.busy": "2024-06-25T15:06:30.880889Z", + "iopub.status.idle": "2024-06-25T15:06:30.933604Z", + "shell.execute_reply": "2024-06-25T15:06:30.933024Z" } }, "outputs": [ @@ -3268,230 +3268,230 @@ "data": { "text/html": [ "\n", - "\n", + "
    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    \n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3567,10 +3567,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:23.995486Z", - "iopub.status.busy": "2024-06-19T19:20:23.994935Z", - "iopub.status.idle": "2024-06-19T19:20:24.001075Z", - "shell.execute_reply": "2024-06-19T19:20:24.000509Z" + "iopub.execute_input": "2024-06-25T15:06:30.936004Z", + "iopub.status.busy": "2024-06-25T15:06:30.935597Z", + "iopub.status.idle": "2024-06-25T15:06:30.941530Z", + "shell.execute_reply": "2024-06-25T15:06:30.940983Z" } }, "outputs": [], @@ -3609,10 +3609,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.003425Z", - "iopub.status.busy": "2024-06-19T19:20:24.003027Z", - "iopub.status.idle": "2024-06-19T19:20:24.015572Z", - "shell.execute_reply": "2024-06-19T19:20:24.014974Z" + "iopub.execute_input": "2024-06-25T15:06:30.943525Z", + "iopub.status.busy": "2024-06-25T15:06:30.943342Z", + "iopub.status.idle": "2024-06-25T15:06:30.955301Z", + "shell.execute_reply": "2024-06-25T15:06:30.954811Z" } }, "outputs": [ @@ -3648,10 +3648,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.017952Z", - "iopub.status.busy": "2024-06-19T19:20:24.017605Z", - "iopub.status.idle": "2024-06-19T19:20:24.237620Z", - "shell.execute_reply": "2024-06-19T19:20:24.237034Z" + "iopub.execute_input": "2024-06-25T15:06:30.957425Z", + "iopub.status.busy": "2024-06-25T15:06:30.957237Z", + "iopub.status.idle": "2024-06-25T15:06:31.141088Z", + "shell.execute_reply": "2024-06-25T15:06:31.140485Z" } }, "outputs": [ @@ -3703,10 +3703,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:24.239799Z", - "iopub.status.busy": "2024-06-19T19:20:24.239603Z", - "iopub.status.idle": "2024-06-19T19:20:24.247776Z", - "shell.execute_reply": "2024-06-19T19:20:24.247209Z" + "iopub.execute_input": "2024-06-25T15:06:31.143349Z", + "iopub.status.busy": "2024-06-25T15:06:31.143165Z", + "iopub.status.idle": "2024-06-25T15:06:31.151178Z", + "shell.execute_reply": "2024-06-25T15:06:31.150714Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 227b3b27f..0961ceb6a 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:27.778079Z", - "iopub.status.busy": "2024-06-19T19:20:27.777878Z", - "iopub.status.idle": "2024-06-19T19:20:28.926307Z", - "shell.execute_reply": "2024-06-19T19:20:28.925749Z" + "iopub.execute_input": "2024-06-25T15:06:34.657906Z", + "iopub.status.busy": "2024-06-25T15:06:34.657727Z", + "iopub.status.idle": "2024-06-25T15:06:35.814256Z", + "shell.execute_reply": "2024-06-25T15:06:35.813750Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.929078Z", - "iopub.status.busy": "2024-06-19T19:20:28.928525Z", - "iopub.status.idle": "2024-06-19T19:20:28.931516Z", - "shell.execute_reply": "2024-06-19T19:20:28.930965Z" + "iopub.execute_input": "2024-06-25T15:06:35.816783Z", + "iopub.status.busy": "2024-06-25T15:06:35.816461Z", + "iopub.status.idle": "2024-06-25T15:06:35.819405Z", + "shell.execute_reply": "2024-06-25T15:06:35.818866Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.933864Z", - "iopub.status.busy": "2024-06-19T19:20:28.933647Z", - "iopub.status.idle": "2024-06-19T19:20:28.945880Z", - "shell.execute_reply": "2024-06-19T19:20:28.945418Z" + "iopub.execute_input": "2024-06-25T15:06:35.821594Z", + "iopub.status.busy": "2024-06-25T15:06:35.821369Z", + "iopub.status.idle": "2024-06-25T15:06:35.833892Z", + "shell.execute_reply": "2024-06-25T15:06:35.833341Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:28.948011Z", - "iopub.status.busy": "2024-06-19T19:20:28.947713Z", - "iopub.status.idle": "2024-06-19T19:20:33.050909Z", - "shell.execute_reply": "2024-06-19T19:20:33.050438Z" + "iopub.execute_input": "2024-06-25T15:06:35.836172Z", + "iopub.status.busy": "2024-06-25T15:06:35.835850Z", + "iopub.status.idle": "2024-06-25T15:06:41.594468Z", + "shell.execute_reply": "2024-06-25T15:06:41.593884Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,7 +694,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 7ccb5f992..293277928 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -822,13 +822,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +
    -
    +
    @@ -1702,7 +1702,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index e3433290e..95950f3ed 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:35.348749Z", - "iopub.status.busy": "2024-06-19T19:20:35.348229Z", - "iopub.status.idle": "2024-06-19T19:20:36.499838Z", - "shell.execute_reply": "2024-06-19T19:20:36.499274Z" + "iopub.execute_input": "2024-06-25T15:06:43.789570Z", + "iopub.status.busy": "2024-06-25T15:06:43.789391Z", + "iopub.status.idle": "2024-06-25T15:06:44.946295Z", + "shell.execute_reply": "2024-06-25T15:06:44.945642Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:36.502640Z", - "iopub.status.busy": "2024-06-19T19:20:36.502173Z", - "iopub.status.idle": "2024-06-19T19:20:36.505598Z", - "shell.execute_reply": "2024-06-19T19:20:36.505129Z" + "iopub.execute_input": "2024-06-25T15:06:44.949199Z", + "iopub.status.busy": "2024-06-25T15:06:44.948725Z", + "iopub.status.idle": "2024-06-25T15:06:44.952300Z", + "shell.execute_reply": "2024-06-25T15:06:44.951754Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:36.507500Z", - "iopub.status.busy": "2024-06-19T19:20:36.507231Z", - "iopub.status.idle": "2024-06-19T19:20:39.749988Z", - "shell.execute_reply": "2024-06-19T19:20:39.749377Z" + "iopub.execute_input": "2024-06-25T15:06:44.955089Z", + "iopub.status.busy": "2024-06-25T15:06:44.954818Z", + "iopub.status.idle": "2024-06-25T15:06:48.262608Z", + "shell.execute_reply": "2024-06-25T15:06:48.261846Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.753092Z", - "iopub.status.busy": "2024-06-19T19:20:39.752345Z", - "iopub.status.idle": "2024-06-19T19:20:39.790210Z", - "shell.execute_reply": "2024-06-19T19:20:39.789626Z" + "iopub.execute_input": "2024-06-25T15:06:48.265713Z", + "iopub.status.busy": "2024-06-25T15:06:48.265081Z", + "iopub.status.idle": "2024-06-25T15:06:48.307221Z", + "shell.execute_reply": "2024-06-25T15:06:48.306620Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.792710Z", - "iopub.status.busy": "2024-06-19T19:20:39.792407Z", - "iopub.status.idle": "2024-06-19T19:20:39.824707Z", - "shell.execute_reply": "2024-06-19T19:20:39.824092Z" + "iopub.execute_input": "2024-06-25T15:06:48.309865Z", + "iopub.status.busy": "2024-06-25T15:06:48.309483Z", + "iopub.status.idle": "2024-06-25T15:06:48.345475Z", + "shell.execute_reply": "2024-06-25T15:06:48.344853Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.827297Z", - "iopub.status.busy": "2024-06-19T19:20:39.826994Z", - "iopub.status.idle": "2024-06-19T19:20:39.829929Z", - "shell.execute_reply": "2024-06-19T19:20:39.829489Z" + "iopub.execute_input": "2024-06-25T15:06:48.348514Z", + "iopub.status.busy": "2024-06-25T15:06:48.347972Z", + "iopub.status.idle": "2024-06-25T15:06:48.351300Z", + "shell.execute_reply": "2024-06-25T15:06:48.350810Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.831929Z", - "iopub.status.busy": "2024-06-19T19:20:39.831606Z", - "iopub.status.idle": "2024-06-19T19:20:39.834113Z", - "shell.execute_reply": "2024-06-19T19:20:39.833687Z" + "iopub.execute_input": "2024-06-25T15:06:48.353576Z", + "iopub.status.busy": "2024-06-25T15:06:48.353144Z", + "iopub.status.idle": "2024-06-25T15:06:48.356009Z", + "shell.execute_reply": "2024-06-25T15:06:48.355516Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.836224Z", - "iopub.status.busy": "2024-06-19T19:20:39.835895Z", - "iopub.status.idle": "2024-06-19T19:20:39.861835Z", - "shell.execute_reply": "2024-06-19T19:20:39.861261Z" + "iopub.execute_input": "2024-06-25T15:06:48.358153Z", + "iopub.status.busy": "2024-06-25T15:06:48.357768Z", + "iopub.status.idle": "2024-06-25T15:06:48.384527Z", + "shell.execute_reply": "2024-06-25T15:06:48.383935Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "065286a74e154e239323d7d6e8bd5aa1", + "model_id": "5e032993778040f9ad18b79b64feb24b", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38a86ba6b1f545fda4e24ffabf187487", + "model_id": "9218cc3eea7a4d8b904a7cd4bd943053", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.866602Z", - "iopub.status.busy": "2024-06-19T19:20:39.866304Z", - "iopub.status.idle": "2024-06-19T19:20:39.872843Z", - "shell.execute_reply": "2024-06-19T19:20:39.872361Z" + "iopub.execute_input": "2024-06-25T15:06:48.388922Z", + "iopub.status.busy": "2024-06-25T15:06:48.388562Z", + "iopub.status.idle": "2024-06-25T15:06:48.395503Z", + "shell.execute_reply": "2024-06-25T15:06:48.395071Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.874911Z", - "iopub.status.busy": "2024-06-19T19:20:39.874583Z", - "iopub.status.idle": "2024-06-19T19:20:39.878063Z", - "shell.execute_reply": "2024-06-19T19:20:39.877529Z" + "iopub.execute_input": "2024-06-25T15:06:48.397514Z", + "iopub.status.busy": "2024-06-25T15:06:48.397197Z", + "iopub.status.idle": "2024-06-25T15:06:48.400710Z", + "shell.execute_reply": "2024-06-25T15:06:48.400164Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.880046Z", - "iopub.status.busy": "2024-06-19T19:20:39.879744Z", - "iopub.status.idle": "2024-06-19T19:20:39.886042Z", - "shell.execute_reply": "2024-06-19T19:20:39.885587Z" + "iopub.execute_input": "2024-06-25T15:06:48.402718Z", + "iopub.status.busy": "2024-06-25T15:06:48.402392Z", + "iopub.status.idle": "2024-06-25T15:06:48.408634Z", + "shell.execute_reply": "2024-06-25T15:06:48.408184Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.887853Z", - "iopub.status.busy": "2024-06-19T19:20:39.887649Z", - "iopub.status.idle": "2024-06-19T19:20:39.925739Z", - "shell.execute_reply": "2024-06-19T19:20:39.925134Z" + "iopub.execute_input": "2024-06-25T15:06:48.410673Z", + "iopub.status.busy": "2024-06-25T15:06:48.410242Z", + "iopub.status.idle": "2024-06-25T15:06:48.452692Z", + "shell.execute_reply": "2024-06-25T15:06:48.452072Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.928431Z", - "iopub.status.busy": "2024-06-19T19:20:39.927979Z", - "iopub.status.idle": "2024-06-19T19:20:39.963990Z", - "shell.execute_reply": "2024-06-19T19:20:39.963389Z" + "iopub.execute_input": "2024-06-25T15:06:48.455295Z", + "iopub.status.busy": "2024-06-25T15:06:48.454984Z", + "iopub.status.idle": "2024-06-25T15:06:48.496629Z", + "shell.execute_reply": "2024-06-25T15:06:48.495955Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:39.966921Z", - "iopub.status.busy": "2024-06-19T19:20:39.966463Z", - "iopub.status.idle": "2024-06-19T19:20:40.093718Z", - "shell.execute_reply": "2024-06-19T19:20:40.093116Z" + "iopub.execute_input": "2024-06-25T15:06:48.499666Z", + "iopub.status.busy": "2024-06-25T15:06:48.499200Z", + "iopub.status.idle": "2024-06-25T15:06:48.626995Z", + "shell.execute_reply": "2024-06-25T15:06:48.626413Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:40.096444Z", - "iopub.status.busy": "2024-06-19T19:20:40.095877Z", - "iopub.status.idle": "2024-06-19T19:20:43.198768Z", - "shell.execute_reply": "2024-06-19T19:20:43.198152Z" + "iopub.execute_input": "2024-06-25T15:06:48.629793Z", + "iopub.status.busy": "2024-06-25T15:06:48.629137Z", + "iopub.status.idle": "2024-06-25T15:06:51.676502Z", + "shell.execute_reply": "2024-06-25T15:06:51.675817Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.201399Z", - "iopub.status.busy": "2024-06-19T19:20:43.200946Z", - "iopub.status.idle": "2024-06-19T19:20:43.265651Z", - "shell.execute_reply": "2024-06-19T19:20:43.265091Z" + "iopub.execute_input": "2024-06-25T15:06:51.679482Z", + "iopub.status.busy": "2024-06-25T15:06:51.678959Z", + "iopub.status.idle": "2024-06-25T15:06:51.739238Z", + "shell.execute_reply": "2024-06-25T15:06:51.738647Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.267919Z", - "iopub.status.busy": "2024-06-19T19:20:43.267572Z", - "iopub.status.idle": "2024-06-19T19:20:43.309659Z", - "shell.execute_reply": "2024-06-19T19:20:43.309121Z" + "iopub.execute_input": "2024-06-25T15:06:51.741437Z", + "iopub.status.busy": "2024-06-25T15:06:51.741240Z", + "iopub.status.idle": "2024-06-25T15:06:51.782843Z", + "shell.execute_reply": "2024-06-25T15:06:51.782290Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "fbacef5a", + "id": "d52f5db0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "f6481b70", + "id": "6bf6b75a", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "9735d2e7", + "id": "c3402fd6", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "a68e9114", + "id": "311ad9c3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.312214Z", - "iopub.status.busy": "2024-06-19T19:20:43.311753Z", - "iopub.status.idle": "2024-06-19T19:20:43.319623Z", - "shell.execute_reply": "2024-06-19T19:20:43.319049Z" + "iopub.execute_input": "2024-06-25T15:06:51.785201Z", + "iopub.status.busy": "2024-06-25T15:06:51.785000Z", + "iopub.status.idle": "2024-06-25T15:06:51.793009Z", + "shell.execute_reply": "2024-06-25T15:06:51.792520Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "cfc6c771", + "id": "4b7ae88d", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "eef8ea41", + "id": "214c1a87", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.321962Z", - "iopub.status.busy": "2024-06-19T19:20:43.321591Z", - "iopub.status.idle": "2024-06-19T19:20:43.341421Z", - "shell.execute_reply": "2024-06-19T19:20:43.340818Z" + "iopub.execute_input": "2024-06-25T15:06:51.794999Z", + "iopub.status.busy": "2024-06-25T15:06:51.794816Z", + "iopub.status.idle": "2024-06-25T15:06:51.815495Z", + "shell.execute_reply": "2024-06-25T15:06:51.814899Z" } }, "outputs": [ @@ -1495,7 +1495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_8136/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7631/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1529,13 +1529,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7aa927b6", + "id": "a552d436", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:20:43.343688Z", - "iopub.status.busy": "2024-06-19T19:20:43.343287Z", - "iopub.status.idle": "2024-06-19T19:20:43.346791Z", - "shell.execute_reply": "2024-06-19T19:20:43.346258Z" + "iopub.execute_input": "2024-06-25T15:06:51.817589Z", + "iopub.status.busy": "2024-06-25T15:06:51.817394Z", + "iopub.status.idle": "2024-06-25T15:06:51.820759Z", + "shell.execute_reply": "2024-06-25T15:06:51.820237Z" } }, "outputs": [ @@ -1630,7 +1630,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0379a9a769b74f918f3cb1e7535b74c2": { + "021d7d409a774a92955e7e4fbdd2f000": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0bcbd8793ddd4cdeb051f08ed04b9385": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1683,31 +1701,7 @@ "width": null } }, - "065286a74e154e239323d7d6e8bd5aa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91184869d974411599f7d22092fa71d5", - "IPY_MODEL_7aee835444cb4e719704ba8cec2d71ea", - "IPY_MODEL_6fdeca701f4c4ed490499fdab12097ef" - ], - "layout": "IPY_MODEL_b113eb325eb94445a5344e3b6419b748", - "tabbable": null, - "tooltip": null - } - }, - "31e1e2830dac48dd8efccb81f276984f": { + "15521c25a13a4083819bf4151afb9b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1725,49 +1719,7 @@ "text_color": null } }, - "38a86ba6b1f545fda4e24ffabf187487": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1f23f6ea07d4916ba3a2b7366dfa354", - "IPY_MODEL_4009cb0e8c9f46cfb0a9912f89aae2ca", - "IPY_MODEL_a718961d498d486b898049ef5e121133" - ], - "layout": "IPY_MODEL_d363deb807ec434b86aafe7f186a05e9", - "tabbable": null, - "tooltip": null - } - }, - "3bc7b3f65d3d4ff4969a363e1d63ce50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4009cb0e8c9f46cfb0a9912f89aae2ca": { + "1cad3e8f23cb46838d56eb3bb482d365": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1783,17 +1735,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c79a61188788458092feaa4672e18721", + "layout": "IPY_MODEL_665709a5fb664212a4b3e452354806de", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c63e50796e4c474296733f011a6bcae4", + "style": "IPY_MODEL_2cffbc16e34645559f91f6c2a7a0ea80", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "6393691193e041689540195999dd9852": { + "2bcad44235454d4b933b889f3377f04d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1846,7 +1798,23 @@ "width": null } }, - "6fdeca701f4c4ed490499fdab12097ef": { + "2cffbc16e34645559f91f6c2a7a0ea80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e26f37e1d74477595f916b58bcce2c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1829,73 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6393691193e041689540195999dd9852", + "layout": "IPY_MODEL_6c9eb3c9cd4d491faf33d720bbd499d6", "placeholder": "​", - "style": "IPY_MODEL_3bc7b3f65d3d4ff4969a363e1d63ce50", + "style": "IPY_MODEL_021d7d409a774a92955e7e4fbdd2f000", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1055197.36it/s]" + "value": "number of examples processed for checking labels: " } }, - "779346d1717d45f3aadce49afada2dab": { + "544657382c5b4e24bb26a62e09b2f62c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5e032993778040f9ad18b79b64feb24b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c40fa21750714431a9d0ac108f473d48", + "IPY_MODEL_cbaa002f7e234f9b903fcff948128fea", + "IPY_MODEL_7754a951d9284bca8e675ac2cc8f4668" + ], + "layout": "IPY_MODEL_c5175b3abc6544ba9decd5667c4b1514", + "tabbable": null, + "tooltip": null + } + }, + "5fb9206d04154ab0bd66666c00f46db4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "665709a5fb664212a4b3e452354806de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,74 +1948,7 @@ "width": null } }, - "7ad20f8f998c403585a75194ba160a01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7aee835444cb4e719704ba8cec2d71ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2705c547fe645ffa993588e301cd016", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dad66d436eff42b5ad844b3b73be2827", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "91184869d974411599f7d22092fa71d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0379a9a769b74f918f3cb1e7535b74c2", - "placeholder": "​", - "style": "IPY_MODEL_31e1e2830dac48dd8efccb81f276984f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "a2705c547fe645ffa993588e301cd016": { + "6c9eb3c9cd4d491faf33d720bbd499d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +2001,30 @@ "width": null } }, - "a718961d498d486b898049ef5e121133": { + "7754a951d9284bca8e675ac2cc8f4668": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bcbd8793ddd4cdeb051f08ed04b9385", + "placeholder": "​", + "style": "IPY_MODEL_15521c25a13a4083819bf4151afb9b1a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1006987.42it/s]" + } + }, + "891b6d6adfa345b59909c32c02c65126": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2057,15 +2039,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f23484c0a94b4113adb47bbc627da1e4", + "layout": "IPY_MODEL_fc14769eac6641d49b287ee0e3abac63", "placeholder": "​", - "style": "IPY_MODEL_7ad20f8f998c403585a75194ba160a01", + "style": "IPY_MODEL_544657382c5b4e24bb26a62e09b2f62c", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1189502.28it/s]" + "value": " 10000/? [00:00<00:00, 1185635.46it/s]" + } + }, + "9218cc3eea7a4d8b904a7cd4bd943053": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3e26f37e1d74477595f916b58bcce2c7", + "IPY_MODEL_1cad3e8f23cb46838d56eb3bb482d365", + "IPY_MODEL_891b6d6adfa345b59909c32c02c65126" + ], + "layout": "IPY_MODEL_f8efbbca228241fda08fe59ab07dca2e", + "tabbable": null, + "tooltip": null } }, - "b113eb325eb94445a5344e3b6419b748": { + "bcab1c74d1be4ff5834ae04bcf9faf87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c3318601440c4b11b265d37824386c92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2118,7 +2142,7 @@ "width": null } }, - "c1f23f6ea07d4916ba3a2b7366dfa354": { + "c40fa21750714431a9d0ac108f473d48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2133,31 +2157,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_779346d1717d45f3aadce49afada2dab", + "layout": "IPY_MODEL_c3318601440c4b11b265d37824386c92", "placeholder": "​", - "style": "IPY_MODEL_cfe3e2112f5d427e958fed4aceffdbd6", + "style": "IPY_MODEL_bcab1c74d1be4ff5834ae04bcf9faf87", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "c63e50796e4c474296733f011a6bcae4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "number of examples processed for estimating thresholds: " } }, - "c79a61188788458092feaa4672e18721": { + "c5175b3abc6544ba9decd5667c4b1514": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2210,25 +2218,33 @@ "width": null } }, - "cfe3e2112f5d427e958fed4aceffdbd6": { + "cbaa002f7e234f9b903fcff948128fea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2bcad44235454d4b933b889f3377f04d", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5fb9206d04154ab0bd66666c00f46db4", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "d363deb807ec434b86aafe7f186a05e9": { + "f8efbbca228241fda08fe59ab07dca2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,23 +2297,7 @@ "width": null } }, - "dad66d436eff42b5ad844b3b73be2827": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f23484c0a94b4113adb47bbc627da1e4": { + "fc14769eac6641d49b287ee0e3abac63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 8dcad7b1c..66e257593 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -842,7 +842,6 @@

    Workflow 1: Use Datalab to detect many types of issues2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 91550653.75it/s]
    +100%|██████████| 170498071/170498071 [00:01<00:00, 88744795.96it/s]
     

    -
    +
    @@ -1115,7 +1115,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index c3f7f1e62..628e37325 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:29.120493Z", - "iopub.status.busy": "2024-06-19T19:21:29.119912Z", - "iopub.status.idle": "2024-06-19T19:21:31.933775Z", - "shell.execute_reply": "2024-06-19T19:21:31.933128Z" + "iopub.execute_input": "2024-06-25T15:07:39.206096Z", + "iopub.status.busy": "2024-06-25T15:07:39.205590Z", + "iopub.status.idle": "2024-06-25T15:07:42.210777Z", + "shell.execute_reply": "2024-06-25T15:07:42.210255Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:31.936732Z", - "iopub.status.busy": "2024-06-19T19:21:31.936246Z", - "iopub.status.idle": "2024-06-19T19:21:32.274001Z", - "shell.execute_reply": "2024-06-19T19:21:32.273500Z" + "iopub.execute_input": "2024-06-25T15:07:42.213460Z", + "iopub.status.busy": "2024-06-25T15:07:42.213004Z", + "iopub.status.idle": "2024-06-25T15:07:42.560062Z", + "shell.execute_reply": "2024-06-25T15:07:42.559409Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:32.276508Z", - "iopub.status.busy": "2024-06-19T19:21:32.276105Z", - "iopub.status.idle": "2024-06-19T19:21:32.280247Z", - "shell.execute_reply": "2024-06-19T19:21:32.279783Z" + "iopub.execute_input": "2024-06-25T15:07:42.562840Z", + "iopub.status.busy": "2024-06-25T15:07:42.562287Z", + "iopub.status.idle": "2024-06-25T15:07:42.566702Z", + "shell.execute_reply": "2024-06-25T15:07:42.566159Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:32.282254Z", - "iopub.status.busy": "2024-06-19T19:21:32.281985Z", - "iopub.status.idle": "2024-06-19T19:21:36.710600Z", - "shell.execute_reply": "2024-06-19T19:21:36.710069Z" + "iopub.execute_input": "2024-06-25T15:07:42.569125Z", + "iopub.status.busy": "2024-06-25T15:07:42.568681Z", + "iopub.status.idle": "2024-06-25T15:07:47.162636Z", + "shell.execute_reply": "2024-06-25T15:07:47.162050Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1802240/170498071 [00:00<00:09, 18017949.54it/s]" + " 1%| | 1441792/170498071 [00:00<00:11, 14265089.86it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11632640/170498071 [00:00<00:02, 65094219.10it/s]" + " 6%|▌ | 10321920/170498071 [00:00<00:02, 57876720.06it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20742144/170498071 [00:00<00:01, 76902331.31it/s]" + " 12%|█▏ | 20414464/170498071 [00:00<00:01, 77367913.49it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30113792/170498071 [00:00<00:01, 83516379.16it/s]" + " 18%|█▊ | 30932992/170498071 [00:00<00:01, 88273292.38it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 39419904/170498071 [00:00<00:01, 86703889.29it/s]" + " 24%|██▍ | 41320448/170498071 [00:00<00:01, 93828843.91it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48726016/170498071 [00:00<00:01, 88771798.18it/s]" + " 30%|███ | 51904512/170498071 [00:00<00:01, 97766525.28it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 59015168/170498071 [00:00<00:01, 93366717.63it/s]" + " 36%|███▋ | 62095360/170498071 [00:00<00:01, 99063313.45it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 68354048/170498071 [00:00<00:01, 90460697.58it/s]" + " 42%|████▏ | 72450048/170498071 [00:00<00:00, 100483151.75it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 79069184/170498071 [00:00<00:00, 95349758.18it/s]" + " 48%|████▊ | 82608128/170498071 [00:00<00:00, 100537532.88it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88637440/170498071 [00:01<00:00, 92585510.28it/s]" + " 54%|█████▍ | 92667904/170498071 [00:01<00:00, 97249164.32it/s] " ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99778560/170498071 [00:01<00:00, 98045186.44it/s]" + " 60%|██████ | 102432768/170498071 [00:01<00:00, 95386720.52it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109641728/170498071 [00:01<00:00, 94260473.23it/s]" + " 66%|██████▌ | 112001024/170498071 [00:01<00:00, 93763598.44it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 120717312/170498071 [00:01<00:00, 99011912.12it/s]" + " 71%|███████ | 121405440/170498071 [00:01<00:00, 90762304.11it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130678784/170498071 [00:01<00:00, 94682120.53it/s]" + " 77%|███████▋ | 130514944/170498071 [00:01<00:00, 88997803.93it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141754368/170498071 [00:01<00:00, 99100549.00it/s]" + " 82%|████████▏ | 139460608/170498071 [00:01<00:00, 85560327.60it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 151748608/170498071 [00:01<00:00, 95388325.55it/s]" + " 87%|████████▋ | 148045824/170498071 [00:01<00:00, 85139512.24it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 162889728/170498071 [00:01<00:00, 99924151.59it/s]" + " 92%|█████████▏| 156991488/170498071 [00:01<00:00, 86219496.23it/s]" ] }, { @@ -388,7 +388,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 91550653.75it/s]" + " 97%|█████████▋| 165969920/170498071 [00:01<00:00, 87041053.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 88744795.96it/s]" ] }, { @@ -506,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:36.712936Z", - "iopub.status.busy": "2024-06-19T19:21:36.712655Z", - "iopub.status.idle": "2024-06-19T19:21:36.717328Z", - "shell.execute_reply": "2024-06-19T19:21:36.716904Z" + "iopub.execute_input": "2024-06-25T15:07:47.164941Z", + "iopub.status.busy": "2024-06-25T15:07:47.164716Z", + "iopub.status.idle": "2024-06-25T15:07:47.169619Z", + "shell.execute_reply": "2024-06-25T15:07:47.169146Z" }, "nbsphinx": "hidden" }, @@ -560,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:36.719368Z", - "iopub.status.busy": "2024-06-19T19:21:36.719054Z", - "iopub.status.idle": "2024-06-19T19:21:37.267753Z", - "shell.execute_reply": "2024-06-19T19:21:37.267211Z" + "iopub.execute_input": "2024-06-25T15:07:47.171722Z", + "iopub.status.busy": "2024-06-25T15:07:47.171382Z", + "iopub.status.idle": "2024-06-25T15:07:47.738760Z", + "shell.execute_reply": "2024-06-25T15:07:47.738088Z" } }, "outputs": [ @@ -596,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.270008Z", - "iopub.status.busy": "2024-06-19T19:21:37.269658Z", - "iopub.status.idle": "2024-06-19T19:21:37.771584Z", - "shell.execute_reply": "2024-06-19T19:21:37.771009Z" + "iopub.execute_input": "2024-06-25T15:07:47.741125Z", + "iopub.status.busy": "2024-06-25T15:07:47.740746Z", + "iopub.status.idle": "2024-06-25T15:07:48.261248Z", + "shell.execute_reply": "2024-06-25T15:07:48.260672Z" } }, "outputs": [ @@ -637,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.773694Z", - "iopub.status.busy": "2024-06-19T19:21:37.773502Z", - "iopub.status.idle": "2024-06-19T19:21:37.777253Z", - "shell.execute_reply": "2024-06-19T19:21:37.776701Z" + "iopub.execute_input": "2024-06-25T15:07:48.263378Z", + "iopub.status.busy": "2024-06-25T15:07:48.263183Z", + "iopub.status.idle": "2024-06-25T15:07:48.267023Z", + "shell.execute_reply": "2024-06-25T15:07:48.266572Z" } }, "outputs": [], @@ -663,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:37.779279Z", - "iopub.status.busy": "2024-06-19T19:21:37.778976Z", - "iopub.status.idle": "2024-06-19T19:21:50.625364Z", - "shell.execute_reply": "2024-06-19T19:21:50.624781Z" + "iopub.execute_input": "2024-06-25T15:07:48.268899Z", + "iopub.status.busy": "2024-06-25T15:07:48.268728Z", + "iopub.status.idle": "2024-06-25T15:08:00.626265Z", + "shell.execute_reply": "2024-06-25T15:08:00.625732Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5a3224df4122414dbc965e4870dbbda1", + "model_id": "b21e9d68df194288ae90e0c8135c4ae7", "version_major": 2, "version_minor": 0 }, @@ -732,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:50.628005Z", - "iopub.status.busy": "2024-06-19T19:21:50.627513Z", - "iopub.status.idle": "2024-06-19T19:21:52.712045Z", - "shell.execute_reply": "2024-06-19T19:21:52.711492Z" + "iopub.execute_input": "2024-06-25T15:08:00.628642Z", + "iopub.status.busy": "2024-06-25T15:08:00.628254Z", + "iopub.status.idle": "2024-06-25T15:08:02.761210Z", + "shell.execute_reply": "2024-06-25T15:08:02.760608Z" } }, "outputs": [ @@ -779,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:52.714529Z", - "iopub.status.busy": "2024-06-19T19:21:52.713991Z", - "iopub.status.idle": "2024-06-19T19:21:52.962218Z", - "shell.execute_reply": "2024-06-19T19:21:52.961618Z" + "iopub.execute_input": "2024-06-25T15:08:02.763626Z", + "iopub.status.busy": "2024-06-25T15:08:02.763245Z", + "iopub.status.idle": "2024-06-25T15:08:03.022141Z", + "shell.execute_reply": "2024-06-25T15:08:03.021575Z" } }, "outputs": [ @@ -818,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:52.964783Z", - "iopub.status.busy": "2024-06-19T19:21:52.964455Z", - "iopub.status.idle": "2024-06-19T19:21:53.652657Z", - "shell.execute_reply": "2024-06-19T19:21:53.652090Z" + "iopub.execute_input": "2024-06-25T15:08:03.025107Z", + "iopub.status.busy": "2024-06-25T15:08:03.024724Z", + "iopub.status.idle": "2024-06-25T15:08:03.686604Z", + "shell.execute_reply": "2024-06-25T15:08:03.686062Z" } }, "outputs": [ @@ -871,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:53.655637Z", - "iopub.status.busy": "2024-06-19T19:21:53.655191Z", - "iopub.status.idle": "2024-06-19T19:21:53.997788Z", - "shell.execute_reply": "2024-06-19T19:21:53.997182Z" + "iopub.execute_input": "2024-06-25T15:08:03.689638Z", + "iopub.status.busy": "2024-06-25T15:08:03.689263Z", + "iopub.status.idle": "2024-06-25T15:08:04.028975Z", + "shell.execute_reply": "2024-06-25T15:08:04.028446Z" } }, "outputs": [ @@ -922,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:53.999907Z", - "iopub.status.busy": "2024-06-19T19:21:53.999721Z", - "iopub.status.idle": "2024-06-19T19:21:54.237511Z", - "shell.execute_reply": "2024-06-19T19:21:54.236817Z" + "iopub.execute_input": "2024-06-25T15:08:04.031274Z", + "iopub.status.busy": "2024-06-25T15:08:04.030954Z", + "iopub.status.idle": "2024-06-25T15:08:04.277500Z", + "shell.execute_reply": "2024-06-25T15:08:04.276887Z" } }, "outputs": [ @@ -981,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:54.239898Z", - "iopub.status.busy": "2024-06-19T19:21:54.239706Z", - "iopub.status.idle": "2024-06-19T19:21:54.320356Z", - "shell.execute_reply": "2024-06-19T19:21:54.319739Z" + "iopub.execute_input": "2024-06-25T15:08:04.280546Z", + "iopub.status.busy": "2024-06-25T15:08:04.280101Z", + "iopub.status.idle": "2024-06-25T15:08:04.364340Z", + "shell.execute_reply": "2024-06-25T15:08:04.363675Z" } }, "outputs": [], @@ -1005,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:21:54.323090Z", - "iopub.status.busy": "2024-06-19T19:21:54.322572Z", - "iopub.status.idle": "2024-06-19T19:22:04.687477Z", - "shell.execute_reply": "2024-06-19T19:22:04.686893Z" + "iopub.execute_input": "2024-06-25T15:08:04.366792Z", + "iopub.status.busy": "2024-06-25T15:08:04.366374Z", + "iopub.status.idle": "2024-06-25T15:08:14.914279Z", + "shell.execute_reply": "2024-06-25T15:08:14.913604Z" } }, "outputs": [ @@ -1045,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:04.689967Z", - "iopub.status.busy": "2024-06-19T19:22:04.689573Z", - "iopub.status.idle": "2024-06-19T19:22:06.934115Z", - "shell.execute_reply": "2024-06-19T19:22:06.933562Z" + "iopub.execute_input": "2024-06-25T15:08:14.916776Z", + "iopub.status.busy": "2024-06-25T15:08:14.916511Z", + "iopub.status.idle": "2024-06-25T15:08:17.293821Z", + "shell.execute_reply": "2024-06-25T15:08:17.293306Z" } }, "outputs": [ @@ -1079,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:06.936708Z", - "iopub.status.busy": "2024-06-19T19:22:06.936252Z", - "iopub.status.idle": "2024-06-19T19:22:07.138884Z", - "shell.execute_reply": "2024-06-19T19:22:07.138371Z" + "iopub.execute_input": "2024-06-25T15:08:17.296752Z", + "iopub.status.busy": "2024-06-25T15:08:17.296141Z", + "iopub.status.idle": "2024-06-25T15:08:17.508879Z", + "shell.execute_reply": "2024-06-25T15:08:17.508351Z" } }, "outputs": [], @@ -1096,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:07.141191Z", - "iopub.status.busy": "2024-06-19T19:22:07.141008Z", - "iopub.status.idle": "2024-06-19T19:22:07.144139Z", - "shell.execute_reply": "2024-06-19T19:22:07.143685Z" + "iopub.execute_input": "2024-06-25T15:08:17.511428Z", + "iopub.status.busy": "2024-06-25T15:08:17.511052Z", + "iopub.status.idle": "2024-06-25T15:08:17.514355Z", + "shell.execute_reply": "2024-06-25T15:08:17.513890Z" } }, "outputs": [], @@ -1121,10 +1129,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:07.146103Z", - "iopub.status.busy": "2024-06-19T19:22:07.145788Z", - "iopub.status.idle": "2024-06-19T19:22:07.153730Z", - "shell.execute_reply": "2024-06-19T19:22:07.153317Z" + "iopub.execute_input": "2024-06-25T15:08:17.516595Z", + "iopub.status.busy": "2024-06-25T15:08:17.516250Z", + "iopub.status.idle": "2024-06-25T15:08:17.525161Z", + "shell.execute_reply": "2024-06-25T15:08:17.524636Z" }, "nbsphinx": "hidden" }, @@ -1169,7 +1177,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "301fd8815bef49a3bc22dadd797c8328": { + "029ab5bdf8b94b57bc553b34f4933dae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10d41885d1794e74b48d2f5349e9c4a0", + "placeholder": "​", + "style": "IPY_MODEL_208a128034214ed29c17b113189b0786", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 321MB/s]" + } + }, + "10d41885d1794e74b48d2f5349e9c4a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1222,7 +1253,7 @@ "width": null } }, - "36f34a2fa98e421fbce75cf94d0f00a3": { + "1ec747a023f5460b9e03ca0529a36abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1306,25 @@ "width": null } }, - "4ef52584d74240ea9c356bd673cd88e9": { + "208a128034214ed29c17b113189b0786": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3371b9df5e604a5e9f36f07eedf21b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1290,15 +1339,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_301fd8815bef49a3bc22dadd797c8328", + "layout": "IPY_MODEL_1ec747a023f5460b9e03ca0529a36abd", "placeholder": "​", - "style": "IPY_MODEL_a61bb392daf6435985434d24e28023bd", + "style": "IPY_MODEL_3a260ba4de9b430daed701ad5f4221a7", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "4f798f621fd1463497fa70b6bbe93712": { + "3a260ba4de9b430daed701ad5f4221a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1316,7 +1365,49 @@ "text_color": null } }, - "5860d43662fe4e0c94deadd06df5a37c": { + "6812d796b1474a84a2fe7749359cf057": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a2a7e1b541584749aa693e1422171551": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c29375cc4b9541b3be4c914b39a169f7", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6812d796b1474a84a2fe7749359cf057", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "a31e8cb85d144a88b82782a73f756e42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1369,7 +1460,7 @@ "width": null } }, - "5a3224df4122414dbc965e4870dbbda1": { + "b21e9d68df194288ae90e0c8135c4ae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1384,99 +1475,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4ef52584d74240ea9c356bd673cd88e9", - "IPY_MODEL_a0e445a93efa475b9bbe14f70502c89c", - "IPY_MODEL_bbb7509c489f48e2b72aef01319c01ab" + "IPY_MODEL_3371b9df5e604a5e9f36f07eedf21b70", + "IPY_MODEL_a2a7e1b541584749aa693e1422171551", + "IPY_MODEL_029ab5bdf8b94b57bc553b34f4933dae" ], - "layout": "IPY_MODEL_36f34a2fa98e421fbce75cf94d0f00a3", + "layout": "IPY_MODEL_a31e8cb85d144a88b82782a73f756e42", "tabbable": null, "tooltip": null } }, - "6d96f96c2e2e4ad7bd81f250b1896acc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a0e445a93efa475b9bbe14f70502c89c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f2d744a291ba4b818d1bbb561fa9c9de", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d96f96c2e2e4ad7bd81f250b1896acc", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a61bb392daf6435985434d24e28023bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bbb7509c489f48e2b72aef01319c01ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5860d43662fe4e0c94deadd06df5a37c", - "placeholder": "​", - "style": "IPY_MODEL_4f798f621fd1463497fa70b6bbe93712", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 226MB/s]" - } - }, - "f2d744a291ba4b818d1bbb561fa9c9de": { + "c29375cc4b9541b3be4c914b39a169f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 8e0b24218..05b280ee8 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:11.368000Z", - "iopub.status.busy": "2024-06-19T19:22:11.367563Z", - "iopub.status.idle": "2024-06-19T19:22:12.556140Z", - "shell.execute_reply": "2024-06-19T19:22:12.555541Z" + "iopub.execute_input": "2024-06-25T15:08:21.910070Z", + "iopub.status.busy": "2024-06-25T15:08:21.909651Z", + "iopub.status.idle": "2024-06-25T15:08:23.187736Z", + "shell.execute_reply": "2024-06-25T15:08:23.187169Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.558871Z", - "iopub.status.busy": "2024-06-19T19:22:12.558417Z", - "iopub.status.idle": "2024-06-19T19:22:12.576339Z", - "shell.execute_reply": "2024-06-19T19:22:12.575860Z" + "iopub.execute_input": "2024-06-25T15:08:23.190350Z", + "iopub.status.busy": "2024-06-25T15:08:23.189889Z", + "iopub.status.idle": "2024-06-25T15:08:23.207895Z", + "shell.execute_reply": "2024-06-25T15:08:23.207262Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.578755Z", - "iopub.status.busy": "2024-06-19T19:22:12.578312Z", - "iopub.status.idle": "2024-06-19T19:22:12.581293Z", - "shell.execute_reply": "2024-06-19T19:22:12.580876Z" + "iopub.execute_input": "2024-06-25T15:08:23.210550Z", + "iopub.status.busy": "2024-06-25T15:08:23.210049Z", + "iopub.status.idle": "2024-06-25T15:08:23.213182Z", + "shell.execute_reply": "2024-06-25T15:08:23.212753Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.583418Z", - "iopub.status.busy": "2024-06-19T19:22:12.583095Z", - "iopub.status.idle": "2024-06-19T19:22:12.639379Z", - "shell.execute_reply": "2024-06-19T19:22:12.638871Z" + "iopub.execute_input": "2024-06-25T15:08:23.215212Z", + "iopub.status.busy": "2024-06-25T15:08:23.214881Z", + "iopub.status.idle": "2024-06-25T15:08:23.265186Z", + "shell.execute_reply": "2024-06-25T15:08:23.264656Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.641740Z", - "iopub.status.busy": "2024-06-19T19:22:12.641362Z", - "iopub.status.idle": "2024-06-19T19:22:12.827521Z", - "shell.execute_reply": "2024-06-19T19:22:12.826903Z" + "iopub.execute_input": "2024-06-25T15:08:23.267602Z", + "iopub.status.busy": "2024-06-25T15:08:23.267302Z", + "iopub.status.idle": "2024-06-25T15:08:23.451923Z", + "shell.execute_reply": "2024-06-25T15:08:23.451390Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:12.830369Z", - "iopub.status.busy": "2024-06-19T19:22:12.830016Z", - "iopub.status.idle": "2024-06-19T19:22:13.074224Z", - "shell.execute_reply": "2024-06-19T19:22:13.073596Z" + "iopub.execute_input": "2024-06-25T15:08:23.454459Z", + "iopub.status.busy": "2024-06-25T15:08:23.453993Z", + "iopub.status.idle": "2024-06-25T15:08:23.699181Z", + "shell.execute_reply": "2024-06-25T15:08:23.698584Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.076680Z", - "iopub.status.busy": "2024-06-19T19:22:13.076327Z", - "iopub.status.idle": "2024-06-19T19:22:13.080626Z", - "shell.execute_reply": "2024-06-19T19:22:13.080195Z" + "iopub.execute_input": "2024-06-25T15:08:23.701383Z", + "iopub.status.busy": "2024-06-25T15:08:23.701192Z", + "iopub.status.idle": "2024-06-25T15:08:23.705748Z", + "shell.execute_reply": "2024-06-25T15:08:23.705281Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.082759Z", - "iopub.status.busy": "2024-06-19T19:22:13.082433Z", - "iopub.status.idle": "2024-06-19T19:22:13.089315Z", - "shell.execute_reply": "2024-06-19T19:22:13.088864Z" + "iopub.execute_input": "2024-06-25T15:08:23.707589Z", + "iopub.status.busy": "2024-06-25T15:08:23.707408Z", + "iopub.status.idle": "2024-06-25T15:08:23.714463Z", + "shell.execute_reply": "2024-06-25T15:08:23.714035Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.091654Z", - "iopub.status.busy": "2024-06-19T19:22:13.091228Z", - "iopub.status.idle": "2024-06-19T19:22:13.094109Z", - "shell.execute_reply": "2024-06-19T19:22:13.093535Z" + "iopub.execute_input": "2024-06-25T15:08:23.716435Z", + "iopub.status.busy": "2024-06-25T15:08:23.716265Z", + "iopub.status.idle": "2024-06-25T15:08:23.718977Z", + "shell.execute_reply": "2024-06-25T15:08:23.718528Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:13.096306Z", - "iopub.status.busy": "2024-06-19T19:22:13.095966Z", - "iopub.status.idle": "2024-06-19T19:22:21.895748Z", - "shell.execute_reply": "2024-06-19T19:22:21.895130Z" + "iopub.execute_input": "2024-06-25T15:08:23.720735Z", + "iopub.status.busy": "2024-06-25T15:08:23.720567Z", + "iopub.status.idle": "2024-06-25T15:08:32.515041Z", + "shell.execute_reply": "2024-06-25T15:08:32.514475Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.899003Z", - "iopub.status.busy": "2024-06-19T19:22:21.898445Z", - "iopub.status.idle": "2024-06-19T19:22:21.906807Z", - "shell.execute_reply": "2024-06-19T19:22:21.906261Z" + "iopub.execute_input": "2024-06-25T15:08:32.517892Z", + "iopub.status.busy": "2024-06-25T15:08:32.517520Z", + "iopub.status.idle": "2024-06-25T15:08:32.524602Z", + "shell.execute_reply": "2024-06-25T15:08:32.524143Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.909145Z", - "iopub.status.busy": "2024-06-19T19:22:21.908763Z", - "iopub.status.idle": "2024-06-19T19:22:21.913043Z", - "shell.execute_reply": "2024-06-19T19:22:21.912526Z" + "iopub.execute_input": "2024-06-25T15:08:32.526466Z", + "iopub.status.busy": "2024-06-25T15:08:32.526292Z", + "iopub.status.idle": "2024-06-25T15:08:32.529994Z", + "shell.execute_reply": "2024-06-25T15:08:32.529547Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.915123Z", - "iopub.status.busy": "2024-06-19T19:22:21.914799Z", - "iopub.status.idle": "2024-06-19T19:22:21.917957Z", - "shell.execute_reply": "2024-06-19T19:22:21.917446Z" + "iopub.execute_input": "2024-06-25T15:08:32.531872Z", + "iopub.status.busy": "2024-06-25T15:08:32.531697Z", + "iopub.status.idle": "2024-06-25T15:08:32.534822Z", + "shell.execute_reply": "2024-06-25T15:08:32.534343Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.919978Z", - "iopub.status.busy": "2024-06-19T19:22:21.919659Z", - "iopub.status.idle": "2024-06-19T19:22:21.922593Z", - "shell.execute_reply": "2024-06-19T19:22:21.922161Z" + "iopub.execute_input": "2024-06-25T15:08:32.536822Z", + "iopub.status.busy": "2024-06-25T15:08:32.536509Z", + "iopub.status.idle": "2024-06-25T15:08:32.539371Z", + "shell.execute_reply": "2024-06-25T15:08:32.538939Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.924610Z", - "iopub.status.busy": "2024-06-19T19:22:21.924299Z", - "iopub.status.idle": "2024-06-19T19:22:21.932480Z", - "shell.execute_reply": "2024-06-19T19:22:21.931974Z" + "iopub.execute_input": "2024-06-25T15:08:32.541374Z", + "iopub.status.busy": "2024-06-25T15:08:32.541053Z", + "iopub.status.idle": "2024-06-25T15:08:32.549080Z", + "shell.execute_reply": "2024-06-25T15:08:32.548529Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.934561Z", - "iopub.status.busy": "2024-06-19T19:22:21.934233Z", - "iopub.status.idle": "2024-06-19T19:22:21.936737Z", - "shell.execute_reply": "2024-06-19T19:22:21.936319Z" + "iopub.execute_input": "2024-06-25T15:08:32.551190Z", + "iopub.status.busy": "2024-06-25T15:08:32.550875Z", + "iopub.status.idle": "2024-06-25T15:08:32.553349Z", + "shell.execute_reply": "2024-06-25T15:08:32.552920Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:21.938712Z", - "iopub.status.busy": "2024-06-19T19:22:21.938393Z", - "iopub.status.idle": "2024-06-19T19:22:22.058825Z", - "shell.execute_reply": "2024-06-19T19:22:22.058317Z" + "iopub.execute_input": "2024-06-25T15:08:32.555270Z", + "iopub.status.busy": "2024-06-25T15:08:32.555009Z", + "iopub.status.idle": "2024-06-25T15:08:32.675129Z", + "shell.execute_reply": "2024-06-25T15:08:32.674535Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.061120Z", - "iopub.status.busy": "2024-06-19T19:22:22.060820Z", - "iopub.status.idle": "2024-06-19T19:22:22.164669Z", - "shell.execute_reply": "2024-06-19T19:22:22.164078Z" + "iopub.execute_input": "2024-06-25T15:08:32.677505Z", + "iopub.status.busy": "2024-06-25T15:08:32.677100Z", + "iopub.status.idle": "2024-06-25T15:08:32.780745Z", + "shell.execute_reply": "2024-06-25T15:08:32.780144Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.167253Z", - "iopub.status.busy": "2024-06-19T19:22:22.166777Z", - "iopub.status.idle": "2024-06-19T19:22:22.650043Z", - "shell.execute_reply": "2024-06-19T19:22:22.649427Z" + "iopub.execute_input": "2024-06-25T15:08:32.783226Z", + "iopub.status.busy": "2024-06-25T15:08:32.782916Z", + "iopub.status.idle": "2024-06-25T15:08:33.275114Z", + "shell.execute_reply": "2024-06-25T15:08:33.274476Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.652862Z", - "iopub.status.busy": "2024-06-19T19:22:22.652413Z", - "iopub.status.idle": "2024-06-19T19:22:22.724418Z", - "shell.execute_reply": "2024-06-19T19:22:22.723819Z" + "iopub.execute_input": "2024-06-25T15:08:33.278038Z", + "iopub.status.busy": "2024-06-25T15:08:33.277650Z", + "iopub.status.idle": "2024-06-25T15:08:33.355571Z", + "shell.execute_reply": "2024-06-25T15:08:33.354907Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.726761Z", - "iopub.status.busy": "2024-06-19T19:22:22.726434Z", - "iopub.status.idle": "2024-06-19T19:22:22.735576Z", - "shell.execute_reply": "2024-06-19T19:22:22.735001Z" + "iopub.execute_input": "2024-06-25T15:08:33.357938Z", + "iopub.status.busy": "2024-06-25T15:08:33.357576Z", + "iopub.status.idle": "2024-06-25T15:08:33.366390Z", + "shell.execute_reply": "2024-06-25T15:08:33.365818Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.737867Z", - "iopub.status.busy": "2024-06-19T19:22:22.737447Z", - "iopub.status.idle": "2024-06-19T19:22:22.740374Z", - "shell.execute_reply": "2024-06-19T19:22:22.739827Z" + "iopub.execute_input": "2024-06-25T15:08:33.368557Z", + "iopub.status.busy": "2024-06-25T15:08:33.368144Z", + "iopub.status.idle": "2024-06-25T15:08:33.371002Z", + "shell.execute_reply": "2024-06-25T15:08:33.370446Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:22.742417Z", - "iopub.status.busy": "2024-06-19T19:22:22.742026Z", - "iopub.status.idle": "2024-06-19T19:22:28.181125Z", - "shell.execute_reply": "2024-06-19T19:22:28.180362Z" + "iopub.execute_input": "2024-06-25T15:08:33.372993Z", + "iopub.status.busy": "2024-06-25T15:08:33.372669Z", + "iopub.status.idle": "2024-06-25T15:08:38.777735Z", + "shell.execute_reply": "2024-06-25T15:08:38.777132Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:28.183472Z", - "iopub.status.busy": "2024-06-19T19:22:28.183097Z", - "iopub.status.idle": "2024-06-19T19:22:28.191490Z", - "shell.execute_reply": "2024-06-19T19:22:28.191032Z" + "iopub.execute_input": "2024-06-25T15:08:38.779921Z", + "iopub.status.busy": "2024-06-25T15:08:38.779740Z", + "iopub.status.idle": "2024-06-25T15:08:38.788666Z", + "shell.execute_reply": "2024-06-25T15:08:38.788200Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:28.193665Z", - "iopub.status.busy": "2024-06-19T19:22:28.193310Z", - "iopub.status.idle": "2024-06-19T19:22:28.264774Z", - "shell.execute_reply": "2024-06-19T19:22:28.264140Z" + "iopub.execute_input": "2024-06-25T15:08:38.790794Z", + "iopub.status.busy": "2024-06-25T15:08:38.790455Z", + "iopub.status.idle": "2024-06-25T15:08:38.856329Z", + "shell.execute_reply": "2024-06-25T15:08:38.855659Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 0d2bc44c4..2b99afba0 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -791,13 +791,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1187,7 +1187,7 @@

    Get label quality scores -{"state": {"09c08efda4c84ba290b22653eeef183f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "846406ba41b24bf8b49ecb4effd06fc3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1755dd7dbad34589b399759bdcb6b60e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09c08efda4c84ba290b22653eeef183f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_846406ba41b24bf8b49ecb4effd06fc3", "tabbable": null, "tooltip": null, "value": 30.0}}, "cf364e76d001438f834a15bcd3a99cba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2943331cf1c64d409dc3a1a88c414837": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1de1dc8ff57049119c3ff29f4991b422": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf364e76d001438f834a15bcd3a99cba", "placeholder": "\u200b", "style": "IPY_MODEL_2943331cf1c64d409dc3a1a88c414837", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "c156518ea58945bfa801ad800f83f0f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63e3bd05667042f1b341bd957c6db6fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b0a2cee76ca4294a5bad5da775cdef5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c156518ea58945bfa801ad800f83f0f7", "placeholder": "\u200b", "style": "IPY_MODEL_63e3bd05667042f1b341bd957c6db6fd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007798.84it/s]"}}, "9c0077943def4c6d9d05da501dde521b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f16fbb37d5f64b6089cc7bad6951549a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1de1dc8ff57049119c3ff29f4991b422", "IPY_MODEL_1755dd7dbad34589b399759bdcb6b60e", "IPY_MODEL_4b0a2cee76ca4294a5bad5da775cdef5"], "layout": "IPY_MODEL_9c0077943def4c6d9d05da501dde521b", "tabbable": null, "tooltip": null}}, "70dd909f51f04ee096eb01aa47ed27ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78cbc7756ec041fe8a95963b53dd6e5c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "86b718251a394e2694338a7c7c8113e0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70dd909f51f04ee096eb01aa47ed27ce", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_78cbc7756ec041fe8a95963b53dd6e5c", "tabbable": null, "tooltip": null, "value": 30.0}}, "aa78f9667dfb49df92d53e59bdb75efa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6114d1aa946446b7a2c503fefe3dc6ff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a119f62acd724a63aa2e0bed9921ad55": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa78f9667dfb49df92d53e59bdb75efa", "placeholder": "\u200b", "style": "IPY_MODEL_6114d1aa946446b7a2c503fefe3dc6ff", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "5767b167ba0442e18891e52453b65cf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d6d486fefbc4f3086d0a63d860feb84": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe1aa018d6ff48a6843b31a722ad02b7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5767b167ba0442e18891e52453b65cf8", "placeholder": "\u200b", "style": "IPY_MODEL_3d6d486fefbc4f3086d0a63d860feb84", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.31it/s]"}}, "9acc5d459a4841dcae2518f36ef89691": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "adc0e1d5f5bb4c5c98db5ffa8c144114": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a119f62acd724a63aa2e0bed9921ad55", "IPY_MODEL_86b718251a394e2694338a7c7c8113e0", "IPY_MODEL_fe1aa018d6ff48a6843b31a722ad02b7"], "layout": "IPY_MODEL_9acc5d459a4841dcae2518f36ef89691", "tabbable": null, "tooltip": null}}, "a8b5a15cd7784d1aa229ce7c012ca428": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "052d426b4fc5417a88ce7e6bb18734e5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f34a0ccaa1c494fb8c53601f18aba30": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8b5a15cd7784d1aa229ce7c012ca428", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_052d426b4fc5417a88ce7e6bb18734e5", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "a072a575aacb4e1a83395772d21a5a11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60226dc1699348e09785f8a4bfe8bd48": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5a4dc61ba504655931659e0a983ef18": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a072a575aacb4e1a83395772d21a5a11", "placeholder": "\u200b", "style": "IPY_MODEL_60226dc1699348e09785f8a4bfe8bd48", "tabbable": null, "tooltip": null, "value": "100%"}}, "4ee37ef8c1364d839de4df0a67143eb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ab5166222ef4a749fe3dce28a18f1eb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a36303d4eee74c60bf5eb3a0cdf8cf91": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ee37ef8c1364d839de4df0a67143eb7", "placeholder": "\u200b", "style": "IPY_MODEL_0ab5166222ef4a749fe3dce28a18f1eb", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:33<00:00,\u2007150079.58it/s]"}}, "83ae7a0dc8a64d24afb0e13ea521814e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0d307b2a1e54d44a17d6b06d1f03193": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5a4dc61ba504655931659e0a983ef18", "IPY_MODEL_5f34a0ccaa1c494fb8c53601f18aba30", "IPY_MODEL_a36303d4eee74c60bf5eb3a0cdf8cf91"], "layout": "IPY_MODEL_83ae7a0dc8a64d24afb0e13ea521814e", "tabbable": null, "tooltip": null}}, "fa6eba9239b84d0bb1efdf529449496d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "145d62f7e2074375bd4e398fd17d0d93": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eb32f8b2cd4a46728df33c029b14f406": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa6eba9239b84d0bb1efdf529449496d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_145d62f7e2074375bd4e398fd17d0d93", "tabbable": null, "tooltip": null, "value": 30.0}}, "d7093cf4af304c6994183570f3989c16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "465367c77389437e94396bcd60dbeea6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "38ccb42504874b6d9ecfe82f8e9fbebe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7093cf4af304c6994183570f3989c16", "placeholder": "\u200b", "style": "IPY_MODEL_465367c77389437e94396bcd60dbeea6", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "82256646c2d145079b76365f8e38a8f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56d4ffa1a94e436b92a58f713e59e906": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbfdd438fbb84630b07fbae818daa140": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82256646c2d145079b76365f8e38a8f6", "placeholder": "\u200b", "style": "IPY_MODEL_56d4ffa1a94e436b92a58f713e59e906", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.40it/s]"}}, "d822c9a2798c4d87b95b3bb58b9ea163": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e791a5b271354694ba0d9bdd80aeca08": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_38ccb42504874b6d9ecfe82f8e9fbebe", "IPY_MODEL_eb32f8b2cd4a46728df33c029b14f406", "IPY_MODEL_bbfdd438fbb84630b07fbae818daa140"], "layout": "IPY_MODEL_d822c9a2798c4d87b95b3bb58b9ea163", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"10ac21b057e64893a7cddb966154ec2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f69fe8585a54d78974826e2c0407418": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "683c7149ec9e41869b84f3f757c5a096": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_10ac21b057e64893a7cddb966154ec2b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6f69fe8585a54d78974826e2c0407418", "tabbable": null, "tooltip": null, "value": 30.0}}, "1a2f589b0ea24682b1982b1b835a59fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9644bbe10aac4ed883f7b8d6caffea64": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2a622e8f6bcd47368c373db5fbe3d892": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a2f589b0ea24682b1982b1b835a59fb", "placeholder": "\u200b", "style": "IPY_MODEL_9644bbe10aac4ed883f7b8d6caffea64", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "0ada31bf68874fa8893724d0b4333465": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d556cba9162243cfa28461ee6dff2dcd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "60a0ee181a7b43bebe253d9dd7f438b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ada31bf68874fa8893724d0b4333465", "placeholder": "\u200b", "style": "IPY_MODEL_d556cba9162243cfa28461ee6dff2dcd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007774.90it/s]"}}, "7b90bc1ada25432a84b3fd4cabce0d0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8bb0abd0b0e4ce2a3b837494e657378": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2a622e8f6bcd47368c373db5fbe3d892", "IPY_MODEL_683c7149ec9e41869b84f3f757c5a096", "IPY_MODEL_60a0ee181a7b43bebe253d9dd7f438b3"], "layout": "IPY_MODEL_7b90bc1ada25432a84b3fd4cabce0d0c", "tabbable": null, "tooltip": null}}, "bbbb7e956ced43899f4a680b3688d28b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46eaa77b1598437f9b00f5784aec8ad7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c44ae0aab8714109bd68f7321b0c1b59": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bbbb7e956ced43899f4a680b3688d28b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_46eaa77b1598437f9b00f5784aec8ad7", "tabbable": null, "tooltip": null, "value": 30.0}}, "0fc7ec521ea8413688415df09241e879": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "81025bda46ff40bca0ebe30959a20d46": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9928ad60b1d14f7db1723674e10a0bce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0fc7ec521ea8413688415df09241e879", "placeholder": "\u200b", "style": "IPY_MODEL_81025bda46ff40bca0ebe30959a20d46", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "43f8bb56272043bfb2bcdc97d409c609": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9c852407244454e9dd8de4f3e45b1d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f138a2e6545447c8a0326d4663671b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_43f8bb56272043bfb2bcdc97d409c609", "placeholder": "\u200b", "style": "IPY_MODEL_d9c852407244454e9dd8de4f3e45b1d7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.34it/s]"}}, "3e51dabac4984bce8db6887b151c33f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abe1f21afc4d435289106661aee2ee3b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9928ad60b1d14f7db1723674e10a0bce", "IPY_MODEL_c44ae0aab8714109bd68f7321b0c1b59", "IPY_MODEL_9f138a2e6545447c8a0326d4663671b6"], "layout": "IPY_MODEL_3e51dabac4984bce8db6887b151c33f0", "tabbable": null, "tooltip": null}}, "6487d02cebec4fe2a82aff5ad6b218dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ab4abbe49944d9ba85287aae5c3a466": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5122e30fd4b446e085c76dc8be05b698": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6487d02cebec4fe2a82aff5ad6b218dd", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ab4abbe49944d9ba85287aae5c3a466", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "9bcf0fb6aa354d8a9f53abd6741930c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f5fa5eec6bf461db3549a0bf677d275": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb5fb1370d6741df9452912434e16278": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bcf0fb6aa354d8a9f53abd6741930c3", "placeholder": "\u200b", "style": "IPY_MODEL_3f5fa5eec6bf461db3549a0bf677d275", "tabbable": null, "tooltip": null, "value": "100%"}}, "0867140c0c81420680d96facad8bea21": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4efcf1bff9a4c7fb8b7e9c7632f1fa7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07c5a37f381d4685935d06a0353f8a63": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0867140c0c81420680d96facad8bea21", "placeholder": "\u200b", "style": "IPY_MODEL_d4efcf1bff9a4c7fb8b7e9c7632f1fa7", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151432.57it/s]"}}, "cea0c91b0c4d4228b4303431a003d4fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab225329c1d94699a17a957f78ab4f31": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bb5fb1370d6741df9452912434e16278", "IPY_MODEL_5122e30fd4b446e085c76dc8be05b698", "IPY_MODEL_07c5a37f381d4685935d06a0353f8a63"], "layout": "IPY_MODEL_cea0c91b0c4d4228b4303431a003d4fc", "tabbable": null, "tooltip": null}}, "b76916644feb48af8029013a8632fe49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1718fa767d7547dc96dc6f938c02ef59": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bff9376c76054d9b95eef2da0815be6f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b76916644feb48af8029013a8632fe49", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1718fa767d7547dc96dc6f938c02ef59", "tabbable": null, "tooltip": null, "value": 30.0}}, "e490094404384e069419afa8636b15b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8f4528787a3401c8ea684eb606bd17b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6cee1f011ef402e8a61f49c9c4d4d1f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e490094404384e069419afa8636b15b4", "placeholder": "\u200b", "style": "IPY_MODEL_e8f4528787a3401c8ea684eb606bd17b", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "d31eb53b229b4432a2e2401ece47345a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28c3895a3ec74ddc9b2eaea192f782ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b0671990bcec446a97c3d1191433f6f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d31eb53b229b4432a2e2401ece47345a", "placeholder": "\u200b", "style": "IPY_MODEL_28c3895a3ec74ddc9b2eaea192f782ea", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200719.31it/s]"}}, "3523dbdd79454982986a0162392ef5db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e74d548cc8049558040f706a96a6ec5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6cee1f011ef402e8a61f49c9c4d4d1f", "IPY_MODEL_bff9376c76054d9b95eef2da0815be6f", "IPY_MODEL_b0671990bcec446a97c3d1191433f6f3"], "layout": "IPY_MODEL_3523dbdd79454982986a0162392ef5db", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 93500f81b..d9260f9a6 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:31.222727Z", - "iopub.status.busy": "2024-06-19T19:22:31.222541Z", - "iopub.status.idle": "2024-06-19T19:22:32.657497Z", - "shell.execute_reply": "2024-06-19T19:22:32.656841Z" + "iopub.execute_input": "2024-06-25T15:08:42.880799Z", + "iopub.status.busy": "2024-06-25T15:08:42.880586Z", + "iopub.status.idle": "2024-06-25T15:08:44.512863Z", + "shell.execute_reply": "2024-06-25T15:08:44.512159Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:22:32.660212Z", - "iopub.status.busy": "2024-06-19T19:22:32.659832Z", - "iopub.status.idle": "2024-06-19T19:23:28.505248Z", - "shell.execute_reply": "2024-06-19T19:23:28.504612Z" + "iopub.execute_input": "2024-06-25T15:08:44.515546Z", + "iopub.status.busy": "2024-06-25T15:08:44.515142Z", + "iopub.status.idle": "2024-06-25T15:09:30.026971Z", + "shell.execute_reply": "2024-06-25T15:09:30.026285Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:28.507912Z", - "iopub.status.busy": "2024-06-19T19:23:28.507529Z", - "iopub.status.idle": "2024-06-19T19:23:29.657502Z", - "shell.execute_reply": "2024-06-19T19:23:29.656999Z" + "iopub.execute_input": "2024-06-25T15:09:30.030165Z", + "iopub.status.busy": "2024-06-25T15:09:30.029717Z", + "iopub.status.idle": "2024-06-25T15:09:31.216800Z", + "shell.execute_reply": "2024-06-25T15:09:31.216232Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.659836Z", - "iopub.status.busy": "2024-06-19T19:23:29.659557Z", - "iopub.status.idle": "2024-06-19T19:23:29.662860Z", - "shell.execute_reply": "2024-06-19T19:23:29.662401Z" + "iopub.execute_input": "2024-06-25T15:09:31.219451Z", + "iopub.status.busy": "2024-06-25T15:09:31.218947Z", + "iopub.status.idle": "2024-06-25T15:09:31.222257Z", + "shell.execute_reply": "2024-06-25T15:09:31.221814Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.664918Z", - "iopub.status.busy": "2024-06-19T19:23:29.664596Z", - "iopub.status.idle": "2024-06-19T19:23:29.668370Z", - "shell.execute_reply": "2024-06-19T19:23:29.667881Z" + "iopub.execute_input": "2024-06-25T15:09:31.224354Z", + "iopub.status.busy": "2024-06-25T15:09:31.224015Z", + "iopub.status.idle": "2024-06-25T15:09:31.227897Z", + "shell.execute_reply": "2024-06-25T15:09:31.227400Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.670605Z", - "iopub.status.busy": "2024-06-19T19:23:29.670205Z", - "iopub.status.idle": "2024-06-19T19:23:29.673912Z", - "shell.execute_reply": "2024-06-19T19:23:29.673443Z" + "iopub.execute_input": "2024-06-25T15:09:31.230054Z", + "iopub.status.busy": "2024-06-25T15:09:31.229723Z", + "iopub.status.idle": "2024-06-25T15:09:31.233461Z", + "shell.execute_reply": "2024-06-25T15:09:31.232999Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.675914Z", - "iopub.status.busy": "2024-06-19T19:23:29.675587Z", - "iopub.status.idle": "2024-06-19T19:23:29.678333Z", - "shell.execute_reply": "2024-06-19T19:23:29.677897Z" + "iopub.execute_input": "2024-06-25T15:09:31.235398Z", + "iopub.status.busy": "2024-06-25T15:09:31.235075Z", + "iopub.status.idle": "2024-06-25T15:09:31.237798Z", + "shell.execute_reply": "2024-06-25T15:09:31.237382Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:23:29.680372Z", - "iopub.status.busy": "2024-06-19T19:23:29.680015Z", - "iopub.status.idle": "2024-06-19T19:24:04.370495Z", - "shell.execute_reply": "2024-06-19T19:24:04.369871Z" + "iopub.execute_input": "2024-06-25T15:09:31.239942Z", + "iopub.status.busy": "2024-06-25T15:09:31.239523Z", + "iopub.status.idle": "2024-06-25T15:10:05.521047Z", + "shell.execute_reply": "2024-06-25T15:10:05.520436Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f16fbb37d5f64b6089cc7bad6951549a", + "model_id": "d8bb0abd0b0e4ce2a3b837494e657378", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "adc0e1d5f5bb4c5c98db5ffa8c144114", + "model_id": "abe1f21afc4d435289106661aee2ee3b", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:04.373320Z", - "iopub.status.busy": "2024-06-19T19:24:04.372917Z", - "iopub.status.idle": "2024-06-19T19:24:05.053326Z", - "shell.execute_reply": "2024-06-19T19:24:05.052777Z" + "iopub.execute_input": "2024-06-25T15:10:05.524098Z", + "iopub.status.busy": "2024-06-25T15:10:05.523624Z", + "iopub.status.idle": "2024-06-25T15:10:06.216385Z", + "shell.execute_reply": "2024-06-25T15:10:06.215884Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:05.055584Z", - "iopub.status.busy": "2024-06-19T19:24:05.055277Z", - "iopub.status.idle": "2024-06-19T19:24:07.843866Z", - "shell.execute_reply": "2024-06-19T19:24:07.843293Z" + "iopub.execute_input": "2024-06-25T15:10:06.218780Z", + "iopub.status.busy": "2024-06-25T15:10:06.218307Z", + "iopub.status.idle": "2024-06-25T15:10:09.074914Z", + "shell.execute_reply": "2024-06-25T15:10:09.074351Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:07.846114Z", - "iopub.status.busy": "2024-06-19T19:24:07.845756Z", - "iopub.status.idle": "2024-06-19T19:24:41.329407Z", - "shell.execute_reply": "2024-06-19T19:24:41.328911Z" + "iopub.execute_input": "2024-06-25T15:10:09.077257Z", + "iopub.status.busy": "2024-06-25T15:10:09.076910Z", + "iopub.status.idle": "2024-06-25T15:10:42.339710Z", + "shell.execute_reply": "2024-06-25T15:10:42.339079Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0d307b2a1e54d44a17d6b06d1f03193", + "model_id": "ab225329c1d94699a17a957f78ab4f31", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:41.331678Z", - "iopub.status.busy": "2024-06-19T19:24:41.331379Z", - "iopub.status.idle": "2024-06-19T19:24:55.728948Z", - "shell.execute_reply": "2024-06-19T19:24:55.728375Z" + "iopub.execute_input": "2024-06-25T15:10:42.342108Z", + "iopub.status.busy": "2024-06-25T15:10:42.341723Z", + "iopub.status.idle": "2024-06-25T15:10:57.343819Z", + "shell.execute_reply": "2024-06-25T15:10:57.343149Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:55.731616Z", - "iopub.status.busy": "2024-06-19T19:24:55.731092Z", - "iopub.status.idle": "2024-06-19T19:24:59.507529Z", - "shell.execute_reply": "2024-06-19T19:24:59.506988Z" + "iopub.execute_input": "2024-06-25T15:10:57.346478Z", + "iopub.status.busy": "2024-06-25T15:10:57.346223Z", + "iopub.status.idle": "2024-06-25T15:11:01.208354Z", + "shell.execute_reply": "2024-06-25T15:11:01.207791Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:24:59.509865Z", - "iopub.status.busy": "2024-06-19T19:24:59.509459Z", - "iopub.status.idle": "2024-06-19T19:25:00.983754Z", - "shell.execute_reply": "2024-06-19T19:25:00.983189Z" + "iopub.execute_input": "2024-06-25T15:11:01.210581Z", + "iopub.status.busy": "2024-06-25T15:11:01.210395Z", + "iopub.status.idle": "2024-06-25T15:11:02.777349Z", + "shell.execute_reply": "2024-06-25T15:11:02.776715Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e791a5b271354694ba0d9bdd80aeca08", + "model_id": "4e74d548cc8049558040f706a96a6ec5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:00.986310Z", - "iopub.status.busy": "2024-06-19T19:25:00.986108Z", - "iopub.status.idle": "2024-06-19T19:25:01.016127Z", - "shell.execute_reply": "2024-06-19T19:25:01.015517Z" + "iopub.execute_input": "2024-06-25T15:11:02.779757Z", + "iopub.status.busy": "2024-06-25T15:11:02.779295Z", + "iopub.status.idle": "2024-06-25T15:11:02.812842Z", + "shell.execute_reply": "2024-06-25T15:11:02.812316Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:01.018576Z", - "iopub.status.busy": "2024-06-19T19:25:01.018242Z", - "iopub.status.idle": "2024-06-19T19:25:07.073409Z", - "shell.execute_reply": "2024-06-19T19:25:07.072865Z" + "iopub.execute_input": "2024-06-25T15:11:02.815211Z", + "iopub.status.busy": "2024-06-25T15:11:02.814997Z", + "iopub.status.idle": "2024-06-25T15:11:08.832516Z", + "shell.execute_reply": "2024-06-25T15:11:08.831917Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:07.075441Z", - "iopub.status.busy": "2024-06-19T19:25:07.075262Z", - "iopub.status.idle": "2024-06-19T19:25:07.131942Z", - "shell.execute_reply": "2024-06-19T19:25:07.131406Z" + "iopub.execute_input": "2024-06-25T15:11:08.834659Z", + "iopub.status.busy": "2024-06-25T15:11:08.834477Z", + "iopub.status.idle": "2024-06-25T15:11:08.890881Z", + "shell.execute_reply": "2024-06-25T15:11:08.890377Z" }, "nbsphinx": "hidden" }, @@ -1038,23 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "052d426b4fc5417a88ce7e6bb18734e5": { + "07c5a37f381d4685935d06a0353f8a63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0867140c0c81420680d96facad8bea21", + "placeholder": "​", + "style": "IPY_MODEL_d4efcf1bff9a4c7fb8b7e9c7632f1fa7", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 151432.57it/s]" } }, - "09c08efda4c84ba290b22653eeef183f": { + "0867140c0c81420680d96facad8bea21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1107,190 +1114,113 @@ "width": null } }, - "0ab5166222ef4a749fe3dce28a18f1eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "145d62f7e2074375bd4e398fd17d0d93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1755dd7dbad34589b399759bdcb6b60e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_09c08efda4c84ba290b22653eeef183f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_846406ba41b24bf8b49ecb4effd06fc3", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "1de1dc8ff57049119c3ff29f4991b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf364e76d001438f834a15bcd3a99cba", - "placeholder": "​", - "style": "IPY_MODEL_2943331cf1c64d409dc3a1a88c414837", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "2943331cf1c64d409dc3a1a88c414837": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "38ccb42504874b6d9ecfe82f8e9fbebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d7093cf4af304c6994183570f3989c16", - "placeholder": "​", - "style": "IPY_MODEL_465367c77389437e94396bcd60dbeea6", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "3d6d486fefbc4f3086d0a63d860feb84": { - "model_module": "@jupyter-widgets/controls", + "0ada31bf68874fa8893724d0b4333465": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "465367c77389437e94396bcd60dbeea6": { - "model_module": "@jupyter-widgets/controls", + "0fc7ec521ea8413688415df09241e879": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4b0a2cee76ca4294a5bad5da775cdef5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c156518ea58945bfa801ad800f83f0f7", - "placeholder": "​", - "style": "IPY_MODEL_63e3bd05667042f1b341bd957c6db6fd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 798.84it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4ee37ef8c1364d839de4df0a67143eb7": { + "10ac21b057e64893a7cddb966154ec2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1343,25 +1273,23 @@ "width": null } }, - "56d4ffa1a94e436b92a58f713e59e906": { + "1718fa767d7547dc96dc6f938c02ef59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5767b167ba0442e18891e52453b65cf8": { + "1a2f589b0ea24682b1982b1b835a59fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,33 +1342,7 @@ "width": null } }, - "5f34a0ccaa1c494fb8c53601f18aba30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8b5a15cd7784d1aa229ce7c012ca428", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_052d426b4fc5417a88ce7e6bb18734e5", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "60226dc1699348e09785f8a4bfe8bd48": { + "28c3895a3ec74ddc9b2eaea192f782ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1458,43 +1360,30 @@ "text_color": null } }, - "6114d1aa946446b7a2c503fefe3dc6ff": { + "2a622e8f6bcd47368c373db5fbe3d892": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63e3bd05667042f1b341bd957c6db6fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1a2f589b0ea24682b1982b1b835a59fb", + "placeholder": "​", + "style": "IPY_MODEL_9644bbe10aac4ed883f7b8d6caffea64", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "70dd909f51f04ee096eb01aa47ed27ce": { + "3523dbdd79454982986a0162392ef5db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,23 +1436,7 @@ "width": null } }, - "78cbc7756ec041fe8a95963b53dd6e5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82256646c2d145079b76365f8e38a8f6": { + "3e51dabac4984bce8db6887b151c33f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1616,7 +1489,25 @@ "width": null } }, - "83ae7a0dc8a64d24afb0e13ea521814e": { + "3f5fa5eec6bf461db3549a0bf677d275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "43f8bb56272043bfb2bcdc97d409c609": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1669,7 +1560,7 @@ "width": null } }, - "846406ba41b24bf8b49ecb4effd06fc3": { + "46eaa77b1598437f9b00f5784aec8ad7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1685,7 +1576,31 @@ "description_width": "" } }, - "86b718251a394e2694338a7c7c8113e0": { + "4e74d548cc8049558040f706a96a6ec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e6cee1f011ef402e8a61f49c9c4d4d1f", + "IPY_MODEL_bff9376c76054d9b95eef2da0815be6f", + "IPY_MODEL_b0671990bcec446a97c3d1191433f6f3" + ], + "layout": "IPY_MODEL_3523dbdd79454982986a0162392ef5db", + "tabbable": null, + "tooltip": null + } + }, + "5122e30fd4b446e085c76dc8be05b698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1701,17 +1616,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70dd909f51f04ee096eb01aa47ed27ce", - "max": 30.0, + "layout": "IPY_MODEL_6487d02cebec4fe2a82aff5ad6b218dd", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_78cbc7756ec041fe8a95963b53dd6e5c", + "style": "IPY_MODEL_8ab4abbe49944d9ba85287aae5c3a466", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 + } + }, + "60a0ee181a7b43bebe253d9dd7f438b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ada31bf68874fa8893724d0b4333465", + "placeholder": "​", + "style": "IPY_MODEL_d556cba9162243cfa28461ee6dff2dcd", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 774.90it/s]" } }, - "9acc5d459a4841dcae2518f36ef89691": { + "6487d02cebec4fe2a82aff5ad6b218dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,60 +1702,49 @@ "width": null } }, - "9c0077943def4c6d9d05da501dde521b": { - "model_module": "@jupyter-widgets/base", + "683c7149ec9e41869b84f3f757c5a096": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10ac21b057e64893a7cddb966154ec2b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f69fe8585a54d78974826e2c0407418", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6f69fe8585a54d78974826e2c0407418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a072a575aacb4e1a83395772d21a5a11": { + "7b90bc1ada25432a84b3fd4cabce0d0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1870,30 +1797,59 @@ "width": null } }, - "a119f62acd724a63aa2e0bed9921ad55": { + "81025bda46ff40bca0ebe30959a20d46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ab4abbe49944d9ba85287aae5c3a466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9644bbe10aac4ed883f7b8d6caffea64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa78f9667dfb49df92d53e59bdb75efa", - "placeholder": "​", - "style": "IPY_MODEL_6114d1aa946446b7a2c503fefe3dc6ff", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a36303d4eee74c60bf5eb3a0cdf8cf91": { + "9928ad60b1d14f7db1723674e10a0bce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1908,15 +1864,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ee37ef8c1364d839de4df0a67143eb7", + "layout": "IPY_MODEL_0fc7ec521ea8413688415df09241e879", "placeholder": "​", - "style": "IPY_MODEL_0ab5166222ef4a749fe3dce28a18f1eb", + "style": "IPY_MODEL_81025bda46ff40bca0ebe30959a20d46", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:33<00:00, 150079.58it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "a8b5a15cd7784d1aa229ce7c012ca428": { + "9bcf0fb6aa354d8a9f53abd6741930c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,60 +1925,54 @@ "width": null } }, - "aa78f9667dfb49df92d53e59bdb75efa": { - "model_module": "@jupyter-widgets/base", + "9f138a2e6545447c8a0326d4663671b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_43f8bb56272043bfb2bcdc97d409c609", + "placeholder": "​", + "style": "IPY_MODEL_d9c852407244454e9dd8de4f3e45b1d7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.34it/s]" + } + }, + "ab225329c1d94699a17a957f78ab4f31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb5fb1370d6741df9452912434e16278", + "IPY_MODEL_5122e30fd4b446e085c76dc8be05b698", + "IPY_MODEL_07c5a37f381d4685935d06a0353f8a63" + ], + "layout": "IPY_MODEL_cea0c91b0c4d4228b4303431a003d4fc", + "tabbable": null, + "tooltip": null } }, - "adc0e1d5f5bb4c5c98db5ffa8c144114": { + "abe1f21afc4d435289106661aee2ee3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2037,16 +1987,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a119f62acd724a63aa2e0bed9921ad55", - "IPY_MODEL_86b718251a394e2694338a7c7c8113e0", - "IPY_MODEL_fe1aa018d6ff48a6843b31a722ad02b7" + "IPY_MODEL_9928ad60b1d14f7db1723674e10a0bce", + "IPY_MODEL_c44ae0aab8714109bd68f7321b0c1b59", + "IPY_MODEL_9f138a2e6545447c8a0326d4663671b6" ], - "layout": "IPY_MODEL_9acc5d459a4841dcae2518f36ef89691", + "layout": "IPY_MODEL_3e51dabac4984bce8db6887b151c33f0", "tabbable": null, "tooltip": null } }, - "bbfdd438fbb84630b07fbae818daa140": { + "b0671990bcec446a97c3d1191433f6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2061,15 +2011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82256646c2d145079b76365f8e38a8f6", + "layout": "IPY_MODEL_d31eb53b229b4432a2e2401ece47345a", "placeholder": "​", - "style": "IPY_MODEL_56d4ffa1a94e436b92a58f713e59e906", + "style": "IPY_MODEL_28c3895a3ec74ddc9b2eaea192f782ea", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.40it/s]" + "value": " 30/30 [00:01<00:00, 19.31it/s]" } }, - "c156518ea58945bfa801ad800f83f0f7": { + "b76916644feb48af8029013a8632fe49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,7 +2072,30 @@ "width": null } }, - "cf364e76d001438f834a15bcd3a99cba": { + "bb5fb1370d6741df9452912434e16278": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bcf0fb6aa354d8a9f53abd6741930c3", + "placeholder": "​", + "style": "IPY_MODEL_3f5fa5eec6bf461db3549a0bf677d275", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bbbb7e956ced43899f4a680b3688d28b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2175,7 +2148,59 @@ "width": null } }, - "d7093cf4af304c6994183570f3989c16": { + "bff9376c76054d9b95eef2da0815be6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b76916644feb48af8029013a8632fe49", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1718fa767d7547dc96dc6f938c02ef59", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c44ae0aab8714109bd68f7321b0c1b59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bbbb7e956ced43899f4a680b3688d28b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_46eaa77b1598437f9b00f5784aec8ad7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "cea0c91b0c4d4228b4303431a003d4fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2228,7 +2253,7 @@ "width": null } }, - "d822c9a2798c4d87b95b3bb58b9ea163": { + "d31eb53b229b4432a2e2401ece47345a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,81 +2306,43 @@ "width": null } }, - "e0d307b2a1e54d44a17d6b06d1f03193": { + "d4efcf1bff9a4c7fb8b7e9c7632f1fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f5a4dc61ba504655931659e0a983ef18", - "IPY_MODEL_5f34a0ccaa1c494fb8c53601f18aba30", - "IPY_MODEL_a36303d4eee74c60bf5eb3a0cdf8cf91" - ], - "layout": "IPY_MODEL_83ae7a0dc8a64d24afb0e13ea521814e", - "tabbable": null, - "tooltip": null - } - }, - "e791a5b271354694ba0d9bdd80aeca08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_38ccb42504874b6d9ecfe82f8e9fbebe", - "IPY_MODEL_eb32f8b2cd4a46728df33c029b14f406", - "IPY_MODEL_bbfdd438fbb84630b07fbae818daa140" - ], - "layout": "IPY_MODEL_d822c9a2798c4d87b95b3bb58b9ea163", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "eb32f8b2cd4a46728df33c029b14f406": { + "d556cba9162243cfa28461ee6dff2dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa6eba9239b84d0bb1efdf529449496d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_145d62f7e2074375bd4e398fd17d0d93", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f16fbb37d5f64b6089cc7bad6951549a": { + "d8bb0abd0b0e4ce2a3b837494e657378": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2370,39 +2357,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1de1dc8ff57049119c3ff29f4991b422", - "IPY_MODEL_1755dd7dbad34589b399759bdcb6b60e", - "IPY_MODEL_4b0a2cee76ca4294a5bad5da775cdef5" + "IPY_MODEL_2a622e8f6bcd47368c373db5fbe3d892", + "IPY_MODEL_683c7149ec9e41869b84f3f757c5a096", + "IPY_MODEL_60a0ee181a7b43bebe253d9dd7f438b3" ], - "layout": "IPY_MODEL_9c0077943def4c6d9d05da501dde521b", + "layout": "IPY_MODEL_7b90bc1ada25432a84b3fd4cabce0d0c", "tabbable": null, "tooltip": null } }, - "f5a4dc61ba504655931659e0a983ef18": { + "d9c852407244454e9dd8de4f3e45b1d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a072a575aacb4e1a83395772d21a5a11", - "placeholder": "​", - "style": "IPY_MODEL_60226dc1699348e09785f8a4bfe8bd48", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa6eba9239b84d0bb1efdf529449496d": { + "e490094404384e069419afa8636b15b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2437,7 @@ "width": null } }, - "fe1aa018d6ff48a6843b31a722ad02b7": { + "e6cee1f011ef402e8a61f49c9c4d4d1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2470,12 +2452,30 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5767b167ba0442e18891e52453b65cf8", + "layout": "IPY_MODEL_e490094404384e069419afa8636b15b4", "placeholder": "​", - "style": "IPY_MODEL_3d6d486fefbc4f3086d0a63d860feb84", + "style": "IPY_MODEL_e8f4528787a3401c8ea684eb606bd17b", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.31it/s]" + "value": "images processed using softmin: 100%" + } + }, + "e8f4528787a3401c8ea684eb606bd17b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 3c394754f..c53b99e42 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -701,16 +701,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 2d42f5e88..f016ba70f 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:09.578962Z", - "iopub.status.busy": "2024-06-19T19:25:09.578560Z", - "iopub.status.idle": "2024-06-19T19:25:10.928643Z", - "shell.execute_reply": "2024-06-19T19:25:10.928022Z" + "iopub.execute_input": "2024-06-25T15:11:11.232355Z", + "iopub.status.busy": "2024-06-25T15:11:11.231865Z", + "iopub.status.idle": "2024-06-25T15:11:12.478175Z", + "shell.execute_reply": "2024-06-25T15:11:12.477547Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-19 19:25:09-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-25 15:11:11-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.99, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... " + "169.150.236.97, 2400:52e0:1a00::845:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, { @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.97MB/s in 0.2s \r\n", "\r\n", - "2024-06-19 19:25:10 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-25 15:11:11 (4.97 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-19 19:25:10-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.206.91, 52.217.206.81, 52.216.77.4, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.206.91|:443... connected.\r\n", + "--2024-06-25 15:11:12-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.184.163, 3.5.21.123, 52.217.91.12, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.184.163|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -168,17 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 53%[=========> ] 8.71M 43.3MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 64.2MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-06-19 19:25:10 (64.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-25 15:11:12 (198 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -195,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:10.931072Z", - "iopub.status.busy": "2024-06-19T19:25:10.930882Z", - "iopub.status.idle": "2024-06-19T19:25:12.255881Z", - "shell.execute_reply": "2024-06-19T19:25:12.255242Z" + "iopub.execute_input": "2024-06-25T15:11:12.480956Z", + "iopub.status.busy": "2024-06-25T15:11:12.480566Z", + "iopub.status.idle": "2024-06-25T15:11:13.767885Z", + "shell.execute_reply": "2024-06-25T15:11:13.767217Z" }, "nbsphinx": "hidden" }, @@ -209,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@18dfb0db7c17aa398779ce653a9dc9d7f7b7df62\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@f447bf2cf039124aaf1dd4454dae74d297316c7c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -235,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.258491Z", - "iopub.status.busy": "2024-06-19T19:25:12.258068Z", - "iopub.status.idle": "2024-06-19T19:25:12.261536Z", - "shell.execute_reply": "2024-06-19T19:25:12.260999Z" + "iopub.execute_input": "2024-06-25T15:11:13.770729Z", + "iopub.status.busy": "2024-06-25T15:11:13.770175Z", + "iopub.status.idle": "2024-06-25T15:11:13.773709Z", + "shell.execute_reply": "2024-06-25T15:11:13.773187Z" } }, "outputs": [], @@ -288,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.263644Z", - "iopub.status.busy": "2024-06-19T19:25:12.263314Z", - "iopub.status.idle": "2024-06-19T19:25:12.266277Z", - "shell.execute_reply": "2024-06-19T19:25:12.265838Z" + "iopub.execute_input": "2024-06-25T15:11:13.775785Z", + "iopub.status.busy": "2024-06-25T15:11:13.775587Z", + "iopub.status.idle": "2024-06-25T15:11:13.778748Z", + "shell.execute_reply": "2024-06-25T15:11:13.778221Z" }, "nbsphinx": "hidden" }, @@ -309,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:12.268426Z", - "iopub.status.busy": "2024-06-19T19:25:12.268094Z", - "iopub.status.idle": "2024-06-19T19:25:21.221848Z", - "shell.execute_reply": "2024-06-19T19:25:21.221207Z" + "iopub.execute_input": "2024-06-25T15:11:13.780778Z", + "iopub.status.busy": "2024-06-25T15:11:13.780480Z", + "iopub.status.idle": "2024-06-25T15:11:22.781293Z", + "shell.execute_reply": "2024-06-25T15:11:22.780651Z" } }, "outputs": [], @@ -386,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.224443Z", - "iopub.status.busy": "2024-06-19T19:25:21.224239Z", - "iopub.status.idle": "2024-06-19T19:25:21.229958Z", - "shell.execute_reply": "2024-06-19T19:25:21.229399Z" + "iopub.execute_input": "2024-06-25T15:11:22.784081Z", + "iopub.status.busy": "2024-06-25T15:11:22.783689Z", + "iopub.status.idle": "2024-06-25T15:11:22.789584Z", + "shell.execute_reply": "2024-06-25T15:11:22.789006Z" }, "nbsphinx": "hidden" }, @@ -429,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.232073Z", - "iopub.status.busy": "2024-06-19T19:25:21.231743Z", - "iopub.status.idle": "2024-06-19T19:25:21.588833Z", - "shell.execute_reply": "2024-06-19T19:25:21.588318Z" + "iopub.execute_input": "2024-06-25T15:11:22.791718Z", + "iopub.status.busy": "2024-06-25T15:11:22.791435Z", + "iopub.status.idle": "2024-06-25T15:11:23.158255Z", + "shell.execute_reply": "2024-06-25T15:11:23.157611Z" } }, "outputs": [], @@ -469,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.591367Z", - "iopub.status.busy": "2024-06-19T19:25:21.591001Z", - "iopub.status.idle": "2024-06-19T19:25:21.595636Z", - "shell.execute_reply": "2024-06-19T19:25:21.595165Z" + "iopub.execute_input": "2024-06-25T15:11:23.160978Z", + "iopub.status.busy": "2024-06-25T15:11:23.160622Z", + "iopub.status.idle": "2024-06-25T15:11:23.165103Z", + "shell.execute_reply": "2024-06-25T15:11:23.164546Z" } }, "outputs": [ @@ -544,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:21.597855Z", - "iopub.status.busy": "2024-06-19T19:25:21.597528Z", - "iopub.status.idle": "2024-06-19T19:25:24.308109Z", - "shell.execute_reply": "2024-06-19T19:25:24.307365Z" + "iopub.execute_input": "2024-06-25T15:11:23.167082Z", + "iopub.status.busy": "2024-06-25T15:11:23.166903Z", + "iopub.status.idle": "2024-06-25T15:11:25.807866Z", + "shell.execute_reply": "2024-06-25T15:11:25.807169Z" } }, "outputs": [], @@ -569,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.311307Z", - "iopub.status.busy": "2024-06-19T19:25:24.310534Z", - "iopub.status.idle": "2024-06-19T19:25:24.314791Z", - "shell.execute_reply": "2024-06-19T19:25:24.314231Z" + "iopub.execute_input": "2024-06-25T15:11:25.810816Z", + "iopub.status.busy": "2024-06-25T15:11:25.810265Z", + "iopub.status.idle": "2024-06-25T15:11:25.814390Z", + "shell.execute_reply": "2024-06-25T15:11:25.813844Z" } }, "outputs": [ @@ -608,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.317102Z", - "iopub.status.busy": "2024-06-19T19:25:24.316721Z", - "iopub.status.idle": "2024-06-19T19:25:24.322157Z", - "shell.execute_reply": "2024-06-19T19:25:24.321609Z" + "iopub.execute_input": "2024-06-25T15:11:25.816460Z", + "iopub.status.busy": "2024-06-25T15:11:25.816134Z", + "iopub.status.idle": "2024-06-25T15:11:25.825923Z", + "shell.execute_reply": "2024-06-25T15:11:25.825448Z" } }, "outputs": [ @@ -789,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.324400Z", - "iopub.status.busy": "2024-06-19T19:25:24.324051Z", - "iopub.status.idle": "2024-06-19T19:25:24.350801Z", - "shell.execute_reply": "2024-06-19T19:25:24.350207Z" + "iopub.execute_input": "2024-06-25T15:11:25.828061Z", + "iopub.status.busy": "2024-06-25T15:11:25.827881Z", + "iopub.status.idle": "2024-06-25T15:11:25.855389Z", + "shell.execute_reply": "2024-06-25T15:11:25.854872Z" } }, "outputs": [ @@ -894,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.353082Z", - "iopub.status.busy": "2024-06-19T19:25:24.352886Z", - "iopub.status.idle": "2024-06-19T19:25:24.358648Z", - "shell.execute_reply": "2024-06-19T19:25:24.358046Z" + "iopub.execute_input": "2024-06-25T15:11:25.857590Z", + "iopub.status.busy": "2024-06-25T15:11:25.857393Z", + "iopub.status.idle": "2024-06-25T15:11:25.862898Z", + "shell.execute_reply": "2024-06-25T15:11:25.862402Z" } }, "outputs": [ @@ -971,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:24.361008Z", - "iopub.status.busy": "2024-06-19T19:25:24.360612Z", - "iopub.status.idle": "2024-06-19T19:25:25.829277Z", - "shell.execute_reply": "2024-06-19T19:25:25.828716Z" + "iopub.execute_input": "2024-06-25T15:11:25.864896Z", + "iopub.status.busy": "2024-06-25T15:11:25.864699Z", + "iopub.status.idle": "2024-06-25T15:11:27.322386Z", + "shell.execute_reply": "2024-06-25T15:11:27.321860Z" } }, "outputs": [ @@ -1146,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-19T19:25:25.831678Z", - "iopub.status.busy": "2024-06-19T19:25:25.831298Z", - "iopub.status.idle": "2024-06-19T19:25:25.835492Z", - "shell.execute_reply": "2024-06-19T19:25:25.835011Z" + "iopub.execute_input": "2024-06-25T15:11:27.324657Z", + "iopub.status.busy": "2024-06-25T15:11:27.324344Z", + "iopub.status.idle": "2024-06-25T15:11:27.328757Z", + "shell.execute_reply": "2024-06-25T15:11:27.328193Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index c8464f9ba..0f26d140b 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.5", - commit_hash: "18dfb0db7c17aa398779ce653a9dc9d7f7b7df62", + commit_hash: "f447bf2cf039124aaf1dd4454dae74d297316c7c", }; \ No newline at end of file