diff --git a/master/.buildinfo b/master/.buildinfo index 223cebd71..595fc0b64 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: e4a55f0ab29cab4d86b729052d186b2b +config: 14a2fbd5e37b1ead2d1add192c57360c tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 42560fa29..c1f53d414 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 0f594e3eb..1d8eef7fc 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index b205d87a7..73a86a8f1 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 006e60417..2123151fa 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 3dcf37cb8..176d11da8 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 8d85eac62..f43fb793b 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 096b84b21..3f50c4f1a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 0435210fd..7bb85f7d0 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index b0b62946a..6eb93b7f3 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 66e72d949..e161da48f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index cbc5e3c33..a1822fa47 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 1c1484726..d684f8019 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index c045183e3..28be8ec39 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 943c17c49..a380c745b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 641f98f64..ff4eed09e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 04fea74e0..87d1bbf03 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 8635eda77..bd2ac0491 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 1d8432f62..aa7f979fe 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index d9275d058..eb3743b25 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 8d853dc4a..4047f87e3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index f4f59498b..a78daf269 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 59dc66e7f..ef583f69d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index ff168f2ab..701d3a50d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index d989a54dd..20cb449b3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 05d7aaaa3..2a88052c6 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 5f80d3503..74ae640d1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index d9217d903..1391bf02f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 248d34ae8..b8ceba7bf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 64a996487..1814d033a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 8973540c3..e55bac417 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 4c22e5ce9..dac6e5379 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 254bde215..1678e4d52 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 826b62dde..a5132d793 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index cacd17654..0a572d826 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index f34bc0dcb..f337591ac 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index dd995486d..496f2a535 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index e2295d62d..897b882c0 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 44500d425..ee8b14ac3 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index a655bbd4c..6d538976a 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index b992362f0..8850818df 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 626f9fab1..714207b78 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index fb24d053d..7ce5ecb57 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index c8e98cfe7..444285f9d 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 361057d58..6f81b5f53 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index d0891f0e5..afa8f5e97 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 3242d55c4..fa7b417e7 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 29a4328eb..99111642e 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index d347eb9c2..89702be40 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index d1eaf9715..33345ef8f 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 13eab418f..acc81a446 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 7061df901..1a5a5f8f3 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index aedbee189..686627384 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 16d07f7c3..178bd44b7 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 2c3735a57..2247bdedb 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 87a04cc30..ba4a6c4d7 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 1a551cd9d..2116a5eb7 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index a0b735267..a33ab2eab 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index f8ee38a73..1feed580c 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index a02cbc6b2..3244ec0fb 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 845ac2243..1624bc1ec 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 447567db1..2dc73e18f 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index ad22333f1..7ccc8e554 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 5a98af198..5e7cb342a 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 5634bfcb4..6547f08b7 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index c72c1f164..bba49ccfa 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 289a77585..af2bdb6a0 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index bc3f327c6..b2b22fbc0 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 6d9740d6f..b6329ecf7 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 2340f1d91..e6fc9c3e4 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index c2c181f43..ca1ab4250 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index f7e28da7c..87fcef0c1 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index edc67fb2e..418128b8f 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index e18f6ad7d..a5ce8b89c 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 4f4b62eb1..4cde8754e 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 8a61650a4..1eaa1dd06 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 71f8d658c..748d01bd9 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index de110e3c4..97a111e10 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 195ac8325..8bfb62756 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index e4d49daa6..fd491b6cb 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 549d6755e..a4281a97a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 38f3aee03..8d6af5f62 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 12cab971f..310942e6e 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index dd01ad669..f2fd28b7c 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 961517500..2d1b5d952 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 69f711cca..efa868896 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 479de4c4d..54ffca6c0 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index eee718530..fa91c6081 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:06.173743Z", - "iopub.status.busy": "2024-05-15T04:10:06.173250Z", - "iopub.status.idle": "2024-05-15T04:10:07.404368Z", - "shell.execute_reply": "2024-05-15T04:10:07.403746Z" + "iopub.execute_input": "2024-05-21T21:34:19.348374Z", + "iopub.status.busy": "2024-05-21T21:34:19.347806Z", + "iopub.status.idle": "2024-05-21T21:34:20.736841Z", + "shell.execute_reply": "2024-05-21T21:34:20.736177Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.407186Z", - "iopub.status.busy": "2024-05-15T04:10:07.406649Z", - "iopub.status.idle": "2024-05-15T04:10:07.426894Z", - "shell.execute_reply": "2024-05-15T04:10:07.426427Z" + "iopub.execute_input": "2024-05-21T21:34:20.739922Z", + "iopub.status.busy": "2024-05-21T21:34:20.739376Z", + "iopub.status.idle": "2024-05-21T21:34:20.762166Z", + "shell.execute_reply": "2024-05-21T21:34:20.761647Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.429234Z", - "iopub.status.busy": "2024-05-15T04:10:07.428925Z", - "iopub.status.idle": "2024-05-15T04:10:07.644053Z", - "shell.execute_reply": "2024-05-15T04:10:07.643441Z" + "iopub.execute_input": "2024-05-21T21:34:20.764996Z", + "iopub.status.busy": "2024-05-21T21:34:20.764560Z", + "iopub.status.idle": "2024-05-21T21:34:20.914987Z", + "shell.execute_reply": "2024-05-21T21:34:20.914388Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.675044Z", - "iopub.status.busy": "2024-05-15T04:10:07.674559Z", - "iopub.status.idle": "2024-05-15T04:10:07.678414Z", - "shell.execute_reply": "2024-05-15T04:10:07.677922Z" + "iopub.execute_input": "2024-05-21T21:34:20.948682Z", + "iopub.status.busy": "2024-05-21T21:34:20.948153Z", + "iopub.status.idle": "2024-05-21T21:34:20.952352Z", + "shell.execute_reply": "2024-05-21T21:34:20.951735Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.680598Z", - "iopub.status.busy": "2024-05-15T04:10:07.680269Z", - "iopub.status.idle": "2024-05-15T04:10:07.688360Z", - "shell.execute_reply": "2024-05-15T04:10:07.687911Z" + "iopub.execute_input": "2024-05-21T21:34:20.954823Z", + "iopub.status.busy": "2024-05-21T21:34:20.954378Z", + "iopub.status.idle": "2024-05-21T21:34:20.964089Z", + "shell.execute_reply": "2024-05-21T21:34:20.963578Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.690466Z", - "iopub.status.busy": "2024-05-15T04:10:07.690155Z", - "iopub.status.idle": "2024-05-15T04:10:07.692657Z", - "shell.execute_reply": "2024-05-15T04:10:07.692233Z" + "iopub.execute_input": "2024-05-21T21:34:20.966832Z", + "iopub.status.busy": "2024-05-21T21:34:20.966585Z", + "iopub.status.idle": "2024-05-21T21:34:20.969686Z", + "shell.execute_reply": "2024-05-21T21:34:20.969193Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:07.694473Z", - "iopub.status.busy": "2024-05-15T04:10:07.694301Z", - "iopub.status.idle": "2024-05-15T04:10:08.217222Z", - "shell.execute_reply": "2024-05-15T04:10:08.216672Z" + "iopub.execute_input": "2024-05-21T21:34:20.971694Z", + "iopub.status.busy": "2024-05-21T21:34:20.971508Z", + "iopub.status.idle": "2024-05-21T21:34:21.506645Z", + "shell.execute_reply": "2024-05-21T21:34:21.506046Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:08.219521Z", - "iopub.status.busy": "2024-05-15T04:10:08.219326Z", - "iopub.status.idle": "2024-05-15T04:10:09.891770Z", - "shell.execute_reply": "2024-05-15T04:10:09.891133Z" + "iopub.execute_input": "2024-05-21T21:34:21.509485Z", + "iopub.status.busy": "2024-05-21T21:34:21.509113Z", + "iopub.status.idle": "2024-05-21T21:34:23.414430Z", + "shell.execute_reply": "2024-05-21T21:34:23.413812Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:09.894298Z", - "iopub.status.busy": "2024-05-15T04:10:09.893747Z", - "iopub.status.idle": "2024-05-15T04:10:09.903692Z", - "shell.execute_reply": "2024-05-15T04:10:09.903163Z" + "iopub.execute_input": "2024-05-21T21:34:23.417397Z", + "iopub.status.busy": "2024-05-21T21:34:23.416667Z", + "iopub.status.idle": "2024-05-21T21:34:23.427663Z", + "shell.execute_reply": "2024-05-21T21:34:23.427144Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:09.905886Z", - "iopub.status.busy": "2024-05-15T04:10:09.905510Z", - "iopub.status.idle": "2024-05-15T04:10:09.909563Z", - "shell.execute_reply": "2024-05-15T04:10:09.909041Z" + "iopub.execute_input": "2024-05-21T21:34:23.430046Z", + "iopub.status.busy": "2024-05-21T21:34:23.429676Z", + "iopub.status.idle": "2024-05-21T21:34:23.434407Z", + "shell.execute_reply": "2024-05-21T21:34:23.433784Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:09.911810Z", - "iopub.status.busy": "2024-05-15T04:10:09.911416Z", - "iopub.status.idle": "2024-05-15T04:10:09.918245Z", - "shell.execute_reply": "2024-05-15T04:10:09.917841Z" + "iopub.execute_input": "2024-05-21T21:34:23.436778Z", + "iopub.status.busy": "2024-05-21T21:34:23.436347Z", + "iopub.status.idle": "2024-05-21T21:34:23.444154Z", + "shell.execute_reply": "2024-05-21T21:34:23.443598Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:09.920184Z", - "iopub.status.busy": "2024-05-15T04:10:09.919844Z", - "iopub.status.idle": "2024-05-15T04:10:10.030863Z", - "shell.execute_reply": "2024-05-15T04:10:10.030329Z" + "iopub.execute_input": "2024-05-21T21:34:23.446674Z", + "iopub.status.busy": "2024-05-21T21:34:23.446288Z", + "iopub.status.idle": "2024-05-21T21:34:23.560935Z", + "shell.execute_reply": "2024-05-21T21:34:23.560327Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:10.033170Z", - "iopub.status.busy": "2024-05-15T04:10:10.032829Z", - "iopub.status.idle": "2024-05-15T04:10:10.035522Z", - "shell.execute_reply": "2024-05-15T04:10:10.035091Z" + "iopub.execute_input": "2024-05-21T21:34:23.563414Z", + "iopub.status.busy": "2024-05-21T21:34:23.562955Z", + "iopub.status.idle": "2024-05-21T21:34:23.566168Z", + "shell.execute_reply": "2024-05-21T21:34:23.565633Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:10.037549Z", - "iopub.status.busy": "2024-05-15T04:10:10.037238Z", - "iopub.status.idle": "2024-05-15T04:10:12.073731Z", - "shell.execute_reply": "2024-05-15T04:10:12.073023Z" + "iopub.execute_input": "2024-05-21T21:34:23.568585Z", + "iopub.status.busy": "2024-05-21T21:34:23.568123Z", + "iopub.status.idle": "2024-05-21T21:34:25.690853Z", + "shell.execute_reply": "2024-05-21T21:34:25.690211Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:12.076907Z", - "iopub.status.busy": "2024-05-15T04:10:12.076050Z", - "iopub.status.idle": "2024-05-15T04:10:12.087995Z", - "shell.execute_reply": "2024-05-15T04:10:12.087414Z" + "iopub.execute_input": "2024-05-21T21:34:25.694215Z", + "iopub.status.busy": "2024-05-21T21:34:25.693272Z", + "iopub.status.idle": "2024-05-21T21:34:25.706550Z", + "shell.execute_reply": "2024-05-21T21:34:25.705913Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:12.090134Z", - "iopub.status.busy": "2024-05-15T04:10:12.089722Z", - "iopub.status.idle": "2024-05-15T04:10:12.167809Z", - "shell.execute_reply": "2024-05-15T04:10:12.167228Z" + "iopub.execute_input": "2024-05-21T21:34:25.709115Z", + "iopub.status.busy": "2024-05-21T21:34:25.708694Z", + "iopub.status.idle": "2024-05-21T21:34:25.749027Z", + "shell.execute_reply": "2024-05-21T21:34:25.748531Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 1f806212e..9d4c700e9 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:15.080861Z", - "iopub.status.busy": "2024-05-15T04:10:15.080686Z", - "iopub.status.idle": "2024-05-15T04:10:18.191309Z", - "shell.execute_reply": "2024-05-15T04:10:18.190691Z" + "iopub.execute_input": "2024-05-21T21:34:29.171215Z", + "iopub.status.busy": "2024-05-21T21:34:29.171025Z", + "iopub.status.idle": "2024-05-21T21:34:32.378548Z", + "shell.execute_reply": "2024-05-21T21:34:32.377998Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.193930Z", - "iopub.status.busy": "2024-05-15T04:10:18.193630Z", - "iopub.status.idle": "2024-05-15T04:10:18.197117Z", - "shell.execute_reply": "2024-05-15T04:10:18.196601Z" + "iopub.execute_input": "2024-05-21T21:34:32.381242Z", + "iopub.status.busy": "2024-05-21T21:34:32.380843Z", + "iopub.status.idle": "2024-05-21T21:34:32.384538Z", + "shell.execute_reply": "2024-05-21T21:34:32.383961Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.199070Z", - "iopub.status.busy": "2024-05-15T04:10:18.198685Z", - "iopub.status.idle": "2024-05-15T04:10:18.201877Z", - "shell.execute_reply": "2024-05-15T04:10:18.201332Z" + "iopub.execute_input": "2024-05-21T21:34:32.386656Z", + "iopub.status.busy": "2024-05-21T21:34:32.386330Z", + "iopub.status.idle": "2024-05-21T21:34:32.389695Z", + "shell.execute_reply": "2024-05-21T21:34:32.389132Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.204128Z", - "iopub.status.busy": "2024-05-15T04:10:18.203700Z", - "iopub.status.idle": "2024-05-15T04:10:18.264003Z", - "shell.execute_reply": "2024-05-15T04:10:18.263443Z" + "iopub.execute_input": "2024-05-21T21:34:32.392025Z", + "iopub.status.busy": "2024-05-21T21:34:32.391592Z", + "iopub.status.idle": "2024-05-21T21:34:32.441858Z", + "shell.execute_reply": "2024-05-21T21:34:32.441219Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.266247Z", - "iopub.status.busy": "2024-05-15T04:10:18.265934Z", - "iopub.status.idle": "2024-05-15T04:10:18.269547Z", - "shell.execute_reply": "2024-05-15T04:10:18.269095Z" + "iopub.execute_input": "2024-05-21T21:34:32.444386Z", + "iopub.status.busy": "2024-05-21T21:34:32.444019Z", + "iopub.status.idle": "2024-05-21T21:34:32.448079Z", + "shell.execute_reply": "2024-05-21T21:34:32.447465Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.271554Z", - "iopub.status.busy": "2024-05-15T04:10:18.271157Z", - "iopub.status.idle": "2024-05-15T04:10:18.274631Z", - "shell.execute_reply": "2024-05-15T04:10:18.274080Z" + "iopub.execute_input": "2024-05-21T21:34:32.450443Z", + "iopub.status.busy": "2024-05-21T21:34:32.450069Z", + "iopub.status.idle": "2024-05-21T21:34:32.453950Z", + "shell.execute_reply": "2024-05-21T21:34:32.453465Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" + "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.276526Z", - "iopub.status.busy": "2024-05-15T04:10:18.276261Z", - "iopub.status.idle": "2024-05-15T04:10:18.279103Z", - "shell.execute_reply": "2024-05-15T04:10:18.278565Z" + "iopub.execute_input": "2024-05-21T21:34:32.456272Z", + "iopub.status.busy": "2024-05-21T21:34:32.455833Z", + "iopub.status.idle": "2024-05-21T21:34:32.459433Z", + "shell.execute_reply": "2024-05-21T21:34:32.458907Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.281209Z", - "iopub.status.busy": "2024-05-15T04:10:18.280797Z", - "iopub.status.idle": "2024-05-15T04:10:18.284198Z", - "shell.execute_reply": "2024-05-15T04:10:18.283617Z" + "iopub.execute_input": "2024-05-21T21:34:32.461938Z", + "iopub.status.busy": "2024-05-21T21:34:32.461380Z", + "iopub.status.idle": "2024-05-21T21:34:32.465255Z", + "shell.execute_reply": "2024-05-21T21:34:32.464767Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:18.286124Z", - "iopub.status.busy": "2024-05-15T04:10:18.285833Z", - "iopub.status.idle": "2024-05-15T04:10:23.194036Z", - "shell.execute_reply": "2024-05-15T04:10:23.193359Z" + "iopub.execute_input": "2024-05-21T21:34:32.467467Z", + "iopub.status.busy": "2024-05-21T21:34:32.467270Z", + "iopub.status.idle": "2024-05-21T21:34:36.951351Z", + "shell.execute_reply": "2024-05-21T21:34:36.950675Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de82beb9c7d14aa88d1488cb4c376099", + "model_id": "3feae36eb3e947d9b3764fd00e40ede1", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f4fb5fae44941a397f6ca25a524103a", + "model_id": "ea34f3ec23e543df872ddd587aa03984", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "717ebf90fa8a4e45a345cee4c0a4f225", + "model_id": "c22655705867437f8b92e0a59baadcef", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67b196b61f0e44389d9ee6e046613e3a", + "model_id": "d4206116c469470ea205a4e1654816f5", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b6d0688f67243f7958ce7806c94a2ae", + "model_id": "cd0b0ba84a0d45bf9f4be54ddf25849b", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "474efec37eeb412a8322e0c4c3776fb4", + "model_id": "14bcfdd1dfd34ddc912b13d234ced17d", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "940f1204c6ea4e3ca81766d7c6047670", + "model_id": "62b57a0a459748e4966229d7701376af", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:23.196940Z", - "iopub.status.busy": "2024-05-15T04:10:23.196736Z", - "iopub.status.idle": "2024-05-15T04:10:23.199626Z", - "shell.execute_reply": "2024-05-15T04:10:23.199070Z" + "iopub.execute_input": "2024-05-21T21:34:36.954414Z", + "iopub.status.busy": "2024-05-21T21:34:36.954006Z", + "iopub.status.idle": "2024-05-21T21:34:36.957077Z", + "shell.execute_reply": "2024-05-21T21:34:36.956615Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:23.201554Z", - "iopub.status.busy": "2024-05-15T04:10:23.201382Z", - "iopub.status.idle": "2024-05-15T04:10:23.204113Z", - "shell.execute_reply": "2024-05-15T04:10:23.203657Z" + "iopub.execute_input": "2024-05-21T21:34:36.959123Z", + "iopub.status.busy": "2024-05-21T21:34:36.958901Z", + "iopub.status.idle": "2024-05-21T21:34:36.961947Z", + "shell.execute_reply": "2024-05-21T21:34:36.961390Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:23.205960Z", - "iopub.status.busy": "2024-05-15T04:10:23.205789Z", - "iopub.status.idle": "2024-05-15T04:10:25.477408Z", - "shell.execute_reply": "2024-05-15T04:10:25.476785Z" + "iopub.execute_input": "2024-05-21T21:34:36.964256Z", + "iopub.status.busy": "2024-05-21T21:34:36.963828Z", + "iopub.status.idle": "2024-05-21T21:34:39.386905Z", + "shell.execute_reply": "2024-05-21T21:34:39.386148Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.480374Z", - "iopub.status.busy": "2024-05-15T04:10:25.479667Z", - "iopub.status.idle": "2024-05-15T04:10:25.487362Z", - "shell.execute_reply": "2024-05-15T04:10:25.486868Z" + "iopub.execute_input": "2024-05-21T21:34:39.390267Z", + "iopub.status.busy": "2024-05-21T21:34:39.389452Z", + "iopub.status.idle": "2024-05-21T21:34:39.397744Z", + "shell.execute_reply": "2024-05-21T21:34:39.397155Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.489524Z", - "iopub.status.busy": "2024-05-15T04:10:25.489128Z", - "iopub.status.idle": "2024-05-15T04:10:25.492965Z", - "shell.execute_reply": "2024-05-15T04:10:25.492505Z" + "iopub.execute_input": "2024-05-21T21:34:39.399970Z", + "iopub.status.busy": "2024-05-21T21:34:39.399673Z", + "iopub.status.idle": "2024-05-21T21:34:39.403853Z", + "shell.execute_reply": "2024-05-21T21:34:39.403390Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.494756Z", - "iopub.status.busy": "2024-05-15T04:10:25.494589Z", - "iopub.status.idle": "2024-05-15T04:10:25.497903Z", - "shell.execute_reply": "2024-05-15T04:10:25.497444Z" + "iopub.execute_input": "2024-05-21T21:34:39.405959Z", + "iopub.status.busy": "2024-05-21T21:34:39.405621Z", + "iopub.status.idle": "2024-05-21T21:34:39.408809Z", + "shell.execute_reply": "2024-05-21T21:34:39.408276Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.499699Z", - "iopub.status.busy": "2024-05-15T04:10:25.499529Z", - "iopub.status.idle": "2024-05-15T04:10:25.502357Z", - "shell.execute_reply": "2024-05-15T04:10:25.501929Z" + "iopub.execute_input": "2024-05-21T21:34:39.410955Z", + "iopub.status.busy": "2024-05-21T21:34:39.410624Z", + "iopub.status.idle": "2024-05-21T21:34:39.413665Z", + "shell.execute_reply": "2024-05-21T21:34:39.413218Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.504365Z", - "iopub.status.busy": "2024-05-15T04:10:25.504051Z", - "iopub.status.idle": "2024-05-15T04:10:25.511032Z", - "shell.execute_reply": "2024-05-15T04:10:25.510610Z" + "iopub.execute_input": "2024-05-21T21:34:39.415732Z", + "iopub.status.busy": "2024-05-21T21:34:39.415395Z", + "iopub.status.idle": "2024-05-21T21:34:39.423338Z", + "shell.execute_reply": "2024-05-21T21:34:39.422729Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.513152Z", - "iopub.status.busy": "2024-05-15T04:10:25.512814Z", - "iopub.status.idle": "2024-05-15T04:10:25.737067Z", - "shell.execute_reply": "2024-05-15T04:10:25.736460Z" + "iopub.execute_input": "2024-05-21T21:34:39.425766Z", + "iopub.status.busy": "2024-05-21T21:34:39.425401Z", + "iopub.status.idle": "2024-05-21T21:34:39.677174Z", + "shell.execute_reply": "2024-05-21T21:34:39.676606Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.739524Z", - "iopub.status.busy": "2024-05-15T04:10:25.739169Z", - "iopub.status.idle": "2024-05-15T04:10:25.937448Z", - "shell.execute_reply": "2024-05-15T04:10:25.936889Z" + "iopub.execute_input": "2024-05-21T21:34:39.681194Z", + "iopub.status.busy": "2024-05-21T21:34:39.680120Z", + "iopub.status.idle": "2024-05-21T21:34:39.858004Z", + "shell.execute_reply": "2024-05-21T21:34:39.857414Z" }, "scrolled": true }, @@ -1042,14 +1042,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Test accuracy of cleanlab's model: 0.89" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "Test accuracy of cleanlab's model: 0.89\n" ] } ], @@ -1073,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:25.940095Z", - "iopub.status.busy": "2024-05-15T04:10:25.939671Z", - "iopub.status.idle": "2024-05-15T04:10:25.943527Z", - "shell.execute_reply": "2024-05-15T04:10:25.943038Z" + "iopub.execute_input": "2024-05-21T21:34:39.862423Z", + "iopub.status.busy": "2024-05-21T21:34:39.861359Z", + "iopub.status.idle": "2024-05-21T21:34:39.866844Z", + "shell.execute_reply": "2024-05-21T21:34:39.866282Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1232908baf554cf99f4af46b634feee2": { + "06581ec60fcb4101ac87b47c7b3b1e13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1135,15 +1128,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6170acb51bd24787a65a855bef446506", + "layout": "IPY_MODEL_cb8088e39d7c4105895373f330b4ab44", "placeholder": "", - "style": "IPY_MODEL_ed6b8b909469498d8c9e88f647731f84", + "style": "IPY_MODEL_6b8896b106ce4207b1553619123e085c", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" + "value": "pytorch_model.bin: 100%" + } + }, + "08141d37f9d04bd0975a51a9daab0897": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "194bdee26ce64f8dac5d05ffc5915608": { + "08d8d8cff00b4d59b0f4efbdddf71ade": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1196,7 +1207,7 @@ "width": null } }, - "1fcdfaab41944529baea299b350510bf": { + "0d62ef74d0034fb39d11cdf615a7a7d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1211,33 +1222,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81895df87c564fc1b5668348c236969f", + "layout": "IPY_MODEL_ddd26a1802ab43ba9e2075858eb06cd4", "placeholder": "", - "style": "IPY_MODEL_2394d936d03342b3bde5e39035f1819a", + "style": "IPY_MODEL_c4ac2a18240e40bb9c13b7c4dd8fb04f", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.58kB/s]" + "value": " 391/391 [00:00<00:00, 66.5kB/s]" } }, - "2394d936d03342b3bde5e39035f1819a": { - "model_module": "@jupyter-widgets/controls", + "1383d57b1a4940269ccbf8ed806bb695": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2a063230de0e4214b52f3c29fda5a612": { + "14a61b066e374f678202b29c7f5a9884": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1290,7 +1336,31 @@ "width": null } }, - "30d3c0a4c39545b8b68a7318d7a363a0": { + "14bcfdd1dfd34ddc912b13d234ced17d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfeb4cc50d084a20a91f2b8f05d2d27e", + "IPY_MODEL_2cd8a63950b849f6b7ffe10e625798a6", + "IPY_MODEL_bec2d343fa9b4ab2ab73d06e895b58dc" + ], + "layout": "IPY_MODEL_14a61b066e374f678202b29c7f5a9884", + "tabbable": null, + "tooltip": null + } + }, + "25c87e5fef6e4ea3b9f4ca260b15768e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1306,17 +1376,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b388e3307cd345c7bc61d36ea3a1550c", - "max": 665.0, + "layout": "IPY_MODEL_c16cef78ce1d4fe298ad05e939e3b146", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a6b29d18d3174ebaa6b9e0a9268fd6bf", + "style": "IPY_MODEL_78621462895648b694733afd46be48ab", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 391.0 } }, - "338468e389a749b0a9cff373416d295b": { + "2675efc9c1664c2d8553028567d05e9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1369,7 +1439,25 @@ "width": null } }, - "35b1f0bdde184b17aacad14f1925c510": { + "26b6514852b94141b5a3afbbc12ebc94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "29f911bac27d46ae95913569da572bb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1422,30 +1510,51 @@ "width": null } }, - "3abe207c1a1541b2ac4ccf503ef2cd39": { + "2cd8a63950b849f6b7ffe10e625798a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a24c2c9dbb740d7bd14becaf9165bc1", - "placeholder": "", - "style": "IPY_MODEL_e57d940758f447ea8d52891c95bf35b4", + "layout": "IPY_MODEL_7dc24682b9bd4d2e89dc6434985e9513", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f1f7b154dcfb40f2b3dcaa4ad2be0fd9", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 35.9MB/s]" + "value": 48.0 + } + }, + "2e6b3f8666044770a0301add30bb2b36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3c58e4d7bdea49db9131d994297d28bf": { + "321dc429438241d5870f6f8f20065970": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1460,15 +1569,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c34307fc02eb4e6198fba1416ae3013c", + "layout": "IPY_MODEL_7100065296b7430895c1a69179b668e8", "placeholder": "", - "style": "IPY_MODEL_a459a1dfb62f47b581b94ada00f5005a", + "style": "IPY_MODEL_6c6d16b8a18e4bdbb8ceb13aa6c9c496", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 50.2kB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 247MB/s]" } }, - "3d4ecbf51052497f94e358c0bc61e202": { + "3351191776354d9987df3aa573e10123": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1484,30 +1593,39 @@ "description_width": "" } }, - "414f691f5f9f4dc39b4b91943bc9ed71": { + "35bfc40c65ef44129529081749bb74c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_338468e389a749b0a9cff373416d295b", - "placeholder": "", - "style": "IPY_MODEL_a7a86f24498e4846a200a139093cf3d5", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "377306e0247942cab99703a9129aa62e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "474efec37eeb412a8322e0c4c3776fb4": { + "3feae36eb3e947d9b3764fd00e40ede1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1522,92 +1640,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_414f691f5f9f4dc39b4b91943bc9ed71", - "IPY_MODEL_926c081fbd944ccba39de72298130947", - "IPY_MODEL_1fcdfaab41944529baea299b350510bf" + "IPY_MODEL_9aa6f0a9553847a3b6953a712901dce1", + "IPY_MODEL_25c87e5fef6e4ea3b9f4ca260b15768e", + "IPY_MODEL_0d62ef74d0034fb39d11cdf615a7a7d9" ], - "layout": "IPY_MODEL_c69087caa6254c70b35fe18352a6d38e", + "layout": "IPY_MODEL_932d74e2994e4891b344d098dc3daafa", "tabbable": null, "tooltip": null } }, - "4a24c2c9dbb740d7bd14becaf9165bc1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4a7c5e045f5843d4bc2bd5c7bc6572ee": { + "414669ed3d584aa1a29dd4b22815d393": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7f9892111db440ba374800aef3da05f", - "placeholder": "", - "style": "IPY_MODEL_5730012ba5c44039af4094063cd03050", + "layout": "IPY_MODEL_93625a3c50c147ba82569a69c92ca6cf", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_35bfc40c65ef44129529081749bb74c4", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": 466062.0 } }, - "4b85063b079d46038f4803e5dd1ecb49": { + "4ca1aa3c26454b709f9ef91fcc72b3c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1622,41 +1690,103 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9626fed46fe54c0e8651ced24fd37ea9", + "layout": "IPY_MODEL_71c26a8b04e745cf9527d8a9e7b7d1cb", "placeholder": "", - "style": "IPY_MODEL_ca4100b56fb14fc3919c3de635714f54", + "style": "IPY_MODEL_d2e76a7a59094b628da265fc18fd86a4", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": " 2.21k/2.21k [00:00<00:00, 409kB/s]" } }, - "4eea9d7e90ee474da934b6bf804515af": { + "5131f0effa9648d2a33fc3fe74718165": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_194bdee26ce64f8dac5d05ffc5915608", - "max": 2211.0, + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "546a7a2690ab4d399ac4e9af5486fc1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e28ac4e09129473fb70074b3253f6f30", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8cd82da7123e4f03a03765f2ac6c8d82", + "style": "IPY_MODEL_72f51c8308f9496facb5fb6651fb4b13", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 + } + }, + "5dbdb16d37ce440b9e10d37ade714848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6062f6cab61241e690c80c86672f9c4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1383d57b1a4940269ccbf8ed806bb695", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3351191776354d9987df3aa573e10123", + "tabbable": null, + "tooltip": null, + "value": 231508.0 } }, - "4f4fb5fae44941a397f6ca25a524103a": { + "62b57a0a459748e4966229d7701376af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1671,16 +1801,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b87e37b7ca394daeb54dd27dc9b06b8d", - "IPY_MODEL_4eea9d7e90ee474da934b6bf804515af", - "IPY_MODEL_1232908baf554cf99f4af46b634feee2" + "IPY_MODEL_d4f385c725554207819910c4075d7477", + "IPY_MODEL_6062f6cab61241e690c80c86672f9c4a", + "IPY_MODEL_89085d2b2b1044edb566074abf96322f" ], - "layout": "IPY_MODEL_5326dbb3913842e0a464edc77559245a", + "layout": "IPY_MODEL_65621dede20a4e5392d30c06c882689d", "tabbable": null, "tooltip": null } }, - "5326dbb3913842e0a464edc77559245a": { + "65621dede20a4e5392d30c06c882689d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1733,7 +1863,61 @@ "width": null } }, - "5498b1de340147e580dd0660a92a2f09": { + "69de7f36476043c5a5edcb42973e48a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6b8896b106ce4207b1553619123e085c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6c6d16b8a18e4bdbb8ceb13aa6c9c496": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7100065296b7430895c1a69179b668e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1786,43 +1970,7 @@ "width": null } }, - "5730012ba5c44039af4094063cd03050": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "581fe65d10584386bee04a04991b9eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "59da7fad3117497ca6376e47201f8fee": { + "71c26a8b04e745cf9527d8a9e7b7d1cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1875,7 +2023,39 @@ "width": null } }, - "5a0ef4b9c7b9454e96e5879d9eb210d2": { + "72f51c8308f9496facb5fb6651fb4b13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "78621462895648b694733afd46be48ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7dc24682b9bd4d2e89dc6434985e9513": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1928,7 +2108,7 @@ "width": null } }, - "5c7226798e3e41f3bc03853edf98e974": { + "8315b42c7b8a430eb0f329db18559fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1946,7 +2126,7 @@ "text_color": null } }, - "5de4a43b3f374722b005254f2b620fec": { + "89085d2b2b1044edb566074abf96322f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1961,15 +2141,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93549c3c8e304bf4b2a6e787cfa5b1cd", + "layout": "IPY_MODEL_fce3c642ade24c1587aaebd44ac12205", "placeholder": "", - "style": "IPY_MODEL_6a2d7d0a5deb45c4905b5afd5ef68c1e", + "style": "IPY_MODEL_08141d37f9d04bd0975a51a9daab0897", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 132kB/s]" + "value": " 232k/232k [00:00<00:00, 35.9MB/s]" } }, - "6170acb51bd24787a65a855bef446506": { + "9155de5dd1204c2cad8f48ba43889c00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,7 +2202,7 @@ "width": null } }, - "6278d297647d4ac5aa64870e9c3deb90": { + "9173c92effe54038939732776eb94841": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2075,7 +2255,7 @@ "width": null } }, - "6360451958434869af9c02cfe3e9839a": { + "927295d5bfb04f62a081feada0e10598": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2090,57 +2270,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b255cd075b8545f090b55e7538602a7e", + "layout": "IPY_MODEL_fbfa7e03ad734296bc6023e849664c2c", "placeholder": "", - "style": "IPY_MODEL_b925862a2fc341008238ab002092e0a1", + "style": "IPY_MODEL_fc35dc394e8b4f1da30e980e240c530e", "tabbable": null, "tooltip": null, "value": "config.json: 100%" } }, - "641d1541c085452d933a4961324c2e28": { - "model_module": "@jupyter-widgets/controls", + "932d74e2994e4891b344d098dc3daafa": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67b196b61f0e44389d9ee6e046613e3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d67f28daaf774d3fb33c82627a6fa5b8", - "IPY_MODEL_6fea1b655b6d4cf3ba0196b1ee9c98ff", - "IPY_MODEL_e3a53c529364400ab4922ccc1f399d00" - ], - "layout": "IPY_MODEL_5a0ef4b9c7b9454e96e5879d9eb210d2", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6a14d27b27854d41952542ef71eb31df": { + "93625a3c50c147ba82569a69c92ca6cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2193,7 +2384,7 @@ "width": null } }, - "6a2d7d0a5deb45c4905b5afd5ef68c1e": { + "98041ebdf46c48a4b533b5412e3fa1fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2211,235 +2402,8 @@ "text_color": null } }, - "6d4e2532920c4eb0bc8000ca5be8cf27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6fea1b655b6d4cf3ba0196b1ee9c98ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86c72484d27c4334babda8ff6a082585", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c31df44039b84785a0ce32fcfa321217", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "700e7e29dd274e4783bbce990c4ebae2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "717ebf90fa8a4e45a345cee4c0a4f225": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6360451958434869af9c02cfe3e9839a", - "IPY_MODEL_30d3c0a4c39545b8b68a7318d7a363a0", - "IPY_MODEL_5de4a43b3f374722b005254f2b620fec" - ], - "layout": "IPY_MODEL_2a063230de0e4214b52f3c29fda5a612", - "tabbable": null, - "tooltip": null - } - }, - "7f56912c08ca4678bceb5ffdc185224a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "81895df87c564fc1b5668348c236969f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "86c72484d27c4334babda8ff6a082585": { - "model_module": "@jupyter-widgets/base", + "986ba5eb3cef44e88f593f21a9bc21ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2491,7 +2455,7 @@ "width": null } }, - "87783b23c72d490688c72f5e44365005": { + "98ba9d6734cb4f2c927007e5f2fbedc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2544,152 +2508,53 @@ "width": null } }, - "8cd82da7123e4f03a03765f2ac6c8d82": { + "9aa6f0a9553847a3b6953a712901dce1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "909df02a3af8461b8ef58043ca2219d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_35b1f0bdde184b17aacad14f1925c510", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3ab0db7fe944a52b0a3571c6c5f5975", + "layout": "IPY_MODEL_98ba9d6734cb4f2c927007e5f2fbedc5", + "placeholder": "", + "style": "IPY_MODEL_2e6b3f8666044770a0301add30bb2b36", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": ".gitattributes: 100%" } }, - "926c081fbd944ccba39de72298130947": { + "9db09f1c53784b5aa8aacb0241b664f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca7030069c4942f9b015fcf926a975ea", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d72b56396ebd482f86d6a367c1c8f249", + "layout": "IPY_MODEL_2675efc9c1664c2d8553028567d05e9f", + "placeholder": "", + "style": "IPY_MODEL_8315b42c7b8a430eb0f329db18559fc8", "tabbable": null, "tooltip": null, - "value": 48.0 - } - }, - "93549c3c8e304bf4b2a6e787cfa5b1cd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "940f1204c6ea4e3ca81766d7c6047670": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f7905c489cb84537b5769dd324649217", - "IPY_MODEL_909df02a3af8461b8ef58043ca2219d2", - "IPY_MODEL_3abe207c1a1541b2ac4ccf503ef2cd39" - ], - "layout": "IPY_MODEL_6a14d27b27854d41952542ef71eb31df", - "tabbable": null, - "tooltip": null + "value": "tokenizer.json: 100%" } }, - "9626fed46fe54c0e8651ced24fd37ea9": { + "9f18289a73764f09a55b3363f371a381": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2742,81 +2607,79 @@ "width": null } }, - "9b6d0688f67243f7958ce7806c94a2ae": { + "a5d6b77fe81142c3b6e6447914da506c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a7c5e045f5843d4bc2bd5c7bc6572ee", - "IPY_MODEL_fac80d0a3a884731b7f69fc543128a25", - "IPY_MODEL_fe4bc887f9084149acf51dfd0735d660" - ], - "layout": "IPY_MODEL_6278d297647d4ac5aa64870e9c3deb90", - "tabbable": null, - "tooltip": null - } - }, - "a351cf20df2e41e796699c2d44b0e0c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c55b7536e3974f0ba9baad9d2e695913", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b44fc8b768ee4047bd4305604b1adc3f", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "a3ab0db7fe944a52b0a3571c6c5f5975": { + "b2f97a0408a8407ab9d022393e1088f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7a22f2d9e30440a8b6575ef83455ec7", + "placeholder": "", + "style": "IPY_MODEL_26b6514852b94141b5a3afbbc12ebc94", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 13.6MB/s]" } }, - "a459a1dfb62f47b581b94ada00f5005a": { + "b30fa9e19bca474eb6bc8012ceb473c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08d8d8cff00b4d59b0f4efbdddf71ade", + "placeholder": "", + "style": "IPY_MODEL_69de7f36476043c5a5edcb42973e48a2", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" } }, - "a6b29d18d3174ebaa6b9e0a9268fd6bf": { + "b44fc8b768ee4047bd4305604b1adc3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2832,25 +2695,30 @@ "description_width": "" } }, - "a7a86f24498e4846a200a139093cf3d5": { + "bec2d343fa9b4ab2ab73d06e895b58dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f56eca5fd3184706b6d258d8e2f1f762", + "placeholder": "", + "style": "IPY_MODEL_d79f17f6d17b411ca5a1931b77340f73", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.91kB/s]" } }, - "a7f9892111db440ba374800aef3da05f": { + "c16cef78ce1d4fe298ad05e939e3b146": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2903,7 +2771,49 @@ "width": null } }, - "b1bcbf7ddd154af2b1f6e892406a803b": { + "c22655705867437f8b92e0a59baadcef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_927295d5bfb04f62a081feada0e10598", + "IPY_MODEL_546a7a2690ab4d399ac4e9af5486fc1b", + "IPY_MODEL_e2b7fceeff1c4bb3ac1efeb05efea7c1" + ], + "layout": "IPY_MODEL_9155de5dd1204c2cad8f48ba43889c00", + "tabbable": null, + "tooltip": null + } + }, + "c4ac2a18240e40bb9c13b7c4dd8fb04f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c55b7536e3974f0ba9baad9d2e695913": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2956,7 +2866,7 @@ "width": null } }, - "b255cd075b8545f090b55e7538602a7e": { + "cb8088e39d7c4105895373f330b4ab44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3009,7 +2919,72 @@ "width": null } }, - "b388e3307cd345c7bc61d36ea3a1550c": { + "cd0b0ba84a0d45bf9f4be54ddf25849b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9db09f1c53784b5aa8aacb0241b664f2", + "IPY_MODEL_414669ed3d584aa1a29dd4b22815d393", + "IPY_MODEL_b2f97a0408a8407ab9d022393e1088f2" + ], + "layout": "IPY_MODEL_29f911bac27d46ae95913569da572bb3", + "tabbable": null, + "tooltip": null + } + }, + "cfeb4cc50d084a20a91f2b8f05d2d27e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9173c92effe54038939732776eb94841", + "placeholder": "", + "style": "IPY_MODEL_98041ebdf46c48a4b533b5412e3fa1fc", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "d2e76a7a59094b628da265fc18fd86a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3fd086721cc47638898d5bdd53b80dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3062,48 +3037,54 @@ "width": null } }, - "b87e37b7ca394daeb54dd27dc9b06b8d": { + "d4206116c469470ea205a4e1654816f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_700e7e29dd274e4783bbce990c4ebae2", - "placeholder": "", - "style": "IPY_MODEL_bcc253d19d6140508abe24250d2a9bb9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06581ec60fcb4101ac87b47c7b3b1e13", + "IPY_MODEL_ec98e22c9b3544df8f91abc082f66b31", + "IPY_MODEL_321dc429438241d5870f6f8f20065970" + ], + "layout": "IPY_MODEL_dacb0c00be8a4208aae507da19281d22", "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "tooltip": null } }, - "b925862a2fc341008238ab002092e0a1": { + "d4f385c725554207819910c4075d7477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_986ba5eb3cef44e88f593f21a9bc21ed", + "placeholder": "", + "style": "IPY_MODEL_5dbdb16d37ce440b9e10d37ade714848", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "bcc253d19d6140508abe24250d2a9bb9": { + "d79f17f6d17b411ca5a1931b77340f73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3121,49 +3102,60 @@ "text_color": null } }, - "c1dc302d23314d8aa41e7524a5289a54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e55d977e21e44729a77acbd41c421276", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3d4ecbf51052497f94e358c0bc61e202", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "c31df44039b84785a0ce32fcfa321217": { - "model_module": "@jupyter-widgets/controls", + "dacb0c00be8a4208aae507da19281d22": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c34307fc02eb4e6198fba1416ae3013c": { + "ddd26a1802ab43ba9e2075858eb06cd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,7 +3208,7 @@ "width": null } }, - "c69087caa6254c70b35fe18352a6d38e": { + "e28ac4e09129473fb70074b3253f6f30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3269,25 +3261,30 @@ "width": null } }, - "ca4100b56fb14fc3919c3de635714f54": { + "e2b7fceeff1c4bb3ac1efeb05efea7c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f18289a73764f09a55b3363f371a381", + "placeholder": "", + "style": "IPY_MODEL_5131f0effa9648d2a33fc3fe74718165", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 83.1kB/s]" } }, - "ca7030069c4942f9b015fcf926a975ea": { + "e7a22f2d9e30440a8b6575ef83455ec7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,93 +3337,126 @@ "width": null } }, - "d67f28daaf774d3fb33c82627a6fa5b8": { + "ea34f3ec23e543df872ddd587aa03984": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7f56912c08ca4678bceb5ffdc185224a", - "placeholder": "", - "style": "IPY_MODEL_581fe65d10584386bee04a04991b9eb9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b30fa9e19bca474eb6bc8012ceb473c4", + "IPY_MODEL_a5d6b77fe81142c3b6e6447914da506c", + "IPY_MODEL_4ca1aa3c26454b709f9ef91fcc72b3c6" + ], + "layout": "IPY_MODEL_d3fd086721cc47638898d5bdd53b80dc", "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "tooltip": null } }, - "d72b56396ebd482f86d6a367c1c8f249": { + "ec98e22c9b3544df8f91abc082f66b31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f686380132f54de5a9fb324c76587dc9", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_377306e0247942cab99703a9129aa62e", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "de82beb9c7d14aa88d1488cb4c376099": { + "f1f7b154dcfb40f2b3dcaa4ad2be0fd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4b85063b079d46038f4803e5dd1ecb49", - "IPY_MODEL_c1dc302d23314d8aa41e7524a5289a54", - "IPY_MODEL_3c58e4d7bdea49db9131d994297d28bf" - ], - "layout": "IPY_MODEL_b1bcbf7ddd154af2b1f6e892406a803b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e3a53c529364400ab4922ccc1f399d00": { - "model_module": "@jupyter-widgets/controls", + "f56eca5fd3184706b6d258d8e2f1f762": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f61a675245fd44db977feebf40b5aa00", - "placeholder": "", - "style": "IPY_MODEL_641d1541c085452d933a4961324c2e28", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 116MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e55d977e21e44729a77acbd41c421276": { + "f686380132f54de5a9fb324c76587dc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3479,25 +3509,60 @@ "width": null } }, - "e57d940758f447ea8d52891c95bf35b4": { - "model_module": "@jupyter-widgets/controls", + "fbfa7e03ad734296bc6023e849664c2c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ed6b8b909469498d8c9e88f647731f84": { + "fc35dc394e8b4f1da30e980e240c530e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3515,7 +3580,7 @@ "text_color": null } }, - "f61a675245fd44db977feebf40b5aa00": { + "fce3c642ade24c1587aaebd44ac12205": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3567,78 +3632,6 @@ "visibility": null, "width": null } - }, - "f7905c489cb84537b5769dd324649217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87783b23c72d490688c72f5e44365005", - "placeholder": "", - "style": "IPY_MODEL_6d4e2532920c4eb0bc8000ca5be8cf27", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "fac80d0a3a884731b7f69fc543128a25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59da7fad3117497ca6376e47201f8fee", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a351cf20df2e41e796699c2d44b0e0c3", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "fe4bc887f9084149acf51dfd0735d660": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5498b1de340147e580dd0660a92a2f09", - "placeholder": "", - "style": "IPY_MODEL_5c7226798e3e41f3bc03853edf98e974", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 5.73MB/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 929a4d08f..48bd3820d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:30.166846Z", - "iopub.status.busy": "2024-05-15T04:10:30.166679Z", - "iopub.status.idle": "2024-05-15T04:10:34.946863Z", - "shell.execute_reply": "2024-05-15T04:10:34.946294Z" + "iopub.execute_input": "2024-05-21T21:34:44.180162Z", + "iopub.status.busy": "2024-05-21T21:34:44.179642Z", + "iopub.status.idle": "2024-05-21T21:34:49.578817Z", + "shell.execute_reply": "2024-05-21T21:34:49.578193Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:34.949437Z", - "iopub.status.busy": "2024-05-15T04:10:34.949041Z", - "iopub.status.idle": "2024-05-15T04:10:34.952371Z", - "shell.execute_reply": "2024-05-15T04:10:34.951800Z" + "iopub.execute_input": "2024-05-21T21:34:49.581735Z", + "iopub.status.busy": "2024-05-21T21:34:49.581257Z", + "iopub.status.idle": "2024-05-21T21:34:49.584836Z", + "shell.execute_reply": "2024-05-21T21:34:49.584252Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:34.954335Z", - "iopub.status.busy": "2024-05-15T04:10:34.954028Z", - "iopub.status.idle": "2024-05-15T04:10:34.958659Z", - "shell.execute_reply": "2024-05-15T04:10:34.958113Z" + "iopub.execute_input": "2024-05-21T21:34:49.586948Z", + "iopub.status.busy": "2024-05-21T21:34:49.586711Z", + "iopub.status.idle": "2024-05-21T21:34:49.591628Z", + "shell.execute_reply": "2024-05-21T21:34:49.591147Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:34.960915Z", - "iopub.status.busy": "2024-05-15T04:10:34.960611Z", - "iopub.status.idle": "2024-05-15T04:10:36.650790Z", - "shell.execute_reply": "2024-05-15T04:10:36.650177Z" + "iopub.execute_input": "2024-05-21T21:34:49.593971Z", + "iopub.status.busy": "2024-05-21T21:34:49.593549Z", + "iopub.status.idle": "2024-05-21T21:34:51.206136Z", + "shell.execute_reply": "2024-05-21T21:34:51.205373Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:36.653650Z", - "iopub.status.busy": "2024-05-15T04:10:36.653335Z", - "iopub.status.idle": "2024-05-15T04:10:36.664097Z", - "shell.execute_reply": "2024-05-15T04:10:36.663615Z" + "iopub.execute_input": "2024-05-21T21:34:51.208992Z", + "iopub.status.busy": "2024-05-21T21:34:51.208733Z", + "iopub.status.idle": "2024-05-21T21:34:51.220123Z", + "shell.execute_reply": "2024-05-21T21:34:51.219529Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:36.666196Z", - "iopub.status.busy": "2024-05-15T04:10:36.665871Z", - "iopub.status.idle": "2024-05-15T04:10:36.671344Z", - "shell.execute_reply": "2024-05-15T04:10:36.670892Z" + "iopub.execute_input": "2024-05-21T21:34:51.222354Z", + "iopub.status.busy": "2024-05-21T21:34:51.222126Z", + "iopub.status.idle": "2024-05-21T21:34:51.228180Z", + "shell.execute_reply": "2024-05-21T21:34:51.227568Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:36.673375Z", - "iopub.status.busy": "2024-05-15T04:10:36.672982Z", - "iopub.status.idle": "2024-05-15T04:10:37.112222Z", - "shell.execute_reply": "2024-05-15T04:10:37.111679Z" + "iopub.execute_input": "2024-05-21T21:34:51.231023Z", + "iopub.status.busy": "2024-05-21T21:34:51.230548Z", + "iopub.status.idle": "2024-05-21T21:34:51.708052Z", + "shell.execute_reply": "2024-05-21T21:34:51.707436Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:37.114273Z", - "iopub.status.busy": "2024-05-15T04:10:37.114050Z", - "iopub.status.idle": "2024-05-15T04:10:38.705110Z", - "shell.execute_reply": "2024-05-15T04:10:38.704493Z" + "iopub.execute_input": "2024-05-21T21:34:51.710442Z", + "iopub.status.busy": "2024-05-21T21:34:51.710043Z", + "iopub.status.idle": "2024-05-21T21:34:52.282650Z", + "shell.execute_reply": "2024-05-21T21:34:52.282112Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:38.707550Z", - "iopub.status.busy": "2024-05-15T04:10:38.707329Z", - "iopub.status.idle": "2024-05-15T04:10:38.725511Z", - "shell.execute_reply": "2024-05-15T04:10:38.724948Z" + "iopub.execute_input": "2024-05-21T21:34:52.285270Z", + "iopub.status.busy": "2024-05-21T21:34:52.284949Z", + "iopub.status.idle": "2024-05-21T21:34:52.305252Z", + "shell.execute_reply": "2024-05-21T21:34:52.304664Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:38.727546Z", - "iopub.status.busy": "2024-05-15T04:10:38.727219Z", - "iopub.status.idle": "2024-05-15T04:10:38.730263Z", - "shell.execute_reply": "2024-05-15T04:10:38.729828Z" + "iopub.execute_input": "2024-05-21T21:34:52.307667Z", + "iopub.status.busy": "2024-05-21T21:34:52.307285Z", + "iopub.status.idle": "2024-05-21T21:34:52.310622Z", + "shell.execute_reply": "2024-05-21T21:34:52.310131Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:38.732266Z", - "iopub.status.busy": "2024-05-15T04:10:38.731842Z", - "iopub.status.idle": "2024-05-15T04:10:53.334596Z", - "shell.execute_reply": "2024-05-15T04:10:53.333971Z" + "iopub.execute_input": "2024-05-21T21:34:52.312718Z", + "iopub.status.busy": "2024-05-21T21:34:52.312425Z", + "iopub.status.idle": "2024-05-21T21:35:09.073653Z", + "shell.execute_reply": "2024-05-21T21:35:09.073079Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:53.337627Z", - "iopub.status.busy": "2024-05-15T04:10:53.337123Z", - "iopub.status.idle": "2024-05-15T04:10:53.341100Z", - "shell.execute_reply": "2024-05-15T04:10:53.340623Z" + "iopub.execute_input": "2024-05-21T21:35:09.076460Z", + "iopub.status.busy": "2024-05-21T21:35:09.076043Z", + "iopub.status.idle": "2024-05-21T21:35:09.080299Z", + "shell.execute_reply": "2024-05-21T21:35:09.079701Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:53.343190Z", - "iopub.status.busy": "2024-05-15T04:10:53.342869Z", - "iopub.status.idle": "2024-05-15T04:10:54.055418Z", - "shell.execute_reply": "2024-05-15T04:10:54.054840Z" + "iopub.execute_input": "2024-05-21T21:35:09.082850Z", + "iopub.status.busy": "2024-05-21T21:35:09.082634Z", + "iopub.status.idle": "2024-05-21T21:35:09.881179Z", + "shell.execute_reply": "2024-05-21T21:35:09.880601Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.058352Z", - "iopub.status.busy": "2024-05-15T04:10:54.057965Z", - "iopub.status.idle": "2024-05-15T04:10:54.062712Z", - "shell.execute_reply": "2024-05-15T04:10:54.062241Z" + "iopub.execute_input": "2024-05-21T21:35:09.884028Z", + "iopub.status.busy": "2024-05-21T21:35:09.883585Z", + "iopub.status.idle": "2024-05-21T21:35:09.888896Z", + "shell.execute_reply": "2024-05-21T21:35:09.888364Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.065882Z", - "iopub.status.busy": "2024-05-15T04:10:54.064962Z", - "iopub.status.idle": "2024-05-15T04:10:54.174165Z", - "shell.execute_reply": "2024-05-15T04:10:54.173581Z" + "iopub.execute_input": "2024-05-21T21:35:09.891415Z", + "iopub.status.busy": "2024-05-21T21:35:09.891025Z", + "iopub.status.idle": "2024-05-21T21:35:09.995836Z", + "shell.execute_reply": "2024-05-21T21:35:09.995183Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.176588Z", - "iopub.status.busy": "2024-05-15T04:10:54.176207Z", - "iopub.status.idle": "2024-05-15T04:10:54.189250Z", - "shell.execute_reply": "2024-05-15T04:10:54.188807Z" + "iopub.execute_input": "2024-05-21T21:35:09.998518Z", + "iopub.status.busy": "2024-05-21T21:35:09.998045Z", + "iopub.status.idle": "2024-05-21T21:35:10.012118Z", + "shell.execute_reply": "2024-05-21T21:35:10.011485Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.191320Z", - "iopub.status.busy": "2024-05-15T04:10:54.190991Z", - "iopub.status.idle": "2024-05-15T04:10:54.198674Z", - "shell.execute_reply": "2024-05-15T04:10:54.198202Z" + "iopub.execute_input": "2024-05-21T21:35:10.014771Z", + "iopub.status.busy": "2024-05-21T21:35:10.014290Z", + "iopub.status.idle": "2024-05-21T21:35:10.023448Z", + "shell.execute_reply": "2024-05-21T21:35:10.022857Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.200679Z", - "iopub.status.busy": "2024-05-15T04:10:54.200343Z", - "iopub.status.idle": "2024-05-15T04:10:54.204501Z", - "shell.execute_reply": "2024-05-15T04:10:54.204049Z" + "iopub.execute_input": "2024-05-21T21:35:10.025686Z", + "iopub.status.busy": "2024-05-21T21:35:10.025485Z", + "iopub.status.idle": "2024-05-21T21:35:10.030213Z", + "shell.execute_reply": "2024-05-21T21:35:10.029668Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.206501Z", - "iopub.status.busy": "2024-05-15T04:10:54.206182Z", - "iopub.status.idle": "2024-05-15T04:10:54.211730Z", - "shell.execute_reply": "2024-05-15T04:10:54.211182Z" + "iopub.execute_input": "2024-05-21T21:35:10.032427Z", + "iopub.status.busy": "2024-05-21T21:35:10.032093Z", + "iopub.status.idle": "2024-05-21T21:35:10.038390Z", + "shell.execute_reply": "2024-05-21T21:35:10.037776Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.213807Z", - "iopub.status.busy": "2024-05-15T04:10:54.213494Z", - "iopub.status.idle": "2024-05-15T04:10:54.538962Z", - "shell.execute_reply": "2024-05-15T04:10:54.538401Z" + "iopub.execute_input": "2024-05-21T21:35:10.040742Z", + "iopub.status.busy": "2024-05-21T21:35:10.040390Z", + "iopub.status.idle": "2024-05-21T21:35:10.162762Z", + "shell.execute_reply": "2024-05-21T21:35:10.162149Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.541044Z", - "iopub.status.busy": "2024-05-15T04:10:54.540835Z", - "iopub.status.idle": "2024-05-15T04:10:54.643348Z", - "shell.execute_reply": "2024-05-15T04:10:54.642792Z" + "iopub.execute_input": "2024-05-21T21:35:10.165143Z", + "iopub.status.busy": "2024-05-21T21:35:10.164790Z", + "iopub.status.idle": "2024-05-21T21:35:10.281485Z", + "shell.execute_reply": "2024-05-21T21:35:10.280903Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.645488Z", - "iopub.status.busy": "2024-05-15T04:10:54.645296Z", - "iopub.status.idle": "2024-05-15T04:10:54.745875Z", - "shell.execute_reply": "2024-05-15T04:10:54.745385Z" + "iopub.execute_input": "2024-05-21T21:35:10.283977Z", + "iopub.status.busy": "2024-05-21T21:35:10.283478Z", + "iopub.status.idle": "2024-05-21T21:35:10.397413Z", + "shell.execute_reply": "2024-05-21T21:35:10.396874Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.747825Z", - "iopub.status.busy": "2024-05-15T04:10:54.747613Z", - "iopub.status.idle": "2024-05-15T04:10:54.848334Z", - "shell.execute_reply": "2024-05-15T04:10:54.847835Z" + "iopub.execute_input": "2024-05-21T21:35:10.399728Z", + "iopub.status.busy": "2024-05-21T21:35:10.399360Z", + "iopub.status.idle": "2024-05-21T21:35:10.759868Z", + "shell.execute_reply": "2024-05-21T21:35:10.759308Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:54.850388Z", - "iopub.status.busy": "2024-05-15T04:10:54.850174Z", - "iopub.status.idle": "2024-05-15T04:10:54.853246Z", - "shell.execute_reply": "2024-05-15T04:10:54.852813Z" + "iopub.execute_input": "2024-05-21T21:35:10.762073Z", + "iopub.status.busy": "2024-05-21T21:35:10.761877Z", + "iopub.status.idle": "2024-05-21T21:35:10.765420Z", + "shell.execute_reply": "2024-05-21T21:35:10.764849Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02c86eb824a34246bb2407ff4ca9cc0f": { + "0123b0df4bbf4bd68723cb8950e9333c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da387d65ae7649898737ab37aa37f048", + "placeholder": "", + "style": "IPY_MODEL_5bb2f97478674d6d933c51f9b446deff", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 194MB/s]" + } + }, + "037610f39d344b4ea8ba08549bcf808a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,7 +1473,7 @@ "width": null } }, - "07fcbd8198f542898dfb18794e26a316": { + "0474d45a9d194d018988a14449563107": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1465,49 +1488,81 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5641b92b0bc848e58b2b1437a9b3a7f8", + "layout": "IPY_MODEL_d47204b1eedc40ee8642e8aac92b91e9", "placeholder": "", - "style": "IPY_MODEL_f39a2652120745f6bea52afc3e386fac", + "style": "IPY_MODEL_7b3e7e6fd9ea430ab6ff7675685c3917", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 7.58MB/s]" } }, - "0f2130020978401a945a4ac58e317703": { + "057f79fcba22403cb814ca0732f30fe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90b1a9b150fe45c483ee0e6e2b980a3e", + "IPY_MODEL_a544bd234d054273b8506739713b2c40", + "IPY_MODEL_3cf9a3f3dec64f248ae32982172a9744" + ], + "layout": "IPY_MODEL_8d62165b9a0143aa88fe4f6361e9ee2d", + "tabbable": null, + "tooltip": null } }, - "11463cfe0dd340078f46307460e397d0": { + "0f2ec118dcd54893a9db165489aa4fa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c95268416ee0404b8da3507122ecb750", + "IPY_MODEL_efc4d419a72e44ea805692e85b2bc76d", + "IPY_MODEL_49fddd748c7e4beb92566eaefe44bfba" + ], + "layout": "IPY_MODEL_7649d58579f442b081fb85b8a85ede08", + "tabbable": null, + "tooltip": null + } + }, + "13aa57f1b86f4d75ab9d5d52021bb457": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1c910523efff47c092a5f7c1b6781068": { + "172f77b98a7d44a0a0a776a9d8fde3ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,7 +1615,7 @@ "width": null } }, - "1f63538733b54acb82b444f8022aa042": { + "17edb12588f24817a873286dab4cad47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,78 +1668,73 @@ "width": null } }, - "28730d839ba1430fb86481879b64ed8d": { - "model_module": "@jupyter-widgets/base", + "1efd7ff6457e42a78730f35d85089bc3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d00b34db2e7c4477a1cb46c82b73473e", + "IPY_MODEL_2855cee4f7894786a006748fdb38a47f", + "IPY_MODEL_0474d45a9d194d018988a14449563107" + ], + "layout": "IPY_MODEL_e1d00fd5386c4826891b203869786541", + "tabbable": null, + "tooltip": null } }, - "39eb03707cd2477e9a9b0530a060656c": { + "259d905a33da41ca987f1ad2bed690ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "2855cee4f7894786a006748fdb38a47f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3932ca6d80e4cc7b7f6ffc2ffc936ff", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf53c26bdcea4f7dba15724955331750", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } }, - "3bbb08fd56f24f0085104248f852c1ad": { + "2ce9a478096f48e5bc07e24ef4215d0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1699,15 +1749,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93efac399ba544c7b84e43ef6a258182", + "layout": "IPY_MODEL_9532004155bb42b8901260c6ea8319e9", "placeholder": "", - "style": "IPY_MODEL_6054d123c637430eb10e510130340b6c", + "style": "IPY_MODEL_13aa57f1b86f4d75ab9d5d52021bb457", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 686kB/s]" + } + }, + "34186580eb4f4bfa80e40b2f9bc1314b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3739c7eff008420ea95d17a8df97b75a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3bfab88c05514e6296f07fb7f7f3a7a0": { + "39dda9aa815b4364a9dfe30634c51812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1722,15 +1806,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f63538733b54acb82b444f8022aa042", + "layout": "IPY_MODEL_ab2db931547e4140a42bbb02236de196", "placeholder": "", - "style": "IPY_MODEL_bdb19ab57ea74424a1b662c81f3228ef", + "style": "IPY_MODEL_c30b5dbaebed48a98a304a1304aaeb83", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 4.00MB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "3d4b97c288dd4f65bfa1664a6ebde21b": { + "3cf9a3f3dec64f248ae32982172a9744": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1745,15 +1829,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cb1a7a7b84ea482eaeb0f244ff636d6d", + "layout": "IPY_MODEL_b90533e137ab4c74905eebb27614674b", "placeholder": "", - "style": "IPY_MODEL_0f2130020978401a945a4ac58e317703", + "style": "IPY_MODEL_34186580eb4f4bfa80e40b2f9bc1314b", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 2.04k/2.04k [00:00<00:00, 473kB/s]" } }, - "3e588e87d06a48368a6c76673a178800": { + "49fddd748c7e4beb92566eaefe44bfba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1768,15 +1852,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65eea8d1265e47e6979a865cb686ec98", + "layout": "IPY_MODEL_74e31ec63235494181c9fa85adc9dbe3", "placeholder": "", - "style": "IPY_MODEL_4a912f428f384622892be27d111a029f", + "style": "IPY_MODEL_5563c29aa1e64354ad7900c9b96c6663", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 312MB/s]" } }, - "3ffc9e449dbc4f3db052634f1b42235d": { + "4f6429188a194c628b107c58bb15a34d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,7 +1913,7 @@ "width": null } }, - "41b24b9b9a4d41b0bc4fce4f89a03f6a": { + "522d5b1b0a25479888c61d1b58bdb8dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1882,7 +1966,25 @@ "width": null } }, - "4922fa0e36784159b785b2c88a33f0a8": { + "5563c29aa1e64354ad7900c9b96c6663": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5614c788d7ea48bf9df671e6a9b7000c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1898,7 +2000,7 @@ "description_width": "" } }, - "4a912f428f384622892be27d111a029f": { + "5bb2f97478674d6d933c51f9b446deff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1916,31 +2018,23 @@ "text_color": null } }, - "4c6a001cc6044992904d14175c119b6f": { + "69b04b94a90148aa9c692cd4ac2afc7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3bbb08fd56f24f0085104248f852c1ad", - "IPY_MODEL_e59f9f8ff1ba450ca3738475549464b0", - "IPY_MODEL_a09c2518b2dc4b4babf55574dfc05e30" - ], - "layout": "IPY_MODEL_72c6403b20ba4d7d9598f8c7dadc5682", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5641b92b0bc848e58b2b1437a9b3a7f8": { + "6ac1e73ef0494f85902afaa515f452f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1993,64 +2087,167 @@ "width": null } }, - "6054d123c637430eb10e510130340b6c": { - "model_module": "@jupyter-widgets/controls", + "74e31ec63235494181c9fa85adc9dbe3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "61a6f362f061491ab6294a014edb4550": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d315bafb7294df7bffac86aeb6fc858", - "placeholder": "", - "style": "IPY_MODEL_c276cef790c9492b953cad184dcc3ad2", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 74.3MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7649d58579f442b081fb85b8a85ede08": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "622e1a890fd848149d64c670627f3de0": { + "76f718bdbad5470b86f0fbb3c5c6e2e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b3e7e6fd9ea430ab6ff7675685c3917": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80b108fadc3e4e6f90b5ea116001e3ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "65eea8d1265e47e6979a865cb686ec98": { + "8b36367403d743ac957926c815382fa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2103,7 +2300,7 @@ "width": null } }, - "6d315bafb7294df7bffac86aeb6fc858": { + "8d62165b9a0143aa88fe4f6361e9ee2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2156,7 +2353,48 @@ "width": null } }, - "70c44a9375534b0e8aa3532f4fd6d2b1": { + "8e5406a605334e4b84feecf6df82ce1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "90b1a9b150fe45c483ee0e6e2b980a3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_172f77b98a7d44a0a0a776a9d8fde3ea", + "placeholder": "", + "style": "IPY_MODEL_8e5406a605334e4b84feecf6df82ce1a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "912a2ba36faa491ba5f0109c30f58769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2172,17 +2410,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c910523efff47c092a5f7c1b6781068", - "max": 2041.0, + "layout": "IPY_MODEL_8b36367403d743ac957926c815382fa8", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4922fa0e36784159b785b2c88a33f0a8", + "style": "IPY_MODEL_5614c788d7ea48bf9df671e6a9b7000c", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 } }, - "72c6403b20ba4d7d9598f8c7dadc5682": { + "9532004155bb42b8901260c6ea8319e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2235,57 +2473,7 @@ "width": null } }, - "75e43459026b4df1bac396d98c59a7ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41b24b9b9a4d41b0bc4fce4f89a03f6a", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_11463cfe0dd340078f46307460e397d0", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "8ac27676e4184905b39ea24f0f2b1d02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07fcbd8198f542898dfb18794e26a316", - "IPY_MODEL_d451e60ef54c4c15ab8018e5e56937f5", - "IPY_MODEL_61a6f362f061491ab6294a014edb4550" - ], - "layout": "IPY_MODEL_f0f42499152149909ff87cad4355e9c0", - "tabbable": null, - "tooltip": null - } - }, - "8bc71117221d48ea9a4915c1d0b578bd": { + "a3932ca6d80e4cc7b7f6ffc2ffc936ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2338,7 +2526,33 @@ "width": null } }, - "8e11149baefe43c0a088173054952b7f": { + "a544bd234d054273b8506739713b2c40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_037610f39d344b4ea8ba08549bcf808a", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3739c7eff008420ea95d17a8df97b75a", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "ab2178f6d75c4a45b7be5411273677ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2391,7 +2605,7 @@ "width": null } }, - "9191f7d8f9534e558105831aaba0928b": { + "ab2db931547e4140a42bbb02236de196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2444,7 +2658,7 @@ "width": null } }, - "93efac399ba544c7b84e43ef6a258182": { + "b90533e137ab4c74905eebb27614674b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2497,31 +2711,67 @@ "width": null } }, - "9ca16154f4714316a3ecb0422e99842f": { + "bd59fd39441d4b16ab16f81adb9765ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cdea418aff684692aa3cf79499d3c928", - "IPY_MODEL_75e43459026b4df1bac396d98c59a7ec", - "IPY_MODEL_3bfab88c05514e6296f07fb7f7f3a7a0" - ], - "layout": "IPY_MODEL_faef91c9c04b4d3dbdbaa28a0fc55842", - "tabbable": null, - "tooltip": null - } - }, - "a09c2518b2dc4b4babf55574dfc05e30": { + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_522d5b1b0a25479888c61d1b58bdb8dc", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_259d905a33da41ca987f1ad2bed690ef", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "bf53c26bdcea4f7dba15724955331750": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c30b5dbaebed48a98a304a1304aaeb83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c95268416ee0404b8da3507122ecb750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2536,15 +2786,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e11149baefe43c0a088173054952b7f", + "layout": "IPY_MODEL_17edb12588f24817a873286dab4cad47", "placeholder": "", - "style": "IPY_MODEL_d5d62dd1bd3f45dda619072cab836536", + "style": "IPY_MODEL_76f718bdbad5470b86f0fbb3c5c6e2e0", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 48.4MB/s]" + "value": "classifier.ckpt: 100%" } }, - "b01b1fe57c984038be3eeef6a28a9c08": { + "d00b34db2e7c4477a1cb46c82b73473e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ddea903c7a2a4a29912fbfec0ee02f18", + "placeholder": "", + "style": "IPY_MODEL_80b108fadc3e4e6f90b5ea116001e3ce", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "d05c647195f34bb1900bda4f93df4b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2559,16 +2832,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3e588e87d06a48368a6c76673a178800", - "IPY_MODEL_70c44a9375534b0e8aa3532f4fd6d2b1", - "IPY_MODEL_bb12ed030dd84031ae550928091ce94b" + "IPY_MODEL_39dda9aa815b4364a9dfe30634c51812", + "IPY_MODEL_bd59fd39441d4b16ab16f81adb9765ed", + "IPY_MODEL_0123b0df4bbf4bd68723cb8950e9333c" ], - "layout": "IPY_MODEL_3ffc9e449dbc4f3db052634f1b42235d", + "layout": "IPY_MODEL_6ac1e73ef0494f85902afaa515f452f7", "tabbable": null, "tooltip": null } }, - "b3a30f8830314a438abdfa6893ad7b40": { + "d47204b1eedc40ee8642e8aac92b91e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2621,149 +2894,7 @@ "width": null } }, - "bb12ed030dd84031ae550928091ce94b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_de9fddccc351400b8fc60997ff20a7ff", - "placeholder": "", - "style": "IPY_MODEL_39eb03707cd2477e9a9b0530a060656c", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 451kB/s]" - } - }, - "bdb19ab57ea74424a1b662c81f3228ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c276cef790c9492b953cad184dcc3ad2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c741836a455f400d975800b631f8d6d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c95e46d417af4cf78a2fb2116f9f0a87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d4b97c288dd4f65bfa1664a6ebde21b", - "IPY_MODEL_ff659c25e94b443e9487083317619554", - "IPY_MODEL_ca2a4a78ab6544d0979aacbf39c244bd" - ], - "layout": "IPY_MODEL_28730d839ba1430fb86481879b64ed8d", - "tabbable": null, - "tooltip": null - } - }, - "c97555b9ebd842b0958b062355f11a46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ca2a4a78ab6544d0979aacbf39c244bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df008eed8dcf471c9186bebde71bf2cb", - "placeholder": "", - "style": "IPY_MODEL_c741836a455f400d975800b631f8d6d7", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 816kB/s]" - } - }, - "cb1a7a7b84ea482eaeb0f244ff636d6d": { + "da387d65ae7649898737ab37aa37f048": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2816,72 +2947,7 @@ "width": null } }, - "cdea418aff684692aa3cf79499d3c928": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3a30f8830314a438abdfa6893ad7b40", - "placeholder": "", - "style": "IPY_MODEL_c97555b9ebd842b0958b062355f11a46", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "cebffc0f9aa5481ebee5d1eabede139c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d451e60ef54c4c15ab8018e5e56937f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_02c86eb824a34246bb2407ff4ca9cc0f", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e04675eb11ca4938895df1e1b91fb794", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "d5d62dd1bd3f45dda619072cab836536": { + "dc8b27692b1542c8bbe386ce3e0efa50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2899,7 +2965,7 @@ "text_color": null } }, - "de9fddccc351400b8fc60997ff20a7ff": { + "ddea903c7a2a4a29912fbfec0ee02f18": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2952,7 +3018,7 @@ "width": null } }, - "df008eed8dcf471c9186bebde71bf2cb": { + "e1d00fd5386c4826891b203869786541": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3005,23 +3071,30 @@ "width": null } }, - "e04675eb11ca4938895df1e1b91fb794": { + "e8894347ecd149a2ad66ce23067a0801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5a8ca3631774000967fbfa9e4c54356", + "placeholder": "", + "style": "IPY_MODEL_dc8b27692b1542c8bbe386ce3e0efa50", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "e59f9f8ff1ba450ca3738475549464b0": { + "efc4d419a72e44ea805692e85b2bc76d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3037,88 +3110,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9191f7d8f9534e558105831aaba0928b", - "max": 16887676.0, + "layout": "IPY_MODEL_4f6429188a194c628b107c58bb15a34d", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_cebffc0f9aa5481ebee5d1eabede139c", + "style": "IPY_MODEL_69b04b94a90148aa9c692cd4ac2afc7e", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "f0f42499152149909ff87cad4355e9c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f39a2652120745f6bea52afc3e386fac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "faef91c9c04b4d3dbdbaa28a0fc55842": { + "f5a8ca3631774000967fbfa9e4c54356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,30 +3173,28 @@ "width": null } }, - "ff659c25e94b443e9487083317619554": { + "f6838eacf8084fffa109850a3587e712": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8bc71117221d48ea9a4915c1d0b578bd", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_622e1a890fd848149d64c670627f3de0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8894347ecd149a2ad66ce23067a0801", + "IPY_MODEL_912a2ba36faa491ba5f0109c30f58769", + "IPY_MODEL_2ce9a478096f48e5bc07e24ef4215d0a" + ], + "layout": "IPY_MODEL_ab2178f6d75c4a45b7be5411273677ae", "tabbable": null, - "tooltip": null, - "value": 3201.0 + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index fb88d1dd9..5f4ccfa6c 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:58.561006Z", - "iopub.status.busy": "2024-05-15T04:10:58.560840Z", - "iopub.status.idle": "2024-05-15T04:10:58.571189Z", - "shell.execute_reply": "2024-05-15T04:10:58.570762Z" + "iopub.execute_input": "2024-05-21T21:35:15.907040Z", + "iopub.status.busy": "2024-05-21T21:35:15.906860Z", + "iopub.status.idle": "2024-05-21T21:35:15.918390Z", + "shell.execute_reply": "2024-05-21T21:35:15.917839Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:58.573140Z", - "iopub.status.busy": "2024-05-15T04:10:58.572976Z", - "iopub.status.idle": "2024-05-15T04:10:59.715791Z", - "shell.execute_reply": "2024-05-15T04:10:59.715191Z" + "iopub.execute_input": "2024-05-21T21:35:15.921098Z", + "iopub.status.busy": "2024-05-21T21:35:15.920894Z", + "iopub.status.idle": "2024-05-21T21:35:17.230681Z", + "shell.execute_reply": "2024-05-21T21:35:17.230034Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.718391Z", - "iopub.status.busy": "2024-05-15T04:10:59.718128Z", - "iopub.status.idle": "2024-05-15T04:10:59.736344Z", - "shell.execute_reply": "2024-05-15T04:10:59.735788Z" + "iopub.execute_input": "2024-05-21T21:35:17.233770Z", + "iopub.status.busy": "2024-05-21T21:35:17.233093Z", + "iopub.status.idle": "2024-05-21T21:35:17.253916Z", + "shell.execute_reply": "2024-05-21T21:35:17.253432Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.738685Z", - "iopub.status.busy": "2024-05-15T04:10:59.738372Z", - "iopub.status.idle": "2024-05-15T04:10:59.757470Z", - "shell.execute_reply": "2024-05-15T04:10:59.756999Z" + "iopub.execute_input": "2024-05-21T21:35:17.256545Z", + "iopub.status.busy": "2024-05-21T21:35:17.256341Z", + "iopub.status.idle": "2024-05-21T21:35:17.279841Z", + "shell.execute_reply": "2024-05-21T21:35:17.279324Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.759555Z", - "iopub.status.busy": "2024-05-15T04:10:59.759231Z", - "iopub.status.idle": "2024-05-15T04:10:59.774036Z", - "shell.execute_reply": "2024-05-15T04:10:59.773590Z" + "iopub.execute_input": "2024-05-21T21:35:17.282606Z", + "iopub.status.busy": "2024-05-21T21:35:17.282184Z", + "iopub.status.idle": "2024-05-21T21:35:17.300518Z", + "shell.execute_reply": "2024-05-21T21:35:17.300016Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.776040Z", - "iopub.status.busy": "2024-05-15T04:10:59.775692Z", - "iopub.status.idle": "2024-05-15T04:10:59.789467Z", - "shell.execute_reply": "2024-05-15T04:10:59.788913Z" + "iopub.execute_input": "2024-05-21T21:35:17.303093Z", + "iopub.status.busy": "2024-05-21T21:35:17.302723Z", + "iopub.status.idle": "2024-05-21T21:35:17.319722Z", + "shell.execute_reply": "2024-05-21T21:35:17.319195Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.791844Z", - "iopub.status.busy": "2024-05-15T04:10:59.791354Z", - "iopub.status.idle": "2024-05-15T04:10:59.980123Z", - "shell.execute_reply": "2024-05-15T04:10:59.979567Z" + "iopub.execute_input": "2024-05-21T21:35:17.322331Z", + "iopub.status.busy": "2024-05-21T21:35:17.321939Z", + "iopub.status.idle": "2024-05-21T21:35:17.533767Z", + "shell.execute_reply": "2024-05-21T21:35:17.533124Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:10:59.982478Z", - "iopub.status.busy": "2024-05-15T04:10:59.982165Z", - "iopub.status.idle": "2024-05-15T04:11:00.285782Z", - "shell.execute_reply": "2024-05-15T04:11:00.285223Z" + "iopub.execute_input": "2024-05-21T21:35:17.536213Z", + "iopub.status.busy": "2024-05-21T21:35:17.536009Z", + "iopub.status.idle": "2024-05-21T21:35:17.918379Z", + "shell.execute_reply": "2024-05-21T21:35:17.917797Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:00.288285Z", - "iopub.status.busy": "2024-05-15T04:11:00.287828Z", - "iopub.status.idle": "2024-05-15T04:11:00.325523Z", - "shell.execute_reply": "2024-05-15T04:11:00.325017Z" + "iopub.execute_input": "2024-05-21T21:35:17.920977Z", + "iopub.status.busy": "2024-05-21T21:35:17.920455Z", + "iopub.status.idle": "2024-05-21T21:35:17.960765Z", + "shell.execute_reply": "2024-05-21T21:35:17.960260Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:00.328035Z", - "iopub.status.busy": "2024-05-15T04:11:00.327631Z", - "iopub.status.idle": "2024-05-15T04:11:01.996954Z", - "shell.execute_reply": "2024-05-15T04:11:01.996343Z" + "iopub.execute_input": "2024-05-21T21:35:17.963315Z", + "iopub.status.busy": "2024-05-21T21:35:17.962937Z", + "iopub.status.idle": "2024-05-21T21:35:19.849898Z", + "shell.execute_reply": "2024-05-21T21:35:19.849261Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:01.999583Z", - "iopub.status.busy": "2024-05-15T04:11:01.999086Z", - "iopub.status.idle": "2024-05-15T04:11:02.028833Z", - "shell.execute_reply": "2024-05-15T04:11:02.028239Z" + "iopub.execute_input": "2024-05-21T21:35:19.852548Z", + "iopub.status.busy": "2024-05-21T21:35:19.852136Z", + "iopub.status.idle": "2024-05-21T21:35:19.886171Z", + "shell.execute_reply": "2024-05-21T21:35:19.885501Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:02.031460Z", - "iopub.status.busy": "2024-05-15T04:11:02.031122Z", - "iopub.status.idle": "2024-05-15T04:11:02.064038Z", - "shell.execute_reply": "2024-05-15T04:11:02.063462Z" + "iopub.execute_input": "2024-05-21T21:35:19.889074Z", + "iopub.status.busy": "2024-05-21T21:35:19.888624Z", + "iopub.status.idle": "2024-05-21T21:35:19.925339Z", + "shell.execute_reply": "2024-05-21T21:35:19.924700Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:02.066502Z", - "iopub.status.busy": "2024-05-15T04:11:02.066060Z", - "iopub.status.idle": "2024-05-15T04:11:07.176197Z", - "shell.execute_reply": "2024-05-15T04:11:07.175586Z" + "iopub.execute_input": "2024-05-21T21:35:19.928069Z", + "iopub.status.busy": "2024-05-21T21:35:19.927589Z", + "iopub.status.idle": "2024-05-21T21:35:25.046894Z", + "shell.execute_reply": "2024-05-21T21:35:25.046297Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9aae619b2349461ea6456a9b612356e1", + "model_id": "6ed01012663f48eda5b945102a81f7a6", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:07.178458Z", - "iopub.status.busy": "2024-05-15T04:11:07.178271Z", - "iopub.status.idle": "2024-05-15T04:11:12.501596Z", - "shell.execute_reply": "2024-05-15T04:11:12.501017Z" + "iopub.execute_input": "2024-05-21T21:35:25.049502Z", + "iopub.status.busy": "2024-05-21T21:35:25.049028Z", + "iopub.status.idle": "2024-05-21T21:35:30.378872Z", + "shell.execute_reply": "2024-05-21T21:35:30.378226Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f3472b6dceb48bdb7408c7250a1e3c9", + "model_id": "76587784ecba47ee9138d724d5ae0a10", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.504204Z", - "iopub.status.busy": "2024-05-15T04:11:12.504013Z", - "iopub.status.idle": "2024-05-15T04:11:12.539345Z", - "shell.execute_reply": "2024-05-15T04:11:12.538775Z" + "iopub.execute_input": "2024-05-21T21:35:30.381698Z", + "iopub.status.busy": "2024-05-21T21:35:30.381195Z", + "iopub.status.idle": "2024-05-21T21:35:30.423188Z", + "shell.execute_reply": "2024-05-21T21:35:30.422622Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.541527Z", - "iopub.status.busy": "2024-05-15T04:11:12.541138Z", - "iopub.status.idle": "2024-05-15T04:11:12.572012Z", - "shell.execute_reply": "2024-05-15T04:11:12.571423Z" + "iopub.execute_input": "2024-05-21T21:35:30.425457Z", + "iopub.status.busy": "2024-05-21T21:35:30.425110Z", + "iopub.status.idle": "2024-05-21T21:35:30.457592Z", + "shell.execute_reply": "2024-05-21T21:35:30.456994Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.574246Z", - "iopub.status.busy": "2024-05-15T04:11:12.573807Z", - "iopub.status.idle": "2024-05-15T04:11:12.618558Z", - "shell.execute_reply": "2024-05-15T04:11:12.617946Z" + "iopub.execute_input": "2024-05-21T21:35:30.459899Z", + "iopub.status.busy": "2024-05-21T21:35:30.459479Z", + "iopub.status.idle": "2024-05-21T21:35:30.507532Z", + "shell.execute_reply": "2024-05-21T21:35:30.506916Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.620783Z", - "iopub.status.busy": "2024-05-15T04:11:12.620445Z", - "iopub.status.idle": "2024-05-15T04:11:12.647626Z", - "shell.execute_reply": "2024-05-15T04:11:12.647062Z" + "iopub.execute_input": "2024-05-21T21:35:30.509993Z", + "iopub.status.busy": "2024-05-21T21:35:30.509564Z", + "iopub.status.idle": "2024-05-21T21:35:30.539244Z", + "shell.execute_reply": "2024-05-21T21:35:30.538699Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.649784Z", - "iopub.status.busy": "2024-05-15T04:11:12.649607Z", - "iopub.status.idle": "2024-05-15T04:11:12.676481Z", - "shell.execute_reply": "2024-05-15T04:11:12.676035Z" + "iopub.execute_input": "2024-05-21T21:35:30.541882Z", + "iopub.status.busy": "2024-05-21T21:35:30.541524Z", + "iopub.status.idle": "2024-05-21T21:35:30.572092Z", + "shell.execute_reply": "2024-05-21T21:35:30.571563Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:12.678525Z", - "iopub.status.busy": "2024-05-15T04:11:12.678350Z", - "iopub.status.idle": "2024-05-15T04:11:23.104173Z", - "shell.execute_reply": "2024-05-15T04:11:23.103531Z" + "iopub.execute_input": "2024-05-21T21:35:30.574590Z", + "iopub.status.busy": "2024-05-21T21:35:30.574227Z", + "iopub.status.idle": "2024-05-21T21:35:41.016209Z", + "shell.execute_reply": "2024-05-21T21:35:41.015534Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d12121c3491349269aeaa0cdd16c9056", + "model_id": "8f32160ff8ee43c8aed2e600fc1539f8", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cfc034ce26224427ae9ee95ffc4903c1", + "model_id": "aaad76a51418420d8e3dc2d1226f7a66", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:23.106833Z", - "iopub.status.busy": "2024-05-15T04:11:23.106653Z", - "iopub.status.idle": "2024-05-15T04:11:23.191352Z", - "shell.execute_reply": "2024-05-15T04:11:23.190738Z" + "iopub.execute_input": "2024-05-21T21:35:41.019094Z", + "iopub.status.busy": "2024-05-21T21:35:41.018768Z", + "iopub.status.idle": "2024-05-21T21:35:41.114254Z", + "shell.execute_reply": "2024-05-21T21:35:41.113563Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:23.193525Z", - "iopub.status.busy": "2024-05-15T04:11:23.193303Z", - "iopub.status.idle": "2024-05-15T04:11:23.230003Z", - "shell.execute_reply": "2024-05-15T04:11:23.229407Z" + "iopub.execute_input": "2024-05-21T21:35:41.116574Z", + "iopub.status.busy": "2024-05-21T21:35:41.116326Z", + "iopub.status.idle": "2024-05-21T21:35:41.150163Z", + "shell.execute_reply": "2024-05-21T21:35:41.149523Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:23.232283Z", - "iopub.status.busy": "2024-05-15T04:11:23.232100Z", - "iopub.status.idle": "2024-05-15T04:11:23.259357Z", - "shell.execute_reply": "2024-05-15T04:11:23.258858Z" + "iopub.execute_input": "2024-05-21T21:35:41.152922Z", + "iopub.status.busy": "2024-05-21T21:35:41.152578Z", + "iopub.status.idle": "2024-05-21T21:35:41.184513Z", + "shell.execute_reply": "2024-05-21T21:35:41.183863Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:23.261526Z", - "iopub.status.busy": "2024-05-15T04:11:23.261333Z", - "iopub.status.idle": "2024-05-15T04:11:33.727738Z", - "shell.execute_reply": "2024-05-15T04:11:33.727202Z" + "iopub.execute_input": "2024-05-21T21:35:41.187212Z", + "iopub.status.busy": "2024-05-21T21:35:41.186839Z", + "iopub.status.idle": "2024-05-21T21:35:51.681138Z", + "shell.execute_reply": "2024-05-21T21:35:51.680499Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e374879c3a65446c8735cbf6e8e76d23", + "model_id": "0411e2aff1e5489586b655bd51224f26", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45f76dc4a4f340938b5f8d810d618c99", + "model_id": "d4c0429c6e2945718d65d1c01b6b9e57", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:33.730457Z", - "iopub.status.busy": "2024-05-15T04:11:33.730272Z", - "iopub.status.idle": "2024-05-15T04:11:33.760170Z", - "shell.execute_reply": "2024-05-15T04:11:33.759694Z" + "iopub.execute_input": "2024-05-21T21:35:51.684015Z", + "iopub.status.busy": "2024-05-21T21:35:51.683676Z", + "iopub.status.idle": "2024-05-21T21:35:51.716370Z", + "shell.execute_reply": "2024-05-21T21:35:51.715799Z" } }, "outputs": [ @@ -1863,7 +1863,90 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03af6fa80e8e44f188200dfc2fbb0820": { + "0411e2aff1e5489586b655bd51224f26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce04afcfb39d483fa64a148fc47535b9", + "IPY_MODEL_76ba29158747472899babfca3ac17704", + "IPY_MODEL_193a4c33a8254473a8a97b225d17e10c" + ], + "layout": "IPY_MODEL_d319e59e84fa4d609ea16ab879a38196", + "tabbable": null, + "tooltip": null + } + }, + "07bdbcd7b31b4aa2b7ca7a762c3f7ad2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "07f4e1b426254b8c834dae88f2e20582": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "09619c4276d340d58440e047001493bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5adca47a8394412caf9e8d8f606c1507", + "placeholder": "", + "style": "IPY_MODEL_4ca37ec0bf39400dbb723ac0c7f95f25", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00, 1.32it/s]" + } + }, + "0b6c62a5453a4bb6bbd9376d35ad9208": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,7 +1999,7 @@ "width": null } }, - "04b398d4ffde4115bbf6d27a5a782236": { + "0c1915e6f7e3481a892a5db5aafa3091": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1932,33 +2015,46 @@ "description_width": "" } }, - "06961efccfef4111826cc00e4bcb082e": { + "12f44da4f1e444fa85bf51b2e4cdf8d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "193a4c33a8254473a8a97b225d17e10c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c89c2449a4234cf18ff11cbe0263b347", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04b398d4ffde4115bbf6d27a5a782236", + "layout": "IPY_MODEL_228ba499210b480397042572bafa03ad", + "placeholder": "", + "style": "IPY_MODEL_b109a883d1e844a29604eea50180d90a", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": " 50/50 [00:05<00:00, 9.73it/s]" } }, - "07bf0f163e494402b8b9b745799b2154": { + "1bbdde2b573e4c168ab7f28bf0735ff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2011,48 +2107,7 @@ "width": null } }, - "13fb1ac8d2cb499a8c65ddfb002eac76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56e5fb58377b41d8935580dc13b1ee08", - "placeholder": "", - "style": "IPY_MODEL_3cd96d5df55f49bd9c8db07c3aaf1868", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "1b6ab96f7d574bcaa478d028c207d751": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "258d089fa53b4f1199eafeac44d066b3": { + "1f4b75d95e2e4a8085424632ae43e500": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2105,7 +2160,7 @@ "width": null } }, - "2886e711759b471abb657f92d34f9bce": { + "228ba499210b480397042572bafa03ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2213,30 @@ "width": null } }, - "2ba4e4434f5d47c997fac659239d22b2": { + "244080bc3aa946c0ba889f234faf2ac5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fae04ed40fcf42f68c8297327d82aca8", + "placeholder": "", + "style": "IPY_MODEL_07bdbcd7b31b4aa2b7ca7a762c3f7ad2", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "3246f4f4fd0948a5a07b5fa80178bc4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,31 +2289,56 @@ "width": null } }, - "2f3472b6dceb48bdb7408c7250a1e3c9": { + "33a530c9929f43b3a22895ae9a617dba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_84e9026c8fda4c9b8e1c903c776f72e3", - "IPY_MODEL_06961efccfef4111826cc00e4bcb082e", - "IPY_MODEL_e8bbfe50c89949b991275611dd4fc02a" - ], - "layout": "IPY_MODEL_258d089fa53b4f1199eafeac44d066b3", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dca6af0134b2456c86a9606f00c4500f", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c107f5bc2e52458294447aa391f875d0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 7.0 + } + }, + "33a766e2c9ff4f8fb35e16ae5becd18f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39e3287ee2b44708aca66be10c62cd62", + "placeholder": "", + "style": "IPY_MODEL_dff07c2860bc4ae38b23b2e66bba2ff3", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00, 1.32it/s]" } }, - "31625a2dc7b44fb48cea041ea8c762ff": { + "3458a4d0b1144a1d99d7cf40223e34d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2288,7 +2391,7 @@ "width": null } }, - "3cd96d5df55f49bd9c8db07c3aaf1868": { + "3529f66761d948ea8ab7da878a73363e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2306,33 +2409,7 @@ "text_color": null } }, - "459b0a7e89e74cdbb534b145ed61f7a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e339f415d0514880a945eca5c34f92df", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e81a033d9c8941c9a87b3de5b5fe9fbe", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "45d3c0d05b294a87a7ef3afc1ac6f19d": { + "3680394e5e7a40e08f243b6d6f8f5ac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2350,47 +2427,7 @@ "text_color": null } }, - "45f76dc4a4f340938b5f8d810d618c99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_498eea719ad3413090105bab00d71361", - "IPY_MODEL_f4ee33e66522487381bcb4182db34349", - "IPY_MODEL_d3a9d62390ee41a8940aa29ab4ec54d3" - ], - "layout": "IPY_MODEL_31625a2dc7b44fb48cea041ea8c762ff", - "tabbable": null, - "tooltip": null - } - }, - "483e7f21dcb84322b8c3dd7a1762a1d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "498eea719ad3413090105bab00d71361": { + "38ddee12fa364f89bafbb51a04501aa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2405,69 +2442,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2886e711759b471abb657f92d34f9bce", + "layout": "IPY_MODEL_f977b77065744046a57980e06580c032", "placeholder": "", - "style": "IPY_MODEL_45d3c0d05b294a87a7ef3afc1ac6f19d", + "style": "IPY_MODEL_db336ed450d54aabbf60a4ee58c86132", "tabbable": null, "tooltip": null, "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "4c57e901e7a4440b99be8864bb1e2514": { - "model_module": "@jupyter-widgets/controls", + "39e3287ee2b44708aca66be10c62cd62": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4dca3a8b7d02498fad0704ad6e776ce9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5628f7a911954178a7dd0f55bbb98ec9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "56e5fb58377b41d8935580dc13b1ee08": { + "3f57374a20a64b33afed0227211dbd0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2520,30 +2556,7 @@ "width": null } }, - "5b0d6d1ca26842cc98ce7c2a2ce7ee7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d5c2ab5c3334dd6aa6ba38a92d2fafe", - "placeholder": "", - "style": "IPY_MODEL_4dca3a8b7d02498fad0704ad6e776ce9", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "5d5c2ab5c3334dd6aa6ba38a92d2fafe": { + "48fce04c186b47c291402a739bb6c0eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2596,76 +2609,69 @@ "width": null } }, - "6477ec9e08be41a8bc1736b079d74588": { + "4ca37ec0bf39400dbb723ac0c7f95f25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3aa02c3d6134ef8be775fb5cf32a586", - "placeholder": "", - "style": "IPY_MODEL_d8be5329589f494ab1d149d10b55668e", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00, 9.86it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "69e4e9af7f924d41bbd017105d73f9b1": { + "4ea71d033b224a8f8e1ef01ecd99c4da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b421193b8f704aa9addd2ac8273926e9", - "placeholder": "", - "style": "IPY_MODEL_9fd4e3b6843e4ada88d47b24039d4766", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6d8761786d05446c996a9f91c65a6143": { + "530314d0763a42cea61abe5edbd43d85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae540a81ecee413cbecfbaa65a80cbc1", - "placeholder": "", - "style": "IPY_MODEL_9c11a887f4f4458cb6eeffd80883d6e2", + "layout": "IPY_MODEL_78e32dc689e6445fb7e29374bb03fd6b", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9e205e30e81445e8ae927640cbf5962d", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "768367e060df495fb1009e197be4c957": { + "5adca47a8394412caf9e8d8f606c1507": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2718,7 +2724,31 @@ "width": null } }, - "78e092fe96af4e549330282c85ec87f8": { + "6ed01012663f48eda5b945102a81f7a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e06cf8b12af4912b9db7e7b6d66901e", + "IPY_MODEL_c4fd2300abe14c479353b7de695fa8b3", + "IPY_MODEL_a680d4da470b433d917fc8c7140bc5ba" + ], + "layout": "IPY_MODEL_1bbdde2b573e4c168ab7f28bf0735ff6", + "tabbable": null, + "tooltip": null + } + }, + "7185af2534d9494b9abc9dd441d0f091": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2771,95 +2801,57 @@ "width": null } }, - "7a020cc57acb4590b5b0a9dfac318f0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_907b87a7a4a149e8b13f2d995d394b39", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8ad93f5e598c4f77b57335422e168ac0", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "84e9026c8fda4c9b8e1c903c776f72e3": { + "76587784ecba47ee9138d724d5ae0a10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eb42128750d648e99d152f55fe1af55c", - "placeholder": "", - "style": "IPY_MODEL_ba9baa2b092c4d20aecb70d2b3764484", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38ddee12fa364f89bafbb51a04501aa1", + "IPY_MODEL_33a530c9929f43b3a22895ae9a617dba", + "IPY_MODEL_09619c4276d340d58440e047001493bd" + ], + "layout": "IPY_MODEL_b88048ed6b7045d1893f0dcb676fec5c", "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "tooltip": null } }, - "891c448b16224e0c9be7f2739cf4cba1": { + "76ba29158747472899babfca3ac17704": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03af6fa80e8e44f188200dfc2fbb0820", - "placeholder": "", - "style": "IPY_MODEL_1b6ab96f7d574bcaa478d028c207d751", + "layout": "IPY_MODEL_e31ca218defc4049bca7c30af7f2085d", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cbcec87a86c4330b69efb91c7309a0d", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00, 9.81it/s]" - } - }, - "8ad93f5e598c4f77b57335422e168ac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 50.0 } }, - "907b87a7a4a149e8b13f2d995d394b39": { + "78e32dc689e6445fb7e29374bb03fd6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2912,42 +2904,16 @@ "width": null } }, - "941940b4e66e43cd8d590ca2fef7f805": { - "model_module": "@jupyter-widgets/controls", + "8280364f6032452eb4454ef75ee2c467": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9de094d73ac4d7ca5e916c34866a668", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e0c81ff1c1f945d29092fa2f3c127f72", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "97d9d0811b3646ee911a0b0d737492fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -2991,67 +2957,109 @@ "width": null } }, - "9aae619b2349461ea6456a9b612356e1": { + "83d477bd54b7403cb924e179f0eb6768": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6d8761786d05446c996a9f91c65a6143", - "IPY_MODEL_a529c228a7ac4943af448cc6ed1389d2", - "IPY_MODEL_6477ec9e08be41a8bc1736b079d74588" - ], - "layout": "IPY_MODEL_a8e2e5db60f647a4a15d8ffc8ca938ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d68b37f3771e4ee882140c3ea80783b0", + "placeholder": "", + "style": "IPY_MODEL_3680394e5e7a40e08f243b6d6f8f5ac9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 7/7 [00:05<00:00, 1.32it/s]" } }, - "9c11a887f4f4458cb6eeffd80883d6e2": { + "8cbcec87a86c4330b69efb91c7309a0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9fd4e3b6843e4ada88d47b24039d4766": { + "8e06cf8b12af4912b9db7e7b6d66901e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7794593e0a04dd084851f35220ed40b", + "placeholder": "", + "style": "IPY_MODEL_3529f66761d948ea8ab7da878a73363e", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "8f32160ff8ee43c8aed2e600fc1539f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b132321cca2840798809be114e726427", + "IPY_MODEL_f6eee7d9787d4216b4b654e0f9452132", + "IPY_MODEL_db415b6d945a4d5eb05b7384ddebd8c9" + ], + "layout": "IPY_MODEL_3246f4f4fd0948a5a07b5fa80178bc4d", + "tabbable": null, + "tooltip": null + } + }, + "9e205e30e81445e8ae927640cbf5962d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a51b7ec1200d4c2dbf4e90eff456acb4": { + "a0529a8d6bb748499617c95af46c89d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3104,139 +3112,72 @@ "width": null } }, - "a529c228a7ac4943af448cc6ed1389d2": { + "a680d4da470b433d917fc8c7140bc5ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78e092fe96af4e549330282c85ec87f8", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fbb27248d8d145509d47cfd644403355", + "layout": "IPY_MODEL_d3b1310af88b43d98005789a190478af", + "placeholder": "", + "style": "IPY_MODEL_4ea71d033b224a8f8e1ef01ecd99c4da", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 50/50 [00:05<00:00, 9.85it/s]" } }, - "a8e2e5db60f647a4a15d8ffc8ca938ef": { - "model_module": "@jupyter-widgets/base", + "aaad76a51418420d8e3dc2d1226f7a66": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fc647a979a3e42e6ad1acc871f747c35", + "IPY_MODEL_d18020f1437943a9ad4438912cdff764", + "IPY_MODEL_33a766e2c9ff4f8fb35e16ae5becd18f" + ], + "layout": "IPY_MODEL_8280364f6032452eb4454ef75ee2c467", + "tabbable": null, + "tooltip": null } }, - "ae540a81ecee413cbecfbaa65a80cbc1": { - "model_module": "@jupyter-widgets/base", + "b109a883d1e844a29604eea50180d90a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "af029ce260454176b3459602664a1b98": { + "b132321cca2840798809be114e726427": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3251,15 +3192,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d8615f481910499587a7c45e65039e05", + "layout": "IPY_MODEL_7185af2534d9494b9abc9dd441d0f091", "placeholder": "", - "style": "IPY_MODEL_4c57e901e7a4440b99be8864bb1e2514", + "style": "IPY_MODEL_c3f1e9a3bca74189938d3e2665ac7f57", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00, 9.77it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "b421193b8f704aa9addd2ac8273926e9": { + "b88048ed6b7045d1893f0dcb676fec5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3312,25 +3253,134 @@ "width": null } }, - "ba9baa2b092c4d20aecb70d2b3764484": { + "bbd61057b0e54cf39869c22975d7fa44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c107f5bc2e52458294447aa391f875d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c3f1e9a3bca74189938d3e2665ac7f57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4fd2300abe14c479353b7de695fa8b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3458a4d0b1144a1d99d7cf40223e34d4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12f44da4f1e444fa85bf51b2e4cdf8d8", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "ce04afcfb39d483fa64a148fc47535b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0529a8d6bb748499617c95af46c89d3", + "placeholder": "", + "style": "IPY_MODEL_d42b536c5d90476890228787bcd53c72", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "d18020f1437943a9ad4438912cdff764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_48fce04c186b47c291402a739bb6c0eb", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f984d56925f04c069691e6dd56d236d3", + "tabbable": null, + "tooltip": null, + "value": 7.0 } }, - "c65ffe6d57914eefb7d9f60c6faa356a": { + "d319e59e84fa4d609ea16ab879a38196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3383,7 +3433,7 @@ "width": null } }, - "c89c2449a4234cf18ff11cbe0263b347": { + "d3b1310af88b43d98005789a190478af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3436,31 +3486,25 @@ "width": null } }, - "cfc034ce26224427ae9ee95ffc4903c1": { + "d42b536c5d90476890228787bcd53c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69e4e9af7f924d41bbd017105d73f9b1", - "IPY_MODEL_459b0a7e89e74cdbb534b145ed61f7a6", - "IPY_MODEL_f86ac7ff9b2e43d388da9af0def90ae6" - ], - "layout": "IPY_MODEL_2ba4e4434f5d47c997fac659239d22b2", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d12121c3491349269aeaa0cdd16c9056": { + "d4c0429c6e2945718d65d1c01b6b9e57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3475,39 +3519,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5b0d6d1ca26842cc98ce7c2a2ce7ee7a", - "IPY_MODEL_941940b4e66e43cd8d590ca2fef7f805", - "IPY_MODEL_891c448b16224e0c9be7f2739cf4cba1" + "IPY_MODEL_244080bc3aa946c0ba889f234faf2ac5", + "IPY_MODEL_530314d0763a42cea61abe5edbd43d85", + "IPY_MODEL_83d477bd54b7403cb924e179f0eb6768" ], - "layout": "IPY_MODEL_97d9d0811b3646ee911a0b0d737492fb", + "layout": "IPY_MODEL_3f57374a20a64b33afed0227211dbd0c", "tabbable": null, "tooltip": null } }, - "d3a9d62390ee41a8940aa29ab4ec54d3": { - "model_module": "@jupyter-widgets/controls", + "d68b37f3771e4ee882140c3ea80783b0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a51b7ec1200d4c2dbf4e90eff456acb4", - "placeholder": "", - "style": "IPY_MODEL_5628f7a911954178a7dd0f55bbb98ec9", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00, 1.32it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d8615f481910499587a7c45e65039e05": { + "d8937921021b4fc1af8aee93eae8d836": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3560,7 +3634,7 @@ "width": null } }, - "d8be5329589f494ab1d149d10b55668e": { + "db336ed450d54aabbf60a4ee58c86132": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3578,23 +3652,30 @@ "text_color": null } }, - "e0c81ff1c1f945d29092fa2f3c127f72": { + "db415b6d945a4d5eb05b7384ddebd8c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f4b75d95e2e4a8085424632ae43e500", + "placeholder": "", + "style": "IPY_MODEL_bbd61057b0e54cf39869c22975d7fa44", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00, 9.77it/s]" } }, - "e339f415d0514880a945eca5c34f92df": { + "dca6af0134b2456c86a9606f00c4500f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3647,31 +3728,25 @@ "width": null } }, - "e374879c3a65446c8735cbf6e8e76d23": { + "dff07c2860bc4ae38b23b2e66bba2ff3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13fb1ac8d2cb499a8c65ddfb002eac76", - "IPY_MODEL_7a020cc57acb4590b5b0a9dfac318f0c", - "IPY_MODEL_af029ce260454176b3459602664a1b98" - ], - "layout": "IPY_MODEL_e414dccc0f5f4a9f9b31c4a5b0d0cd55", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e414dccc0f5f4a9f9b31c4a5b0d0cd55": { + "e31ca218defc4049bca7c30af7f2085d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3724,46 +3799,33 @@ "width": null } }, - "e81a033d9c8941c9a87b3de5b5fe9fbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8bbfe50c89949b991275611dd4fc02a": { + "f6eee7d9787d4216b4b654e0f9452132": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_768367e060df495fb1009e197be4c957", - "placeholder": "", - "style": "IPY_MODEL_f9b4fee3d1a74c968d450f0699d66769", + "layout": "IPY_MODEL_d8937921021b4fc1af8aee93eae8d836", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c1915e6f7e3481a892a5db5aafa3091", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00, 1.32it/s]" + "value": 50.0 } }, - "e9de094d73ac4d7ca5e916c34866a668": { + "f7794593e0a04dd084851f35220ed40b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3816,7 +3878,7 @@ "width": null } }, - "eb42128750d648e99d152f55fe1af55c": { + "f977b77065744046a57980e06580c032": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3869,7 +3931,23 @@ "width": null } }, - "f3aa02c3d6134ef8be775fb5cf32a586": { + "f984d56925f04c069691e6dd56d236d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fae04ed40fcf42f68c8297327d82aca8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3922,33 +4000,7 @@ "width": null } }, - "f4ee33e66522487381bcb4182db34349": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c65ffe6d57914eefb7d9f60c6faa356a", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_483e7f21dcb84322b8c3dd7a1762a1d5", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "f86ac7ff9b2e43d388da9af0def90ae6": { + "fc647a979a3e42e6ad1acc871f747c35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3963,64 +4015,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07bf0f163e494402b8b9b745799b2154", + "layout": "IPY_MODEL_0b6c62a5453a4bb6bbd9376d35ad9208", "placeholder": "", - "style": "IPY_MODEL_fd2b7d1286e442f0958d8fa44e0f1567", + "style": "IPY_MODEL_07f4e1b426254b8c834dae88f2e20582", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00, 1.33it/s]" - } - }, - "f9b4fee3d1a74c968d450f0699d66769": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fbb27248d8d145509d47cfd644403355": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fd2b7d1286e442f0958d8fa44e0f1567": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Streaming data, 50 sample(s) at a time: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 689b04bae..38c90fa7a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:36.384508Z", - "iopub.status.busy": "2024-05-15T04:11:36.384338Z", - "iopub.status.idle": "2024-05-15T04:11:37.524637Z", - "shell.execute_reply": "2024-05-15T04:11:37.524019Z" + "iopub.execute_input": "2024-05-21T21:35:54.408804Z", + "iopub.status.busy": "2024-05-21T21:35:54.408344Z", + "iopub.status.idle": "2024-05-21T21:35:55.704982Z", + "shell.execute_reply": "2024-05-21T21:35:55.704319Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:37.527055Z", - "iopub.status.busy": "2024-05-15T04:11:37.526769Z", - "iopub.status.idle": "2024-05-15T04:11:37.530020Z", - "shell.execute_reply": "2024-05-15T04:11:37.529495Z" + "iopub.execute_input": "2024-05-21T21:35:55.707992Z", + "iopub.status.busy": "2024-05-21T21:35:55.707432Z", + "iopub.status.idle": "2024-05-21T21:35:55.710637Z", + "shell.execute_reply": "2024-05-21T21:35:55.710180Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:37.532126Z", - "iopub.status.busy": "2024-05-15T04:11:37.531793Z", - "iopub.status.idle": "2024-05-15T04:11:37.540696Z", - "shell.execute_reply": "2024-05-15T04:11:37.540139Z" + "iopub.execute_input": "2024-05-21T21:35:55.712845Z", + "iopub.status.busy": "2024-05-21T21:35:55.712651Z", + "iopub.status.idle": "2024-05-21T21:35:55.723858Z", + "shell.execute_reply": "2024-05-21T21:35:55.723303Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:37.542809Z", - "iopub.status.busy": "2024-05-15T04:11:37.542283Z", - "iopub.status.idle": "2024-05-15T04:11:37.547374Z", - "shell.execute_reply": "2024-05-15T04:11:37.546830Z" + "iopub.execute_input": "2024-05-21T21:35:55.726490Z", + "iopub.status.busy": "2024-05-21T21:35:55.725974Z", + "iopub.status.idle": "2024-05-21T21:35:55.730972Z", + "shell.execute_reply": "2024-05-21T21:35:55.730509Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:37.549411Z", - "iopub.status.busy": "2024-05-15T04:11:37.549101Z", - "iopub.status.idle": "2024-05-15T04:11:37.730539Z", - "shell.execute_reply": "2024-05-15T04:11:37.730007Z" + "iopub.execute_input": "2024-05-21T21:35:55.733387Z", + "iopub.status.busy": "2024-05-21T21:35:55.733054Z", + "iopub.status.idle": "2024-05-21T21:35:55.930496Z", + "shell.execute_reply": "2024-05-21T21:35:55.929900Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:37.732885Z", - "iopub.status.busy": "2024-05-15T04:11:37.732662Z", - "iopub.status.idle": "2024-05-15T04:11:38.100982Z", - "shell.execute_reply": "2024-05-15T04:11:38.100420Z" + "iopub.execute_input": "2024-05-21T21:35:55.933317Z", + "iopub.status.busy": "2024-05-21T21:35:55.932817Z", + "iopub.status.idle": "2024-05-21T21:35:56.325422Z", + "shell.execute_reply": "2024-05-21T21:35:56.324811Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:38.103198Z", - "iopub.status.busy": "2024-05-15T04:11:38.103013Z", - "iopub.status.idle": "2024-05-15T04:11:38.126565Z", - "shell.execute_reply": "2024-05-15T04:11:38.126119Z" + "iopub.execute_input": "2024-05-21T21:35:56.327640Z", + "iopub.status.busy": "2024-05-21T21:35:56.327429Z", + "iopub.status.idle": "2024-05-21T21:35:56.353269Z", + "shell.execute_reply": "2024-05-21T21:35:56.352639Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:38.128875Z", - "iopub.status.busy": "2024-05-15T04:11:38.128532Z", - "iopub.status.idle": "2024-05-15T04:11:38.139507Z", - "shell.execute_reply": "2024-05-15T04:11:38.139080Z" + "iopub.execute_input": "2024-05-21T21:35:56.355770Z", + "iopub.status.busy": "2024-05-21T21:35:56.355555Z", + "iopub.status.idle": "2024-05-21T21:35:56.367599Z", + "shell.execute_reply": "2024-05-21T21:35:56.367115Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:38.141542Z", - "iopub.status.busy": "2024-05-15T04:11:38.141367Z", - "iopub.status.idle": "2024-05-15T04:11:39.775188Z", - "shell.execute_reply": "2024-05-15T04:11:39.774562Z" + "iopub.execute_input": "2024-05-21T21:35:56.370224Z", + "iopub.status.busy": "2024-05-21T21:35:56.369665Z", + "iopub.status.idle": "2024-05-21T21:35:58.199286Z", + "shell.execute_reply": "2024-05-21T21:35:58.198697Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.777649Z", - "iopub.status.busy": "2024-05-15T04:11:39.777344Z", - "iopub.status.idle": "2024-05-15T04:11:39.799253Z", - "shell.execute_reply": "2024-05-15T04:11:39.798790Z" + "iopub.execute_input": "2024-05-21T21:35:58.202021Z", + "iopub.status.busy": "2024-05-21T21:35:58.201440Z", + "iopub.status.idle": "2024-05-21T21:35:58.225644Z", + "shell.execute_reply": "2024-05-21T21:35:58.225054Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.801247Z", - "iopub.status.busy": "2024-05-15T04:11:39.801071Z", - "iopub.status.idle": "2024-05-15T04:11:39.821079Z", - "shell.execute_reply": "2024-05-15T04:11:39.820553Z" + "iopub.execute_input": "2024-05-21T21:35:58.228236Z", + "iopub.status.busy": "2024-05-21T21:35:58.227835Z", + "iopub.status.idle": "2024-05-21T21:35:58.250096Z", + "shell.execute_reply": "2024-05-21T21:35:58.249493Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.823142Z", - "iopub.status.busy": "2024-05-15T04:11:39.822961Z", - "iopub.status.idle": "2024-05-15T04:11:39.838182Z", - "shell.execute_reply": "2024-05-15T04:11:39.837590Z" + "iopub.execute_input": "2024-05-21T21:35:58.252725Z", + "iopub.status.busy": "2024-05-21T21:35:58.252346Z", + "iopub.status.idle": "2024-05-21T21:35:58.267915Z", + "shell.execute_reply": "2024-05-21T21:35:58.267427Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.840516Z", - "iopub.status.busy": "2024-05-15T04:11:39.840315Z", - "iopub.status.idle": "2024-05-15T04:11:39.861971Z", - "shell.execute_reply": "2024-05-15T04:11:39.861402Z" + "iopub.execute_input": "2024-05-21T21:35:58.270288Z", + "iopub.status.busy": "2024-05-21T21:35:58.269925Z", + "iopub.status.idle": "2024-05-21T21:35:58.293830Z", + "shell.execute_reply": "2024-05-21T21:35:58.293218Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aaf696efd21146f7af56426a059aaf83", + "model_id": "aa3a922ae77546daa6b2e5adf88a5617", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.864610Z", - "iopub.status.busy": "2024-05-15T04:11:39.864319Z", - "iopub.status.idle": "2024-05-15T04:11:39.880135Z", - "shell.execute_reply": "2024-05-15T04:11:39.879533Z" + "iopub.execute_input": "2024-05-21T21:35:58.296185Z", + "iopub.status.busy": "2024-05-21T21:35:58.295799Z", + "iopub.status.idle": "2024-05-21T21:35:58.312394Z", + "shell.execute_reply": "2024-05-21T21:35:58.311694Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.882437Z", - "iopub.status.busy": "2024-05-15T04:11:39.882007Z", - "iopub.status.idle": "2024-05-15T04:11:39.887940Z", - "shell.execute_reply": "2024-05-15T04:11:39.887450Z" + "iopub.execute_input": "2024-05-21T21:35:58.314860Z", + "iopub.status.busy": "2024-05-21T21:35:58.314490Z", + "iopub.status.idle": "2024-05-21T21:35:58.321058Z", + "shell.execute_reply": "2024-05-21T21:35:58.320503Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:39.889826Z", - "iopub.status.busy": "2024-05-15T04:11:39.889651Z", - "iopub.status.idle": "2024-05-15T04:11:39.909561Z", - "shell.execute_reply": "2024-05-15T04:11:39.909029Z" + "iopub.execute_input": "2024-05-21T21:35:58.323512Z", + "iopub.status.busy": "2024-05-21T21:35:58.323149Z", + "iopub.status.idle": "2024-05-21T21:35:58.343126Z", + "shell.execute_reply": "2024-05-21T21:35:58.342542Z" } }, "outputs": [ @@ -1431,23 +1431,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24a1fa0981fd4d04a615a91673bc442f": { + "1f8cf21719c84f2395ad8ced85dc3752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "284832972e784f699a4d088c1c8850b0": { + "39e6a65a73d6431a806dcf5dba8687de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,7 +1502,30 @@ "width": null } }, - "6df8a157e7414c9a83cb1b08c183303e": { + "4443219e45cb4637bee161233b093c60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_90900f47b78c4c3287dfa981b071a10d", + "placeholder": "", + "style": "IPY_MODEL_7a2bbb0aa19148f283274caa35345943", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10046.78 examples/s]" + } + }, + "6d6bc9388b20433e99b9bc4f971e7849": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1578,25 @@ "width": null } }, - "75e57a3a10534cf78713c8231683f549": { + "7a2bbb0aa19148f283274caa35345943": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "90900f47b78c4c3287dfa981b071a10d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,90 +1649,100 @@ "width": null } }, - "7dc83b5ac8c848ad8fd14e11c7fc6917": { + "aa3a922ae77546daa6b2e5adf88a5617": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75e57a3a10534cf78713c8231683f549", - "placeholder": "", - "style": "IPY_MODEL_8d3650816b2241c3bf2dfa93aa1257fd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f230039ba5754044b0874c50afad430b", + "IPY_MODEL_d6af3c3a7b4c40ebb6776ce3b0b20373", + "IPY_MODEL_4443219e45cb4637bee161233b093c60" + ], + "layout": "IPY_MODEL_39e6a65a73d6431a806dcf5dba8687de", "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "tooltip": null } }, - "8d3650816b2241c3bf2dfa93aa1257fd": { - "model_module": "@jupyter-widgets/controls", + "b0b7449c575a4558984bdc9a44961328": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "91a79e3d6a5241349d37be9e87bc4607": { + "b55e9d91dee3472f80062ac51f60c368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aaf696efd21146f7af56426a059aaf83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dc83b5ac8c848ad8fd14e11c7fc6917", - "IPY_MODEL_bac6722eb23942ba95e738be2f4fb369", - "IPY_MODEL_e88db6ebaba94729bc5dde56a7397511" - ], - "layout": "IPY_MODEL_284832972e784f699a4d088c1c8850b0", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "bac6722eb23942ba95e738be2f4fb369": { + "d6af3c3a7b4c40ebb6776ce3b0b20373": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1705,17 +1758,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6df8a157e7414c9a83cb1b08c183303e", + "layout": "IPY_MODEL_b0b7449c575a4558984bdc9a44961328", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24a1fa0981fd4d04a615a91673bc442f", + "style": "IPY_MODEL_b55e9d91dee3472f80062ac51f60c368", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "e88db6ebaba94729bc5dde56a7397511": { + "f230039ba5754044b0874c50afad430b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1730,65 +1783,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f22ccda3010a4b1c9fc2ac093eb7aded", + "layout": "IPY_MODEL_6d6bc9388b20433e99b9bc4f971e7849", "placeholder": "", - "style": "IPY_MODEL_91a79e3d6a5241349d37be9e87bc4607", + "style": "IPY_MODEL_1f8cf21719c84f2395ad8ced85dc3752", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 11713.45 examples/s]" - } - }, - "f22ccda3010a4b1c9fc2ac093eb7aded": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index f7047918e..142c83356 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:42.718348Z", - "iopub.status.busy": "2024-05-15T04:11:42.717991Z", - "iopub.status.idle": "2024-05-15T04:11:43.854469Z", - "shell.execute_reply": "2024-05-15T04:11:43.853913Z" + "iopub.execute_input": "2024-05-21T21:36:01.346282Z", + "iopub.status.busy": "2024-05-21T21:36:01.345766Z", + "iopub.status.idle": "2024-05-21T21:36:02.703469Z", + "shell.execute_reply": "2024-05-21T21:36:02.702853Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:43.857085Z", - "iopub.status.busy": "2024-05-15T04:11:43.856662Z", - "iopub.status.idle": "2024-05-15T04:11:43.859521Z", - "shell.execute_reply": "2024-05-15T04:11:43.859112Z" + "iopub.execute_input": "2024-05-21T21:36:02.706455Z", + "iopub.status.busy": "2024-05-21T21:36:02.705895Z", + "iopub.status.idle": "2024-05-21T21:36:02.709335Z", + "shell.execute_reply": "2024-05-21T21:36:02.708853Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:43.861581Z", - "iopub.status.busy": "2024-05-15T04:11:43.861287Z", - "iopub.status.idle": "2024-05-15T04:11:43.870757Z", - "shell.execute_reply": "2024-05-15T04:11:43.870302Z" + "iopub.execute_input": "2024-05-21T21:36:02.711682Z", + "iopub.status.busy": "2024-05-21T21:36:02.711341Z", + "iopub.status.idle": "2024-05-21T21:36:02.721659Z", + "shell.execute_reply": "2024-05-21T21:36:02.721175Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:43.872610Z", - "iopub.status.busy": "2024-05-15T04:11:43.872437Z", - "iopub.status.idle": "2024-05-15T04:11:43.876897Z", - "shell.execute_reply": "2024-05-15T04:11:43.876346Z" + "iopub.execute_input": "2024-05-21T21:36:02.724122Z", + "iopub.status.busy": "2024-05-21T21:36:02.723606Z", + "iopub.status.idle": "2024-05-21T21:36:02.728507Z", + "shell.execute_reply": "2024-05-21T21:36:02.728031Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:43.879083Z", - "iopub.status.busy": "2024-05-15T04:11:43.878905Z", - "iopub.status.idle": "2024-05-15T04:11:44.062393Z", - "shell.execute_reply": "2024-05-15T04:11:44.061760Z" + "iopub.execute_input": "2024-05-21T21:36:02.730958Z", + "iopub.status.busy": "2024-05-21T21:36:02.730586Z", + "iopub.status.idle": "2024-05-21T21:36:02.933490Z", + "shell.execute_reply": "2024-05-21T21:36:02.932859Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:44.065003Z", - "iopub.status.busy": "2024-05-15T04:11:44.064665Z", - "iopub.status.idle": "2024-05-15T04:11:44.429372Z", - "shell.execute_reply": "2024-05-15T04:11:44.428787Z" + "iopub.execute_input": "2024-05-21T21:36:02.936438Z", + "iopub.status.busy": "2024-05-21T21:36:02.936010Z", + "iopub.status.idle": "2024-05-21T21:36:03.331850Z", + "shell.execute_reply": "2024-05-21T21:36:03.331188Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:44.431530Z", - "iopub.status.busy": "2024-05-15T04:11:44.431243Z", - "iopub.status.idle": "2024-05-15T04:11:44.434155Z", - "shell.execute_reply": "2024-05-15T04:11:44.433621Z" + "iopub.execute_input": "2024-05-21T21:36:03.334839Z", + "iopub.status.busy": "2024-05-21T21:36:03.334335Z", + "iopub.status.idle": "2024-05-21T21:36:03.337887Z", + "shell.execute_reply": "2024-05-21T21:36:03.337245Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:44.436118Z", - "iopub.status.busy": "2024-05-15T04:11:44.435922Z", - "iopub.status.idle": "2024-05-15T04:11:44.471104Z", - "shell.execute_reply": "2024-05-15T04:11:44.470622Z" + "iopub.execute_input": "2024-05-21T21:36:03.340614Z", + "iopub.status.busy": "2024-05-21T21:36:03.340158Z", + "iopub.status.idle": "2024-05-21T21:36:03.378839Z", + "shell.execute_reply": "2024-05-21T21:36:03.378210Z" } }, "outputs": [ @@ -613,7 +613,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:776: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", " warnings.warn(\n" ] } @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:44.473140Z", - "iopub.status.busy": "2024-05-15T04:11:44.472810Z", - "iopub.status.idle": "2024-05-15T04:11:46.111451Z", - "shell.execute_reply": "2024-05-15T04:11:46.110807Z" + "iopub.execute_input": "2024-05-21T21:36:03.381475Z", + "iopub.status.busy": "2024-05-21T21:36:03.381015Z", + "iopub.status.idle": "2024-05-21T21:36:05.361759Z", + "shell.execute_reply": "2024-05-21T21:36:05.361002Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.114013Z", - "iopub.status.busy": "2024-05-15T04:11:46.113646Z", - "iopub.status.idle": "2024-05-15T04:11:46.132539Z", - "shell.execute_reply": "2024-05-15T04:11:46.132023Z" + "iopub.execute_input": "2024-05-21T21:36:05.364680Z", + "iopub.status.busy": "2024-05-21T21:36:05.364183Z", + "iopub.status.idle": "2024-05-21T21:36:05.385771Z", + "shell.execute_reply": "2024-05-21T21:36:05.385161Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.134795Z", - "iopub.status.busy": "2024-05-15T04:11:46.134487Z", - "iopub.status.idle": "2024-05-15T04:11:46.141433Z", - "shell.execute_reply": "2024-05-15T04:11:46.140966Z" + "iopub.execute_input": "2024-05-21T21:36:05.388205Z", + "iopub.status.busy": "2024-05-21T21:36:05.387986Z", + "iopub.status.idle": "2024-05-21T21:36:05.395843Z", + "shell.execute_reply": "2024-05-21T21:36:05.395252Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.143367Z", - "iopub.status.busy": "2024-05-15T04:11:46.143188Z", - "iopub.status.idle": "2024-05-15T04:11:46.149070Z", - "shell.execute_reply": "2024-05-15T04:11:46.148523Z" + "iopub.execute_input": "2024-05-21T21:36:05.397972Z", + "iopub.status.busy": "2024-05-21T21:36:05.397779Z", + "iopub.status.idle": "2024-05-21T21:36:05.404935Z", + "shell.execute_reply": "2024-05-21T21:36:05.404336Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.150934Z", - "iopub.status.busy": "2024-05-15T04:11:46.150758Z", - "iopub.status.idle": "2024-05-15T04:11:46.161128Z", - "shell.execute_reply": "2024-05-15T04:11:46.160650Z" + "iopub.execute_input": "2024-05-21T21:36:05.407340Z", + "iopub.status.busy": "2024-05-21T21:36:05.406894Z", + "iopub.status.idle": "2024-05-21T21:36:05.418486Z", + "shell.execute_reply": "2024-05-21T21:36:05.417959Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.163041Z", - "iopub.status.busy": "2024-05-15T04:11:46.162863Z", - "iopub.status.idle": "2024-05-15T04:11:46.171888Z", - "shell.execute_reply": "2024-05-15T04:11:46.171417Z" + "iopub.execute_input": "2024-05-21T21:36:05.420635Z", + "iopub.status.busy": "2024-05-21T21:36:05.420440Z", + "iopub.status.idle": "2024-05-21T21:36:05.430914Z", + "shell.execute_reply": "2024-05-21T21:36:05.430347Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.173892Z", - "iopub.status.busy": "2024-05-15T04:11:46.173596Z", - "iopub.status.idle": "2024-05-15T04:11:46.180355Z", - "shell.execute_reply": "2024-05-15T04:11:46.179807Z" + "iopub.execute_input": "2024-05-21T21:36:05.433209Z", + "iopub.status.busy": "2024-05-21T21:36:05.432842Z", + "iopub.status.idle": "2024-05-21T21:36:05.440541Z", + "shell.execute_reply": "2024-05-21T21:36:05.439974Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.182329Z", - "iopub.status.busy": "2024-05-15T04:11:46.182157Z", - "iopub.status.idle": "2024-05-15T04:11:46.191418Z", - "shell.execute_reply": "2024-05-15T04:11:46.190890Z" + "iopub.execute_input": "2024-05-21T21:36:05.442911Z", + "iopub.status.busy": "2024-05-21T21:36:05.442554Z", + "iopub.status.idle": "2024-05-21T21:36:05.453438Z", + "shell.execute_reply": "2024-05-21T21:36:05.452834Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:46.193375Z", - "iopub.status.busy": "2024-05-15T04:11:46.193200Z", - "iopub.status.idle": "2024-05-15T04:11:46.205116Z", - "shell.execute_reply": "2024-05-15T04:11:46.204705Z" + "iopub.execute_input": "2024-05-21T21:36:05.455871Z", + "iopub.status.busy": "2024-05-21T21:36:05.455389Z", + "iopub.status.idle": "2024-05-21T21:36:05.469797Z", + "shell.execute_reply": "2024-05-21T21:36:05.469155Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 5125a0efb..09b5d48c7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:48.771786Z", - "iopub.status.busy": "2024-05-15T04:11:48.771609Z", - "iopub.status.idle": "2024-05-15T04:11:51.595610Z", - "shell.execute_reply": "2024-05-15T04:11:51.595032Z" + "iopub.execute_input": "2024-05-21T21:36:08.574555Z", + "iopub.status.busy": "2024-05-21T21:36:08.574376Z", + "iopub.status.idle": "2024-05-21T21:36:11.796095Z", + "shell.execute_reply": "2024-05-21T21:36:11.795453Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:51.598182Z", - "iopub.status.busy": "2024-05-15T04:11:51.597792Z", - "iopub.status.idle": "2024-05-15T04:11:51.601425Z", - "shell.execute_reply": "2024-05-15T04:11:51.600873Z" + "iopub.execute_input": "2024-05-21T21:36:11.799008Z", + "iopub.status.busy": "2024-05-21T21:36:11.798399Z", + "iopub.status.idle": "2024-05-21T21:36:11.802337Z", + "shell.execute_reply": "2024-05-21T21:36:11.801763Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:51.603535Z", - "iopub.status.busy": "2024-05-15T04:11:51.603244Z", - "iopub.status.idle": "2024-05-15T04:11:57.090799Z", - "shell.execute_reply": "2024-05-15T04:11:57.090331Z" + "iopub.execute_input": "2024-05-21T21:36:11.804853Z", + "iopub.status.busy": "2024-05-21T21:36:11.804436Z", + "iopub.status.idle": "2024-05-21T21:36:13.371205Z", + "shell.execute_reply": "2024-05-21T21:36:13.370582Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "89d21099c6da47518e7175d7f522c2c2", + "model_id": "77d3de81fd2745d5950e89db3fe509d7", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2243e895e4341899d607bec27e09a9e", + "model_id": "316a80481c1e4e0e8a5851e6128b9249", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aaf4958feddd4aef806e74a9a72ce888", + "model_id": "ce4c765a66cc4c76be16d044827674c8", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2df419f21d9941f6bb5e98a57949ab45", + "model_id": "5b5ad5f9cf7b487797e6b9f4c00657db", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:57.093089Z", - "iopub.status.busy": "2024-05-15T04:11:57.092757Z", - "iopub.status.idle": "2024-05-15T04:11:57.096478Z", - "shell.execute_reply": "2024-05-15T04:11:57.095965Z" + "iopub.execute_input": "2024-05-21T21:36:13.373743Z", + "iopub.status.busy": "2024-05-21T21:36:13.373319Z", + "iopub.status.idle": "2024-05-21T21:36:13.377484Z", + "shell.execute_reply": "2024-05-21T21:36:13.376920Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:11:57.098442Z", - "iopub.status.busy": "2024-05-15T04:11:57.098112Z", - "iopub.status.idle": "2024-05-15T04:12:08.302257Z", - "shell.execute_reply": "2024-05-15T04:12:08.301623Z" + "iopub.execute_input": "2024-05-21T21:36:13.379882Z", + "iopub.status.busy": "2024-05-21T21:36:13.379470Z", + "iopub.status.idle": "2024-05-21T21:36:25.033561Z", + "shell.execute_reply": "2024-05-21T21:36:25.033014Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d2d7a3f1c4d049cd9c347c4b0eb84fa1", + "model_id": "298623a6c2984c1d9016f80303b0f0b8", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:08.304995Z", - "iopub.status.busy": "2024-05-15T04:12:08.304761Z", - "iopub.status.idle": "2024-05-15T04:12:26.554514Z", - "shell.execute_reply": "2024-05-15T04:12:26.553960Z" + "iopub.execute_input": "2024-05-21T21:36:25.036339Z", + "iopub.status.busy": "2024-05-21T21:36:25.035966Z", + "iopub.status.idle": "2024-05-21T21:36:44.391672Z", + "shell.execute_reply": "2024-05-21T21:36:44.391123Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:26.557214Z", - "iopub.status.busy": "2024-05-15T04:12:26.556841Z", - "iopub.status.idle": "2024-05-15T04:12:26.562492Z", - "shell.execute_reply": "2024-05-15T04:12:26.562054Z" + "iopub.execute_input": "2024-05-21T21:36:44.394385Z", + "iopub.status.busy": "2024-05-21T21:36:44.394020Z", + "iopub.status.idle": "2024-05-21T21:36:44.399784Z", + "shell.execute_reply": "2024-05-21T21:36:44.399342Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:26.564635Z", - "iopub.status.busy": "2024-05-15T04:12:26.564325Z", - "iopub.status.idle": "2024-05-15T04:12:26.568225Z", - "shell.execute_reply": "2024-05-15T04:12:26.567677Z" + "iopub.execute_input": "2024-05-21T21:36:44.402002Z", + "iopub.status.busy": "2024-05-21T21:36:44.401603Z", + "iopub.status.idle": "2024-05-21T21:36:44.405787Z", + "shell.execute_reply": "2024-05-21T21:36:44.405221Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:26.570257Z", - "iopub.status.busy": "2024-05-15T04:12:26.569873Z", - "iopub.status.idle": "2024-05-15T04:12:26.578680Z", - "shell.execute_reply": "2024-05-15T04:12:26.578172Z" + "iopub.execute_input": "2024-05-21T21:36:44.407966Z", + "iopub.status.busy": "2024-05-21T21:36:44.407526Z", + "iopub.status.idle": "2024-05-21T21:36:44.416742Z", + "shell.execute_reply": "2024-05-21T21:36:44.416160Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:26.580766Z", - "iopub.status.busy": "2024-05-15T04:12:26.580390Z", - "iopub.status.idle": "2024-05-15T04:12:26.605996Z", - "shell.execute_reply": "2024-05-15T04:12:26.605569Z" + "iopub.execute_input": "2024-05-21T21:36:44.418865Z", + "iopub.status.busy": "2024-05-21T21:36:44.418682Z", + "iopub.status.idle": "2024-05-21T21:36:44.445643Z", + "shell.execute_reply": "2024-05-21T21:36:44.445134Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:26.607957Z", - "iopub.status.busy": "2024-05-15T04:12:26.607783Z", - "iopub.status.idle": "2024-05-15T04:12:58.500735Z", - "shell.execute_reply": "2024-05-15T04:12:58.500111Z" + "iopub.execute_input": "2024-05-21T21:36:44.448351Z", + "iopub.status.busy": "2024-05-21T21:36:44.447858Z", + "iopub.status.idle": "2024-05-21T21:37:19.607307Z", + "shell.execute_reply": "2024-05-21T21:37:19.606711Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.733\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.247\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.692\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.039\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9458ec19b54c437d8d8a423ac4e4ac54", + "model_id": "5c13b4c297ec404eba987442d886fc09", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85f393a3c25f4465b71aabd81689a872", + "model_id": "55b3785842d84085b3ba7a2a76df553f", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.742\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.156\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.465\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.978\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ed4f18133c0c48ee843c41397718ed35", + "model_id": "dd3b730c4a2a472b9310ab4fc9b9b142", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3c9183c4918140cf865ea76516740309", + "model_id": "3299838358fa4cffbc8ead18c84f033b", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.676\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.216\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.428\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.030\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "acf7a11f8f8b4fb3a01d8c71457b866d", + "model_id": "ebbf595921b64065bcf44312f9e3d85e", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3827430ca4b44cc2bb68526d3bb8456a", + "model_id": "24fa5bb079c246ce9997940513ca03ae", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:58.503276Z", - "iopub.status.busy": "2024-05-15T04:12:58.502847Z", - "iopub.status.idle": "2024-05-15T04:12:58.520208Z", - "shell.execute_reply": "2024-05-15T04:12:58.519736Z" + "iopub.execute_input": "2024-05-21T21:37:19.609762Z", + "iopub.status.busy": "2024-05-21T21:37:19.609523Z", + "iopub.status.idle": "2024-05-21T21:37:19.626060Z", + "shell.execute_reply": "2024-05-21T21:37:19.625562Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:58.522481Z", - "iopub.status.busy": "2024-05-15T04:12:58.522160Z", - "iopub.status.idle": "2024-05-15T04:12:58.973883Z", - "shell.execute_reply": "2024-05-15T04:12:58.973339Z" + "iopub.execute_input": "2024-05-21T21:37:19.628887Z", + "iopub.status.busy": "2024-05-21T21:37:19.628339Z", + "iopub.status.idle": "2024-05-21T21:37:20.115672Z", + "shell.execute_reply": "2024-05-21T21:37:20.115032Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:12:58.976323Z", - "iopub.status.busy": "2024-05-15T04:12:58.975956Z", - "iopub.status.idle": "2024-05-15T04:16:32.878517Z", - "shell.execute_reply": "2024-05-15T04:16:32.877963Z" + "iopub.execute_input": "2024-05-21T21:37:20.118314Z", + "iopub.status.busy": "2024-05-21T21:37:20.118080Z", + "iopub.status.idle": "2024-05-21T21:40:56.956538Z", + "shell.execute_reply": "2024-05-21T21:40:56.955880Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a131f35a387f4cdaade6c200a6f0a833", + "model_id": "813ebb69132c4130b236772c578fb37f", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:32.880977Z", - "iopub.status.busy": "2024-05-15T04:16:32.880456Z", - "iopub.status.idle": "2024-05-15T04:16:33.329755Z", - "shell.execute_reply": "2024-05-15T04:16:33.329203Z" + "iopub.execute_input": "2024-05-21T21:40:56.959212Z", + "iopub.status.busy": "2024-05-21T21:40:56.958612Z", + "iopub.status.idle": "2024-05-21T21:40:57.426006Z", + "shell.execute_reply": "2024-05-21T21:40:57.425432Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.332058Z", - "iopub.status.busy": "2024-05-15T04:16:33.331551Z", - "iopub.status.idle": "2024-05-15T04:16:33.394905Z", - "shell.execute_reply": "2024-05-15T04:16:33.394361Z" + "iopub.execute_input": "2024-05-21T21:40:57.428879Z", + "iopub.status.busy": "2024-05-21T21:40:57.428484Z", + "iopub.status.idle": "2024-05-21T21:40:57.490935Z", + "shell.execute_reply": "2024-05-21T21:40:57.490424Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.397209Z", - "iopub.status.busy": "2024-05-15T04:16:33.396772Z", - "iopub.status.idle": "2024-05-15T04:16:33.405302Z", - "shell.execute_reply": "2024-05-15T04:16:33.404766Z" + "iopub.execute_input": "2024-05-21T21:40:57.493137Z", + "iopub.status.busy": "2024-05-21T21:40:57.492806Z", + "iopub.status.idle": "2024-05-21T21:40:57.502257Z", + "shell.execute_reply": "2024-05-21T21:40:57.501690Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.407292Z", - "iopub.status.busy": "2024-05-15T04:16:33.406970Z", - "iopub.status.idle": "2024-05-15T04:16:33.411507Z", - "shell.execute_reply": "2024-05-15T04:16:33.411075Z" + "iopub.execute_input": "2024-05-21T21:40:57.504430Z", + "iopub.status.busy": "2024-05-21T21:40:57.504250Z", + "iopub.status.idle": "2024-05-21T21:40:57.508989Z", + "shell.execute_reply": "2024-05-21T21:40:57.508516Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.413553Z", - "iopub.status.busy": "2024-05-15T04:16:33.413237Z", - "iopub.status.idle": "2024-05-15T04:16:33.909894Z", - "shell.execute_reply": "2024-05-15T04:16:33.909378Z" + "iopub.execute_input": "2024-05-21T21:40:57.511168Z", + "iopub.status.busy": "2024-05-21T21:40:57.510750Z", + "iopub.status.idle": "2024-05-21T21:40:58.022238Z", + "shell.execute_reply": "2024-05-21T21:40:58.021666Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.912006Z", - "iopub.status.busy": "2024-05-15T04:16:33.911665Z", - "iopub.status.idle": "2024-05-15T04:16:33.919960Z", - "shell.execute_reply": "2024-05-15T04:16:33.919511Z" + "iopub.execute_input": "2024-05-21T21:40:58.024645Z", + "iopub.status.busy": "2024-05-21T21:40:58.024327Z", + "iopub.status.idle": "2024-05-21T21:40:58.033258Z", + "shell.execute_reply": "2024-05-21T21:40:58.032778Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.921984Z", - "iopub.status.busy": "2024-05-15T04:16:33.921663Z", - "iopub.status.idle": "2024-05-15T04:16:33.928746Z", - "shell.execute_reply": "2024-05-15T04:16:33.928293Z" + "iopub.execute_input": "2024-05-21T21:40:58.035444Z", + "iopub.status.busy": "2024-05-21T21:40:58.035102Z", + "iopub.status.idle": "2024-05-21T21:40:58.042393Z", + "shell.execute_reply": "2024-05-21T21:40:58.041945Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:33.930772Z", - "iopub.status.busy": "2024-05-15T04:16:33.930461Z", - "iopub.status.idle": "2024-05-15T04:16:34.391366Z", - "shell.execute_reply": "2024-05-15T04:16:34.390918Z" + "iopub.execute_input": "2024-05-21T21:40:58.044412Z", + "iopub.status.busy": "2024-05-21T21:40:58.044076Z", + "iopub.status.idle": "2024-05-21T21:40:58.525380Z", + "shell.execute_reply": "2024-05-21T21:40:58.524733Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.393508Z", - "iopub.status.busy": "2024-05-15T04:16:34.393168Z", - "iopub.status.idle": "2024-05-15T04:16:34.408304Z", - "shell.execute_reply": "2024-05-15T04:16:34.407756Z" + "iopub.execute_input": "2024-05-21T21:40:58.527777Z", + "iopub.status.busy": "2024-05-21T21:40:58.527383Z", + "iopub.status.idle": "2024-05-21T21:40:58.544747Z", + "shell.execute_reply": "2024-05-21T21:40:58.544210Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.410397Z", - "iopub.status.busy": "2024-05-15T04:16:34.410221Z", - "iopub.status.idle": "2024-05-15T04:16:34.415561Z", - "shell.execute_reply": "2024-05-15T04:16:34.415128Z" + "iopub.execute_input": "2024-05-21T21:40:58.546975Z", + "iopub.status.busy": "2024-05-21T21:40:58.546631Z", + "iopub.status.idle": "2024-05-21T21:40:58.552132Z", + "shell.execute_reply": "2024-05-21T21:40:58.551685Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.417323Z", - "iopub.status.busy": "2024-05-15T04:16:34.417156Z", - "iopub.status.idle": "2024-05-15T04:16:34.797009Z", - "shell.execute_reply": "2024-05-15T04:16:34.796439Z" + "iopub.execute_input": "2024-05-21T21:40:58.554250Z", + "iopub.status.busy": "2024-05-21T21:40:58.553935Z", + "iopub.status.idle": "2024-05-21T21:40:58.956191Z", + "shell.execute_reply": "2024-05-21T21:40:58.955548Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.799243Z", - "iopub.status.busy": "2024-05-15T04:16:34.799067Z", - "iopub.status.idle": "2024-05-15T04:16:34.808112Z", - "shell.execute_reply": "2024-05-15T04:16:34.807550Z" + "iopub.execute_input": "2024-05-21T21:40:58.958768Z", + "iopub.status.busy": "2024-05-21T21:40:58.958572Z", + "iopub.status.idle": "2024-05-21T21:40:58.969049Z", + "shell.execute_reply": "2024-05-21T21:40:58.968466Z" } }, "outputs": [ @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.810215Z", - "iopub.status.busy": "2024-05-15T04:16:34.810039Z", - "iopub.status.idle": "2024-05-15T04:16:34.814907Z", - "shell.execute_reply": "2024-05-15T04:16:34.814240Z" + "iopub.execute_input": "2024-05-21T21:40:58.971382Z", + "iopub.status.busy": "2024-05-21T21:40:58.971198Z", + "iopub.status.idle": "2024-05-21T21:40:58.976885Z", + "shell.execute_reply": "2024-05-21T21:40:58.976337Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.816926Z", - "iopub.status.busy": "2024-05-15T04:16:34.816753Z", - "iopub.status.idle": "2024-05-15T04:16:34.990937Z", - "shell.execute_reply": "2024-05-15T04:16:34.990468Z" + "iopub.execute_input": "2024-05-21T21:40:58.979005Z", + "iopub.status.busy": "2024-05-21T21:40:58.978830Z", + "iopub.status.idle": "2024-05-21T21:40:59.163610Z", + "shell.execute_reply": "2024-05-21T21:40:59.163081Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:34.993227Z", - "iopub.status.busy": "2024-05-15T04:16:34.992727Z", - "iopub.status.idle": "2024-05-15T04:16:35.000431Z", - "shell.execute_reply": "2024-05-15T04:16:34.999822Z" + "iopub.execute_input": "2024-05-21T21:40:59.166061Z", + "iopub.status.busy": "2024-05-21T21:40:59.165655Z", + "iopub.status.idle": "2024-05-21T21:40:59.175736Z", + "shell.execute_reply": "2024-05-21T21:40:59.175197Z" } }, "outputs": [ @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:35.002563Z", - "iopub.status.busy": "2024-05-15T04:16:35.002076Z", - "iopub.status.idle": "2024-05-15T04:16:35.172875Z", - "shell.execute_reply": "2024-05-15T04:16:35.172354Z" + "iopub.execute_input": "2024-05-21T21:40:59.178175Z", + "iopub.status.busy": "2024-05-21T21:40:59.177772Z", + "iopub.status.idle": "2024-05-21T21:40:59.351567Z", + "shell.execute_reply": "2024-05-21T21:40:59.351034Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:35.175314Z", - "iopub.status.busy": "2024-05-15T04:16:35.174842Z", - "iopub.status.idle": "2024-05-15T04:16:35.179207Z", - "shell.execute_reply": "2024-05-15T04:16:35.178791Z" + "iopub.execute_input": "2024-05-21T21:40:59.353834Z", + "iopub.status.busy": "2024-05-21T21:40:59.353492Z", + "iopub.status.idle": "2024-05-21T21:40:59.359366Z", + "shell.execute_reply": "2024-05-21T21:40:59.358892Z" }, "nbsphinx": "hidden" }, @@ -2538,43 +2538,76 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00b39e47325045ff89c6820d57fa9302": { + "01de94c8ca4b4da79148dd02a093ef08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "01a7cb39daa94bbaa7bf3650dda7a0b2": { - "model_module": "@jupyter-widgets/controls", + "026e8d0ed3bc46768b3645d50fee3431": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "087062b5a489482fb84b15000fa75b8e": { + "05b392401a324269806956bad3e4ae87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,7 +2660,30 @@ "width": null } }, - "0890043a8b4d42cd8e1c488f76a96446": { + "0a77b74315fe40ee814e6fa38c3caafe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc3c14fcdc6e4f18b310d86976a70249", + "placeholder": "", + "style": "IPY_MODEL_72c8aabd62504ecb8b50af358acd1364", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.53it/s]" + } + }, + "0b4fd35e6345467590d62b4c00a129ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2680,7 +2736,7 @@ "width": null } }, - "0a2137d1f8a14402ba9c9a2123b11a3b": { + "0d4edc7177e544548194990a27bece45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2696,17 +2752,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afbfa284bed74b2c9fc4e0f1b229c91d", - "max": 60000.0, + "layout": "IPY_MODEL_6673acdac4b44665a6daa85be52845bb", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6d182b93aa4346c6abc4b2ff48bf95fb", + "style": "IPY_MODEL_ebb13c453ac14415b142e96e3248bf8b", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "0dbc507c53e74823992d938775d00b72": { + "0db75d1dad454c3bb3611935c6a5d6e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2759,49 +2815,46 @@ "width": null } }, - "0e2551e69ff04213ad6d409a83b84aa8": { + "10a3cfaa15b942699b74c432cab18312": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_026e8d0ed3bc46768b3645d50fee3431", + "placeholder": "", + "style": "IPY_MODEL_b00f93ed7428476482c7a7a18f372297", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" } }, - "11e776875850426e9b743e9d9d3e84ff": { + "118aeca81c05441a869a79e09c0005b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cd32e5104e44c79954437543e4cde8b", - "IPY_MODEL_79f97373768a4894b61c11c09a3451d9", - "IPY_MODEL_79abf1413ffc41daa00e76ab8c1b58f4" - ], - "layout": "IPY_MODEL_4a0332baea6e4415a00ba8d746ae3aa6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1283700e7b33496695be2d87b9c2e40b": { + "1292de53b9524f02a70567826b92ee3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2819,23 +2872,25 @@ "text_color": null } }, - "16468d28adec468583cb8b0a1ade45ad": { + "13a994b0b304498d9692b73cb6f7e5f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1646ca92c82749b8a5c57d103b70c50c": { + "1806bd4910f34ff6acad41d5c9a7041d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2853,76 +2908,33 @@ "text_color": null } }, - "18a37beed32b432baf8f13eb5b3b9c8c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1e7417173ce942548c73ca4814ef64d6": { + "199a6069269642d4bc690b0016a7fdd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bde30d8c6ee4ecf915e6b4bbcbcd2fe", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa26254416d142cc8cae58e993961b08", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "1fb170d804c2493db381c585a9aec537": { + "1ede0485ffdb4c319d3dbc0a25dd868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2938,17 +2950,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f1d682fd76904e3e8eb8c8fd4b33b1b8", + "layout": "IPY_MODEL_4bc284e51247438caffa116d57be1530", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3506918dc5394a4ebe57c1b629d1d47e", + "style": "IPY_MODEL_6a33e3b3f62948fbbc1852ed9ada3e2f", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "22b8d203f1cc4f1681b65abed54ebdf3": { + "1fdd08da849d44e18fc77a94e96e3833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f030772e7ec74326aaf7fcf655dad96c", + "placeholder": "", + "style": "IPY_MODEL_afe06bd5c14a4b29b6d86b2d77216d84", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "238ef461c0b642488e70138299e9fdba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3001,7 +3036,25 @@ "width": null } }, - "23db4859bab4487ba5a98123b4f7bf07": { + "243efc07fa75470fac945896f1f3b566": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2450b10df18b4f7591b63f513632d084": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3054,23 +3107,31 @@ "width": null } }, - "24a07b5af2824ed3968459d20d13e093": { + "24fa5bb079c246ce9997940513ca03ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d6a1c9950cb749b9942acda19e2cb9c4", + "IPY_MODEL_1ede0485ffdb4c319d3dbc0a25dd868f", + "IPY_MODEL_0a77b74315fe40ee814e6fa38c3caafe" + ], + "layout": "IPY_MODEL_73986ddc01d74a4988b31a2a51f04c52", + "tabbable": null, + "tooltip": null } }, - "2623c66f27014184b88da10844e530b1": { + "25089578a19148dd85020c372f934083": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3088,25 +3149,54 @@ "text_color": null } }, - "2adb95099a344c89ac15fbd5a214d361": { + "298623a6c2984c1d9016f80303b0f0b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffdf26d7d23846cd8b5267f5abe07a1d", + "IPY_MODEL_40a2a065c9154acfa1789f0666e9e257", + "IPY_MODEL_5a969ea55b3944d987b3f163aeb9fd62" + ], + "layout": "IPY_MODEL_f5d563d97e2f48c9bdf06b0f252f5953", + "tabbable": null, + "tooltip": null + } + }, + "2a82f47fd60f4962ba3076680cefe40a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d21e0c89b6cf4baaa1107b95445bb3d8", + "placeholder": "", + "style": "IPY_MODEL_b0071aa9421b4d6b93830c7b854a15b4", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "2bf0448ef0fd4b81bdfc94c8e9a48375": { + "2aade37afbad4417bda5cc84aa770e2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3159,60 +3249,25 @@ "width": null } }, - "2bf9e8f1905d488bb01628ee9c7e98e4": { - "model_module": "@jupyter-widgets/base", + "2eccc9344146462cb954c835340acfcc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2df419f21d9941f6bb5e98a57949ab45": { + "316a80481c1e4e0e8a5851e6128b9249": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3227,34 +3282,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fd870bd3c41d4553909bf0bf529dc145", - "IPY_MODEL_d18affcee43748bd9f1897e771858eb0", - "IPY_MODEL_f873590ff6dc4f268b0fd1753f0cf3ab" + "IPY_MODEL_ed8f76a9cf7c440f9c480bee79b69b5a", + "IPY_MODEL_6b2a7ca16b9d41ffb87fa52e2f4b7fdb", + "IPY_MODEL_e12f694f8cd34d18b31fa8525851a6bc" ], - "layout": "IPY_MODEL_51cbf4d20951437f911745921c64b661", + "layout": "IPY_MODEL_51d9626a51484ca1af7418b8a3030153", "tabbable": null, "tooltip": null } }, - "2ecfcea222b44d2fbf9c35ab282f18c4": { + "3299838358fa4cffbc8ead18c84f033b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fba40972b3ff4f96af2eb5461a06b301", + "IPY_MODEL_56ae5bdb8e0e45b9a8d7b034142900f9", + "IPY_MODEL_ddaf3803b02e4652ab51e21aad8e611f" + ], + "layout": "IPY_MODEL_4224abd2d74c405d992c6669610e0b38", + "tabbable": null, + "tooltip": null } }, - "2fa360c5d17d4bafbd1f96deb8317164": { + "345786f6aed64125ab04441287181453": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3269,15 +3330,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b702e7f109734193828d6eb7d2390315", + "layout": "IPY_MODEL_35a44c5f643b45c79093e6ea5d0dce29", "placeholder": "", - "style": "IPY_MODEL_b669b9edccf04dd98315260dec990aef", + "style": "IPY_MODEL_868f7195da1e49f58b7ca6df56e08efd", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 60.66it/s]" } }, - "31dc0391b9e54be3b9e35c2b35ebad44": { + "35a44c5f643b45c79093e6ea5d0dce29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3330,79 +3391,7 @@ "width": null } }, - "31f62255199c423fae9f98458509e8e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "34bab8925d004ca7b3161be0f83eb31e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3506918dc5394a4ebe57c1b629d1d47e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3827430ca4b44cc2bb68526d3bb8456a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2fa360c5d17d4bafbd1f96deb8317164", - "IPY_MODEL_60647b8366f94ec39bfa342ff2bcbccb", - "IPY_MODEL_9e39319b3d3848ac851f72b738ec5566" - ], - "layout": "IPY_MODEL_e8c5e1d3cb72417eb0766a93de7882f1", - "tabbable": null, - "tooltip": null - } - }, - "399e064bf36844e689885ab5c4f2db4b": { + "35bb2ff15c53467497c57903ad4792b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3455,72 +3444,7 @@ "width": null } }, - "3c9183c4918140cf865ea76516740309": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54b178260be44892b6762c16668fe79d", - "IPY_MODEL_e58feea1150f4cdca0c7fcbf53720d73", - "IPY_MODEL_76ca44d2d9df4626bfc37a1e3477f490" - ], - "layout": "IPY_MODEL_f9fadb6f5ba244c0ac9b8e57ee0a3c1f", - "tabbable": null, - "tooltip": null - } - }, - "3f9f44dadfa547a782dc15bc7e8c275c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "40eb7db36f3c42bdb31c36c8738562fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc6836ac50cd48a2b4241efec6eb58dc", - "placeholder": "", - "style": "IPY_MODEL_2623c66f27014184b88da10844e530b1", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "40f0a6320cd849f1a89a16a88a4b04e0": { + "3eaf6c1dd7b34d1d9dc4fb658e65bdea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3538,7 +3462,7 @@ "text_color": null } }, - "4365b1a2afe64342b1d387fc2b803eb0": { + "40a2a065c9154acfa1789f0666e9e257": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3554,17 +3478,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf1ae70e5ace4f04b0a902c2467c0566", + "layout": "IPY_MODEL_de8dfd7f37374deb8c37757e775f00f7", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e5946645f0a3487fbac7fba069756ba7", + "style": "IPY_MODEL_6008c53ffa3e4a23aeda99a959171d11", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "43ef2dcb48d64ae0a2059659857b3224": { + "4224abd2d74c405d992c6669610e0b38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3617,58 +3541,30 @@ "width": null } }, - "44c62a6cd73b4d178718a9bfbe980069": { + "471c343f4f4640e08520d4d5733f6ab5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57486e9757644f6b961a258007afe765", - "placeholder": "", - "style": "IPY_MODEL_651f2ea80e2f4883b249c6f25f71a0b8", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4521438e7b1f443d9a9dee1621006438": { - "model_module": "@jupyter-widgets/controls", + "479cf4bfe380448597849dbe0d0919f6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6a6f68b3909462292270dad11160b3b", - "placeholder": "", - "style": "IPY_MODEL_bbc6f659e763453cb9e9ab7be8bde5e4", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "46673a00074b4a93a951388dd71092bc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3716,7 +3612,7 @@ "width": null } }, - "4a0332baea6e4415a00ba8d746ae3aa6": { + "482e3b1e98c04fd18fecde1bdf6c463f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3769,7 +3665,7 @@ "width": null } }, - "4cfc40f3e6b645ae886f9306da176af6": { + "4a99af4d3ada457f8fb618a6deef8e04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3784,15 +3680,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e326596a3014dd2a60cd5f9ecb3ed7b", + "layout": "IPY_MODEL_fb6f05742e304f5cb1ff54bbb8f21e66", "placeholder": "", - "style": "IPY_MODEL_2ecfcea222b44d2fbf9c35ab282f18c4", + "style": "IPY_MODEL_cff5a20a4cb84326806362444b6daba0", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30.9M/30.9M [00:00<00:00, 74.3MB/s]" } }, - "51cbf4d20951437f911745921c64b661": { + "4bc284e51247438caffa116d57be1530": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3845,7 +3741,23 @@ "width": null } }, - "549d0f75e0aa4a25a3586c2173511349": { + "503bac1986d5489ea1eb93093d8755a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50c5bd11f6254b7583197ff66f97cdd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3898,30 +3810,7 @@ "width": null } }, - "54b178260be44892b6762c16668fe79d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a80bea59595844f58d749dafe50ddef5", - "placeholder": "", - "style": "IPY_MODEL_01a7cb39daa94bbaa7bf3650dda7a0b2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "57486e9757644f6b961a258007afe765": { + "51d9626a51484ca1af7418b8a3030153": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3974,7 +3863,7 @@ "width": null } }, - "5b22cdcc5c4d4e4687e0d51f1ca317cd": { + "5318e6acdf304f89bcae47689cd789c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4027,30 +3916,57 @@ "width": null } }, - "5d4b8dbf601543cab82c5a9efd03957e": { + "55b3785842d84085b3ba7a2a76df553f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba3f02bd5f054fe9a675947d3a46acb3", + "IPY_MODEL_a2773d4398c1405d8635691b9f422485", + "IPY_MODEL_9819426ab10c49d4a4b9ad644260618e" + ], + "layout": "IPY_MODEL_bfe48a45843349b1b157ee9fdf1bbd9b", + "tabbable": null, + "tooltip": null + } + }, + "56ae5bdb8e0e45b9a8d7b034142900f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5b22cdcc5c4d4e4687e0d51f1ca317cd", - "placeholder": "", - "style": "IPY_MODEL_3f9f44dadfa547a782dc15bc7e8c275c", + "layout": "IPY_MODEL_238ef461c0b642488e70138299e9fdba", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_91e3f691dab34107a32a1ddac8707964", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "60647b8366f94ec39bfa342ff2bcbccb": { + "59a457dd16654c59aeff85a7149ff579": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4066,17 +3982,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f9894908c32144d8ad29beead83fd6b4", - "max": 40.0, + "layout": "IPY_MODEL_5dadc59eec574650aed405446ccc546f", + "max": 30931277.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8774b345f7644966b6576086e0ace0a8", + "style": "IPY_MODEL_503bac1986d5489ea1eb93093d8755a5", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 30931277.0 + } + }, + "5a969ea55b3944d987b3f163aeb9fd62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_858ea3dbd52e43c4aaeb12d36ced07d9", + "placeholder": "", + "style": "IPY_MODEL_a9d48c4a16f04e95b0996028d9dfac2a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5509.37 examples/s]" + } + }, + "5b5ad5f9cf7b487797e6b9f4c00657db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_10a3cfaa15b942699b74c432cab18312", + "IPY_MODEL_9e076cf4ccae4f41a4285bc787d56694", + "IPY_MODEL_794a20be964e45ab97cf283217b2e05b" + ], + "layout": "IPY_MODEL_50c5bd11f6254b7583197ff66f97cdd2", + "tabbable": null, + "tooltip": null + } + }, + "5c13b4c297ec404eba987442d886fc09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_627b46b245e64a31beaa602558969ff5", + "IPY_MODEL_0d4edc7177e544548194990a27bece45", + "IPY_MODEL_ddfdd8d4ce264cfbae67602e5ebde12f" + ], + "layout": "IPY_MODEL_87a56859ad664b0ab4f5aa4e66736069", + "tabbable": null, + "tooltip": null } }, - "62560bd39c304d938947fa5325ea25d7": { + "5dadc59eec574650aed405446ccc546f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4129,25 +4116,223 @@ "width": null } }, - "62eb847461b4442db36a4ea17f5d159b": { + "6008c53ffa3e4a23aeda99a959171d11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "606b56c97e7443c09e14b93869667cf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "614d01bc14044bc0bb6077c5479a45d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "627b46b245e64a31beaa602558969ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec9eb4356cc24f339f1204b19197cbf5", + "placeholder": "", + "style": "IPY_MODEL_e952c19c65a44e219738b46c622d2365", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "63e1d84e9a7747b8a3db4948cd600dd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "64e59ad7010e44ef973b34d42f3a9a8d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6673acdac4b44665a6daa85be52845bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66aa056fe217466090448bb65b9a585d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_731a57884da347d387869474c7997dd0", + "placeholder": "", + "style": "IPY_MODEL_b5cd62c196164f269b507ccb00a74817", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "64e415b5f7a340ecbcd6a2a051bda3ef": { + "67519a56b09e45c89cabb9a01ec7a6ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4200,7 +4385,7 @@ "width": null } }, - "651f2ea80e2f4883b249c6f25f71a0b8": { + "6861cfe81f4c4c5ca25ecb3cd8b88b74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4218,7 +4403,49 @@ "text_color": null } }, - "683ed4f005c44aa88ba14d2ee59be091": { + "6a33e3b3f62948fbbc1852ed9ada3e2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6b2a7ca16b9d41ffb87fa52e2f4b7fdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_64e59ad7010e44ef973b34d42f3a9a8d", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_118aeca81c05441a869a79e09c0005b7", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "6bde30d8c6ee4ecf915e6b4bbcbcd2fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4271,30 +4498,7 @@ "width": null } }, - "6896d703b72b44819edd54d09c6d0efc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3ca82aacb1b4ef7b5a2f182f8182f17", - "placeholder": "", - "style": "IPY_MODEL_a5133b9e05bd4d79870da98d9663e793", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:45<00:00, 1301.71it/s]" - } - }, - "6b1d6f46ef574a6799f6354b9668e967": { + "6c78065f06ea417da231edab47533454": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4347,23 +4551,7 @@ "width": null } }, - "6d182b93aa4346c6abc4b2ff48bf95fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71839553155f4ef28a8072fe1a17cb16": { + "71946a70a3354bf2b1f0f76e36b9e33c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4416,95 +4604,7 @@ "width": null } }, - "76ca44d2d9df4626bfc37a1e3477f490": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71839553155f4ef28a8072fe1a17cb16", - "placeholder": "", - "style": "IPY_MODEL_85eded1bc96b4e4b95c27df04a86df9b", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.74it/s]" - } - }, - "78f0959ad23f4a148ac6e819ee8aa892": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "79abf1413ffc41daa00e76ab8c1b58f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_932a52c5e9d949fabaff986fa43904d7", - "placeholder": "", - "style": "IPY_MODEL_b5125449267346e3883e33ab5ee97ec8", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 625.60it/s]" - } - }, - "79f97373768a4894b61c11c09a3451d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46673a00074b4a93a951388dd71092bc", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_31f62255199c423fae9f98458509e8e7", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "85eded1bc96b4e4b95c27df04a86df9b": { + "72c8aabd62504ecb8b50af358acd1364": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4522,57 +4622,7 @@ "text_color": null } }, - "85f393a3c25f4465b71aabd81689a872": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd0ff87fe4714c138d98e4c179389597", - "IPY_MODEL_1fb170d804c2493db381c585a9aec537", - "IPY_MODEL_a472566e869249ccb7534ee39fe5b543" - ], - "layout": "IPY_MODEL_31dc0391b9e54be3b9e35c2b35ebad44", - "tabbable": null, - "tooltip": null - } - }, - "86bca8fd06604e28a55e7535c308dfc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c05f6093629464b93f0772d30c01d4b", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a72beb14a8d34340a0352014b70a81ea", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "86e090ee16744d9f9bd7bf61c1955d4d": { + "731a57884da347d387869474c7997dd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4625,23 +4675,7 @@ "width": null } }, - "8774b345f7644966b6576086e0ace0a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "87a13a2245a54a009e4726b117a30ed8": { + "73986ddc01d74a4988b31a2a51f04c52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4694,31 +4728,25 @@ "width": null } }, - "89d21099c6da47518e7175d7f522c2c2": { + "7554fa3e53ea4d4885ae44fcc278da1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4521438e7b1f443d9a9dee1621006438", - "IPY_MODEL_86bca8fd06604e28a55e7535c308dfc5", - "IPY_MODEL_9c9498dfa7db48bd92c2fab45e8b8004" - ], - "layout": "IPY_MODEL_64e415b5f7a340ecbcd6a2a051bda3ef", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8c05f6093629464b93f0772d30c01d4b": { + "7703c657e62e4faf9e16cd29ad6d9c25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4771,25 +4799,54 @@ "width": null } }, - "8e5e85d47c154938a58f77bc429ff305": { + "77d3de81fd2745d5950e89db3fe509d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f366a1a46fbc403ebc3f2e1cada42744", + "IPY_MODEL_59a457dd16654c59aeff85a7149ff579", + "IPY_MODEL_4a99af4d3ada457f8fb618a6deef8e04" + ], + "layout": "IPY_MODEL_ad4d46672b614cb0a34597b990dd4696", + "tabbable": null, + "tooltip": null + } + }, + "794a20be964e45ab97cf283217b2e05b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a03821e157b04aefb51b86312d3ddc0f", + "placeholder": "", + "style": "IPY_MODEL_98a5b4725383482888e086c2d514779c", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 252501.60 examples/s]" } }, - "8ede371fb50b40ec8b54d074cdb67999": { + "795ac7a7eae5418ca5f3d4688afc7f1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4842,7 +4899,7 @@ "width": null } }, - "9058c092962f4e7ca65154a287b286b6": { + "7adc58660ee6420eb28ee1429a4a1f40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4857,15 +4914,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_399e064bf36844e689885ab5c4f2db4b", + "layout": "IPY_MODEL_2450b10df18b4f7591b63f513632d084", "placeholder": "", - "style": "IPY_MODEL_2adb95099a344c89ac15fbd5a214d361", + "style": "IPY_MODEL_af12a24e947f4e4bbcb2db7933e0d284", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.25it/s]" + "value": " 60000/60000 [00:47<00:00, 1271.38it/s]" } }, - "931f2b743bd84808a32ab9b4e5df0d74": { + "7b859826f2134a6d9b8b32fe45aa6f0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4918,7 +4975,7 @@ "width": null } }, - "932a52c5e9d949fabaff986fa43904d7": { + "7dc9e877acfa454fb0e4a07abd22ba4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4971,7 +5028,7 @@ "width": null } }, - "9458ec19b54c437d8d8a423ac4e4ac54": { + "813ebb69132c4130b236772c578fb37f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4986,126 +5043,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b4071a1cce8e42cf8163e5a7ee555389", - "IPY_MODEL_e8d9bfeb7970492eb47950c8b2d4f2a4", - "IPY_MODEL_9058c092962f4e7ca65154a287b286b6" + "IPY_MODEL_2a82f47fd60f4962ba3076680cefe40a", + "IPY_MODEL_8fdafc17ee3945d1a4aa71a3201cbec0", + "IPY_MODEL_7adc58660ee6420eb28ee1429a4a1f40" ], - "layout": "IPY_MODEL_dfb03c3755a04d1a95618bb07624bba0", + "layout": "IPY_MODEL_5318e6acdf304f89bcae47689cd789c4", "tabbable": null, "tooltip": null } }, - "95feba1148d74361b827cbe5e5f00fd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62560bd39c304d938947fa5325ea25d7", - "placeholder": "", - "style": "IPY_MODEL_8e5e85d47c154938a58f77bc429ff305", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 33.2MB/s]" - } - }, - "96efa42c1dd6462cbed49c1c9597565d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "96f4a8fc2da44ce5ac49323b389755a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86e090ee16744d9f9bd7bf61c1955d4d", - "placeholder": "", - "style": "IPY_MODEL_1646ca92c82749b8a5c57d103b70c50c", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "9c9498dfa7db48bd92c2fab45e8b8004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f05e7404d97c42d89a8433b685ba821e", - "placeholder": "", - "style": "IPY_MODEL_1283700e7b33496695be2d87b9c2e40b", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 65.9MB/s]" - } - }, - "9cd32e5104e44c79954437543e4cde8b": { + "8274f19719194e5095e5f2e2c95246e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18a37beed32b432baf8f13eb5b3b9c8c", - "placeholder": "", - "style": "IPY_MODEL_d2ee981557d44fbe976b50983d6c920b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1fdd08da849d44e18fc77a94e96e3833", + "IPY_MODEL_91a311df13764d4ea9116bfd191ad247", + "IPY_MODEL_e5d02c28ca274a848a9594c2b3a4aece" + ], + "layout": "IPY_MODEL_0db75d1dad454c3bb3611935c6a5d6e0", "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "tooltip": null } }, - "9cf431b289d347c494e6988011fea143": { + "858ea3dbd52e43c4aaeb12d36ced07d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5158,7 +5129,7 @@ "width": null } }, - "9d3cb66078234f02882ba069b4733e15": { + "868f7195da1e49f58b7ca6df56e08efd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5176,7 +5147,7 @@ "text_color": null } }, - "9e326596a3014dd2a60cd5f9ecb3ed7b": { + "87a56859ad664b0ab4f5aa4e66736069": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5229,54 +5200,23 @@ "width": null } }, - "9e39319b3d3848ac851f72b738ec5566": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_adb57ca69458413c894213cf860c5edc", - "placeholder": "", - "style": "IPY_MODEL_0e2551e69ff04213ad6d409a83b84aa8", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.34it/s]" - } - }, - "a131f35a387f4cdaade6c200a6f0a833": { + "8a43de6e4c5e494488e3ead1a2bfc8e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4cfc40f3e6b645ae886f9306da176af6", - "IPY_MODEL_4365b1a2afe64342b1d387fc2b803eb0", - "IPY_MODEL_6896d703b72b44819edd54d09c6d0efc" - ], - "layout": "IPY_MODEL_eb789f7fb889467b999b297117871f33", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a30a9e51a0f0472490b84e2d2a8ecdd6": { + "8fdafc17ee3945d1a4aa71a3201cbec0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5292,150 +5232,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a857bfa5fb1447d2977dc140003d4fd1", - "max": 40.0, + "layout": "IPY_MODEL_d13f83ebbbee44a8b229e9182e0c3fac", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24a07b5af2824ed3968459d20d13e093", + "style": "IPY_MODEL_614d01bc14044bc0bb6077c5479a45d8", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "a472566e869249ccb7534ee39fe5b543": { + "91a311df13764d4ea9116bfd191ad247": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae9a1d82c61e4621b4db3c6ecac079b7", - "placeholder": "", - "style": "IPY_MODEL_ba2200cda0c348bbaa92e0c5b61e3d21", + "layout": "IPY_MODEL_2aade37afbad4417bda5cc84aa770e2d", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_63e1d84e9a7747b8a3db4948cd600dd9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.97it/s]" - } - }, - "a5133b9e05bd4d79870da98d9663e793": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a72beb14a8d34340a0352014b70a81ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 2.0 } }, - "a7ecc299565445f6a90a93997b3ea209": { + "91e3f691dab34107a32a1ddac8707964": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_549d0f75e0aa4a25a3586c2173511349", - "placeholder": "", - "style": "IPY_MODEL_cddd8c6b47b44c16bc01381c8faf4e2c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.50it/s]" - } - }, - "a80bea59595844f58d749dafe50ddef5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a857bfa5fb1447d2977dc140003d4fd1": { + "93fde793ec134c28ab33686cdc6b7425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5488,55 +5337,136 @@ "width": null } }, - "aaf4958feddd4aef806e74a9a72ce888": { + "980fcb93782e4894b61fbe5c56149416": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9819426ab10c49d4a4b9ad644260618e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_44c62a6cd73b4d178718a9bfbe980069", - "IPY_MODEL_0a2137d1f8a14402ba9c9a2123b11a3b", - "IPY_MODEL_e40b656e6b954efebf5241bbefbf4755" - ], - "layout": "IPY_MODEL_afb5a2c0ecf845e5a8ed5a854c8b91be", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a30c80f39521407fb5960807817fb805", + "placeholder": "", + "style": "IPY_MODEL_13a994b0b304498d9692b73cb6f7e5f1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 52.37it/s]" } }, - "acf7a11f8f8b4fb3a01d8c71457b866d": { + "98a5b4725383482888e086c2d514779c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9cf6d3a4fa2f4c3b88955186d04c662b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e076cf4ccae4f41a4285bc787d56694": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_40eb7db36f3c42bdb31c36c8738562fc", - "IPY_MODEL_a30a9e51a0f0472490b84e2d2a8ecdd6", - "IPY_MODEL_fec0d3963bea42df94b9218e651a60d3" - ], - "layout": "IPY_MODEL_931f2b743bd84808a32ab9b4e5df0d74", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c037dec6dc5d499fbbd87febdedfdb49", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_606b56c97e7443c09e14b93869667cf8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 10000.0 + } + }, + "9e80f78d41264550a69be9257b9e2366": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d569d5c0c4c44756997aca47d518b0d6", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01de94c8ca4b4da79148dd02a093ef08", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "adb57ca69458413c894213cf860c5edc": { + "9f8833790c6f4eeab02f02affe0144ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5589,33 +5519,7 @@ "width": null } }, - "adc0a7f288f34e69b91989661b4f5072": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ede371fb50b40ec8b54d074cdb67999", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_78f0959ad23f4a148ac6e819ee8aa892", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "ae9a1d82c61e4621b4db3c6ecac079b7": { + "a03821e157b04aefb51b86312d3ddc0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5668,7 +5572,7 @@ "width": null } }, - "afb5a2c0ecf845e5a8ed5a854c8b91be": { + "a0efea0b80bf4fc3b8ee7551122fedde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5721,7 +5625,33 @@ "width": null } }, - "afbfa284bed74b2c9fc4e0f1b229c91d": { + "a2773d4398c1405d8635691b9f422485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f8833790c6f4eeab02f02affe0144ff", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a43de6e4c5e494488e3ead1a2bfc8e8", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "a30c80f39521407fb5960807817fb805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5774,31 +5704,7 @@ "width": null } }, - "b2243e895e4341899d607bec27e09a9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d4b8dbf601543cab82c5a9efd03957e", - "IPY_MODEL_cb08574d65fd46979cd14153997fbf2c", - "IPY_MODEL_95feba1148d74361b827cbe5e5f00fd5" - ], - "layout": "IPY_MODEL_22b8d203f1cc4f1681b65abed54ebdf3", - "tabbable": null, - "tooltip": null - } - }, - "b4071a1cce8e42cf8163e5a7ee555389": { + "a560ee82623247b7888b3099f7486fe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5813,15 +5719,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_683ed4f005c44aa88ba14d2ee59be091", + "layout": "IPY_MODEL_bcdc2b258e5149bdabe8ad0356651499", "placeholder": "", - "style": "IPY_MODEL_96efa42c1dd6462cbed49c1c9597565d", + "style": "IPY_MODEL_3eaf6c1dd7b34d1d9dc4fb658e65bdea", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 61.34it/s]" } }, - "b5125449267346e3883e33ab5ee97ec8": { + "a9d48c4a16f04e95b0996028d9dfac2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5839,48 +5745,23 @@ "text_color": null } }, - "b669b9edccf04dd98315260dec990aef": { + "aa26254416d142cc8cae58e993961b08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b6b05a1e474c44fa860026ba0fdd4418": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2bf9e8f1905d488bb01628ee9c7e98e4", - "placeholder": "", - "style": "IPY_MODEL_40f0a6320cd849f1a89a16a88a4b04e0", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6346.44 examples/s]" + "bar_color": null, + "description_width": "" } }, - "b702e7f109734193828d6eb7d2390315": { + "ad4d46672b614cb0a34597b990dd4696": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5933,7 +5814,84 @@ "width": null } }, - "ba2200cda0c348bbaa92e0c5b61e3d21": { + "af12a24e947f4e4bbcb2db7933e0d284": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "af969394c8094012ab9437ac8494ce17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b859826f2134a6d9b8b32fe45aa6f0e", + "placeholder": "", + "style": "IPY_MODEL_2eccc9344146462cb954c835340acfcc", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "afe06bd5c14a4b29b6d86b2d77216d84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b0071aa9421b4d6b93830c7b854a15b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b00f93ed7428476482c7a7a18f372297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5951,7 +5909,7 @@ "text_color": null } }, - "bbc6f659e763453cb9e9ab7be8bde5e4": { + "b16c459c48d14355a6502d699bc8b808": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5969,7 +5927,7 @@ "text_color": null } }, - "bf1ae70e5ace4f04b0a902c2467c0566": { + "b34d349722ba497cbab7e53f704aa0d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6022,7 +5980,7 @@ "width": null } }, - "c030d79a75e84be3a19dc51163691425": { + "b5cd62c196164f269b507ccb00a74817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6040,7 +5998,7 @@ "text_color": null } }, - "c1e614fe1dce4a5e91547dadad27af2c": { + "b7e94e69eeb34681b501dd8d0e7c4ed8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6093,7 +6051,48 @@ "width": null } }, - "c3b2295ed84c4e4eb23c3ac33c6df0c9": { + "ba3f02bd5f054fe9a675947d3a46acb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0efea0b80bf4fc3b8ee7551122fedde", + "placeholder": "", + "style": "IPY_MODEL_b16c459c48d14355a6502d699bc8b808", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bc2622bf140345c9bb8390963b15c9c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcdc2b258e5149bdabe8ad0356651499": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6146,7 +6145,7 @@ "width": null } }, - "c3ca82aacb1b4ef7b5a2f182f8182f17": { + "bfe48a45843349b1b157ee9fdf1bbd9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6199,7 +6198,7 @@ "width": null } }, - "c6846725e8054a8590d6ec9a84c0cf2c": { + "c037dec6dc5d499fbbd87febdedfdb49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6252,30 +6251,47 @@ "width": null } }, - "c72fdc8767ce47c8a241a225e285403d": { + "c757747a049b47d99235c27638553f90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce4c765a66cc4c76be16d044827674c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23db4859bab4487ba5a98123b4f7bf07", - "placeholder": "", - "style": "IPY_MODEL_c030d79a75e84be3a19dc51163691425", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af969394c8094012ab9437ac8494ce17", + "IPY_MODEL_199a6069269642d4bc690b0016a7fdd2", + "IPY_MODEL_d9935be3c17a4522b7eac98997a14a47" + ], + "layout": "IPY_MODEL_93fde793ec134c28ab33686cdc6b7425", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "c96ff12a1e3b4a139e974783f357d442": { + "cff5a20a4cb84326806362444b6daba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6293,33 +6309,7 @@ "text_color": null } }, - "cb08574d65fd46979cd14153997fbf2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cf431b289d347c494e6988011fea143", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7417173ce942548c73ca4814ef64d6", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "cc6836ac50cd48a2b4241efec6eb58dc": { + "d13f83ebbbee44a8b229e9182e0c3fac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6372,67 +6362,7 @@ "width": null } }, - "cd4760da745045bfacad84311917cc05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cddd8c6b47b44c16bc01381c8faf4e2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d18affcee43748bd9f1897e771858eb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0dbc507c53e74823992d938775d00b72", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16468d28adec468583cb8b0a1ade45ad", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "d27c74394acd45d583d185d5b75f9201": { + "d21e0c89b6cf4baaa1107b95445bb3d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6485,49 +6415,7 @@ "width": null } }, - "d2d7a3f1c4d049cd9c347c4b0eb84fa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_96f4a8fc2da44ce5ac49323b389755a9", - "IPY_MODEL_adc0a7f288f34e69b91989661b4f5072", - "IPY_MODEL_b6b05a1e474c44fa860026ba0fdd4418" - ], - "layout": "IPY_MODEL_0890043a8b4d42cd8e1c488f76a96446", - "tabbable": null, - "tooltip": null - } - }, - "d2ee981557d44fbe976b50983d6c920b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d6a6f68b3909462292270dad11160b3b": { + "d569d5c0c4c44756997aca47d518b0d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6580,25 +6468,123 @@ "width": null } }, - "df8c70c890974430863879f4b7fc1ae0": { + "d6a1c9950cb749b9942acda19e2cb9c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b4fd35e6345467590d62b4c00a129ff", + "placeholder": "", + "style": "IPY_MODEL_1806bd4910f34ff6acad41d5c9a7041d", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "d9935be3c17a4522b7eac98997a14a47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c78065f06ea417da231edab47533454", + "placeholder": "", + "style": "IPY_MODEL_243efc07fa75470fac945896f1f3b566", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 301932.45 examples/s]" + } + }, + "dd3b730c4a2a472b9310ab4fc9b9b142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66aa056fe217466090448bb65b9a585d", + "IPY_MODEL_f7e78543a45647e591db1048fb75267c", + "IPY_MODEL_345786f6aed64125ab04441287181453" + ], + "layout": "IPY_MODEL_795ac7a7eae5418ca5f3d4688afc7f1c", + "tabbable": null, + "tooltip": null + } + }, + "ddaf3803b02e4652ab51e21aad8e611f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05b392401a324269806956bad3e4ae87", + "placeholder": "", + "style": "IPY_MODEL_9cf6d3a4fa2f4c3b88955186d04c662b", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.96it/s]" + } + }, + "ddfdd8d4ce264cfbae67602e5ebde12f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71946a70a3354bf2b1f0f76e36b9e33c", + "placeholder": "", + "style": "IPY_MODEL_25089578a19148dd85020c372f934083", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.07it/s]" } }, - "dfb03c3755a04d1a95618bb07624bba0": { + "de8dfd7f37374deb8c37757e775f00f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6651,7 +6637,7 @@ "width": null } }, - "e40b656e6b954efebf5241bbefbf4755": { + "e12f694f8cd34d18b31fa8525851a6bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6666,41 +6652,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c6846725e8054a8590d6ec9a84c0cf2c", + "layout": "IPY_MODEL_35bb2ff15c53467497c57903ad4792b7", "placeholder": "", - "style": "IPY_MODEL_62eb847461b4442db36a4ea17f5d159b", + "style": "IPY_MODEL_bc2622bf140345c9bb8390963b15c9c2", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 295442.87 examples/s]" + "value": " 5.18M/5.18M [00:00<00:00, 58.7MB/s]" } }, - "e58feea1150f4cdca0c7fcbf53720d73": { + "e5d02c28ca274a848a9594c2b3a4aece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1e614fe1dce4a5e91547dadad27af2c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_34bab8925d004ca7b3161be0f83eb31e", + "layout": "IPY_MODEL_b7e94e69eeb34681b501dd8d0e7c4ed8", + "placeholder": "", + "style": "IPY_MODEL_1292de53b9524f02a70567826b92ee3f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 2/2 [00:00<00:00, 541.79it/s]" + } + }, + "e952c19c65a44e219738b46c622d2365": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e5946645f0a3487fbac7fba069756ba7": { + "ebb13c453ac14415b142e96e3248bf8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6716,7 +6717,31 @@ "description_width": "" } }, - "e8c5e1d3cb72417eb0766a93de7882f1": { + "ebbf595921b64065bcf44312f9e3d85e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_efb83d1696d2471a8b4f1b8f653bd39c", + "IPY_MODEL_9e80f78d41264550a69be9257b9e2366", + "IPY_MODEL_a560ee82623247b7888b3099f7486fe9" + ], + "layout": "IPY_MODEL_7dc9e877acfa454fb0e4a07abd22ba4c", + "tabbable": null, + "tooltip": null + } + }, + "ec9eb4356cc24f339f1204b19197cbf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6769,33 +6794,48 @@ "width": null } }, - "e8d9bfeb7970492eb47950c8b2d4f2a4": { + "ed3e2216f75c48bea530ff9a65a6b97f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed8f76a9cf7c440f9c480bee79b69b5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_87a13a2245a54a009e4726b117a30ed8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_efbb58989ccd489ebc77897f22107209", + "layout": "IPY_MODEL_7703c657e62e4faf9e16cd29ad6d9c25", + "placeholder": "", + "style": "IPY_MODEL_ed3e2216f75c48bea530ff9a65a6b97f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Downloading data: 100%" } }, - "eb789f7fb889467b999b297117871f33": { + "ef385e8d6d1a4706b9e911129c87a580": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6848,47 +6888,30 @@ "width": null } }, - "ed4f18133c0c48ee843c41397718ed35": { + "efb83d1696d2471a8b4f1b8f653bd39c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c72fdc8767ce47c8a241a225e285403d", - "IPY_MODEL_f5bf6d7daff647e9bcb7f9a17ed8dedf", - "IPY_MODEL_a7ecc299565445f6a90a93997b3ea209" - ], - "layout": "IPY_MODEL_43ef2dcb48d64ae0a2059659857b3224", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b34d349722ba497cbab7e53f704aa0d1", + "placeholder": "", + "style": "IPY_MODEL_7554fa3e53ea4d4885ae44fcc278da1b", "tabbable": null, - "tooltip": null - } - }, - "efbb58989ccd489ebc77897f22107209": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "100%" } }, - "f05e7404d97c42d89a8433b685ba821e": { + "f030772e7ec74326aaf7fcf655dad96c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6941,7 +6964,30 @@ "width": null } }, - "f1d682fd76904e3e8eb8c8fd4b33b1b8": { + "f366a1a46fbc403ebc3f2e1cada42744": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_482e3b1e98c04fd18fecde1bdf6c463f", + "placeholder": "", + "style": "IPY_MODEL_980fcb93782e4894b61fbe5c56149416", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "f5d563d97e2f48c9bdf06b0f252f5953": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6994,7 +7040,7 @@ "width": null } }, - "f5bf6d7daff647e9bcb7f9a17ed8dedf": { + "f7e78543a45647e591db1048fb75267c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7010,40 +7056,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_087062b5a489482fb84b15000fa75b8e", + "layout": "IPY_MODEL_67519a56b09e45c89cabb9a01ec7a6ce", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_cd4760da745045bfacad84311917cc05", + "style": "IPY_MODEL_c757747a049b47d99235c27638553f90", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "f873590ff6dc4f268b0fd1753f0cf3ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b1d6f46ef574a6799f6354b9668e967", - "placeholder": "", - "style": "IPY_MODEL_df8c70c890974430863879f4b7fc1ae0", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 254020.12 examples/s]" - } - }, - "f9894908c32144d8ad29beead83fd6b4": { + "fb6f05742e304f5cb1ff54bbb8f21e66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7096,7 +7119,30 @@ "width": null } }, - "f9fadb6f5ba244c0ac9b8e57ee0a3c1f": { + "fba40972b3ff4f96af2eb5461a06b301": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef385e8d6d1a4706b9e911129c87a580", + "placeholder": "", + "style": "IPY_MODEL_471c343f4f4640e08520d4d5733f6ab5", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "fc3c14fcdc6e4f18b310d86976a70249": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7149,53 +7195,7 @@ "width": null } }, - "fd0ff87fe4714c138d98e4c179389597": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3b2295ed84c4e4eb23c3ac33c6df0c9", - "placeholder": "", - "style": "IPY_MODEL_00b39e47325045ff89c6820d57fa9302", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "fd870bd3c41d4553909bf0bf529dc145": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2bf0448ef0fd4b81bdfc94c8e9a48375", - "placeholder": "", - "style": "IPY_MODEL_c96ff12a1e3b4a139e974783f357d442", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "fec0d3963bea42df94b9218e651a60d3": { + "ffdf26d7d23846cd8b5267f5abe07a1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7210,12 +7210,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d27c74394acd45d583d185d5b75f9201", + "layout": "IPY_MODEL_479cf4bfe380448597849dbe0d0919f6", "placeholder": "", - "style": "IPY_MODEL_9d3cb66078234f02882ba069b4733e15", + "style": "IPY_MODEL_6861cfe81f4c4c5ca25ecb3cd8b88b74", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.22it/s]" + "value": "Map (num_proc=4): 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index f85389c9b..2285a121a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:38.366848Z", - "iopub.status.busy": "2024-05-15T04:16:38.366678Z", - "iopub.status.idle": "2024-05-15T04:16:39.435084Z", - "shell.execute_reply": "2024-05-15T04:16:39.434466Z" + "iopub.execute_input": "2024-05-21T21:41:03.985551Z", + "iopub.status.busy": "2024-05-21T21:41:03.985376Z", + "iopub.status.idle": "2024-05-21T21:41:05.186307Z", + "shell.execute_reply": "2024-05-21T21:41:05.185737Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.437716Z", - "iopub.status.busy": "2024-05-15T04:16:39.437456Z", - "iopub.status.idle": "2024-05-15T04:16:39.456007Z", - "shell.execute_reply": "2024-05-15T04:16:39.455582Z" + "iopub.execute_input": "2024-05-21T21:41:05.188983Z", + "iopub.status.busy": "2024-05-21T21:41:05.188492Z", + "iopub.status.idle": "2024-05-21T21:41:05.207694Z", + "shell.execute_reply": "2024-05-21T21:41:05.207091Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.458033Z", - "iopub.status.busy": "2024-05-15T04:16:39.457805Z", - "iopub.status.idle": "2024-05-15T04:16:39.485223Z", - "shell.execute_reply": "2024-05-15T04:16:39.484781Z" + "iopub.execute_input": "2024-05-21T21:41:05.210402Z", + "iopub.status.busy": "2024-05-21T21:41:05.210066Z", + "iopub.status.idle": "2024-05-21T21:41:05.271422Z", + "shell.execute_reply": "2024-05-21T21:41:05.270810Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.487312Z", - "iopub.status.busy": "2024-05-15T04:16:39.486932Z", - "iopub.status.idle": "2024-05-15T04:16:39.490152Z", - "shell.execute_reply": "2024-05-15T04:16:39.489736Z" + "iopub.execute_input": "2024-05-21T21:41:05.274004Z", + "iopub.status.busy": "2024-05-21T21:41:05.273486Z", + "iopub.status.idle": "2024-05-21T21:41:05.277125Z", + "shell.execute_reply": "2024-05-21T21:41:05.276674Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.492112Z", - "iopub.status.busy": "2024-05-15T04:16:39.491790Z", - "iopub.status.idle": "2024-05-15T04:16:39.499759Z", - "shell.execute_reply": "2024-05-15T04:16:39.499347Z" + "iopub.execute_input": "2024-05-21T21:41:05.279190Z", + "iopub.status.busy": "2024-05-21T21:41:05.279009Z", + "iopub.status.idle": "2024-05-21T21:41:05.286681Z", + "shell.execute_reply": "2024-05-21T21:41:05.286207Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.501819Z", - "iopub.status.busy": "2024-05-15T04:16:39.501516Z", - "iopub.status.idle": "2024-05-15T04:16:39.504173Z", - "shell.execute_reply": "2024-05-15T04:16:39.503597Z" + "iopub.execute_input": "2024-05-21T21:41:05.288668Z", + "iopub.status.busy": "2024-05-21T21:41:05.288495Z", + "iopub.status.idle": "2024-05-21T21:41:05.291258Z", + "shell.execute_reply": "2024-05-21T21:41:05.290801Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:39.506117Z", - "iopub.status.busy": "2024-05-15T04:16:39.505797Z", - "iopub.status.idle": "2024-05-15T04:16:42.538098Z", - "shell.execute_reply": "2024-05-15T04:16:42.537481Z" + "iopub.execute_input": "2024-05-21T21:41:05.293279Z", + "iopub.status.busy": "2024-05-21T21:41:05.293105Z", + "iopub.status.idle": "2024-05-21T21:41:08.259829Z", + "shell.execute_reply": "2024-05-21T21:41:08.259290Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:42.540975Z", - "iopub.status.busy": "2024-05-15T04:16:42.540488Z", - "iopub.status.idle": "2024-05-15T04:16:42.550046Z", - "shell.execute_reply": "2024-05-15T04:16:42.549491Z" + "iopub.execute_input": "2024-05-21T21:41:08.262369Z", + "iopub.status.busy": "2024-05-21T21:41:08.262157Z", + "iopub.status.idle": "2024-05-21T21:41:08.271774Z", + "shell.execute_reply": "2024-05-21T21:41:08.271345Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:42.552351Z", - "iopub.status.busy": "2024-05-15T04:16:42.552024Z", - "iopub.status.idle": "2024-05-15T04:16:44.249072Z", - "shell.execute_reply": "2024-05-15T04:16:44.248483Z" + "iopub.execute_input": "2024-05-21T21:41:08.274126Z", + "iopub.status.busy": "2024-05-21T21:41:08.273683Z", + "iopub.status.idle": "2024-05-21T21:41:10.189344Z", + "shell.execute_reply": "2024-05-21T21:41:10.188730Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.251968Z", - "iopub.status.busy": "2024-05-15T04:16:44.251362Z", - "iopub.status.idle": "2024-05-15T04:16:44.273945Z", - "shell.execute_reply": "2024-05-15T04:16:44.273454Z" + "iopub.execute_input": "2024-05-21T21:41:10.192368Z", + "iopub.status.busy": "2024-05-21T21:41:10.191691Z", + "iopub.status.idle": "2024-05-21T21:41:10.217287Z", + "shell.execute_reply": "2024-05-21T21:41:10.216735Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.276284Z", - "iopub.status.busy": "2024-05-15T04:16:44.275899Z", - "iopub.status.idle": "2024-05-15T04:16:44.284752Z", - "shell.execute_reply": "2024-05-15T04:16:44.284277Z" + "iopub.execute_input": "2024-05-21T21:41:10.219916Z", + "iopub.status.busy": "2024-05-21T21:41:10.219507Z", + "iopub.status.idle": "2024-05-21T21:41:10.229069Z", + "shell.execute_reply": "2024-05-21T21:41:10.228570Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.287150Z", - "iopub.status.busy": "2024-05-15T04:16:44.286837Z", - "iopub.status.idle": "2024-05-15T04:16:44.297026Z", - "shell.execute_reply": "2024-05-15T04:16:44.296542Z" + "iopub.execute_input": "2024-05-21T21:41:10.231571Z", + "iopub.status.busy": "2024-05-21T21:41:10.231177Z", + "iopub.status.idle": "2024-05-21T21:41:10.242358Z", + "shell.execute_reply": "2024-05-21T21:41:10.241854Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.299391Z", - "iopub.status.busy": "2024-05-15T04:16:44.299021Z", - "iopub.status.idle": "2024-05-15T04:16:44.307980Z", - "shell.execute_reply": "2024-05-15T04:16:44.307505Z" + "iopub.execute_input": "2024-05-21T21:41:10.245063Z", + "iopub.status.busy": "2024-05-21T21:41:10.244727Z", + "iopub.status.idle": "2024-05-21T21:41:10.254330Z", + "shell.execute_reply": "2024-05-21T21:41:10.253818Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.310335Z", - "iopub.status.busy": "2024-05-15T04:16:44.309973Z", - "iopub.status.idle": "2024-05-15T04:16:44.320117Z", - "shell.execute_reply": "2024-05-15T04:16:44.319627Z" + "iopub.execute_input": "2024-05-21T21:41:10.257791Z", + "iopub.status.busy": "2024-05-21T21:41:10.256838Z", + "iopub.status.idle": "2024-05-21T21:41:10.269916Z", + "shell.execute_reply": "2024-05-21T21:41:10.269406Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.322399Z", - "iopub.status.busy": "2024-05-15T04:16:44.322043Z", - "iopub.status.idle": "2024-05-15T04:16:44.329174Z", - "shell.execute_reply": "2024-05-15T04:16:44.328709Z" + "iopub.execute_input": "2024-05-21T21:41:10.272528Z", + "iopub.status.busy": "2024-05-21T21:41:10.272077Z", + "iopub.status.idle": "2024-05-21T21:41:10.278959Z", + "shell.execute_reply": "2024-05-21T21:41:10.278509Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.331187Z", - "iopub.status.busy": "2024-05-15T04:16:44.330896Z", - "iopub.status.idle": "2024-05-15T04:16:44.336475Z", - "shell.execute_reply": "2024-05-15T04:16:44.336095Z" + "iopub.execute_input": "2024-05-21T21:41:10.281344Z", + "iopub.status.busy": "2024-05-21T21:41:10.280937Z", + "iopub.status.idle": "2024-05-21T21:41:10.287455Z", + "shell.execute_reply": "2024-05-21T21:41:10.286935Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:44.338325Z", - "iopub.status.busy": "2024-05-15T04:16:44.338039Z", - "iopub.status.idle": "2024-05-15T04:16:44.343747Z", - "shell.execute_reply": "2024-05-15T04:16:44.343349Z" + "iopub.execute_input": "2024-05-21T21:41:10.289713Z", + "iopub.status.busy": "2024-05-21T21:41:10.289384Z", + "iopub.status.idle": "2024-05-21T21:41:10.296233Z", + "shell.execute_reply": "2024-05-21T21:41:10.295762Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 39446ce70..2976b39bc 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:46.683349Z", - "iopub.status.busy": "2024-05-15T04:16:46.683184Z", - "iopub.status.idle": "2024-05-15T04:16:49.229530Z", - "shell.execute_reply": "2024-05-15T04:16:49.228907Z" + "iopub.execute_input": "2024-05-21T21:41:13.153824Z", + "iopub.status.busy": "2024-05-21T21:41:13.153471Z", + "iopub.status.idle": "2024-05-21T21:41:15.927681Z", + "shell.execute_reply": "2024-05-21T21:41:15.927126Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.232213Z", - "iopub.status.busy": "2024-05-15T04:16:49.231913Z", - "iopub.status.idle": "2024-05-15T04:16:49.235101Z", - "shell.execute_reply": "2024-05-15T04:16:49.234688Z" + "iopub.execute_input": "2024-05-21T21:41:15.930478Z", + "iopub.status.busy": "2024-05-21T21:41:15.930015Z", + "iopub.status.idle": "2024-05-21T21:41:15.933366Z", + "shell.execute_reply": "2024-05-21T21:41:15.932941Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.237223Z", - "iopub.status.busy": "2024-05-15T04:16:49.236835Z", - "iopub.status.idle": "2024-05-15T04:16:49.239775Z", - "shell.execute_reply": "2024-05-15T04:16:49.239345Z" + "iopub.execute_input": "2024-05-21T21:41:15.935477Z", + "iopub.status.busy": "2024-05-21T21:41:15.935095Z", + "iopub.status.idle": "2024-05-21T21:41:15.938269Z", + "shell.execute_reply": "2024-05-21T21:41:15.937741Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.241652Z", - "iopub.status.busy": "2024-05-15T04:16:49.241479Z", - "iopub.status.idle": "2024-05-15T04:16:49.270473Z", - "shell.execute_reply": "2024-05-15T04:16:49.269990Z" + "iopub.execute_input": "2024-05-21T21:41:15.940351Z", + "iopub.status.busy": "2024-05-21T21:41:15.940022Z", + "iopub.status.idle": "2024-05-21T21:41:16.010477Z", + "shell.execute_reply": "2024-05-21T21:41:16.009850Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.272783Z", - "iopub.status.busy": "2024-05-15T04:16:49.272433Z", - "iopub.status.idle": "2024-05-15T04:16:49.276058Z", - "shell.execute_reply": "2024-05-15T04:16:49.275537Z" + "iopub.execute_input": "2024-05-21T21:41:16.012947Z", + "iopub.status.busy": "2024-05-21T21:41:16.012510Z", + "iopub.status.idle": "2024-05-21T21:41:16.016299Z", + "shell.execute_reply": "2024-05-21T21:41:16.015755Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies'}\n" + "Classes: {'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.277949Z", - "iopub.status.busy": "2024-05-15T04:16:49.277775Z", - "iopub.status.idle": "2024-05-15T04:16:49.280996Z", - "shell.execute_reply": "2024-05-15T04:16:49.280525Z" + "iopub.execute_input": "2024-05-21T21:41:16.018597Z", + "iopub.status.busy": "2024-05-21T21:41:16.018189Z", + "iopub.status.idle": "2024-05-21T21:41:16.021415Z", + "shell.execute_reply": "2024-05-21T21:41:16.020899Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.283047Z", - "iopub.status.busy": "2024-05-15T04:16:49.282658Z", - "iopub.status.idle": "2024-05-15T04:16:53.072812Z", - "shell.execute_reply": "2024-05-15T04:16:53.072267Z" + "iopub.execute_input": "2024-05-21T21:41:16.023377Z", + "iopub.status.busy": "2024-05-21T21:41:16.023091Z", + "iopub.status.idle": "2024-05-21T21:41:19.780695Z", + "shell.execute_reply": "2024-05-21T21:41:19.780053Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.075457Z", - "iopub.status.busy": "2024-05-15T04:16:53.075074Z", - "iopub.status.idle": "2024-05-15T04:16:53.947959Z", - "shell.execute_reply": "2024-05-15T04:16:53.947405Z" + "iopub.execute_input": "2024-05-21T21:41:19.783849Z", + "iopub.status.busy": "2024-05-21T21:41:19.783433Z", + "iopub.status.idle": "2024-05-21T21:41:20.662734Z", + "shell.execute_reply": "2024-05-21T21:41:20.662143Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.950855Z", - "iopub.status.busy": "2024-05-15T04:16:53.950466Z", - "iopub.status.idle": "2024-05-15T04:16:53.953320Z", - "shell.execute_reply": "2024-05-15T04:16:53.952842Z" + "iopub.execute_input": "2024-05-21T21:41:20.666701Z", + "iopub.status.busy": "2024-05-21T21:41:20.665714Z", + "iopub.status.idle": "2024-05-21T21:41:20.669900Z", + "shell.execute_reply": "2024-05-21T21:41:20.669394Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.955668Z", - "iopub.status.busy": "2024-05-15T04:16:53.955288Z", - "iopub.status.idle": "2024-05-15T04:16:55.461004Z", - "shell.execute_reply": "2024-05-15T04:16:55.460396Z" + "iopub.execute_input": "2024-05-21T21:41:20.673549Z", + "iopub.status.busy": "2024-05-21T21:41:20.672603Z", + "iopub.status.idle": "2024-05-21T21:41:22.259118Z", + "shell.execute_reply": "2024-05-21T21:41:22.258520Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.463910Z", - "iopub.status.busy": "2024-05-15T04:16:55.463366Z", - "iopub.status.idle": "2024-05-15T04:16:55.486583Z", - "shell.execute_reply": "2024-05-15T04:16:55.486099Z" + "iopub.execute_input": "2024-05-21T21:41:22.262878Z", + "iopub.status.busy": "2024-05-21T21:41:22.261509Z", + "iopub.status.idle": "2024-05-21T21:41:22.288182Z", + "shell.execute_reply": "2024-05-21T21:41:22.287638Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.489128Z", - "iopub.status.busy": "2024-05-15T04:16:55.488808Z", - "iopub.status.idle": "2024-05-15T04:16:55.498016Z", - "shell.execute_reply": "2024-05-15T04:16:55.497538Z" + "iopub.execute_input": "2024-05-21T21:41:22.291914Z", + "iopub.status.busy": "2024-05-21T21:41:22.290976Z", + "iopub.status.idle": "2024-05-21T21:41:22.302925Z", + "shell.execute_reply": "2024-05-21T21:41:22.302403Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.500611Z", - "iopub.status.busy": "2024-05-15T04:16:55.500238Z", - "iopub.status.idle": "2024-05-15T04:16:55.504743Z", - "shell.execute_reply": "2024-05-15T04:16:55.504264Z" + "iopub.execute_input": "2024-05-21T21:41:22.306554Z", + "iopub.status.busy": "2024-05-21T21:41:22.305634Z", + "iopub.status.idle": "2024-05-21T21:41:22.312354Z", + "shell.execute_reply": "2024-05-21T21:41:22.311758Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.507080Z", - "iopub.status.busy": "2024-05-15T04:16:55.506876Z", - "iopub.status.idle": "2024-05-15T04:16:55.514520Z", - "shell.execute_reply": "2024-05-15T04:16:55.513987Z" + "iopub.execute_input": "2024-05-21T21:41:22.314633Z", + "iopub.status.busy": "2024-05-21T21:41:22.314451Z", + "iopub.status.idle": "2024-05-21T21:41:22.321616Z", + "shell.execute_reply": "2024-05-21T21:41:22.321154Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.516644Z", - "iopub.status.busy": "2024-05-15T04:16:55.516256Z", - "iopub.status.idle": "2024-05-15T04:16:55.522631Z", - "shell.execute_reply": "2024-05-15T04:16:55.522100Z" + "iopub.execute_input": "2024-05-21T21:41:22.323653Z", + "iopub.status.busy": "2024-05-21T21:41:22.323330Z", + "iopub.status.idle": "2024-05-21T21:41:22.331115Z", + "shell.execute_reply": "2024-05-21T21:41:22.330680Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.524321Z", - "iopub.status.busy": "2024-05-15T04:16:55.524155Z", - "iopub.status.idle": "2024-05-15T04:16:55.529786Z", - "shell.execute_reply": "2024-05-15T04:16:55.529252Z" + "iopub.execute_input": "2024-05-21T21:41:22.333055Z", + "iopub.status.busy": "2024-05-21T21:41:22.332874Z", + "iopub.status.idle": "2024-05-21T21:41:22.338602Z", + "shell.execute_reply": "2024-05-21T21:41:22.338162Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.531693Z", - "iopub.status.busy": "2024-05-15T04:16:55.531406Z", - "iopub.status.idle": "2024-05-15T04:16:55.539627Z", - "shell.execute_reply": "2024-05-15T04:16:55.539088Z" + "iopub.execute_input": "2024-05-21T21:41:22.340521Z", + "iopub.status.busy": "2024-05-21T21:41:22.340351Z", + "iopub.status.idle": "2024-05-21T21:41:22.349181Z", + "shell.execute_reply": "2024-05-21T21:41:22.348633Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.541589Z", - "iopub.status.busy": "2024-05-15T04:16:55.541267Z", - "iopub.status.idle": "2024-05-15T04:16:55.546620Z", - "shell.execute_reply": "2024-05-15T04:16:55.546165Z" + "iopub.execute_input": "2024-05-21T21:41:22.351237Z", + "iopub.status.busy": "2024-05-21T21:41:22.350923Z", + "iopub.status.idle": "2024-05-21T21:41:22.356456Z", + "shell.execute_reply": "2024-05-21T21:41:22.355998Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.548574Z", - "iopub.status.busy": "2024-05-15T04:16:55.548189Z", - "iopub.status.idle": "2024-05-15T04:16:55.553517Z", - "shell.execute_reply": "2024-05-15T04:16:55.552984Z" + "iopub.execute_input": "2024-05-21T21:41:22.358319Z", + "iopub.status.busy": "2024-05-21T21:41:22.358144Z", + "iopub.status.idle": "2024-05-21T21:41:22.363766Z", + "shell.execute_reply": "2024-05-21T21:41:22.363309Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.555420Z", - "iopub.status.busy": "2024-05-15T04:16:55.555136Z", - "iopub.status.idle": "2024-05-15T04:16:55.558531Z", - "shell.execute_reply": "2024-05-15T04:16:55.558110Z" + "iopub.execute_input": "2024-05-21T21:41:22.365807Z", + "iopub.status.busy": "2024-05-21T21:41:22.365482Z", + "iopub.status.idle": "2024-05-21T21:41:22.369123Z", + "shell.execute_reply": "2024-05-21T21:41:22.368679Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.560607Z", - "iopub.status.busy": "2024-05-15T04:16:55.560298Z", - "iopub.status.idle": "2024-05-15T04:16:55.565081Z", - "shell.execute_reply": "2024-05-15T04:16:55.564660Z" + "iopub.execute_input": "2024-05-21T21:41:22.371324Z", + "iopub.status.busy": "2024-05-21T21:41:22.370934Z", + "iopub.status.idle": "2024-05-21T21:41:22.376213Z", + "shell.execute_reply": "2024-05-21T21:41:22.375675Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 098994f5a..c0f97712b 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:58.731090Z", - "iopub.status.busy": "2024-05-15T04:16:58.730921Z", - "iopub.status.idle": "2024-05-15T04:16:59.811081Z", - "shell.execute_reply": "2024-05-15T04:16:59.810532Z" + "iopub.execute_input": "2024-05-21T21:41:25.785770Z", + "iopub.status.busy": "2024-05-21T21:41:25.785598Z", + "iopub.status.idle": "2024-05-21T21:41:26.959965Z", + "shell.execute_reply": "2024-05-21T21:41:26.959317Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.813676Z", - "iopub.status.busy": "2024-05-15T04:16:59.813166Z", - "iopub.status.idle": "2024-05-15T04:16:59.816022Z", - "shell.execute_reply": "2024-05-15T04:16:59.815490Z" + "iopub.execute_input": "2024-05-21T21:41:26.962293Z", + "iopub.status.busy": "2024-05-21T21:41:26.962007Z", + "iopub.status.idle": "2024-05-21T21:41:26.964973Z", + "shell.execute_reply": "2024-05-21T21:41:26.964404Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.818099Z", - "iopub.status.busy": "2024-05-15T04:16:59.817891Z", - "iopub.status.idle": "2024-05-15T04:16:59.829764Z", - "shell.execute_reply": "2024-05-15T04:16:59.829241Z" + "iopub.execute_input": "2024-05-21T21:41:26.967153Z", + "iopub.status.busy": "2024-05-21T21:41:26.966971Z", + "iopub.status.idle": "2024-05-21T21:41:26.979452Z", + "shell.execute_reply": "2024-05-21T21:41:26.979018Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.831905Z", - "iopub.status.busy": "2024-05-15T04:16:59.831586Z", - "iopub.status.idle": "2024-05-15T04:17:05.056802Z", - "shell.execute_reply": "2024-05-15T04:17:05.056349Z" + "iopub.execute_input": "2024-05-21T21:41:26.981381Z", + "iopub.status.busy": "2024-05-21T21:41:26.981205Z", + "iopub.status.idle": "2024-05-21T21:41:31.160055Z", + "shell.execute_reply": "2024-05-21T21:41:31.159574Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 632c61206..8c9f0fb8d 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:07.101639Z", - "iopub.status.busy": "2024-05-15T04:17:07.101168Z", - "iopub.status.idle": "2024-05-15T04:17:08.177208Z", - "shell.execute_reply": "2024-05-15T04:17:08.176676Z" + "iopub.execute_input": "2024-05-21T21:41:33.321624Z", + "iopub.status.busy": "2024-05-21T21:41:33.321211Z", + "iopub.status.idle": "2024-05-21T21:41:34.467558Z", + "shell.execute_reply": "2024-05-21T21:41:34.466993Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:08.180245Z", - "iopub.status.busy": "2024-05-15T04:17:08.179569Z", - "iopub.status.idle": "2024-05-15T04:17:08.183107Z", - "shell.execute_reply": "2024-05-15T04:17:08.182563Z" + "iopub.execute_input": "2024-05-21T21:41:34.470398Z", + "iopub.status.busy": "2024-05-21T21:41:34.469886Z", + "iopub.status.idle": "2024-05-21T21:41:34.473428Z", + "shell.execute_reply": "2024-05-21T21:41:34.472885Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:08.185156Z", - "iopub.status.busy": "2024-05-15T04:17:08.184837Z", - "iopub.status.idle": "2024-05-15T04:17:11.045205Z", - "shell.execute_reply": "2024-05-15T04:17:11.044604Z" + "iopub.execute_input": "2024-05-21T21:41:34.475497Z", + "iopub.status.busy": "2024-05-21T21:41:34.475189Z", + "iopub.status.idle": "2024-05-21T21:41:37.541805Z", + "shell.execute_reply": "2024-05-21T21:41:37.541204Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.048131Z", - "iopub.status.busy": "2024-05-15T04:17:11.047496Z", - "iopub.status.idle": "2024-05-15T04:17:11.078602Z", - "shell.execute_reply": "2024-05-15T04:17:11.077912Z" + "iopub.execute_input": "2024-05-21T21:41:37.544876Z", + "iopub.status.busy": "2024-05-21T21:41:37.544200Z", + "iopub.status.idle": "2024-05-21T21:41:37.577857Z", + "shell.execute_reply": "2024-05-21T21:41:37.577259Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.081233Z", - "iopub.status.busy": "2024-05-15T04:17:11.081002Z", - "iopub.status.idle": "2024-05-15T04:17:11.114292Z", - "shell.execute_reply": "2024-05-15T04:17:11.113594Z" + "iopub.execute_input": "2024-05-21T21:41:37.580455Z", + "iopub.status.busy": "2024-05-21T21:41:37.580078Z", + "iopub.status.idle": "2024-05-21T21:41:37.610156Z", + "shell.execute_reply": "2024-05-21T21:41:37.609552Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.116920Z", - "iopub.status.busy": "2024-05-15T04:17:11.116697Z", - "iopub.status.idle": "2024-05-15T04:17:11.119675Z", - "shell.execute_reply": "2024-05-15T04:17:11.119154Z" + "iopub.execute_input": "2024-05-21T21:41:37.612763Z", + "iopub.status.busy": "2024-05-21T21:41:37.612398Z", + "iopub.status.idle": "2024-05-21T21:41:37.615344Z", + "shell.execute_reply": "2024-05-21T21:41:37.614912Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.121641Z", - "iopub.status.busy": "2024-05-15T04:17:11.121272Z", - "iopub.status.idle": "2024-05-15T04:17:11.123914Z", - "shell.execute_reply": "2024-05-15T04:17:11.123388Z" + "iopub.execute_input": "2024-05-21T21:41:37.617387Z", + "iopub.status.busy": "2024-05-21T21:41:37.617132Z", + "iopub.status.idle": "2024-05-21T21:41:37.619691Z", + "shell.execute_reply": "2024-05-21T21:41:37.619224Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.126027Z", - "iopub.status.busy": "2024-05-15T04:17:11.125638Z", - "iopub.status.idle": "2024-05-15T04:17:11.149106Z", - "shell.execute_reply": "2024-05-15T04:17:11.148591Z" + "iopub.execute_input": "2024-05-21T21:41:37.621849Z", + "iopub.status.busy": "2024-05-21T21:41:37.621495Z", + "iopub.status.idle": "2024-05-21T21:41:37.644753Z", + "shell.execute_reply": "2024-05-21T21:41:37.644162Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd7fec60985949e091b5bfce2d1859ac", + "model_id": "9c96bc2a444347cfbd1a31f574134171", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "08f3f5d46ed0410195bbe628e4aa4703", + "model_id": "3754a03ca13f4880b7c49c9416b8a549", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.154288Z", - "iopub.status.busy": "2024-05-15T04:17:11.153963Z", - "iopub.status.idle": "2024-05-15T04:17:11.160350Z", - "shell.execute_reply": "2024-05-15T04:17:11.159816Z" + "iopub.execute_input": "2024-05-21T21:41:37.651285Z", + "iopub.status.busy": "2024-05-21T21:41:37.651098Z", + "iopub.status.idle": "2024-05-21T21:41:37.657784Z", + "shell.execute_reply": "2024-05-21T21:41:37.657348Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.162478Z", - "iopub.status.busy": "2024-05-15T04:17:11.162071Z", - "iopub.status.idle": "2024-05-15T04:17:11.165555Z", - "shell.execute_reply": "2024-05-15T04:17:11.165040Z" + "iopub.execute_input": "2024-05-21T21:41:37.659678Z", + "iopub.status.busy": "2024-05-21T21:41:37.659501Z", + "iopub.status.idle": "2024-05-21T21:41:37.663135Z", + "shell.execute_reply": "2024-05-21T21:41:37.662692Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.167431Z", - "iopub.status.busy": "2024-05-15T04:17:11.167134Z", - "iopub.status.idle": "2024-05-15T04:17:11.173251Z", - "shell.execute_reply": "2024-05-15T04:17:11.172731Z" + "iopub.execute_input": "2024-05-21T21:41:37.664987Z", + "iopub.status.busy": "2024-05-21T21:41:37.664818Z", + "iopub.status.idle": "2024-05-21T21:41:37.671156Z", + "shell.execute_reply": "2024-05-21T21:41:37.670696Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.175215Z", - "iopub.status.busy": "2024-05-15T04:17:11.174909Z", - "iopub.status.idle": "2024-05-15T04:17:11.204981Z", - "shell.execute_reply": "2024-05-15T04:17:11.204306Z" + "iopub.execute_input": "2024-05-21T21:41:37.673106Z", + "iopub.status.busy": "2024-05-21T21:41:37.672776Z", + "iopub.status.idle": "2024-05-21T21:41:37.710677Z", + "shell.execute_reply": "2024-05-21T21:41:37.709969Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.207344Z", - "iopub.status.busy": "2024-05-15T04:17:11.207129Z", - "iopub.status.idle": "2024-05-15T04:17:11.240351Z", - "shell.execute_reply": "2024-05-15T04:17:11.239719Z" + "iopub.execute_input": "2024-05-21T21:41:37.713299Z", + "iopub.status.busy": "2024-05-21T21:41:37.713067Z", + "iopub.status.idle": "2024-05-21T21:41:37.746995Z", + "shell.execute_reply": "2024-05-21T21:41:37.746413Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.243263Z", - "iopub.status.busy": "2024-05-15T04:17:11.242941Z", - "iopub.status.idle": "2024-05-15T04:17:11.365135Z", - "shell.execute_reply": "2024-05-15T04:17:11.364611Z" + "iopub.execute_input": "2024-05-21T21:41:37.749763Z", + "iopub.status.busy": "2024-05-21T21:41:37.749470Z", + "iopub.status.idle": "2024-05-21T21:41:37.873697Z", + "shell.execute_reply": "2024-05-21T21:41:37.873149Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:11.368163Z", - "iopub.status.busy": "2024-05-15T04:17:11.367455Z", - "iopub.status.idle": "2024-05-15T04:17:14.401586Z", - "shell.execute_reply": "2024-05-15T04:17:14.400973Z" + "iopub.execute_input": "2024-05-21T21:41:37.876565Z", + "iopub.status.busy": "2024-05-21T21:41:37.875824Z", + "iopub.status.idle": "2024-05-21T21:41:40.960244Z", + "shell.execute_reply": "2024-05-21T21:41:40.959590Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:17:14.403937Z", - "iopub.status.busy": "2024-05-15T04:17:14.403496Z", - "iopub.status.idle": "2024-05-15T04:17:14.457407Z", - "shell.execute_reply": "2024-05-15T04:17:14.456908Z" + "iopub.execute_input": "2024-05-21T21:41:40.962755Z", + "iopub.status.busy": "2024-05-21T21:41:40.962392Z", + "iopub.status.idle": "2024-05-21T21:41:41.020917Z", + "shell.execute_reply": "2024-05-21T21:41:41.020436Z" } }, "outputs": [ @@ -1242,7 +1242,7 @@ "}\n", "
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n", " n_boot=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n", - " n_boot=1)
LinearRegression()
LinearRegression()
LinearRegression()
LinearRegression()
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
"""
import warnings
+from typing import Optional, Tuple, Union
+
import numpy as np
import pandas as pd
-from typing import Union, Tuple
-from cleanlab.typing import DatasetLike, LabelLike
-from cleanlab.internal.validation import labels_to_array
from cleanlab.internal.constants import FLOATING_POINT_COMPARISON, TINY_VALUE
+from cleanlab.internal.validation import labels_to_array
+from cleanlab.typing import DatasetLike, LabelLike
[docs]def remove_noise_from_class(noise_matrix, class_without_noise) -> np.ndarray:
@@ -733,7 +734,7 @@ Source code for cleanlab.internal.util
return x
-[docs]def value_counts(x, *, num_classes=None, multi_label=False) -> np.ndarray:
+[docs]def value_counts(x, *, num_classes: Optional[int] = None, multi_label=False) -> np.ndarray:
"""Returns an np.ndarray of shape (K, 1), with the
value counts for every unique item in the labels list/array,
where K is the number of unique entries in labels.
@@ -768,17 +769,27 @@ Source code for cleanlab.internal.util
if multi_label:
x = [z for lst in x for z in lst] # Flatten
unique_classes, counts = np.unique(x, return_counts=True)
+
+ # Early exit if num_classes is not provided or redundant
if num_classes is None or num_classes == len(unique_classes):
return counts
+
# Else, there are missing classes
- if num_classes <= max(unique_classes):
- raise ValueError(f"Required: num_classes > max(x), but {num_classes} <= {max(x)}.")
+ labels_are_integers = np.issubdtype(np.array(x).dtype, np.integer)
+ if labels_are_integers and num_classes <= np.max(unique_classes):
+ raise ValueError(f"Required: num_classes > max(x), but {num_classes} <= {np.max(x)}.")
+
# Add zero counts for all missing classes in [0, 1,..., num_classes-1]
- # multi_label=False regardless because x was flattened.
- missing_classes = get_missing_classes(x, num_classes=num_classes, multi_label=False)
- missing_counts = [(z, 0) for z in missing_classes]
+ total_counts = np.zeros(num_classes, dtype=int)
+ # Fill in counts for classes that are present.
+ # If labels are integers, unique_classes can be used directly as indices to place counts
+ # into the correct positions in total_counts array.
+ # If labels are strings, use a slice to fill counts sequentially since strings do not map to indices.
+ count_ids = unique_classes if labels_are_integers else slice(len(unique_classes))
+ total_counts[count_ids] = counts
+
# Return counts with zeros for all missing classes.
- return np.array(list(zip(*sorted(list(zip(unique_classes, counts)) + missing_counts)))[1])
+ return total_counts
[docs]def value_counts_fill_missing_classes(x, num_classes, *, multi_label=False) -> np.ndarray:
@@ -1175,9 +1186,7 @@ Source code for cleanlab.internal.util
or ``len(pre_X)`` if buffer_size cannot be determined, or None if no ShuffleDataset found.
"""
try:
- from tensorflow.python.data.ops.dataset_ops import (
- ShuffleDataset,
- )
+ from tensorflow.python.data.ops.dataset_ops import ShuffleDataset
X_inputs = [X]
while len(X_inputs) == 1:
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb
index bff523c4a..af4fa1a0e 100644
--- a/master/_sources/tutorials/clean_learning/tabular.ipynb
+++ b/master/_sources/tutorials/clean_learning/tabular.ipynb
@@ -120,7 +120,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb
index fd60e477f..7358210c0 100644
--- a/master/_sources/tutorials/clean_learning/text.ipynb
+++ b/master/_sources/tutorials/clean_learning/text.ipynb
@@ -129,7 +129,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb
index 9929144cd..e4f6f24c6 100644
--- a/master/_sources/tutorials/datalab/audio.ipynb
+++ b/master/_sources/tutorials/datalab/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb
index c8028845b..b047fcc74 100644
--- a/master/_sources/tutorials/datalab/data_monitor.ipynb
+++ b/master/_sources/tutorials/datalab/data_monitor.ipynb
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index 7547dcb2e..374f8c635 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index dfa321169..e6eac65a1 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index fca506acb..579502709 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -80,7 +80,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 73408c22d..38c63fccd 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 8594e4f29..ccb91890a 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -79,7 +79,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index 8d76d666d..7d7e4d455 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index b1c79e544..53a51ab17 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index cdfa538fe..1da9fe082 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 8a439c67e..e8fa753d8 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 139acf2da..c613c004e 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 607913619..f6a8aec81 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -110,7 +110,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 75423ff33..a25ab3f03 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 3fc326dde..a1480e328 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/cleanlab/count.html b/master/cleanlab/count.html
index d5e201007..1cd5b2d1b 100644
--- a/master/cleanlab/count.html
+++ b/master/cleanlab/count.html
@@ -976,7 +976,7 @@
-
-cleanlab.count.estimate_confident_joint_and_cv_pred_proba(X, labels, clf=LogisticRegression(), *, cv_n_folds=5, thresholds=None, seed=None, calibrate=True, clf_kwargs={}, validation_func=None)[source]#
+cleanlab.count.estimate_confident_joint_and_cv_pred_proba(X, labels, clf=LogisticRegression(multi_class='auto'), *, cv_n_folds=5, thresholds=None, seed=None, calibrate=True, clf_kwargs={}, validation_func=None)[source]#
Estimates P(labels, y)
, the confident counts of the latent
joint distribution of true and noisy labels
using observed labels and predicted probabilities pred_probs.
@@ -1045,7 +1045,7 @@
-
-cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba(X, labels, clf=LogisticRegression(), *, cv_n_folds=5, thresholds=None, converge_latent_estimates=False, py_method='cnt', seed=None, clf_kwargs={}, validation_func=None)[source]#
+cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba(X, labels, clf=LogisticRegression(multi_class='auto'), *, cv_n_folds=5, thresholds=None, converge_latent_estimates=False, py_method='cnt', seed=None, clf_kwargs={}, validation_func=None)[source]#
This function computes the out-of-sample predicted
probability P(label=k|x)
for every example x in X using cross
validation while also computing the confident counts noise
@@ -1109,7 +1109,7 @@
-
-cleanlab.count.estimate_cv_predicted_probabilities(X, labels, clf=LogisticRegression(), *, cv_n_folds=5, seed=None, clf_kwargs={}, validation_func=None)[source]#
+cleanlab.count.estimate_cv_predicted_probabilities(X, labels, clf=LogisticRegression(multi_class='auto'), *, cv_n_folds=5, seed=None, clf_kwargs={}, validation_func=None)[source]#
This function computes the out-of-sample predicted
probability [P(label=k|x)] for every example in X using cross
validation. Output is a np.ndarray of shape (N, K)
where N is
@@ -1148,7 +1148,7 @@
-
-cleanlab.count.estimate_noise_matrices(X, labels, clf=LogisticRegression(), *, cv_n_folds=5, thresholds=None, converge_latent_estimates=True, seed=None, clf_kwargs={}, validation_func=None)[source]#
+cleanlab.count.estimate_noise_matrices(X, labels, clf=LogisticRegression(multi_class='auto'), *, cv_n_folds=5, thresholds=None, converge_latent_estimates=True, seed=None, clf_kwargs={}, validation_func=None)[source]#
Estimates the noise_matrix of shape (K, K)
. This is the
fraction of examples in every class, labeled as every other class. The
noise_matrix is a conditional probability matrix for P(label=k_s|true_label=k_y)
.
diff --git a/master/searchindex.js b/master/searchindex.js
index e6c51e9ef..820a1d57d 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "auto": [9, 10, 86, 87, 89, 91, 96, 97, 105], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102, 107], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102, 107], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102, 103], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102, 107], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102, 107], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": 86, "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "visa_or_mastercard": [87, 95], "getting_spare_card": [87, 95], "supported_cards_and_curr": [87, 95], "change_pin": [87, 95], "card_payment_fee_charg": [87, 95], "card_about_to_expir": [87, 95], "beneficiary_not_allow": [87, 95], "lost_or_stolen_phon": [87, 95], "apple_pay_or_google_pai": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "ca3892994e7f40b237b467761f72acf3786e8666": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102, 107], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "737": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "733": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "692": 92, "493": 92, "060": 92, "742": 92, "330": [92, 102], "505": 92, "465": 92, "476": 92, "340": 92, "676": 92, "328": [92, 102], "310": 92, "428": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105, 107], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102, 107], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7875": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105, 107], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": 98, "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "insal": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": 102, "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": 102, "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": [102, 107], "215": 102, "220": 102, "229": 102, "217": [102, 107], "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "81183422": 103, "80it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "1069": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "62mb": 107, "mb": 107, "directori": 107, "inflat": 107, "182": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "1mb": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102, 107], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102, 103], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102, 107], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": [86, 107], "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "card_payment_fee_charg": [87, 95], "lost_or_stolen_phon": [87, 95], "visa_or_mastercard": [87, 95], "card_about_to_expir": [87, 95], "change_pin": [87, 95], "beneficiary_not_allow": [87, 95], "getting_spare_card": [87, 95], "supported_cards_and_curr": [87, 95], "apple_pay_or_google_pai": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "c13f32a2a6c1d6f3166d760b60f805c94d9f54f": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": [89, 107], "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102, 107], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102, 107], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "247": [92, 102], "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "039": 92, "493": 92, "060": 92, "156": [92, 98], "330": [92, 102], "505": 92, "978": [92, 96], "476": 92, "340": 92, "216": [92, 101, 102], "328": [92, 102], "310": 92, "030": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102, 107], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98, 107], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7709": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": 98, "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "insal": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": [102, 107], "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": [102, 107], "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": [102, 107], "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "107058699": 103, "01it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "894": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "30mb": 107, "mb": 107, "directori": 107, "inflat": 107, "161": 107, "182": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "kb": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb
index eee718530..fa91c6081 100644
--- a/master/tutorials/clean_learning/tabular.ipynb
+++ b/master/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:06.173743Z",
- "iopub.status.busy": "2024-05-15T04:10:06.173250Z",
- "iopub.status.idle": "2024-05-15T04:10:07.404368Z",
- "shell.execute_reply": "2024-05-15T04:10:07.403746Z"
+ "iopub.execute_input": "2024-05-21T21:34:19.348374Z",
+ "iopub.status.busy": "2024-05-21T21:34:19.347806Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.736841Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.736177Z"
},
"nbsphinx": "hidden"
},
@@ -126,7 +126,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -151,10 +151,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.407186Z",
- "iopub.status.busy": "2024-05-15T04:10:07.406649Z",
- "iopub.status.idle": "2024-05-15T04:10:07.426894Z",
- "shell.execute_reply": "2024-05-15T04:10:07.426427Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.739922Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.739376Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.762166Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.761647Z"
}
},
"outputs": [],
@@ -195,10 +195,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.429234Z",
- "iopub.status.busy": "2024-05-15T04:10:07.428925Z",
- "iopub.status.idle": "2024-05-15T04:10:07.644053Z",
- "shell.execute_reply": "2024-05-15T04:10:07.643441Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.764996Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.764560Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.914987Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.914388Z"
}
},
"outputs": [
@@ -305,10 +305,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.675044Z",
- "iopub.status.busy": "2024-05-15T04:10:07.674559Z",
- "iopub.status.idle": "2024-05-15T04:10:07.678414Z",
- "shell.execute_reply": "2024-05-15T04:10:07.677922Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.948682Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.948153Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.952352Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.951735Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.680598Z",
- "iopub.status.busy": "2024-05-15T04:10:07.680269Z",
- "iopub.status.idle": "2024-05-15T04:10:07.688360Z",
- "shell.execute_reply": "2024-05-15T04:10:07.687911Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.954823Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.954378Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.964089Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.963578Z"
}
},
"outputs": [],
@@ -384,10 +384,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.690466Z",
- "iopub.status.busy": "2024-05-15T04:10:07.690155Z",
- "iopub.status.idle": "2024-05-15T04:10:07.692657Z",
- "shell.execute_reply": "2024-05-15T04:10:07.692233Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.966832Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.966585Z",
+ "iopub.status.idle": "2024-05-21T21:34:20.969686Z",
+ "shell.execute_reply": "2024-05-21T21:34:20.969193Z"
}
},
"outputs": [],
@@ -409,10 +409,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:07.694473Z",
- "iopub.status.busy": "2024-05-15T04:10:07.694301Z",
- "iopub.status.idle": "2024-05-15T04:10:08.217222Z",
- "shell.execute_reply": "2024-05-15T04:10:08.216672Z"
+ "iopub.execute_input": "2024-05-21T21:34:20.971694Z",
+ "iopub.status.busy": "2024-05-21T21:34:20.971508Z",
+ "iopub.status.idle": "2024-05-21T21:34:21.506645Z",
+ "shell.execute_reply": "2024-05-21T21:34:21.506046Z"
}
},
"outputs": [],
@@ -446,10 +446,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:08.219521Z",
- "iopub.status.busy": "2024-05-15T04:10:08.219326Z",
- "iopub.status.idle": "2024-05-15T04:10:09.891770Z",
- "shell.execute_reply": "2024-05-15T04:10:09.891133Z"
+ "iopub.execute_input": "2024-05-21T21:34:21.509485Z",
+ "iopub.status.busy": "2024-05-21T21:34:21.509113Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.414430Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.413812Z"
}
},
"outputs": [
@@ -481,10 +481,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:09.894298Z",
- "iopub.status.busy": "2024-05-15T04:10:09.893747Z",
- "iopub.status.idle": "2024-05-15T04:10:09.903692Z",
- "shell.execute_reply": "2024-05-15T04:10:09.903163Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.417397Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.416667Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.427663Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.427144Z"
}
},
"outputs": [
@@ -605,10 +605,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:09.905886Z",
- "iopub.status.busy": "2024-05-15T04:10:09.905510Z",
- "iopub.status.idle": "2024-05-15T04:10:09.909563Z",
- "shell.execute_reply": "2024-05-15T04:10:09.909041Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.430046Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.429676Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.434407Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.433784Z"
}
},
"outputs": [],
@@ -633,10 +633,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:09.911810Z",
- "iopub.status.busy": "2024-05-15T04:10:09.911416Z",
- "iopub.status.idle": "2024-05-15T04:10:09.918245Z",
- "shell.execute_reply": "2024-05-15T04:10:09.917841Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.436778Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.436347Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.444154Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.443598Z"
}
},
"outputs": [],
@@ -658,10 +658,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:09.920184Z",
- "iopub.status.busy": "2024-05-15T04:10:09.919844Z",
- "iopub.status.idle": "2024-05-15T04:10:10.030863Z",
- "shell.execute_reply": "2024-05-15T04:10:10.030329Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.446674Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.446288Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.560935Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.560327Z"
}
},
"outputs": [
@@ -691,10 +691,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:10.033170Z",
- "iopub.status.busy": "2024-05-15T04:10:10.032829Z",
- "iopub.status.idle": "2024-05-15T04:10:10.035522Z",
- "shell.execute_reply": "2024-05-15T04:10:10.035091Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.563414Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.562955Z",
+ "iopub.status.idle": "2024-05-21T21:34:23.566168Z",
+ "shell.execute_reply": "2024-05-21T21:34:23.565633Z"
}
},
"outputs": [],
@@ -715,10 +715,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:10.037549Z",
- "iopub.status.busy": "2024-05-15T04:10:10.037238Z",
- "iopub.status.idle": "2024-05-15T04:10:12.073731Z",
- "shell.execute_reply": "2024-05-15T04:10:12.073023Z"
+ "iopub.execute_input": "2024-05-21T21:34:23.568585Z",
+ "iopub.status.busy": "2024-05-21T21:34:23.568123Z",
+ "iopub.status.idle": "2024-05-21T21:34:25.690853Z",
+ "shell.execute_reply": "2024-05-21T21:34:25.690211Z"
}
},
"outputs": [],
@@ -738,10 +738,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:12.076907Z",
- "iopub.status.busy": "2024-05-15T04:10:12.076050Z",
- "iopub.status.idle": "2024-05-15T04:10:12.087995Z",
- "shell.execute_reply": "2024-05-15T04:10:12.087414Z"
+ "iopub.execute_input": "2024-05-21T21:34:25.694215Z",
+ "iopub.status.busy": "2024-05-21T21:34:25.693272Z",
+ "iopub.status.idle": "2024-05-21T21:34:25.706550Z",
+ "shell.execute_reply": "2024-05-21T21:34:25.705913Z"
}
},
"outputs": [
@@ -771,10 +771,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-05-15T04:10:12.090134Z",
- "iopub.status.busy": "2024-05-15T04:10:12.089722Z",
- "iopub.status.idle": "2024-05-15T04:10:12.167809Z",
- "shell.execute_reply": "2024-05-15T04:10:12.167228Z"
+ "iopub.execute_input": "2024-05-21T21:34:25.709115Z",
+ "iopub.status.busy": "2024-05-21T21:34:25.708694Z",
+ "iopub.status.idle": "2024-05-21T21:34:25.749027Z",
+ "shell.execute_reply": "2024-05-21T21:34:25.748531Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html
index ec9a641bf..d0ea33992 100644
--- a/master/tutorials/clean_learning/text.html
+++ b/master/tutorials/clean_learning/text.html
@@ -798,7 +798,7 @@ 2. Load and format the text dataset
This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}
+Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'apple_pay_or_google_pay'}
Let’s print the first example in the train set.
@@ -861,43 +861,43 @@ 2. Load and format the text dataset
-
+
-/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.
+/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:776: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.
warnings.warn(
Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.
Training on fold: 1 ... -epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.733 -epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.692 +epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.247 +epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.039 Computing feature embeddings ...
Training on fold: 2 ... -epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.742 -epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.465 +epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.156 +epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.978 Computing feature embeddings ...
Training on fold: 3 ... -epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.676 -epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.428 +epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.216 +epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.030 Computing feature embeddings ...
This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies'}
+Classes: {'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire'}
Let’s view the i-th example in the dataset:
diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 39446ce70..2976b39bc 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:46.683349Z", - "iopub.status.busy": "2024-05-15T04:16:46.683184Z", - "iopub.status.idle": "2024-05-15T04:16:49.229530Z", - "shell.execute_reply": "2024-05-15T04:16:49.228907Z" + "iopub.execute_input": "2024-05-21T21:41:13.153824Z", + "iopub.status.busy": "2024-05-21T21:41:13.153471Z", + "iopub.status.idle": "2024-05-21T21:41:15.927681Z", + "shell.execute_reply": "2024-05-21T21:41:15.927126Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.232213Z", - "iopub.status.busy": "2024-05-15T04:16:49.231913Z", - "iopub.status.idle": "2024-05-15T04:16:49.235101Z", - "shell.execute_reply": "2024-05-15T04:16:49.234688Z" + "iopub.execute_input": "2024-05-21T21:41:15.930478Z", + "iopub.status.busy": "2024-05-21T21:41:15.930015Z", + "iopub.status.idle": "2024-05-21T21:41:15.933366Z", + "shell.execute_reply": "2024-05-21T21:41:15.932941Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.237223Z", - "iopub.status.busy": "2024-05-15T04:16:49.236835Z", - "iopub.status.idle": "2024-05-15T04:16:49.239775Z", - "shell.execute_reply": "2024-05-15T04:16:49.239345Z" + "iopub.execute_input": "2024-05-21T21:41:15.935477Z", + "iopub.status.busy": "2024-05-21T21:41:15.935095Z", + "iopub.status.idle": "2024-05-21T21:41:15.938269Z", + "shell.execute_reply": "2024-05-21T21:41:15.937741Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.241652Z", - "iopub.status.busy": "2024-05-15T04:16:49.241479Z", - "iopub.status.idle": "2024-05-15T04:16:49.270473Z", - "shell.execute_reply": "2024-05-15T04:16:49.269990Z" + "iopub.execute_input": "2024-05-21T21:41:15.940351Z", + "iopub.status.busy": "2024-05-21T21:41:15.940022Z", + "iopub.status.idle": "2024-05-21T21:41:16.010477Z", + "shell.execute_reply": "2024-05-21T21:41:16.009850Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.272783Z", - "iopub.status.busy": "2024-05-15T04:16:49.272433Z", - "iopub.status.idle": "2024-05-15T04:16:49.276058Z", - "shell.execute_reply": "2024-05-15T04:16:49.275537Z" + "iopub.execute_input": "2024-05-21T21:41:16.012947Z", + "iopub.status.busy": "2024-05-21T21:41:16.012510Z", + "iopub.status.idle": "2024-05-21T21:41:16.016299Z", + "shell.execute_reply": "2024-05-21T21:41:16.015755Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard', 'supported_cards_and_currencies'}\n" + "Classes: {'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.277949Z", - "iopub.status.busy": "2024-05-15T04:16:49.277775Z", - "iopub.status.idle": "2024-05-15T04:16:49.280996Z", - "shell.execute_reply": "2024-05-15T04:16:49.280525Z" + "iopub.execute_input": "2024-05-21T21:41:16.018597Z", + "iopub.status.busy": "2024-05-21T21:41:16.018189Z", + "iopub.status.idle": "2024-05-21T21:41:16.021415Z", + "shell.execute_reply": "2024-05-21T21:41:16.020899Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:49.283047Z", - "iopub.status.busy": "2024-05-15T04:16:49.282658Z", - "iopub.status.idle": "2024-05-15T04:16:53.072812Z", - "shell.execute_reply": "2024-05-15T04:16:53.072267Z" + "iopub.execute_input": "2024-05-21T21:41:16.023377Z", + "iopub.status.busy": "2024-05-21T21:41:16.023091Z", + "iopub.status.idle": "2024-05-21T21:41:19.780695Z", + "shell.execute_reply": "2024-05-21T21:41:19.780053Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.075457Z", - "iopub.status.busy": "2024-05-15T04:16:53.075074Z", - "iopub.status.idle": "2024-05-15T04:16:53.947959Z", - "shell.execute_reply": "2024-05-15T04:16:53.947405Z" + "iopub.execute_input": "2024-05-21T21:41:19.783849Z", + "iopub.status.busy": "2024-05-21T21:41:19.783433Z", + "iopub.status.idle": "2024-05-21T21:41:20.662734Z", + "shell.execute_reply": "2024-05-21T21:41:20.662143Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.950855Z", - "iopub.status.busy": "2024-05-15T04:16:53.950466Z", - "iopub.status.idle": "2024-05-15T04:16:53.953320Z", - "shell.execute_reply": "2024-05-15T04:16:53.952842Z" + "iopub.execute_input": "2024-05-21T21:41:20.666701Z", + "iopub.status.busy": "2024-05-21T21:41:20.665714Z", + "iopub.status.idle": "2024-05-21T21:41:20.669900Z", + "shell.execute_reply": "2024-05-21T21:41:20.669394Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:53.955668Z", - "iopub.status.busy": "2024-05-15T04:16:53.955288Z", - "iopub.status.idle": "2024-05-15T04:16:55.461004Z", - "shell.execute_reply": "2024-05-15T04:16:55.460396Z" + "iopub.execute_input": "2024-05-21T21:41:20.673549Z", + "iopub.status.busy": "2024-05-21T21:41:20.672603Z", + "iopub.status.idle": "2024-05-21T21:41:22.259118Z", + "shell.execute_reply": "2024-05-21T21:41:22.258520Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.463910Z", - "iopub.status.busy": "2024-05-15T04:16:55.463366Z", - "iopub.status.idle": "2024-05-15T04:16:55.486583Z", - "shell.execute_reply": "2024-05-15T04:16:55.486099Z" + "iopub.execute_input": "2024-05-21T21:41:22.262878Z", + "iopub.status.busy": "2024-05-21T21:41:22.261509Z", + "iopub.status.idle": "2024-05-21T21:41:22.288182Z", + "shell.execute_reply": "2024-05-21T21:41:22.287638Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.489128Z", - "iopub.status.busy": "2024-05-15T04:16:55.488808Z", - "iopub.status.idle": "2024-05-15T04:16:55.498016Z", - "shell.execute_reply": "2024-05-15T04:16:55.497538Z" + "iopub.execute_input": "2024-05-21T21:41:22.291914Z", + "iopub.status.busy": "2024-05-21T21:41:22.290976Z", + "iopub.status.idle": "2024-05-21T21:41:22.302925Z", + "shell.execute_reply": "2024-05-21T21:41:22.302403Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.500611Z", - "iopub.status.busy": "2024-05-15T04:16:55.500238Z", - "iopub.status.idle": "2024-05-15T04:16:55.504743Z", - "shell.execute_reply": "2024-05-15T04:16:55.504264Z" + "iopub.execute_input": "2024-05-21T21:41:22.306554Z", + "iopub.status.busy": "2024-05-21T21:41:22.305634Z", + "iopub.status.idle": "2024-05-21T21:41:22.312354Z", + "shell.execute_reply": "2024-05-21T21:41:22.311758Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.507080Z", - "iopub.status.busy": "2024-05-15T04:16:55.506876Z", - "iopub.status.idle": "2024-05-15T04:16:55.514520Z", - "shell.execute_reply": "2024-05-15T04:16:55.513987Z" + "iopub.execute_input": "2024-05-21T21:41:22.314633Z", + "iopub.status.busy": "2024-05-21T21:41:22.314451Z", + "iopub.status.idle": "2024-05-21T21:41:22.321616Z", + "shell.execute_reply": "2024-05-21T21:41:22.321154Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.516644Z", - "iopub.status.busy": "2024-05-15T04:16:55.516256Z", - "iopub.status.idle": "2024-05-15T04:16:55.522631Z", - "shell.execute_reply": "2024-05-15T04:16:55.522100Z" + "iopub.execute_input": "2024-05-21T21:41:22.323653Z", + "iopub.status.busy": "2024-05-21T21:41:22.323330Z", + "iopub.status.idle": "2024-05-21T21:41:22.331115Z", + "shell.execute_reply": "2024-05-21T21:41:22.330680Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.524321Z", - "iopub.status.busy": "2024-05-15T04:16:55.524155Z", - "iopub.status.idle": "2024-05-15T04:16:55.529786Z", - "shell.execute_reply": "2024-05-15T04:16:55.529252Z" + "iopub.execute_input": "2024-05-21T21:41:22.333055Z", + "iopub.status.busy": "2024-05-21T21:41:22.332874Z", + "iopub.status.idle": "2024-05-21T21:41:22.338602Z", + "shell.execute_reply": "2024-05-21T21:41:22.338162Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.531693Z", - "iopub.status.busy": "2024-05-15T04:16:55.531406Z", - "iopub.status.idle": "2024-05-15T04:16:55.539627Z", - "shell.execute_reply": "2024-05-15T04:16:55.539088Z" + "iopub.execute_input": "2024-05-21T21:41:22.340521Z", + "iopub.status.busy": "2024-05-21T21:41:22.340351Z", + "iopub.status.idle": "2024-05-21T21:41:22.349181Z", + "shell.execute_reply": "2024-05-21T21:41:22.348633Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.541589Z", - "iopub.status.busy": "2024-05-15T04:16:55.541267Z", - "iopub.status.idle": "2024-05-15T04:16:55.546620Z", - "shell.execute_reply": "2024-05-15T04:16:55.546165Z" + "iopub.execute_input": "2024-05-21T21:41:22.351237Z", + "iopub.status.busy": "2024-05-21T21:41:22.350923Z", + "iopub.status.idle": "2024-05-21T21:41:22.356456Z", + "shell.execute_reply": "2024-05-21T21:41:22.355998Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.548574Z", - "iopub.status.busy": "2024-05-15T04:16:55.548189Z", - "iopub.status.idle": "2024-05-15T04:16:55.553517Z", - "shell.execute_reply": "2024-05-15T04:16:55.552984Z" + "iopub.execute_input": "2024-05-21T21:41:22.358319Z", + "iopub.status.busy": "2024-05-21T21:41:22.358144Z", + "iopub.status.idle": "2024-05-21T21:41:22.363766Z", + "shell.execute_reply": "2024-05-21T21:41:22.363309Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.555420Z", - "iopub.status.busy": "2024-05-15T04:16:55.555136Z", - "iopub.status.idle": "2024-05-15T04:16:55.558531Z", - "shell.execute_reply": "2024-05-15T04:16:55.558110Z" + "iopub.execute_input": "2024-05-21T21:41:22.365807Z", + "iopub.status.busy": "2024-05-21T21:41:22.365482Z", + "iopub.status.idle": "2024-05-21T21:41:22.369123Z", + "shell.execute_reply": "2024-05-21T21:41:22.368679Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:55.560607Z", - "iopub.status.busy": "2024-05-15T04:16:55.560298Z", - "iopub.status.idle": "2024-05-15T04:16:55.565081Z", - "shell.execute_reply": "2024-05-15T04:16:55.564660Z" + "iopub.execute_input": "2024-05-21T21:41:22.371324Z", + "iopub.status.busy": "2024-05-21T21:41:22.370934Z", + "iopub.status.idle": "2024-05-21T21:41:22.376213Z", + "shell.execute_reply": "2024-05-21T21:41:22.375675Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 098994f5a..c0f97712b 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:58.731090Z", - "iopub.status.busy": "2024-05-15T04:16:58.730921Z", - "iopub.status.idle": "2024-05-15T04:16:59.811081Z", - "shell.execute_reply": "2024-05-15T04:16:59.810532Z" + "iopub.execute_input": "2024-05-21T21:41:25.785770Z", + "iopub.status.busy": "2024-05-21T21:41:25.785598Z", + "iopub.status.idle": "2024-05-21T21:41:26.959965Z", + "shell.execute_reply": "2024-05-21T21:41:26.959317Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ca3892994e7f40b237b467761f72acf3786e8666\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c13f32a2a6c1d6f3166d760b60f805c94d9f54fe\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.813676Z", - "iopub.status.busy": "2024-05-15T04:16:59.813166Z", - "iopub.status.idle": "2024-05-15T04:16:59.816022Z", - "shell.execute_reply": "2024-05-15T04:16:59.815490Z" + "iopub.execute_input": "2024-05-21T21:41:26.962293Z", + "iopub.status.busy": "2024-05-21T21:41:26.962007Z", + "iopub.status.idle": "2024-05-21T21:41:26.964973Z", + "shell.execute_reply": "2024-05-21T21:41:26.964404Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.818099Z", - "iopub.status.busy": "2024-05-15T04:16:59.817891Z", - "iopub.status.idle": "2024-05-15T04:16:59.829764Z", - "shell.execute_reply": "2024-05-15T04:16:59.829241Z" + "iopub.execute_input": "2024-05-21T21:41:26.967153Z", + "iopub.status.busy": "2024-05-21T21:41:26.966971Z", + "iopub.status.idle": "2024-05-21T21:41:26.979452Z", + "shell.execute_reply": "2024-05-21T21:41:26.979018Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T04:16:59.831905Z", - "iopub.status.busy": "2024-05-15T04:16:59.831586Z", - "iopub.status.idle": "2024-05-15T04:17:05.056802Z", - "shell.execute_reply": "2024-05-15T04:17:05.056349Z" + "iopub.execute_input": "2024-05-21T21:41:26.981381Z", + "iopub.status.busy": "2024-05-21T21:41:26.981205Z", + "iopub.status.idle": "2024-05-21T21:41:31.160055Z", + "shell.execute_reply": "2024-05-21T21:41:31.159574Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index c3122443d..805bc234a 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -812,13 +812,13 @@CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(), n_boot=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(), - n_boot=1)
LinearRegression()
LinearRegression()
LinearRegression()
LinearRegression()
With Datalab:
Datalab runs CleanLearning under the hood when looking for label issues in regression datasets. Here’s how you can achieve the same behavior as calling CleanLearning.find_label_issues()
in the code above using Datalab:
-/tmp/ipykernel_7875/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
+/tmp/ipykernel_7709/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values
Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n", " n_boot=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
CleanLearning(include_aleatoric_uncertainty=False, model=LinearRegression(),\n", - " n_boot=1)
LinearRegression()
LinearRegression()
LinearRegression()
LinearRegression()
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
LogisticRegression(random_state=0)
-100%|██████████| 170498071/170498071 [00:02<00:00, 81183422.80it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 107058699.01it/s]
Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True
or False
mask as find_label_issues()
.
---2024-05-15 04:21:25-- https://data.deepai.org/conll2003.zip
-Resolving data.deepai.org (data.deepai.org)... 185.93.1.250, 2400:52e0:1a00::1069:1
+--2024-05-21 21:45:57-- https://data.deepai.org/conll2003.zip
+Resolving data.deepai.org (data.deepai.org)... 185.93.1.250, 2400:52e0:1a00::894:1
Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 982975 (960K) [application/zip]
Saving to: ‘conll2003.zip’
-conll2003.zip 100%[===================>] 959.94K 5.62MB/s in 0.2s
+conll2003.zip 100%[===================>] 959.94K 5.30MB/s in 0.2s
-2024-05-15 04:21:26 (5.62 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-05-21 21:45:57 (5.30 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists
Archive: conll2003.zip
@@ -708,16 +708,16 @@ 1. Install required dependencies and download data